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ABSTRACT
This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Ex-
traction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction 
(IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based 
query expansion technique to collect promising documents. It also uses a Conditional Random Field-based 
machine learning technique to extract important biological entities and relations. TAKES is applied to biological 
knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction 
(PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and 
retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction 
component known as FCRF. The present paper investigated research problems addressing the issues with a 
knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from 
the experiments are as follows: First, the author verified, using three different test collections to measure the 
performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared 
to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly 
accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Ma-
chine, Maximum Entropy, Single POS HMM, and Rapier.

Keywords: Semantic Query Expansion, Information Extraction, Information Retrieval, Text Mining
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1. INTRODUCTION

Knowledge Extraction (KE) is a relatively new re-
search area at the intersection of Data Mining (DM), 
Information Extraction (IE), and Information Retriev-
al (IR). The goal of knowledge extraction is to discov-
er knowledge in natural language texts. In terms of 
knowledge extraction, a variety of types of knowledge 
can be pulled out from textual data, such as linguistic 
knowledge and domain-specific lexical and semantic 
information hidden in unstructured text corpora 
(Poon & Vanderwende, 2010; Zhou & Zhang, 2007). 
In light of extracting entities, IE is pertinent to knowl-
edge extraction. It locates specific pieces of data from 
corpora of natural language texts and populates a re-
lational table from the identified facts. Since the start 
of the Message Understanding Conferences (MUCs), 
IE has addressed the issue of transforming unstruc-
tured data into structured, relational databases. The 
transformed text corpus can be mined by various IE 
techniques such as the application of statistical and 
machine-learning methods to discover novel relation-
ships in large relational databases. 

Developing an IE system is a challenging task. 
Recently, there has been significant progress in ap-
plying data mining methods to help build IE systems 
(Blaschke, Hirschman, Shatkay, & Valencia, 2010). 
The major task of these IE systems is entity or relation 
extraction, such as gene extraction and protein-pro-
tein interaction extraction (Airola, Pyysalo, Björne, 
Pahikkala, Ginter, & Salakoski, 2008; Kim, 2008; 
Miyao, Sagae, Saetre, Matsuzaki, & Tsujii, 2009). IE 
techniques typically involve several steps such as 
named-entity tagging, syntactic parsing, and rule 
matching. These required steps to transform text are 
relatively expensive. Processing large text databases 
creates difficult challenges for IE in leveraging and 
extracting information from relational databases. IE 

techniques proposed so far are not feasible for large 
databases or for the web, since it is not realistic to 
tag and parse every available document. In addition, 
IE requires a dictionary of entities and relational 
terms or well-defined rules for identifying them. 
This requirement posed by IE is challenging because 
unstructured text corpora tend to be 1) non-uniform 
and incomplete, 2) synonymous and aliased, and 3) 
polysemous (Carpineto & Romano, 2010). These fac-
tors are attributed to low recall of IE systems reported 
in the literature. Other major problems with current 
IE techniques are that they are labour intensive in 
terms of processing text collections and require ex-
tensive knowledge on the target domain (Califf & 
Mooney, 2003). Although it is currently feasible to 
apply sentence parsers or named entity extraction 
tools to the entire PubMed database, a portability 
issue with doing so remains problematic particularly 
when it is applied to other types of datasets other 
than PubMed. Due to these issues, IE is not applica-
ble to some domains where human intervention is 
necessary or when domain experts are not available.

The goal of this paper is to develop an integrated 
knowledge extraction system, TAKES, that over-
comes the aforementioned issues with current IE 
systems. TAKES stands for Two-step Approach for 
Knowledge Extraction System. The specific research 
objectives are 1) whether keyphrase-based query 
expansion improves retrieval performance and 2) 
whether Feature-enriched Conditional Random Field 
(FCRF)-based information extraction enhances the 
extraction accuracy. By enabling both to retrieve 
promising documents that contain target biological 
entities relations and to extract those target entities 
and relations, TAKES helps curators and biologists 
discover new entities and relations buried in a large 
amount of biomedical data. Figure 1 shows the over-
all diagram of TAKES.

Fig. 1  Overall Diagram of TAKES
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Although several papers have suggested the de-
velopment of a scalable knowledge extraction sys-
tem (i.e., Textpresso) (Agichtein & Gravano, 2003; 
Banko & Etzioni, 2007; Hu & Shen, 2009; Shatkay & 
Feldman, 2003; Muller, Kenny, & Sternberg, 2004), 
the proposed technique is differentiated and unique 
from existing knowledge extraction systems in the 
following ways. First, we introduce a novel query ex-
pansion technique based on keyphrases, while others 
are based on a single term or are combined with a 
rule-based learning technique like Ripper (Cohen & 
Singer, 1996). Second, our system is based on unsu-
pervised query training whereas others are based on 
supervised querying learning. Third, we introduce a 
FCRF-based extraction technique for knowledge ex-
traction to information extraction tasks. In addition, 
seamlessly integrating retrieval and extraction into a 
knowledge extraction system is a major strength of 
our approach, and it is proven that TAKES is highly 
effective by the experimental results.

The details of TAKES are provided in Section 3. 
The experimental results show that two main com-

ponents of TAKES, DocSpotter and FCRF, outper-
formed the other compared query expansion and 
information extraction techniques, respectively. The 
detailed description is provided in Section 4.

The rest of the paper is organized as follows: Sec-
tion 2 proposes and describes a novel knowledge ex-
traction technique; Section 3 explains the experimen-
tal settings and evaluation methodologies. We report 
and analyze the experimental results in Section 4. 
Section 5 concludes the paper and suggests future 
work.

2. APPROACH AND METHOD

In this section, we describe the architecture of 
TAKES (Figure 2). Note that the components in 
blue boxes (DocSpotter) are described in Section 
2.1.2, and the components in red boxes (FCRF) are 
described in Section 2.2.2. TAKES uses a pipelined 
architecture and extracts target entities with as little 
human intervention as possible. 

Fig. 2  Architecture of TAKES
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The TAKES algorithm works using the following 
steps:

Step 1: Starting with a set of user-provided seed 
instances (the seed instance can be quite small), our 
system retrieves a sample of documents from the text 
databases. Note, an instance denotes a protein-pro-
tein interaction pair. At the initial stage of the overall 
document retrieval process, we have no information 
about the documents that might be useful for the 
goal of extraction. The only information we require 
about the target relation is a set of user-provided seed 
instances, including the specification of the relation 
attributes to be used for document retrieval. We 
construct some simple queries by using the attribute 
values of the initial seed instances to extract the doc-
ument samples of a predefined size using the search 
engine.

Step 2: The instance set induces a binary partition (a 
split) on the documents: those that contain instances 
or those that do not contain any instance from the 
relation. The documents are labeled automatically 
as either positive or negative examples, respectively. 
The positive examples represent the documents that 
contain at least one instance. The negative examples 
represent documents that contain no instances.

Step 3: TAKES next applies data mining and IR 
techniques to derive queries targeted to match—and 
retrieve— additional documents similar to the posi-
tive examples. 

Step 4: TAKES then applies a CRF-based state se-
quence extraction technique over the documents. It 
models a set of document structures using the train-
ing documents. These models are kept in the model 
base which will serve as an engine for extracting state 
sequence from the documents. 

Step 5: The system queries the text databases us-
ing the automatically learned queries from Step 3 
to retrieve a set of promising documents from the 
databases and then returns to Step 2. The whole pro-
cedure repeats until no new instances can be added 
into the relation or we reach the pre-set limit of a 
maximum number of text files to process.

2.1. DocSpotter
DocSpotter is a novel querying technique to 

iteratively retrieve promising documents, specifi-
cally tuned for information extraction. DocSpotter 

uses several DM and Natural Language Processing 
(NLP) techniques. First, DocSpotter adopts a key-
phrase-based term selection technique combined 
with data mining and natural language processing 
techniques. Second, it proposes a query weighting 
algorithm combined with the modified Robertson 
Spark-Jones (RSJ) weight algorithm and the Infor-
mation Gain algorithm. Third, it translates a query to 
the Disjunctive Normal Form (DNF) by POS (Part-
Of-Speech) term categories.

2.1.1 Data Collections for DocSpotter Evaluation: Sub-
set of MEDLINE and TREC

Two different data collections, TREC and MED-
LINE, were used for the evaluation for DocSpotter. 

MEDLINE: We collected a subset of MEDLINE 
data consisting of 264,363 MEDLINE records from 
PubMed at http://www.ncbi.nlm.nih.gov/pubmed. 
These records were retrieved in the XML format 
by PubMed APIs provided in the Entrez E-Utilities 
package. After we collected the records, we queried 
BIND PPI DB with PubMed ID to identify what re-
cords contain PPI pairs. Out of these 264,363 records, 
there are 4521 records containing protein-protein 
interaction pairs (Table 1). Since the collected dataset 
does not have a sufficient number of records that con-
tain protein-protein interaction pairs, we decide to 
include the records containing protein-protein pairs 
from other sources than human expert-curated data-
bases such as OMIM (Online Mendelian Inheritance 
in Man) and DIP (Database of Interacting Proteins). 
The reason for this decision is that we are interested 
in how well DocSpotter can find the records that have 
not been covered in these two databases. Out of 4521 
records, 4100 records were identified by OMID and 
DIP and the rest of the records, 421, are from other 
sources (He, Wang, & Li, 2009). 

Table 1.  Statistics of the MEDLINE Data

No. of 
Records 
Indexed

No. of 
Terms

No. of 
Unique 
Terms

Document 
Length

No. of 
Records 
Contain-
ing PPI

264363 61515989 303077 232 4521
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TREC: To evaluate the performance of DocSpotter 
on the standard IR evaluation collection, we used 
TREC data (TREC-5, TREC-6, and TREC-7 ad hoc 
test set). These TREC ad hoc test sets have been 
used in many different tracks of TREC including the 
TREC-5 routing track, the TREC-7 ad hoc track, and 
the TREC-8 ad hoc track. We purchased these TREC 
data collections from Linguistic Data Consortium 
(LDC). The ad hoc task investigates the performance 
of systems that search a static document collection 
using new query statements. The document set con-
sists of approximately 628,531 documents distribut-
ed on three CD-ROM disks (TREC disks 2, 4, and 5) 
taken from the following sources: Federal Register 
(FR), Financial Times (FT), Foreign Broadcast Infor-
mation Service (FBIS), LA Times (LAT), Wall Street 
Journal, PA Newswire, and Information from Com-
puter Select disks.

The query sets and document collections used 
in these tasks are shown in Table 2. Two tasks were 
conducted for evaluation. The first task is to retrieve 
results for the query sets from 251 to 400 used in 
TREC 5, 6, and 7. The second task with MEDLINE 
data is to retrieve MEDLINE records that contain 
protein-protein interaction pairs with two IR sys-
tems, PubMed and Lemur, to query MEDLINE data. 

Table 2.  Documents and Queries Used in TREC Ad Hoc Tasks

Task Documents Queries

TREC5 TREC disks 2,4 251-300

TREC6 TREC disks 4,5 301-350

TREC7 TREC disks 4,5 351-400

There were 25 initial queries provided for the exper-
iments. These queries consisted of 3 to 5 protein-pro-
tein interaction pairs. Figure 3 shows the initial query 
used to retrieve the documents from PubMed. The 
initial queries were passed to either PubMed or Le-
mur to retrieve the initial set of retrieved documents. 
DocSpotter was applied to extract keyphrases and 
expand queries based on the top N ranked keyphras-
es. The performance of DocSpotter and other com-
parison techniques is measured by average precision, 
precision at rank n, and F-measure on MEDLINE and 

TREC-5, 6, and 7 data. The details of the performance 
measure are described in Section 3.

<init_query>
<terms protein1=“MAP4” protein2 =“ Mapmodulin”/>
<terms protein1=“WIP” protein2=“NCK”/>
<terms protein1=“GHR” protein2=“SHB”/>
<terms protein1=“SHIP” protein2=“DOK”/>
<terms protein1=“LNK” protein2=“GRB2”/>
<terms protein1=“CRP” protein2=“Zyxin”/>

</init_query>

Fig. 3  Initial Query Used for Protein-Protein Interaction Tasks

2.1.2 DocSpotter Description
The keyphrase extraction technique used for 

DocSpotter consists of two stages: 1) building the ex-
traction model and 2) extracting keyphrases. Input of 
the “building extraction model” stage is training data 
whereas input of the “extracting keyphrases” stage 
is test data. These two stages are fully automated. 
Both training and test data are processed by the three 
components: 1) Data Cleaning, 2) Data Tokenizing, 
and 3) Data Discretizing. Through data cleaning and 
tokenizing, we generate candidate keyphrases. Three 
feature sets were chosen and calculated for each 
candidate phrase: 1) TF*IDF, 2) Distance from First 
Occurrence, and 3) POS Tagging. Since these features 
are continuous, we need to convert them into nom-
inal forms to make our machine learning algorithm 
applicable. Among many discretization algorithms, 
we chose the equal-depth (frequency) partitioning 
method which allows for good data scaling. Equal-
depth discretization divides the range into N inter-
vals, each containing approximately the same number 
of samples. During the training process, each feature 
is discretized. In DocSpotter, the value of each feature 
is replaced by the range to which the value belongs. 

Keyphrase Ranking
Automatic query expansion requires a term-selec-

tion stage. The ranked order of terms is of primary 
importance in that the terms that are most likely to 
be useful are close to the top of the list. We re-weight 
candidate keyphrases with an Information Gain mea-
sure. Specifically, candidate keyphrases are ranked 
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by an Information Gain, GAIN(P), a measure of 
expected reduction in entropy based on the “useful-
ness” of an attribute A. The usefulness of an attribute 
is determined by the degree of uncertainty reduced 
when the attribute is chosen. This is one of the most 
popular measures of association used in data mining. 
For instance, Quinlan (1993) uses Information Gain 
for ID3 and its successor C4.5 which are widely-used 
decision tree techniques. ID3 and C4.5 construct 
simple trees by choosing at each step the splitting fea-
ture that “tells us the most” about the training data. 
Mathematically, Information Gain is defined as: 

 
                       (1)               

where Pi is value of candidate phrase that falls into 
a discrete range. I(p,n) measures the information re-
quired to classify an arbitrary tuple.

Each candidate phrase, extracted from a docu-
ment, is ranked by the probability calculated with 
GAIN(P). In our approach, I(p,n) is stated such 
that the class p is where a candidate phrase is “key-
phrase” and the class n is where a candidate phrase is 
“non-keyphrase.” Many query re-ranking algorithms 
are reported in literature (Robertson, Zaragoza, & 
Taylor, 2004). These algorithms attempt to quantify 
the value of candidate query expansion terms. For-
mulae estimate the term value based on qualitative 
or quantitative criteria. The qualitative arguments 
are concerned with the value of the particular term 
in retrieval. On the other hand, the quantitative 
argument involves some specific criteria such as a 
proof of performance. One example of the qualita-
tive-based formula is the relevance weighting theory.

While there are many promising alternatives to 
this weighting scheme in IR literature, we chose 
the Robertson-Sparck Jones algorithm (Robertson 
& Sparck, 1976) as our base because it has been 
demonstrated to perform well, is naturally well suit-
ed to our task, and incorporating other term weight-
ing schemes would require changes to our model.

The F4.5 formula proposed by Robertson and 
Jones has been widely used in IR systems with 
some modifications (Okapi). Although a few more 
algorithms were derived from the F4.5 formula by 
Robertson and Jones, in this paper we modify the 
original for keyphrases as shown: 

(2)

(3)

P(w) is the keyphrase weight, N is the total num-
ber of sentences, n is the number of sentences in 
which that query terms co-occur, R is the total num-
ber of relevant sentences, and r is the number of rel-
evant sentences in which the query terms co-occur. 
We combine Information Gain with the modified 
F4.5 formula to incorporate keyphrase properties 
gained (see formula 3). All candidate keyphrases 
are re-weighted by KP(r) and the top N ranked key-
phrases are added to the query for the next pass. The 
N number is determined by the size of the retrieved 
documents.

Query Translation into DNF
A major research issue in IR is easing the user’s 

role of query formulation through automating the 
process of query formulation. There are two essen-
tial problems to address when searching with online 
systems: 1) initial query formulation that expresses 
the user’s information need; and 2) query reformu-
lation that constructs a new query from the results 
of a prior query (Abdou & Savoy, 2008). The latter 
effort implements the notion of relevance feedback 
in IR systems and is the topic of this section. An 
algorithm for automating Boolean query formula-
tion was first proposed in 1970. It employs a term 
weighting function first described in Frants and 
Shapiro (1991) to decide the “importance” of terms 
which have been identified. The terms were aggre-
gated into “sub-requests” and combined into a Bool-
ean expression in disjunctive normal form (DNF). 
Other algorithms that have been proposed to trans-
late a query to DNF are based on classification, deci-
sion-trees, and thesauri. Mitra, Singhal, and Buckely 
(1998) proposed a technique for constructing Bool-
ean constraints. 

Our POS category-based translation technique 
differs from others in that ours is unsupervised 
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and is easily integrated into other domains. In our 
technique, there are four different phrase categories 
defined: 1) ontology phrase category, 2) non-ontol-
ogy noun phrase category, 3) non-ontology proper 
noun phrase category, and 4) verb phrase category. 
Phrases that have corresponding entities in ontolo-
gies such as MESH and WordNet belong to the on-
tology phrase category. Synonym relations are used 
for the entity matching between phrases in a query 
and ontologies entities. We include the verb phrase 
category as a major category because important verb 
phrases play a role in improving the retrieval perfor-
mance. Keyphrases within the category are translat-
ed into DNF and categories are then translated into 
Conjunctive Normal Form. As explained earlier, 
within the same category the phrases are combined 
with the OR Boolean operator. Between categories, 
the terms are combined with the AND Boolean 
operator. Figure 4 illustrates how the original query 
(CDC and H1N1 and country) is expanded and 
translated into the final query with MESH. We in-
dex the MESH tree in XML, and the query term is 
used to look up the MESH index to select the closest 
match between the term and the MESH entry. Our 
query translation technique does not currently ad-
dress the problem of translating ambiguous terms.

2.2. FCRF
In this section, we describe FCRF, a novel ex-

traction technique based on incorporating various 
features into Conditional Random Fields (CRF). 
CRF is a discriminative undirected probabilistic 

graphical model to help the IE system cope with 
data sparseness (Lafferty, McCallum, & Pereira, 
2001).

2.2.1 Data Collections for FCRF Evaluation
We use OMIM and DIP as references to com-

pare the number of articles needed to be retrieved 
and extracted by TAKES in order to rebuild the 
protein-protein interactions or gene-disease in-
teractions for each species. OMIM is a database 
of human genes and genetic disorders (McKusick, 
1998). With OMIM, our task is to extract gene-dis-
ease interaction. For our experiment, we used the 
data set compiled by Ray and Craven (2001). DIP 
(Xenarios & Eisenberg, 2001) is a knowledge base 
about the biological relationships of protein-protein 
interactions and is constructed by human experts 
manually, a many-year effort. DIP, the manually cu-
rated knowledge database, serves as an ideal testbed 
to verify the performance of our TAKES system. 
It contains the information of protein names, pro-
tein-protein interaction pairs, and the MEDLINE 
abstracts from which the protein-protein pairs are 
manually extracted for a few species such as human 
beings, yeast, fruit flies, house mice, Helicobacter 
pylori, and Escherichia coli (See Table 3). 

The performance of FCRF and other compar-
ison techniques is measured by precision, recall, 
and F-measure on MEDLINE data combined with 
OMIM and DIP, The details of the performance 
measure are described in Section 3.

Original Query: CDC
AND H1N1 AND
country

Final Query:
((CDC OR Centers for Disease
Control and Prevention OR
Center for Disease Control)
AND (H1N1 OR virus) AND
country

Translated Query through DocSpotter:
<query>

<terms category=“ontology” term=“CDC OR Centers for
     Disease Control and Prevention OR Center for Disease Control”/>

<terms category=“1” term = “country” />
<terms category=“ontology” term=“H1N1 OR virus”/>

</query>

Fig. 4  An Example of Query Translation
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Table 3.  Protein-Protein Interactions from DIP

Organism Protein Protein Interactions # of relevant abstracts 
from  MedLine

Drosophila melanogaster (fruit fly) 7050 21017 7065

Saccharomyces cerevisiae (yeast) 4726 15364 4740

Helicobacter pylori 710 1425 710

Homo sapiens (Human) 753 1128 848

Escherichia coli 421 516 418

Mus musculus (house mouse) 191 279 298

2.2.2 Feature-Enriched CRF (FCRF) Models
CRF is a probabilistic framework for labeling and 

segmenting sequential data. The underlying idea 
of CRF is that of defining a conditional probability 
distribution over label sequences given a particular 
observation sequence, rather than a joint distribution 
over both label and observation sequences. The ad-
vantage of CRFs over HMMs is their conditional na-
ture, resulting in the relaxation of the independence 
assumptions required by HMMs in order to ensure 
tractable inference (Lafferty, McCallum, & Pereira, 
2001). In this paper, we incorporate various fea-
tures such as context, linguistic, part-of-speech, text 
chunking, and dictionary features into the extraction 
decision. Feature selection is critical to the success of 
machine learning approaches. We will illustrate how 
to calculate values of feature functions. 

Entity extraction can be thought of as a sequence 
segmentation problem: each word is a token in a se-
quence to be assigned a label (e.g. PROTEIN, DNA, 
RNA, CELL-LINE, CELL-TYPE, or OTHER). Let 

 be a sequence of observed words 
of length n. Let S be a set of states in a finite state 
machine, each corresponding to a label  (e.g. 
PROTEIN, DNA, etc.). Let  be the se-
quence of states in S that correspond to the labels as-
signed to words in the input sequence o. Linear-chain 
CRFs define the conditional probability of a state 
sequence given an input sequence to be:

where  is a normalization factor of all state 
sequences,  is one of m functions that 
describes a feature, and  is a learned weight for 
each such feature function. These weights are set to 
maximize the conditional log likelihood of labelled 
sequences in a training set: 

When the training state sequences are fully labelled 
and unambiguous, the objective function is convex, 
thus the model is guaranteed to find the optimal weight 
settings in terms of LL(D). Once these settings are 
found, the labelling for the unlabelled sequence can be 
done using a modified Viterbi algorithm. CRFs are pre-
sented in more complete detail by Lafferty et al. (2001).

Text Chunking Feature
Text chunking is defined as dividing text into syntac-

tically correlated parts of words (Kudo & Matsumoto, 
2000). Chunking is a two-step process: identifying 
proper chunks from a sequence of tokens (such as 
words), and then classifying these chunks into gram-
matical classes. A major advantage of using text chunk-
ing over full parsing techniques is that partial parsing, 
such as text chunking, is much faster and more robust, 
yet sufficient for IE. SVM-based text chunking was 
reported to produce the highest accuracy in the text 
chunking task (Kudo & Matsumoto, 2000). The SVM-
based approaches, such as the inductive-learning ap-
proach, take as input a set of training examples (given 



JISTaP Vol.2 No.1, 06-21

14

as binary valued feature vectors) and find a classifica-
tion function that maps them to a class. In this paper, 
we use Tiny SVM (Kudo & Matsumoto, 2000) in that 
Tiny SVM performs well in handling a multi-class 
task. Figure 5 illustrates the procedure of converting a 
raw sentence from PubMed to the phrase-based units 
grouped by the SVM text-chunking technique. The top 
box shows a sentence that is part of abstracts retrieved 
from PubMed. The middle box illustrates the parsed 
sentence by POS taggers. The bottom box shows the fi-
nal conversion made to the POS tagged sentence by the 
SVM-based text chunking technique.  

Context Feature
Words preceding or following the target word may 

be useful for determining its category. It is obvious 
that the more context words analyzed the better and 
more precise the results gained. However, widening 
the context window rapidly increases the number of 
possibilities to calculate. In our experience, a suitable 
window size is five.

Part-Of-Speech Feature
Part of speech information is quite useful to detect 

named entities. Verbs and prepositions usually indi-
cate a named entity’s boundaries, whereas nouns not 
found in the dictionary are usually good candidates 
for named entities. Our experience indicates that five 
is also a suitable window size. We used the Brill POS 
tagger to provide POS information. 

Dictionary Feature
We use a dictionary feature function for every 

token in the corpus. This feature, described as “dic-

tionary name” plus length of token string, informs us 
of whether a token matches a dictionary entry and 
whether it is part of a multi-token string that matches 
a compound named entity or named entity phrase in 
the dictionary.

Fig. 5  ‌�A Procedure of Sentence Parsing. JJ: adjective; IN: preposition; DT: determiner; CD: cardinal number; NN: singular noun; NNP: 
proper noun; VBZ and VBN: verb; RB: adverb

Example raw sentence retrieved from PubMed:
“For many of these genes, the effect of an isw2 mutation is partially masked by a    
                    functional Sin3-Rpd3 complex”

Example input sentence tagged with POS:
many /JJ/ of /IN/ these /DT/ genes, /NN/ the /DT/ effect/NN/ of /IN/ an /DT/ isw2/
                   CD/ mutation /NNP/ is /VBZ/ partially/RB/ masked /VBN/ by /IN/ a /DT/
                    functional /JJ/ Sin3-Rpd3 /CD/ complex /NN/ 

Example input sentence processed with text chunking technique:
Noun Group [many /JJ/ of /IN/ these /DT/ genes,]
Noun Group [/NN/ the /DT/ effect/NN/ of /IN/ an /DT/ isw2 /CD/ mutation/NNP/]
Verb Group[is /VBZ/ partially/RB/masked /VBN/]
PREP Group [by /IN/]
Target Noun Group [a /DT/ functional /JJ/ Sin3-Rpd3 /CD/ complex /NN/]
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3. EVALUATION

We evaluate TAKES on two different tasks for In-
formation Retrieval and Information Extraction in a 
biomedical domain. The performance evaluation of 
TAKES accounts for effectiveness of each component 
(retrieval and extraction) to the overall evaluation. 
The first set of experiments aims at evaluating the 
performance of DocSpotter. The second set of ex-
periments focuses on evaluating the performance of 
FCRF. The details of our experimental evaluation are 
provided in the sub-sections. 

3.1. Evaluation of DocSpotter and FCRF
In this section, we explain methodologies and 

strategies used for evaluation of DocSpotter and 
FCRF. To evaluate the performance of DocSpotter, 
we implemented two query expansion algorithms. 
The first algorithm is SLIPPER which is a rule-based 
query expansion technique (Cohen & Singer, 1996). 
The second algorithm is BM25, which is a statistical 
expansion technique (Robertson, Zaragoza, & Tay-
lor, 2004). These two algorithms are well-accepted 
query expansion algorithms (Feng, Burns, & Hovy, 
2008). 

In evaluation of FCRF, we do not attempt to cap-
ture every instance of such tuples. Instead, we exploit 
the fact that these tuples tend to appear multiple 
times in the types of collections that we consider. As 
long as we capture one instance of such a tuple, we 
consider our system to be successful. To evaluate this 
task, we adapt the recall and precision metrics used 
by IR to quantify the accuracy and comprehensive-
ness of our combined table of tuples. Our metrics for 
evaluating the performance of an extraction system 
over a collection of documents D include all the tu-
ples that appear in the collection D.

We conduct a series of experiments. We start with 
a few protein-protein interaction pairs or gene-dis-
ease interaction pairs and then let TAKES automat-
ically construct queries, select the relevant articles 
from MEDLINE, and extract the protein-protein 
interaction for each species. We repeat the experi-
ments for each species several times with different 
seed instances and take the average of the articles 
numbers. Identifying several key algorithms pro-
posed in IE from our literature review, we implement 

five IE algorithms that were reported to produce 
high extraction accuracy. These five algorithms are 1) 
Dictionary-based (Blaschke, Andrade, Ouzounis, & 
Valencia, 1999), 2) RAPIER (Cohen & Singer, 1996), 
3) Single POS HMM (Ray & Craven, 2001), 4) SVM 
(Kudo & Matsumoto, 2000), and 5) Maximum En-
tropy (Manning & Klein, 2003).

3.2. ‌Evaluation Measure for DocSpotter 
and FCRF

The retrieval effectiveness of DocSpotter was mea-
sured by precision at rank n and non-interpolated 
average precision. Using the precision at rank n for the 
IR evaluation is based on the assumption that the most 
relevant hits must be in the top few documents re-
turned for a query. Relevance ranking can be measured 
by computing precision at different cut-off points. 
Precision at rank n does not measure recall. A new 
measure called average precision combines precision, 
relevance ranking, and overall recall. Average precision 
is the sum of the precision at each relevant hit in the hit 
list divided by the total number of relevant documents 
in the collection. The cutoff value for the number of 
retrieved documents is 1000 in the TREC evaluation. 
In the evaluation of DocSpotter, we used 200 as the 
cutoff value in that the collection size in our evaluation 
is smaller than in the TREC evaluation. 

                            (4)

where R = number of relevant docs for that query 
and i/ranki = 0 if document i was not retrieved.

The extraction effectiveness of FCRF was mea-
sured by Recall, Precision, and F-measure. In IE, 
the evaluation of system performance is done with 
an answer key that contains annotations and their 
attributes (also called slots) that the system should 
find from the input. Precision (P) and recall (R) have 
been used regularly to measure the performance 
of IE as well as IR. Recall denotes the ratio of the 
number of slots the system found correctly to the 
number of slots in the answer key. In addition, since 
F-measure provides a useful tool for examining the 
relative performance of systems when one has better 
precision and the other better recall, we report this 
number where it is useful.
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we briefly describe the experimental 
settings designed to evaluate DocSpotter and FCRF 
and report the experimental results. The experiments 
are conducted to investigate two research problems 
studied in this paper: 1) the effectiveness of DocSpot-
ter, a query expansion technique and 2) the effective-
ness of FCRF, an information extraction technique.

4.1. Experimental Results with DocSpotter
As stated in the previous section, DocSpotter, the 

keyphrase-based query expansion algorithm, was eval-
uated with two different data sets and search engines. 
The subsections below report the experimental results 
with these combinations. We used 25 initial queries 
for both MEDLINE – PubMed and MEDLINE – Le-
mur. In order to examine whether query drift (i.e., the 
presence of aspects or topics not related to the query in 
top-retrieved documents) exists, we ran ten iterations 
in each query expansion experiment. Two measures, 
average precision and precision at top 20 documents, 
were utilized for performance evaluation of our query 
expansion algorithm. We limited the number of re-
trieved documents to 200. The four query expansion 
algorithms shown below are used for the experiments:

· BM25: Okapi BM25 algorithm.
· SLP: SLIPPER, a Rule-based AdaBoost algorithm 
· KP: Keyphrase-based query expansion algorithm
· KP+C: ‌�In addition to the KP formula, this algo-

rithm employs Boolean constraints by 
POS type of keyphrases and serves the key 
algorithm for DocSpotter.

Experimental Results of DocSpotter on TREC Data

Table 4 shows the overall performance of the 
four algorithms executing the query set 251-300 on 
TREC 5 data. The results show that KP has the best 
performance in average precision as well as in preci-
sion at top twenty ranks (P@20) compared to other 
algorithms. To confirm the differences among the 
conditions, we conducted an ANOVA for the P@20 
TREC 5 results. This showed an overall effect of con-
dition F(3,196)=17.64, p<0.01. We also conducted 
individual t-tests essentially as specific comparisons. 
Our prediction that KP would be better than BM25 
was confirmed t(49)=-7.37, p<0.01 (one-tailed) at 
n-1 degrees of freedom (50 queries). Similarly, our 
prediction that KP+C would be better than KP was 
confirmed t(49)=-4.72, p<0.01 (one-tailed). 

Tables 5 and 6 show similar results to those ob-
tained for TREC 5. The three new algorithms improve 
the retrieval performance on TREC 6 and 7. As with 
TREC 5, the KP+C algorithm outperforms BM25 and 
SLP algorithms in average precision and in P@20. 

DocSpotter, the keyphrase-based technique com-
bined with the POS phrase category, produces the 
highest average precision. One of the best results on 

Table 4.  Results for TREC 5 with our four query expansion 
algorithms executing the query set 251-300

Algorithm
TREC 5

Avg. P P@20

BM25 0.1623 0.3252

SLP 0.1299 0.2656

KP 0.1938 0.3368

KP+C 0.1985 0.3398

Table 5. ‌�Results for TREC 6 with our four query expansion 
algorithms executing the query set 301-350

Algorithm
TREC 6

Avg. P P@20

BM25 0.1797 0.3160

SLP 0.1358 0.2654

KP 0.2098 0.3390

KP+C 0.2114 0.3424

Table 6. ‌�Results for TREC 7 with our four query-expansion 
algorithms executing the query set 351-400

Algorithm
TREC 7

Avg. P P@20

BM25 0.2229 0.3837

SLP 0.1502 0.3044

KP 0.2343 0.3878

KP+C 0.2458 0.4024
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TREC 5 is 19.44 and 32.40 in average precision and 
P@20 respectively (Mitra, Singhal, & Buckely, 1998). 
On TREC 6, their best results are 20.34 and 33.50 in 
average precision and P@20. The algorithm KP+C 
produces 21% and 48% better than these results on 
TREC 5 in average precision and P@20. On TREC 
6, it is 39% and 22% which are better than the results 
reported by Mitra et al. (1998).

Experimental Results of DocSpotter on MEDLINE 
Data

The experimental results for MEDLINE with 
PubMed are shown in Table 7. Our keyphrase-based 
technique combined with the POS phrase category 
produces the highest average precision. Our two algo-
rithms (KP and KP+C) improve the retrieval perfor-
mance on the tasks of retrieval documents containing 
protein-protein interaction pairs. The KP+C algorithm 
gives the best average precision. The worst perfor-
mance was produced by a rule-based algorithm (SLP) 
both in average precision and precision at top 20.

The overall performance of the query expansion al-
gorithms is poor in terms of average precision (Figure 
6) and precision at top 20. There might be two possible 
reasons that cause this overall poor performance. First, 
PubMed is based on an exact match retrieval model 
which makes the keyphrase-based query expansion 
less effective. Second, the size of the database, which 
contains more than 18 million documents, is too big. 

We also explored the effect of a sequence of query 
expansion iterations. Table 8 shows the results for five 
query expansion iterations. The second column shows 
the number of retrieved documents from MEDLINE 
per iteration. The third column displays the number of 
retrieved documents containing protein-protein pairs. 
The fourth column is the F-Measure. For F-Measure, 
we used b=2 because recall is more important than 
precision in the tasks of retrieving the documents 
containing protein-protein interaction pairs. Our re-
sults show that F-Measure generally increases as the 
number of iterations increases, and the results indicate 
that a sequence of query expansion iterations has an 
impact on the overall retrieval performance. 

Fig. 6  Experimental Results for MEDLINE –PubMed

Table 7.  ‌�Results for MEDLINE – PubMed with Four Query 
Expansion Algorithms

Algorithm
MEDLINE

Avg. P P@20

BM25 0.1282 0.2727

SLP 0.1051 0.2366

KP 0.1324 0.2844

KP+C 0.1522 0.2996

Table 8.  ‌�Query Expansion Iterations for MEDLINE - PubMed

Iteration No. retrieved 
docs

No. docs 
containing 

protein-
protein pairs

F-Measure 
(%)

1 30 18 47.76

2 609 289 51.65

3 832 352 51.27

4 1549 578 53.69

5 1312 545 53.21
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In addition, we compared DocSpotter with another 
query expansion algorithm on MEDLINE – Lemur. 
For this experiment, approximately 0.26 million 
MEDLINE records were indexed and searched with 
Lemur. As indicated in Table 9, the best performance 
was produced by the keyphrase-based query expan-
sion algorithm with the POS phrase category (KP+C) 
both in average precision and precision at top 20. 
The baseline query expansion algorithm was the next 
highest followed by BM25. 

Overall, these results with MEDLINE-Lemur are 
no different from the previous results. One interest-
ing observation is that MEDLINE-Lemur produces 
higher scores of average precision and precision at 
top 20 than other dataset-search engine combina-
tions. The reasons for these higher scores are because 
1) the data collection drawn from MEDLINE is 
homogeneous in terms of the subject matter of the 
collection and 2) Lemur search engine is the better 
search engine to work with over PubMed. 

4.2. Experimental Results with FCRF
The results of experiments to evaluate the per-

formance of FCRF on the task of protein-protein 
interaction extraction are shown below. In these 
experiments, five machine learning algorithms were 
trained using the abstracts with proteins and their 
interactions were processed by the text chunking 
technique. With this set of data, these systems ex-
tracted protein-protein interactions from the re-
trieved documents using DocSpotter. This gave us 
a measure of how the protein interaction extraction 
systems perform alone. Performance was evaluated 
using ten-fold cross validation and measuring recall 
and precision. Since the task was to extract interact-

ing protein-pairs, we did not consider matching the 
exact position and every occurrence of interacting 
protein-pairs within the abstract. To evaluate these 
systems, we constructed a precision-recall graph. 
Recall denotes the ratio of the number of slots the 
system found correctly to the number of slots in the 
answer key, and precision is the ratio of the number 
of correctly filled slots to the total number of slots the 
system filled.

Our experiments show that RAPIER produces rel-
atively high precision but low recall. Similar results 
are observed in the Single POS HMM method which 
also gives high precision but low recall. MaxEnt pro-
duces the second best results, although recall is rela-
tively lower than precision. 

SVM produces better results than RAPIER or Sin-
gle POS HMM but worse than MaxEnt and FCRF. 
Among these five systems, FCRF outperforms RAPI-
ER, single POS HMM, SVM, and MaxEnt in terms of 
precision, recall, and F-measure. As shown in Table 
10, F-Measure of FCRF is 59.83% whereas RAPER is 
44.13%, SVM is 51.44%, single POS HMM is 50.58%, 
and MaxEnt is 53.04%. 

We conducted another set of tests to investigate 
whether the results observed above are reproduced. 
To this end, we used input data that was obtained 
from DocSpotter as discussed. Since iterative query 
expansion is able to retrieve multiple sets of docu-
ments, we used a set of documents retrieved in each 
round.

Table 11 shows the experimental results with a new 
set of incoming data from DocSpotter. The apparent 
pattern of the results resembles the one reported in 
the previous run (Table 10). As indicated in Table 
11, FCRF produced the best performance: precision 

Table 9.  ‌�Results for MEDLINE-Lemur with Four Query Expansion 
Algorithms

Algorithm
MEDLINE  (0.26million)

Avg. P P@20

BM25 0.2433 0.3798

SLP 0.1975 0.3241

KP 0.2645 0.3912

KP+C 0.2692 0.3933

Table 10.  ‌�Comparison of Extraction System Performance in 
First Round

Extraction 
System Precision Recall F-Measure

RAPIER 60.17% 34.12% 44.13%

SVM 68.98% 48.23% 51.44%

MaxEnt 69.32% 49.03% 53.04%

Single POS 
HMM 67.40% 47.23% 50.58%

FCRF 71.34% 52.09% 59.83%
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73.13%, recall 51.91%, and F-measure, 59.36%. The 
next highest score is produced by MaxEnt. RAPIER 
produces the lowest precision, recall, and F-Measure.

We repeated the same experimental tests over the 
10 different datasets that were sent from DocSpotter. 
Figure 7 shows the results of the five extraction meth-
ods, FCRF, Single POS HMM, RAPIER, SVM, and 
MaxEnt in F-Measure. FCRF outperforms the other 
four algorithms. FCRF produces between 56.32% and 
61.12% in F-Measure. Single POS HMM produces 
between 42.84% and 53.32% in F-Measure. RAPIER 
produces between 42.23% and 45.95% in F-Mea-
sure. SVM produces between 50.20% and 57.43% 
in F-Measure. MaxEnt’s performance is in between 
51.23% and 58.23% in F-Measure.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hybrid knowledge 
extraction algorithm drawn from several research 
fields such as DM, IR, and IE. Specifically, we devel-
oped a novel extraction algorithm that consists of 1) 
keyphrase-based query expansion to spot promising 
documents and 2) Feature-enriched Conditional 
Random Field-based information extraction. We also 
conducted a series of experiments to validate three 
research hypotheses formed in this paper. 

The major contributions of this paper are three-
fold. First, this paper introduced a novel automatic 
query-based technique (DocSpotter) to retrieve 
articles that are promising for extraction of rela-
tions from text. It assumed only a minimal search 
interface to the text database, which can be adapted 
to new domains, databases, or target relations with 
minimal human effort. It automatically discovered 
characteristics of documents that are useful for ex-
traction of a target relation and refined queries per 
iteration to select potentially useful articles from the 
text databases. Second, a statistical generative model, 
Feature-enriched Conditional Random Field (FCRF), 
was proposed for automatic pattern generation and 
instances extraction. Third, we conducted a com-
prehensive evaluation of TAKES with other state-of-

Table 11.  ‌�Comparison of Extraction System Performance in 
Second Round

Extraction 
System Precision Recall F-Measure

RAPIER 57.12% 37.53% 44.87%

SVM 70.32% 42.37% 52.51%

MaxEnt 70.89% 43.22% 53.27%

Single POS 
HMM 66.58% 44.01% 52.80%

FCRF 73.13% 52.35% 60.32%

Fig. 7  Overall Extraction Performance of the Five Algorithms over 10 iterations
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the art algorithms. We collected 264,363 MEDLINE 
records from PubMed, and we also used TREC ad 
hoc track data collections to evaluate DocSpotter. 
Among MEDLINE records harvested, 4521 records 
contain protein-protein interaction pairs. With these 
records as well as OMIM and DIP protein-protein in-
teraction databases, we evaluated the performance of 
FCRF. As reported in Section 4, both DocSpotter and 
FCRF achieved the best performance over the other 
comparison algorithms. As a follow-up study, we will 
use BioInfer, the unified PPI database, for the PPI da-
tabase from which protein-protein pairs are extracted 
(Pyysalo, Ginter, Heimonen, Björne, Boberg, Järvin-
en, & Salakoski, 2007). 

The results of this paper stimulate further research 
in several directions. First, given that key-phrase-
based query expansion is proven to be effective, it is 
worthwhile to investigate how effective it is to apply 
the keyphrase-based technique to other research 
problems such as text summarization and categoriza-
tion. Text summarization is the process of identifying 
salient concepts in text narrative, conceptualizing the 
relationships that exist among them, and generating 
concise representations of input text that preserve the 
gist of its content. Keyphrase-based text summariza-
tion would be an interesting approach to summari-
zation in that summarizing the collections with top 
N ranked keyphrases generates semantically cohesive 
passages. In addition, a keyphrase-based approach 
could be applied to automatic class modeling. For 
example, keyphrases can be extracted from text de-
scriptions, such as functional requirements and class 
model descriptions. With extracted keyphrases, we 
can identify a set of core classes and its relationship 
with other classes. 

Second, it is interesting to investigate how FCRF 
performs when it is applied to other types of relation 
extractions such as subcellular-localization relation 
extraction. In addition, applying FCRF to other do-
mains such as Web data extraction would be a chal-
lenging but interesting research project. In addition 
to relation extraction, FCRF can be applied to entity 
extraction such as extracting CEO names from news-
wires.

Third, we plan to conduct additional evaluations 
on other data collections such as TREC Genomics 
and BioCreative data. These are the standard collec-

tions that allow us to compare DocSpotter and FCRF 
with other state-of-the-art algorithms.
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