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ABSTRACT 

Of prevalent conceptions of the physics of fog formation, the “classical” theory of the 
mixing of air maases of different temperatures seems to the present author to be the 
most convincing. In view of the fact that turbulent exchange implies a mixing of 
eddies of different origins, it is clear that the theory of turbulence applied to saturated 
air should result in some basic ideas of fog formation. For simplification of the problem 
to be studied, the author assumes that the inertia of the drops of fog can be neglected 
and that they are transferred by eddies in the same way as vapour. On that assumption, 
the mixing ratio of the total weter content, i.e. the mixing ratio of liquid water plus 
vapour, and the potential wet-bulb temperature are two elements of air that remain 
constant in eddies irrespective of whether these are saturated or unsaturated by 
vapour. By putting each of the elements into the differential equation of eddy exchange, 
the basic formulae for estimation of fog density are obtained. The boundary conditions 
of integration determine the alternative kinds of fog, for example advection fog and 
radiation fog. Finally, some important modifications are obtained if regard is paid to 
the black-body emissivity of the drops of the fog. Thus, the density of the fog is con- 
siderably increased by a rise of the level of radiative heat loss from the ground surface 
to the top of the fog: 
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1. Introduction 

Fog and cloud formation are the result of the 
co-action of two different kinds of physical 
operations. The more obvious of these is the 
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process of transformation of water from the 
gaseous to the liquid state. It is brought about 
by small particles of substances that act aa 
nuclei on which liquid water condenses. The 
nuclei of condensation are so abundant in the 
atmosphere that in what follows we may pre- 
suppose that vapour pressure does not exceed 
saturation pressure. 

The other physical operation which is needed 
is some kind of atmospheric activity by meana 
of which saturation and a perceptible con- 
centration of liquid water are brought about. 
The drop density in fog and clouds is about 
0.1 g m-s or more (NYBERO, 1949). Owing to 
the decrease of saturation vapour pressure with 
temperature, unsaturated air is most effectively 
transformed into the state of saturation by 
cooling. Only a slight degree of cooling is needed 
in order to change the relative humidity con- 
siderably. 

One cause of cooling is that of adiabatic 
decreaae of pressure. It is combined with con- 
vective rise of air and with upslope wind motion 
and is the essential cauae of cloud formation. 
But adiabatic cooling does not play any 
significant role in fog formation, since the pres- 
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FIG. 1. Right: Vertical temperature distribution computed from the equation (1) using y =9.0 lO-*cm-l 
and T, - To = 10°C. To =the dew-point distribution. Left: Vertical distribution of rate of radiative tem- 
perature change, computed for a temperature profile of the form given on the right, using (A)  y = 9.0 
lO-*cm-l, (B) y = 1.6 lo-* om-’. Right: The shaded area and the dotted line below 70 cm represent the 15- 

minute radiative temperature change according to (A). Reproduced from FLEAGLE (1953). 

sure changes next to the ground are too slow. 
The air of the surface boundary layer is either 
cooled by advection over a cold surface or by 
radiative heat loss a t  the surface. It seems to 
the present author that in each of the two cases 
the essential cause of fog formation is the 
turbulent mixing which is combined with the 
eddy transfer of heat content and water content 
between the level of unmodified air a t  the top 
of the boundary layer and the ground surface 
at the base. It follows from this hypothesis that 
a warm, wet surface should have the same effect 
aa a cold one. Indeed, that alternative is en- 
countered in the formation of “sea smoke” or 
“steam fog”. 

2. The effect of the convective heat loss 

Simultaneously with the eddy transfer of 
heat content, there is an eddy exchange of 
vapour content. Between a warm, almost sa- 
turated air layer and a cold ground surface, the 
net transfer of the heat content and that of the 
vapour are both directed downwards. At the 
ground, moisture is deposited as dew. Mathe- 
matically, the process of eddy transfer of vapour 
is expressed by the same kind of differential 
equation as the eddy heat transfer. The coef- 
ficient of eddy exchange of vapour does not 
greatly differ from that of eddy heat transfer. 

In consequence, a cooling effect runs simul- 
taneously with an effect of “drying” and, in 
spite of cooling, the air does not always become 
saturated. 

The ability of eddy exchange to bring about 
saturation by heat loss was first questioned by 
G. I. TAYLOR (1917), later by EMMONS & MONT- 
GOMMERY (1947). By means of some diagrams, 
Taylor showed that in f a c t  there is a decrease 
of moisture in the air above a surface which is 
cooled by radiative heat loss. He put forward 
the theory that the formation of fog next to 
a cold surface is not the direct consequence of 
cooling but is rather an effect of turbulent 
mixing. Indeed, he brought up the idea that 
lies behind the present paper, but he did not 
develop it  mathematically aa will be done in 
what follows. 

In  their note of 1947, EMMONS & MONTGOM- 
MERY also made the above-mentioned state- 
ment, but they followed another theoretical 
line and pointed out the effect of cooling by the 
radiative emissivity of the air itself. Their idea 
will be discussed in the next section with refe- 
rence to a paper of FLEAGLE (1953). 

3. The effect of the radiative heat loss 

As mentioned above, EMMONS & MONTGOM- 
MERY advanced the theory that the radiation 

Tellus XIV (1962), 1 
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FIG. 2. The effect of a change of the verticd temperature profile on the eddy exchange of heat content. 
The thick profile curve (Al T) on the right ia assumed to be related to a s b d y  state without any loee 
or gain of heat within the air layer. The thin curve (Al T + A, T) includes a slight change of the profile 

that is great enough to bring about the great heating and cooling effects shown on the left. 

of the air itself might be an effect that brings 
about cooling and fog formation. Inspired by 
this idea, FLEAGLE (1953) made a quantitative 
estimation. The diagram by means of which he 
illustrates his computation is reproduced in 
Fig. 1. 

The existence of a ground surface is necessary 
for the persistence of the temperature profile 
shown in the right-hand part of the figure. 
Heat balance is there established partly by a 
net downward eddy transfer of heat, partly 
by a net upward radiative flux of heat. The 
radiative heat loss at the ground surface is due 
to the black-body emissivity of the surface, 
which radiates also in the transparent part of 
the spectrum of moist air. In  the other part 
of the spectrum, the molecules of vapour and 
carbon dioxide absorb and emit long-wave 
radiation, and a net flux of radiation is establi- 
shed between parts of different temperature 
within the surface boundary layer. In the lower 
pert of the inversion layer of Fig. 1 the air is 
heated, since it does not emit as much as i t  
absorbs of the radiation from the warmer upper 
part. In  the upper part, however, the air is 
cooled, owing to the radiative outflow that 
dominates there in consequence of the higher 
temperature of the upper part in relation to the 
lower. In his diagram Fleagle has chosen a 
temperature difference of 10°C between the 
surface and the upper, unmodified air. The 
temperature profile in the intermediate transi- 
tion layer is put by him in the form 
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where T, is the temperature of the upper, un- 
modified air and To that of the surface. 

I n  the left-hand part of the figure, the distri- 
bution of the radiational change of temperature 
is shown. The curve marked A refers to the 
temperature profile represented by y = 9.0 
cm-1 and shown on the right. The curve marked 
B is based on y = 1.6 cm-l and is related 
to a temperature gradient that in the lowest 
part of the transition layer is slightly less than 
that shown in the figure. 

As shown, the maximum rate of temperature 
change is the greater the steeper is the tempera- 
ture gradient in the lowest part of the transition 
layer. The gradient has little effect on the height 
of the level that separates the cooling layer from 
the heating layer. Fleagle estimated the height 
at about 70 cm. 

By means of a shaded area and a dotted line 
in the figure, Fleagle illustrated the temperature 
profile that will result in consequence of the 
above-mentioned radiation during 15 minutes. 
Fleagle concluded that his estimation supported 
the hypothesis of Emmons t Montgommery 
as regards the effect of the emissivity of the 
air itself in bringing about fog formation. 

However, Fleagle disregarded the additional 
effect of eddy exchange that tends to diffuse 
sinks and sources of heat. In  the subsequent 
part of the present section it will be shown 
that even a much smaller change of the tempera- 
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ture profile than that sketched by Fleagle 
induces an eddy heat exchange that is capable 
of balancing the radiative effect. 

We divide the temperature profile into two 
P h S ,  

T - T ,  = A , T + A , T .  (2) 

The first part is identical with the primary 
profile represented by (1)  and shown in Fig. 1, 

A, T = A, T ,  (1  - e-yz).  (3) 

It is assumed to maintain a constant heat 
transfer, 

(4) 

This means that the coefficient of eddy exchange 
varies according to 

KH =HoeY". (5) 

The second part of (2) represents the change of 
the temperature profile induced by radiation 
as described by Fleagle. For simplicity, we put 
it in a sine form, for example, 

Below z =0.4ly-' ,  where e-"" = 8, the sign of 
A,T is opposite to that of &T,. Above that 
level, A8T and AnTa have the same sign. A 
negative sign of A,T, relates to the effect of 
radiation sketched by Fleagle in Fig. 1. 

In  the first instance, we aaaume that the 
coefficient of eddy exchange still varies in 
accordance with (5). Because of that, the eddy 
transfer of heat is not constant along the vertical 
when the temperature profile departs from (3). 
As regards the profile of (2), we get 

( 7 )  

In terms of (5) and (6), (7) reads 

- - - y2 ?c2 KO A, T ,  e-7" sin 
dT 9 
dt 4 
_- 

We put y = 9.0 cm-l as in Fig. 1 ,  K O  = 10 
cma sec-l and At T, = - 0.15OC. The temperature 
distribution that is related to these constants is 
shown in the right-hand part of Fig. 2, which 

is drawn on the same scale as Fig. 1. The 
temperature change that results from turbulence 
is found in the left-hand part. We see that it is 
almost a mirror image of the left-hand part of 
Fig. 1. The temperature profile that induces this 
image, however, differs hardly perceptibly from 
the primary profile. The difference will not be 
measurable at atmospheric conditions by meam 
of ordinary thermometric methods. 

Some years later, Fleagle (1956) showed that 
measurements of refractive differences in the 
temperature transition layer next to a cold 
water surface indicated an anomaly of the 
temperature gradient at about 10 cm above the 
surface. This anomaly might be an effect of 
the radiation of the air itself aa described above. 
By numerical integration of the data, Fleagle 
constructed the temperature profile. The magni- 
tude of the anomaly of temperature at  about 
10 cm above the surface was about the s2me as 
that in Fig. 2. 

We conclude that the sinks and sources of 
radiative heat exchange are easily balanced by 
eddy transfer of heat even in the case of very 
small temperature anomalies induced by radia- 
tion. In  Fig. 2, the magnitude of the vertical 
variation of eddy heat transfer is, in terms of 
the unmodified transfer, 

With the values attributed to Al T ,  and A2 T, 
above, we find that the magnitude does not 
exceed 7%. ROBINSON (1950) and RIDER& 
ROBINSON (1951), who measured the eddy heat 
transfer, the radiative heat flux and the cor- 
responding vertical variations in clear air above 
short grass, found in the lowest metrerelative 
variations that were up to 10 %. Thus, our illu- 
stration of the problem does not seem to be un- 
realistic. 

Furthermore, the investigation of RIDER & 
ROBINSON supports the theory that the tem- 
perature variations in the air layer are the result 
of co-action of convective heat loss (or gain) 
and radiative heat gain (or loss). In  most cases 
the difference between the two concepts is 
small (less than one per cent of the eddy heat 
transfer), but is sufficiently large to bring about 
temperature fluctuations. 

Tellus XIV (1962), 1 
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Another view of the problem is given by 
LILJEQUIST (1967). He studied the energy 
balance at the snow surface in the very extreme 
conditions found in the Antarctic. He found 
that in very strong, well-developed inversions 
(i.e. cases of almost linear, vertical increase of 
temperature established by radiative net out- 
flow), the eddy transfer of heat is independent 
of the temperature gradient because the coef- 
ficient of eddy exchange is in inverse proportion 
to the temperature gradient. This implies that 
it was not quite correct in our procedure to 
put the coefficient constant regardless of varia- 
tions of the temperature gradient. 

Liljequist’s conclusion is based on average 
conditions of a boundary layer, 10 metres deep, 
above the snow surface. Hence, it is not certain 
that the correlation between the gradient and 
the coefficient holds good in temporary vertical 
variations. The profiles that Liljequist illustrates 
have numerous types of discontinuities of 
gradient. The simple form of the profiles of 
Figs. 1 and 2 is related by him to young, un- 
developed inversions. At low wind speeds and 
net outgoing radiation, it is soon transformed 
into a straight profile with one or two, or even 
more, discontinuities of gradient. In Fig. 3 
there are reproduced six types of such “mature” 
inversion profiles. It seems possible that the 
transformation into the “mature” form may 
be due to radiative cooling as deacribed by 
Fleagle. In such a case, discontinuities of eddy 
heat transfer are established along the vertical 
in order to balance the sinks and sources of 
radiation. But the discontinuities found in the 
temperature profiles are often so great that the 
radiative effect would be far exceeded by the 
effect of turbulence if there were not a negative 
correlation between the gradient and the coef- 
ficient of eddy exchange. When such a correla- 
tion exists, a great discontinuity of the tem- 
perature gradient may be coupled with a 
relatively small change of eddy heat transfer 
that exactly balances the small radiative effect 
of the air. 

To sum up, then, we can say that in certain 
conditions the long-wave emissivity of vapour 
and carbon dioxide may bring about perceptible 
cooling of the air in a surface boundary layer. 
But we maintain that the cooling is an effect 
of combined action of radiative heat exchange 
and eddy heat transfer. That is why we maintain 
that the process of fog formation cannot be 
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FIG. 3. Diagrammatic presentation of “mature” 
inversions in the surface layer next to an Antarctic 

snowfield. Reproduced from LIIJEQUIST (1957). 

seen as a direct effect of radiative cooling only. 
In what follows we shall discuss the process, 
taking into consideration the concepts of eddy 
transfer, but at  first disregarding the longwave 
emissivity of moist air. Later, in Section 12, we 
shall re-examine that factor in the light of the 
discussion in the sections which now follow. 

4. The effect of the mixing of damp air 
masses 

In addition to the effect of cooling, mixing 
of two air masses of different temperatures is 
pointed out in textbooks of meteorology as a 
cause of fog formation. The theory is an old one. 
In the nineteenth century it bore the name of 
James Hutton (172697) and implied that the 
mixing effect was the cause of precipitation. 
However, the amount of perceptible water was 
overestimated, since no regard was paid to the 
effect of heating by the release of latent heat. 
This was probably first pointed out by WEIT- 
STEIN (1869). But Wettstein overestimated the 
effect of heat release and concluded that mixing 
might not bring about any condensation at  all! 
HANN (1874) gave a correct view; he showed 
that the amount of liquid water produced was 
considerd& but too small to bring about mode- 
rate precipitation. He realized that the adia- 
batic cooling of rising air is the principal came 
of saturation in the formation of clouds. In 
1882 PERNTER presented a firat mathematical 
deduction of the mixing effect. In a paper of 
1890 VON BEZOLD dealt exhaustively with the 
topic. In a series of diagrams, he gave graphical 
representations of the relation between the 
original air masses and the final mixture. 

When TAYLOR in 1917 reviewed the problem 
of fog formation in the light of empirical data, 
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FIG. 4. T,r  diagram illustrating the effect of the 
mixing of damp air maases with reference to VON 
BEZOLD (1890), TAYLOR (1917) and BRUNT (1935). 

he made the same mistake aa Hutton and 
neglected the heat released by condensation. 
Attention waa drawn to this by BRUNT (1935) 
in a short note. Brunt agreed with Hann and 
von Bezold aa regards the magnitude of liquid 
water in the mixture and concluded (1944) 
that “the formation of fog at a surface of 
discontinuity in the atmosphere is to be ex- 
plained, at leaat in part, by the effect of mix- 
ing of maases of air of different temperatures 
and humidities”. 

The fundamental physical reaaon why mixing 
results in saturation is found in the curvature 
of the line that represents the saturation-vapour 
mixing ratio aa a function of temperature. 
In  the diagram in Fig. 4, the state of air is 
represented by a point of which the abscissa 
is the temperature and the ordinate corresponds 
to the water mixing ratio. The curve of satura- 
tion-vapour mixing ratio divides the diagram 
into two parts. To the left of the curve, the air 
is saturated by vapour; to the right, it is un- 
saturated. When two air maases that differ in 
temperature (points A and A, in the diagram) 
are mixed, there may result a vapour mixing 
ratio that is greater (at B) than that of satura- 
tion (at B’) at the temperature of the mixture. 
But owing to the release of latent heat by 
condensation, the final temperature is not that 
of B but that of D. In consequence, the excess 
of mixing ratio is not equivalent to BB‘ but 
to the projection of BD along the ordinate. 

As mentioned above, Taylor found that the 
cooling effect of convection waa not capable 
of bringing about saturation and he tried to 

find the explanation of fog formation above a 
cold surface in the following way. In  the diagram 
reproduced in Fig. 4, he assumed the unmodified 
and unsaturated air above the surface to be 
represented by a point P and the wet, cold 
surface by a point Q. Since the conditions in 
the transition layer between P and Q are 
brought about by mixing of saturated air 
originating at Q and unsaturated air originating 
at P, the temperature and the humidity at 
intermediate levels are found along the line 
PQ. From P, Taylor drew a tangent that touched 
the saturation curve at 0. He concluded that 
the condition for fog formation in the transition 
layer waa that the temperature of the surface 
(for example that at the point Q,)  should be 
below that at 0. In such a caae, the curve PQ, 
of the relation between temperature and humi- 
dity partly runs to the left of the saturation 
curve. 

Taylor’s discussion is very interesting. It 
combines the “classical” idea of the effect of 
mixing with the theory of eddy exchange. Tur- 
bulence implies mixing of eddies and, in the 
transition layer next to a cold surface, eddiea 
that descend from the unmodified air are mixed 
with others that are strongly modified by the 
surface. A t  each level in the transition layer, 
the temperature as well as the humidity is 
determined by the proportions of eddies brought 
together by turbulence from different levels. 
Accordingly, the problem of the distribution of 
liquid water in fog involves the question how 
to apply the methods of theory of eddy exchange 
to saturated air. 

In  the next two sections, the thermodynamics 
of saturated air will be studied in order to find 
characteristic elements that remain constant 
in closed eddies moving upwards and down- 
wards, irrespective of whether the eddies are 
saturated by vapour or not. We shall assume 
that the liquid drops which are condensed in 
the eddies are so small that their inertia against 
eddy changes of velocity is negligible. On this 
condition, we shall find that the wet-bulb 
potential temperature and the mixing ratio of 
the total water content have the property 
claimed. 

5. The thermodynamics of saturated air 

The First Law of Thermodynamics gives the 
amount of heat q, that should be added to  

Tellus XIV (1962), 1 
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a system of dry air or be taken away from it in 
order to bring about the changes dT of its 
temperature and dp of its pressure, 

(9) 

where c9 is the specific heat of dry air at  con- 
stant pressure, e the density of dry air a t  
temperature T and pressure p .  In a system of 
vapour that is in equilibrium with suspended 
liquid drops, the law reads 

q, = (CW +c‘v)dT +Ldv,  (10) 

where c is the specific heat of water, c‘ that of 
saturated vapour, L the latent heat of evapora- 
tion at  temperature T .  The effect of drop surface 
curvature as well as that of salt content on 
vapour pressure are disregarded. The total con- 
tent of vapour and drops in the system is con- 
stant if the system is closed and neither receives 
nor loses any drops or vapour. We specify the 
content by means of the mixing ratio (r) which 
expresses the relative proportions by weight of 
water and dry air in a given volume of saturated 
air. The mixing ratio of the total water content 
is the sum of the corresponding concepts of 
vapour (v) and liquid water (w) ,  

r = v + w .  (11) 

Provided that the heat amount is added or 
taken away by means of a reversible process, 
the change of entropy S in a system of dry air 
is 

dS,  = cgdT/T - Rdp/p  (12) 

and in a system of vapour and water drops 

dSa = (cw +c‘v)dT/T +Ldv/T, (13) 

R being the gas constant for dry air. The theory 
of thermodynamics states that the differential 
of entropy is an exact one. In the case of dry 
air (12) this is immediately clear, since c, and 
R are constants. In the caae of the system of 
vapour and drops (13) , the statement implies 
that 

In a closed system, the water content r in 
equation (11) is constant, and the derivative 
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in the left-hand member is equal to -1. In 
consequence, (14) reads 

and (10) assumes the form 

Adding (9) and (le), we get the change of 
heat of a system of saturated air plus water 
drops, 

We mume that the total system of air, vapour 
and drops is closed. This means, f i rs t ,  that r 
in (11) is constant. Secondly, 

41 + q a  0. (18) 

In consequence, a potential temperature 8 that 
we define by means of the formula 

c ,+cr+8-  ddg (?)I,? -- [ 

remains constant in a closed system at preseure 
variations. 

6. The thermodynamics of unsaturated 
air 

In unsaturated air, the wet-bulb temperature 
T‘ is theoretically related to the temperature T 
of the dry bulb by means of the formula 

(c,+cI,T)(T -T’) = L ( v ’ - T ) .  (20) 

The formula is baed on the process of evapora- 
tion that takes place on the wet bulb of a psy- 
chrometer. The latent heat required for aatura- 
tion (right-hand member) is released by cooling 
of the air (left-hand member). c6 is the specific 
heat of unsaturated vapour. By adding equal 
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terms to each member, we get Normand’s 
Propoaition I, 

cgT +crT’+Lr +cir(T - T ’ )  
= c g T  +cv’T‘ +Lv‘ -c(v’ - r )  T’. (21) 

In  the words of BRUNT (1944) the proposition 
reads: “The heat content of the air ia equal to 
the heat content of the same air saturated at  
the wet-bulb temperature, minus the heat con- 
tent of the additional liquid water required so 
to saturate it.” 

It is easy to find that the right-hand member 
of the equation is identical with 

(cp + C T )  T’ + Lv‘. (22) 

In  consequence, (22) is the heat content of 
unsaturated air in terms of the wet-bulb tempe- 
rature. We recall that v‘ is the saturation mixing 
ratio at the temperature of the wet bulb. 

In  the psychrometric process, heat is released 
by the air at a higher temperature than that at 
which it is used for evaporation on the wet bulb. 
That is why the psychrometric process of eva- 
poration is not a reversible one. However, 
Normand’s Proposition 11 gives an idea of the 
thermodynamic balance that would prevail in 
the case of a hypothetically reversible psychro- 
metric process. The proposition reads in the 
words of BRUNT (1944): “The entropy of air is 
equal to the entropy of the same air saturated 
at the wet-bulb temperature, minus the entropy 
of the additional liquid water required so to 
saturate it.” 

Mathematically, the last proposition reads, 
in conformity with (21), 

T T’ Lr , T 
TO To T T 

= c g  log - + cv’ log - + 7 
TO To T 

cp  log --I- cr log -+ y + c p r  log 

T’ T’ Lv’ 

The temperature T o  is an arbitrary point of 
reference. The right-hand member is easily found 
to read 

T‘ Lv’ 
(c,+cr) l og -4 -7 .  (24) 

To T 

Thus, (24) is the entropy of unsaturated air in 
terms of the wet-bulb temperature. 

The thermodynamic definition of specific heat 
at  constant pressure is either 

where H is the heat content and S the entropy 
of one unit of mass. 

By application of (25) to (22) and (24), we get 

( p  const) (26) 

and 

c ,+cr+T’ -  7 (”31 dT‘ ( p  const) (27) -- 
dT’ T T’ dT 

respectively. The specific heat in the form of 
(26) is not the least possible since it is based on 
an irreversible process. The minimum amount 
of specific heat is found in reversible processes 
and is identical with that represented by (27). 
The relative difference of the terms of the 
brackets in (26) and (27) is 0.3 % at T’ = - 30°C, 
2.1 % at T‘ = 0°C and 4.8 % at T‘ = + 30°C and 
r =v’ .  The complete terms of (26) and (27) 
differ still less from each other because of the 
fraction TIT’, which slightly exceeds unity. 
Thus, a significant error is not introduced when 
(26) is used instead of (27). In  the examples that 
will follow, the wet-bulb temperature is cal- 
culated by means of (20). But in theory, i t  
should be based on Normand‘s Proposition II. 
On that basis, the First Law of Thermodynamic8 
reads, for a system of air plus unsaturated 
vapour, 

qi + qa = 

c ,+cr+T’ -  7 - - d T  
dT’ (“31’ T T’ dT’ dT 

d P  - R T - .  
P 

Provided that the system is closed, neither 
heat nor liquid water or vapour is received or 
lost, which means that 

and T = vf + w = constant. 

Here, - w i8 the liquid water required to saturate 
the air isentropically. It is called the deficit of 
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liquid water. In the case of saturated air discus- 
sed in Section 5,  we referred + w  to the mkcing 
ratio of drop& that is the Burplua of liquid water. 

In consequence of (29)) the wet-bulb potential 
temperature 8', which we define by means of 

remains constant in a closed system which is 
subject to pressure variations. 

Bearing in mind that the wet-bulb tempera- 
ture does not differ from the dry-bulb tempera- 
ture in saturated air, we find that the definition 
of the potential temperature is the same in the 
cases of saturated air (19) and unsaturated air 
(31). Even the mixing ratio of total water 
content is written in the same form in both 
cases, aa is seen in (1  1) and (30). In what follows, 
a prime index will be added to the symbols 
T, 8 and v when these refer to saturated air, in 
order to mark their identity with the cor- 
reaponding concepts of the wet-bulb tempera- 
ture of unsaturated air. 

7. The eddy transfer of heat content and 
water content 

A conservative property of air is diffused 
by turbulence in the direction of its gradient. 
In the case of wet-bulb potential temperature, 
that means an eddy diffusion of total heat con- 
tent, that is to say sensible-heat content plus 
latent-heat content, 

H =  

The potential dry-bulb temperature 8 is fixed 
a t  8' by r in the same way aa T is related to T' 
and r in equation (20). 
As far as water content is concerned, turbu- 

lence results in a transfer of vapour and liquid 
drops, 

(33) 

We want to find the relationship between 
the vertical distributions of 8' and r at any 
fixed point (2, y). For that purpose we put dt, 
dx and d y = O  but retain d z + O  in the total 
differentials do' and dr and transform (33) into 

By elimination of the temperature gradient. 
we get the transfer of water content in hnns 
of that of heat content, 

8' dr 

The fraction EIH recalls the Bowen ratio-in 
what follows called 3-which puts the eddy 
transfer of sensible heat in relation to that of 
latent heat ( S ~ O N ,  1953): 

The Bowen ratio is used by oceanographers and 
climatologists for computing the mean evapora- 
tion of oceans by means of data on net radiation 
at the surface. In the present paper, however, 
it is only used es a concept for the relation be- 
tween evaporation and convection. 

Before entering into further discussion, we 
make the following essumptions: 

(i) K,, = KE = K :  By several investigators (e.g. 
SWINBANK, 1955), differences between various 
kinds of eddy exchange coefficients have been 
pointed out. However, any difference that may 
exist between the coefficient of eddy exchange 
of vapour and the coefficient of eddy exchange 
of heat content is not of such a magnitude that 
it significantly affects the result of the discus- 
sion in this paper. If we should object to putting 
KE and K H  equal to each other, we might alter- 
natively aasume that the fraction KEIKH does 
not vary in the surface boundary layer and 
retain it aa a constant factor in (35). 

(ii) dp =0, i.e. 8' = T': The subject of the 
following discussion will be the boundary 
transition layer in the air next to the ground. 
Cases of steep temperature gradients in that 
layer will be of special interest. The effect of 
the pressure term in (31) will be a minor one. 
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FIG. 5 .  T‘,r diagram with curves (BB’, B I B ; )  
showing the interrelation between 2” and r in a 

temperature transition layer. 

(iii) The sensible heat of water, CT, is much 
less than the sum of the other terms of the 
bracket in (32). It will be deleted in what fol- 
lows. 

(iv) In  all the formulae, the temperature is 
referred to the absolute scale. Since in atmos- 
pheric conditions the fraction e/O‘ is almost 
equal to unity, it will be deleted in the trans- 
formations that follow from (32). 

8. The distribution of liquid-water con- 
tent in a temperature transition layer 

By means of (35), we get the vertical distri- 
bution of water content at  any point (2, y) as 
a function of temperature: 

H 

Fig. 5 is a diagram in which the ordinate 
represents the water mixing ratio, the abscissa 
the wet-bulb temperature. The curve AA’ is 
that of the saturation-vapour mixing ratio. The 
area to the right of the curve represents un- 
saturated air, to the left saturated air with 
liquid drops suspended, i.e. fog. The curves BB‘ 
and BIB;  are integrals of (37) and represent 

the distribution of water content in relation to 
the temperature when the quotient EIH is 
constant: 

The integral is fixed by the boundary condition 
at  T ;  and the fraction EIH or the Bowen ratio. 
For example, the conditions of a cold, wet 
ground surface are represented by the point 
C, on the saturation curve AA’. There, w is 
zero. We shall discuss the reason for this later 
in the present section. At any other level, 

(39) 

The integral curve cuts the curve of saturation- 
vapour mixing ratio not only at  C ,  but also at 
C,. The latter point represents the top of the 
fog. At the top as well as at the base, w is zero. 
At a temperature T h  between C ,  and C,, the 
water-drop mixing ratio is maximal. There the 
tangents of the curves AA‘ and BB‘ are parallel. 
The Bowen ratio 3 is related to  TL aa follows, 

which results from (35) with (dw/dT’), = 0. 

the temperature T& is shown. 
In Table 1, the variation of B in relation to 

TABLE 1. 

B 
TM JIH 
“C glcal 

- 30 0.117 x lo-’ 12.9 
- 25 0.171 8.56 
- 20 0.243 5.76 
- 15 0.331 3.94 
- 10 0.444 2.74 
- 5  0.569 1.93 

0 0.708 1.36 
+ 5  0.850 0.98 
+ 10 0.992 0.70 
+ 15 1.128 0.51 
i- 20 1.25 0.36 
+ 25 1.37 0.26 
+ 30 1.46 0.18 
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FIG. 6. Magnitude of water-drop mixing ratio in fog at different temperatures. B = Bowen ratio. The tem- 
perature difference across the fog layer is equal to the range along the abscissa between the end points 

of the curves. 

In  ocean areas, the mean values of the Bowen 
ratio vary from - 0.2 to + 0.5 (SVERDRUP, 1945). 
The values of Table 1 refer to special conditions 
and are not representative of average conditions. 
However, in the interval from + 10" to + 20" 
the magnitudes agree with the empirical data. 

A consequence of our assumption that 
water drops are transferred by eddies in the 
same way aa vapour is that evaporation or con- 
densation is expected to occur at the ground not 
only in unsaturated air but even in fog. In  fog, 
the eddy transfer of water is not determined 
by the vertical gradient of vapour mixing ratio 
but by the gradient of total water content. It 
seems from the T',r diagram in Fig. 5 that a 
difference should be found between the water 
contents at  the top and the base when there is 
a temperature difference. We shall find that 
the latter is a vital condition for fog, so that we 
maintain that either evaporation or condensa- 
tion always takes place at the base of fog. 

The more the temperatures of the points C ,  
and C, differ from each other, the greater is the 
maximum water-drop density of the fog. This is 
already made evident by Fig. 5, but is further 
illustrated by Fig. 6. In  the latter figure, three 
sets of curves are drawn, the curves of each set 
having the maximum water-drop density at 
- loo, 0" and + 10°C respectively. To each set, 

the related value of the Bowen ratio is added. 
In Fig. 7, isolines of the maximum water-drop 
mixing ratio are drawn in relation to the 
temperature Th and the temperature difference 
TL - TL, i.e. the difference between the tem- 
peratures at the top or the base of the fog and 
at the maximum of drop mixing ratio. We see 
that the maximum water-drop mixing ratio is 
the greater the higher is the temperature. This 
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appears partly from the approach of the curves 
to the horizontal axis at the increase of tempera- 
ture, partly from the asymmetry of the curvem 
around that axis. Thus, the lines are more 
crowded above the axis, where the warmer part 
of the fog layer is found, than below. 

A scheme of the relation of vapour and liquid- 
water content to temperature in a steady 
transition layer next to a cold surface iS given 
in Fig. 8. In  part A, the T',r diagram of Fig. 6 
is found. The temperature of the cold surface 
is Tb,. The wet-bulb temperature at the top of 

+O 
-10 - 5  0 1 5  

0.3 

-20 Y 
FIG. 7. The maximum of water-drop mixing ratio 
in fog in relation to the temperature at M (Fig. 6) 
end the difference between this temperature and 
the temperature at any of the boundaries C, and C,. 
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A 

C 

FIG. 8. The repreeentation of the profile curves T’ and w in the T’,r diagram. 

the transition layer is Tk, the mixing ratio r,. 
The latter is less than that of saturation. The 
eddy transfer of heat content as well as that of 
water content is directed downwards. At the 
ground, condensation occurs and dew is depo- 
sited. Thus, the surface is wet but no water 
drops can be caught by the eddies that move 
upwards from the surface. Hence, w is zero at 
the surface. That is the reason why the point 
C ,  of the wet surface is put on the curve of 
saturation-vapour mixing ratio. It is wholly in 
conformity with the general practice to put the 
temperature of the air at a water surface equal 
to the temperature of the surface water. 

We join the points C,  and P by means of an 
integral curve C,MC,P of (37 )  and get the 
interrelation between water content and tem- 
perature in the transition layer. By means of 
the wet-bulb temperature profile, which is 

shown in part B, the distribution of water con- 
tent is then deduced in part C.  The part C,C, 
of the integral curve runs to the left of the 
saturation curve and indicates the fog layer. It 
corresponds to the shaded area of positive values 
in the profile of liquid-water content in part C.  
The point of intersection called C ,  gives the 
top of the fog. The maximum of fog density is 
found at M, almost halfway between C ,  and 
C,. Owing to the curvature of the temperature 
profile the level of maximum is slightly dis- 
placed to the lowest part of the fog layer. 

When the air is colder than the wet surface, 
the point P is found to the left of C,  and the 
temperature andwater content decrease upwards 
in the boundary layer. Also in this case, the 
integral curve (37) might intersect the satura- 
tion curve AA‘ at another point C,  which, 
however, now lies to the left of C,. Indeed 

-30 - 20 -10 0 +10 rm +a *c 

FIG. 9. The distribution of liquid-water mixing ratio (thin lines) and relative humidity in various kinds 
of temperature transition layers above 8 wet surface, of which the temperature is O°C. Right: The air 

is warmer than the surface. Left; The air is colder than the surface. B = Bowen ratio. 

Tellus XIV (1962). 1 



EFFECT OF TURBULENCE ON FOG FORMATION 61 

we know that fog occurs in the transition layer 
next to a warm wet surface as well as to a 
cold one. In  the former cam, evaporation 
takes place at the surface, in the latter caw, 
condensation takes place. 

In  Fig. 9 some curves show the interrelation 
between water content and dry-bulb tempera- 
ture. The temperature of the surface is arbitrarily 
fixed a t  0°C. In the left-hand part of the dia- 
gram, the curves refer to the case where air 
is colder than the surface, in the right-hand 
part the curves exemplify caaes of warm air. In  
the part above 100 % are drawn thin curves that 
give the mixing ratio of liquid water. The 
relative humidity is shown by the other curves. 
But we should rather call it the “relative con- 
tent of water” since it includes liquid-water 
content. It exceeds 100 % in fog. Related values 
of the Bowen radio are edded to the curves. 

Two features of Fig. 9 are noteworthy: 
(a) Above the top of cold fog next to a warm 

underlying surface, the relative humidity de- 
creases much more rapidly in relation to the 
temperature than it does above the top of warm 

(b) In  a case of cold fog, the relative humidity, 
which includes the content of liquid water, is 
much greater than in the corresponding caae 
of warm fog. The word “corresponding” implies 
that the temperatures of the surfaces are the 
same and that the temperature differences 
acrose the fog layers have the same value 
regardless of sign. On the other hand, the liquid- 
water mixing ratio of warm fog far exceeds that 
of a cold fog in “corresponding” cases. 

fog. 

9. The formation of advection fog 

We return to formulas (32) and (33). We 
retain assumptions (i) to (iv) of Section 7 and 
add the two following ones: 
(v) The density e of dry air is constant. 

(vi) The coefficient K of eddy exchange is con- 

Later, we shall add two more assumptions. 
The differential equations of eddy diffusion 

of total heat content and total water content 
read 

stant. 

az 

and dr  aE 
e - = - -  dt a Z 9  

respectively. Because of (32) and (33) plus as- 
sumptions (i) to (vi), the equations acquire the 
forms 

d -= T’ K-+K+$)’ a’ T ’  (40) dt az2 

and 
d r  a2r 

- K -  
d t  az2’  
_ -  

respectively. The symbol c f  stands for the 
logarithmic derivative 

c f =  

1 

If we want an explicit form of the differential 
equation for integration of the liquid-water 
content, we may substitute v’+w for r in (41), 

dw dv’ dT’  
dt d T  dt 
-+-;.- 

We recall that v‘ only depends on the wet-bulb 
temperature. In combination with (40), the 
equation is shortened to 

dw _- azw 

The object of the present section is to show 
the role played by turbulence in the procedure 
of fog formation. It is not intended to set out 
the exact quantity of water drops that results 
from our theory. We already gave up that aim 
when we made assumption (vi). That assump- 
tion is absolutely contrary to well-known facts of 
the vertical variation of the coefficient of eddy 
exchange, but it simplifies the theoretical dis- 
cussion considerably. 

We shall discuss some more assumptions that 
aim to simplify the mathematical discuseion aa 
far aa possible: 
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FIQ. 10. The variations of some functions of the first and second derivatives of v'. The ynits of the 
ordinates of cD, d 2 v ' / d P  and Q are respectively 10 cal/(g "C) ,  g/(kg "C*) and O C - 1 .  The functions are based 

on the values of v' at atmospheric pressure 1000 mbs. 

(vii) The function 

is constant, i.e. cf = 0. 
(viii) The derivative dPv'/dT'P is constant. 
Fig. 10 shows the strict variations of the 

functions mentioned in (vii) and (viii). In addi- 
tion, there are found the variations of cf and 

d2v' dv' 
dTf2 dT' 

a-. __- 

The first term in the right-hand member of 
(40) settles the principal variations of T'. The 
second term brings about minor additional 
variations that are due to G, i s .  the variation 
of the specific heat in the form of (27). 

We see in Fig. 10 that the variation of G is rela- 
tively small along tho range of the abscissa. We 
get an approximate form of (40) that is more 
easy to integrate than the original differential 
equation when we replace G by a constant. 
We fit the constant to the average of G in the 
relevant temperature interval. 

We assume that 

where T ;  and AT; are constants of integration, 
is the complete integral of a differential equa- 
tion that contains the predominant terms of 
(40) only, namely the equation: 

d T' a2 T' - _  -I<--.  
dt at2 (45) 

Still for the purpose of simplifying the inte- 
gration of (40), we put the integral (44) into the 
secondary term of (40): 

dT' a2T' 
~ = K--  + K B ( A  T ; ) ~  
dt az2 

It is easily verified that 

T'=T;+AT;++ga(AT;)2.)Z(1 -4) (47) 

is the complete integral of (46). Tk and AT; 
are constants of integration. (47) may with 
good approximation be used instead of the 
relevant integral of (40). 

We see in Fig. 10 that the variation of 

d2v'  dv' 
dTI2 a&TI 
~- 

is relatively small. We replace it in (43) by a 
constant factor that is identical with the average 
in the range of its variation, and aT'/az by the 
derivative of (44). Then, 

w = w1 4 + w2 (1 - +) 

( A T ; ) ~ + ( I - + )  

is an approximate form of the complete integral 
of (43). The coefficients w1 and w, are constants 
of integration. 
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Now, the consequences of the assumptions 
(vii) and (viii) become clear. The first one is 
that in (46) and (47) the last term will be omit- 
ted. But then there results a value of T' that 
is up to #ff(A~;)* too low in a temperature 
range between T; and T; -I- AT;. For example, 
at about O"C, U is 0.025°C-1. The error of T on 
account of (vii) is less than 0.3"C when AT; < 
10°C. 

Further, assumption (vii) implies that in 
(43) and (48), 

[ $ f f 3  

will be replaced by d%'/dT". Since th'e latter is 
greater than the former, w is overestimated on 
account of (vii). At O"C, the difference between 
the factors in question is 0.007 lO-*"C-' and 
the maximum error that we get in w on account 
of (vii) is 0.09 lo-* when AT; < 10°C. 

The forms of the curves in Fig. 5 give another 
view of the consequence of assumptions (vii) 
and (viii). On account of the latter, the curve 
AA' of the saturation mixing ratio is adapted 
to a parabolic curve. Because of the former, the 
integral curves BB' and B, B; get the form of 
straight lines, as is easily proved by means of 
the differential equation (37). 

The representation of BB' and BIB; by 
means of straight lines recalls Fig. 4, which 
illustrates the effect of the mixing of two messes 
of damp air as explained by TAYLOR (1917), 
BRUNT (1935) and earlier writers mentioned in 
Section 4. Assumption (vii) implies that we 
consider the specific heat of saturated air as 
constant. That is in practice the same aa saying 
that we disregard the release of latent heat. The 
temperature and liquid-water content of the 
mixture are then represented by point B in 
Fig. 4. We recall that the temperature is found 
by means of (47), the water content by means 
of (48). The equations are adapted to the 
condition of (vii) by omitting the terms con- 
taining a. 

On the other hand, if regard is paid to the 
release of latent heat, the terms containing ct 
must be retained and added to the values of 
temperature and liquid-water content at  B. 
This implies that the representation of the 
mixture is removed from B. The temperature 
and the vapour content are now found at D. 

But the total water content of the mixture 
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is still found at B. In contrast to Brunt, we 
attribute to the ordinate the total water content 
instead of the vapour content or the vapour 
pressure. From our point of view, the water 
content in the mixture remains that of B, 
irrespective of whether condensation occurs or 
not. Hence, we find the mixture to be repre- 
sented by the intersection between the horizontal 
line through B (representing the water content) 
end the vertical line through D (representing 
the temperature). 

"he curve BB' in Fig. 5 is the locus of the 
intersection in Fig. 4 between the horizontal 
line through B and the vertical line through 
D at variable proportions by weight of the two 
masses mixed. 

Brunt discusses the slope of the line BD and 
shows that its tangent of inclination to the 
T-axis is approximately -c,/L. The value 
of this fraction is -0.390 at -30°C and 
-0.415 OC-' at +30°C. 

Regardless of sign, the tangent of inclination 
of BD is equal to the quotient of the vertical 
projection of BD, i.e. win (48), and its horizontal 
projection, i.e. the last term in (47). The line 
BD is relevant only to such mixtures 88 are 
saturated by vapour. Accordingly, we bound w 
in (48) to positive and zero values within 
0 <+ S_ 1 by putting wl =ws =O. 

After equal terms in the numerator and the 
denominator of the quotient in question have 
been deleted, we get the formula: 

Tangent of inclination of 
dv 1 d2v 

B D t o t h e a x i 8 o f T ( F i g . 4 ) = - - -  - 
dT ff dT2' 

The second term is the predominant one in 
the formula. By putting a in the approximate 
form (L/c,)(d*v/dT*), we find that the term is 
related to Brunt's version mentioned above. 
Without any approximation, our formula gives 
-0.415 "C-l at -30°C and -0.490 lo-* 
OC-' at + 30°C. 

Like Fig. 9, Fig. 11 shows the variation of 
water-drop content in the boundary layer above 
a surface. The fully drawn curves are based on 
strictly correct curves AA' and BB' in Fig. 5 
but the dashed curves show the variation that 
results if AA' is adapted to a parabolic curve 
and B B  and BIB; to straight lines. Again we 
find that assumptions (vii) and (viii) result in 
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FIG. 11. The distribution of the liquid-water mixing ratio in four kinds of temperature transition layers 
adjacent to a wet surface. Like the curves of Fig. 9, the continuow cumea are based on the differential 
equation (37) without any approximation. In the computation of the daahed cumw, the variations of 

are disregarded. d L  d' v' 
[cD + T ' s  (a)] and zT7 

an overestimation of the liquid-water content 
at fixed conditions a t  the base and at the top 
of the fog. This shortcoming will be inherent in 
the following discueaions of the principles of 
advection fog and radiation fog. 

We would stress that the aim of this section 
and the next is not to find the exact quantity 
of liquid-water content in fog but rather to give 
a presentation of the fundamentals of fog forma- 
tion. The liquid-water content of fog was discus- 
sed in Section 8 and shown in Figs. 6, 7 and 9. 
At present, we want the simplest differential 
equations that will give a basic understanding of 
fog formation. 

Now, we fix the advective formation of fog 
to the following boundary conditions, which 
are illustrated in Fig. 12: 

1. There is a horizontal flow of air perpendi- 
cular to a line of discontinuity a t  the ground 
surface. We put the x-axis in the direction of 
the air flow and the intersection of the line of 
discontinuity at x = 0. The wind velocity is cal- 
led u. 

2. A t x = O a n d z > O :  T'=T;andr=v;+w,.  
We assume that the air is unsaturated upstream 
of the line of discontinuity, i.e. wo < 0. 

3. At x > O  and z =0: T' = Ti +AT; and w = O .  
Downstream of the line of discontinuity, the 
surface is wet. Its temperature differs abruptly 
from that of the surface upstream. 

The partial differential equations (40) and 
(43) fit the problem in the following approximate 
forms: 

(49) 

Adapted to the boundary conditions, the 
particular integral of (49) reads 

m 

T ;  =T; + A T; - C d d y  (51) 

and the particular integral 
form 

in (44) gets the 

m 

The deduction is found in textbooks on partial 
differential equations, for example WEBER 
( 19 12). 

A particular integral of (50) is found by 
means of putting Q = O  in (48) and reads, when 
the constants of integration are adapted to the 
boundary conditions of advective fog forma- 
tion, 

With reference to (53), the drawing of Fig. 12 
shows the distribution of liquid-water content 
in the air downstream of the line of discontinuity. 
First, there are four profile curves showing the 
vertical distribution at four distances down- 
stream. The shaded areas represent the fog in 
the transition layer. Secondly, four isolines, 
each related to a fixed value of w, illustrate the 
vertical diffusion of liquid-water content. The 
heights of the isolines increase with the square 
root of the distance from the line of disconti- 
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nuity. For example, the level of maximum 
water-drop density is determined by zmax, 
which is fixed by the relation 

Since 4 = 4 a t  z = 0.48 v4Kx/u, zmX is less than 
0.48 I/4 Kx/u when wo < 0. 

The maximum of water-drop mixing ratio is 

It is interesting to find that the maximum 
value is independent of the distance of flow 
from the line of discontinuity. The maximum 
is established immediately downstream. Thus 
it is a characteristic feature of advection fog that 
the height of the top of the fog increaaes but 
the maximum value of liquid-water content is 
retained downstream. 

In Fig. 12, nothing is presumed about the 
sign of the temperature change across the line 
of discontinuity. In  fact, the sign of AT; does 
not affect the main form of the profile of liquid- 
water content. The sign is cancelled, since 
AT; is squared in (53). Thus, the drawing of the 
figure is applicable to the formation of cold-air 
advection fog (e.g. steam fog) as well as warm- 
air advection fog (e.g. fog adjacent to a thawing 
snow surface). 

In Fig. 13, another example of advective 
fog formation is given. The profile curves of 
dry-bulb and wet-bulb temperatures are added, 

w-.w. ' w - 0  
x-0 

Fro. 12. Diagrammatic presentation of the growth 
of advection fog on the lee side of a shore line. 

but otherwise the figure does not seem to need 
any explanation in addition to that given to the 
preceding figure. The units of the abscissa refer 
to Fig. 16, and we shall return to Fig. 13 in 
the discussion of radiation fog. 

The slopes of the parabolic curves in Fig. 12 
show the rate of growth of the height of the 
fog downstream of the line of discontinuity. 
The parabolic curves are specified by equations 
of the form 

4K 
z2 = const -x (54) 

U 

with different constants. Their slopes depend 
on the coefficient K of eddy exchange and the 
wind velocity u, 

(55) 
dz 1 
dx 2 
_=-  

w T ' T  w T'1 

Fro. 13. Profiles of T, T' and M computed by means of (49) and (50). The unit of the horizontal distance 
refers to formation of radiation fog exemplified in Fig. 16. In the present figure the temperature at the 
surface is constantly equal to the surface temperature in the fourth stage ( t  = 160 t,,) of Fig.16. The 

conditions of the unmodified air at the top are the same in both figures. 
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FIO. 14. The growth of height of advection fog 
(in terms of I/aKlu) &s a function of roughness 
parameter (zo) at different thermal stratifications 
(j3<1 at stable stratification, j3>1 at unstable 

stratification). 

These two concepts depend both on the thermal 
stratification of the boundary layer and the 
roughness of the ground. In  order to show this, 
we introduce the very simple form of wind 
profile verified by DEACON (1953), 

The meaning of the symbols is the common one: 

u* is the frictwnd velocity fixed by the fric- 

k 
zo the roughnee8 length. 
j3 

tional stress, 
is von Karman'8 conatant and 

is smaller than unity in stable but greater 
than unity in unstable stratifications. 

By substitution of Taylor'8 8eriea for ec1-8)'10s 
and putting j3 = 1, it may be shown that (56) 
gets the well-known logarithmic form, charac- 
teristic of neutral stability conditions, 

u l  z - - _  - log -. 
a* k zo 

On the basis of (56), the coefficient of eddy 
exchange reads 

and we get for the desired term the equation 

In  neutral stability conditions, (57) reads 

Equations (56) and (57) show that the rate of 
growth of fog depends partly on the roughness 
(zo)  of the ground surface and partly on the 
thermal stratification (j3) of the air. 

In  Fig. 14, some isolines, which refer to fixed 
values of j3, show the relation of (57) to roughness 
and stratification. The abscissa aa well as the 
ordinate are drawn on a logarithmic scale. The 
different slopes of the five isolines show that 
(57) is very sensitive to changes of roughness at 
stable stratification. In  neutral conditions there 
is still a trend, but in unstable conditions hardly 
any remarkable variation is found. Along the 
abscissa, some examples of reference of zo to 
natural types of ground surfaces are quoted 
from the paper of Deacon. If we compare the 
case of zo = 0.1 cm with that of zo = 0.001 cm, 
we find that at moderate stability (e.g. j3 = 0.9) 
the rate of growth of the fog in the former caae 
is almost twice aa great aa in the latter. The 
difference becomes more striking with greater 
stability. 

It should be mentioned that the figures along 
the abscissa of Fig. 14 refer to z = 2  m. The 
values of K and u in (54) represent average condi- 
tions in the range of integration of the dif- 
ferential equations (49) and (50). That means 
that the curves of the figure are representative 
of a case where the averages of the vertical 
variations of K and u are equal to the values 
that are found at a height of 2 m above the 
surface. In  the alternative of another height, 
for example 20 m, the figures and the legends 
of zo along the abscissa should be shifted one 
step to the left, i.e. should be substituted 
for 10-4, lo-* for etc.--or the curves 
should be shifted correspondingly to the right. 
However, the transformation does not change 
any of the features of the diagram that were es- 
sential for our conclusion. Thus, the conclusions 
seem to have general validity for a surface 
boundary layer and can be summed up aa fol- 
lows. 
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First, unstable stratifications (/I > 1) are 
expected to bring about a more rapid increase 
of the height of advection fog than stable ones 
(/I < 1). This is already implied by the sense of 
stability but is ale0 made evident by Fig. 14. 
Secondly, the downstream increase of the height 
is at stable stratification expected to be re- 
markably sensitive to the roughness of the 
ground. The second conclusion is not so self- 
evident as the first and seems hitherto not to 
have been pointed out. We know that steam 
fog ie formed in winter in strong inversions of 
cold air over a river that is free of ice. The pre- 
sent author has observed that such fog simul- 
taneously extends to quite different heights a t  
neighbouring places. From a theoretical point 
of view, the surface roughness seems to be the 
principal cause of this variation. 

During the y e w  1950-52, members of the 
Institute of Low Temperature Science in Japan 
collaborated in an investigation on the advec- 
tion fog which in spring and summer frequently 
invades the south-eaatern shore of Hokkaido. It 
is formed in the region of the ocean where Oya- 
ehw, the cold current, and Kuroehw, the warm 
current, come in contact with each other. The 
chief object of the investigation waa the esti- 
mation of the role played by the forest along 
the coast in capturing the fog. 

Many of the members of the team contributed 
investigations that have interest outside the 
scope of the object we mentioned. Very in- 
teresting are the measurements by KUROIWA 
& KINOSITA (1963) and KDROIWA (1953). 
They investigated the vertical distribution of 
liquid-water content in fog. In the foregoing, 
we have assumed that the liquid-water content 
is zero at  the base of fog. This vertical approach 
is verified by the profiles reproduced in the 
papers just referred to. We also wish to mention 
the contribution of IMAHORI (1963), who puts 
forward a theory on the vanishing mechanism 
of advection fog and takes into consideration 
both the diffusion of the droplets and their mean 
downward motion caused by the gravitational 
force. He integrates a partial differential equa- 
tion that in terms of our notations (50) has the 
form 

aw a2w aw 
ax az2 aZ u-=K- +/Au-. 

The difference between Imahori's differential 
equation and ours (50) is that Imahori neglects 
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the effect of the curvature of the saturation 
curve but pays regard to the gravity effect. The 
coefficient pu is the mean downward velocity of 
the droplets. It varies with the size of the drops. 
Imahori puts for it the average velocity of the 
most frequent size of drops found in the fog a t  
the coast of Hokkaido, i.e. 1.3 cm sec-l, cor- 
responding to a radius of 0.01 mm. The result 
of Imahori's investigation is that the gravity 
effect is found to be trivial within limited ranges 
of height (2) above the surface and distance (2) 

from the shore. 
We are interested to know which of the terms 

mentioned above is the greater one, namely 
the one which is due to the gravity or that which 
is due to the curvature of the saturation curve. 
The quotient of the two reads 

where w is put in the integral form (53) with 
w,, = O  and 

We put K = lo4 cm* sec-l, u = 500 om 8ec-I and 
,uu=1.3 cm sec-1. We find that the quotient 
varies as follows: 

When x = 10 m, between +0.02 a t  z = O  m and 
- 1.00 a t  z = 6 m. 

When z = 100 m, between + 0.05 at z = 0 m and 
- 1.00 a t  z = 15 m. 

Whenz=lkm,between +O.l6atz=Omand 
- 1.00 at  z = 39 m. 

Within these ranges of 2, the effect of the curva- 
ture of the saturation curve is greater than 
that of gravity. It should be mentioned that 
the level of the maximum liquid-water content, 
where the gravity effect is zero, is always 
found within the range of z mentioned. Imahori 
shows that the level of maximum liquid-water 
content is slightly lowered because of the gravi- 
tational force. Since the chief object of our study 
is the procedure of fog formation that takes 
place immediately downstream x = O  and adja- 
cent to the surface z =0, we are allowed to 
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disregard the gravity effect and we did in fact 
do so. 

Lastly, we wish to mention a theoretical in- 
vestigation by TIMOFEEV (1955). He discusses 
the procedure of advective fog formation by 
means of the differential equations 

and integrates them with a variable function 
of the coefficient of eddy exchange. His interest 
is chiefly directed towards the relation of the 
humidity and the temperature in the unmodified 
air on the one hand to a definite value of liquid- 
water content in the fog (0.1 gm-S) on the 
other. He does not touch on the mixing role 
played by turbulence or on the thermodynamics 
of saturated air. It is, however, important that 
we should know the latter before we apply the 
above-mentioned differential equations of diffu- 
sion to fog conditions. By doing so, we have 
proved that it is not the dry-bulb temperature 
but the wet-bulb temperature that should be 
put into the differential equations. 

10. The formation of radiation fog 

The starting process of radiation fog forma- 
tion is the black-body radiative cooling of the 
ground and the simultaneous convective heat 
loss in the air adjacent to the ground surface. 
At a next stage, the density of the fog is in- 
creased so much that the black-body emissivity 
of the drops becomes effective and the fog 
takes over a part of the role of cooling medium 
initially played by the ground. 

The present section will be devoted to the 
first stage of the process of fog formation. 
The effect of radiative cooling of the drops will 
be discussed in the next section. However, it  
should here be pointed out that the latter effect 
should not be disregarded in a discussion of the 
complete problem of radiation fog formation, 
since the growth of height of the fog is not only 
a result of convection and diffusion but also of 
the rise of the level of radiative cooling. 

Thus, the problem that we are faced with first 
of all is to find the variations of temperature 
and humidity, i.e. of 

T' = T'(z,t) and 

r = r(z,t) 

in relation to the radiative heat loss at the 
ground. It implies that we have to solve the 
forms 

and (59) 

of the differential equations (40) and (41). 
Equation (58) is subject to c f  = O .  The conse- 
quence of this is discussed in Section 9. The 
integral of (58) should be fixed to a boundary 
condition that gives the decrease of surface 
temperature in relation to the radiative heat 
loss. 

BRUNT (1944) has used the differential equa- 
tion (58), but with reference to the dry-bulb 
temperature, for a discussion of the cooling rate 
of the ground surface when the net radiative loss 
of heat is initially zero but momentarily jumps 
up to a certain value and then remains constant. 
He got the result that the fall of surface tem- 
perature is proportional to the square root of the 
time that has passed since the moment that 
radiative heat loss started, 

T(0, t )  = T(0,O) - N V i  (60) 

where N is a constant. 
Brunt based his discussion on the assumption 

that there is a constant supply of sensible heat 
through the conductivity of the ground. He 
neglected the eddy heat transfer of the air. 
However, the square-root time variation of 
the surface temperature will follow whether 
the radiative heat loss is assumed to be balanced 
by the heat conductivity of the ground, or by 
the eddy heat transfer of the air, or-a third 
possibility, which is close to the real conditions- 
by the conductivity of the ground and the eddy 
transfer of the air. In  the following discussion, 
we shall pay principal attention to the eddy 
transfer and leave out of consideration the heat 
supply of the ground. However, we should still 
bear in mind that the constant of (60) greatly 
depends on the latter factor and is the greater 
the poorer is the conductivity of the ground. 
Furthermore, it is the greater the greater is the 
net radiative loss of heat at the surface. 

In  the present problem of fog formation, our 
interest in the ground surface is directed to the 
question whether it is dry or wet. We attach to 
these alternatives the following characteristics: 
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A dry surface is expected neither to absorb 
nor emit any vapour. Consequently, it does not 
affect the vapour mixing ratio of the air, and 
the latter is constant throughout the boundary 
layer above a dry surface. A rock might be a 
good example of such a surface. 

On the other hand, we assume that a wet 
surface is covered by a liquid film and that 
evaporation and condensation take place there. 
The eddies that start moving upwards at  the 
surface cannot catch any water drops but are 
saturated by vapour due to molecular diffusion, 
in the same way &B they take on the temperature 
of the surface by molecular conduction. In view 
of this, we put the water-drop content of the 
air a t  the wet surface equal to zero and the tem- 
perature there equal to that of the surface. 

Further, the wet surface does not absorb any 
vapour. In consequence, it does not receive 
any latent heat. The latent part of the down- 
ward eddy transfer of total heat content is 
completely converted into sensible heat a t  the 
wet surface by condensation. For the same rea- 
son, the whole latent part of the heat received 
by the air a t  the surface is brought about by 
evaporation. 

The well-known definition of the dew-pint 
temperature of the air implies that the tem- 
perature of a dry surface exceeds the dew point. 
When the surface temperature is below the 
dew point, the surface is never dry. A wet 
surface may, however, be either warmer or 
colder than the dew point. If it is warmer, there 
should be a reserve of water for evaporation. 
We have already met that alternative, in the 
case of steam fog formation, in Section 9. 

First, in unsaturated air over a dry surface, 
the eddy transfer of latent-heat content is 
zero, since there is no vertical variation of 
water content. Consequently, the transfer of 
sensible-heat content is identical with the total 
heat content transferred. That means that the 
heat transfer over a dry surface is equally well 
estimated by means of the dry-bulb temperature 
aa by means of the wet-bulb, 

ZJT H = - e c P K -  aZ 

Secondly, in unsaturated air over a wet Burface 
the temperature of which is below the dew 
point, there is a net downward transfer of 
vapour, since the mixing ratio r decreases down- 
wards. Vapour is condensed a t  the surface, and 
a part of the total heat content exchanged is 
formed of latent heat. Thus, the eddy transfer 
of total heat content is represented by the wet- 
bulb part of (61) but not by the dry-bulb for- 
mula. 

Summing up, we find that we may use the 
partial differential equation (58)  for estimation 
of the temperature variation in a boundary 
layer whether this is adjacent to a dry surface 
or a wet surface, provided however that we use 
the wet-bulb temperature as prescribed. 

Since we use the wet-bulb temperature instead 
of the dry-bulb, the boundary condition (60) 
should be written in terms of the wet-bulb 
temperature, too. On a wet surface this is no 
problem, since there the wet-bulb temperature 
is identical with the dry-bulb temperature. For 
a dry surface, equation (20) gives the dry-bulb 
temperature in terms of the wet-bulb, 

L 
cP + cpr 

T(0,  t )  =T‘(O, 1 )  + 7 [v’ (0, t )  -T I .  

As already pointed out, r is expected to 
remain constant adjacent to a dry surface. 
Hence, 

at at 

This formula is valid when the surface is dry, 
which happens between T’(0,O) and the dew 
point. We shall find that this interval is mostly 
only a small part of the total range of tempera- 
ture variation at  radiation fog formation. In 
consequence, the variations of dv’ld T’ may be 
disregarded in (62). Otherwise, we do not 
neglect the variations of this derivative. 

Thus, we may transform (60) into the condi- 
tions of the wet-bulb temperature by substitu- 
tion of N’ for N, where 

In the light of the foregoing definitions and 
explanations we fix the boundary conditions 
of our problem of radiation fog formation as 
foIlows: 
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FIQ. 15. The interrelation between T' and r at the 
formation of radiation fog. P =state of the unmodi- 
fied air. D =dew point. A, C and B' are tempra- 
turns at the base of the fog in successive stages of 
radiative cooling. The thin lines PA, PC and PBB' 
represent the interrelation between T' and r in 
the transition layer. The dashed curve PB' relates 

to  a steady surface temperature. 

1. When t = O  and z 20: 
T' = T'p, i.e. the wet-bulb temperature of the 

unmodified air. 
r =rp, i.e. the vapour mixing ratio of the 

unmodified, unsaturated air. 

2. When 0 < t < t,, the surface at z = 0 is dry: 
T'(0,t) = Tk + f ( t )  > T,, 

where f ( t )  = - N' k%< 0. 
T, is the dew point of the air. 
i.e. the vapour mixing ratio remains 
equal to that of the unmodified air. 

r = r,, 

3. When to < t ,  the surface at  z = 0 is wet: 

T'(0,t) = T'p T f ( t )  < T D  
w =o. 

We shall treat the periods of dry and wet 
surfaces separately. Thus, there is first the 
period: 

0 G t  Gt ,  

In  Fig. 15, which is a T',r diagram, the point 
P refers to the conditions of the unmodified air. 
The dew point of the air is found at the point 
D having the ordinate r, and lying on the satura- 
tion curve. 

In radiative heat loss, the temperature of 
the surface and of the air above it decreases 
but the total water content r remains constant. 
Hence, the locus of interrelation between T' 
and r in the boundary layer is the horizontal 
line PD. By integration of (58) ,  we find for 
the temperature profile above the surface 

m 
' 1 ( 4iq2)e-n .dq.  (64) 

T ' ( z , t ) = T p + =  f t - -  
132 

Recalling the identity of f ( t )  with a square-root 
function, we tranaform (64) into 

m 

__ 
v r t  

(65)  

For simplification of the notation, we introduce 
the function 

Y, (a ,x )=?  1; j ( l - $ ) n e - q s d q .  (66) 

The integral of the last term in (65) is repre- 
sented in (66) if we put n = 4. a =z/l/= and 
x = 1. By means of a somewhat lengthy trans- 
formation, given in Appendix B, the last- 
mentioned integral assumes the more elementary 
form 

a 

- - e-as - 2a j e - w l d q .  (67) 
a 

It was noted that the vertical distribution of 
vapour remains constant up to the moment 
when the temperature of the surface reaches the 
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dew point. Thus, no vertical variation of 
mixing ratio appears before that. The liquid- 
water deficit, however, decreases owing to the 
approach of the wet-bulb temperature to the 
dew point, 

--o =v'(T') - r p  =v'(T') -v'(TD). (08) 

The saturation-vapour mixing ratios at  any 
two temperatures may be put in relation to 
each other by means of Taylor's seriea, 

V' (T') =v' (T;) + ( " I )  -- (T' - Tk)  

+ - ~ (T' - Ti)'. (09) 

dT' p 

1 d a d  
2 dT" 

We recall that dLu'ldT'3 is essumed to be con- 
stant. We refer to assumption (viii) in Section 9. 

By application of (09) to (08), we get 

1 d2v' 
2 d T f 2  

+- - (T' -Ti ) ' .  (70) 

We get the dew point T D  if we put the right- 
hand member of (70) equal to zero. We find 
that the dew point is fixed by the liquid-water 
deficit - wp and the wet-bulb temperature T>. 

When the dew point is reached a t  the surface, 
the surface is moistened and we enter then ext 
period. 

t > t D  

The net loss of radiative heat remains un- 
changed and the fall of the wet-bulb tempera- 
ture at  the surface goes on at  the same rate be- 
fore and after t,. Equation (04) remains valid 
for the wet-bulb temperature profile in the 
boundary layer next to the surface. 

In contrast to the continuous fall of the wet- 
bulb temperature, there is discontinuity in the 
fall of the dry-bulb temperature at  time 1, 
since the latent-heat content then becomes an 
effective part of the total heat transferred and 
reduces the part of sensible-heat content trans- 
ferred. 

The air is now saturated by vapour at  the 
surface and w is there steadily zero. In conse- 
quence, the water content of the air a t  the 

Tellus XIV (Is&?), 1 

surface decreases along the saturation c w e  
DABCB' in Fig. 15, and it is wily relatad to 
the mixing ratio a t  the dew point by meana of 
Taylor'e seriee, 

r(0, t )  = r p +  (::)D 7 [T'(O, t )  - T,] 

1 d2v' 
2 dT" 

+ - - [T'(O, t )  - TD]' 

We get the vertical distribution of the total 
water content in the boundary layer by inte- 
gration of (59). Having regard to the boundary 
condition in the form of (71), the particular inte- 
gral reads 

r(2, t )  = r p  + 
m 

2 

V4R(t--to) 

m 

or 

r(z, t )  =rp 

m 

m 
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Both integral terms of (73) may be written in 
a form containing Y,(a,x).  That one which is 
included as a factor of the first derivative reads 

m 

m .- 

U X  

where x = v t / ( t  - t,) and a = z/m. 

derivative in (73) reads 
The integral that is a factor of the second 

m 

.- 

m 

(75) 
an 

In (74) and (75), the terms are arranged ac- 
cording to the power of the variable r/t,/t. In 
each equation the first term is the predominant 
one. The other terms become by degrees in- 
significant when t increases beyond t,. 

The integral Yt(a ,x)  in (74) and (75) iswanted 
in terms of more elementary integrals which may 
be eaaily computed. For that purpose, it is 
advisable to divide it into two parts as follows, 

- 

a 

The first part is integrated in Appendix B and 
is mentioned above in (67). The second part has 
the magnitude of (tD/t)*.  It may be estimated 
by means of any approximate form of integra- 
tion. 

The main integral in (75) is easily integrated 
in parts. We get the equation: 

m 

an 

= (1 + 2 2 )  - e-'lSdy - v; ' S  

Finally, we sum up that when 1 >t,, equation 
(73) gets the approximate form 

In Fig. 15, the curves P A  and PBB' show the 
interrelation between T' and r in the air adja- 
cent to a surface a t  two different moments of 
radiative heat loss. The former curve ends at  A. 
The latter is related to a lower surface tempera- 
ture, cuts the saturation curve a t  B and ends 
a t  B'. Point C is the point of osculation of the 
tangent drawn from P and is determined solely 
by the site of P in relation to the curve of 
saturation. Point C separates two types of 
curves exemplified by P A  and PBB'. When 
the surface temperature is higher than TL, the 
water content is below that of saturation a t  all 
levels above the surface and the air is unsatura- 
ted. On the other hand, the saturation mixing 
ratio is exceeded between the points B and B' 
if the surface temperature is lower than TL. 
Hence, between the levels of B and B', fog is 
found. 

It is interesting to find that it is not the dew 
point that is the critical temperature for super- 
saturation and fog formation but the tempera- 
ture TL. It is well known that dew is formed 
before radiation fog. 

After the fog has begun to form, its top is 
gradually raised. In  contrast to the temperature 
of the base (B'), that of the top ( B )  exceeds Tg 
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and increases when the surface temperature 
decreases. 

At any stage when the surface temperature 
still exceeds Tb, the curve P A  turns its convex 
side upwards. The opposite happens when the 
surface temperature has fallen below Tb. This 
phenomenon is easily understood to be caused 
by the variation of E/H in (37) and its lag in 
the upper part of the transition layer above the 
surface in relation to the change that is initia- 
ted a t  the surface. It is interesting to note that 
Taylor mentioned this in his paper of 1917. When 
the surface temperature falls at  Tb, the lowest 
part of the curve isretainedparallelto the tangent 
a t  C and PC is almost a straight line. We can 
approximate P C  to the tangent of the saturation 
curve. If we should us? the preceding formula 
(72) in order to find Tc,  the estimation will be 
very complicated but the result will differ very 
little from that which assumes P C  to be a 
tangent. The latter assumption gives the follow- 
ing equality between the inclinations of the 
curve and the tangent a t  C: 

(79) 

We replace vb by its expansion in form of 
Taylor's seriee, 

and substitute v'p + wp for cp. Then we get 

For example, T b  is + 5.9OC when T'p = + 10.O°C 
and TD = + 9.5OC. 

In (70) we find another equation for - wp: 

1 d2v' 
2 dT" 

- wp = ($)p(T> - T D )  - - __ (Tk - TD)'. 

By putting these two in relation to each other, 
we get 

dT" 
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We recall the boundary condition 

T'(0,  t )=T'(O,  O)-iVfb. 

By means of this, we get the time when fog 
begins to form either in terms of the difference 
between the wet-bulb temperature and the dew 
point, 

/du' \  

-- 
2 dT" 

or, in relation to the spell of cooling of the sur- 
face to the dew point, 

-- 
2 dT" 

Both equations give useful aspects on the 
problem of fog prediction. The values of the 
quotient between the first and second deriva- 
tives of v' is 12 at -3O", 15 at 0" and 18 a t  
+ 30°C. For example, when Tk is + 10.0" and 
To +9.5"C, tc/tD is about 64. See second stage 
in Fig. 16 below. That means that if the sur- 
face is cooled by radiative heat loss to the dew 
point in five minutes and the net radiative heat 
loss is retained, fog begins to form five hours 
later. The remarkable difference between tc and 
t, is due to our assumption that the tempera- 
ture depends on the square root of time. I f  the 
relation were linear, the quotient of the square 
of the temperature differences in (80) would be 
equal to (tc/tD)a instead of tc/to. In our example, 
that change would imply that the fog begins to 
form about 35 minutes instead of five hours after 
the dew point is reached. 

In Fig. 16, a series of five profiles of radiative 
fog is shown. For their estimation, the formulae 
of this section are used. Each of the five stages 
shown is put along a common horizontal time 
scale. The unit time interval is t,. Owing to the 
condition that the temperature change is inver- 
sely proportional to the square root of time, 
the surface temperature changes initially very 
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FIG. 16. Profile curves of T, T‘ and w in radiation fog computed by means of (68) and (59). The unit of 
the time scale is the spell of fall of surface temperature to the dew point from the commencement of 

radiative cooling. 

rapidly and to is a relatively short spell. Fog 
begins to form when the lowest part of the w 
profile shifts to the right of the vertical line 
indicating w =O. After that, the height of the 
fog increases. 

It is worth while to compare Figs. 13 and 16, 
which deal with radiation fog and advection 
fog, respectively. In  both caaes, the depth of 
the temperature transition layer and the height 
of the fog increase, but in advection fog the 
height of fog is retained in a constant part of the 

f - r. -I 
I, 1#2 1.4 l,-6 1.4 

FIG. 17. “Schematic time cram section showing the 
variation in temperature and relative humidity on 
the formation of fog under late autumn and winter 
conditions in an undisturbed weather situation. 
Solid lines represent temperature in O C ,  dashed 
lines relative humidity in per cent and hatched areas 
fog or Stratus. The effective net radiation is as- 
sumed to start at time to, the relative humidity to 
remain above 90% up to 200 m and decrease 
rapidly subsequently to below 50%, and the wind 
velocity to  be weak up to at leaat 400 m. The highest 
relative humidity (about 100%) is found in the 
transition layer.” Figure and legend from MORALES 

(1958). 

transition layer. In  radiation fog, on the other 
hand, the relative height of fog within the 
transition layer increases owing to the decrease 
of the temperature at the base (B’) and the 
rise of the temperature at the top (B). 

11. The effect of the black-body emissiv- 
ity of drops on radiation fog 

A time cross section that gives some features 
of radiation fog is reprinted in Fig. 17 from a 
paper of MORALES (1958). The cross section is 
based on measurements by means of radiosound- 
ings with a tethered balloon. Morales points out 
three essential conditions that must be present 
if any substantial amount of fog is to be formed: 

1. Effective net upward radiative heat flux. 
2. Light gradient wind. 
3. High relative humidity not only next to the 

ground but also a t  heights of 100 m or more. 

Before the fog is formed, the ground is cooled 
by the net upward flux of long-wave radiation. 
A temperature inversion of such a magnitude is 
established adjacent to the ground that the 
eddy transfer of heat content balances the 
radiative heat loss. If the humidity of the air 
is high, fog is formed in the temperature in- 
version aa described in the previous section. 
The higher the humidity of the air the greater 
is the maximum of water-drop mixing ratio in 
the fog. In consequence, the upper part of the 
fog layer partly or completely takes over the 
role of radiating surface initially played by the 
ground surface. I n  that way, a temperature 
transition layer is formed at the top of the fog 
and the surface inversion disappears. 
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FIQ. 18. Left: The interrelation between T’ and r in radiation fog and in warm-air advection fog of 
which the upper part is subject to radiative heat loss. Right: The profiles of w, T, T’, and r relate 
to the diagram on the left. The horizontal, dashed lines show the vertical variation of relative humidity 

above the fog. 

In  the following discueaion, which aims a t  
pointing out the fundamental reason for some 
of the fog characteristios described by Morales, 
we retain our basic assumption which we viewed 
in Section 9 in the light of a paper of IMAHORI 
(1963). That assumption is that the content of 
vapour plus drops is transforred by turbulence 
in just the same way as any other conservative, 
property of the air. The assumption implies 
that no water drops fall out by coalescence and 
no precipitation occurs. As a matter of fact, 
the assumption is never completely fulfilled in 
natural conditions. But somewhere between two 
extreme situations, the truth should be found, 
and we put the question which of these extreme 
limits is generally approached in reality. The 
two extreme situations are, first, complete 
turbulent exchange of drops in fog and, secondly, 
complete resistance of the drops to eddy mo- 
tions. It seems to the present author that the 
applicability of his hypothesis to observed facts 
is in favour of the former alternative. 

On the basis of our assumption, we have 
represented the interrelation between the tem- 
perature and the water content by means of an 
integral curve of (37) in the T’,r diagram. The 
inclination of the curve to the abscissa depends 
on the quotient E / H ,  i.e. the ratio of eddy 
transfer of total water content to the eddy 
transfer of total heat content. 
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Morales verified that the radiation fog is 
formed between the ground and an upper stra- 
tum of maximum specific humidity at 100-300 
m or more. In  the intermediate layer, an eddy 
transfer of water content is maintained down to 
the surface. 

In  the right-hand part of Fig. 18, a profile of 
the distribution of total content of water is 
drawn. It is slightly curved because of the up- 
ward increase of the coefficient of eddy ex- 
change. Under the condition mentioned above, 
the net transfer of total water content is not 
affected by the presence of fog. In Btationary 
‘conditions, it is constant between the “sink” 
at the ground and the “source” at the level of 
maximum specific humidity. On the other hand, 
the eddy transfer of total heat content balances 
the radiative net flux established by the emis- 
sivity of the drops. The net radiative flux is 
directed upwards and is constant above the top 
but decreaaes downwards from the top. In  
consequence, the eddy heat transfer, which is 
directed downwards, is constant above the top 
but decreases, too, in the fog downwards and 
the temperature profile T’ in the right-hand part 
of the figure has a convex form in the fog layer. 
We mentioned that, in the T‘,r diagr~m,?~the 
inclination of the integral curve showing the 
interrelation between T’ and r depends on the 
quotient of the transfer of total water content 
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and the transfer of total heat content, EIH. As 
shown by Morales-more clearly in his indi- 
vidual cross sections than in Fig. 17-the gradi- 
ent of specific humidity is not significantly great 
above the top of the fog. That means that the 
eddy transfer of total water content seems not 
to exceed normal conditions to any noteworthy 
extent. On the other hand, the radiative heat 
loss might be expected to be relatively great 
since it is one of the particular conditions of fog 
formation. In consequence, the eddy transfer of 
heat content is much greater than normal above 
the top of the fog and the inclination of the 
integral curve to the abscissa is significantly 
small to the right of the curve of saturation. 
Downwards from the top of the fog, the eddy 
transfer of heat content decreases according to 
the decrease of the net radiative heat flux. But 
the eddy transfer of water content is retained 
constant throughout the fog layer. That is the 
reason why the inclination of the integral curve 
to the left of the saturation curve in the Tf,r 
diagram increases downwards. At the tempera- 
ture of the ground surface-nly a few degrees 
Centigrade from the temperature of the top- 
the integral curve ends at a point on the curve 
of saturation mixing ratio. There, its inclination 
to the abscissa is maximum. The hatched area 
enclosed by the two curves represents the 
liquid-water content of the fog. The hatched 
area enclosed by the w profile in the right-hand 
part of the figure gives another representation 
of the vertical distribution of liquid-water 
surplus. 

Owing to the great convex curvature of the 
integral curve in the T’,r diagram, the magni- 
tude of liquid-water content in fog may be 
relatively great; the temperature difference 
between the top and the base of the fog is 
smaller than we supposed in the preceding sec- 
tions to be required for a substantial formation 

Here, we should interpose the remark that 
such a height of the fog layer as is described by 
Morales in Fig. 17 does not permit us to dis- 
regard the vertical pressure variation, i.e. our 
assumption (ii) in Section 7 fails. The potential 
wet-bulb temperature 8’  should be retained in 
formula (32) and substituted for T‘ in the dif- 
ferential equation of (40). Then, a temperature 
profile that satisfies (40) in terms of the potential 
wet-bulb temperature is one of the first con- 
cepts that we get at an integration across the 

of fog. 

fog layer. It is drawn in the right-hand part of 
Fig. 18 as a dotted profile curve. In the next 
step of the computation, we estimate the “real” 
wet-bulb temperature by means of formula (31). 
After integration of the differential equation 
(41), which is not subject to any transformation 
on account of the pressure gradient, we get the 
profile of total water content and, finally, the 
interrelation between wet-bulb temperature and 
total water content in the T‘,r diagram. 

We need not go into further details if we 
want only a rough estimation of the effect of 
the pressure gradient. We see that the vertical 
increase of the potential temperature in Fig. 18 
is greater than that of the real temperature. This 
implies that the downward eddy transfer of 
heat content even in the fog is greater than we 
at  first assumed. A vertical lapse of the air 
temperature is possible through additional in- 
crease of radiative heat loss at the top of the 
fog and would result in a further increase of the 
shaded area in the T’,r diagram showing the 
liquid-water content. 

The consideration of the vertical pressure 
variation does not change any basic idea of the 
present theory of fog formation but only modi- 
fies the quantitative estimation. Since we have 
no experimental data that permit us to under- 
take a detailed verification, we are less interested 
in exact quantitative estimations than in finding 
simple theoretical aspects and pointing out the 
factors that are vital to fog formation. In  
consequence, we shall continue in what follows 
to disregard the effect of the vertical pressure 
gradient, but shall bear well in mind that we 
are not allowed to do so when taking the theory 
as a basis for quantitative computation. 

The principal aim of the present section has 
been to point out the important role played 
by the water drops in the increase of the fog 
density. We know from the preceding sections 
that a relatively strong temperature inversion 
is demanded adjacent to the surface for the 
initial formation of fog. In  Fig. 18, we have 
learnt that at a later stage, when the radiative 
emissivity of the drops is effective, a much 
smaller temperature difference between the 
base and the top of the fog is needed in order 
to keep a considerable amount of water-drop 
density. It seems that the drops of fog, by 
virtue of their radiative emissivity, themselves 
produce one of the most vital conditions for 
their own existence. 
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Above the top of the fog, negative values of 
w in Fig. 18 relate to unsaturated air. There is 
an upward decrease of relative humidity as 
shown by the dashed horizontal lines. A 
discontinuity of the gradient of the dry-bulb 
temperature is found at  the top, but the wet- 
bulb temperature varies continually. In  Fig. 17, 
Morales placed the temperature inversion 
mainly in the upper part of the fog; but in fact 
it probably extends considerably above that 
into the layer of unsaturated air. It is possible 
that his humidity measurements did not 
clearly indicate the top of the fog. The feature 
described here is, however, evident from other 
measurements, for example those of URFER 
(1956). His measurements show that the maxi- 
mum vertical increase of the temperature is 
found immediately above the top of the fog, 
exactly in conformity with the pattern of 
Fig. 18. 

Finally, let us sum up in the light of our 
theory the conditions that morales found 
“should be fulfilled if a radiation fog of any 
importance is to be formed”. We note the con- 
ditions in his own wording: 

1. “Sufficient effective radiation.”-At first, 
the radiative heat loss brings about a strong 
inversion adjacent to the ground and the fog 
begins to form there. In the “mature” state 
of the fog, the radiation maintains the important 
convex bend of the integral curve in the T’,r 
diagram. 

2. “Light gradient winds.”-A slight amount 
of turbulence in the surface boundary layer is 
found even with calm or light gradient winds. 
The light gradient wind may cause an advective 
flow which at the top of the boundary layer 
maintains a supply of heat content and vapour. 
The form of the integral curve of (37) in the 
T’,r diagram does not depend on the magnitude 
of turbulence, since (35) does not contain the 
absolute value of the coefficient of eddy 
exchange but the quotient of KE/KH’ In  (37), 
the latter is approximated to unity. On the 
other hand, in his statement of the condition 
Morales implies that the gradient wind should 
not be too strong. I f  the wind is strong, the 
coefficient of eddy exchange may be so great 
that the advection of vapour is insufficient to 
maintain such a high water content in the air 
as is demanded by the condition stated in the 
next paragraph. 

3. “High relative humidity, not only in the air 
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etrata w r e e t  to the ground but  also at a height 
of 100 metree or more.”-In t e r n  of our theory, 
the condition means that the air at the top of 
the surface boundary layer should fix a point 
in the T’,r diagram as close as possible to the 
saturation curve. For upward growth of fog it is 
necessary for this condition to be fulfilled not 
only when the first fog is formed adjacent to 
the ground but also when the height of the fog 
has increased to 100 m or more. 

12. The effect of the selective emissivity 
of vapour and carbon dioxide 

It might be asked whether any kind of 
radiative emissivity other than the black-body 
emissivity of the drops could have the effect 
on fog formation described above. In Section 3, 
the cooling effect of the radiative emissivity 
of moist air was considered in the light of an 
idea that was put forward by EMNONE & MONT- 
GOMMERY in 1947. We arrived at the conclusion 
that the effect in question could not itself 
produce fog, since we also have to take into 
consideration the eddy exchange. We shall now 
review the idea once more, but this time in 
the light of the preceding section. 

By means of (37), we find the inclination of 
the integral curve in the T‘,r diagram: 

dr 
tg a = const ~ 

dT‘ 

=const - cD + T’- 7 . (81) 
H [ ddT’(:’)] 

The constant depends on the scales of the ordi- 
nate and the abscissa in the T’,r diagram. 

If there is any time variation in the quotient 
EIH, the inclination will of course vary ac- 
cordingly. We have learnt about this in Section 
10, where the formation of radiation fog was 
discussed. In  what follows, we shall assume 
that steady conditions prevail, so that the 
quotient of EIH does not depend on time but 
only on vertical variations. In  accordance with 
the preceding section, we shall also assume that 
the eddy transfer of water content is constant 
between the top and the base of the boundary 
layer but that the eddy transfer of heat content 
responds to the variations of radiative heat 
flux within the layer. 
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By logarithmic differentiation of (81) and 
by multiplication by cos t~ we get the curvature 
of the integral curve (37) in terms of the varia- 
tions of eddy transfer of heat: 

sin a cos2 a. (82) 

We recall that the description of the logarithmic 
derivative Q is found in (42) and in Fig. 10. 
When the eddy transfer of heat content is 
constant along the vertical, dH = 0. The curva- 
ture is then settled by Q only and is positive. 
Hence, when the integral curve is not affected 
by variations of H ,  it turns its convex side 
down as shown by BB' in Fig. 5. The condition 
for the curve having a convex bend as shown 
in Fig. 18, is that 

1 d H  GdT>Q. 

We note some values of Q: 

At - 30°C: Q = 0.006°C-1 
f O  0.025 
+ 30 0.040 

In what follows we shall refer to two papers 
which deal with measurements of heat balance 
in the boundary layer immediately above the 
ground surface. First, RIDER & ROBINSON (1951) 
made a large number of measurements above a 
surface of short grass in lapse as well as inver- 
sion conditions. Secondly, ~ A U S  (1958) in- 
vestigated the heat balance in radiation fog in 
an area of clean-cut wood, where the average 
height of g r a ~  and young pine trees was 40 cm. 
On one occasion the observations by the first- 
mentioned authors cover a spell of radiation 
fog formation. Kraus succeeded once in record- 
ing a radiation fog from the beginning to the 
end during six and a half hours. 

At present, we are interested in observations 
of the vertical change of the radiative heat 
flux. Neither Rider & Robinson nor Kraus 
measured this, but they computed it by means 
of either the Ehaaaer chart, the Kew chart 
described by ROBINSON (1950), the numerical 
method of BRUINENBERQ (1946), or the tabular 
method of BROOKS (1950). It should be men- 
tioned that Kraus tried to measure the vertical 
change of radiative heat flux in fog but failed. 

He made a rough estimation of the radiative 
effect of drops and added this to the effect of 
vapour and carbon dioxide. 

Of course, the conditions of steady state are 
not fulfilled in field investigations. Then, the 
components of heat balance are not only the 
eddy heat transfer and the radiative heat flux 
but also the heating or cooling of the air. 

Equation (82), however, refers to steady con- 
ditions. We replace the derivative in the right- 
hand member by a quotient of the finite dif- 
ferences A H  and AT' and put for - A H  the 
above-mentioned estimations of the vertical 
change of radiative heat flux. For H ,  we retain 
the data of eddy transfer of total heat content. 
Then, we get by means of (82) the curvature 
attributed to the integral of (37) in conceived 
steady cases which are fixed by observed values 
of these three concepts. 

The notations of the concepts in question are 
as follows in the papers of Rider & Robinson 
and Kraus: 

Ours Rider & Robinson Kraus 

- A H  R(100) -R(O) - ( S  -Sze) 
H C(0) + AE(0) - ( L  + V )  in clear 

air 
- v( T')L in fog. 

The coefficient q( T') is ours and reads 

In fog, ( L + V )  is not identical with the total 
heat transferred since Kraus does not take into 
consideration the effect of latent heat. Our cor- 
rection is based on (32) and the fact that Kraus' 
L is equivalent to + ec,K(a T/az) .  

In Fig. 19, we find the values that are 
computed by means of the data given by RIDER 
& ROBINSON (1951) for the approximate bracket 
term in (82), 

Each dot refers to an observation usually cover- 
ing a spell of 30 minutes. The investigation is 
confined to the lowest metre of the air layer 
above the surface. We find that the values 
depend closely on the temperature difference 
between the top and the base of the layer. In  
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FIG. 19. The bracket term in equation (82) as a function of the temperature difference 

AT in a surface boundary layer. The depth of the layer is 100 om. Each dot refers to thirty minutes' 
observations published by RIDER & ROBINSON (1951). 0 Fog began to form just aa the observations were 

finished. 0 Fog formed during the run of the observations. 
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lapse conditions, i.e. when the surface is heated 2143 hr and fog was first observed at 2126 hr 
by solar radiation, the values slightly exceed and "drifted slowly in patches during the 
unity and are almost constant. In  inversion remainder of the observation" (2nd.). It is 
conditions, i.e. when the surface is cooled by noteworthy that this case is represented by an 
long-wave radiative outflow, the values are extreme point in Fig. 19. In  consequence, the 
smaller than in lapse conditions and are die- integral curve (37) in the T',r diagram ap- 
persed between + 1.0 and +O. In  these cases, proaches the form of a straight line in this w e  
fog occurred twice. On November 26, 1948 more than in any other in Fig. 19. The area 
(marked 0 )  radiation fog began to form at between the integral curve and the saturation 
1760 hr just when the measurement had fin- curve is accordingly increased, which argues 
ished. At 1806 hr, the top of the fog was above in favour of a reaaonable content of liquid 
two metres. On September 10, 1949 (marked water in the fog. 
0 )  the observation lasted from 2113 hr to In  Fig. 20 is represented the variation that 

1700 1000 1900 2wo 2100 22w 2300 hours 
12 10 1956 

FIG. 20. The variation of the bracket term 1 -- -- in equation (82) during a spell of fog. The [ G H A T  ""1 
values are computed with the use of data published by KRAUS (1958). The fog lasted from 1736 hr to 
2200 hr. The depth of the fog was constantly about 200 cm. The curves refer to five sublayers between 

50 and 600 cm. 
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we get for the above-mentioned approximate 
bracket term in (82) on the occasion of radiation 
fog described by Kraus. He performed his ob- 
servations on the layer extending up to six 
metres above the surface and he divided the 
layer into five sublayers. Each of the sublayer 
is represented by a curve which is somewhat 
smoothed by putting mean values of two suc- 
cessive observations along the abscissa at points 
a quarter past each observation at  half and full 
hours. The first patches of fog were observed 
by Kraus at 1735 hr. At 1745 hr the fog was 
very dense and its depth was two metres. Dur- 
ing the rest of its existence, the fog retained its 
top at  that height. The fog dissipated at  2200 
hr on an increase of wind. 

We see from the figure that the two sublayers 
within 1 m above the surface occupy an ex- 
ceptional position. There, the curves do not 
pass below zero, so that the value of the 
bracket term in (82) lies between + 1.0 and + O ,  
exactly as is found in inversion conditions in 
Fig. 19. Indeed, the dots in Fig. 19 refer to the 
same levels above the surface as the two upper 
curves in Fig. 20. There is one more point of 
agreement in these levels between the two 
diagrams. In both cases a slight minimum is 
found during fog. 

The next curve in Fig. 20 refers to the sub- 
layer at 100-200 cm and according to Kraus 
it represents the top layer of the fog. It indi- 
cates negative values, and there is a significant 
minimum during the first part of the existence 
of fog. Further, there are two curves in the 
diagram, each representing a sublayer above 
the fog. On average, the sublayer (200-350 cm) 
immediately above the fog has the greatest 
negative values. But sometimes, the negative 
values in that layer are exceeded by those in 
the highest layer considered (350-600 cm). 

It seems a little confusing that the maximum 
negative values are not found in the sublayer 
immediately below the top of the fog but at 
some metres above it and that the curve marked 
350-600 cm still indicates relatively great nega- 
tive values. Probably, however, we are not 
justified in drawing such detailed conclusions 
from the data of Kraus’ investigation. The 
variation of (82) depends chiefly on the quotient 
of AH and AT. The latter term is currently 
measured during the evening in question, but 
the former is based on only one estimation of 
the vertical change of the radiative heat flux 

in fog. There is such an obvious difference 
between the qualities of these two terms that 
we should beware of drawing too detailed con- 
clusions from Fig. 20. This warning especially 
concerns any detailed comparison of features 
within the spell of fog. 

More significant may be differences between 
any two features in Fig. 20 before and after 
the dissipation of the fog, respectively. Thus, 
the figure shows a significant rise of the curves 
from the conditions of fog to those of clear air. 
When the fog has disappeared the bracket term 
in (82) is of the same order of magnitude in 
almost all the layers considered. This proves 
our theory that the conditions of fog greatly 
affect the curvature of the integral curve in 
the T‘,r diagram and make it more convex in 
conditions of fog than in those of clear air. 

We conclude that a vertical variation of 
eddy transfer of heat content is probably 
brought about most effectively in the top layer 
of the fog. FLEAOLE, PARROT & BARAD (1952) 
discuss this item theoretically as well as experi- 
mentally. They show that in two or three hours 
the long-wave radiative cooling of the fog top 
at  about 200 feet may radically change a very 
stable temperature profile in the fog into one 
of neutral stability. At the top, the inversion 
originally found at  the ground is simultaneously 
re-established. The authors also show that at the 
top of the fog the radiative heat loss is cor- 
related to a discontinuity of eddy heat transfer. 
They prove the condition that if there is a too 
great eddy transfer of heat in the inversion 
above the fog in relation to the radiative heat 
loss the neutral stability will not be reached in 
the fog, but a slight inversion is retained there. 

13. The effect of the black-body emissiv- 
ity of drops on advection fog 

In the three preceding sections, the discus- 
sion has dealt with radiation fog. Before that 
we also discussed the principal pattern of 
“pure” advection fog, which is not affected by 
radiation. We shall now, in the light of the last 
three sections, review the formation of advec- 
tion fog and pay regard to the effect of the 
black-body emissivity of the drops. The latter 
factor is expected to be important since it is 
well known that many cases of fog may be 
classified as “mixed” types of radiation and 
advection fog. 
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Fro. 21. Left: The integral curve of (37) in cold-air advection fog that is subject to radiative heat loss in 
its upper part. Right: The profiles of w, T, T’ and r in cold-air advection fog relating to the diagram 
on the left. The relative humidity distribution in the unsaturated air is indicated by the horizontal 

dashed lines. 

We shall take separately the cams of cold air 
and warm air. We start with warm-air advec- 
tion fog and refer to the illustration of its 
characteristics in Fig. 18. The temperature de- 
creases downwards from the upper stratum of 
unmodified air to the cold surface of the ground. 
In  order to balance the radiative outflow a t  
the fog top, the downward transfer of heat 
must be greater above the fog than in it. In  a 
steady state this condition responds to a 
greater gradient of wet-bulb temperature above 
the top of the fog than below it. 

On the other hand, the eddy transfer of total 
water content is not affected by the fog and is, 
in a steady state, independent of height. The 
vertical variation of the eddy heat transfer 
causes the inclination of the integral curve in 
the left-hand part of Fig. 18 to increase down- 
wards from the top of the fog and to reach a 
maximum at the ground surface. 

The features of “mixed” warm-air advection 
fog are identical with those of radiation fog in 
non-advective conditions. 

The essential difference between ‘‘pure’’ and 
“mixed” advection fog is found in the tempera- 
ture difference between the top and the base of 
the fog. The difference is much less in “mixed” 
than in “pure” advection fog. 
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In  the case of cold-air advection fog, the un- 
modified air in the upper stratum is colder than 
the ground surface, as shown in Fig. 21. Owing 
to the radiative heat loss a t  the top of the fog, 
an upward eddy transfer of heat is maintained 
below the top but is almost eliminated above. 
In  conaequence, the temperature gradient is 
very small above the fog but considerably 
greater in it. In  the figure, the example of zero 
wet-bulb temperature gradient above the top is 
chosen. That means that the net radiative heat 
flux completely replaces the eddy transfer of 
total heat content. But there is a slight in- 
version in the dry-bulb temperature gradient. 
This indicates a downward transfer of sensible 
heat which balances the upward transfer of 
latent heat. The eddy transfer of total water 
content is not affected by the fog. Indeed, the 
present theory demands that there shall be 
evaporation at the surface in spite of the 
presence of fog, because the gradient of total 
water content differs from zero. Thus, there 
are vertical variations of the quotient EIH 
due only to variations of the eddy transfer of 
total heat content. In  the T’,r diagram, the 
inclination of the curve of interrelation between 
T and r is related to that quotient. In  Fig. 21, 
the curve is vertical below the saturation curve 
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FIQ. 22. Comparison of the effects of radiative heat loss and heat gain on fog. Upper part: Net radiative 
heat loss. Lower part: Net radiative heat gain. Left: Warm air adjacent to a cold surface. Right: 

Cold air adjacent to a warm surface. 

but turns sharply to the right there above 
where H decreases downwards in the fog. It 
ends on the saturation curve at  the temperature 
of the base of the fog. The area enclosed by the 
two curves represents the liquid-water content 
of the fog. That representation is also given by 
the shaded area in the w profile in the right- 
hand part of the figure. 

To sum up, “mixed” advection fog extends 
vertically over a considerably smaller tempera- 
ture interval than ‘‘pure’’ advection fog. The 
dashed line in the T’,r diagram in Fig. 21 is 
the integral curve of (37) drawn with constant 
quotient EIH between the wet surface and the 
unmodified air. Along this dashed line, inter- 
related values of T’ and T would be found if no 
radiation effect were displayed. We observe 
that it does not intersect the saturation curve. 
Extreme vertical temperature differences are 
conditional for fog formation in “purely” 
advective conditions. 

14. Conclusions 

In  Sections 8 to 10, the author presented 
the most elementary form of the interrelation 
between the temperature and the total water 
content in a boundary layer adjacent to the 

ground surface. The interrelation is represented 
by an integral of (37) with the appropriate 
boundary conditions. In  non-radiative, steady 
conditions, the coefficient EIH is constant, and 
the explicit formula (39) of liquid-water content 
shows that a great temperature difference across 
the transition layer is required for an appreciable 
amount of liquid water to be formed. Indeed, 
the temperature difference in question seems 
to be very large in comparison with generally 
prevailing conditions in fog. 

On the other hand, the examples of Figs. 18 
and 21 show that, at a much smaller temperature 
difference am088 the fog layer, a reaeonable 
content of liquid water i s  established if the sink 
of eddy heat transfer ia not located at the same 
level aa that of eddy water transfer. 

In Fig. 22, further light is thrown on this 
matter by means of a schematic comparison of 
four diametrically different cases. The two at 
the top relate to the situation where a sink of 
eddy heat transfer responds to radiative heat 
loss within the fog, here concentrated in a nar- 
row zone at G. Then, the major part of the eddy 
heat transfer is found above the fog and is 
directed downwards in the case of warm air 
(left-hand part of the figure) but is found within 
the fog and is directed upwards in the case of 
cold air (right-hand part). The result is in both 
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FIQ. 23. The distribution of temperature and water content in a layer of low Stratus and its representation 
in the T’,r diagram. 

cases that a discontinuity of the gradient of the 
integral curve of (37) is established a t  C such 
that the area DCBD, which represents the 
liquid-water content, is relatively large. 

It is easy to imagine the pattern in the T’,r 
diagram that would result if instead of a net 
loss of radiative heat there were anaccumulation 
of it or, in other words, if there were a source 
of eddy heat transfer within the fog. The lower 
parts of Fig. 22 show such cases. The curve 
ACD easumes such a trend that it will not cut 
the saturation curve a t  all except that it ends 
on the curve if the surface is wet. Thus, a gain 
of radiative heat cannot prevail in a steady fog, 
for it will tend to dissipate the fog. This indeed 
is a well-known fact; but it is here brought into 
consideration from a new point of view. 

Finally, attention is drawn to the advantage 
of applying the present theory and the T’,r 
diagram for the understanding of any kind of 
fog formation or transformation. Two examples 
are here touched upon: 
The tramfowadwn of warn-air advectwn fog 

into Stratus (Fig. 23). We assume that the fog 

r 

is advected to a dry surface. This implies that 
the surface boundary condition, which origi- 
nally is fixed to a point on the saturation curve 
in the T‘,r diagram, is moved to some point 
below the curve, aa shown in Fig. 23. The inte- 
gral curve of (37) extends across the saturation 
curve a t  its two ends and the lower intersection 
between the two curves represents the beae of 
the Stratus. Since there is still a vertical gradient 
of water content above the dry surface we can- 
not deprive the dry surface of its ability to 
absorb water aa we did in Section 10. 

Fog formation bg industrial smoke (Fig. 24). 
I f  industrial smoke forms an extended turbid 
layer below a temperature inversion, it has the 
same radiative effect aa the top layer of fog. 
Thus, the smoke forms a level of radiative heat 
loss and establishes the above-mentioned very 
important difference between the height of the 
sink of eddy heat transfer and that of the sink 
of eddy water transfer. The latter is still found 
at  the surface but the former is a t  the level of 
the smoke. The convex bend of the integral 
curve of (37) is now not necessarily fixed to 

2 
r T ‘  

/ / LAVER 

FIG. 24. The distribution of wet-bulb temperature and humidity in e temperature inversion formed by 
industrial smoke. 
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the area of saturated conditions above the 
saturation curve but might also lie in the part 
of the T' ,r  diagram that represents unsaturated 
conditions, see Fig. 24. Owing to the bend, how- 
ever, there is a greater approach to saturated 
conditions in the turbid layer than in the air 
above and below it. If cooling occurs, which 
might happen either because of advection over 
a cold surface or because of increased radiative 
heat loss in the turbid layer, saturation condi- 
tions are first reached at  the turbid layer and 
later also in the air below that layer. Thus, 
Stratus is formed in the layer of industrial 
smoke and the base of the cloud is successively 
lowered. Finally, when the temperature of the 
surface reaches the dew point, fog is attained. 

To sum up, industrial smoke seems to form 
Stratus and fog not only because of a hygro- 
scopic property but also because of the black- 
body long-wave emissivity of the particles. 
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Appendix A 

LIST OF SYMBOLS 

B Bowen ratio 
C 

C' 

Specific heat of liquid water 
Specific heat of saturated vapour 

4 

CP 

E 

c f  

H 
H 
K 
k 
L 
N 
N' 

I 

f ( t )  

P 
4 
R 
r 
S 
T 
T' 
t 
U 

U* 

U 

V' 

W 

2, Y 

Specific heat of dry air at constant 
pressure 
Specific heat of unsaturated vapour at 
constant pressure 
Eddy transfer of total water content 

A logarithmic temperature derivative 
of specific heat of saturated air, see (42) 
Eddy transfer of total heat content 
Total heat content 
Coefficient of eddy exchange 
von Karman's conatant 
Latent heat of evaporation 
A constant in (60) 
The constant in (60) when the equation 
is referred to the wet-bulb temperature. 
The relation between N and N is given 
in (63). 
Atmospheric pressure of dry air 
Any small quantity of sensible heat 
Gas constant for dry air 
Mixing ratio of total water content 
Entropy 
Dry-bulb temperature of the air 
Wet-bulb temperature of the air 
Time co-ordinate 
Wind velocity in the direction of the 
x-axis 
Frictional velocity 
Saturation mixing ratio of vapour 
Saturation mixing ratio of vapour at 
the wet-bulb temperature 
Mixing ratio of liquid-water content 
Horizontal co-ordinates 

= - -hvv; 

Y,( a, x )  See equation (66) 
z Vertical co-ordinate 
20 Roughness parameter 
a 

B 

Y 

e Potential dry -bulb temperature 
e' Potential wet-bulb temperature 
x See equation (66) 
e Density of dry air 
4 See equation (52) 

See equations (66) and (81) 
A coefficient in the wind profile equa- 
tion (56) 
A coefficient in the temperature profile 
equation (1) 
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Appendix B and may integrate the right-hand member in 
parts as follows: 

INTEORATIONOR Yt (a , l )  = 
da d ( ~ ) = ~ e - a a . ~ [ 5 . - ~ a 1 ~ -  a a2 v i  

The integral Y* (a, 1) is found in some of the m 
formulae of Section 10 relating to radiation fog 
formation. In  what follows, we shall simply call 
the integral Y .  I n  order to get to the final 
integral form, we first  differentiate Y with 
reference to variations of a, 

0 

u. 

The next step of integration gives 
m 

Y =  - a  -q'dq. 

1--, 
17 

The first term is zero. The second is easily in- 
tegrated in parts, 

= e - u s -  a [2 JeCV'dy + C ]  . 
a 

C is the constant of integration and is fixed by 
the particular form of Y that is presented in the 
heading of this Appendix. Since Y is a sum of 

( 1  - 2y2) (z e-q'dq. positive terms only it, too, is positive. Further, 
0 < a/q < 1 in the whole interval of integration. 

da v i  
+ 1. 2 

17 
a For these two reasons, 

a I G  

m 
The first term is zero. The remainder reads 

m 

a 
W and lim Y = 0. 

a-m 1 2  ~ 1 vq2 - a2 eCqad(q2) .  
Because Y remains finite when a becomes in- 

a finite, the constant C of integration must be 
zero. Hence, the result of our integration is that By substitution of c2 for q2 - a2, we get 

m m 

Yt  (a, 1) =e-a* - 2a [e-"'dy. 
J 
a 
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