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1. Introduction11 

According to the FAO (Food and Agriculture Organization of the United Nations), worldwide 12 

potato production was above 360 million tons in 2013 (FAO, 2014). So, potato is a major food 13 

crop for which it is essential to ensure food quality along the potato supply chain (López, 14 

Arazuri, García, Mangado, & Jarén, 2013).  15 

Blackspot bruise in potato (Solanum tuberosum L.) is an internal damage mainly produced 16 

from impacts either between the tubers and hard surfaces or between each other during 17 

mechanical harvesting and subsequent handling (Fluck & Ahmed, 1973; Hesen & Kroesbergen, 18 

1960; Mathew & Hyde, 1997). This type of bruise appears at the sub-surface and most 19 

frequently at the stem end of the tubers due to the fact that the radius of curvature is smaller 20 

there (Sawyer & Collin, 1960). The resulting blue-black discoloration of the damaged tissue is a 21 

consequence of oxidation of tyrosine by polyphenol oxidase (Dean, Jackowiak, Nagle, Pavek, & 22 

Corsini, 1993; Mohsenin, 1986). The damaged tissue tends to absorb more oil during frying 23 

(Baritelle, Hyde, Thornton, & Bajema, 2000), resulting in after-cooking darkening, one of the 24 

most undesirable effects reported by consumers (Wang-Pruski & Nowak, 2004).  25 

The economic losses in the fruit and vegetable industry related to bruising are considerable 26 

(Van Zeebroeck et al., 2003). According to Peters (1996), in the American potato industry, 27 

bruising represents substantial economic losses every year and 70% of total damage is caused 28 

by harvesting. Mathew and Hyde (1997), reported an estimated $20 to $60 million losses due 29 
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to potato tuber bruising in the Washington State, the second major potato producer in the US, 30 

in a particularly bad year. 31 

An important factor contributing to the financial loss is the fact that the affected tubers do not 32 

show external damage and are, therefore, processed as healthy ones, resulting in a waste and 33 

loss of confidence among consumers (Evans & Muir, 1999). However, the detection of those 34 

affected tubers, would allow those potatoes to be assigned to other uses like fourth range 35 

products, where tubers are processed and commercialized generally peeled and cut avoiding 36 

the use of damage areas.  37 

In the past, damage in potatoes was assessed using catechol dye. Catechol reacts with exposed 38 

starch and discolours the surface areas with external damage (O'Leary & Iritani, 1969). This 39 

method was not suitable for blackspot determination since this type of damage occurs at the 40 

subsurface of the tubers without exposing starch. For this, tetrazolium, a chemical capable of 41 

identifying blackspot bruising, was used. However, both products were later known to be toxic 42 

to animals while tetrazolium was also toxic to humans (Kleinschmidt & Thornton, 1991) and 43 

therefore, they are no longer used.  44 

Different protocols have been used in order to test tuber damage at either harvest or 45 

packaging. Since some types of bruises can take long to become visible (two to four days), the 46 

use of a hot box is a recommended option as it speeds up bruising development allowing 47 

damages to be visible within six to twelve hours (Thornton & Bohl, 1998). 48 

In a report published by Jack, Dessureault, and Prasad (2013) damage of potatoes in a real 49 

washing and packaging line was identified. To this end, they collected 42 samples of potatoes 50 

from 4 and 3 different points along the washing and packaging line, respectively, and placed 51 

them in a hot box for a minimum of 12 hours with the temperature set to 35°C. After that 52 

period, tubers were washed gently to remove dirt and visually assessed after peeling. They 53 

found that 10 ± 8% of the tubers presented some kind of damage at the washing line, while a 54 

notably higher proportion of the samples (52 ± 30%) were damaged in the packaging line.  55 
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These numbers highlight the need for a non-destructive technique able to detect this internal 56 

damage before tubers reach the market in order to reduce the current losses and regain 57 

customers’ trust.  58 

Hyperspectral imaging, a technique combining the principles of spectroscopy and imaging, has 59 

been applied to subsurface defect detection in fruit and vegetables, such as apples (ElMasry, 60 

Wang, Vigneault, Qiao, & ElSayed, 2008; Lu, 2003; Xing & De Baerdemaeker, 2005; Xing, Saeys, 61 

& De Baerdemaeker, 2007), pears (Zhao, Ouyang, Chen, & Wang, 2010) and mushrooms 62 

(Gowen et al., 2008). In the case of potatoes the usefulness of hyperspectral imaging has been 63 

reported for the discrimination between potato tubers and clods (Al-Mallahi, Kataoka, & 64 

Okamoto, 2008; Al-Mallahi, Kataoka, Okamoto, & Shibata, 2010), the detection of hollow heart 65 

(Dacal-Nieto, Formella, Carrión, Vazquez-Fernandez, & Fernández-Delgado, 2011b) and the 66 

detection of common scab (Dacal-Nieto, Formella, Carrión, Vazquez-Fernandez, & Fernández-67 

Delgado, 2011a). Thybo, Jespersen, Lærke, and Stødkilde-Jørgensen (2004) were able to 68 

identify internal bruises in potato slices of cultivar Saturna by applying magnetic resonance 69 

imaging. Rady and Guyer (2015) recently reviewed the state of the art in non-destructive 70 

quality evaluation of potatoes from the first application in the sixties up to now. However, no 71 

reports were found on the non-destructive detection of blackspot damage in intact potatoes.  72 

Considering the promising results reported for hyperspectral imaging techniques in identifying 73 

subsurface defects in different fruit and vegetables and other potato defects, the objective of 74 

this study was to evaluate the potential of hyperspectral imaging for blackspot detection in 75 

potatoes. Two wavelength regions of the electromagnetic spectrum were considered: Visible-76 

Near Infrared (Vis-NIR, 400-1000 nm) and Short Wave Infrared (SWIR, 1000-2500 nm).  77 
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2. Material and methods 78 

2.1. Sample preparation 79 

A total of 188 potato tubers of three different cultivars (Hermes, Bintje and Magnum) 80 

harvested in 2013 were analyzed in this study. Samples from cv. Hermes (109 tubers) were 81 

provided by The Basque Institute for Agricultural Research and Development (NEIKER-82 

Tecnalia), Spain and were sent to KU Leuven Department of Biosystems, MeBioS, Leuven, 83 

Belgium, for the measurements. Samples from cv. Bintje and Magnum, consisting of 84 

respectively 44 and 35 tubers, were supplied by a local farmer in Leuven, Belgium. The tubers 85 

were randomly divided in two groups of equal size. The potatoes of the first group (nb= 94) 86 

were subjected to impact in order to induce internal bruising, while the others (nh= 94) served 87 

as the control group. Prior to analysis samples were kept in a refrigerator at 4 C. Then, 88 

samples were washed and weighted.  89 

In order to induce the bruises, the tubers were dropped 300 mm inside a cylinder above an 90 

impactor facing the stem end (Fig. 1). They were left to fall free and hit a hemispherical head 91 

of 25 mm in diameter attached to a circular flat plate. The calculated impact energy varied 92 

between 303 mJ and 994 mJ depending on the mass of the potatoes. After impact, tubers 93 

were kept in a hot climate control chamber (Weiss WKL 100, Weiss Umwelttechnik GmbH, 94 

Reiskirchen-Lindenstruth, Germany) at a temperature of 34°C with 95% relative humidity for 95 

24 hours, because combination of both high temperature and high humidity has been reported 96 

to promote a faster development of the bruises (Baheri, 1997).  97 

Samples were then scanned with the hyperspectral imaging system 1, 5, 9 and 24 hours after 98 

the impacts, as will be explained in the following section. All the samples were placed with the 99 

stem end facing the hyperspectral imaging system. After all measurements, samples were 100 

peeled and photographed with a standard RGB camera (Powershot 1100D, Canon Corporation, 101 
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Japan) to check whether the healthy ones already had bruises and the bruise-induced ones had 102 

developed them or not. 103 

Samples were divided into 2 classes for statistical analysis. Class 1 (nC1= 94) corresponding to 104 

the Healthy group and Class 2 (nC2= 376) including bruised samples measured at the different 105 

times after bruising: 1 hour group, 5 hours, 9 hours and 24 hours. Each group containing 94 106 

samples. 107 

2.2. Hyperspectral imaging 108 

The hyperspectral imaging was performed at the KU Leuven Department of Biosystems, 109 

MeBioS, Leuven, Belgium. Potato samples were scanned on a setup for hyperspectral imaging 110 

that consists of: a transportation plate, an illumination unit, two hyperspectral cameras (one 111 

for the Vis-NIR range from 400 to 1000 nm and one for the SWIR range from 1000 to 2500 nm) 112 

and a computer. The Vis-NIR hyperspectral camera used in this study consists of a CCD camera 113 

(TXG14, Baumer, Germany) with a 1392 by 1040 pixel image resolution coupled to a prism-114 

grating-prism-based imaging spectrograph (ImSpector V10, Spectral Imaging Ltd., Oulu, 115 

Finland), and a focusing lens (Canon TV Lens, VF 25 mm, f/0.95, Japan). The SWIR 116 

hyperspectral camera (HS SWIR XS-M320C4-60, Headwall Photonics Inc., Fitchburg, MA) 117 

consists of an MCT camera (XEVA MCT-2140, Xenics, Leuven, Belgium) with a 320 by 256 pixel 118 

resolution with a reflective concentric grating (HS SWIR XS-M320C4, Headwall Photonics Inc., 119 

Fitchburg, MA), a slit of 60 μm, and a focusing lens (Oles 22.5, Specim Ltd, Oulu, Finland) with a 120 

focal length of 22.5 mm. Both hyperspectral cameras are pushbroom instruments (also called 121 

line-scan instrument). With this configuration a whole line of an image is recorded; therefore, 122 

these systems required a transportation unit to move the samples in order to scan them 123 

completely. The transportation plate used consisted of a computer controlled translation stage 124 

(TLA 15-400, Franke GmbH, Aalen, Germany). Six halogen lamps (DECOSTAR ALU 12 V-20 W-125 

36, OSRAM, Germany) were used to illuminate the samples. Four of them were arranged on 126 
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an arc frame, while the other two were set one at the front of the sample and another at the 127 

back of it to achieve homogeneous illumination of the scanned area (Fig. 2). The entire setup 128 

was controlled by a computer equipped with LabView V8.5 software (National Instruments, 129 

Austin, TX). 130 

The exposure time was optimized at 35 ms and 2 ms for the Vis–NIR and SWIR cameras, 131 

respectively, in order to maximize the spectral signal to noise ratio while avoiding saturation of 132 

specular reflective regions. The translation stage speed was set to 100 mm/s and 200 mm/s 133 

and images were captured consequently in intervals of 0.3 mm and 0.1 mm for the Vis–NIR 134 

and SWIR cameras, respectively. 135 

2.2.1 Reflectance calibration 136 

Three images were acquired for the reflectance calibration with both the Vis-NIR and SWIR 137 

cameras. First, white reference measurements (W) were obtained using a white calibration tile 138 

for both the Vis-NIR and SWIR range (Spectralon Reflectance Standards 75%, RSS-08-010, 139 

Labsphere, North Sutton, USA). Dark references (D) were acquired every 1, 5, 9 and 24 hours 140 

with the illumination switched off and the camera lens covered by a cap. Finally, all images of 141 

samples (S) were first scanned with one spectral range at each time (1, 5, 9 and 24 hours) and 142 

then with the other. The following equation was used to convert the raw intensity values in 143 

the hyperspectral images into relative reflectance values: 144 

𝑅 =
𝐼𝑠−𝐼𝐷

𝐼𝑊−𝐼𝐷
      (1) 145 

Where, R is the relative reflectance, IS corresponds to the intensity value acquired on the 146 

sample, ID is the intensity acquired for the dark reference and IW is the intensity acquired on 147 

the white reference tile. 148 

2.2.2 Segmentation 149 

The first step in image segmentation consists in separating the region of interest, namely the 150 

potato, from the background. In this study, all potato images were processed and analysed 151 



7 
 

individually using the following procedure: Two masks were applied to remove the background 152 

and the saturated pixels in each image, as these pixels do not contain any information on the 153 

quality of the tubers. It should be noted here that no specular reflections were observed on 154 

the bruised areas. To remove the background in the Vis-NIR reflectance hypercubes a 155 

threshold of 0.10 was applied to the reflectance image at 854 nm, while a threshold of 0.09 156 

was applied to the reflectance image at 1106 nm for the SWIR hypercube. All pixels with values 157 

below those thresholds were labelled as background. Then, a high mask was applied to select 158 

saturated pixels by thresholding at values of 0.55 and 0.57 for Vis-NIR and SWIR, respectively, 159 

to produce a binary image of saturated pixels only. In this study, the entire potato, except for 160 

the saturated pixels, was defined as the region of interest (ROI). This region of interest was 161 

then used to calculate the mean spectrum of each potato to be used in the future analyses. In 162 

Fig. 3 the steps followed for detection of potatoes affected by blackspot once the images were 163 

captured using both hyperspectral setups are schematically illustrated. 164 

2.3. Multivariate data analysis 165 

Data pre-processing and classification modelling were performed in MATLAB R2014a (The 166 

MathWorks, Natick, MA) using the PLS_Toolbox (Eigenvector Research Inc., Wenatchee, WA).  167 

2.3.1. Spectral pre-processing techniques 168 

Pre-processing or pre-treatment methods are commonly used to reduce or avoid the influence 169 

of unwanted effects in the data such as light scattering (Amigo, 2010). Since these effects can 170 

negatively affect the reliability of the multivariate model (Barbin, ElMasry, Sun, & Allen, 2012), 171 

pre-processing techniques must be applied prior to model building. The techniques which have 172 

shown to be effective in classical spectroscopy are also frequently applied to hyperspectral 173 

imaging data (Vidal & Amigo, 2012). The principal spectral pre-processing techniques are 174 

smoothing, derivatives and scatter correction. 175 
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The smoothing technique allows to remove some of the instrumental noise. Among the 176 

different algorithms available, Savitzky-Golay (SG) is the most popular for this purpose (Amigo, 177 

2010). 178 

Both standard normal variate (SNV) and Multiplicative Scatter Correction (MSC) are techniques 179 

capable of reducing the effects of light scattering on the acquired spectra (Rinnan, Berg, & 180 

Engelsen, 2009), which typically provide similar results. SNV is a method of spectral 181 

normalization, which establishes a common scale for all spectra by centering each spectrum 182 

around its mean value and scaling it by its standard deviation. In this way, it corrects for 183 

additive and multiplicative variation between spectra. MSC estimates the multiplicative and 184 

additive effects within a set of data by regressing each spectrum onto a reference spectrum, 185 

which is typically the mean spectrum. The spectrum is then pre-processed by subtracting the 186 

estimated intercept value and dividing by the estimated slope value (Dhanoa, Lister, 187 

Sanderson, & Barnes, 1995).  188 

As for derivative transformations, both first and second derivatives remove baseline offsets in 189 

the data, while the latter is also useful for separating overlapping peaks (Burger & Geladi, 190 

2007). 191 

In this study, before any other pre-treatment, each mean spectrum of every sample was 192 

smoothed by a 15 points Savitzky-Golay filtering operation. Then, different combinations of 193 

the methods described above were used for model building. The effect of no pre-treatment at 194 

all was also analyzed. 1st (D1) and 2nd (D2) derivatives by Savitzky-Golay (SG) method were 195 

calculated by second order polynomial and 15 window points. Finally, all pre-treated data, as 196 

well as the non pre-treated data, were mean-centered (MC) to reduce the systematic noise 197 

(Barbin et al., 2012). 198 

The cross-validation (CV) method chosen was Venetian Blinds with 10 data subsets (splits). In 199 

this type of CV, each test set is determined by selecting every sth object in the data set, starting 200 

at objects numbered 1 through s. 201 
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2.3.2. Unsupervised analysis (PCA) 202 

Principal Component Analysis (PCA) was used in the first place to understand the data by 203 

analyzing the differences which exist between the samples and identifying possible outliers as 204 

well as to visualize any possible segregation or clustering among different classes. This is a 205 

method able to extract the main sources of variability in the data (Amigo, Martí, & Gowen, 206 

2013). It transforms the variables into Principal Components (PCs) which are linear 207 

combinations of the spectral data which describe most of the variation in the original variables 208 

(Kamruzzaman, Barbin, ElMasry, Sun, & Allen, 2012). The first PC is defined as the linear 209 

combination of the original variables which captures the largest part of the variation in the 210 

data, the second captures as much as possible variation orthogonal to the first PC, and so on 211 

(Barker & Rayens, 2003). In this study, the ability of PCA to separate the different groups was 212 

examined visually by inspecting the scores plots. 213 

2.3.3. Soft Independent Modeling of Class Analogy (SIMCA) 214 

Soft Independent Modeling of Class Analogy (SIMCA) is a supervised classification technique 215 

that has been successfully applied to solve many pattern recognition problems (Massart, 216 

Vandeginste, Deming, Michotte, & Kaufman, 1988). Being a supervised method, SIMCA 217 

requires knowledge on the Class membership of the samples in the training set. Therefore, a 218 

classification model is built by using a training data set of samples with known Class affiliation 219 

and is then evaluated using external samples (Martens & Naes, 1989). In SIMCA, a separate 220 

PCA model is built for each class. Samples are projected onto the different PCA models and a 221 

metric is used which combines the distance from the model (Q-residual) with the distance 222 

from the centre of the model within the model (Hotelling T2) in order to calculate Class 223 

membership. As a consequence, it is theoretically possible that samples are classified in 224 

multiple classes or in none. 225 
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2.3.4. Partial Least Squares Discriminant Analysis (PLS-DA)  226 

Partial Least Squares Discriminant Analysis (PLS-DA) is a pattern recognition technique where 227 

the Class memberships are predicted from the sample spectra by means of PLS regression 228 

(Höskuldsson, 1988; Wold, 1966). In PLS regression, orthogonal linear combinations of the 229 

original variables are defined which maximally capture the covariance between the X and Y 230 

variables. These linear combinations are referred to as Latent Variables (LVs) or PLS 231 

components. In order to be able to use Partial Least Squares Regression (PLSR) for 232 

discrimination purposes, the Class variable must be transformed into a binary-coded dummy 233 

matrix with the same number of rows as X and the same number of columns as there are 234 

Classes. Thus, the first column of Y will be a vector with all values equal to zero except for the 235 

samples belonging to the first category where it will be equal to 1. Then, in the same way as 236 

for the regression method, the model will give a calculated Y that will not have either 1 or 0 237 

values perfectly. So, a threshold has to be defined to decide if an object is assigned to the 238 

category or not (Ballabio & Todeschini, 2009). 239 

In this study, a 2 column response matrix Y was introduced in which samples belonging to the 240 

first Class (Healthy) were described by the dependent vector [1 0] and likewise, samples 241 

belonging to the second (Bruised), by the vector [0 1].  242 

2.3.5. Blackspot detection  243 

Also in our study, the ability of Vis-NIR and SWIR hyperspectral systems to detect blackspot 244 

areas in each potato tuber was investigated. This was performed with the objective to use a 245 

detector capable of mapping out the sound areas and the blackspot affected ones for each 246 

potato (each hypercube) at the final stage of the potato manufacturing process. In order to 247 

develop this mapping, each pixel of the hypercube is individually classified (is taken as one 248 

sample) in the PLS-DA model. Then, with the results of this classification model, a map of the 249 

affected areas in each tuber is created. 250 
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With that aim, 10 and 5 potatoes belonging to Bruised Class and analyzed 24 hours after 251 

impacts were selected as the calibration and external validation set, respectively. Same tubers 252 

were selected for both hyperspectral ranges. That selection was made in accordance with the 253 

results obtained in the PLSDA based on the mean spectrum where the clearest discrimination 254 

results were obtained for the 24 hours group of samples.  255 

In this study, the function roipoly (region inside a polygon) MATLAB function (MATLAB, 256 

Version. "8.3. 0.532 (R2014a)” The MathWorks, Natick, MA) was applied to each tuber to 257 

manually select a polygonal ROI within the image corresponding to the bruised area. After 258 

selection of the desired ROI, this function creates a mask with the same size as the roipoly. The 259 

roipoly consists of a binary image with 1 and 0 inside or outside the polygon. In our study, that 260 

binary image was then selected as the bruised mask. Finally, the resulting product from the 261 

subtraction between the whole mask and the bruised mask was selected as the healthy mask.  262 

Since that selection led to a large number of pixels, the Kennard and Stone (KS) algorithm was 263 

applied to select a representative number of the pixels in each mask (Kennard & Stone, 1969). 264 

This algorithm has recently been successfully applied for pixel selection in NIR spectroscopy 265 

(Casale, Casolino, Oliveri, & Forina, 2010; Zhu et al., 2010) and hyperspectral imaging 266 

(Fernández Pierna et al., 2012; Riccioli, Pérez-Marín, Guerrero-Ginel, Saeys, & Garrido-Varo, 267 

2011). In this work, the KS algorithm was applied to select half of the pixels in both Classes 268 

(Healthy and Bruised) in the Vis-NIR and SWIR spectral ranges. The resulted data matrix after 269 

applying the KS algorithm consisted of 463,995 rows and 220 columns in which the healthy 270 

area was represented by 452,622 rows and the bruised area by the remaining 11,373 rows in 271 

the Vis-NIR spectral range. This data matrix was comprised by 10 potatoes and used as the 272 

training set. Accordingly, the test set consisted of 5 potatoes individually analyzed 273 

representing an overall data matrix of 178,560 rows and 220 columns, where the Healthy Class 274 

accounted for 175,029 rows and the Bruised Class for the remaining 3,531 rows.  275 
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In the same terms, after applying KS algorithm to the SWIR spectral data, the resulting data 276 

matrix represented by 10 tubers and used as the training set consisted of 269,938 rows and 277 

150 columns, where the Healthy Class covered 263,094 rows and the remaining 6,844 were 278 

covered by the Bruised Class. Consequently, the test set represented by 5 tubers accounted for 279 

a total data matrix of 114,410, in which the Healthy Class represented a total of 107,921 rows 280 

while Bruised Class covered 1,893 rows.  281 

2.3.6. Model validation and accuracy 282 

In this study, for the supervised classification methods (SIMCA and PLS-DA), potato samples 283 

were randomly divided into training and test sets consisting of respectively 70% and 30% of 284 

the tubers. Only the training data set was used to build the classification model, while the test 285 

data set was used to test its capability of classifying new samples.  286 

The comparison between the two spectral ranges used and different pre-processing 287 

techniques was based on the overall accuracy of the classification model in the training and 288 

test sets. This accuracy was determined by the percentage of correctly classified (% CC) 289 

samples and the sensitivity and specificity of each Class for both SIMCA and PLS-DA 290 

classification techniques. 291 

For each Class A, the sensitivity is defined as the proportion of samples belonging to that 292 

Class A that are correctly classified (True positives (TP)). Similarly, the proportion of samples 293 

belonging to another Class B which are classified as Class A, are named False positives (FP). The 294 

specificity for the same Class A corresponds to the proportion of samples belonging to another 295 

Class B that are correctly classified as Class B (True negatives (TN)) and, finally, the False 296 

negatives (FN) are those samples belonging to Class A which are falsely classified as Class B. 297 

These parameters can be written as follows (Parikh, Mathai, Parikh, Sekhar, & Thomas, 2008):  298 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 299 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (3) 300 
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Sensitivity and specificity take values between 0 and 1. The closer to 1 the sensitivity and 301 

specificity of a given class are, the better the classification performance of the model. 302 

3. Results and discussion 303 

In table 1 the physical characteristics of the sample set of tubers are summarized, such as the 304 

skin and flesh color and the weight. Also the resistance against internal bruising according to 305 

the European cultivated potato database is reported (SASA, 2015). 306 

Once all the peeled tubers were photographed we observed that 15.9% of the tubers 307 

subjected to impacts had not developed any blackspot damage, while 12.7% of the healthy 308 

tubers presented some kind of damage in the scanned area including blackspot (70.5%) and 309 

internal fissures and crushing (29.5%), according to the classification system for impacts made 310 

by Baritelle et al. (2000). An RGB image of a potato sample 24 hours after impact, before (a) 311 

and after peeling (b) is shown in Fig. 4. In this figure, it can clearly be observed that before 312 

removing the skin (Fig. 4a) in some tubers it is not possible to visually detect any bruise, while 313 

the blackspot can be clearly seen after peeling them (Fig. 4b).  314 

In Fig. 5a&b the mean + standard deviation reflectance spectra obtained from the Vis-NIR and 315 

SWIR hyperspectral imaging systems are shown. It can be seen that the variation is higher in 316 

the SWIR hyperspectral range. In Fig. 6, the mean spectra of the different groups obtained with 317 

both setups are plotted together in order to investigate any possible differences between the 318 

measurement times. From Fig. 6a it can be seen that the mean spectra for the different times 319 

after bruising overlap in the Vis-NIR spectral range, while the mean spectrum of the healthy 320 

group can be distinguished from the rest. Compared to the other groups, the healthy tissue 321 

has the highest reflectance from 600 nm to 900 nm. This is in accordance with Porteous, Muir, 322 

and Wastie (1981) who obtained a notably reduced reflectance in areas of potato with brown 323 

lesions compared to normal tissue from the 600 to 900 nm spectral range. Same behaviour 324 

was observed in apples by Xing et al. (2007) where the absorption by water was initially high 325 



14 
 

(500–800 nm) in a bruised area as the water was set free from the cells, but after some time 326 

the absorption decreased because that water was lost through evaporation. Moreover, Fig. 6a 327 

shows a higher reflectance of the healthy group at the water peak around 970 nm which could 328 

also be attributed to water loss from the bruised tissue. 329 

In Fig. 6a no clear temporal hierarchy in the reflectance spectra for the different groups after 330 

bruising can be noticed. The 24 hours group shows the lowest reflectance in the region 331 

between 600 and 900 nm.  332 

The mean spectra of the different groups in the SWIR region (Fig. 6b) appeared overlapped 333 

too. Here, there is also no clear correlation between the spectra and the time after bruising. It 334 

can be observed from the figure that the mean spectra of the healthy and 1 hour groups are 335 

overlapped along the wavelength range and separated from the rest, especially between 1400 336 

and 1700 nm where they show lower reflectance than the rest. As the 1400nm region is 337 

characteristic for absorption by water, Fig. 6b suggests that the water content in potatoes 338 

from the healthy and 1 hour groups was higher than in bruised (blackspot affected) ones. This 339 

could either be due to a loss of water as a consequence of the bruise or the set of samples 340 

subjected to impacts had lower content of water than the healthy set at the beginning of the 341 

study. A positive correlation between blackspot and specific gravity has been reported by 342 

several researchers. Authors found that potatoes with a higher specific gravity were more 343 

susceptible to blackspot (Massey, 1952; Scudder, 1951). The higher the specific gravity of the 344 

samples, the lower the water content (Hegney, 2001). Similarly, Workman and Holm (1984) 345 

reported a positive correlation between blackspot susceptibility and dry matter content. 346 

However, they only observed this for recently harvested tubers, while such correlation was not 347 

observed for long store tubers. 348 

3.1. Masking 349 

The sequential procedure for image segmentation is displayed in Fig. 7. In Fig. 7a, a sample is 350 

plotted at those wavelengths with the highest intensity for both Vis-NIR and SWIR setups. Fig. 351 
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7b shows a binary image of the whole potato including the saturated pixels for Vis-NIR and 352 

SWIR hyperspectral ranges while Fig. 7c shows a binary image of saturated pixels after 353 

applying the high mask. Finally, Fig. 7d shows the isolated potato after subtracting saturated 354 

pixels from the first binary image (Fig. 7b) to produce a mask containing only the no-saturated 355 

areas of the potato in a black background. As mentioned before, bruises were facing the same 356 

way for both Vis-NIR and SWIR hyperspectral measurements, but samples were slightly moved 357 

between measurements and this is the reason why they may not look exactly the same.  358 

3.2. PCA 359 

A PCA was carried out in order to explore the spectral differences between the two groups of 360 

samples. Moreover, all combinations of the pre-processing techniques formerly described 361 

were studied. Six PCs were selected for the Vis-NIR range explaining 98.54% of the variance, 362 

while seven PCs were chosen in the SWIR range, representing 96.52% of the variance. In 363 

Fig. 8a, PC 1 is plotted versus PC 4 in the Vis-NIR spectral range, showing that all healthy 364 

samples present negative values in this PC 4 and could be separated along it. Although PC 1 365 

and PC 2 represented the main part of the data variance (91.55 and 3.31%, respectively), no 366 

class separation was observed by plotting those PCs together (not shown). 367 

In Fig. 8b, the score plot of PC 1 against PC 6 is shown, from which it is observed that PC 6 368 

plays an important role in separating the Healthy from the 24 hours group. This result is similar 369 

than the one in the previous plot, in which even though PC 1 and PC 2 represented the main 370 

part of the data variance (41.44 and 29.17%, respectively), no group separation was observed 371 

by plotting these two (not shown). 372 

3.3. SIMCA 373 

SIMCA models were assessed in terms of correctly classified (CC) samples and sensitivity and 374 

specificity of each Class. Only best results corresponding to the combination of smoothing, 375 

second derivative, SNV and mean center pre-processing technique are displayed. The use of 376 

that combination resulted in a notable improvement with respect to no pre-treatment at all in 377 
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the Vis-NIR range, with a classification rate 35.7% higher. An improvement of 12.71% was 378 

achieved in comparison to the use of SG + 1D + SNV + MC and similarly a higher classification 379 

rate of 14.76% was obtained compared to the results when SG + either SNV or MSC + MC pre-380 

processing was used. 381 

In table 2 the % CC samples for the two classes are summarized for both hyperspectral setups. 382 

A total of 92.59% healthy samples and 75% bruised in the test set were correctly classified 383 

based on the Vis-NIR spectra. From these 25% of bruised samples wrongly classified as healthy, 384 

56.86% corresponded to 1 hour group, 19.61% to the 5 hours group, 11.76% to the 9 hours 385 

group and the rest were samples from the 24 hours group (11.76%).  386 

In the SWIR spectral range a remarkable improvement of 32.5% was achieved by the 387 

combination of SG + D2 + SNV + MC in comparison to the model obtained when no pre-388 

processing was applied. Comparing this combination with the use of SG + D1 + SNV + MC, an 389 

improvement of 19.38% of samples correctly classified was obtained. Finally, classification 390 

rates between 19 and 25% higher were achieved in contrast to the results found when using a 391 

combination of SG + SNV or MSC + MC. 392 

A better classification rate was achieved in the SWIR spectral range with 100% and 77.23% CC 393 

tubers in Healthy and Bruised Classes, respectively. From the bruised samples that were 394 

incorrectly classified as healthy, 65.22% corresponded to the 1 hour group, 30.43% were 395 

samples from the 5 hours group and the rest (4.35%) corresponded to samples analyzed 9 396 

hours after bruising. No misclassifications were observed for the samples which had been 397 

measured 24 hours after bruising. 398 

The detection of internal damage in fruit and vegetables by applying SIMCA was also 399 

investigated by other authors. Pholpho, Pathaveerat, and Sirisomboon (2011), studied the 400 

capability of visible spectroscopy to detect bruised longan fruits. They were able to correctly 401 

classify 86% of them when applying SIMCA. Liu, Chen, Wang, Chan, and Kim (2006), also 402 

obtained very good results by the use of a hyperspectral imaging in the 447 to 951 nm range, 403 
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coupled with SIMCA for the detection of chilling injury in cucumbers with almost 92% CC 404 

samples. 405 

Regarding potatoes, Gao et al. (2013) conducted a study for the detection of black heart in raw 406 

tubers by the use of transmission hyperspectral imaging. They reported an accurate 407 

identification of black heart of 100% in the range between 400 nm and 1000 nm. More 408 

recently, Zhou, Zeng, Li, and Zheng (2015) also investigated the identification of black heart in 409 

potatoes using Vis/NIR transmittance spectroscopy combined with PLS-DA in the 513-850 nm 410 

region. They achieved overall classification rates above 96% in the validation set. 411 

In table 3, the sensitivity and specificity values for both spectral ranges with 412 

SG + D2 + SNV + MC pre-processing technique are summarized. A total of 9 PCs were selected 413 

for both classes (Healthy and Bruised) in the Vis-NIR explaining 99.45 and 99.35% of the 414 

variance, respectively. Besides, 5 and 6 PCs were chosen for Healthy and Bruised Classes 415 

explaining 96.17 and 96.44% of the variance respectively for the SWIR setup. As shown in the 416 

table 3, the sensitivity value of Healthy Class in the Vis-NIR was higher than that of Bruised 417 

Class and close to 100% in both training and test sets. In comparison, higher sensitivity and 418 

specificity values were obtained in the SWIR spectral range for both classes. These results 419 

suggest that SIMCA allows to discriminate healthy from bruised potato tubers based on the 420 

acquired hyperspectral images.  421 

3.4. PLS-DA 422 

PLS-DA models were also evaluated in terms of % CC samples and sensitivity and specificity of 423 

each group. In table 2 the % CC samples for each of Class are summarized for training and test 424 

sets for both spectral ranges. Only the best results are shown, which correspond to the 425 

smoothing, second derivative, SNV and mean center pre-processing technique. By the use of 426 

the former combination of pre-processing techniques, the classification results for the Vis-NIR 427 

data improved with 13.36% compared to the case without pre-processing. On the other hand, 428 
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similar classification results were obtained through combination of SG, either a scattering 429 

technique or a first derivative and MC compared to the use of SG + D2 + SNV + MC, improving 430 

the latter by 0.5%.  431 

In the Vis-NIR spectral range the mean classification success in terms of prediction was above 432 

94%. From the 5.36% of bruised samples which were wrongly classified as healthy, 66.67% of 433 

the samples corresponded to the 1 hour group, 16.67% to the 5 hours group and another 434 

16.67% to the 9 hours group. These results suggest that by the use of Vis-NIR hyperspectral 435 

imaging and PLS-DA classification it is possible to accurately discriminate healthy tubers from 436 

bruised potatoes 24 hours after bruising, while there is some misclassification for shorter times 437 

after impact. 438 

In the SWIR spectral range the best results were also obtained through combination of SG + D2 439 

+ SNV + MC, improving by 8.05% compared to the models on the original data. Likewise, 440 

comparing the former combination of pre-processing to the use of SG + D1 + SNV + MC, a 6.7% 441 

better classification rate was achieved. Moreover, between 8 and 11% more samples were 442 

correctly classified with respect to the combination of SG + SNV or MSC + MC. 443 

In comparison with the results obtained for the Vis-NIR data, better classification rate of 444 

healthy samples was obtained in the SWIR range, where 100% of the tubers were correctly 445 

classified. On the other hand, 97.12% of the tubers from the bruised group were correctly 446 

identified as bruised. It should be noted that all the misclassified samples corresponded to the 447 

1 hour group, which suggests that hyperspectral imaging in the SWIR range in combination 448 

with PLS-DA allows the detection of bruises a few hours after bruising. 449 

Similar classification results were reported by Gowen et al. (2008) using hyperspectral imaging 450 

and PCA for bruise damage detection in mushrooms. Additionally, as stated previously, bruise 451 

detection in apples has been widely investigated. Several authors have reported correct 452 

classification rates above 77% by using different spectral regions (Lu, 2003; Xing & De 453 

Baerdemaeker, 2005; Xing et al., 2007). Also, ElMasry et al. (2008) were able to detect bruises 454 
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in apple as early as 1 hour after bruising. Non-destructive detection of bruises in potatoes has 455 

been less extensively investigated than in apples. However, Dacal-Nieto et al. (2011b) studied 456 

the application of hyperspectral imaging and chemometrics for determining the presence of 457 

hollow heart, an internal defect in potato tubers, achieving a correct classification rate of 89% 458 

for healthy and affected tubers. Moreover, Jin, Li, Liao, Yu, and Viray (2009) were able to 459 

classify more than 91% of tubers showing external defects by using computer vision 460 

technology. 461 

In table 3 the sensitivity and specificity values are summarized for the PLS-DA models. A total 462 

of 6 and 4 LVs were used to build the PLS-DA model explaining 97.54 and 83.88% of the 463 

spectral variance in Vis-NIR and SWIR spectral ranges, respectively. Sensitivity and specificity 464 

values obtained for Classes 1 and 2 were above 94% in both training and test sets for the Vis-465 

NIR range. From table 3 it can be seen that the sensitivity values for Class 1 (healthy) were 466 

100% for both training and test sets in the SWIR spectral range. Furthermore, sensitivity values 467 

above 97% were obtained for Class 2 (bruised) in both training and test sets. The fact that the 468 

PLS-DA model for the Vis-NIR data performs worse in predicting the Y-variance even though it 469 

captures more spectral variance suggests some kind of overfitting.  470 

These results suggest that the combination of hyperspectral imaging techniques and PLS-DA 471 

allows to accurately discriminate healthy from bruised potatoes. Moreover, blackspot affected 472 

tubers could be identified within 5 hours after bruising by means of SWIR hyperspectral 473 

imaging.  474 

In order to compare both classification methods, it should be mentioned that PLS-DA achieved 475 

more accurate results for classification of both classes in the Vis-NIR and SWIR spectral ranges. 476 

In Fig. 9 the regression coefficients are shown for the PLS-DA model built for the Vis-NIR 477 

(Fig. 9a) and SWIR (Fig. 9b) range after using SG + D2 + SNV + MC pre-processing. As shown in 478 

Fig. 9a, the important wavelengths are located along the entire 400nm-1000nm spectral 479 
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region. Based on Fig. 9a, the most informative wavelengths for the PLS-DA model are 490, 798, 480 

840, 893, 934 and 977 nm. The absorption at 490 nm may correspond to the yellow colour of 481 

potatoes and is probably related to the presence of beta-carotene (Du, Fuh, Li, Corkan, & 482 

Lindsey, 1998; Penner, 2010). The 934 nm can be associated to the third overtone of CH 483 

stretching modes (Osborne, Fearn, & Hindle, 1993), while the 977 nm can be related to the 484 

second overtone of OH stretching, normally associated with water content of the samples 485 

(Porteous et al., 1981). As shown in Fig. 9b, the important wavelengths in the SWIR spectral 486 

region are mainly located at the beginning of the spectral region. According to this figure, the 487 

most informative wavelengths for the PLS-DA model are 1121, 1217, 1329, 1625 and 1966 nm. 488 

The 1121 nm, 1217 nm and 1329 nm bands could be assigned to the influence of CH stretching 489 

modes (Osborne et al., 1993). This could be a result of the formation of intermediates during 490 

the complete conversion from tyrosine to melanin that occurs in the course of blackspot 491 

formation as a results of the harvesting and managing of tubers. That blackspot formation 492 

occurs due to the oxidation of the polyphenols present in the tubers. The initial reaction by 493 

polyphenol oxidase catalyses the oxidation of o-diphenols to produce o- quinones, that are 494 

highly reactive and suffer a succession of non-enzymatic reactions to produce melanin 495 

pigments responsible for potato browning (Busch, 1999). The 1966 nm is associated with 496 

water absorptions bands due to second and first overtones of OH stretching and OH 497 

combination bands. This may be associated with water loss from the tissue in and around the 498 

bruised zone (Porteous et al., 1981). 499 

3.4.1 Mapping of the affected area 500 

In table 4 the sensitivity and specificity values and the %CC samples for the pixel based PLS-DA 501 

model with SG + MC pre-processing technique are shown. A total of 5 LVs were used to build 502 

the model in both Vis-NIR and SWIR spectral ranges explaining respectively 99.81 and 98.89% 503 

of the variance. Although 5 tubers (5 hypercubes) were individually used as a test set, only 504 

averaged results are presented here. Slightly better results were obtained in the SWIR spectral 505 
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range in terms of % CC samples and sensitivity and specificity. In any case, % CC pixels above 506 

90% were obtained in both spectral ranges with high sensitivity and specificity values. It should 507 

be mentioned that the labelling of the images was quite hard, so part of the misclassifications 508 

may be due to incorrect labelling of the hypercubes. 509 

In Fig. 10a the sequence for blackspot detection from the acquired hypercubes is schematically 510 

illustrated. The first image on the left corresponds to the original hypercube of a sample 511 

measured with the Vis-NIR spectral range 24 hours after impact in which the bruised mask is 512 

represented only by its edges. We can see that this blackspot area is not easily identified and 513 

could be easily confused with any other mark present on the tuber. However, the impact 514 

procedure was carried out in a controlled way that allowed us to know exactly where the 515 

bruises should be located. The second figure on the left corresponds to the segmented 516 

hyperspectral cube of the entire sample. The third figure on the left corresponds to the 517 

mapping of the bruised area, where we can see some misclassified pixels. However, the 518 

blackspot area in the centre is correctly identified. The last figure shows the segmented 519 

hyperspectral cube with the mapping of the bruised area and the edges of the bruised mask. In 520 

Fig. 10b the operation of the blackspot detection system in the SWIR spectral range is 521 

illustrated as well. The first image on the left corresponds to the original hypercube and the 522 

edges of the bruised mask of a sample measured 24 hours after impact, there is a bruised area 523 

located in the centre. The second image on the left shows the segmented hyperspectral cube 524 

of the tuber. In the third figure, the mapping of the bruised area is shown. Similar to the Vis-525 

NIR spectral range, there are some misclassified pixels, while the blackspot is identified well. 526 

Finally, the last figure shows the segmented hyperspectral cube with the mapping of the 527 

blackspot affected area and the edges of the bruised mask in order to compare the results. 528 

As commented previously, there are no records of the application of hyperspectral imaging 529 

systems for the detection of blackspot in potatoes as far as we are concerned.  530 
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4. Conclusion 531 

The results obtained in this study suggest that it is possible to identify raw potatoes affected 532 

by blackspot by combining hyperspectral imaging and chemometric techniques. The correct 533 

classification rate was between 2 and 7% higher for the SWIR range (1000-2500 nm) than for 534 

the Vis-NIR range (400-1000 nm) for Classes 1 and 2 for both SIMCA and PLS-DA discrimination 535 

methods. Furthermore, it was observed that more accurate discrimination of healthy and 536 

bruised tubers was achieved by applying PLS-DA to SWIR hyperspectral imaging data where all 537 

samples belonging to 5, 9 and 24 hour groups and the healthy set were correctly classified into 538 

their corresponding group. Therefore, it can be concluded that SWIR coupled with PLS-DA is 539 

able to accurately identify early bruises in potatoes within 5 hours after bruising. 540 

Moreover, in this study, we were able to map the areas affected by blackspot in a set of potato 541 

samples with a pixel classification accuracy above 93% when using the SWIR spectral range. 542 

According to these results, the use of SWIR hyperspectral imaging coupled with PLS-DA to 543 

detect blackspot in raw potatoes has potential for on-line quality control of tubers in industry. 544 

The application of NIR hyperspectral imaging could enable the development of a fast, reliable 545 

and non-destructive method for internal damage detection of potatoes avoiding the 546 

commercialization of affected tubers. This would be beneficial to both potato industry and 547 

consumers. However, it should be mentioned that prior to the implementation of this system 548 

in the potato industry, those results must be validated on a larger sample set covering a wide 549 

range of potato varieties grown in different areas and under different conditions. 550 
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Figure captions 719 

Fig. 1. Schematic diagram of the system used to induce bruises 720 

Fig. 2. Schematic diagram of the hyperspectral imaging system used for potato scanning 721 

Fig. 3. Flowchart for potato internal quality detection using hyperspectral imaging 722 

Fig. 4. One sample photographed 24 hours after bruising (a) before and (b) after peeling 723 

Fig. 5. Mean ± standard deviation reflectance spectra of potato samples for Vis-NIR (a) and 724 

SWIR (b) spectral range 725 

Fig. 6. Mean spectra for each group of samples for Vis-NIR (a) and SWIR (b) spectral range 726 

Fig. 7. Low and high masks of a potato sample for Vis–NIR and SWIR images, (a) images in 727 

bands 854 and 1106 nm for Vis–NIR and SWIR, respectively, were used to select a threshold, 728 

(b) images after applying the low mask, (c) images after applying the high mask, (d) images 729 

after applying the low and high masks for Vis–NIR and SWIR setups. 730 

Fig. 8. Score plot of PC1 versus PC4 for bruise detection in the Vis-NIR (a) and PC1 versus PC 6 731 

in SWIR (b) images for D2 + SNV pre-processing technique. 732 

Fig. 9. Regression coefficient plot for Vis-NIR (a) and SWIR (b) setups using SG+D2+SNV+MC 733 

preprocessing. 734 

Fig. 10. An example of the operation of the blackspot detection system in the Vis-NIR (a) and 735 

SWIR (b) spectral range. From left to right: original hypercube with the edges of the bruised 736 

mask, segmented hyperspectral cube, mapping of the bruised area, segmented hyperspectral 737 

cube with the mapping of the bruised area and the edges of the bruised mask. 738 


