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ABSTRACT

The main focus of this paper is the time series analysis of the precipitation-runoff process with
transfer functions. Starting from there, a horizontal routing model is constructed to be coupled
to the existing land surface parametrization (LSP) schemes which provide the lower boundary
conditions in numerical weather prediction and atmospheric general circulation models. As
these models currently have a resolution of 10 km—300 km (what we some kind of arbitrary
define as the “large scale”), it will be assumed that the horizontal routing process can be lumped
as a linear time invariant system. While the main physical properties of the soil (temperature,
moisture) and all physical processes (partition of the energy and water fluxes) have to be
represented by an LSP scheme, the coupling with a simple routing scheme allows the direct
comparison of predicted and measured streamflow data as an integrated quantity and validation
tool for both, the atmospheric and the LSP model. The main task of the routing scheme is to
preserve the horizontal travel time of water within each grid box as well as from grid box to
grid box in the coupled model to first order, while the correct amount of runoff must be given
by the LSP scheme. Inverse calculation also allows the direct estimation of runoff which should
have been produced by an LSP scheme. As we don’t want to deal with snow processes the
scheme is applied from February to November.

1. Introduction

In a recent publication of the IAHS “Coupling
Large-Scale Hydrological and Atmospheric
Models” (Schulz et al., 1995) a number of key
problems for meteorologists and hydrologists have
been summarized. In currently used numerical
weather prediction (NWP) and atmospheric gen-
eral circulation models (AGCM) the interface
between meteorology and hydrology is formed by
the land surface parametrization (LSP) schemes.
These LSP schemes are now subject to a detailed
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survey within the GEWEX project PILPS
(Henderson-Sellers et al., 1993).

Current LSP schemes in NWP models and
AGCMs calculate energy and water fluxes only in
the vertical. The driving variables usually include
precipitation, wind speed, air temperature, short
and longwave radiation, air humidity and pres-
sure. In cases where the latter variables are not
available, potential evapotranspiration is estim-
ated using simplified methods (e.g., Shuttleworth,
1993).

LSP schemes have not taken any care of pre-
serving travel time of water in the horizontal
direction, because the primary purpose of these
models is to partition the downward solar and
longwave radiation into sensible, latent and
ground heat fluxes and upward longwave
radiation, rather than to predict streamflow.
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Todini (1995) states that these water balance
(and often also energy balance) LSP schemes
characterise the model and constitute the most
important part for the coupling of hydrological to
atmospheric models. But up to now, the calculated
quantity “runoff” (see definition eq. (1)) was not
often subject to any further investigation, it essen-
tially vanishes from the water balance of the LSP
schemes. The major task of a horizontal routing
model coupled to an LSP scheme is to utilize this
runoff information to check the reliability of the
LSP scheme, giving the opportunity to include
streamflow data as an integrated quantity for
validation. This also is a question of self consist-
ency of the coupled land—atmosphere model.

LSP schemes using a topographic soil index
(Beven and Kirby, 1979; Beven, 1986; Sivaplan
et al, 1987) like TOPLATS (Famiglietti and
Wood, 1994) can be used to justify more simple
LSP schemes. Models with a more detailed phys-
ical approach like SHE (Abbott et al,, 1986a, b)
have a huge parameter space, must be carefully
calibrated and are data hungry, facts that often
do not correspond to the demands of AGCM and
NWP modelers.

The first approaches to include streamflow
(Miller et al., 1994; Sausen et al, 1991; Wetzel,
1994; Nijssen et al., 1996; Abdulla, 1995; Abdulla
et al., 1996; Russell and Miller, 1990; Kuhl and
Miller, 1992; Diimenil and Todini, 1992; and
Liston et al., 1994) have used quasi objective or
guessed parameters for their horizontal routing
schemes. They compared predicted and measured
streamflow on a monthly or yearly time step,
which seems to us too long for a validation of the
processes resolved in the vertical LSP schemes.

In this paper we focus on the construction of a
large scale horizontal routing model which can be
derived just with measured precipitation and stre-
amflow data on a daily time step. Its derivation
involves only a few assumptions about the runoff
production process and needs no LSP scheme.

The time scales involved will be examined with
the assumption of a linear routing process, which
leads us to the well known concept of the unit
hydrograph (UH), introduced by Sherman (1932).
In the last decade further improvements on this
linear concept have been made. In this paper, we
will follow the main ideas of the FDTF-
ERUHDIT approach (“First Differenced Transfer
Function — Excess Rainfall and Unit Hydrograph
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by a Deconvolution Iterative Technique™)
(Duband et al,, 1993). We will extend it with a
simple routine to separate the time scales and
couple a linear river routing scheme to it, whichs
accounts for the travel time of water in rivers. It
solves the linearized Saint-Venant equation (e.g.
Mesa and Rifflin, 1986; Fread, 1993) and is optim-
ized with measured streamflow data, although its
parameters can also be found with the help of
detailed geographic information.

Mathematically the whole model is equivalent
to the linear routing model of Wetzel (1994),
which was also used in a number of large scale
studies (Abdulla, 1995; Abdulla et al, 1996;
Lettenmaier, 1995 and references therein) coupled
to the LSP VIC-2L model of Liang (Liang, 1994;
Liang et al, 1994). Also the scheme of Saussen
et al. (1991) can be formulated within this
framework.

The German Weser river (see Fig. (1)) has been
chosen as the test catchment because of the avail-
ablility of long data records of measured precipita-
tion and streamflow. Its catchment above
Intschede, the last gauging station not influenced
by tides, covers an area of 37495 km?. Current
NWP models and AGCMs have grid lengths of
10 km to 300 km, so that the whole Weser catch-
ment is in the same order of magnitude as one
grid box of a AGCM, whereas the smaller catch-
ments of tributaries to the Weser are of the order
of one to several NWP model grid boxes. Fig. (1)
also shows the grid of the NWP model
“Deutschlandmodell” of the German Weather
Service (Majewski, 1991; DWD, 1995).

2. The basic idea for the model

Today’s LSP schemes which are implemented
in AGCMs and NWP models cover a broad range
of complexity from a simple bucket model
(Manabe, 1969) to more complex schemes. What
is common to all of them is that they model the
complex nonlinear interactions between the land
surface and the atmosphere. In dependence of the
soil humidity, soil temperature and the atmo-
spheric boundary conditions they calculate the
water and energy fluxes at the land surface. The
water balance equation for the terrestrial branch
in these LSP schemes may be written as (Peixoto
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Fig. 1. Weser river catchment flow network with rotated
grid 1/8 degree (see DWD, 1995) and gauging stations
Intschede (whole Weser) and Rotenburg (subcatchment
Fulda). It covers an area of about 37495 km? in north
central Germany (coordinates: 8~11 E; 50.5-53.5 N).

and Oort, 1992)
SZP*E_RO—RI_J, (1)

where S=rate of storage of water, P=precipita-
tion rate, E =evaporation rate, R, = surface runoff,
Ry=subterranean runoff. R, can be seen as a fast
component, while Ry reflects the longer time
scales. As atmospheric modellers are more interes-
ted in the vertical fluxes which feed back to the
atmosphere, runoff has not often been subject to
any further investigation. As there is an increasing
need for water resources management driven by
climate and weather prediction models it is
important to check the consistency of LSP
schemes regarding runoff production. Measured
streamflow in rivers is arguably the easiest com-
ponent of the surface water balance to measure
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directly, while areal evaporation is very difficult
to measure. Arnell (1995) states that “the ability
of a climate model to simulate the partitioning of
energy at the land surface into latent and sensible
heat fluxes can therefore be assessed using
observed precipitation and runoff data.” In this
paper we present a method of how to construct a
simple linear routing model for the transformation
of runoff from an LSP scheme into streamflow,
which afterwards can be compared with measured
streamflow.

We are starting from the basic assumptions that
all nonlinear processes can be put into a vertical
LSP scheme, while the horizontal transfer process
from runoff into streamflow is described with a
stable causal linear time invariant system. This
idea has already been pointed out by various
authors (Singh et al, 1982; Littlewood and
Jakeman, 1994; Duband et al., 1993; and references
therein). The linear transfer function model does
lump the horizontal flow properties without being
a function of the total soil moisture content itself.

An iterative scheme allows also the inverse
calculation, thus giving first hints on what part of
the precipitation (called effective precipitation) has
to be routed. Cordova and Rodriguez Iturbe
(1983) state: “.... the problem is not how to route
but what to route”. This important feature allows
us to compare the calculated effective precipitation
with the runoff predicted by an LSP scheme which
should be equal.

The theory of linear transfer functions is quite
well developed (see Box et al. 1994 and references
therein). Given a data series of input X(¢) into a
linear system and output Y(t) from that system it
is in principle straightforward to find a linear
transfer function model connecting the two time
series. This transfer function model is character-
ized by its impulse response function (IRF), called
unit-hydrograph (UH) by hydrologists.

In a rainfall-streamflow time series analysis this
input-output relationship cannot be applied
straightforward. On the one hand we do not know
the exact input into our system because only a
fraction of the precipitation will become stream-
flow. This process depends strongly on nonlinear
processes like soil moisture transport and evapo-
transpiration. It can be seen as the production
part of the overall process represented by an LSP
scheme. On the other hand we do not have a
transfer function model from an a priori known
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input-output relationship. We have two known
quantities: precipitation and streamflow. And we
have two unknown quantities: the transfer func-
tion model and the fraction of the precipitation
which becomes streamflow. The main goal of our
FDTF-ERUHDIT approach is to find these two
unknowns. It provides a balanced treatment for
both, the production and the transfer part of the
process. Its basic ideas are quite obvious:

e the fraction of precipitation becoming stream-
flow never exceeds the precipitation itself and
is not allowed to become negative

e the IRF is never negative, reflecting that the
streamflow is not allowed to decrease because
of precipitation

e the routing model is linear, causal, stable and
time invariant

These contraints are formulated mathematically
in egs. (2), (10) and (12).

As a starting point, precipitation itself is taken
as an approximation of the precipitation becoming
streamflow. Of course this is an overestimation
and an iterative procedure for the determination
of the IRF and effective precipitation will be
applied. This iterative part of the model is non-
linear and reflects the nonlinearity of the runoff
production process.

A simple river routing scheme will be used to
distinguish roughly between the in-grid-box-
dynamics and the influence of the river network
itself. The linearity of the river routing scheme
allows us to deconvolute the IRF from the iterative
scheme by the IRF from the river routing scheme.
The model’s flowchart is schematized in Fig. 2.

Hydrological processes occur at a wide range
of time, space, and velocity scales (see Table 1).
Within big catchments we normally can’t exactly
distinguish between the different travel paths the
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Fig. 2. Coupled LSP scheme and the routing model. One
LSP scheme is run for each gridbox, the runoff is then
routed to the outlet of that gridbox with an internal
impulse response function, and then added to the river
routing model which couples all grid boxes together (see
also Wetzel (1994)).

water takes. In this approach all the travel paths
we be lumped together in the impulse response
function we try to find. It is not clear from first
principles that we can find a linear relationship
between effective precipitation and streamflow.
However, we think that the results strongly
encourage this approach.

3. Method description

3.1. Time scale separation

We are starting from the basic assumption that
all horizontal routing processes within a river
system (represented by at least one grid box)
behave like a causal stable LTI system:
Q(t)=J~ UH(7) P (t —)dr. 2)

0
Q(t) is the discharge at a gauging station and
Pf(t) is that part of the precipitation which

Table 1. Approximate velocity, space and time scales for the different processes involved in horizontal
water movement; they only should be seen as a rough estimate, as these processes occur all simultaneously

during a precipitation event

Process/scale Velocity Space Time
rivers 0.5-5 m/s 0-300 km 0-150 h
infiltration excess runoff 10-500 m/h 0-1 km 0-100 h
saturation excess runoff 0.3-100 m/h 0-2 km 0-600 h
ground water 1-10000 m/yr 0-? km O-years
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becomes streamflow. It is always assumed that the
precipitation has fallen uniformly over the catch-
ment, which of course does not hold for large
catchments and convective precipitation. UH(t) is
the impulse response function of the whole system
with the condition (& UH(t)dr=1.

From the simple scale analysis in Table (1) we
can already see that the response to a precipitation
event can cover a huge range of time scales. We
therefore separate the time scales with the linear
model ansatz proposed by Rodriguez (1989) which
can be written as a first-order differential equation,
representing many simple systems (see Box et al.
1994):

d S
L0 kg +b7070), G

where total flow Q(t)=slow flow QS(t)+fast flow
QF(t). The explicit solution for Q5(t) is

0%(t)=b j exp(—(k+b)(t—1))Q(r)dr (4)
0

— Q(SO) exp(—(k+b)t),

where the initial condition Qf, decays with
exp(—(k+b)t). Eq. (3) is nothing more than a
lowpass frequency filter (Press et al., 1992) trans-
forming measured streamflow Q(¢) into a fast and
a slow component. The parameters k and b are
assumed to be constant over the period of calcula-
tion. Averaging both sides of eq. (3) in time shows
that the fraction of water in the slow component
to the water in the fast component is given by

b  water in slow flow

k ~ water in fast flow )
The parameter k can be estimated using regression
analysis of measured Q(t) in periods without or
with small fast flow. It determines how fast the
linear slow flow storage goes down if there is no
or only small input from the fast component. The
higher the value of k the smaller is the half time
decay In(2)/k of the slow flow storage. b can be
fitted using the condition Q(t)—Q5(t) >0 V¢, as the
slow component is never allowed to exceed the
total flow. The higher it is the more water is in
the slow component. k can also be seen as an
effective guiding parameter for the determination
of baseflow recession coefficients in LSP schemes
using the Arno model conceptualization (Francini
and Pacciani, 1991), it already includes all effects
of losses due to evapotranspiration.

D. LOHMANN ET AL.

Assuming that there is an impulse response
function UHF(¢) for the fast component, UH(t)
can be written as the sum of the impulse response
functions for the fast and the slow components

UH(t)=UHF(t)+ UHS(2), (6)
which are analytically connected by:

tmax

UHS(t)=b f UHF(z) exp(—k(t —1)) (7)

(1]
x Ot —1)dr.

UH5(¢) is an infinite impulse response function
with exponential decay, while we assume that
UHF¥(t) is a finite impulse response function with
a maximal length ¢,,.. The step function @ is
given by O(t)=0 for t<0 and O(t)=1 for t>0.
With UHS(¢) from eq. (7) we already have a
solution of eq. (3). As eq. (2) is a linear superposi-
tion of solutions with given amplitudes P*%(t) we
have found the solution of eq. (2) if we can find
UHF(¢) and P*%(t).

3.2. Estimation of the fast impulse response
function and the effective precipitation

Having selected the two parameters of the slow
flow model from measured data, we can compute
UHF(t) and P*"(t) with the following procedure
(as described by the first part of Fig. (3)):

e make slow flow separation with the slow flow
model, eq. (3);

® solve iterative scheme with minimal least-
squares solution, starting with P¢ff=precipita-
tion at time instant i in eq. (9).
If there are n data points of precipitation and if

(m—1)* timestep is the assumed length z,,, of the
fast flow impulse response function, the equation

tmn.x
oF(t)= J UHF(7)P*f(t—7)dt (8)
[}
can be written for the discrete case as
on ol P
3 9
on P Py
UH}
x :
UHy,_,
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gives river-IRF of every catchment

Deconvolute catchment-IHF with

/ river-IRF to get grid-IRF

Fig. 3. Flowchart of the two-component routing scheme. The iterative scheme is solved via egs. (9) and (11). The
river routing is optimized with least-squares. Afterwards the impulse response function (IRF) of the iterative scheme
is deconvoluted with the IRF of the river network. Q =fast flow, P=precipitation, U =fast flow IRF, R=river-IRF,

G=grid-IRF.

for the calculation of UHY. In the discrete case
UHF already includes the timestep At. After every
calculation we apply the constraint

1
F
ZU 1+b/k

which follows from the fixed fraction of the water
in the fast and slow component, the fact that
{¢ UH(r)dt=1 and the non-negativeness of UH(t).
UHF is then put into the matrix of (11) and the
following equation is solved for P°f:

with UHY >0V, (10)

QF
QF
UHE_, UHE 0 ... 0
0
B 0
0 .. 0 TUHE, UHS
Py
| . (11)
P:ff
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Again, after every iteration, the constraint

0< P < precipitation, Vi (12)

is applied to P$Y, which afterwards is put into
eq. (9) for the next iteration.

The difference to the method reviewed in
(Duband et al, 1993) is, that we are not using
several single precipitation events, but long data
series of precipitation and streamflow. This is
necessary due to the strong varying baseflow
component and the overlapping of precipitation
events. Furthermore we are not calculating the
differenced transfer function, but the transfer func-
tion directly. The solution of eqgs. (9) and (11) is
obtained with a minimal least-squares solution
using the FO4JAF and FO4JDF routines of the
NAG Fortran Library, Mark 16 (1993). For a
review of solution techniques of the equations see
also (Singh et al,, 1982; Duband et al., 1993).

3.3. Limitations of the model

From the model design itself we can already
discover some of the model limitations. The first
one is that it is build as a LTI system with
homogeneous precipitation. But without that
assumption we would rarely get a transfer function
of the system. The next large limitation is the fixed
fraction of fast flow to the slow flow. During snow
melt processes a much higher fraction of the melt
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water will go into the fast component, so that the
model reloads the slow component too much. But
unless the model is coupled to an LSP and snow-
melt scheme, it will not be able to deal with snow
and ice processes, because than we would need to
know the snow melt time series. In all calculations
with a fixed fraction the results have been
reasonably good.

The coefficients k and b, as the UHF itself, must
be seen as lumped parameters, as the surface is
often quite heterogeneous on the scale of 10 to
300 km. UHF reflects a three dimensional water
transport process, while it is only one dimensional.
This is also interesting for the LSP schemes. We
can’t say from first principles, how fast in which
depth of an LSP scheme the horizontal routing
processes occur. The distinction of fast and slow
horizontal processes in large scale LSP schemes
has to be made scaleable and must be calibrated
with measured data.

One important point is, that n/2 should always
be much larger than m. Otherwise we can’t say
that we have found a parsimony transfer function
model. If n/2 ~m, the algebraic system in the eqs.
(9) and (11) becomes quadratic and can always
approximately be solved. This also stresses the
important point of a slow flow separation. The
correlation length between precipitation and stre-
amflow would otherwise be too long in the case
of a finite impulse response function, which means,
m would be too large.

Like already pointed out by Duband et al.
(1993) there has been no proof that the solutions
are unique, nor that they are physically sound
rather than a purely numerical artefact. Finally
the assumptions made in the model can only be
justified by the results. In subsection (5.2), we
show the convergence of the impulse response
function in 3 to 5 iteration steps.

4. River routing

River routing within the model is done with the
linearized Saint-Venant equation (Mesa and
Mifflin, 1986; Fread, 1993). We constructed an
approximate river network with the resolution of
the atmospheric model from maps and digitized
data. The arrows in Fig. (1) reflect the main flow
directions of the natural streams. While the
in-grid-dynamic of the horizontal routing process

D. LOHMANN ET AL.

is described with a transfer function model, we
transport the water coming out of a grid box
through other grid boxes with a simple linear river
routing model. This way of thinking implicitly
assumes that water is not transported out of a
grid box with processes other than river flow.

In the linearized Saint-Venant equation

2

0 _ 70 .30
ot 0x? 0x
the parameters C and D can be found from
measurements or by rough estimation from geo-
graphical data of the riverbed. Wave velocity C
and diffusivity D must be seen as effective para-
meters, as there is often more than one river in a
grid box or because of human-made changes.
Finally we end up with one C and one D value
for every grid box, which reflect the main charac-
teristics of the water transport in a river.

Eq.(13) can be solved with convolution

(13)

integrals
ox, )= Jt U(t—s)h(x, s)ds, (14)
0
where
x (Ct—x)?
hex 0= 3 b P (_ 4Dt ) (13)

is the Green’s function (or impulse response func-
tion) of eq. (13) with boundary values and initial
condition h(x,0)= 0 for x>0 and h(0, t)=4(t)
for t>0. Due to its linearity and the numerical
stability of this solution scheme the influence of
dams, weirs and wateruse can easily be imple-
mented into the scheme at every node. The solu-
tion with convolution integrals also avoids
difficulties when the parabolic eq.(13) tends to
become more hyperbolic in character for P=
I*C/D > 100, where P is the dimensionless Peclet
number and L the distance between two neighbor-
ing grid points. A large P reflects the fact that
river runoff is basically an advection rather than
a diffusion process. This approach uses the
ideas by Todini (1991) without the inclusion of
backwater effects and with constant velocities.

5. Calculations and results

5.1. Data for the calculations

Calculations have been carried out for the whole
Weser catchment above Intschede (an area of

Tellus 48A (1996), 5
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37,495 km?), and for subcatchments of tributaries.
Results will be shown for the whole Weser and
for the Fulda catchment above Rotenburg
(2523 km?) for February to November 1993 (303
days).

The data we used for the calculation are the
operational daily precipitation data from the
German Weather Service (DWD) and river dis-
charge data from the German Federal Institute of
Hydrology (BfG) and the Niederséchsisches
Landesamt fiir Okologie (NLfO). 10 years of daily
precipitation data of more than 300 stations and
ten years of daily averaged river discharge data of
38 selected gauging stations had been available.

5.2. The slow flow separation and the iterative
scheme

The required time t,,,, for the fast flow compon-
ent can be seen from the simple time scale analysis.
After a time of approximately 600 hours, all fast
processes should have decayed. For all calculations
we took m=24 or t,,,=23 days, which seemed
to be a reasonable value for all fast processes
together, higher values like m=32 or m=48 have
not changed the results, leading basically to noise
in the tail of the IRF. Lower values of m simply
cutoff the IRF. We have 279 =303 — 24 equations
for determining UHF while we only have 23 free
parameters (the 24 samples of UHF and one
condition from eq. (10). So we can argue: if there
is a reasonable impulse response function for the
fast component which is able to explain the shapes
of the flood waves in the river then the routing
system is linear to a very good approximation.

Figs. 4, 5 show the slow flow separation at the
gauging stations Rotenburg and Intschede. From
measured data (b,k) were chosen to be
(0.017,0.0169) for Rotenburg and (0.038, 0.0173)
for Intschede in units of [1/day]. This already
shows that the Weser river is dominated by the
slow component in eq. (3). The values of b and k
are not unambiguous, although they can’t be
varied in a large range (up to 30%). However, we
think that they finally must be calibrated together
with an LSP scheme which is also able to distin-
guish between fast and slow components in the
runoff production process. As shown in eq. (4) the
initial condition of Q%0) decays with
exp —(k+b)t, so its amplitude is halved after 12
to 20 days.

Tellus 48A (1996), 5
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Fig. 4. Slow flow separation for the Fulda river at
Rotenburg. b=0.017/day, k=0.0169/day.
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T
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Fig. 5. Slow flow separation for the Weser river at
Intschede. b=0.038/day, k=0.0173/day.

The first answer to the question of the quality
of the chosen linear model comes from the model
results. After 3-5 iterations, the results remain
nearly unchanged during further iterations, so the
scheme becomes stable. Fig. 6 shows the fast IRF
of the catchment above Rotenburg from the first
5 iterations. The IRFs from the iterative scheme
are shown in Figs. 7, 8. The peak times from
Rotenburg and Intschede show only a one day
difference. The reason for that seems to be spatially
correlated precipitation, especially in autumn,
where evapotranspiration is low and the floods
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lterative Solution of Impulse Response Function
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Fig. 6. Impulse response functions of the iterative
scheme. Shown are the impulse response functions of the
first, third and fifth iteration for Rotenburg (Fulda).
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~-—- FastIRF
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Fig. 7. Impulse response function for the Fulda catch-
ment above Rotenburg. Shown are the fast, the slow and
the sum of both impulse response functions.

are becoming higher. As the egs. (9) and (11) are
solved with a minimal least-square solution, the
scheme adapts to these precipitation events. Also
the water wave in the Weser river only needs
approximately 2 days to go from Rotenburg to
Intschede.

Figs. 9, 10 show the results of the fast flow
component as a time series, whereas the scatter-
plots, Figs. 11 and 12, show the general perform-
ance of the model. The iterative scheme had
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Impulse Response Function (IRF)
Intschede (Weser)
0.06 T

Fast + Slow IRF
----- Slow IRF
—-—- FastIRF

Impulse Response Function (day™)

30 40

20
Time (day)

Fig. 8. Impulse reponse function for the whole Weser
catchment above Intschede. Shown are the fast, the slow
and the sum of both impulse response functions.

Fast Component Intschede

Weser
3 I 1
500 4
Measured Flow - Separated Slow Flow
x Calculated Fast Flow
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Daily Averaged Discharge (m*/s)

0 100 200 300
Days 1993 (Feb. - Nov.)

Fig. 9. Time series of the measured flow minus the separ-
ated slow flow versus the iteratively calculated fast flow
from Rotenburg (Fulda).

problems at the beginning of March due to snow
melt processes, which can’t be resolved by the
model without a coupling to a snow-melt model.
The deconvoluted effective precipitation can be
expected to be a good approximation for the
runoff which should have been produced by an
LSP scheme within an error of 1 or 2 days, which
seems to be the approximate uncertainty by this
simple approach for the fast component.
Regarding the slow component we must be very
careful with the interpretation of the results. The
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Fast Component Rotenburg
Fulda
50 T -

Measured Flow - Separated Slow Fiow
X Calculated Fast Flow
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100 200
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Fig. 10. Time series of the measured flow minus the
separated slow flow versus the iteratively calculated fast
flow from Intschede (Weser).
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Fulda

50 T —

8 8 -]

Measured Flow - Slow Flow (m%/s)
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Calculated Fast Flow (m’/s)

50

Fig. 11. Scatter-plot of the measured flow minus the sep-
arated slow flow versus the iteratively calculated fast
flow from Rotenburg (Fulda).

parameters b and k vary in nature dependent on
the soil moisture status, and the simple time scale
separation does not include real soil moisture
processes. We can only investigate these problems
with a coupling to an LSP scheme which explicitly
resolves the vertical moisture fluxes and parame-
trizes the baseflow. However, in the derivation of
the iterative scheme it was important to separate
the time scales, otherwise the correlation length
between the river discharge and the precipitation
would have been too long (the half life time of the
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Fast Flow Discharges Intschede
Weser
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:
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Fig. 12. Scatter-plot of the measured flow minus the sep-
arated slow flow versus the iteratively calculated fast
flow from Intschede (Weser).

exponential slow flow storage decay is approxi-
mately 40 days). It thus only can give us a first
hint on how baseflow recession curves in large
scale LSP schemes have to look like. It gives us a
rough idea of how the soil effectively memorizes
a precipitation event in the first weeks.

Because this approach is catchment based rather
than grid based, there of course always remains
the problem of how to adress the deconvoluted
effective precipitation if there are different contrib-
uting grid boxes. As one of our basic assumptions
was that the precipitation has fallen uniformly
over the catchment we can only assign propor-
tional fractions to each grid cell in the catchment.

5.3. Optimized river routing

First, the effective parameters C and D between
neighbouring gauging stations for a 1 year period
of hourly interpolated streamflow data have been
optimized with a least-square solution. That
means we were looking for an optimal river
impulse response function h(x,t) from eq.(15)
between two gauging stations. C and D were then
checked over a long time period, typically 3 years.
C and D values upstream from the last gauging
station were assumed to be the same as the
downstream value from that gauging station.

Velocities C are normally in the range of 1 to
3 m/s and diffusivities are about 200 to 4000 m?/s.
The optimization procedure finally will give con-
stant C and D values for every single gridbox for
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all further calculations with the routing scheme.
Holding the parameters C and D constant can be
justified by assuming large errors in the other
model parts. In the full Saint-Venant equations
(Fread, 1993) the flow velocity depends on the
amount of water which is transported. Because
LSP schemes are quite inacurate regarding runoff
production and atmospheric models do not neces-
sarily provide the right amount of precipitation, a
nonlinear model would be more sensitive to these
model errors. So we use a linear model because
of practical reasons. This is also a question on
what time scale finally a comparison of measured
and modelled data should be done.

Fig. 13 shows the total river network impulse
response function. We supplied the river grid
network with a one hour input at each grid node.
The whole response function reflects the time the
river network needs to transport water to the last
gauging station in Intschede. From there we
already can conclude that the river network has a
stronge influence on the time to peak in the
impulse response function (Fig. 8) from the iterat-
ive scheme, which includes all different processes.
The distinction between river routing and other
processes can approximately be done as is shown
in subsection (5.4).

One problem that will always occur in large
scale hydrology is the incorporation of human-
made changes in nature, specially weirs, dams and

River Network Impuise Response Function
Intschede (Weser)
0.020 T T

0.015

0.010 |

River IRF (h™)

0.005

0.000
0

2 a0 &
Time (h)
Fig. 13. River-impulse response function for the whole
Weser catchment above Intschede. Input has been a one
hour water supply at every grid node of the optimized
river routing scheme.
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artificial lakes. As this optimization is already
done to today’s streamflow data, it can be expected
to give an approximate picture of the horizontal
routing process in rivers. The detailed inclusion
of dams and lakes normally requires accurate dam
and lake managing data and procedures, if their
effects can’t be described by an increase of D and
a decrease of C and by simple storage threshold
routines.

5.4. Grid box IRF

In regions where no river discharge data are
available for most of the grid boxes, we still can
find an average grid box IRF for the catchment.
It can be derived for each single grid box by
deconvoluting the IRF from the iterative scheme
by the IRF from the linear river routing optimiza-
tion for that catchment. This can be done with
Toeplitz matrizes or more advanced solution tech-
niques (Press et al., 1992). Therefore one river-
IRF is calculated for every catchment, as shown
in Fig. 13 for the whole Weser river. For deconvo-
lution the river-IRF is summed up to daily values.
The lumped gridboxes all have the same internal
IRF afterwards. Fig. 14 shows such a deconvo-
luted IRF for the whole Weser catchment above
Intschede. The deconvoluted grid-IRF tells us how
horizontal water transports in the average grid

Deconvolution of Impulse Response Function

Intschede (Weser)
0.4 T T

~--~ Daily River Network IRF
~-—- Fast IRF
—— Deconvoluted Grid IRF

03 |

Time (day)

Fig. 14. Deconvoluted impulse response function of the
iterative scheme with the river-impulse response function
of the catchment network for the whole Weser River.
Output is a uniform grid-impulse response function for
every grid box in the catchment.
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box within the catchment occur. In nature of
course there will not be the same IRF for every
gridbox. But as NWP models are now resolving
a finer grid than operational hydrological meas-
urements are available, we have to deal with an
average grid IRF to distinguish between river
routing and internal grid-IRF. This approach is
similar to (Mesa and Mifflin, 1986), although we
used an optimized river network IRF with non
homogeneous C and D for the deconvolution. We
also had not to look for a width function of the
river, as this function is already given by the river
network itself and we even did not use a width
function for every single grid box.

As this approach comes from the empirical side
and thus already includes all effects of human-
made changes in nature, the authors assume that
it will be difficult to justify a more detailed model
on this scale which should be coupled to current
LSP models on the large scale. A possible step
forward would be to allow the IRF to vary with
total soil moisture within each grid box, as it is
recommended by Todini (Todini 1995). In fact,
the coupling of this horizontal routing scheme to
an LSP model already means that the fraction of
water in the fast component to the water in the
slow component can vary, dependent on the soil
moisture, the parametrization of the vertical water
transport processes and the assumptions about
the baseflow recession curve.

The idea of how to couple the model finally to
an LSP scheme is simple. Some of today’s LSP
schemes (Wood et al, 1992; Liang et al, 1994;
Diimenil and Todini, 1992) have implemented
simple parameterizations regarding their baseflow
processes (e.g., the Arno-model (Francini and
Pacciani, 1991)). These are build as linear storage
models, some have a threshold where the storage—
outflow relationship becomes nonlinear. The base-
flow component can approximately be identified
with the slow component in eq. (3), although the
time constants will vary due to evaotranspiration
losses in the LSP scheme. This baseflow compon-
ent together with a fast component, e.g., from a
variable infiltration capacity equation and other
infiltration equations (W. J. Rawls et al, 1993;
and references therein) will then be convoluted
with the deconvoluted grid box fast impulse
response function before they are put into the
river routing model.
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6. Conclusions

The coupling of some easy-to-use and to under-
stand tools can form a powerfull basis for a first
order approximation of nature. We do not claim
originality as parts of the constructed model have
been used elsewhere before. However, we think
that this simple model exactly fullfils the demands
which LSP modellers have right now, especially
on the scale of todays NWP models. Derived from
measured data, the constructed routing model is
the simplest model to preserve the lumped hori-
zontal travel time of water when coupled to an
LSP scheme. Due to (a) human-made changes for
wateruse, (b) the absence of a detailed global
hydrological data set even in near future and (c)
large errors in other model components of coupled
models (e.g., precipitation), more physically based
(and sometimes even overparameterized) models
on the current scale of AGCMs and NWP models
are difficult to justify. Although simple, an LSP
scheme coupled to this routing model represents
a closed model for the description of water and
energy fluxes in the hydrosphere. While the physics
of the whole model is in the LSP scheme, this
routing model allows to include measured stream-
flow data as a verification tool in the coupled
atmospheric-hydrological model.

One of the main advantages of this simple
approach is the inverse calculation of effective
precipitation (or runoff) which might lead to a
better understanding of the processes resolved in
vertical LSP schemes. It can be doubted whether
the assumption of constant velocities and diffusiv-
ities, which are actually reflected by the shape of
the IRF of the iterative scheme and its first and
second moments, does hold in extreme cases like
snowmelt processes or very dry conditions. This
has to be checked together with an LSP scheme.
But, the overall concept would allow the IRF to
change its form and the parameters b and k to
differ for different snow and soil moisture situ-
ations. Then one iteration process has to be done
for each of those situations.

Using a model based on convolution integrals
is not very appropiate in atmospheric models, as
they provide prognostic and diagnostic variables
only for up to four time levels. So, in near future
we will use simple parameterizations for the
impulse response functions. We will do regionalis-
ation studies (see also Littlewood and Jakeman,
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1994), as we need for this approach good precipita-
tion and streamflow data, which are not available
for most of the globe. The model right now is
used as a postprocessor for daily runoff data.

In near future coupled model runs will be
performed together with the VIC-2L model from
Liang [Liang 1994] in BALTEX and GCIP
catchments.

Finally, it is hoped that a justification of the
model within its errors can be done with a more
physically based hydrological model with grid
lengths of less than 1 km on the catchment scale
of about 100 to 10,000 km?.
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