@inproceedings{dunietz-etal-2020-test,
title = "To Test Machine Comprehension, Start by Defining Comprehension",
author = "Dunietz, Jesse and
Burnham, Greg and
Bharadwaj, Akash and
Rambow, Owen and
Chu-Carroll, Jennifer and
Ferrucci, Dave",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.701/",
doi = "10.18653/v1/2020.acl-main.701",
pages = "7839--7859",
abstract = "Many tasks aim to measure machine reading comprehension (MRC), often focusing on question types presumed to be difficult. Rarely, however, do task designers start by considering what systems should in fact comprehend. In this paper we make two key contributions. First, we argue that existing approaches do not adequately define comprehension; they are too unsystematic about what content is tested. Second, we present a detailed definition of comprehension{---}a {\textquotedblleft}Template of Understanding{\textquotedblright}{---}for a widely useful class of texts, namely short narratives. We then conduct an experiment that strongly suggests existing systems are not up to the task of narrative understanding as we define it."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dunietz-etal-2020-test">
<titleInfo>
<title>To Test Machine Comprehension, Start by Defining Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jesse</namePart>
<namePart type="family">Dunietz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Burnham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akash</namePart>
<namePart type="family">Bharadwaj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">Chu-Carroll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dave</namePart>
<namePart type="family">Ferrucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many tasks aim to measure machine reading comprehension (MRC), often focusing on question types presumed to be difficult. Rarely, however, do task designers start by considering what systems should in fact comprehend. In this paper we make two key contributions. First, we argue that existing approaches do not adequately define comprehension; they are too unsystematic about what content is tested. Second, we present a detailed definition of comprehension—a “Template of Understanding”—for a widely useful class of texts, namely short narratives. We then conduct an experiment that strongly suggests existing systems are not up to the task of narrative understanding as we define it.</abstract>
<identifier type="citekey">dunietz-etal-2020-test</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.701</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.701/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7839</start>
<end>7859</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T To Test Machine Comprehension, Start by Defining Comprehension
%A Dunietz, Jesse
%A Burnham, Greg
%A Bharadwaj, Akash
%A Rambow, Owen
%A Chu-Carroll, Jennifer
%A Ferrucci, Dave
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F dunietz-etal-2020-test
%X Many tasks aim to measure machine reading comprehension (MRC), often focusing on question types presumed to be difficult. Rarely, however, do task designers start by considering what systems should in fact comprehend. In this paper we make two key contributions. First, we argue that existing approaches do not adequately define comprehension; they are too unsystematic about what content is tested. Second, we present a detailed definition of comprehension—a “Template of Understanding”—for a widely useful class of texts, namely short narratives. We then conduct an experiment that strongly suggests existing systems are not up to the task of narrative understanding as we define it.
%R 10.18653/v1/2020.acl-main.701
%U https://aclanthology.org/2020.acl-main.701/
%U https://doi.org/10.18653/v1/2020.acl-main.701
%P 7839-7859
Markdown (Informal)
[To Test Machine Comprehension, Start by Defining Comprehension](https://aclanthology.org/2020.acl-main.701/) (Dunietz et al., ACL 2020)
- To Test Machine Comprehension, Start by Defining Comprehension (Dunietz et al., ACL 2020)
ACL
- Jesse Dunietz, Greg Burnham, Akash Bharadwaj, Owen Rambow, Jennifer Chu-Carroll, and Dave Ferrucci. 2020. To Test Machine Comprehension, Start by Defining Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7839–7859, Online. Association for Computational Linguistics.