
Optimizing multiplier design for enhanced processor

performance

Bilun Wu1, Zeyu Zhang2,3

1International College, Beijing University of Posts and Telecommunications, Beijing,

100876, China
2College of Computer and Communication Engineering, Zhengzhou University of

Light Industry, Zhengzhou, 450000, China

3Zhangzeyu@zzuli.edu.cn

Abstract. In processor design, the multiplier serves as a critical component whose operational

speed and efficiency directly impact the performance of the processor. To meet the demands of

rapidly advancing technology, enhancing processor performance is of paramount importance.

The crux of multiplier design lies in reducing the count of partial products and compressing them.

This paper presents the design of a multiplier that utilizes the Booth algorithm and the Wallace

tree structure for optimization, along with the incorporation of registers for secondary pipeline

processing to further elevate efficiency. The Booth algorithm selects the base-4 Booth algorithm,

effectively reducing the count of partial products and mitigating the optimization efficiency

reduction caused by circuit complexity. The Wallace tree structure employs a combination of 3-

2 and 4-2 compressors, resulting in decreased resource consumption and reduced critical path

delays. This paper outlines a step-by-step introduction to these three optimization methods and

conducts simulations and tests on the current multiplier after each optimization step. Through

simulation analysis, this paper confirms the success of the design and provides insights and

outcomes to the current field of multiplier optimization, aiming to ultimately drive advancements

in processor performance.

Keywords: Multiplier Optimization, Processor Performance, Booth Algorithm, Wallace Tree

Structure.

1. Introduction

The multiplier is one of the most important parts in the process of processor design, and its running

speed and efficiency directly determine the performance of the processor. In today's environment,

constantly improving processor performance is needed to match the rapid development of technology,

so it is necessary to carry out research related to multiplier optimization in this paper. The most important

part of the design of the multiplier is to reduce the number of partial products and compress the partial

product [1]. At present, the most mature optimization methods are Booth algorithm and Wallace tree

structure.

In this paper, a multiplier is designed, which adopts Booth algorithm and Wallace tree structure for

optimization, and inserts registers for secondary pipeline processing to further improve efficiency. Booth

algorithm selects the basis 4 Booth algorithm reduces the number of partial products and avoids the

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

280

problem of reduced optimization efficiency caused by circuit complexity. Wallace tree structure selects

the combination of 3-2 and 4-2 compressors to compress partial products, thus reducing resource

consumption and shortening critical path delay. In this paper, three optimization methods are introduced

step by step. After each optimization, the current multiplier is simulated and tested, and the simulation

data before the optimization is compared and analysed to confirm the optimization effect and facilitate

further optimization in the future. This paper confirms the success of this design after simulation analysis,

and provides some ideas and results for the current multiplier optimization field, hoping to promote the

performance upgrade of the processor eventually.

2. 32 bit multiplier design and optimization principle

2.1. 32-bit multiplier design principle

The design principle of the multiplier without optimization is similar to the method of vertical expansion

calculation of the base 10 column as shown in Figure 1.

Figure 1. Vertical expansion calculation (Photo/Picture credit: Original).

The multiplicator is not processed, and the multiplier is multiplied with the multiplicator bit by bit

from the lowest point, and the result obtained by each multiplication is temporarily stored as a partial

product until the multiplication operation is completed with the multiplicator at the highest point, and

all the partial products generated in the process are added [2]. The sum is the result of multiplication.

Because this original method has great defects in time delay and expansion area, it will not be used in

specific applications.

2.2. Related optimization principle of multiplier

2.2.1. Booth algorithm

Booth algorithm is used to optimize the number of non-0 partial products, and the number of non-0

partial products is effectively reduced when processing consecutive ones, thus reducing the level of the

adder, and improving efficiency. The more consecutive ones, the better the optimization effect. The

encoding form of the base 2Booth algorithm cannot reduce the number of generated partial products:

 𝑃 = 𝐴 × 𝐵 = 𝐴 × (∑(−𝑥𝑖 + 𝑥𝑖−1) × 2𝑖) (1)

The encoding form of the base 4 Booth algorithm will generate part of the product number as 1/2 of

the original number:

 𝑃 = 𝐴 × 𝐵 = 𝐴 × (∑(−2𝑥2𝑖+1 + 𝑥2𝑖 + 𝑥2𝑖−1) × 4𝑖) (2)

Therefore, it is more efficient to adopt the base 4 encoding form, and through the study of different

algorithm literature, it is shown that the base 4 Booth algorithm can maintain high speed operation while

maintaining low power operation in 32-bit operation [3].

The encoding form that generates fewer partial products, such as the base 8Booth encoding form,

can make the number of generated partial products 1/3 of the original number. However, due to the

change of the logic of generating partial products, it can no longer be realized through simple operations

such as shifting, and other components need to be introduced, which makes the generating circuit of

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

281

partial products complicated and reduces the optimization effect of part [4]. Therefore, it is not

considered in this paper. Instead, base 4 Booth algorithm is adopted.

2.2.2. Wallace Tree

The core of the Wallace tree compression structure is the compressor, which divides the accumulation

operation into multiple levels, and the full adder of each level is executed in parallel, so the delay of

each level is equivalent to the delay of a full adder, and the rapid accumulation of all parts of the product

can be completed with this compression structure [5].

Common are 3-2 compressors, the Carry Save Adder CSA (Carry Save Adder), and 4-2 compressors

with higher compression efficiency. However, if only the 3-2 compressor module is used as the basic

unit of the compression structure, the delay on the critical path will be increased, and the original design

flexibility will be reduced. If only 4-2 compressor is used as the basic unit of the compression structure,

it will increase the consumption of resources [6]. In order to take into account, the advantages of the two

compressors, this paper adopts the tree compression structure of 3-2 compressor and 4-2 compressor.

2.2.3. Pipeline design

The basic idea of pipeline design is to divide a repeated process into several sub-processes, and then use

special functional components to implement each sub-process. Because of the different components for

processing each child process, the child processes that need different processing components can be

executed in parallel [7]. The process is staggered in the time line, and the function components are

passed in turn to achieve the purpose of improving efficiency.

The path system is divided into digital processing units (stages), and registers are inserted between

each processing unit to temporarily store the data of the intermediate stages. The split units can be

executed in parallel in stages without affecting each other [8]. Therefore, the pipeline design can improve

the data throughput rate, that is, improve the data processing speed. As shown in Figure 2, can

significantly improve the efficiency in theory.

Task

A

Task

B

Task

C

Task

D

0.00 0.30 1.00 1.30 2.00 2.30 3.00 3.30 4.00
TIME:

Figure 2. Pipeline processing [8].

3. Design and optimization of 32-bit multiplier

3.1. Design of 32-bit multiplier

In binary, the cycle operation starts from the lowest part of the multiplier, traversing every bit of the

selected multiplier, if the value of the multiplier is 1, then this part of the product is the multiplicator, if

the value of the bit is 0, then this part of the product is all 0, every bit after the operation from the lowest

part of the operation, based on the previous part of the product, and the low part of the operation is filled

with 0.

After the code is expressed in this way, the main part of the multiplier design can be completed, and

the declaration and definition of the required variables can be added to the beginning of the code, and

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

282

the reset operation can be added to the main part and the introduction of the clock signal and the reset

signal can be completed.

3.2. 32-bit multiplier optimization

In this paper, the optimization operation is carried out step by step based on 32-bit multiplier, and the

optimization results are analysed and compared step by step, including Booth algorithm coding

optimization, Wallace tree structure compression, pipeline processing optimization.

3.2.1. Booth algorithm optimization

Table 1 enumerates all possible value cases for b2i+1b2ib2i−1, where Neg is the sign compensation bit

and PPi is the value that generates the partial product.

Table 1. Base 4 Booth encoding operation lookup table.

𝑏2𝑖+1𝑏2𝑖𝑏2𝑖−1 Neg 𝑃𝑃𝑖 Operation

000 0 +0 Add 0

001 0 +A Add A

010 0 +A Add A

011 0 +2A Move X to the left and add

100 1 -2A Complement X, shift to the left, add

101 1 -A Complement X, add

110 1 -A Complement X, add

111 1 -0 Minus 0

From the above table, the corresponding part product can be obtained quickly according to the

consecutive three digits of the continuous multiplier B. In binary, the *2 operation can be realized by

shifting one digit to the left. The implementation method is simple and does not require additional

complex circuits. The multiplier B is encoded in a base 4 Booth, and in order to be compatible with

unsigned numbers, a sign bit extension of one bit is performed in the highest bit, which is 0 when

operating for unsigned numbers. And give part of the product more than one bit width, to prevent the

problem of overflow after the multiplier A is shifted left.

Groups in groups of 3 bits, the highest bit and the lowest bit between each of the two adjacent groups

coincide, and an additional bit is added to the right of B[0], defined as B[-1], with the value 0. B[1:-1]

is the first group, B[3:1] is the second group, B[5:3] is the third group, and so on, a total of 17 groups

can be divided. The 17th group is not enough for 3 bits, so the highest bit is extended by a sign bit, and

the extension of the sign bit will not change the value of the complement data. According to the values

of each group and the search relationship in Table 3-1, corresponding partial products are obtained. A

total of 17 partial products are generated, which are defined as PP1 − PP17.

3.2.2. Wallace tree optimization

After Booth encoding optimizes the number of partial products, the accumulation process of the output

17 partial products is compressed by Wallace tree structure. If it were to use all the relatively simple and

flexible 3-2 compressors in this article, this paper would need six stages of compression and one full

addition [9]. In this paper considering the two level 3-2 compression after eight output value, 4-2

compressors can just completely compress, so the third level using 4-2 compressors, and produces four

intermediate results, again through the level 4-2 compressors to two intermediate results, finally the use

of a full adder, can get the final computation results, using the total level 4 compression level and above.

The combined use of the two compressors in this paper can greatly shorten the critical path length again

and improve the efficiency, as shown in Figure 3 and 4.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

283

PP17 PP16 PP15 PP14 PP13 PP12 PP11 PP10 PP9 PP8 PP7 PP6 PP5 PP4 PP3 PP2 PP1

3-2

Compressor

Level 1.1

3-2

Compressor

Level 1.2

3-2

Compress

Level 1.3

3-2

Compressor

Level 1.4

3-2

Compressor

Level 2.1

3-2

Compressor

Level 1.5

3-2

Compressor

Level 2.4

3-2

Compressor

Level 2.3

3-2

Compressor

Level 2.2

3-2

Compressor

Level 3.2

3-2

Compressor

Level 3.1

3-2

Compressor

Level 4.1

3-2

Compressor

Level 4.2

3-2

Compressor

Level 5.1

3-2

Compressor

Level 6.1

FULL

ADDER

FINAL

RESULT

Figure 3. 3-2 compression (Photo/Picture credit: Original).

PP17 PP16 PP15 PP14 PP13 PP12 PP11 PP10 PP9 PP8 PP7 PP6 PP5 PP4 PP3 PP2 PP1

3-2

Compressor

Level 1.1

3-2

Compressor

Level 1.2

3-2

Compressor

Level 1.3

3-2

Compressor

Level 1.4

3-2

Compressor

Level 2.1

3-2

Compressor

Level 1.5

3-2

Compressor

Level 2.4

3-2

Compressor

Level 2.3

3-2

Compressor

Level 2.2

FULL

ADDER

FINAL

RESULT

4-2

Compressor

Level 3.1

4-2

Compressor

Level 3.2

4-2

Compressor

Level 4.1

Figure 4. 4-2 compression (Photo/Picture credit: Original).

3.2.3. Pipeline design optimization

Finally, the entire multiplication operation is divided into two parts, and the intermediate state is saved

with a register for pipelining, which is divided into the following two stages: The first stage: Input: two

operands A and B of the multiplier, clock signal clk, enable signal en. Output: The intermediate result

of a partial product. In this stage, the two operands are processed according to the Booth algorithm to

produce an intermediate result of a partial product. The second stage: Input: Intermediate result from

previous stage, clock signal clk, enable signal en. Output: The final product result after Wallace tree

optimization. In this stage, the Wallace tree structure is used to compute multiple intermediate results in

parallel to obtain the final product result [10].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

284

4. Simulation test in Modelsim

4.1. Booth algorithm optimization simulation results

Figure 5 shows the simulation result of 3.0x1234*0x1234=0x14B5A90 waveform in the test booth

algorithm. We can see that y_reg is initialized to 0x1234< < 1 = 0x2468. Then y_reg moves to the

right one bit at a time to get 0x2468, 0x1234, 0x91A, After that x_minus = -x = 0xFFFFEDCC. The

result is 0x14B5A90. From this, we can see that the design of booth algorithm is successful, and it is

faster and more efficient than the traditional algorithm.

Figure 5. Simulation result of 3.0x1234*0x1234=0x14B5A90 waveform (Photo/Picture credit:

Original).

4.2. Wallace tree optimization Simulation result

The main optimization of the Wallace tree is to cover the "tree" with full adder and half adder repeatedly,

starting from the most data-dense place. In Figure 6, the simulation results meet expectations and are

more efficient than traditional multipliers.

Figure 6. Wallace tree optimization Simulation result (Photo/Picture credit: Original).

4.3. Pipeline design optimization simulation results

Figure 7 shows the multiplier without pipelined structure and Figure 8 shows the multiplier optimized

with pipelined structure.

Figure 7. Multiplier without pipelined structure (Photo/Picture credit: Original).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

285

Figure 8. Multiplier optimized with pipelined structure (Photo/Picture credit: Original).

It can obviously see that after using the pipeline structure, after a certain clock cycle, each clock

cycle will output a multiplication result, and the multiplier without the pipeline structure, each result

must wait for a certain clock cycle, the pipeline structure is indeed a great help to improve the computing

efficiency. At the same time, pipeline structure also consumes a lot of hardware storage resources, which

is a very typical design idea of using resources for efficiency.

5. Conclusion

Through this study, this paper delves into the key methods of optimizing multipliers in processor design

to enhance processor performance and efficiency. By employing the optimization techniques of the

Booth algorithm and Wallace tree structure, this paper effectively reduces the count of partial products

and compresses the multiplication results, resulting in a significant reduction in critical path delays and

resource consumption. During the optimization process, the introduction of pipeline design further

boosts data throughput, achieving higher data processing speeds.

Simulation testing validates the effectiveness of each optimization step in this paper. The application

of the Booth algorithm enhances the efficiency of partial product calculations, leading to faster

computation speeds compared to traditional methods. The optimization of the Wallace tree structure

further shortens computation paths, enhancing overall efficiency. The incorporation of pipeline design

ensures that a multiplication result can be generated in each clock cycle, substantially accelerating

computation speeds.

In summary, the design and optimization methods presented in this paper yield notable results in

enhancing processor performance. The experimental results of this paper demonstrate that by employing

the Booth algorithm, Wallace tree structure, and pipeline design, it is possible to simultaneously

maintain high efficiency while effectively reducing latency and resource utilization. This provides

valuable reference and guidance for further research and optimization in the field of processor design,

with the potential to contribute to continuous improvements in processor performance. Through this

study, the paper provides a practical and feasible solution for optimizing the application of multipliers

in processor design, marking an important stride in the advancement of processor technology.

Authors Contribution

The authors contributed to this work in the following ways:

• Zeyu Zhang: Conceptualization, Investigation, Methods, Writing – Half of the Original Draft,

Review & Editing.

• Bilun Wu: Data Curation, Validation, Visualization, Writing – Half of the Original Draft, Review

& Editing.

All the authors contributed equally and their names were listed in alphabetical order.

References

[1] Sakali Raghavendra Kumar,Veeramachaneni Sreehari & Mahammad Sk Noor.(2023).Preferential

fault-tolerance multiplier design to mitigate soft errors in FPGAs. Integration.

[2] Saleh Omar S..(2023).RCAM: Resource Constraint Approximate Multiplier Design for Deep

Convolutional Neural Network Accelerator. SN Computer Science(4).

[3] Barma Venkata RamaLakshmi & Fazal Noorbasha.(2021).FPGA Implementation of Optimized

Radix 4 and Radix 8 Booth Algorithm. International Journal of Performability Engineering(6).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

286

[4] Tamilselvan S,Dharani S,Ramesh R & HemaPriya K.(2021).Implementation of efficient MAC

for DSP applications using Modified Booth Encoding algorithm technique. IOP Conference

Series: Materials Science and Engineering(1).

[5] Ponraj Jeyakumar,Jeyabharath R.,Veena P. & Srihari Tharumar.(2023).High-performance

multiply-accumulate unit by integrating binary carry select adder and counter-based modular

wallace tree multiplier for embedding system. Integration.

[6] Malathi L.,Bharathi A. & Jayanthi A. N..(2022).RDO-WT: optimised Wallace Tree multiplier

based FIR filter for signal processing applications. International Journal of Electronics(10).

[7] Shekari Mahnaz,García David Vállez,Collij Lyduine E.,Heeman Fiona,RoéVellvé Núria,Bullich

Santiago... & Gispert Juan Domingo.(2022).Evaluating the sensitivity of Centiloid

quantification to pipeline design and image resoloution. Alzheimer's & Dementia.

[8] Hemalatha K N & Sangeetha B G.(2022).Efficient Design of Compact 8-bit Wallace Tree

Multiplier Using Reversible Logic. International Journal of Engineering and

Manufacturing(IJEM)(4).

[9] Mummudi Murasu M,Sujith Sanjana,Anita Angeline A,Sasi Priya P. & Kanchana Bhaaskaran V

S.(2021).High Performance Wallace Tree Multiplier Using Majority Gate Based Adders. IOP

Conference Series: Materials Science and Engineering(1).

[10] Vaibhavi Solanki,A. D. Darji & Harikrishna Singapuri.(2021).Design of Low-Power Wallace

Tree Multiplier Architecture Using Modular Approach. Circuits, Systems, and Signal

Processing(9).

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/38/20230564

287

