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Abstract

Knowledge graph embedding aims to repre-
sent entities and relations as low-dimensional
vectors, which is an effective way for pre-
dicting missing links. It is crucial for knowl-
edge graph embedding models to model and
infer various relation patterns, such as sym-
metry/antisymmetry. However, many existing
approaches fail to model semantic hierarchies,
which are common in the real world. We pro-
pose a new model called HRQE, which rep-
resents entities as pure quaternions. The re-
lational embedding consists of two parts: (a)
Using unit quaternions to represent the rotation
part in 3D space, where the head entities are
rotated by the corresponding relations through
Hamilton product. (b) Using scale parameters
to constrain the modulus of entities to make
them have hierarchical distributions. To the
best of our knowledge, HRQE is the first model
that can encode symmetry/antisymmetry, inver-
sion, composition, multiple relation patterns
and learn semantic hierarchies simultaneously.
Experimental results demonstrate the effective-
ness of HRQE against some of the SOTA meth-
ods on four well-established knowledge graph
completion benchmarks.

1 Introduction

Knowledge graphs represent human knowledge of
the real world as structured triples— (head entity,
relation, tail entity) also known as (subject, predi-
cate, object). There are some outstanding knowl-
edge graphs, such as WordNet (Miller, 1995), Free-
base (Bollacker et al., 2008), DBpedia (Lehmann
et al., 2015). They have gained widespread at-
tention for their successful usage in various ap-
plications (e.g., question answering, natural lan-
guage processing, and recommendation systems).
Although millions of entities and billions of facts
exist in large-scale knowledge graphs, they still
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suffer from the incompleteness problem. There-
fore, knowledge graph completion (also known
as link prediction) which aims to predict missing
links among entities based on the known triples has
gained growing interest. Learning low-dimensional
representations of entities and relations for Knowl-
edge graphs is an effective solution for this task.

Learning knowledge graph embeddings in the
complex space C or quaternion space H has been
proven to be a highly effective inductive bias,
largely owing to their ability to model connectiv-
ity patterns of the relations. For example, Com-
plEx (Trouillon et al., 2016), which infers new re-
lational triplets with the asymmetrical Hermitian
product can model the symmetry/antisymmetry pat-
terns. RotatE (Sun et al., 2019), which represents
entities as points in a complex space and relations
as rotations, can model relation patterns including
symmetry/antisymmetry, inversion, and composi-
tion. DualE (Cao et al., 2021), which combines
rotation and translation in dual quaternion space
can additionally model the multiple relations pat-
tern. However, many existing models fail to model
semantic hierarchies in knowledge graphs.

Semantic hierarchy is a ubiquitous property
in knowledge graphs. For instance, Word-
Net contains the triple [arbor/cassia/palm, hy-
pernym, tree], where “tree” is at a higher
level than “arbor/cassia/palm” in the hierarchy.
Freebase contains the triple [America, /loca-
tion/location/contains, California/Los Angeles],
where “California/Los Angeles” is at a lower level
than “America” in the hierarchy. Although there
exists some work that takes the hierarchy structures
into account (Xie et al., 2016; Zhang et al., 2020),
they usually require additional data to obtain the
hierarchy information or cannot model various re-
lation patterns. Therefore, it is still challenging to
find an approach that is capable of modeling the
various relation patterns and semantic hierarchy
simultaneously.
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Model Relation Patterns Hierarchy
Multiple Symmetry Antisymmetry Inversion Composition -Aware

TransE (Bordes et al., 2013) ✗ ✗ ✓ ✓ ✓ ✗

DistMult (Yang et al., 2015) ✗ ✓ ✗ ✗ ✗ ✗

ComplEx (Trouillon et al., 2016) ✗ ✓ ✓ ✓ ✗ ✗

RotatE (Sun et al., 2019) ✗ ✓ ✓ ✓ ✓ ✗

QuatE (Zhang et al., 2019) ✗ ✓ ✓ ✓ ✗ ✗

HAKE (Zhang et al., 2020) ✗ ✓ ✓ ✓ ✓ ✓

DualE (Cao et al., 2021) ✓ ✓ ✓ ✓ ✓ ✗

QuatRE (Nguyen et al., 2022) ✓ ✓ ✓ ✓ ✗ ✗

RQE ✓ ✓ ✓ ✓ ✓ ✗

HRQE ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The pattern modeling and hierarchy-aware abilities of several models

In this paper, we propose Rotation Based
Quaternion Knowledge Graph Embeddings (RQE)
and its Hierarchy-aware extension HRQE. More
concretely, we represent entities as pure quater-
nions with three imaginary components i, j and k.
The relational embedding consists of two parts: (a)
Using unit quaternions to represent the rotation part
in 3D space, where the head entities 𝑄ℎ are rotated
by the corresponding relations through Hamilton
product. (b) Using scale parameters to constrain
the modulus of entities 𝑄ℎ and 𝑄𝑡 to make them
have hierarchical distributions.

To summarize, our contributions are as follows:
1) We propose a new framework called HRQE
based on quaternion rotation. 2) To the best of
our knowledge, HRQE is the first model that can
encode symmetry/antisymmetry, inversion, compo-
sition, multiple relation patterns and learn semantic
hierarchies simultaneously. 3) We conduct a se-
ries of theoretical and empirical analyses to show
the strength of HRQE against some of the SOTA
methods.

2 Related Work

2.1 Knowledge Graph Embedding Models

Roughly speaking, we can divide knowledge graph
embedding models into translational distance mod-
els and semantic matching models. The former use
distance-based score functions, while the latter use
similarity-based ones.

Translational Distance Models. TransE (Bor-
des et al., 2013) is the most widely used translation
distance constraint model. It assumes that enti-
ties and relations satisfy ℎ𝑒𝑎𝑑 + 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ≈ 𝑡𝑎𝑖𝑙.
However, TransE cannot handle 1-1-N, N-1-1, and
N-1-N relations well (Wang et al., 2014). TransH
(Wang et al., 2014) is proposed to compensate for

the shortcomings of TransE. It projects entities onto
relation-specific hyperplanes. TransR (Lin et al.,
2015) has a very similar idea to TransH, which in-
troduces relation-specific spatial transformations
instead of hyperplanes. TranSparse (Ji et al., 2016)
simplifies TransR by forcing the projection matrix
to be sparse. Moreover, RotatE (Sun et al., 2019)
defines each relation as a rotation from the source
entity to the target entity in a complex vector space,
which can represent various relation patterns in-
cluding symmetry/asymmetry, inversion and com-
position.

Semantic Matching Models. RESCAL (Nickel
et al., 2011) is a tensor factorization model which
represents each relation as a full-rank matrix and
obtains score function by matrix multiplication.
DistMult (Yang et al., 2015) simplifies RESCAL
by restricting relation matrices to be diagonal.
However, Distmult assumes that all relations are
symmetric. ComplEx (Trouillon et al., 2016)
extends DistMult to complex space, and uses
conjugate-transpose to model asymmetric rela-
tions. QuatE (Zhang et al., 2019) extends the
complex space into the quaternion space with two
rotating surfaces. DualE (Cao et al., 2021) com-
bines rotation and translation in dual quaternion
space. ConvE (Dettmers et al., 2018) and Inter-
actE (Vashishth et al., 2020) employ convolutional
neural networks to build score functions.

2.2 The Ways to Model Hierarchy Structures

Another related problem is how to model hierar-
chy structures in knowledge graphs. Xie et al.
(2016) propose TKRL, which requires additional
hierarchical type information for entities. Zhang
et al. (2018) use clustering algorithms to model
the hierarchical relation structures. Zhang et al.
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Figure 1: Illustrations of HRQE. (a) HRQE models 𝑟 as rotation in 3D space. (b) Example of HRQE modeling
multiple relations. (c) An example HRQE of modeling symmetric relations with 𝜃 = 180◦. (d) Example of HRQE
modeling different levels of the hierarchy.

(2020) proposed HAKE, which maps entities into
the polar coordinate system for hierarchy-aware.
Inspired by HAKE, we project entities into 3D
space and constrain their rotations and modulus
with corresponding relations. In addition to learn-
ing the semantic hierarchy, we can better encode
various relation patterns such as multiple relations.

3 Quaternion Background

A quaternion 𝑄 ∈ H is a hyper-complex num-
ber consisting of a real and three separate imag-
inary components (Hamilton, 1844), defined as
𝑄 = 𝑎 + 𝑏i + 𝑐j + 𝑑k, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R and
i, j, k are imaginary units. i, j and k are satisfied
with Hamilton’s rules (i2 = j2 = k2 = ijk = −1).
And based on these rules, more non-commutative
multiplication rules can be derived, such as ij =

k, ji = −k, jk = i, kj = −i, ki = j, and ik = −j.
Some widely used operations of quaternion algebra
are introduced as follows:
Quaternion Conjugate: The conjugate of a quater-
nion 𝑄 is defined as �̄� = 𝑎 − 𝑏i − 𝑐j − 𝑑k.
Quaternion Norm: The norm of a quaternion 𝑄

is defined as |𝑄 | =
√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.

Pure Quaternion: A pure quaternion 𝑄 ∈ H𝑝 is
defined as a quaternion whose scalar part is zero.
Usually, we convert the 3D space point (𝑥, 𝑦, 𝑧)
into a pure quaternion 𝑄 = 0+ 𝑥i+ 𝑦j+ 𝑧k, 𝑥, 𝑦 and
𝑧 ∈ R for further quaternion operations.
Quaternion-Inner Product: The quaternion inner
product between 𝑄1 = 𝑎1 + 𝑏1i + 𝑐1j + 𝑑1k and
𝑄2 = 𝑎2 + 𝑏2i + 𝑐2j + 𝑑2k is obtained by taking
the inner products between corresponding scalar
and imaginary components and returns a scalar
𝑄1 · 𝑄2 = ⟨𝑎1, 𝑎2⟩ + ⟨𝑏1, 𝑏2⟩ + ⟨𝑐1, 𝑐2⟩ + ⟨𝑑1, 𝑑2⟩.
Quaternion Multiplication (Hamilton Product):
The quaternion multiplication is composed of all
the standard multiplications of factors in quater-

nions and returns another quaternion, defined as:

𝑄1 ⊗ 𝑄2 = (𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2)
+ (𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2)i
+ (𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 + 𝑑1𝑏2)j
+ (𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2)k.

(1)

Quaternion Rotation: If 𝑄𝑟 = cos 𝜃
2 + sin 𝜃

2 u,
where u ∈ Ri + Rj + Rk is a unit vector, the re-
sult of pure quaternion 𝑄 = 0+ 𝑥i+ 𝑦j+ 𝑧k rotating
𝜃 around the axis u is 𝑄 ′ = 0 + 𝑥 ′i + 𝑦′j + 𝑧′k, then

𝑄 ′ = 𝑄𝑟 ⊗ 𝑄 ⊗ �̄�𝑟 . (2)

4 Method

In this section, we introduce our proposed model
HRQE. First of all, we elaborate the details of our
framework, which mainly consists of two parts:
(1) rotate the head entity using the unit relation
quaternion and score each triplet with inner prod-
uct between the rotated head quaternion and the tail
quaternion; (2) limit the norm of the head quater-
nion and the tail quaternion with the relation modu-
lus part. After that, we provide a series of analyses
to show the strength of our framework.

Symbol Description. Suppose that we have a
knowledge graph G consisting of 𝑁 entities and
𝑀 relations. We formulate the all entity embed-
dings as a pure quaternion matrix 𝑄 ∈ H𝑁×𝑘

𝑝 ,
where each row is an embedding vector for a spe-
cific entity of dimensionality k, and denote the
relation embeddings as rotation part 𝑊 ∈ H𝑀×𝑘

and modulus part 𝑤 ∈ R𝑀×𝑘 . Given a triplet
(ℎ, 𝑟, 𝑡), the embedding of head entity ℎ is denoted
as 𝑄ℎ = {0 + 𝑥ℎi + 𝑦ℎj + 𝑧ℎz : 𝑥ℎ, 𝑦ℎ, 𝑧ℎ ∈ R𝑘}
and the embedding of the tail entity 𝑄𝑡 = {0+ 𝑥𝑡 i+
𝑦𝑡 j + 𝑧𝑡z : 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ∈ R𝑘}, where 𝑄ℎ, 𝑄𝑡 ∈ 𝑄.
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Then we denote the relation 𝑟 as rotation part
𝑊𝑟 = {𝑎𝑟 + 𝑏𝑟 i + 𝑐𝑟 j + 𝑑𝑟z : 𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟 , 𝑑𝑟 ∈ R𝑘}
and modulus part 𝑤𝑟 = {𝑒𝑟 : 𝑒𝑟 ∈ R𝑘}, where
𝑊𝑟 ∈ 𝑊, 𝑤𝑟 ∈ 𝑤.

4.1 Hierarchy-Aware Rotation Quaternion
Embeddings

The Rotation Part. We first normalize the relation
quaternion 𝑊𝑟 to a unit quaternion 𝑊◁𝑟 to eliminate
the scaling effect by dividing 𝑊𝑟 by its norm:

𝑊◁𝑟 =
𝑊𝑟

|𝑊𝑟 |
=
𝑎𝑟 + 𝑏𝑟 i + 𝑐𝑟 j + 𝑑𝑟k
𝑎2
𝑟 + 𝑏2

𝑟 + 𝑐2
𝑟 + 𝑑2

𝑟

. (3)

Secondly, we rotate the head entity 𝑄ℎ by doing
Hamilton product with 𝑊◁𝑟 and �̄�◁𝑟 :

𝑄 ′
ℎ (𝑟

′
ℎ, 𝑥

′
ℎ, 𝑦

′
ℎ, 𝑧

′
ℎ) = 𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 , (4)

where ⊗ denotes the element-wise multiplication
between two vectors. Then the rotation part scoring
function 𝜙𝑟 (ℎ, 𝑟, 𝑡) is defined by the quaternion
inner product:

𝜙𝑟 (ℎ, 𝑟, 𝑡) = 𝑄 ′
ℎ ·𝑄𝑡 = ⟨𝑥 ′ℎ, 𝑥𝑡⟩+ ⟨𝑦

′
ℎ, 𝑦𝑡⟩+ ⟨𝑧

′
ℎ, 𝑧𝑡⟩.

(5)
We separate the rotation part as an independent

model RQE, which achieves impressive results (re-
fer to Section 5).

The Modulus Part. As shown in Figure 1a,
the rotation part allows the head entity to rotate
in 3D space to approximate the tail entity. The
modulo length of entities is used to represent the
hierarchical distribution of entities. The modulus
part of relations is used to measure the hierarchical
difference between head and tail entities, which is
beneficial for learning hierarchy-aware, see Section
4.2 for details. The modulus part scoring function
𝜙𝑚(ℎ, 𝑟, 𝑡) is defined as:

𝜙𝑚(ℎ,𝑟, 𝑡) = −∥𝑤𝑟 |𝑄ℎ | − |𝑄𝑡 |∥1

= −
𝑤𝑟

√︃
𝑥2
ℎ
+ 𝑦2

ℎ
+ 𝑧2

ℎ
−
√︃
𝑥2
𝑡 + 𝑦2

𝑡 + 𝑧2
𝑡


1
.

(6)

Finally, The scoring function of HRQE is:

𝜙(ℎ, 𝑟, 𝑡) = 𝜙𝑟 (ℎ, 𝑟, 𝑡) + 𝜆𝜙𝑚(ℎ, 𝑟, 𝑡), (7)

where 𝜆 ∈ R is a parameter that learned by the
model.

Loss Function. Following Trouillon et al.
(2016), We formulate the task as a classification
problem and adopt the cross-entropy loss as our
loss function. Ω and Ω′ = E × R × E −Ω are used
to denote the set of observed triplets and the set
of unobserved triplets, respectively. Moreover, we
use the ℓ2 norm with regularization rates 𝜆1 and 𝜆2
to regularize 𝑄 and 𝑊 :

𝐿 =
∑︁

𝑟 (ℎ,𝑡) ∈Ω∪Ω−
log(1 + exp(−𝑌ℎ𝑟𝑡𝜙(ℎ, 𝑟, 𝑡)))

+ 𝜆1∥𝑄∥2
2 + 𝜆2∥𝑊 ∥2

2,

(8)

where Ω− ⊂ Ω′ with negative sampling strate-
gies such as uniform sampling, bernoulli sam-
pling (Wang et al., 2014), and adversarial sam-
pling (Sun et al., 2019). 𝑌ℎ𝑟𝑡 ∈ {−1, 1} repre-
sents the corresponding label of the triplet (ℎ, 𝑟, 𝑡).
We optimize the loss function by utilizing Ada-
grad (Duchi et al., 2011).

4.2 Discussion

In this part, we discuss the theoretical properties
of HRQE. We summarize several popular knowl-
edge graph embedding models in Appendix A.5
and definitions of various relation patterns in Ap-
pendix A.1.

Capability in Modeling Multiple Relations.
For multiple relations such as (A, classmate, B)
and (A, neighbor, B) ∈ G, HRQE allows multiple
expressions for the relations when the head and tail
entities are fixed. As shown in Figure 1b (here the
modulus part is simplified as 𝑤𝑟 = 1), the red arc
passes through r vertex 𝑃𝑟 and the angle bisector
vertex 𝑃𝜃/2. r′ with vertex on the red arc can also
make h rotate to t. That is, ∃𝑟 ′ ≠ 𝑟, (ℎ, 𝑟, 𝑡) and
(ℎ, 𝑟 ′, 𝑡) ∈ G.

Capability in Modeling Symmetry /Antisym-
metry, Inversion and Composition. The flexibil-
ity and representational power of quaternion rota-
tion enable us to model various relation patterns
at ease. Since HRQE degenerates to RQE when
𝜆 = 0, we mainly use RQE to discuss. When the
rotation angle 𝜃 = [0◦, 180◦, 270◦, 360◦], RQE can
model the symmetry pattern, and when 𝑊◁

𝑟1 = �̄�◁
𝑟2,

RQE can model the inversion pattern. The specific
lemmas and proofs are as follows:

Lemma 1 HRQE can infer the symmetry /antisym-
metry pattern. (See proof in Appendix A.2)
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Models
WN18 FB15K

Hits(%) Hits(%)
MR MRR(%) @10 @3 @1 MR MRR @10 @3 @1

TransE - 49.5 94.3 88.8 11.3 - 46.3 74.9 57.8 28.7
DistMult 655 79.7 94.6 - - 42.2 79.8 89.3 - -
HolE - 93.8 94.9 94.5 93.0 - 52.4 73.9 75.9 59.9
ComplEx - 94.1 94.7 94.5 93.6 - 69.2 84.0 75.9 59.9
ConvE 374 94.3 95.6 94.6 93.5 51 65.7 83.1 72.3 55.8
R-GCN+ - 81.9 96.4 92.9 69.7 - 69.6 84.2 76.0 60.1
SimplE - 94.2 94.7 94.4 93.9 - 72.7 83.8 77.3 66.0
NKGE 366 94.7 95.7 94.9 94.2 56 73 87.1 79.0 65.0
TorusE - 94.7 95.4 95.0 94.3 - 73.3 83.2 77.1 67.4
RotatE 184 94.7 96.1 95.3 93.8 32 69.9 87.2 78.8 58.5
a-RotatE 309 94.9 95.9 95.2 94.4 40 79.7 88.4 83.0 74.6
QuatE 162 95.0 95.9 95.4 94.5 17 78.2 90.0 83.5 71.1
Rotat3D 214 95.1 96.1 95.3 94.5 39 78.9 88.7 83.5 72.8

RQE 117 95.2 96.3 95.6 94.5 23 81.3 89.2 84.3 76.6
HRQE 72 95.2 96.5 95.6 94.4 32 79.1 88.7 83.7 73.0

Table 2: Evaluation results on WN18, FB15k datasets. The best scores are in bold, while the second best scores are
in underline.

Lemma 2 HRQE can infer the inversion pattern.
(See proof in Appendix A.3)

Lemma 3 HRQE can infer the composition pat-
tern. (See proof in Appendix A.4)

Capability in Modeling Hierarchy Structures.
To model the semantic hierarchies of knowledge
graphs, a knowledge graph embedding model must
be capable of distinguishing entities in the follow-
ing two categories. (a) Entities at the same level of
the hierarchy. (e.g. “truck” and “lorry”) (b) Entities
at different levels of the hierarchy. (e.g. “mam-
mal” and “cat”) (Zhang et al., 2020). For HRQE,
the rotate part can model the entities at the same
level of the semantic hierarchy, and the modulus
part can model the entities at different levels of the
hierarchy. As shown in Figure 1d, entities have
hierarchical distribution under different relations,
and we simplify it into a 2D space for display. That
is, HRQE maps entities into the 3D polar coordi-
nate system, where the angular coordinates and the
radial coordinates correspond to the rotate part and
the modulus part, respectively.

These results are also summarized in Table 1.
We can see that HRQE is the only model that can
model and infer all types of relation patterns and
hierarchy awareness.

5 Experiments and Results

5.1 Experimental Setup
We evaluate our proposed models on four widely
used benchmarks, which are statistically summa-

rized in Table 4.

Datasets: WN18 (Bordes et al., 2013) is ex-
tracted from WordNet (Miller, 1995), a database
featuring lexical relations and conceptual-semantic
between words. The dataset has many in-
verse relations and the mainly relation patterns
are symmetric/antisymmetric and inversion.
WN18RR (Dettmers et al., 2018) is a subset of
WN18, with inverse relations removed. The main
relation patterns are symmetric/antisymmetric
and composition. In WN18 and WN18RR, most of
the triples consist of hyponym and hypernym rela-
tions which make them tend to follow a strictly
hierarchical structure. FB15K (Bordes et al.,
2013) is extracted from Freebase (Bollacker et al.,
2008), which is a large-scale knowledge graph con-
taining general human knowledge. The key of
link prediction on FB15k is to model and infer
the symmetry/antisymmetry and inversion pat-
terns. FB15K-237 (Toutanova and Chen, 2015)
is a subset of FB15K, with inverse relations re-
moved. Therefore, the key to link prediction on
FB15K-237 boils down to model and infer symmet-
rical/antisymmetric and composition patterns.

Evaluation Protocol: For each triple (ℎ, 𝑟, 𝑡) in
the test dataset, we replace either the head entity
ℎ or the tail entity 𝑡 with the total list of the em-
bedding entities. Then, we base the score function
to rank the candidate entities in descending order.
The filtered setting is used to remove some cor-
rect results that appear in the training set or valida-
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Models
WN18RR FB15K-237

Hits(%) Hits(%)
MR MRR(%) @10 @3 @1 MR MRR @10 @3 @1

TransE 3384 22.6 50.1 - - 357 29.4 46.5 - -
DistMult 5100 43 49 44 39 254 24.1 41.9 26.3 15.5
ComplEx 5261 44 51 46 41 339 24.7 42.8 27.5 15.8
ConvE 4187 43 52 44 40 244 32.5 50.1 35.6 23.7
InteractE 5202 46.3 52.8 - 43.0 172 35.4 53.5 - 26.3
RotatE 3277 47.0 56.5 48.8 42.2 185 29.7 48.0 32.8 20.5
a-RotatE 3340 47.6 57.1 49.2 42.8 177 33.8 53.3 37.5 24.1
QuatE 2314 48.8 58.2 50.8 43.8 87 34.8 55.0 38.2 24.8
ComplEx-N3 - 48.0 57.2 49.5 43.5 - 35.7 54.7 39.2 26.4
TuckER - 47.0 52.6 48.2 44.3 - 35.8 54.4 39.4 26.6
MURP - 47.5 55.4 48.7 43.6 - 33.6 52.1 37.0 24.5
RoTH 2293 49.1 58.6 51.1 44.1 - 34.4 53.5 38.0 24.6
Rotat3D 3328 48.9 57.9 50.5 44.2 165 34.7 54.3 38.5 25.0
HAKE - 49.7 58.2 51.6 45.2 - 34.6 54.2 38.1 25.0
DualE 2270 49.2 58.4 51.3 44.4 91 36.5 55.9 40.0 26.8
QuatRE 1986 49.3 59.2 51.9 43.9 88 36.7 56.3 40.4 26.9

RQE 2043 49.7 59.1 51.7 44.8 86 36.9 56.8 40.4 27.3
HRQE 1198 50.5 60.1 52.4 45.4 89 37.2 56.9 40.7 27.5

Table 3: Evaluation results on WN18RR, FB15k-237 datasets. The best scores are in bold, while the second best
scores are in underline.

Dataset #En #Re #train #valid #test

WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134

FB15K 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466

Table 4: Number of entities, relations, and observed
triplets in each split for benchmarks.

tion set but not in test set. We choose Mean Rank
(MR), Mean Reciprocal Rank (MRR) and Hits at
N (H@N) as the evaluation metrics. MR measures
the average rank of all correct entities with a lower
value representing better performance. MRR is the
average inverse rank for correct entities. Hit@n
measures the proportion of correct entities in the
top n entities.

Baselines: We compare HRQE with a number
of strong baselines. For Translational Distance
Models, we reporte TransE (Bordes et al., 2013) ,
TorusE (Ebisu and Ichise, 2018), RotatE (Sun et al.,
2019), Rotat3D (Gao et al., 2020), ROTH (Chami
et al., 2020) and HAKE (Zhang et al., 2020);
For Semantic Matching Models, we reporte Dist-
Mult (Yang et al., 2015), HolE (Nickel et al.,
2016), ComplEx (Trouillon et al., 2016), ComplEx-
N3 (Lacroix et al., 2018), SimplE (Kazemi
and Poole, 2018), TuckER (Balažević et al.,
2019), ConvE (Dettmers et al., 2018), R-GCN

(Schlichtkrull et al., 2018), NKGE (ConvE based)
(Wang et al., 2018), InteractE (Vashishth et al.,
2020), QuatE (Zhang et al., 2019), DualE (Cao
et al., 2021), and QuatRE (Nguyen et al., 2022).

Implementation Details: The best models are
selected by early stopping on the validation set
with Hits@10. The ranges of the hyperparameters
for the grid search are set as follows: The embed-
ding size k is selected in {100, 200, 300, 400, 500}.
The regularization rates 𝜆1 and 𝜆2 are adjusted in
{0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5}. The
learning rate is chosen from {0.01, 0.02, 0.05, 0.1},
the number of negative triples sampled per training
triple is selected from {1, 2, 5, 10}. In addition, we
create {10, 100} batches of training samples for the
different datasets. We report RQE and HRQE with
type constraints (Krompaß et al., 2015). The train-
ing strategies of self-adversarial negative sampling
(Sun et al., 2019) and N3 regularization with recip-
rocal learning (Lacroix et al., 2018) are not used
for RQE and HRQE. All hyper-parameters of our
models are provided in the appendix A.6, and our
code is available at https://github.com/Jinfa/HRQE.

5.2 Results
The empirical results on four datasets are reported
in Table 2 and Table 3. HRQE performs extremely
competitively compared to the existing state-of-
the-art models across all metrics. As a rotation-

https://github.com/Jinfa/HRQE
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Figure 2: Histograms of relation embeddings for different relation patterns. The corresponding relation is
as follows: 𝑟1 is similar_to; 𝑟2 is has_part; 𝑟3 is part_of ; 𝑟4 is /location/administrative_division/capital
/location/administrative_division_capital_relationship/capital; 𝑟5 is /location/hud_county_place/place; 𝑟6 is
base/areas/schema/administrative_area/capital.

based model, HRQE outperforms the two repre-
sentative rotation models RoatE, and Roata3D. As
a hierarchy-sensitive model, HRQE outperforms
the representative hierarchy-aware model HAKE.
Also, we outperform other quaternion-valued mod-
els such as QuatE, DualE, and QuatRE.

On the WN18 dataset, HRQE outperforms all
the baselines on all metrics except Hit@1. HRQE
achieves slightly lower results on H@1 than QuatE
and RotatE, but surpasses them on the other four
metrics, especially on MR with a 56% improve-
ment over QuatE. RQE outperforms HRQE on the
FB15K dataset, while the results of them on the val-
idation set are close with 87%. We speculate that
excessive inverse relations in FB15K affect the ex-
pression of HRQE hierarchy-aware modules. The
other recent models a-RotatE, QuatE, and Rotat3D
achieve comparable results.

As shown in Table 3, HRQE achieves the best
performance over existing state-of-the-art models
on the two datasets where trivial inverse relations
are removed. On WN18RR in which there are a
number of symmetry relations, TransE cannot learn
the symmetric relation pattern, so it performs not
well. In contrast, the rotation family can achieve
good results, and HRQE has further refreshed the
performance to achieve the optimal. In addition,
HRQE’s performance on MR is also impressive,

with a 48% improvement over QuatE. WN18 and
WN18RR contain hyponym and hypernym rela-
tions which make them tend to follow a strictly
hierarchical structure, and HRQE’s performance
demonstrates its ability to learn hierarchically. On
FB15K-237, HRQE also achieved better results
compared with the previous state-of-the-art models,
which shows that HRQE can learn the composition
relation pattern better.

Models Prediction Head (MRR) Prediction Tail (MRR)
1-1-1 1-N-1 1-1-1 1-N-1

TransE 44.3 48.4 45.6 46.9
RotatE 66.8 79.4 71.6 78.6

RQE 67.8 87.7 72.5 89.5

Table 5: Evaluation results of multiple relations on
FB15k dataset.

5.3 Model Analysis
Analysis on Multiple Relations. In the test set of
FB15K, 38121 are single-relation triples (1-1-1),
and 20950 are multi-relation triples (1-N-1). To
avoid the influence of the modulus part, we choose
RQE as the comparison model. Table 5 shows that
RQE can better deal with multi-relational triples
than TransE and RotatE.

Visualize Some Typical Relation Patterns. To



2018

Models Prediction Head (Hits@10) Prediction Tail (Hits@10)
1-1-1 1-1-N N-1-1 N-1-N 1-1-1 1-1-N N-1-1 N-1-N

QuatE 54.2 66.4 38.6 46.9 53.1 25.5 88.3 60.9
QuatRE 58.9 66.4 39.3 48.1 59.9 26.8 88.9 61.7

HRQE 63.5 66.4 42.5 48.7 63.0 28.1 88.9 62.2

Table 6: Evaluation results of complex relations on FB15k-237 dataset. The first two rows are taken from (Nguyen
et al., 2022)

further verify the learned relation patterns, we
visualize some examples. For symmetry pat-
tern, HRQE encode with rotation angle 𝜃 =

[0◦, 180◦, 360◦] (correspondingly 𝑎𝑟1 = cos 𝜃
2 =

[−1, 0, 1]) and modulo weight 𝑤𝑟 = 1 which are
shown in Figure 2 a and e. For inversion pattern,
we have 𝑊◁

𝑟2 = �̄�◁
𝑟3 (correspondingly 𝑎𝑟2−𝑎𝑟3 = 0

and �𝑏𝑟2𝑐𝑟2𝑑𝑟2 + �𝑏𝑟3𝑐𝑟3𝑑𝑟3 = 0) , which are shown
in Figure 2 b,c,d and f,g,h. For composition pat-
tern, we have 𝑊◁

𝑟4 = 𝑊◁
𝑟6 ⊗𝑊◁

𝑟5. We show the real
part and the first imaginary part(correspondingly
𝑎𝑟4 − (𝑎𝑟6𝑎𝑟5 − 𝑏𝑟6𝑏𝑟5 − 𝑐𝑟6𝑐𝑟5 − 𝑑𝑟6𝑑𝑟5) = 0 and
𝑏𝑟4 − (𝑎𝑟6𝑏𝑟5 + 𝑎𝑟5𝑏𝑟6 + 𝑐𝑟6𝑑𝑟5 − 𝑐𝑟5𝑑𝑟6) = 0)
in Figure 2 i, j, k and l. Table 7 summarizes the
MRR for each relation on WN18RR, confirming
the superior representation capability of HRQE in
modelling different types of relation.

Analysis on Hierarchy-Aware. We plot the en-
tity embeddings of two models: RQE and HRQE.
Their entities are all pure quaternions. For an intu-
itive display, we project it to a 2D plane and display
them in polar coordinates. The radius 𝑟 of the polar
coordinates is quaternion norm |𝑄 |, and the angle
is twice the angle between the entities and i + j + k.
Note that we use the logarithmic scale to better
display the differences between entity embeddings.
As all the moduli have values less than one, after
applying the logarithm operation, the larger radii in
the figures will actually represent smaller modulus.
Compared with the tail entities, the head entities
in Figure 3 a, b, and c are at lower levels, similar
levels, and higher levels in the semantic hierarchy,
respectively. We can see that there exist clear hi-
erarchies in HRQE, which demonstrates that the
modulus part in HRQE can help effectively model
the semantic hierarchies.

Analysis on Complex Relations. We also con-
duct further investigation on the performance of
HRQE on complex relations: 1-1-N, N-1-1, and
N-1-N relations. We compare with QuatE and Qua-
tRE (Nguyen et al., 2022). QuatRE adds two ad-
ditional relational quaternions and quaternion mul-

RQE

RQE HRQE
(a) (nlp, _hypernym, informatics)

(b) (ask, _verb_group, inquire)

HRQE

(c) (genus_felis, _member_meronym, wildcat)

RQE HRQE

Figure 3: Visualization of the embeddings of several
entity pairs from WN18RR dataset.

Relation Name RotatE QuatE HRQE

hypernym 14.8 17.3 19.3
derivationally_related_form 94.7 95.3 95.7
instance_hypernym 31.8 36.4 38.1
also_see 58.5 62.9 68.3
member_meronym 23.2 23.2 27.2
synset_domain_topic_of 34.1 46.8 48.4
has_part 18.4 23.3 24.3
member_of_domain_usage 31.8 44.1 42.6
member_of_domain_region 20.0 19.3 27.1
verb_group 94.3 92.4 91.1
similar_to 100.0 100.0 100.0

Table 7: MRR for the models tested on each relation of
WN18RR.
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tiplies with the head and tail entities to improve
QuatE’s ability for handling complex relations. Ta-
ble 6 shows the MRR and H@10 scores for pre-
dicting the head entities and then the tail entities
with respect to each relation category on FB15k-
237, wherein our HRQE outperforms QuatE and
QuatRE on these relation categories.

6 Conclusion

To model various relation patterns and semantic
hierarchies in knowledge graphs, we propose a
novel knowledge graph embedding model HRQE,
which maps entities into 3D space with rotation
and modulo constraints. Empirical experimental
evaluations on benchmark datasets show that our
proposed HRQE significantly outperforms several
existing state-of-the-art methods. Further investi-
gation shows that HRQE is capable of modeling
relations with various relation patterns and mod-
eling entities at both different levels and the same
levels in the semantic hierarchies.
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A Appendix

A.1 Definitions of Different Relation Patterns

Definition 1 Relations 𝑟𝑖 are multiple if ∀𝑖 ∈
0, ..., 𝑚, (ℎ, 𝑟, 𝑡) can hold in knowledge graphs si-
multaneously. A clause with such form is a multiple
relations pattern.

Definition 2 A relation 𝑟 is symmetric (antisymme-
try) if ∀𝑥, 𝑦

𝑟 (𝑥, 𝑦) ⇒ 𝑟 (𝑦, 𝑥) (𝑟 (𝑥, 𝑦) ⇒ ¬𝑟 (𝑦, 𝑥)).
A clause with such form is a symmetry (antisymme-
try) pattern.

Definition 3 Relation 𝑟1 is inverse to relation 𝑟2 if
∀𝑥, 𝑦

𝑟2(𝑥, 𝑦) ⇒ 𝑟1(𝑦, 𝑥).
A clause with such form is an inversion pattern.

Definition 4 Relation 𝑟1 is composed of relation
𝑟2 and relation 𝑟3 if ∀𝑥, 𝑦, 𝑧

𝑟2(𝑥, 𝑦) ∧ 𝑟3(𝑦, 𝑧) ⇒ 𝑟1(𝑥, 𝑧).
A clause with such form is a composition pattern.

Definition 5 For each relation 𝑟, we compute av-
erage number of tails per head (tphr) and average
number of heads per tail (hptr). If tphr < 1.5 and
hptr < 1.5, r is treated as 1-to-1; if tphr > 1.5 and
hptr > 1.5, r is treated as a N-to-N; if tphr > 1.5
and hptr < 1.5, r is treated as 1-to-N. Clauses with
such form are complex relations.
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A.2 Proof of Lemma 1

Proof of symmetry pattern. When 𝜃 =

[0◦, 180◦, 360◦], HRQE can represent a symmetric
relationship, then 𝑊◁𝑟 = cos 𝜃

2 + sin 𝜃
2 (𝑞i + 𝑢j + 𝑣k),

we need to prove:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡 = 𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ (9)

For 𝜃 = [0◦, 360◦], we have 𝑊◁𝑟 = ±1. Firstly,
we expand the left term:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡

= 𝑄ℎ · 𝑄𝑡

= ⟨𝑥ℎ, 𝑥𝑡⟩ + ⟨𝑦ℎ, 𝑦𝑡⟩ + ⟨𝑧ℎ, 𝑧𝑡⟩.
(10)

We then expand the right term:

𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ

= 𝑄𝑡 · 𝑄ℎ

= ⟨𝑥ℎ, 𝑥𝑡⟩ + ⟨𝑦ℎ, 𝑦𝑡⟩ + ⟨𝑧ℎ, 𝑧𝑡⟩.
(11)

We can easily see that those two terms are equal.

For 𝜃 = [180◦], we have 𝑊◁𝑟 = 𝑞i + 𝑢j + 𝑣k.
Firstly, we expand the left term:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡

= [((𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥ℎ + 2(𝑞𝑢)𝑦ℎ + 2(𝑞𝑣)𝑧ℎ)i
+ (2(𝑞𝑢)𝑥ℎ + (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦ℎ + 2(𝑢𝑣)𝑧ℎ)j
+ (2(𝑞𝑣)𝑥ℎ + 2(𝑢𝑣)𝑦ℎ + (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧ℎ)k]
· (𝑥𝑡 i + 𝑦𝑡 j + 𝑧𝑡k)
= ⟨𝑥ℎ, (𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥𝑡⟩ + ⟨𝑥ℎ, 2(𝑞𝑢), 𝑦𝑡⟩
+ ⟨𝑥ℎ, 2(𝑞𝑣), 𝑧𝑡⟩ + ⟨𝑦ℎ, 2(𝑞𝑢), 𝑥𝑡⟩
+ ⟨𝑦ℎ, (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦𝑡⟩ + ⟨𝑦ℎ, 2(𝑢𝑣), 𝑧𝑡⟩
+ ⟨𝑧ℎ, 2(𝑞𝑣), 𝑥𝑡⟩ + ⟨𝑧ℎ, 2(𝑢𝑣), 𝑦𝑡⟩
+ ⟨𝑧ℎ, (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧𝑡⟩.

(12)

We then expand the right term:

𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ

= [((𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥𝑡 + 2(𝑞𝑢)𝑦𝑡 + 2(𝑞𝑣)𝑧𝑡 )i
+ (2(𝑞𝑢)𝑥𝑡 + (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦𝑡 + 2(𝑢𝑣)𝑧𝑡 )j
+ (2(𝑞𝑣)𝑥𝑡 + 2(𝑢𝑣)𝑦𝑡 + (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧𝑡 )k]
· (𝑥ℎi + 𝑦ℎj + 𝑧ℎk)
= ⟨𝑥𝑡 , (𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥ℎ⟩ + ⟨𝑥𝑡 , 2(𝑞𝑢), 𝑦ℎ⟩
+ ⟨𝑥𝑡 , 2(𝑞𝑣), 𝑧ℎ⟩ + ⟨𝑦𝑡 , 2(𝑞𝑢), 𝑥ℎ⟩
+ ⟨𝑦𝑡 , (𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦ℎ⟩ + ⟨𝑦𝑡 , 2(𝑢𝑣), 𝑧ℎ⟩
+ ⟨𝑧𝑡 , 2(𝑞𝑣), 𝑥ℎ⟩ + ⟨𝑧𝑡 , 2(𝑢𝑣), 𝑦ℎ⟩
+ ⟨𝑧𝑡 , (𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧ℎ⟩.

(13)

We can easily see that those two terms are equal.

Proof of antisymmetry pattern. In order
to prove the antisymmetry pattern, we need
to prove the following inequality when 𝜃 ≠

[0◦, 180◦, 270◦, 360◦]:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 ·𝑄𝑡 ≠ 𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 ·𝑄ℎ (14)

Firstly, we expand the left term:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡

= [((𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥ℎ + 2(−𝑝𝑣 + 𝑞𝑢)𝑦ℎ
+ 2(𝑝𝑢 + 𝑞𝑣)𝑧ℎ)i + (2(𝑝𝑣 + 𝑞𝑢)𝑥ℎ
+ (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦ℎ + 2(−𝑝𝑞 + 𝑢𝑣)𝑧ℎ)j
+ (2(−𝑝𝑢 + 𝑞𝑣)𝑥ℎ + 2(𝑝𝑞 + 𝑢𝑣)𝑦ℎ
+ (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧ℎ)k]
· (𝑥𝑡 i + 𝑦𝑡 j + 𝑧𝑡k)
= ⟨𝑥ℎ, (𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥𝑡⟩
+ ⟨𝑥ℎ, 2(𝑝𝑣 + 𝑞𝑢), 𝑦𝑡⟩ + ⟨𝑥ℎ, 2(−𝑝𝑢 + 𝑞𝑣), 𝑧𝑡⟩
+ ⟨𝑦ℎ, 2(−𝑝𝑣 + 𝑞𝑢), 𝑥𝑡⟩
+ ⟨𝑦ℎ, (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦𝑡⟩
+ ⟨𝑦ℎ, 2(𝑝𝑞 + 𝑢𝑣), 𝑧𝑡⟩ + ⟨𝑧ℎ, 2(𝑝𝑢 + 𝑞𝑣), 𝑥𝑡⟩
+ ⟨𝑧ℎ, 2(−𝑝𝑞 + 𝑢𝑣), 𝑦𝑡⟩
+ ⟨𝑧ℎ, (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧𝑡⟩.

(15)

We then expand the right term:
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Model Score Function 𝑓𝑟 (𝑄ℎ, 𝑄𝑡 ) Parameters O𝑡𝑖𝑚𝑒

TransE (Bordes et al., 2013) −∥(𝑄ℎ +𝑊𝑟 ) −𝑄𝑡 ∥1/2 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ R𝑘 O(𝑘)
Hole (Nickel et al., 2016) ⟨𝑊𝑟 , 𝑄ℎ ★𝑄𝑡 ⟩ 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ R𝑘 O(𝑘log(𝑘))

DistMult (Yang et al., 2015) ⟨𝑊𝑟 , 𝑄ℎ, 𝑄𝑡 ⟩ 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ R𝑘 O(𝑘)
ComplEx (Trouillon et al., 2016) Re

(〈
𝑊𝑟 , 𝑄ℎ, �̄�𝑡

〉)
𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ C𝑘 O(𝑘)

RotatE (Sun et al., 2019) −∥𝑄ℎ ◦𝑊𝑟 −𝑄𝑡 ∥2 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ C𝑘 , |𝑊𝑟𝑖 | = 1 O(𝑘)
Rotate3D (Gao et al., 2020) −∥𝑄ℎ ⊙𝑊𝑟 × 𝐵𝑟 −𝑄𝑡 ∥2 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ H𝑘 , 𝐵𝑟 ∈ R𝑘 , |𝑊𝑟𝑖 | = 1 O(𝑘)
QuatE (Zhang et al., 2019) 𝑄ℎ ⊗𝑊◁𝑟 · 𝑄𝑡 𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ H𝑘 O(𝑘)
DualE (Cao et al., 2021)

〈
𝑄ℎ⊗𝑊⋄

𝑟 , 𝑄𝑡

〉
𝑄ℎ,𝑊𝑟 , 𝑄𝑡 ∈ H𝑘

𝑑
O(𝑘)

HAKE (Zhang et al., 2020) −∥𝑄ℎ𝑚 ◦𝑊𝑚 −𝑄𝑡𝑚∥2 𝑄ℎ𝑚, 𝑄𝑡𝑚 ∈ R𝑘 ,𝑊𝑚 ∈ R𝑘+ O(𝑘)−𝜆∥sin((𝑄ℎ𝑝 +𝑊𝑝 −𝑄𝑡 𝑝)/2)∥1 𝑄ℎ𝑝 ,𝑊𝑝 , 𝑄𝑡 𝑝 ∈ [0, 𝜋)𝑘 , 𝜆 ∈ R

RQE 𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡 𝑊𝑟 ∈ H𝑘 , 𝑄ℎ, 𝑄𝑡 ∈ H𝑘
𝑝 O(𝑘)

HRQE 𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 · 𝑄𝑡 𝑊𝑟 ∈ H𝑘 , 𝑄ℎ, 𝑄𝑡 ∈ H𝑘
𝑝 O(𝑘)

−𝜆∥𝑤𝑟 |𝑄ℎ | − |𝑄𝑡 |∥1 𝑤𝑟 ∈ R𝑘 , 𝜆 ∈ R

Table 8: Scoring functions of state-of-the-art knowledge graph embedding models, along with their parameters,
time complexity.“★” denotes the circular correlation operation; “◦” denotes Hadmard (or element-wise) product;
“⊗” denotes Hamilton product.

𝑊◁𝑟 ⊗ 𝑄𝑡 ⊗ �̄�◁𝑟 · 𝑄ℎ

= [((𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥𝑡 + 2(−𝑝𝑣 + 𝑞𝑢)𝑦𝑡
+ 2(𝑝𝑢 + 𝑞𝑣)𝑧𝑡 )i + (2(𝑝𝑣 + 𝑞𝑢)𝑥𝑡
+ (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦𝑡 + 2(−𝑝𝑞 + 𝑢𝑣)𝑧𝑡 )j
+ (2(−𝑝𝑢 + 𝑞𝑣)𝑥𝑡 + 2(𝑝𝑞 + 𝑢𝑣)𝑦𝑡
+ (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧𝑡 )k]
· (𝑥ℎi + 𝑦ℎj + 𝑧ℎk)
= ⟨𝑥𝑡 , (𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥ℎ⟩
+ ⟨𝑥𝑡 , 2(𝑝𝑣 + 𝑞𝑢), 𝑦ℎ⟩ + ⟨𝑥𝑡 , 2(−𝑝𝑢 + 𝑞𝑣), 𝑧ℎ⟩
+ ⟨𝑦𝑡 , 2(−𝑝𝑣 + 𝑞𝑢), 𝑥ℎ⟩
+ ⟨𝑦𝑡 , (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦ℎ⟩
+ ⟨𝑦𝑡 , 2(𝑝𝑞 + 𝑢𝑣), 𝑧ℎ⟩ + ⟨𝑧𝑡 , 2(𝑝𝑢 + 𝑞𝑣), 𝑥ℎ⟩
+ ⟨𝑧𝑡 , 2(−𝑝𝑞 + 𝑢𝑣), 𝑦ℎ⟩
+ ⟨𝑧𝑡 , (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧ℎ⟩.

(16)

We can easily see that those two terms are not equal
as the signs for some terms are not the same.

A.3 Proof of Lemma 2

Proof of inversion pattern. To prove the inversion
pattern, we need to prove that:

𝑊◁𝑟 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟 ·𝑄𝑡 = �̄�◁𝑟 ⊗ 𝑄𝑡 ⊗𝑊◁𝑟 ·𝑄ℎ (17)

We expand the right term:

�̄�◁𝑟 ⊗ 𝑄𝑡 ⊗𝑊◁𝑟 · 𝑄ℎ

= [((𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣)𝑥𝑡 + 2(𝑝𝑣 + 𝑞𝑢)𝑦𝑡
+ 2(−𝑝𝑢 + 𝑞𝑣)𝑧𝑡 )i + (2(−𝑝𝑣 + 𝑞𝑢)𝑥𝑡
+ (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣)𝑦𝑡 + 2(𝑝𝑞 + 𝑢𝑣)𝑧𝑡 )j
+ (2(𝑝𝑢 + 𝑞𝑣)𝑥𝑡 + 2(−𝑝𝑞 + 𝑢𝑣)𝑦𝑡
+ (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣)𝑧𝑡 )k]
· (𝑥ℎi + 𝑦ℎj + 𝑧ℎk)
= ⟨𝑥𝑡 , (𝑝𝑝 + 𝑞𝑞 − 𝑢𝑢 − 𝑣𝑣), 𝑥ℎ⟩
+ ⟨𝑥𝑡 , 2(−𝑝𝑣 + 𝑞𝑢), 𝑦ℎ⟩ + ⟨𝑥𝑡 , 2(𝑝𝑢 + 𝑞𝑣), 𝑧ℎ⟩
+ ⟨𝑦𝑡 , 2(𝑝𝑣 + 𝑞𝑢), 𝑥ℎ⟩
+ ⟨𝑦𝑡 , (𝑝𝑝 − 𝑞𝑞 + 𝑢𝑢 − 𝑣𝑣), 𝑦ℎ⟩
+ ⟨𝑦𝑡 , 2(−𝑝𝑞 + 𝑢𝑣), 𝑧ℎ⟩ + ⟨𝑧𝑡 , 2(−𝑝𝑢 + 𝑞𝑣), 𝑥ℎ⟩
+ ⟨𝑧𝑡 , 2(𝑝𝑞 + 𝑢𝑣), 𝑦ℎ⟩
+ ⟨𝑧𝑡 , (𝑝𝑝 − 𝑞𝑞 − 𝑢𝑢 + 𝑣𝑣), 𝑧ℎ⟩.

(18)

We can easily check the equality of these two terms.

A.4 Proof of Lemma 3
Proof of composition relation. For composition
relations we can get that:

𝑊◁𝑟3 ⊗ (𝑊◁𝑟2 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟2) ⊗ �̄�◁𝑟3 · 𝑄𝑡

= (𝑊◁𝑟3 ⊗𝑊◁𝑟2) ⊗ 𝑄ℎ ⊗ (�̄�◁𝑟2 ⊗ �̄�◁𝑟3) · 𝑄𝑡

= 𝑊◁𝑟1 ⊗ 𝑄ℎ ⊗ �̄�◁𝑟1 · 𝑄𝑡 .

(19)

A.5 Summary of Several Popular Knowledge
Graph Embedding Models

Table 8 summarizes several popular knowledge
graph embedding models, including scoring func-
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tions, parameters, and time complexities. TransE,
HolE, and DistMult use Euclidean embeddings,
while ComplEx and RotatE operate in the complex
space. QuatE, DualE (dual quaternion) and our
models operate in the quaternion space. HAKE
and our model HRQE can learn hierarchy-aware in
knowledge graphs.

A.6 Parameter Settings
We list the best hyperparameter settings of RQE
and HRQE w.r.t. the validation dataset on several
benchmarks in Table 9 and Table 10.

Dataset 𝑛𝐵 𝑘 𝜆1 𝜆2 𝑛𝑒𝑔

WN18 10 300 0.03 0.0 10
FB15K 100 400 0.05 0.0 10

WN18RR 10 300 0.3 0.3 2
FB15K237 100 500 0.5 0.01 10

Table 9: Hyperparameters for RQE

Dataset 𝑛𝐵 𝑘 𝜆1 𝜆2 𝑛𝑒𝑔

WN18 10 300 0.05 0.01 10
FB15K 100 500 0.03 0.0 10

WN18RR 10 300 0.3 0.01 1
FB15K237 100 500 0.5 0.01 10

Table 10: Hyperparameters for HRQE


