@inproceedings{wenger-etal-2021-automated,
title = "Automated Extraction of Sentencing Decisions from Court Cases in the {H}ebrew Language",
author = "Wenger, Mohr and
Kalir, Tom and
Berger, Noga and
Chalamish, Carmit Klar and
Keydar, Renana and
Stanovsky, Gabriel",
editor = "Aletras, Nikolaos and
Androutsopoulos, Ion and
Barrett, Leslie and
Goanta, Catalina and
Preotiuc-Pietro, Daniel",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.nllp-1.4/",
doi = "10.18653/v1/2021.nllp-1.4",
pages = "36--45",
abstract = "We present the task of Automated Punishment Extraction (APE) in sentencing decisions from criminal court cases in Hebrew. Addressing APE will enable the identification of sentencing patterns and constitute an important stepping stone for many follow up legal NLP applications in Hebrew, including the prediction of sentencing decisions. We curate a dataset of sexual assault sentencing decisions and a manually-annotated evaluation dataset, and implement rule-based and supervised models. We find that while supervised models can identify the sentence containing the punishment with good accuracy, rule-based approaches outperform them on the full APE task. We conclude by presenting a first analysis of sentencing patterns in our dataset and analyze common models' errors, indicating avenues for future work, such as distinguishing between probation and actual imprisonment punishment. We will make all our resources available upon request, including data, annotation, and first benchmark models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wenger-etal-2021-automated">
<titleInfo>
<title>Automated Extraction of Sentencing Decisions from Court Cases in the Hebrew Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohr</namePart>
<namePart type="family">Wenger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kalir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noga</namePart>
<namePart type="family">Berger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carmit</namePart>
<namePart type="given">Klar</namePart>
<namePart type="family">Chalamish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Renana</namePart>
<namePart type="family">Keydar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Natural Legal Language Processing Workshop 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ion</namePart>
<namePart type="family">Androutsopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leslie</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catalina</namePart>
<namePart type="family">Goanta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Preotiuc-Pietro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the task of Automated Punishment Extraction (APE) in sentencing decisions from criminal court cases in Hebrew. Addressing APE will enable the identification of sentencing patterns and constitute an important stepping stone for many follow up legal NLP applications in Hebrew, including the prediction of sentencing decisions. We curate a dataset of sexual assault sentencing decisions and a manually-annotated evaluation dataset, and implement rule-based and supervised models. We find that while supervised models can identify the sentence containing the punishment with good accuracy, rule-based approaches outperform them on the full APE task. We conclude by presenting a first analysis of sentencing patterns in our dataset and analyze common models’ errors, indicating avenues for future work, such as distinguishing between probation and actual imprisonment punishment. We will make all our resources available upon request, including data, annotation, and first benchmark models.</abstract>
<identifier type="citekey">wenger-etal-2021-automated</identifier>
<identifier type="doi">10.18653/v1/2021.nllp-1.4</identifier>
<location>
<url>https://aclanthology.org/2021.nllp-1.4/</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>36</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Extraction of Sentencing Decisions from Court Cases in the Hebrew Language
%A Wenger, Mohr
%A Kalir, Tom
%A Berger, Noga
%A Chalamish, Carmit Klar
%A Keydar, Renana
%A Stanovsky, Gabriel
%Y Aletras, Nikolaos
%Y Androutsopoulos, Ion
%Y Barrett, Leslie
%Y Goanta, Catalina
%Y Preotiuc-Pietro, Daniel
%S Proceedings of the Natural Legal Language Processing Workshop 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F wenger-etal-2021-automated
%X We present the task of Automated Punishment Extraction (APE) in sentencing decisions from criminal court cases in Hebrew. Addressing APE will enable the identification of sentencing patterns and constitute an important stepping stone for many follow up legal NLP applications in Hebrew, including the prediction of sentencing decisions. We curate a dataset of sexual assault sentencing decisions and a manually-annotated evaluation dataset, and implement rule-based and supervised models. We find that while supervised models can identify the sentence containing the punishment with good accuracy, rule-based approaches outperform them on the full APE task. We conclude by presenting a first analysis of sentencing patterns in our dataset and analyze common models’ errors, indicating avenues for future work, such as distinguishing between probation and actual imprisonment punishment. We will make all our resources available upon request, including data, annotation, and first benchmark models.
%R 10.18653/v1/2021.nllp-1.4
%U https://aclanthology.org/2021.nllp-1.4/
%U https://doi.org/10.18653/v1/2021.nllp-1.4
%P 36-45
Markdown (Informal)
[Automated Extraction of Sentencing Decisions from Court Cases in the Hebrew Language](https://aclanthology.org/2021.nllp-1.4/) (Wenger et al., NLLP 2021)
- Automated Extraction of Sentencing Decisions from Court Cases in the Hebrew Language (Wenger et al., NLLP 2021)
ACL
- Mohr Wenger, Tom Kalir, Noga Berger, Carmit Klar Chalamish, Renana Keydar, and Gabriel Stanovsky. 2021. Automated Extraction of Sentencing Decisions from Court Cases in the Hebrew Language. In Proceedings of the Natural Legal Language Processing Workshop 2021, pages 36–45, Punta Cana, Dominican Republic. Association for Computational Linguistics.