
DEALING WITH NON-TRANSITIVITY IN
TWO-PLAYER ZERO-SUM GAMES

Dr. Yaodong Yang
www.yangyaodong.com

07/2021

http://www.yangyaodong.com

Contents

What is Non-Transitivity in Games

How to Measure Non-Transitivity

Solutions: Double Oracle / PSRO Methods

Recent advances: Diverse-PSRO

Recent advances: Online-PSRO

Recent advances: Auto-PSRO

Multi-Agent Reinforcement Learning in Games

Jan 2016 Dec 2017

technique of single-agent
decision-making is mature

AlphaGO Series

July 2018

Capture-the-flag (DeepMind)

techniques of multi-agent decision-making is getting mature !

Jan 2019 Apr 2019 July 2019 Sep 2019

AlphaStar (DeepMind)

Dota2 (OpenAI)

Pluribus Poker (FAIR)

Hide and Seek (OpenAI)

Great advantages have been made in 2019!

A General Solver to Two-Player Zero-Sum Games

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

Low-exploitability
strategy

()π1,* . . . , πN,*

input output

Our algorithm:

Bri(π−i) = arg max
πi

Eai∼πi,a−i∼π−i[Ri(ai, a−i)]
Exploitability(π) =

2

∑
i=1

Ri(Bri(π−i), π−i) − Ri(π)

In two-player zero-sum discrete case, it can be solved in polynomial time. The matrix
 is anti-symmetrical, i.e., .

The minimax theorem is a natural outcome of the duality theorem in LP.

However, real-world games are open-ended, since there are infinitely many strategies.

We have to look at the game from at the policy space (meta-games).

A# A# = − A⊤
#

Computing Nash Equilibrium via Linear Programming

A# := {ϕ(wi, wj) : (wi, wj) ∈ # × #} =: ϕ(# ⊗ #)

Prime problem

max
v∈ℝ

v

 s.t. p⊤A# ⪰ v ⋅ 1
p ⪰ 0 and p⊤1 = 1

min
v∈ℝ

v

 s.t. q⊤A⊤
⪯ v ⋅ 1

q ⪰ 0 and q⊤1 = 1

Dual problem Minimax theorem

max
p

min
q

p⊤A#q

= min
q

max
p

p⊤A#q
/

Two Main-Streams of Solutions: Regret based vs. Best Response based

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

Regret based methods: Poker Type

Best response based methods: StarCraft type

When planning is feasible (game tree is
easily accessible), existing techniques can
solve the games really well.

Perfect-information games:
MCTS, alpha-beta search, AlphaGO series
(AlphaZero, MuZero, etc)

Imperfect-information:
CFR series (DeepCFR, Libratus/Pluribus,
Deepstack), XFP/NFSP series

Planning is not always feasible. StarCraft has
 choices per step (vs. the game tree size of

chess , Texas holdem , GO)

Enumerating all policies’ actions at each state
and then playing a randomise best response is
infeasible (i.e. RPS can not apply)

Solution: design a game of game — meta-game,
the problem problem, auto-curricula.

1026

1050 1080 10170

Problem Formulation of Two-Player Zero-Sum Games

Let’s formulate the self-play process.
Suppose two agents, agent 1 adopts policy parameterised by , and agent 2 adopts policy .
They can be considered as two neural networks.
Define a functional-form game (FFG) [Balduzzi 2019] to be represented by a function

 represents the game rule, it is anti-symmetrical.
 means agent 1 wins over agent 2, the higher the better for agent 1.

with , we can have the best response defined by:

Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example
PPO + PBT as we have mentioned early, or other optimiser such as evolutionary algorithm.

v ∈ ℝd w ∈ ℝd

ϕ
ϕ > 0 ϕ(v, w)

ϕw(∙) := ϕ(∙ , w)

ϕ : V × W → ℝ

v′ := Br(w) = Oracle(v, ϕw(⋅)) s.t. ϕw (v′) > ϕw(v) + ϵ

RL model RL model

Question: Can we use it as a general framework to solve any games?

It depends. In most of the games, it does not work.

Naive Self-play Will Not Work

PPO + PBT + Self-play = Panacea ?

(π1, π2) → (π1, π2,* = Br(π1)) → (π1,* = Br(π2,*), π2,*)

self-plays

It is because of Non-Transitivity

Rock-Paper-Scissor game:

Disc game:

Naive Self-play Will Not Work

ϕ(v, w) = v⊤ ⋅ (0, −1
1, 0) ⋅ w = v1w2 − v2w1

[
0 1 −1

−1 0 1
1 −1 0]

∫W
ϕ(v, w) ⋅ dw = 0, ∀v ∈ W

Game Decomposition

Every FFG can be decomposed into two parts [Balduzzi 2019]

Let be a compact set and prescribe the flow from to , then this is
a natural result after applying combinatorial hodge theory [Jiang 2011].

We can write any games as summation of two orthogonal components

Example on Rock-Paper-Scissor

v, w ∈ W ϕ(v, w) v w

ϕ

FFG = Transitive game ⊕ Non-transitivegame

grad(f)(v, w) := f(v) − f(w) div(ϕ)(v) := ∫W ϕ(v, w) ⋅ dw curl(ϕ)(u, v, w) := ϕ(u, v) + ϕ(v, w) − ϕ(u, w)

ϕ = grad ∘ div(ϕ)
curl(⋅)=0

+ (ϕ − grad ∘ div(ϕ))
div(⋅)=0

Transitive game Non-transitive game

= + +
Transitive game Non-transitive game

Every FFG can be decomposed into two parts

Transitive Game: the rules of winning are transitive across different players.

Example: Elo rating (段位) offers rating scores that assume transitivity.

Larger score means you are likely to win over players with lower scores.

Elo score is widely used in GO and Chess.

This explains why you don’t want to play with rookies, when ,

f(⋅)

f(vt) ≫ f(w)

vt beats vt−1, vt+1 beats vt → vt+1 beats vt−1

ϕ(v, w) = softmax(f(v) − f(w))

∇vϕ (vt, w) ≈ 0

What is Transitivity ?

FFG = Transitive game ⊕ Non-transitivegame

Every FFG can be decomposed into two parts

Non-transitive Game: the rules of winning are not-transitive across players.

Mutual dominance across different types of modules in a game. This is commonly
observed in modern MOBA games.

For this types of game, self-play is not helpful at all because transitivity assumption
does not hold. Self-play will lead to cyclic loops forever.

vt beats vt−1, vt+1 beats vt ↛ vt+1 beats vt−1

What is Non-Transitivity ?

FFG = Transitive game ⊕ Non-transitivegame

Let us define the evaluation matrix for a population of agents to beN

Visualisation of Transitive and Non-Transitive Games

[Balduzzi 2019]

ϕ(vi, wj)

A# := {ϕ(wi, wj) : (wi, wj) ∈ # × #} =: ϕ(# ⊗ #)

Example on training AlphaStar:

[Vinyals 2019, Table 3]

Non-Transitivity Harms Training !

Example on training Soccer AI: Example on training AlphaGO:

[Silver 2016, table 9][Karol 2020, table 2]

http://www.drive-ml.com

 Dealing With Non-Transitivity Helps Save Training Time

[online double oracle]
[AlphaStar Blog]

Most strategies we get from
training are in fact redundant !

http://www.drive-ml.com

Contents

What is Non-Transitivity in Games

How to Measure Non-Transitivity

Solutions: Double Oracle / PSRO Methods

Recent advances: Diverse-PSRO

Recent advances: Online-PSRO

Recent advances: Auto-PSRO

The Spinning Top Hypothesis

[Czarnecki 2020]

Real-world games are mixtures of both transitive and
in-transitive components, e.g., Go, DOTA, StarCraft II.

Though winning is often harder than losing a game,
finding a strategy that always loses is also challenging.

Players who regularly practice start to beat less skilled
players, this corresponds to the transitive dynamics.

At certain level (the red part), players will start to find
many different strategy styles. Despite not providing a
universal advantage against all opponents, players will
counter each other within the same transitive group.
This provide direct information of improvement.

As players get stronger to the highest level, seeing many
strategy styles, the outcome relies mostly on skill and
less on one particular game styles (以不变应万变).

Measuring the Non-Transitivity

A theoretical lower bound of the size of non-transitivity [Czarnecki 2020]
n-bit communicative game

Results on GO and MOBA games:

bit: how many action one can take before the outcome of the game is predetermined

n-bit game = there exists at least a non-transitive circle of size 2n

Measuring the Non-Transitivity

A practical way of measurement through meta-game analysis
computing n-bit communicative game needs full tree traversing, thus intractable
Deciding a graph has a path of length higher than k is NP-hard

Method I, count the number of RPS cycles.

when k=3, we can compute by constructing , then

Method II, at each transitivity level, we can measure the Nash Clustering

Ai,j = 1 ⟺ ϕi, j > 0

Ni+1 = supp(Nash(P ∣ Π\ ∪j≤i Nj))
strategies that at the

higher level of transitivity

N0

diag(A3)

Measuring the Non-Transitivity

Some meta-game examples
each is an RL/DNN model, each is a Nash Cluster. πi Ci
RPP (ΠA, ΠB) = Nash (PAB ∣ (A, B))

transitive games non-transitive games real-world games

Measuring the Non-Transitivity

Real-world data set from human players on Chess

previous results are based on AI, now we study 1000 human players from Lichess

Chess presents the same spinning top pattern, which verifies the hypothesis

[Ricky Sanjaya]

Topological structure at the policy space affects the efficiency of training algorithm.

for example, there is a reason why we need diversity in the policy space.

on chess, large population size (thus more diversity) will have a phase change in the strength !

Understanding Non-Transitivity Helps Develop Algorithms !

Understanding Non-Transitivity Helps Develop Algorithms !

[Czarnecki 2020]

Topological structure at the policy space affects the efficiency of training algorithm.

for example, there is a reason why we need diversity in the policy space.

similarly, for other techniques in the stack, there is an effective domain where they can be applied.

self-play

PSRO

Contents

What is Non-Transitivity in Games

How to Measure Non-Transitivity

Solutions: Double Oracle / PSRO Methods

Recent advances: Diverse-PSRO

Recent advances: Online-PSRO

Recent advances: Auto-PSRO

Maintain a belief over the historical actions that the opponent has played, and the
learning agent then takes the best response to this empirical distribution.

It guarantees to converge, in terms of the Nash value, in two-player zero-sum games,
and, potential games which include fully-cooperative games.

Examples:

Fictitious Play [Brown 1951]

at,*
i ∈ BRi(pt

−i = 1
t

t−1

∑
τ=0

ℐ {aτ
−i = a, a ∈ <})

(1/2, 1/2) (1/2, 1/2)∞

pt+1
i = (1 − 1

t)pt
i + 1

t
at,*

i , for all i

It releases the FP by allowing approximate best response and perturbed average
strategy updates, while maintaining the same convergence guarantee if conditions met.

 , meets

Recovers normal Fictitious Play when .

Why important: it allows us to use a broad class of best responses such as RL
algorithms, and also, the policy exploration, e.g., the entropy term in soft-Q learning, can
now be considered through the term.

t → ∞ αt → 0,ϵt → 0, , {Mt}

αt = 1/t, ϵt = 0,Mt = 0

M

Generalised Weakened Fictitious Play [Leslie 2006]

pt+1
i = (1 − αt+1)pt

i + αt+1(Brϵ
i (p−i)+Mt+1

i), for all i

Brϵ
i (p−i) = {pi : Ri(pi, p−i) ≥ Ri(Bri(p−i), p−i) − ϵ}

lim
t→∞

sup
k

{
k−1

∑
i=t

αi+1Mi+1 s.t.
k−1

∑
i=t

αi+1 ≤ T} = 0∑
t=1

αt = ∞

Double Oracle best responds to the opponent’s Nash equilibrium at each iteration.

To solve the game before seeing all pure strategies (not all of them are in Nash), much
faster than LP, but In the worst-case scenario, it recovers to solve the original game.

Double Oracle [McMahan 2003]

iteration 0: restricted game R vs R

iteration 1:

 solve Nash of restricted game
(1, 0, 0) , (1, 0, 0)

 unrestricted = P, P

iteration 2:

 solve Nash of restricted games

 (0, 1, 0) , (0, 1, 0)

 unrestricted = S, S

iteration 3:

solve Nash of restricted game

 (1/3, 1/3, 1/3) , (1/3, 1/3, 1/3)

iteration 4: no new response, END

output (1/3, 1/3, 1/3)

Br1, Br2

Br1, Br2

It guarantees to converge to Nash equilibrium in two-player zero-sum games, and
coarse correlated equilibrium in multi-player general-sum games.

Convergence proof:

DO finally recovers to solve the whole game

Correctness proof:

suppose DO stops at the j-th sub-game (i.e., no new best responses are added)

Double Oracle [McMahan 2003]

∀p, V(p, qj) ≥ v ⇒ ∀p, max
q

V(p, q) ≥ v

∀q, V(pj, q) ≤ v ⇒ max
q

V(pj, q) ≤ v
⇒ ∀p, max

q
V(pj, q) ≤ maxq(p, q)

 must be the minimax optimal,
 vice versa

pj
qj

A generalisation of double oracle methods on meta-games,
with the best responser is implemented through deep RL
algorithms.

A meta-game is where is the

set of policies for each agent and is the
reward values for each agent given a joint strategy profile.

 is distribution over , a.k.a meta-solver

PSRO generalises all previous methods by varying .

independent learning:

self-play:

fictitious play:

PSRO: or

(Π, U, n) Π = (Π1, . . . , Πn)
U : Π → ℝn

σ−i (Π0
1, . . . , ΠT

1)

σ−i

σ−i = (0,...,0,0,1)
σ−i = (0,...,0,1,0)

σ−i = (1/T,1/T, . . . ,1/T,0)
σ−i = Nash(ΠT−1, U) RD(ΠT−1, U)

Policy Space Response Oracle = DO + RL Oracle

expand the
payoff matrix

solve the new
meta game

compute the best response

select opponent policies

augment strategy pool

PSRO-rN [Balduzzi 2019]
key changes: only selecting opponents that I
have already won over (i.e. rectifying the Nash)

vt+1 ← oracle(vt , ∑
wi∈#t

pt[i] ⋅ ⌊ϕwi
(∙)⌋+)

Intuition: maintaining strength can keep
exploring larger and large strategy space

(强者恒强/马太效应)

diversity can also help explore the strategy space more
efficiently and effectively

Pipeline PSRO [McAleer 2020]

1.A counter-example that PSRO-Rectified-Nash could fail (there is
really no one diversity metric that works).

2. Diversity can came from training more best-response policies!

Game size: 1050

PSRO Incorporate Many Variants

Game Environment G ∼ P(G)

… "#$(πT, ΦT(θ))%t

&(ϕ1, ϕ2)
||

%t

(Neural) Meta-Solver fθ(%t) π ϕBR

N×N
MLP

Column
Mean-Pooling

Row-wise
Concatenation

N×128

MLP
N×64

Global Info
64

N×1
MLP

Row
Mean-Pooling

πt+1

%t+1

Forward Pass

ΦT = {ϕ1, ϕ2, …, ϕT}

%T
Φt = {ϕ1, ϕ2, ϕ3}

Best Response Oracle

ϕBR = max
ϕ

t−1

∑
k=0

πk&(ϕ, ϕk)
ϕBR

Φ2 = {ϕ1, ϕ2}

ϕBR

Elo rating
Nash equilibrium

Replicator dynamics
-Rank/ -Rankα αα

iterated best response
fictitious play
double oracle

PSRO
PSRO-Nash

PSRO-Rectified-Nash

Contents

What is Non-Transitivity in Games

How to Measure Non-Transitivity

Solutions: Double Oracle / PSRO Methods

Recent advances: Diverse-PSRO

Recent advances: Online-PSRO

Recent advances: Auto-PSRO

Why Modelling Diversity is Critical ?

Diversity matters because the more diverse the strategy pool, the less un-exploitable. Promoting diversity
can help you walk out of the in-transitive region faster.

In real-world applications, you want policies to be diverse enough, covering different skill levels. This is a
realistic need from autonomous driving and gaming AI applications.

Promoting Diversity in AlphaStar

1.Most diversity still comes from human data !

2.League Training: add different levels of exploiters (main
exploiters and league exploiters) to the population.

πθ (at ∣ st, z) = ℙ [at ∣ st, z]
The policy is also conditioned on a statistic z that
summarises a strategy sampled from human data

League exploiter resets every two days, and it still can improve in Elo score!
This also tells that StarCraft has strong non-transitivity in the policy space!

3.Prioritised fictitious self-play (PFSP): focus more on
the unbeatable opponents. Select opponent B
according to the score of

ℙ[B beats A]
∑C∈C ℙ[C beats A]

Main exploiter :
 exploit main agents

League exploiter :
 exploit the whole league

Put three tricks together

The
population

poolz

Recent Advance (1): Diverse-PSRO

1.Go back to the first principle:

Determinantal Point Process [Alex Kulesza 2013] : a point process parameterised by a distance kernel.

diversity should be defined on the sense of orthogonality.

w(i), i ∈ Y

DPP(D) := ℙℒ(Y = Y) ∝ det(DY) = Vol2({wi}i∈Y)

Recent Advance (1): Diverse-PSRO

1.Go back to the first principle:

Policy diversity can be measured through their pay-off vectors, i.e., .

The expected cardinality of DPP is the diversity metric.

ℒG = MM⊤

diversity should be defined on the sense of orthogonality.

 Diversity (G) = HY∼ℙℒ
[|Y |] = Tr (I − (ℒG + I)−1)

Recent Advance (1): Diverse-PSRO

1.Go back to the first principle:

Policy diversity can be measured through their pay-off vectors, i.e., .

The expected cardinality of DPP is the diversity metric.

ℒG = MM⊤

diversity should be defined on the sense of orthogonality.

 Diversity (G) = HY∼ℙℒ
[|Y |] = Tr (I − (ℒG + I)−1)

Recent Advance (1): Diverse-PSRO

Based on diversity metric, we can design diversity-aware fictitious play and PSRO

Diverse Fictitious Play

Diverse PSRO

Diverse -PSRO (-Rank as meta-solver)

Our diversity is strictly concave, so diverse best response is unique, and the algorithm
share the same convergence guarantee as GWFP. Most importantly, we prove that

α α

 Diversity (G) = HY∼ℙℒ
[|Y |] = Tr (I − (ℒG + I)−1)

BRi
ϵ (π−i) = arg max

π∈ΔGi
[Gi (π, π−i) + τ ⋅ Diversity (Gi ∪ {π})]

 Gamescape (G) ⊊ Gamescape (G ∪ {Sθ})

O1 (π2) = arg max
θ∈ℝd ∑

S2∈G2

π2 (S2) ⋅ ϕ (Sθ, S2) + τ ⋅ Diversity (G1 ∪ {Sθ})

K (π2) = argmaxπ∈ΔSi Tr (I − (ℒGit∪{π} + I)−1)

1.Go back to the first principle:

Recent Advance (1): Diverse-PSRO

diversity should be defined on the sense of orthogonality.

the most efficient zero-sum game solver so far!

1. Diversity should include both response diversity (in terms of reward), and behavioural
diversity (in terms of policy occupancy measure)

2. We want both the outcomes and the policies that lead to those outcomes to be diverse.

Recent Advance (2): Behavioural Diversity + Response Diversity

1. behavioural diversity: assuming existing population of policy mixed by Nash distribution
is , we want a new policy that has a different occupancy measure

 from :

2. in practice, one can train a neural network to fit , and then assign an

intrinsic reward by encouraging the new policy to visit state-action pairs with large
prediction error (not covered by the existing occupancy measure).

πE = (πi, πE−i
) πM+1

ρπ(s) = (1 − γ)
∞

∑
t=0

γtP (st = s ∣ π) πE

f ̂θ (s, a) ∼ ρπE

Recent Advance (2): Behavioural Diversity + Response Diversity

Divocc (πM+1
i) = Df(ρπM+1

i ,πE−i
∥ρπi,πE−i

)

max Rint(s, a) = f ̂θ(s, a) − fθ(s, a) 2

1.response diversity: we want the new policy to expand the convex hull of the
existing meta-game by having the new payoff vector that

2. the above equation has no close form, but we can optimise a lower bound

3. chicken-egg problem: how can we know the payoff before we train the policy ?

πM+1

AM

aM+1

Recent Advance (2): Behavioural Diversity + Response Diversity

Divrew (πM+1
i) = min

1⊤β = 1
β ≥ 0

A⊤
M β − aM+1

2

2

aM+1 := [ϕi(πM+1
i , π j

−i)]
N
j=1

Divrew (πM+1
i) ≥ F(πM+1

i) =
σ2

min(A)(1 − 1⊤ (A⊤)† an+1)
2

M
+ (I − A⊤ (A⊤)†) an+1

2

∂F (π′ i(θ))
∂θ

= (
∂ϕi (π′ i(θ), π1

−i)
∂θ

, …,
∂ϕi (π′ i(θ), πM

−i)
∂θ) ∂F

∂aM+1

the answer: we can train against based on the weights suggested by !πM
−i ∂F/∂aM+1

1. considering both diversity terms in the PSRO process

Recent Advance (2): Behavioural Diversity + Response Diversity

arg max
π′ i

Hs,a∼ρπ′ i,πE−i
[r(s, a)] + λ1 Divocc (π′ i) + λ2 Divrew (π′ i)

Diverse Behaviours Learned on Google Football

make offside

https://sites.google.com/view/diverse-psro/

push and run

Contents

What is Non-Transitivity in Games

How to Measure Non-Transitivity

Solutions: Double Oracle / PSRO Methods

Recent advances: Diverse-PSRO

Recent advances: Online-PSRO

Recent advances: Auto-PSRO

1. Nash is unexploitbale, but when a player always plays Rock, you should play Paper rather than (1/3, 1/3, 1/3).

2. Double Oracle/PSRO assumes both players play the worst-case scenario, can be too pessimistic during training.

3. Online learning provides a framework about how to exploit opponents through minimising regret.

What we want:
if opponents play , we want the player to have s.t. c1, c2, . . . , cT π1, π2, . . . , πT

lim
T→∞

RT

T
= 0, RT = max

π∈ΔΠ

T

∑
t=1

(π⊤
t Act − π⊤Act)

What we know:
hedge algorithm/multiplicative weight update can achieve no-regret property
if one follows the below update

the regret of MWU is K(T log(n)/2)

πt+1(i) = πt(i)
exp (−μtai⊤Act)

∑n
i=1 πt(i)exp (−μtai⊤Act)

, ∀i ∈ [n]

too pessimistic

Recent Advance (3): Online Double Oracle

Recent Advance (3): Online Double Oracle

Intuition: maintain a time window to track opponent’s strategy, if
no new best response can be found, then keep exploiting, otherwise
refresh the time window to catch up with the latest change

Ti

Recent Advance (3): Online Double Oracle

1.OSO is a no-regret algorithm.

2.Putting OSO into self-play settings, we get Online Double Oracle which can solve Nash.

Recall that in two-player zero-sum game, if two no-regret methods self play, the outcome will leads to a Nash equilibrium!
[Cesa-Bianchi, sec 7]

1.Summary of methods that can solve two-player zero-sum games

Recent Advance (3): Online Double Oracle

2. holds in general: for example, randomly initialised zero-sum games has only
[Johnasson 2014], also empirically, we have observed small k.
k ≪ n k ≈ (1/2 + K(1))n

ODO has a constant k
regardless of game size

Recent Advance (3): Online Double Oracle

Exploitability on the Spinning Top games Exploitability on Poker

Play with an imperfect opponent

Contents

What is Non-Transitivity in Games

How to Measure Non-Transitivity

Solutions: Double Oracle / PSRO Methods

Recent advances: Diverse-PSRO

Recent advances: Online-PSRO

Recent advances: Auto-PSRO

1.Learning to learn: to discover multi-agent algorithms (“who to beat” and “how to beat them”) from data.

2.Maybe game theoretical knowledge (transitivity/non-transitivity/Nash) are not necessarily needed, the
solution algorithm can be learned purely from data.

3.The idea is to learn how to build an auto-curricula based on the type of game provided to the meta-
learning algorithm, rather than what the auto-curricula should be (e.g. PSRO/DO).

4.Why it will work better than DO/PSRO: because RL oracle can only approximate best response, and using
Nash, though theoretically guaranteed, may not be the best option for a solver.

5.On single-agent RL, the discovered RL methods are proved to outperform TD learning designed by humans.

Recent Advance (4): Auto-PSRO

Recent Advance (4): Auto-PSRO Framework

Recent Advance (4): Auto-PSRO Objective

1.Overall, the objective is give by:

2.When optimising the meta-solver , the format of best-response oracle matters due to back-propagation!

 one-step gradient descent oracle

 N-step gradient descent oracle (via implicit gradient)

 policy-gradient based oracle (via DICE)

 general type of oracle (via ES)

θ

ϕ1 = ϕ0 + α
∂PDICE

∂ϕ0
, where PDICE =

H−1

∑
k=0

k

∏
k′ =0

πϕ1 (a1
k′ ∣ s1

k′) πϕ2 (a2
k′ ∣ s2

k′)
⊥ (πϕ1 (a1

k′ ∣ s1
k′) πϕ2 (a2

k′ ∣ s2
k′))

r1
k

∂ϕBR
t+1

∂Φt
= − ∂2S(ϕBR

t+1 , ⟨πt, Φt⟩)
∂ϕBR

t+1 ∂ϕBR
t+1

T

−1
∂2S(ϕBR

t+1 , ⟨πt, Φt⟩)
∂ϕBR

t+1 ∂Φt

ϕBR
t+1 = ϕ0 + α

∂S(ϕ0, ⟨πt, Φt⟩)
∂ϕ0

, ∂ϕBR
t+1

∂πt
= α

∂2S (ϕ0, ⟨πt, Φt⟩)
∂ϕ0∂πt

, ∂ϕBR
t+1

∂Φt
= α

∂2S (ϕ0, ⟨πt, Φt⟩)
∂ϕ0∂Φt

.

∇θ ̂Jσ(θ) = HG ∼ P(G), ϵ ∼ V(0,I) [1
σ (WXYT(πT, ΦT) θ + ϵ, G)ϵ]

1st question: is our method any good on the environments where it is trained?

Due to long-trajectory issues, we also focus on the approximate best-response setting

Performance at least as good as
baseline measures

Outperforms PSRO in multiple
settings

Recent Advance (4): Auto-PSRO Result

2nd question: What is the learned auto-curricula ?

Compare agents found and their respective densities in the meta-distribution

Recent Advance (4): Auto-PSRO Result

3rd question: Can the learned solver generalise over different games?

the most promising and striking aspect of LMAC - Train on small games and generalise to large
game, e.g., train on Kukn Poker and test on Leduc Poker

Recent Advance (4): Auto-PSRO Result

Additional Resources:

 If you want to know more details about PSRO and its variations, please refer to

Talk: https://www.bilibili.com/video/av969218959/

Slides: https://rlchina.org/lectures/lecture11.pdf

A self-contained MARL survey from game theoretical perspective:

https://arxiv.org/abs/2011.00583

If you want to get hands on to solving some two-player zero-sum games, e.g., Poker/Chess

https://arxiv.org/pdf/2103.00187.pdf

https://github.com/aicenter/openspiel_reproductions

https://www.bilibili.com/video/av969218959/
https://rlchina.org/lectures/lecture11.pdf
https://arxiv.org/abs/2011.00583
https://arxiv.org/pdf/2103.00187.pdf
https://github.com/aicenter/openspiel_reproductions

MALib: A Bespoke Library for Efficient PSRO Methods
https://github.com/sjtu-marl/malib

Environment

Actor

Model

Learner

Model
Learner

Environment

Actor

Environment
Actor

League Manager

Game Evaluation Opponent Selector

Model

Population Storage
Model

Inference Server
Model Model

Trajectories

Observations Actions Read model

Read model

Write model

Spawn/Terminate Actor/LearnersEvaluate model performance

Actors produce
trajectories for
Learners

Learners train the
model based on
trajectories

Inference Servers
produce actions
based on observation

Population Model
Store stores the
parameters of
opponent neural
networks

PSRO, diversity happens here
Remaining Challenges:

1. Game evaluation needs additional
many computational power

2. We don’t know how many computing
resources needed in advance.
Population can grow.

3. Mirco-services + gRPC are not optimal
design. Need to think on the data-flow
level.

4. Effectiveness on cooperative games.

