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Abstract

Existing fake news detection methods aim to
classify a piece of news as true or false and pro-
vide veracity explanations, achieving remark-
able performances. However, they often tailor
automated solutions on manual fact-checked
reports, suffering from limited news coverage
and debunking delays. When a piece of news
has not yet been fact-checked or debunked, cer-
tain amounts of relevant raw reports are usually
disseminated on various media outlets, con-
taining the wisdom of crowds to verify the
news claim and explain its verdict. In this pa-
per, we propose a novel Coarse-to-fine Cas-
caded Evidence-Distillation (CofCED) neural
network for explainable fake news detection
based on such raw reports, alleviating the de-
pendency on fact-checked ones. Specifically,
we first utilize a hierarchical encoder for web
text representation, and then develop two cas-
caded selectors to select the most explainable
sentences for verdicts on top of the selected
top-𝐾 reports in a coarse-to-fine manner. Be-
sides, we construct two explainable fake news
datasets, which is publicly available. Experi-
mental results demonstrate that our model sig-
nificantly outperforms state-of-the-art detection
baselines and generates high-quality explana-
tions from diverse evaluation perspectives.

1 Introduction

During the COVID-19 pandemic, almost 80% of
consumers in the United States received fake news,
which has caused confusion and undermined pub-
lic health efforts1. The proliferation of fake news
has increased the demand for automatic fake news
detection (Guo et al., 2022). To further clarify and
explain detection results, explainable fake news de-
tection has gained more importance recently, aim-
ing to classify the truthfulness of a piece of news
and generate veracity explanations2 (Kotonya and

∗Corresponding authors.
1https://www.statista.com/topics/3251/fake-news
2Explanations and evidence are used interchangeably

Figure 1: An example for veracity explanation genera-
tion. The underlined explanations can be semantically
inferred from some relevant sentences in the reports 𝑅1
and 𝑅𝑛. “𝑅” denotes the raw report.

Toni, 2020a). However, existing methods have a
limitation in detecting fake news timely as they
heavily relied on debunked reports of investigated
journalism. Thus, it is urgent to develop explain-
able yet general methods to mitigate this issue.

Many previous approaches detected fake news
without any justifications (Wang, 2017; Ma et al.,
2018). Recently, some explainable methods high-
lighted salient words or phrases in relevant reports
as explanations (Popat et al., 2018; Wu et al., 2021),
which lack readable complete sentences. To al-
leviate these issues, some methods aimed to ex-
tract salient sentences from relevant reports via
attention mechanisms (Nie et al., 2019; Ma et al.,
2019), or pre-trained extractive-abstractive summa-
rization (Kotonya and Toni, 2020b), etc. As the
human justification about veracity labels can signif-
icantly improve the performance of veracity predic-
tion (Alhindi et al., 2018), Atanasova et al. (2020)
proposed the first study on producing veracity ex-
planations jointly with veracity prediction utilizing
the debunked report released by fact-checking web-
sites. However, such a debunked report is based
on manual endeavors, thus prone to be coverage-
limited and relatively inefficient.

A new study by MIT researchers suggests that
crowds of laypeople reliably rate claims as effec-
tively as fact-checkers do (Allen et al., 2021). To

https://www.statista.com/topics/3251/fake-news
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use the wisdom of crowds, we assume that crowds
of relevant raw reports (e.g., media reports, user
comments, blogs, etc.) published by different me-
dia outlets contain evidence for effectively detect-
ing fake news and explaining verdicts (Ma et al.,
2019; Popat et al., 2018). As shown in Figure 1,
given a false claim “Microwaving fabric masks is
a good way to sanitize them for reuse”, the check-
worthy reports 𝑅1 and 𝑅𝑛 are selected from all
reports [𝑅1, 𝑅2, · · · , 𝑅𝑛] and then some evidential
sentences (underlined) can be used to generate ve-
racity explanations. In contrast, existing methods
usually tailor models on one manual fact-checked
article, rarely attempting to detect fake news based
on raw reports.

To this end, we propose a general coarse-to-fine
cascaded evidence-distillation (CofCED) network
to detect fake news and explain verdicts directly
using raw reports, mitigating the dependency on
fact-checked reports. Specifically, we design a hi-
erarchical encoder for text representation, and then
we develop two coarse-to-fine cascaded selectors to
distill explainable sentences on top of the selected
top-𝐾 check-worthy reports. Our predictions of
explainable sentences can be obtained by explic-
itly considering four features, i.e., claim relevance,
richness, salience, and non-redundancy. Different
from FEVER (Thorne et al., 2018) using human-
crafted claims with credible Wikipedia articles, the
claims in our task are real-world news containing
some unreliable reports. Thus, detecting fake news
on raw reports is much more challenging and sig-
nificant than that in FEVER task.

Our contributions are as follows: 1) To the best
of our knowledge, we present the first study on
explainable fake news detection directly utilizing
the wisdom of crowds, alleviating the dependency
on fact-checked reports; 2) Our model has the ad-
vantage of revealing insight into the generation of
veracity explanations from various perspectives; 3)
We construct two realistic datasets, i.e., RAWFC
and LIAR-RAW, consisting of raw reports for each
claim. Experimental results on benchmarks demon-
strate the effectiveness of CofCED for detecting
fake news and and explaining verdicts based on
raw reports. Our resources are publicly available at
https://github.com/Nicozwy/CofCED.

2 Related Work

We review prior works closely related to ours based
on several surveys (Shu et al., 2017; Kotonya and

Toni, 2020a).

Black-boxed fake news detection. Many ex-
isting studies on fake news detection achieved
promising performances by incorporating claim
metadata to facilitate the detection, such as user
profiles (Wang, 2017; Long, 2017; Karimi et al.,
2018). Besides, various deep learning methods
have been proposed to capture report features, e.g.,
credibility (Popat et al., 2017), stances (Ma et al.,
2018), writing styles (Potthast et al., 2018), extra
knowledge (Dun et al., 2021), etc. Although these
methods could improve the detection performance,
they are lack of explainability on verdicts.

Explainable fake news detection. To address
the above issue, many explainable methods on this
task explored attention mechanisms to highlight
salient words (Popat et al., 2018; Wu et al., 2021),
news attributes (Yang et al., 2019), and suspicious
users (Lu and Li, 2020), to obtain relevant evidence,
providing a certain explainability. To improve the
readability in word-level methods, there are some
methods obtained evidential sentences using atten-
tion weights (Shu et al., 2019), semantic match-
ing (Nie et al., 2019), and entailment (Ma et al.,
2019). More recently, Atanasova et al. (2020) pro-
posed the first study on directly producing veracity
explanations using extractive summarization, and
Kotonya and Toni (2020b) made use of extractive-
abstractive summarization for explanation genera-
tion, independent of the veracity prediction. How-
ever, they significantly relied on the manual fact-
checked report and rarely attempted to consider
fine-grained features for this task. Thus, we uti-
lize the wisdom of crowds for fake news detection
based on raw reports, providing a highly explain-
able structure for explanation generation.

Datasets. For explainable fake news detection,
FEVER (Thorne et al., 2018) was crafted merely
from credible Wikipedia articles, and MultiFC (Au-
genstein et al., 2019) provided a real-world bench-
mark for multi-domain claims. While offering ev-
idence labels, they do not contain veracity expla-
nations. By contrast, LIAR-PLUS (Alhindi et al.,
2018) extended on LIAR (Wang, 2017) and PUB-
HEALTH (Kotonya and Toni, 2020b) on the pub-
lic health, providing manual explanations for ex-
plainable fake news detection. However, they only
contain the manual fact-checked report that is rel-
atively inefficient and coverage-limited. Thus, we
constructed two datasets by collecting raw reports,
which is more suitable and challenging for this task.

https://github.com/Nicozwy/CofCED
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Figure 2: An overview of our proposed CofCED framework. The document selector and the sentence selector are
used for selecting check-worthy reports (containing oracles) and oracles, respectively. “Agg.” denotes aggregation
and “ Corr.” denotes corresponding. We use different color to highlight different objects. Note that the green line
denotes the last output of sentence selection for checking redundancy.

3 Problem Statement

Given a fake news dataset {C}, C = (𝑐,D) is
a tuple representing a given claim 𝑐 and its rel-
evant raw reports D = {𝑑𝑖} |D |𝑖=1 , where each 𝑑𝑖 =
(𝑠𝑖,1, 𝑠𝑖,2, · · · , 𝑠𝑖, |𝑑𝑖 |) denotes a relevant report con-
sisted of a sequence of sentences and |.| denotes
the number of items. In the task of explainable
fake news detection, each claim 𝑐 is associated
with a veracity 𝑦 taking one of the class labels
from {True, False, · · · }, and each raw report 𝑑𝑖 is
associated with a binary label 𝑦𝑑

𝑖
∈ 𝑌 𝑑 indicating

that whether 𝑑𝑖 contains explainable sentences (i.e.,
oracles). For each sentence 𝑠𝑖, 𝑗 , 𝑦𝑠𝑖, 𝑗 ∈ 𝑌 𝑠 is a bi-
nary label indicating that whether 𝑠𝑖, 𝑗 is one of the
explainable sentences w.r.t. the gold justification.

We formulate this task as a multi-task learning
problem by considering check-worthy report se-
lection, explainable sentence extraction, and ve-
racity prediction. Formally, 𝑓 : 𝑓 (𝑐,D) →
( �̂�, 𝑌 𝑑 , 𝑌 𝑠, �̂�), where �̂� denotes the veracity ex-
planation (i.e., evidence) consisting of a set of pre-
dicted sentences (i.e., �̂�𝑑

𝑖
= 1 and �̂�𝑠

𝑖, 𝑗
= 1).

4 CofCED: The Proposed Method

Fig. 2 gives an overview of our proposed CofCED,
which consists of four parts: hierarchical encoding,
report selection, explainable sentence extraction,
and veracity prediction.

4.1 Hierarchical Encoding
Given a word sequence of a claim or report sen-
tence 𝑇 = (𝑤1 · · ·𝑤𝑡 · · ·𝑤 |𝑇 |), where 𝑤𝑡 ∈ ℝ𝑑 is a
𝑑-dimensional vector initialized with a text encoder.
Because words form a sentence and sentences form
a report, we utilize a hierarchical encoding method
for sentence and report representation in our model.
Specifically, for sentence encoding, we use the
special token “[CLS]” embedding from the final
contextual layer of the pre-trained language model
(Sanh et al., 2019) as the sentence representation.
Thus, we obtain the sentence representation for a
claim 𝑐 and each sentence 𝑠𝑖, 𝑗 in a raw report 𝑑𝑖 as
h𝑐 ∈ ℝ𝑑 and h𝑖, 𝑗 ∈ ℝ𝑑 , respectively.

For document encoding, we further adopt a
document encoder consisting of a bidirectional
LSTM (BiLSTM) (Rashkin et al., 2017) and a max-
pooling layer to aggregate all salient sentence fea-
tures as the representation of a report:

h̃𝑖, 𝑗 = BiLSTM(h𝑖, 𝑗 ,
−→h 𝑖, 𝑗−1,

←−h 𝑖, 𝑗−1, 𝜃) (1)

h𝑖 = Max( [h̃𝑖,1; h̃𝑖,2; · · · ; h̃𝑖, |𝑑𝑖 |]) (2)

where h̃𝑖, 𝑗 ∈ ℝ𝑑 denotes the cross-sentence hidden
state, and h𝑖 ∈ ℝ𝑑 denotes the representation of the
report 𝑑𝑖 . Max denotes the max pooling, [;] denotes
concatenation, and 𝜃 denotes encoder parameters.

4.2 Report Selection
Since this task is formulated on massive raw re-
ports, our model aims to automatically narrow
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down the evidence extraction by ranking them and
capturing the top ones for further analysis. Taking
the claim in Fig. 1 as an example, there are 𝑛 re-
trieved reports about "microwaving fabric masks"
and the significant reports 𝑅1 and 𝑅𝑛 containing
oracles (i.e., underlined sentences) are selected for
veracity prediction and explanation generation.

To distill the check-worthy reports from massive
reports D that are helpful for veracity prediction,
we firstly develop a coarse-grained document selec-
tor by treating the claim as a query to find 𝐾 most
significant results. Then, global attention is utilized
to obtain the significance score for each report 𝑑𝑖:

𝛼𝑐→D = softmax(HD𝑊𝛼h𝑐) (3)

where HD = [h1; h2; · · · ; h |D |] compacts all hid-
den vectors of reports and 𝑊𝛼 ∈ ℝ𝑑×𝑑 is a train-
able parameter. We use 𝛼𝑐→D to rank all reports
and select the top-𝐾 results as the check-worthy
reports (i.e., �̂�𝑑

𝑖
= 𝛼𝑖 (𝛼𝑖 ≥ 𝛼𝐾 ) and otherwise

�̂�𝑑
𝑖
= 0(𝛼𝑖 < 𝛼𝐾 )). Note that the 𝑡-th sentence

representation in the 𝑘-th selected report 𝑑
′
𝑘

are
denoted as h′

𝑘,𝑡
∈ {h′

𝑘,1, h
′
𝑖,2, ..., h

′

𝑘, |𝑑′
𝑘
|
}, and its

document representation is denoted as h′
𝑘
, which

are used for explainable sentence extraction.

4.3 Explainable Sentence Extraction
On top of selected reports, we treat explanation gen-
eration as a multi-document extractive summariza-
tion, where each report is visited sequentially for
explainable sentences. Such reports are regarded
as the wisdom of crowds when detecting a dubi-
ous claim. We assume that explainable sentences
for verdicts should be claim-relevant, informative,
salient, and non-redundant. Specifically, there may
exist redundancy between reports because a report
is generally self-contained and multiple raw reports
are more likely to contain semantically irrelevant
and redundant sentences (Ma et al., 2019).

In this paper, we develop a fine-grained sen-
tence selector to extract explainable sentences from
these check-worthy reports considering the follow-
ing four features: 1) claim relevance measures
the topic coverage of each sentence regarding the
claim; 2) richness measures the content informa-
tiveness of each sentence containing evidence; 3)
salience measures the significance of each sentence
regarding the entire report; 4) non-redundancy mea-
sures the novelty of each sentence regarding pre-
vious selected explainable sentences. Therefore,
we define a layer to predict the probability of each

sentence that should be selected via integrating the
four features as follows:

P(𝑦𝑠𝑘,𝑡 = 1|h𝑐, h
′
𝑘,𝑡 , h

′
𝑘 , h𝑑)

= 𝜎( h
′
𝑘,𝑡𝑊𝑐h𝑐︸     ︷︷     ︸

(claim relevance)

+ h
′
𝑘,𝑡𝑊𝑠︸ ︷︷ ︸
(richness)

+ h
′
𝑘,𝑡𝑊𝑟h

′
𝑘︸     ︷︷     ︸

(salience)

− h
′
𝑘,𝑡𝑊𝑑h𝑑︸     ︷︷     ︸

(non-redundancy)

) (4)

where 𝑦𝑠
𝑘,𝑡

is a binary variable indicating whether
the 𝑡-th sentence in the selected report 𝑑

′
𝑘

should
be selected as part of explanations �̂� , and 𝑊∗ are
trainable parameters. h𝑑 is the redundancy vectors
initialized with all zeros and updated by selected
sentences in previously visited reports as follows:

h𝑑 = tanh(
∑︁
𝑡

h
′
𝑘−1,𝑡 · P(𝑦

𝑠
𝑘,𝑡 = 1)) (5)

Considering the number of report sentences,
our model learns to select the explainable sen-
tences with probabilities above a soft threshold
𝜀𝑘 = 1/|𝑑′

𝑘
|, i.e., P(𝑦𝑠

𝑘,𝑡
= 1) > 𝜀𝑘 , where

P(𝑦𝑠
𝑘,𝑡

= 1) is obtained by Eq. (4). Note that
h′′
𝑘,𝑡

is used to denote the sentence representation
output from the explainable sentence selector.

4.4 Veracity Prediction
To enhance final veracity prediction, we further
employ the extracted explanation as additional ev-
idence besides the claims and all reports. Specifi-
cally, we aggregate the recognitions from such evi-
dence and reports for a target claim, respectively,
and then obtain the final representation by concate-
nating the claim representation, report representa-
tion, and explanation representation as follows:

h𝐷 = Max( [h1; h2; · · · ; h |D |]) (6)

h𝐸 = Max( [h′′1; h
′′
2; ...; h

′′
𝐾 ]) (7)

h† = [h𝑐; h𝐷; h𝐸] (8)

where h𝐷 denotes the integrated representation of
all report sentences, h𝐸 denotes the integrated rep-
resentation of all explainable sentences. h† denotes
the final representation for veracity prediction. 𝐾
denotes a hyperparameter controlling the maximum
number of selected reports. Similar to Eq. (2),
h′′
𝑘
= Max( [h′′

𝑘,1; h′′
𝑘,2; · · · ; h′′

𝑘, |𝑑′
𝑘
|
]) is the 𝑘-th re-

port representation in the extracted explanations.
Finally, h† is fed into a multi-layer perceptron

(MLP) layer to predict the veracity label as follows:

�̂� = softmax(MLP(h†)) (9)
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4.5 Model Training

It is inefficient to train report selection, explainable
sentence extraction, and veracity prediction inde-
pendently, considering their implicit correlations
and the pipeline for explainable fake news detec-
tion in the real world (Kotonya and Toni, 2020a).
Thus, we jointly optimize these three sub-tasks in
an end-to-end model. For model training, we mini-
mize the overall loss L𝑎𝑙𝑙 as follows:

L𝐷 = −
∑︁
𝑖

𝑦𝑑𝑖 log( �̂�𝑑𝑖 ) (10)

L𝑆 = −
∑︁
𝑘

∑︁
𝑡

𝑦𝑠𝑘,𝑡 log( �̂�𝑠𝑘,𝑡 ) (11)

L𝐶 = −𝑦log( �̂�) (12)

L𝑎𝑙𝑙 = 𝛽𝐷L𝐷 + 𝛽𝑆L𝑆 + 𝛽𝐶L𝐶 (13)

where L𝐷 , L𝑆 , and L𝐶 denote the cross-entropy
loss for check-worthy report selection, explanation
generation and veracity prediction tasks, respec-
tively. 𝑦𝑑

𝑖
and �̂�𝑑

𝑖
denote the gold and predicted

label of reports, respectively. 𝑦𝑠
𝑘,𝑡
, and �̂�𝑠

𝑘,𝑡
denote

the ground truth and the predicted probability of
the sentence for explanation, respectively. 𝑦 and
�̂� denote the ground truth and predicted veracity
probability of the claim, respectively. 𝛽 denotes the
trade-off parameter, controlling the task importance
in our work. We can automatically assign 𝛽𝐷 , 𝛽𝑆 ,
and 𝛽𝐶 with proper values using the adaptive strat-
egy, rather than the grid search (see Appendix B).

5 Experiments

5.1 Datasets and Settings

To the best of our knowledge, there is no public
dataset on raw reports available for this task. Thus,
we collect two explainable datasets, i.e., RAWFC
and LIAR-RAW, referring to two different fact-
checking sites (i.e., Snopes3 and Politifact4) for
gold labels, respectively. For RAWFC, we con-
structed it from scratch by collecting the claims
from Snopes and relevant raw reports by retrieving
claim keywords. For LIAR-RAW, we extended the
public dataset LIAR-PLUS (Alhindi et al., 2018)
with relevant raw reports, containing fine-grained
claims from Politifact. We process and separate
these datasets into train/valid/test sets by 8:1:1 fol-
lowing the same setting in (Atanasova et al., 2020).
More details are illustrated in Appendix A.

3www.snopes.com
4www.politifact.com

Dataset RAWFC LIAR-RAW
Claim 2,012 12,590

# pants-fire - 1,013
# false 646 2,466
# barely-true - 2,057
# half-true † 671 2,594
# mostly-true - 2,439
# true 695 2,021

Veracity Label 3 6
Explain sentence

# min 1 1
# max 110 209
# avg 18.4 4.1

Report per claim
# min 1 1
# max 30 30
# avg 21.0 12.3

Sentence per report
# min 1 1
# max 155 59
# avg 7.4 5.5

Table 1: Statistics of datasets. # half-true † is also
denoted as # half in RAWFC. The number of oracles in
datasets isn’t pre-defined.

For experimental setup, we initialized word em-
beddings with the base uncased DistilBERT (Sanh
et al., 2019) and 𝑑 = 768 dimensions. The hidden
size of LSTM is set to 384. We use Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 1e-5
and the mini-batch size is set to 1 to minimize joint
cross-entropy loss. The maximum number 𝐾 of se-
lected reports for each claim is empirically set to 12
and 18 for RAWFC and LIAR-RAW, respectively.
We use a soft threshold 𝜀𝑖 = 1/|𝑑′

𝑖
| for selection

while empirically setting the maximum number
of oracle sentences to 30 and 55 for RAWFC and
LIAR-RAW, respectively. We set the dropout rate
to 0.4 before final prediction and the maximum
number of training epochs to 8. For evaluation,
we employ macro-averaged precision (P), recall
(R), and F1 score (macF1) for veracity prediction,
and use ROUGE-𝑁 F1 score (𝑁 ∈ {1, 2, 𝐿}) and
the human evaluation to evaluate the quality of ex-
planations. Note that fact-checked reports are not
required during inference in our model.

5.2 Veracity Prediction Performance

Table 2 compares veracity prediction results with
the following strong baselines: 1) SVM (Pedregosa
et al., 2011): This uses bag-of-words features to
train SVM-based model for fake news detection;
2) CNN (Wang, 2017): This incorporates available
metadata features to enhance representation learn-
ing; 3) RNN (Rashkin et al., 2017): This learns
representation from word sequences without ex-
ternal resources; 4) DeClarE (Popat et al., 2018):
This combines word embeddings from the claim,
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Model RAWFC LIAR-RAW
P(%) R(%) macF1(%) P(%) R(%) macF1(%)

SVM (Pedregosa et al., 2011) 32.33 32.51 31.71 15.78 15.92 15.34
CNN (Wang, 2017) 38.80 38.50 38.59 22.58 22.39 21.36
RNN (Rashkin et al., 2017) 41.35 42.09 40.39 24.36 21.20 20.79
DeClarE (Popat et al., 2018) 43.39 43.52 42.18 22.86 20.55 18.43
dEFEND (Shu et al., 2019) 44.93 43.26 44.07 23.09 18.56 17.51
SentHAN (Ma et al., 2019) 45.66 45.54 44.25 22.64 19.96 18.46
SBERT-FC (Kotonya and Toni, 2020b) 51.06 45.92 45.51 24.09 22.07 22.19
GenFE (Atanasova et al., 2020) 44.29 44.74 44.43 28.01 26.16 26.49
GenFE-MT (Atanasova et al., 2020) 45.64 45.27 45.08 18.55 19.90 15.15
CofCED 52.99 50.99 51.07 29.48 29.55 28.93

Table 2: Experimental results of veracity prediction merely using raw reports (𝑝 < 0.05 under t-test).

report, and source to access the credibility of the
claim; 5) dEFEND (Shu et al., 2019): This utilizes
GRU-based model for veracity prediction with ex-
planations; 6) SentHAN (Ma et al., 2019): This
represents each sentence based on sentence-level
coherence and semantic conflicts with the claim; 7)
SBERT-FC (Kotonya and Toni, 2020b): This uses
SentenceBERT (SBERT) for encoding and detects
fake news based on the top-𝐾 ranked sentences; 8)
GenFE/GenFE-MT (Atanasova et al., 2020): This
detects fake news independently or jointly with
explanations in the multi-task set-up.

Table 2 demonstrates the detection performance
of our proposed CofCED compared with existing
strong baselines in terms of precision, recall and
macro F1 (macF1). From this table, we can ob-
serve that CNN and RNN outperform SVM on both
datasets, indicating that deep learning methods can
better capture semantic and syntactic features from
raw reports. By attentively aggregating multiple
features from the claim, reports, and source to es-
timate the veracity, dEFEND, DeClarE and Sen-
tHAN achieve better performance on RAWFC but
slightly worse results on LIAR-RAW, because fine-
grained labels contained in LIAR-RAW make it
more challenging.

SBERT-FC and GenFE outperform SentHAN
and dEFEND on both datasets, demonstrating the
superiority of pre-trained models. GenFE-MT per-
forms better than GenFE on RAWFC, but much
worse than other baselines on LIAR-RAW, imply-
ing the challenge of fine-grained fake news detec-
tion with explanation generation in the multi-task
setting. Generally, CofCED consistently achieves
much better performance on RAWFC and LIAR-
RAW, demonstrating the superiority of CofCED in
combining report selection, explainable sentence
extraction and veracity prediction for fake news
detection directly on raw reports, alleviating the
dependency on fact-checked reports.

5.3 Ablation Study

To evaluate the impact of each component, we con-
duct ablation experiments for CofCED by remov-
ing the following key components: 1) RS denotes
report selection; 2) SE denotes sentence selection;
3) RS&SE denotes RS and SE; 4) Four semantic
features: claim relevance, richness, salience, and
non-redundancy, for sentence selection.

As shown in Table 3, CofCED significantly out-
performs CofCED w/o ∗ (∗ indicates a component)
on both datasets, demonstrating all components
contribute to the effectiveness of CofCED in de-
tecting fake news. Specifically, CofCED’s perfor-
mance significantly decreases without RS&SE be-
cause there is noise in raw reports, affecting the
veracity prediction. CofCED w/o SE performs
much worse than the others because irrelevant or
redundant information contained in such reports
may weaken the effect of evidence for detection;
CofCED w/o RS also achieves worse performance
than CofCED because noisy reports may affect
sentence selection and model training. Further-
more, the performance of CofCED w/o claim rele-
vance significantly decreases, highlighting the im-
portance of selecting claim-relevant evidence for
final prediction. CofCED outperforms CofCED
without these four features for sentence selection,
respectively, demonstrating they contribute to ex-
tracting explainable sentences for fake news detec-
tion from different perspectives.

5.4 Explanation Evaluation

Table 4 reports the ROUGE results of the extracted
explanations regarding word overlapping. The
ROUGE F1 score is employed to evaluate their
qualities comparing with the following strong base-
lines: 1) LEAD-N (Nallapati et al., 2017): This
uses the first N sentences as explanation and 𝑁 = 5;
2) Oracle (Atanasova et al., 2020): This typically
presents the best greedy approximation of the gold
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Model RAWFC LIAR-RAW
P(%) R(%) macF1(%) P(%) R(%) macF1(%)

CofCED w/o RS&SE 45.01 45.02 44.98 25.69 24.55 24.80
CofCED w/o SE 52.27 46.36 43.80 27.59 23.81 23.74
CofCED w/o RS 49.26 46.92 46.37 27.08 25.32 25.52
CofCED w/o non-redundancy 48.80 46.98 47.48 26.54 27.36 26.65
CofCED w/o salience 43.96 49.24 46.44 26.36 24.88 25.23
CofCED w/o richness 48.08 47.50 47.12 27.06 25.82 26.05
CofCED w/o claim relevance 45.66 45.25 45.28 26.42 24.01 24.88
CofCED 52.99 50.99 51.07 29.48 29.55 28.93

Table 3: Ablation study results of our veracity prediction on test sets; w/o denotes ‘without’.

Model RAWFC LIAR-RAW
ROU-1 ROU-2 ROU-L ROU-1 ROU-2 ROU-L

LEAD-N 19.52 4.54 17.26 9.84 0.40 7.20
Oracle 37.62 13.22 34.67 25.50 9.28 22.61
EXTABS (Kotonya and Toni, 2020b) - - - 18.85 3.61 12.90
dEFEND (Shu et al., 2019) 19.95 5.08 17.21 17.03 3.26 11.42
GenFE-MT (Atanasova et al., 2020) 18.23 7.12 17.32 23.08 3.67 12.10
CofCED w/o non-redundancy 27.32 9.06 23.19 17.96 3.54 12.43
CofCED w/o salience 26.67 7.44 21.02 17.27 3.41 11.69
CofCED w/o richness 25.75 8.66 21.87 17.23 3.44 12.10
CofCED w/o claim relevance 25.56 8.07 20.73 17.08 3.31 11.25
CofCED w/o RS 26.64 8.96 22.69 17.51 3.72 13.20
CofCED 27.62 9.32 23.57 17.14 3.49 12.96

Table 4: ROUGE results of the generated explanation. ROU-𝑁 (𝑁 ∈ {1, 2, 𝐿}) denotes the ROUGE-𝑁 F1 score that
evaluates the token overlap between the explanation and human justifications. RAWFC is not suitable for EXTABS
because its gold justification is too long to train an abstractive-summarization model.

explanation with sentences extracted from reports;
3) EXTABS (Kotonya and Toni, 2020b): This
uses extractive-abstractive summarization model
pre-trained on extra news articles and summaries
dataset before fine-tuning (Liu and Lapata, 2019);
4) dEFEND: This uses internal attention weights
for explanations; 5) GenFE-MT: This incorporates
explanation generation using pre-trained models.

Overall, CofCED achieves the state-of-the-art
performance on RAWFC and comparable ROUGE
scores with GenFE-MT on LIAR-RAW, suggesting
that our CofCED can effectively distill explain-
able sentences that contributes to the final verac-
ity prediction, as shown in Table 2. Specifically,
the ROUGE results of LEAD-N and Oracle on
RAWFC and LIAR-RAW indicate that generating
explanations for fine-grained fake news detection
is a more complex challenge. EXTABS obtains
competitive results on LIAR-RAW due to addi-
tional news and summaries datasets for abstractive
summarization but it cannot deal with long justifi-
cations. GenFE-MT performs much better than dE-
FEND on both datasets, indicating the advantage of
pre-trained models in generating explanation from
raw reports but failing to trade off both tasks re-
garding Table 2. For ablation results, we observe
that some ablations of CofCED achieve slightly
better ROUGE scores but much worse veracity pre-

dictions on LIAR-RAW, indicating these four fea-
tures can effectively select explainable sentences
to enhance fake news detection. Besides, CofCED
performs better on RAWFC while only compara-
ble on LIAR-RAW than CofCED w/o RS, imply-
ing that generating explanations for fine-grained
veracity labels is much more challenging regard-
ing word overlapping. We further conduct human
evaluations as shown in Appendix D. In summary,
our CofCED can effectively generate accurate ex-
planations from raw reports and all components
contribute to focusing on veracity prediction.

5.5 Case Study

For in-depth analysis, we further explore the pro-
cess of CofCED in selecting explainable sentences.
We normalized scores for each abstract feature,
obtaining its overall probability for explaining de-
tection results. As shown in Table 5, given a false
claim about COVID-19, the top two sentences with
higher overall scores refute the claim from differ-
ent perspectives and the last two sentences with 0.3
and 0.2 overall scores contribute less to the veracity
prediction. The separated terms, i.e., claim rele-
vance, richness, salience, and non-redundancy, in
Eq. (4) are clearly visualized for seeking the major
factor responsible for the classification of each sen-
tence. In addition to being a state-of-the-art method
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Claim: Dr. Tasuku Honjo said that COVID-19 was “man-made" at a lab in Wuhan, China.
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[Prediction: False] Explanation: Honjo did not work at the Wuhan Institute of Virology, he did
not say that COVID-19 was “invented” or “man-made,” and the Twitter account posting similar
claims does not belong to the Nobel Prize winner. In addition, this rumor is all based on the
unfounded notion that COVID-19 was created as a bioweapon. (...)

[1] TOKYO, May 6 (Xinhua) – Japanese Nobel laureate Tasuku Honjo have refuted claim that
China manufacture the novel coronavirus, say those rumor be “dangerously distract.”

0.9 0.6 0.8 0.9 0.9
√

[2] Actually, the professor don’t have a Twitter account. 0.7 0.5 0.6 0.9 0.6
√

[3] The 2018 Nobel laureate encourage Japanese authority to adopt a more proactive approach. 0.3 0.5 0.4 0.8 0.3 ×
[4] China will have a big role to play. ... 0.2 0.2 0.1 0.7 0.2 ×

Table 5: Our visualization of explanation extraction from raw reports. Each row is a sentence in raw reports. The
score in the columns are normalized from each of the abstract features in Eq. (4), and the last column is the final
probability explaining to detection results.

(a) Veracity prediction (b) Explanation generation

Figure 3: Results of CofCED under different values
of the trade-off parameter 𝛽𝑆 and 𝛽𝐶 = 1 − 𝛽𝑆 . The
colored dashed horizontal lines denote the performance
of CofCED with our adaptive weighting.

(a) Veracity prediction (b) Explanation generation

Figure 4: Results of CofCED under different values of
the maximum number 𝐾 for report selection.

for explainable fake news detection, CofCED has
the additional superiority of being very explainable
for sentence extraction. Thus, such visualization
increases the transparency of the system and the
credibility of generated explanations for verdicts.

5.6 Parameter Sensitivity Study

We further investigate the impact of the trade-off
parameter 𝛽 in Eq. (13) on CofCED using the grid
search. For brevity, Fig. 3 only presents the re-
sults for a) veracity prediction and b) explanation
generation on development sets when 𝛽𝑆 varies
and 𝛽𝐷 = 0.5 is temporarily fixed. We also tried
various 𝛽𝐷 ∈ [0.1, 0.8] and consistently achieved
similar results. By varying the value of 𝛽𝑆 from
0.1 to 0.8, our model achieves better performances
on one task but poorer results on the other. This

is because these tasks show different importance
and priority for the final performance over time.
By contrast, our CofCED with our proposed multi-
task adaptive weighting (MAW) (i.e., the colored
dashed horizontal lines) consistently achieves bet-
ter performance. Thus, these results demonstrate
that CofCED with MAW can effectively find bet-
ter weights for explanation generation and veracity
prediction in multi-task learning, alleviating the
labor for the grid search for trade-off parameters.

To examine the impact of the maximum num-
ber of selected reports on CofCED, we conduct
experiments by varying 𝐾 while fixing other hyper-
parameters on the development sets of RAWFC and
LIAR-RAW. As shown in Fig. 4, we can see that
too few raw reports generally cause performance
reduction because the noise in the raw reports may
impose the model training bias. Since too many
raw reports will cause the out of memory problem,
we empirically choose a proper value in this study,
i.e., 𝐾 is set to 12 and 18 for RAWFC and LIAR-
RAW, respectively. Note that 𝜀 is a soft threshold
that can be automatically assigned regarding the
total number of report sentences.

6 Conclusion

We present a coarse-to-fine cascaded evidence-
distillation (CofCED) neural network for explain-
able fake news detection that achieves the best
detection performance and distills accurate verac-
ity explanations directly from raw reports. Be-
sides, CofCED has the additional advantage of
being explainable in producing veracity explana-
tions, explicitly considering the semantic features,
e.g., claim relevance, richness, salience, and non-
redundancy. Experimental results on real-world
datasets demonstrate the effectiveness of CofCED
for explainable fake news detection utilizing the
wisdom of crowds, effectively mitigating the de-
pendency on fact-checked reports.



2616

Acknowledgments

This work is partially supported by National Nat-
ural Science Foundation of China through grants
No.61976102, No.U19A2065, and No.61902145.
This work is partly supported by the Interna-
tional Cooperation Project (20220402009GH) and
Science & Technology Development Program
(20210508060RQ), Jilin Province. This work is
partly supported by HKBU One-off Tier 2 Start-up
Grant (RCOFSGT2/20-21/SCI/004), Hong Kong
RGC ECS (22200722).

References
Tariq Alhindi, Savvas Petridis, and Smaranda Mure-

san. 2018. Where is your evidence: improving fact-
checking by justification modeling. In FEVER, pages
85–90.

Jennifer Allen, Antonio A Arechar, Gordon Pennycook,
and David G Rand. 2021. Scaling up fact-checking
using the wisdom of crowds. Science advances,
7(36):eabf4393.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. Generating fact
checking explanations. In ACL, pages 7352–7364.

Isabelle Augenstein, Christina Lioma, Dongsheng
Wang, Lucas Chaves Lima, Casper Hansen, Christian
Hansen, and Jakob Grue Simonsen. 2019. Multifc: A
real-world multi-domain dataset for evidence-based
fact checking of claims. In EMNLP-IJCNLP, pages
4685–4697.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
et al. 2018. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks.
In ICML, pages 794–803. PMLR.

Yaqian Dun, Kefei Tu, Chen Chen, Chunyan Hou, and
Xiaojie Yuan. 2021. Kan: Knowledge-aware atten-
tion network for fake news detection. In Proc. AAAI
Conf. Artif. Intell., volume 35, pages 81–89.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

Hamid Karimi, Proteek Roy, Sari Saba-Sadiya, and Jil-
iang Tang. 2018. Multi-source multi-class fake news
detection. In ICCL, pages 1546–1557.

Diederik P Kingma and Jimmy Ba. 2014.
Adam: A method for stochastic optimization.
arXiv:1412.6980.

Neema Kotonya and Francesca Toni. 2020a. Explain-
able automated fact-checking: A survey. In ICCL,
pages 5430–5443.

Neema Kotonya and Francesca Toni. 2020b. Explain-
able automated fact-checking for public health claims.
In EMNLP, pages 7740–7754.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Shikun Liu, Edward Johns, and Andrew J Davison. 2019.
End-to-end multi-task learning with attention. In
CVPR, pages 1871–1880.

Yang Liu and Mirella Lapata. 2019. Text summarization
with pretrained encoders. In EMNLP-IJCNLP, pages
3730–3740.

Yunfei Long. 2017. Fake news detection through multi-
perspective speaker profiles. In ACL.

Yi-Ju Lu and Cheng-Te Li. 2020. Gcan: Graph-aware
co-attention networks for explainable fake news de-
tection on social media. In ACL, pages 505–514.

Jing Ma, Wei Gao, Shafiq Joty, and et al. 2019.
Sentence-level evidence embedding for claim ver-
ification with hierarchical attention networks. In
ACL.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Detect ru-
mor and stance jointly by neural multi-task learning.
In WWW, pages 585–593.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based
sequence model for extractive summarization of doc-
uments. In AAAI.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In AAAI, pages
6859–6866.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. JMLR, 12:2825–2830.

Kashyap Popat, Subhabrata Mukherjee, Jannik Strötgen,
and Gerhard Weikum. 2017. Where the truth lies:
Explaining the credibility of emerging claims on the
web and social media. In WWW, pages 1003–1012.

Kashyap Popat, Subhabrata Mukherjee, Andrew Yates,
and Gerhard Weikum. 2018. Declare: Debunking
fake news and false claims using evidence-aware
deep learning. In EMNLP, pages 22–32.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek
Bevendorff, and Benno Stein. 2018. A stylometric
inquiry into hyperpartisan and fake news. In ACL,
pages 231–240.



2617

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and politi-
cal fact-checking. In EMNLP, pages 2931–2937.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP-IJCNLP, pages 3982–3992.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled ver-
sion of bert: smaller, faster, cheaper and lighter.
arXiv:1910.01108.

Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019. defend: Explainable fake news
detection. In SIGKDD, pages 395–405.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. SIGKDD, 19(1):22–
36.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In NAACL-HLT, pages 809–819.

William Yang Wang. 2017. “liar, liar pants on fire”: A
new benchmark dataset for fake news detection. In
ACL (short), pages 422–426.

Lianwei Wu, Yuan Rao, Ling Sun, and Wangbo He.
2021. Evidence inference networks for interpretable
claim verification. In AAAI, pages 14058–14066.

Fan Yang, Shiva K Pentyala, Sina Mohseni, Mengnan
Du, Hao Yuan, Rhema Linder, Eric D Ragan, Shui-
wang Ji, and Xia Hu. 2019. Xfake: Explainable fake
news detector with visualizations. In WWW, pages
3600–3604.



2618

Appendices

A Dataset Details

Existing benchmarks for explainable fake news
detection collected official debunked reports writ-
ten by journalists as evidence for fake news detec-
tion (Kotonya and Toni, 2020a), which is labor-
intensive and relatively inefficient. However, de-
bunked reports are not always available for break-
ing news and are mixed up with raw reports, which
may contain more semantically irrelevant and re-
dundant information. To the best of our knowledge,
there is no available explainable dataset based on
crowds of raw reports to detect fake news before
official reports published. Thus, existing datasets
are not suitable for most real-life scenarios, espe-
cially when the fact-checked reports are not always
available. To address this issue, we collect two
new datasets, i.e., RAWFC and LIAR-RAW, con-
sidering a more general situation of detecting and
explaining fake news with relevant raw reports.

Note that we construct RAWFC and LIAR-RAW
with gold labels referring to Snopes5 and Politi-
fact6, respectively. RAWFC is constructed from
scratch as follows and LIAR-RAW are extended
with raw reports based on LIAR-PLUS (Alhindi
et al., 2018). Besides, we pre-processed LIAR-
RAW similar to RAWFC. The detailed statistics of
datasets are shown in Table 1.

A.1 Data Collection and Processing.

We crawled claims with their veracity labels and
relevant fact-checked reports that can be regarded
as gold explanations from Snopes. For each claim,
we extracted the claim-related keywords as the
search query and used Google API to retrieve the
top 30 relevant raw reports. To mitigate the de-
pendency on fact-checked reports, we filtered out
reports from fact-checking sites and removed the
raw reports published after the publication time of
the fact-checked report. We further removed the
summary from the remaining articles and improved
the quality of the dataset with data cleanings, e.g.,
removing reports containing less than 5 words or
more than 3000 words. Finally, we standardized
the original labels for 3-way classification: {true,
false, half }, i.e., {true, correct attribute, mostly
true}→ true, { false, misattribute, mostly false }
→ false, {mixture, unproven }→ half. Each sen-

5www.snopes.com
6www.politifact.com

Figure A.1: The word cloud of our RAWFC.

Figure A.2: The word cloud of our LIAR-RAW.

tence is annotated as evidence or not according to
their similarities with the gold explanation, where
we greedily extract sentences that achieve the high
cosine similarity and ROUGE F1 score, referred to
as oracles.

A.2 Evidential Sentence Annotation.

To help produce explanations from external raw
reports, each sentence in the article is annotated as
evidence or not. Different from selecting evidential
sentences based merely on the ROUGE score (Lin,
2004) with gold explanations (Atanasova et al.,
2020), we propose a more practical approach to
annotate sentences according to both textual-level
and semantic-level similarities.

For each candidate sentence, we adopt two met-
rics to assess whether it should be selected or not:
1) ROUGE measures the textual-level similarity re-
garding the gold explanation in terms of the 𝑛-gram
overlap; and 2) Cosine measures the semantic simi-
larity regarding the gold explanation. Formally,
for a candidate sentence 𝑠𝑖, 𝑗 ∈ 𝑑𝑖 = {𝑠𝑖, 𝑗} |𝑑𝑖 |𝑗=1
and its corresponding explanation sentences set
𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑛}, we define the 𝑛-gram over-
lap function 𝑓 𝑅𝑂𝑈 (𝑠𝑖, 𝑗 , 𝑒𝑖) and semantic similarity
𝑓 𝐶𝑂𝑆 (𝑠𝑖, 𝑗 , 𝑒𝑖) as follows:

𝑓 𝑅𝑂𝑈 (𝑠𝑖, 𝑗 , 𝑒𝑖) =
|𝑛-grams(𝑠𝑖, 𝑗) ∩ 𝑛-grams(𝑒𝑖) |

|𝑛-grams(𝑒𝑖) |
(A.1)

𝑓 𝐶𝑂𝑆 (𝑠𝑖, 𝑗 , 𝑒𝑖) = cos(ℎ𝑠𝑖, 𝑗 , ℎ𝑒𝑖 ), (A.2)
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Standardized Label Train Valid Test

true 561 67 67
false 514 66 66
half 537 67 67

Table A.1: Label statistics of claims in RAWFC.

Fine-grained Label Train Valid Test

pants-fire 812 115 86
false 1,958 259 249

barely-true 1,611 236 210
half-true 2,087 244 263

mostly-true 1,950 251 238
true 1,647 169 205

Table A.2: Label statistics of claims in LIAR-RAW.

where ℎ𝑠𝑖, 𝑗 and ℎ𝑒𝑖 is the sentence representation
encoded by SBERT (Reimers and Gurevych, 2019).
We calculate the textual similarity in terms of
ROUGE-1, ROUGE-2, and ROUGE-L F1 scores,
respectively; we also calculate the semantic sim-
ilarity in terms of Cosine. For sentence labeling,
we empirically set the thresholds of ROUGE-1,
ROUGE-2, and ROUGE-L F1 scores to 0.1, 0.0,
and 0.1, respectively, and the threshold of Cosine
to 0.6. Finally, we accepted the sentences that
exceed all given thresholds as gold explanation sen-
tences, i.e., oracle. The label statistics of claims
in RAWFC and LIAR-RAW are displayed in Table
1 and Table A.2, respectively. Moreover, we also
visualized their word clouds, as shown in Fig. A.1
and Fig. A.2, respectively.

B Multi-task Adaptive Weighting

Inspired by prior work (Chen et al., 2018; Liu et al.,
2019), we further propose a simple yet effective
remedy, namely Multi-task Adaptive Weighting
(MAW), to automatically keep a dynamic balance
among tasks for different benchmark datasets. We
define the weighting function 𝛽𝑘 (𝑡) as follows:

𝛽𝑘 (𝑡) =
𝑁𝑘 exp[ 𝑓𝑘 (𝑡)𝑔(𝑡)]∑
𝑖 exp[ 𝑓𝑖 (𝑡)𝑔(𝑡)]

(B.1)

𝑓𝑘 (𝑡) =
L𝑘 (𝑡 − 1)
L𝑘 (𝑡 − 2) , 𝑔(𝑡) =

log(𝑡 − 2)
𝑇

(B.2)

where 𝛽𝑘 = 𝛽𝑘 (𝑡), 𝑘 ∈ {D, S,C} and 𝑓𝑘 (𝑡) repre-
sents the loss rate for task where 𝑡 is an iteration
step; 𝑔(𝑡) is a global function that can generate a
growth value, contributing to an optimal balance
between tasks, since a large 𝑇 can result in a more
even distribution between different tasks. 𝑇 = 8

Algorithm 1: CofCED
Input: A set of training instances {(𝑐,D)};

Maximum selection number 𝐾;
Thresholds 𝜀.

Output: Veracity label �̂�; Check-worthy
report labels 𝑌 𝑑; Explainable
sentence labels 𝑌 𝑠; Generated
Explanation �̂�

1 Initialize 𝛽𝐷 = 𝛽𝑆 = 𝛽𝐶 = 0.5, if 𝑡 ≤ 2;
2 for each instance (𝑐, {{𝑠𝑖, 𝑗} |𝑑𝑖 |𝑗=1}

|D |
𝑖=1 ) do

3 {Hierarchical Encoding}
4 h𝑐, h𝑖, 𝑗 ← DistilBERT;
5 h𝑖 ← Eq. (2);
6 {Task 1: Report Selection}
7 �̂�𝑑

𝑖
, {𝑑′

𝑘
}𝐾
𝑘=1 ← 𝐾; Eq. (3);

8 h𝐷 = Max( [h1; h2; ...; h |D |])
9 {Task 2: Explainable Sentence

Extraction}
10 for each report 𝑑𝑘 in {𝑑′

𝑘
}𝐾
𝑘=1 do

11 �̂�𝑠
𝑘,𝑡
← Eq. (4);

12 {𝑠𝑘,𝑡 }
|𝑑′

𝑘
|

𝑡=1 , {h
′′
𝑘,𝑡
} |𝑑

′
𝑘
|

𝑡=1 ← �̂�𝑠
𝑘,𝑡
> 𝜀𝑘

13 Explanations: �̂� = {{𝑠𝑘,𝑡 }
|𝑑′

𝑘
|

𝑡=1 }
𝐾
𝑘=1,

14 h′′
𝑘
= Max( [h′′

𝑘,1; h′′
𝑘,2; · · · ; h′′

𝑘, |𝑑′
𝑘
|
]);

15 h𝐸 = Max( [h′′1; h′′2; ...; h′′
𝐾
]);

16 {Task 3: Veracity Prediction}
17 h† = [h𝑐; h𝐷; h𝐸]
18 Verdicts: �̂� ← Eq. (9);

19 {Multi-task Training}
20 Optimize
L𝑎𝑙𝑙 = 𝛽𝐷L𝐷 + 𝛽𝑆L𝑆 + 𝛽𝐶L𝐶 ← Eq.
(10,11,12);

21 Update 𝛽𝐷 , 𝛽𝑆 , 𝛽𝐶 ;

denotes an initial temperature to control the soft-
ness of task weighting similar to (Caruana, 1997).
𝑁𝑘 = 3 indicates the total number of sub-tasks. We
simply initialize 𝛽𝑘 = 0.5 and update the average
loss over each iteration.

C CofCED Algorithm

Algorithm 1 shows our training procedure.

D Human Evaluation for Explanations

We also study the explanation quality by human
evaluation referring to (Atanasova et al., 2020).
Provided with three types of explanations, i.e., hu-
man justification, veracity explanation generated
by CofCED, and the ones generated by GenFE-MT,
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RAWFC
Annotator Gold Exp-GenFE-MT Exp-CofCED

<Informativeness>
# 1 1.38 2.17 1.89
# 2 1.63 2.32 2.01
# 3 1.24 1.76 2.05
ALL 1.42 2.08 1.98

<Readability>
# 1 1.74 1.98 1.81
# 2 1.15 1.76 1.63
# 3 1.97 2.35 2.07
ALL 1.62 2.03 1.84

<Overall>
# 1 1.54 1.98 2.13
# 2 1.43 1.76 1.73
# 3 1.60 2.24 1.91
ALL 1.52 1.99 1.94

LIAR-RAW
<Informativeness>

# 1 1.27 1.91 1.82
# 2 1.55 2.09 1.63
# 3 1.12 1.72 1.46
ALL 1.31 1.91 1.64

<Readability>
# 1 1.13 2.29 1.78
# 2 1.38 2.25 2.12
# 3 1.24 1.94 2.02
ALL 1.25 2.16 1.97

<Overall>
# 1 1.33 1.96 1.68
# 2 1.49 2.12 1.94
# 3 1.51 2.35 2.08
ALL 1.44 2.14 1.90

Table C.1: Mean Average Ranks (MAR) of the expla-
nations for each three evaluation criteria on RAWFC
and LIAR-RAW, respectively. Gold denotes the expla-
nations come from the justification, Exp-GenFE-MT
denotes the explanations generated by GenFE-MT, and
Exp-CofCED denotes the explanations generated by our
CofCED. Best performances are shown in bold, and the
second ones are underlined.

three English-speaking adult annotators were asked
to rank them with 1–Good, 2–Medium, 3–Poor, ac-
cording to three different criteria. To keep clear
and simple, we use the following criteria:

• Informativeness. The explanation contains
much evidential information that contributes
to fake news detection.

• Readability. The explanation is easy to un-
derstand.

Dataset P(%) R(%) macF1(%)
RAWFC 84.28 79.29 81.71
LIAR-RAW 14.98 61.06 24.06

Table E.1: Our results on report classification.

• Overall. The explanation is ranked based on
their overall quality.

For the annotation settings, we randomly sample
a set of 40 instances from the test set and prepare
three candidate explanations without any other in-
formation about these explanations. All of annota-
tors work independently.

Table C.1 shows the mean average results from
the manual evaluation. We also compute Krippen-
dorff’s inter-annotator agreement (Atanasova et al.,
2020) and obtain 0.37 for Informativeness, 0.43 for
Readability, 0.31 for Overall. From the results, we
can see that the human justification (Gold) achieves
the best quality and our Exp-CofCED achieves bet-
ter quality of explanations than Exp-GenFE-MT.
These results suggest that the ROUGE results in
Table 4 may be not sufficient for evaluating verac-
ity explanations because the ROUGE score only
accounts for word overlapping. Besides, the per-
formance of veracity prediction in Table 2 also
verifies the effectiveness of explanations in improv-
ing fake news detection. In summary, our proposed
CofCED can significantly improve final fake news
detection with overall better veracity explanations.

E Further Discussion

Table E.1 shows internal results about report classi-
fications regarding precision, recall, and macro F1
score. Our model outperforms better on RAWFC
than on LIAR-RAW, indicating that report classi-
fication for fine-grained claims is much challeng-
ing and further improving this part may contribute
to explainable fake news detection. Similarly, Ta-
ble E.2 shows internal results about explainable sen-
tence classifications. Overall, our CofCED signifi-
cantly outperforms GenFE-MT but only achieves
comparable results on LIAR-RAW in terms of
ROUGE scores (Table 4). This is probably be-
cause ROUGE scores w.r.t. word overlapping are
not sufficient for evaluating the qualities of gen-
erated explanations. Thus, we further introduce
human evaluation as a complementary measure.

F Example

Examples from RAWFC are shown in Table F.1.
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Model RAWFC LIAR-RAW

P(%) R(%) macF1(%) P(%) R(%) macF1(%)

GenFE-MT (Atanasova et al., 2020) 50.62 36.03 42.09 43.83 4.27 7.79
CofCED 55.56 41.67 47.62 14.29 22.22 17.39

Table E.2: Experimental results of explainable sentence classification regarding oracle sentences.

[Label: False] Claim: U.S. Rep. Alexandria Ocasio-Cortez started “chain migration" deportation
proceedings against First Lady Melania Trump and her parents.
Explanation: Illegal immigration remained a top issue for U.S. President Donald Trump and continued to
divide Americans in mid-2019, all the more so after Trump told several Democratic members of Congress
of immigrant parentage, all but one of them born in the United States, they should “go back and help fix
the totally broken and crime infested places from which they came.” (...) This is simply not true. For
context, “chain migration” is a term used to describe immigration procedures that allow adult U.S. citizens
to obtain citizenship for foreign-born adult relatives. Reportedly, the first lady’s parents secured their
citizenship through just such a procedure — though we needn’t belabor the point, because everything else
in the story is fictional (Melania Trump’s parents aren’t named “Oedipus and Jezebel Beelzebub.”
Raw Report Domain: www.newsweek.com
Content: The president have also be criticize for want to end “chain migration”, a program that let U.S.
citizen to sponsor immediate family member for legal residency, despite it be the program that Melania
Trump use to put her parent Viktor and Amalija Knavs on a path to American citizenship. (...)
Raw Report Domain: www.washingtonpost.com
Content: Melania Trump’ s parent be legal permanent resident, raise question about whether they rely on
“chain migration” She enjoy put her personal mark on the historic home and have redesign the family live
quarter. (...)
Raw Report Domain: www.kbzk.com
Content: Melania Trump’s parent, Viktor and Amalija Knavs, also go through the immigration process,
use the perjoratively call “chain migration” route the President have criticize. (...) A source with direct
knowledge of Melania Trump’s parent and their immigration status previously tell CNN that she have
sponsor her parent for their green card, a status that allow them to live and work in the US indefinitely and
pave the way for citizenship. (...)

[Label: True] Claim: The snakehead fish can survive on land.
Explanation: On Oct.10, 2019, many readers came across news stories about an invasive species of fish
called the snakehead fish that had been discovered in Georgia. While these stories largely dealt with
wildlife officials’ attempts to eradicate the species, what caught the attention of most readers were brief
mentions of this fish’s unique ability to survive on land. CNN reported: A snakehead fish that survives on
land was discovered in Georgia. Officials want it dead An invasive fish species that can breathe air and
survive on land has been found in Georgia for the first time. And officials are warning anyone who comes
into contact with the species to kill it immediately. The snakehead fish can truly survive on land. Here’s a
video of a snakehead in Thailand as it “walks,” crawls, or wiggles its way back to the water.
Raw Report Domain: www.cbsnews.com
Content: Northern snakehead be invasive fish that can breathe air and survive for day on land.
Lawrenceville, Georgia — Georgia’s Department of Natural Resources have a message for angler:
If you catch a northern snakehead, kill it immediately.
Raw Report Domain: www.nytimes.com
Content: Snakeheads can survive in freshwater and be describe a predator that can eat tiny animal, and
travel across land, live out of water for several day. There have be no end to the creepy description of the
snakehead fish, a slimy, toothy, large-jawed animal that can breathe on land and crawl like a snake, in the
decade that it have pop up in freshwater lake, pond and river in the United States. (...)

Table F.1: Examples from RAWFC.


