
Proceedings of the 29th International Conference on Computational Linguistics, pages 2639–2650
October 12–17, 2022.

2639

Finding Influential Instances for Distantly Supervised Relation Extraction

Zifeng Wang1,2, Rui Wen3, Xi Chen3∗, Shao-Lun Huang2, Ningyu Zhang4, Yefeng Zheng3

1University of Illinois Urbana Champaign 2TBSI, Tsinghua University
3Tencent 4Zhejiang University

Abstract

Distant supervision (DS) is a strong way to ex-
pand the datasets for enhancing relation extrac-
tion (RE) models but often suffers from high
label noise. Current works based on attention,
reinforcement learning, or GAN are black-box
models so they neither provide meaningful in-
terpretation of sample selection in DS nor sta-
bility on different domains. On the contrary,
this work proposes a novel model-agnostic in-
stance sampling method for DS by influence
function (IF), namely REIF. Our method identi-
fies favorable/unfavorable instances in the bag
based on IF, then does dynamic instance sam-
pling. We design a fast influence sampling algo-
rithm that reduces the computational complex-
ity fromO(mn) toO(1), with analyzing its ro-
bustness on the selected sampling function. Ex-
periments show that by simply sampling the fa-
vorable instances during training, REIF is able
to win over a series of baselines which have
complicated architectures. We also demon-
strate that REIF can support interpretable in-
stance selection.

1 Introduction

To expand the training data for relation extraction
(RE), distant supervision (DS) was proposed by
Mintz et al. (2009) who assumed that if two enti-
ties are related in existing KBs, then all sentences
contain both of them express this relation. How-
ever, this heuristic inevitably suffers from wrong
labels (Takamatsu et al., 2012) and undermines
model performance. For example, the sentence
“Bill Gates redefined the software industry, ... said
Rob Glaser, a former Microsoft executive" does not
mention the relation founder but is still treated as a
positive training sample in DS. Dealing with noisy
instances in DS has been a focus in RE. There are
three main genres in the literature: (1) incorporat-
ing an attention module (Lin et al., 2016) to allocate
confidence level among instances in the same bag;
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Figure 1: Finding influential instances within a bag via
subsampling based on the calculated probability π. Note
that here negative ϕ means a beneficial sample.

(2) using reinforcement learning (Qin et al., 2018b)
for instance selection; and (3) leveraging adversar-
ial training (Wu et al., 2017) to enhance the RE
model’s robustness against noise. However, they
are either black-box models thus unable to provide
meaningful interpretation of sample selection or
sensitive to datasets. More importantly, none of
them is theoretically guaranteed to truely reduce
the “noise” from the dataset.

In this work, we propose to leverage influence
function (IF) to evaluate instance quality then do
instance selection for DS. Influence function is a
powerful tool drawn from robust statistics (Hu-
ber, 2004). It is able to approximate the influ-
ence of a single data point on the whole model
learned on the dataset. Creating to this merit, it has
been successfully utilized for inspecting outliers
(Boente et al., 2002) and denoising datasets (Wang
et al., 2020) based on shallow machine learning
models, e.g., logistic regression. Although Koh
& Liang (2017) extends IF to interpreting deep
networks, it is still elusive if it works for denois-
ing datasets for deep networks. In this work, we
develop the Relation Extraction by InFluence sub-
sampling (REIF) framework, which aims for de-
noising DS for deep learning RE models.

The high-level idea of REIF is shown by Fig.
1. Each instance is assigned a quality measure ϕ,
from which its sampling probability is obtained via
the sampling function π. Accordingly, the better
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an instance’s quality is, the more likely it is picked
during training. We will explain the operational
meaning of ϕ in Section 3.2. In a nutshell, the main
contributions of this paper are

• We develop a novel IF-based denosing frame-
work for DS RE, namely REIF, for denoising
RE by sampling favorable training instances.

• An efficient implementation of REIF enables
subsampling in O(1) complexity, instead of
theO(mn) complexity without our implemen-
tation.

• Empirical experiments show REIF’s superior-
ity over other baselines, and we identify its
capability to support interpretable instance se-
lection for RE by a case study.1

2 Related Work

There are a series of works trying to address the
noisy label difficulty in DS by multi-instance learn-
ing (MIL) (Hoffmann et al., 2011; Riedel et al.,
2010; Surdeanu et al., 2012). MIL considers the
training labels in bag level instead of instance level.
Each bag contains at least one instance with the
labeled relation while the exact label of each in-
stance is unknown. As MIL being proved effective
in relation extraction, it was firstly introduced to
neural relation extraction by Zeng et al. (2015),
where the piece-wise convolutional neural network
(PCNN) was developed, and only one instance with
the largest predicted probability was selected in
each bag.

Later, attention (Lin et al., 2016; Zhou et al.,
2018; Jia et al., 2019; Yuan et al., 2019; Ye and
Ling, 2020; Zhou et al., 2021), reinforcement learn-
ing (Feng et al., 2018; Yang et al., 2018; Qin
et al., 2018b; Chen et al., 2021), and adversar-
ial training (Wu et al., 2017; Qin et al., 2018a;
Han et al., 2018; Shi et al., 2018) have been pro-
posed for further improvement. However, above
works usually require intense trials in fine-tuning
of the hyper-parameters in practice, or are not in-
terpretable to human-beings. In this work, we pro-
pose a model-agnostic and interpretable instance
selection method via IF, which is easy-to-use for
most DL models without many hyperparameters to
choose.

1Code is available in the supplementary materials.

3 Methodology

In this section, we elaborate on the major steps of
REIF associated with the technical details and the
theoretic foundation of measuring data quality by
influences. Also, an analysis supporting our choice
of sampling function is given.

3.1 Relation Extraction by Influence
Subsampling

Our REIF is model-agnostic thus amenable to most
DL models. Without loss of generality, we pick
PCNN (Zeng et al., 2015) as the encoder for the
input texts. The flowchart of our framework is
shown in Fig. 2. It includes three main parts: 1)
backbone model and 2) instance selection.

Backbone Model. Inputs of the encoder are raw
sentences represented by indices of words, e.g., a
sentence x∗ with l words x∗ = {x∗,1, . . . , x∗,l}.
We transform them into dense real-valued represen-
tation vectors as w∗ = {w∗,1, . . . ,w∗,l}, by con-
catenating the word embedding from V ∈ Rda×|V |

(where |V | denotes the size of the vocabulary and
da is the dimension of word embedding) and po-
sition embedding with dimension dp together. As
there are two position embeddings, each word vec-
tor in w has dimension da + 2× dp. Convolution
layer processes the word representations as

x∗ = CNN(w∗). (1)

The CNN model receives representation vectors
w∗ and outputs the processed feature vectors x∗ ∈
Rd×l. The probability for relation prediction, tak-
ing x∗ as input, is given by

P (y = k|x∗) =
exp(β(k)⊤x∗)∑
k′ exp(β

(k′)⊤x∗)
, (2)

where β = {β(1) . . .β(K)} ∈ Rd×K is the weight
matrix of the last fully-connected layer; K is the
total number of relations.

Dynamic Instance Sampling. One possible way
to do sample selection by IF is post-hoc, i.e., it first
samples from the full training set, then retrains
the model on the subsamples. However, we argue
it is unsuitable for DS. In post-hoc sampling, all
instances are gathered together, hence the subsam-
ples are dominated by majority relations with lots
of training instances, resulting in severe class im-
balance. In an extreme case, minority relations may
completely disappear after subsampling.

On contrast, we propose dynamic instance sam-
pling (DIS) which is executed within bags during
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Figure 2: The flowchart of the instance-level subsampling method, where x is training sentence; x̃ is the validation
sample; ϕ is the computed influence; and a dotted box means the instance is dropped after subsampling.

training. Given a bag X = {x1, . . . , xn} contain-
ing n sentences, we try to sample a subset Xsub

with |Xsub| < n from X . To this end, we calculate
the influences Φi, ∀i = 1, . . . , n, and sampling
probabilities πi are

πi = π(Φi) :=
1

1 + exp(α× Φi)
, (3)

where πi is the probability of xi being selected and
α is a hyper-parameter. Consequently, the training
objective function J(θ) is

J(θ) =
1

|Xsub|
∑

xi∈Xsub

ℓi(θ), (4)

where ℓ(θ) is the abbreviation of loss function
ℓ(x, y; θ) for notation simplicity.

3.2 Theoretic Foundation of Influence-based
Sample Quality Measure

The core step of REIF is to measure the instance
influence Φ. Intuitively, adverse instances, which
cause model validation loss increasing, should be
assigned low probability being sampled, and vice
versa. We next present the property of Φ and sub-
stantiate this intuition in a rigorous way.

Consider a classification problem where we at-
tempt to obtain a model fθ : X → Y , which is
parametrized by θ, that can make prediction from
an input space X (e.g., sentences) to an output
space Y (e.g., relations). Given a set of training
data {xi}ni=1 and the corresponding labels {yi}ni=1,
the optimal θ̂ defined by

θ̂ := argmin
θ∈Θ

1

n

n∑
i=1

ℓi(θ). (5)

We evaluate the learned fθ̂ on an additional valida-

tion set {(xvj , yvj )}mj=1 such as

L(θ̂) :=
1

m

m∑
j=1

ℓvj (θ̂) (6)

where ℓvj (θ̂) is the validation loss on xvj .
In order to quantitatively measure the i-th train-

ing sample’s influence over model’s validation loss,
we can perturb the training loss ℓi(θ) by a small ϵ,
then retrain a perturbed risk minimizer θ̃ as

θ̃ := argmin
θ∈Θ

1

n

n∑
i′=1

ℓi′(θ) + ϵ× ℓi(θ). (7)

As a result, we are able to compute the validation
loss change of the validation sample xvj by

δj(ϵ) := ℓvj (θ̃)− ℓvj (θ̂). (8)

It indicates to what extent xi influences the predic-
tion on xvj . If ϵ = −1/n, according to Eq. (7),
xi’s loss ℓi(θ) is actually removed from the ob-
jective function. In this situation, δj(ϵ) > 0, i.e.,
ℓvj (θ̃)−ℓvj (θ̂) > 0, implies that removing xi causes
the validation loss on xvj increasing, i.e.,

δj

(
− 1

n

)
> 0→ xi is good for xvj . (9)

The influence function ϕi,j := ϕ(xi, x
v
j ; θ̂) linearly

approximate δj(ϵ) by

δj(ϵ) = ℓvj (θ̃)− ℓvj (θ̂) ≃ ϵ× ϕi,j , (10)

where the closed-form expression of ϕ is given in
(Koh and Liang, 2017) as

ϕi,j := −∇θℓ
v
j (θ̂)

⊤H−1

θ̂
∇θℓi(θ̂) (11)

and Hθ̂ :=
1
n

∑n
i=1∇2

θℓi(θ̂) is the Hessian matrix.
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In short, by Eq. (10), δj(−1/n) > 0 is equiv-
alent to ϕi,j < 0. We can compute xi’s influence
over the whole validation set by summation

Φi =

m∑
j=1

ϕi,j = −
m∑
j=1

∇θℓ
v⊤
j (θ̂)H−1

θ̂
∇θℓi(θ̂).

(12)
Now, Φi < 0 implies that xi is good for the whole
validation set. Also, if Φi is smaller, then xi is more
likely to be a favorable sample, and vice versa.

3.3 On Robustness of Sampling Functions
With the influence measure Φ, it seems that we
can simply drop all unfavorable samples that have
Φ > 0. However, we argue that using 0 as the
threshold usually results in failure to the out-of-
sample test, due to its sensitivity to distribution
shift. Instead, we take the measure of probabilis-
tic sampling by designing a sampling function
π(Φ) ∈ [0, 1]. We give the reason of this choice
based on the deviation of the induced validation
loss by inaccurate estimate of influence. Let’s de-
note the validation loss with inaccurate influence
by ℓv(θ̃; Φ̂), thus

∆2(L) :=
1

m

m∑
j=1

(ℓvj (θ̃; Φ̂)− ℓvj (θ̃))
2 (13)

indicates the robustness of the model under Φ̂. We
then give the following proposition on ∆2(L) with
respect to sampling function π. Proof can be found
in Appendix A.

Proposition 1 (Robustness of Probabilistic Sam-
pling under Inaccurate Influence). Let π′(Φi) be
the derivative of π(·) function when taking Φi as
its input, we have

sup
Φ,Φ̂

∆2(L) = γ

n∑
i=1

(π(Φ̂i)− π(Φi))
2

m∑
j=1

ϕ2
i,j

(14)

≃ γ
n∑

i=1

(
(Φ̂i − Φi)π

′(Φi)
)2 m∑

j=1

ϕ2
i,j

(15)

where γ is a constant.

It can be viewed that ∆2(L) is controlled by
the derivative of sampling function π′(Φ). For the
sigmoid sampling in Eq. (3), it is easy to derive
that

π′(Φ) = −απ(Φ)(1− π(Φ)), (16)

which means max |π′(Φ)| = 1
4α when Φ = 0.

∆2(L) is hence controlled by the hyper-parameter
α. When |Φ| increases, |π′(Φ)| reduces sharply,
which ensures the variance’s upper bound being
tight all the time. By contrast, in deterministic sam-
pling, ∆2(L) is sensitive to inaccurate Φ̂ because
it is “hard", or more rigorously, because ∆2(L) is
probably large due to large |π(Φ)− π(Φ̂)| caused
by an improper dropout threshold.

4 Efficient Implementation

Recap Eq. (12), computing Φi requires ϕi,j in Eq.
(11) for j = 1, . . . ,m on all validation samples.
As a result, the computation of all {Φi}ni=1 has
O(mn) time complexity. Moreover, for DNNs
with massive parameters, computing the layer-wise
gradients∇θℓ(θ) is intractable. These limitations
prevent the use of IF from DL RE models. To
address it, we here propose a rather efficient im-
plementation of REIF. We demonstrate how to re-
duce the complexity of calculating influences from
O(mn) to O(n), then to O(1). In addition, we
show how to compute the influence function by
stochastic estimation.

4.1 Computing Influences in Linear Time

We argue that in Eq. (12), it is unnecessary to
calculate ϕi,j separately, since here we only care
about their summations. Specifically, since the
summation is only related to the subscript j, we
can cast it to

Φi = −∇θℓ
⊤
i (θ̂)H

−1

θ̂

m∑
j=1

∇θℓ
v
j (θ̂) (17)

= −∇θℓ
⊤
i (θ̂)H

−1

θ̂
∇θ

m∑
j=1

ℓvj (θ̂) (18)

= −m∇θℓ
⊤
i (θ̂)H

−1

θ̂
∇θL(θ̂), (19)

where L(θ̂) comes from Eq. (6). By this derivation,
we can calculate L(θ̂) rather than all lj(θ̂), then
take derivative of L(θ̂). Since L(θ̂) only needs to
be calculated once and it is shared in calculating all
Φis, this process only requires O(n) time, without
loss of accuracy.

4.2 Linear Approximation for O(1)
Complexity

∇θℓ(θ̂) in Eq. (17) usually has complicated ex-
pression when fθ(·) is a neural network, hence the
previous works implemented it by the auto-grad
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systems like TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2019). However, when the
number of alternative training instances is large,
even O(n) is not satisfactory enough, because ad-
ditional differential operations need to be done on
each ℓi(θ̂) sequentially. Moreover, when faced with
complex neural networks with massive parameters,
computing the Hessian matrix Hθ̂ and its inversion
is intractable. Considering these issues, we pro-
pose a linear approximation approach to reduce
the complexity to O(1), and avoid operating on all
parameters of the neural network.

Suppose the cross entropy loss function is used:

ℓ(θ) = −
K∑
k=1

I{y = k} logP (y = k|x; θ) (20)

where I(·) is an indicator function. Let y, ŷ ∈ RK

be the one-hot label vector, e.g., (1, 0, 0)⊤, and pre-
diction vector, e.g., (0.8, 0.1, 0.1)⊤, respectively.
We replace ∇θℓ(θ) in Eq. (11) with the derivatives
on β (the weight of the last fully-connected layer):

∇θℓ(θ)⇒ ∇βℓ(θ) = (ŷ − y)x⊤ ∈ Rd×K (21)

where x is the input of the last fully-connected
layer. This closed-form expression allows comput-
ing batch gradients in O(1) time. Although the
calculated influence might be inaccurate, it is still
reliable for measuring instances’ relative quality in
general. We will validate this claim in our experi-
ments.

4.3 Algorithm
Algorithm 1 shows the details of REIF, please refer
to Appendix B. It has two hyper-parameters: the
sampling ratio r and the sigmoid sampling parame-
ter α. The optimal value of r depends on quality of
the dataset, since the higher quality it is, the more
favorable instances it might have. Keeping α = 1
is satisfactory in most scenarios.

In particular, on the line #14 of Algorithm 1, we
compute the product between the inverse Hessian
matrix and a gradient vector via the stochastic esti-
mation procedure by Koh & Liang (Koh and Liang,
2017). Denoting the vector ∇θL(θ̂) by v, it first
initializes the approximate inverse Hessian-Vector-
Product (HVP) by H̃−1

0 v ← v, then repeatedly
samples nb training instances and updates as

H̃−1
t v ← v+

(
I − 1

nb

∑
∇2

θℓ(θ̂)

)
H̃−1

t−1v (22)

until H̃−1
t v converges. In our algorithm, we only

need to do this once after each epoch, to get the pre-
computed inverse HVP s = H−1

θ̂
∇θL(θ̂). There-

fore, during training, we directly compute ∇θℓi(θ̂)
for each instance according to Eq. (21), then multi-
ply it with the precomputed s.

5 Experiments

We concentrate on the following research ques-
tions:

RQ1. How does our REIF perform as compared
with classical baselines?

RQ2. How does the sampling ratio r influence
the performance of the REIF?

RQ3. Does the sigmoid function lead to more
robust sampling than the deterministic sampling?

RQ4. How does the proposed dynamic instance
sampling perform compared with the post-hoc sam-
pling using IF?

5.1 Datasets

In our experiments, we use two versions of widely
used NYT datasets, the NYT-SMALL and NYT-
LARGE. The small version is released in (Riedel
et al., 2010), by aligning Freebase with the New
York Times corpus. In particular, we use the filtered
version of the NYT-SMALL released by (Zeng
et al., 2015). The large version was released by
(Lin et al., 2016). Data statistics can be found in
Appendix C.

5.2 Experimental Setups

We pick PCNN (PCNN+ONE) (Zeng et al., 2015)
as the backbone in our experiments, and include
several baselines for comparison: the attention-
based PCNN (PCNN+ATT) and the naive average
method (PCNN+AVE) (Lin et al., 2016). Note that
our REIF method is model-agnostic, hence it is
applicable for other deep learning based backbones
as well, e.g., CNN and RNN. Setups of models can
be found in Appendix D.

We sample a clean validation set from training
set by a rule-based approach used in (Jia et al.,
2019), in order to obtain the inverse HVP required
for calculating influences. The details of its estab-
lishment and discussions of this validation set can
be found in Appendix E. During subsampling, we
set α = 1 and r ∈ {5%, 10%, 20%, 30%}2 for our
REIF.

2The ceiling function is used for rounding.
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Table 1: P@N for relation extraction results, on NYT-SMALL and NYT-LARGE, where the best ones are in bold.

Dataset NYT-SMALL NYT-LARGE

P@N (%) 100 200 300 Mean 100 200 300 Mean
PCNN + ONE 54.0 52.7 52.2 53.0 70.4 66.4 63.6 66.8
PCNN + AVE 52.7 50.8 47.3 50.3 73.0 71.2 67.8 70.6
PCNN + ATT 52.7 50.7 49.5 50.9 79.7 76.0 71.6 75.8
PCNN + REIF (Proposed) 75.2 65.1 60.8 67.0 86.4 82.5 80.3 83.1

Table 2: Prevision (%) of various DS methods using PCNN as backbones / other DS methods for different recalls
(0.1, 0.2, 0.3) on NYT-LARGE. The results of cited methods are drawn from their papers, and the best are in bold.

PCNN 0.1 0.2 0.3 Mean
+ONE 64.7 57.1 48.9 56.9
+ATT 74.3 63.3 56.5 64.7
+ONE+soft-label (Liu et al., 2017) 71.6 62.5 54.1 62.7
+ATT+soft-label (Liu et al., 2017) 75.1 67.5 55.8 66.1
+ONE+DSGAN (Qin et al., 2018a) 65.5 57.2 50.0 57.6
+ATT+DSGAN (Qin et al., 2018a) 70.5 62.2 53.3 62.0
+PE+REINF (Zeng et al., 2018) 70.1 66.2 56.1 64.1
+ONE+RL (Qin et al., 2018b) 66.7 56.1 48.3 64.1
+ATT+RL (Qin et al., 2018b) 68.3 60.0 52.2 60.2
+ONE+ADV (Wu et al., 2017) 71.7 58.9 51.1 60.6
+ONE+AN (Han et al., 2018) 80.3 70.2 60.3 70.3
+ATT-RA+BAG-ATT (Ye and Ling, 2020) 78.8 68.9 62.1 69.9
+SATT (Zhou et al., 2021) 78.2 69.1 59.5 68.9
DISTRE (Alt et al., 2019) 65.2 64.4 60.9 63.5
RedSandT (Christou and Tsoumakas, 2021) 73.1 67.3 58.0 66.1
Trans-SA (Xiao et al., 2022) 74.1 67.2 57.9 66.4
PCNN+REIF (Ours) 82.6 73.9 60.9 72.5

5.3 Effects of Influence Subsampling (RQ1)

Fig. 3 shows the precision-recall curve in held-out
evaluation of ONE, AVE, ATT, and our REIF, and
Table 1 illustrates the corresponding P@N of all
methods. Our REIF performs the best among all
methods. In details, on NYT-SMALL, our REIF
improves 14% over ONE, and 16.1% over ATT; on
NYT-LARGE, the improvements are 14.1% and
5.1%, respectively, in terms of the mean P@N.
Specifically, REIF only leverages part of instances
during training, while ATT involves all instances
but performs badly on NYT-SMALL, and ONE
only picks one instance per bag. It means that nei-
ther picking too many nor too few instances gains
satisfactory performance in distant supervision. On
contrast, our REIF can detect and pick those favor-
able ones from the noisy dataset, thus achieving a
better model. In distant supervision, our method is
effective for achieving nice trade-off between effi-
ciency and effectiveness. Moreover, we compare
our method with many DS baselines, including ad-

versarial training, reinforcement learning, attention,
and GAN based methods, using the reported results.
As shown in Table 2, REIF still is superior.

5.4 Effects of Sampling Ratio (RQ2)
We evaluate the performance of REIF with respect
to different r by repeat experiments. Results are re-
ported in Fig. 5. REIF keeps stable when sampling
ratio ranges from 5% to 30%, such that adding
more instances does not make much difference,
which might be due to high noise in the NYT
dataset, i.e., focusing on those favorable instances
is enough for training a satisfactory RE model.

5.5 Effects of Sigmoid Sampling & Dynamic
Sampling (RQ3, RQ4)

Our REIF is engaged with the proposed prob-
abilistic sigmoid sampling and DIS, namely
REIF+P+DIS. We would like to validate these two
techniques compared with the deterministic sam-
pling (REIF+D+DIS), and the post-hoc sampling
(REIF+P+PH). Our main observations from Fig. 4
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Figure 3: Aggregated precision-recall (P-R) curves ob-
tained by PCNN+ONE, PCNN+AVE, PCNN+ATT, and
the proposed PCNN+REIF on NYT-SMALL and NYT-
LARGE datasets.

are as follows:
(1) The probabilistic sigmoid sampling is crucial

for robust subsampling, as the REIF+D+DIS per-
forms the worst in both datasets. As mentioned in
Proposition 1, drawbacks of REIF+D mainly come
from the inaccurate estimate of influence Φ̂, due
to the non-convexity of neural networks and the
use of linear approximations. That is, we could
not determine the instances that have Φ̂ around the
threshold with very high confidence, e.g., determin-
istic ranking and selecting, since this causes high
variance of the resulting test loss, as indicated by
Eq. (14). By contrast, we should assign them simi-
lar probabilities to be sampled, as done in REIF+P,
to avoid sharp variation of the test loss caused by
inaccurate influences in deterministic selection.

(2) Our dynamic sampling method generally
performs better than post-hoc sampling in DS,
especially on the tail instances. When recall is
high, REIF+DIS performs better on the minor rela-
tions, thus has higher precision than REIF+PH. In
DIS, more minor relation instances are maintained,
which facilitates the model’s capacity of mining
minor relation instances. Considering efficiency
and the overall effectiveness, we shall prefer DIS
in practice.
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Figure 4: Precision-recall curve of compared REIF vari-
ants, where the REIF+P+DIS is the REIF with proba-
bilistic sigmoid sampling and dynamic sampling, +D
means deterministic sampling and +PH means post-hoc
sampling.

6 Manual Evaluation & Case Study

Held-out evaluation usually suffers from false neg-
ative examples in Freebase (Zeng et al., 2015). To
further check our method, we perform manual eval-
uation by choosing the entity pairs which are la-
beled as “NA” but predicted a relation (not “NA”)
with high confidence. The top-k precisions are
reported in Table 3, where the results of Mintz
(Mintz et al., 2009), MultiR (Hoffmann et al.,
2011), MIML (Surdeanu et al., 2012), PCNN+ONE
(Zeng et al., 2015) and APCNN (Ji et al., 2017)
are drawn from their papers. It could be seen our
method outperforms baselines in extracting new
facts from the false negative examples.

Fig. 6 reports an example of calculating influ-
ences that support instance selection. Picking a
relation children as the example, influences and at-
tention scores (Lin et al., 2016) are computed, from
which we can identify that the influences quanti-
tatively measure their individual quality. Recall
in Section 3.2 that the smaller influences indicate
better data quality. The first and the last instances
are clearly right and wrong, respectively, in terms
of indicating the relation children between their en-
tities. By contrast, the second one tends to be right
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Figure 5: Mean P@N (average of P@100/200/300)
varies with sampling ratio of REIF (IF) method. Red bar
represents standard error by 5 times repeat experiments.

Instances Influences
Att

Scores

… because of art rooney , the legendary steelers ' owner 
… and they have continued to be a family under his 
oldest son , dan rooney .

-2.23E-02 1.11E-04

mother of joseph paula and walter eva, grandmother of 
david, lauren, jacob, miriam and leah .

-1.07E-04 2.61E-09

… the suspense novelists mary higgins clark and carol 
higgins clark signed books and posed for photographs 
for five hours … 

1.50E-05 1.44E-07

…  daughter jamie baldinger and her husband, joseph; 
son david goldring and his wife rachel …

7.81E-04 1.39E-09

Figure 6: Examples of influences calculated with the re-
lation children, on NYT-LARGE. The words in bold are
entities. The Att Scores (Lin et al., 2016) are standard-
ized into [0, 1] by softmax, and Influence is the smaller
the better.

because it implies that Joseph is the parent of Ja-
cob. Although two entities in the third instance are
very similar, no evidence shows they are relatives.
Therefore, sampling probabilities can be obtained
via these influences for the further subsampling
process.

7 Conclusion & Discussion

In this work, we proposed an efficient subsam-
pling scheme to find the influential instances for
DS, namely REIF. Our method is model-agnostic,
therefore it can be engaged in the majority of RE
models. REIF can be generalized to other tasks
which also confront noisy data. For instance, in
other weak supervision scenarios such as active
learning, our method can be an effective approach

Table 3: Precision values for the top 100, 200 and 500
via manual evaluation. Avg denotes the average of the
former three columns. Best ones are in bold.

Accuracy (%) Top 100 Top 200 Top 500 Avg
Mintz 77 71 55 67.7

MultiR 83 74 49 68.7
MIML 85 75 61 73.7

PCNN+ONE 86 80 69 78.3
APCNN 87 82 72 80.3

PCNN+ATT 86 81 70 79.0
PCNN+REIF 88 84 76 82.7

to build data pipeline from data quality measure to
data selection. We leave this as our future work.
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A Proof of Proposition 1

Proposition 1 (Robustness of Probabilistic Sam-
pling under Inaccurate Influence). Let π′(Φi) be
the derivative of π(·) function when taking Φi as
its input, we have

sup
Φ,Φ̂

∆2(L) = γ
n∑

i=1

(π(Φ̂i)− π(Φi))
2

m∑
j=1

ϕ2
i,j

≃ γ
n∑

i=1

(
(Φ̂i − Φi)π

′(Φi)
)2 m∑

j=1

ϕ2
i,j

(A.1)
where γ is a constant.

Proof.

∆2(L) ∝
m∑
j=1

(ℓvj (θ̃; Φ̂)− ℓvj (θ̃))
2 (A.2)

=
m∑
j=1

(ℓvj (θ̃; Φ̂)− ℓvj (θ̂) + ℓj(θ̂)− ℓvj (θ̃))
2

(A.3)

∝
m∑
j=1

(
n∑

i=1

π(Φ̂i)ϕi,j − π(Φi)ϕi,j

)2

(A.4)

≤
n∑

i=1

(π(Φ̂i)− π(Φi))
2

m∑
j=1

ϕ2
i,j (A.5)

Eq. (A.4) is obtained by definition of probabilistic
subsampling because

ℓvj (θ̃)− ℓvj (θ̂) ≃
n∑

i=1

ϵiϕi,j

∝
n∑

i=1

π(Φi)ϕi,j .

(A.6)

Details can be referred to (Wang et al., 2020). Tak-
ing linear Taylor expansion of the π(Φ̂i)− π(Φi)
at the last line yields the final result.

B Algorithm

C Dataset Statistics

D General Setups for Training PCNN

Following the configurations of previous works, we
employ word2vec3 to extract the word embeddings,
to process the raw data. Parameters of PCNN are
set according to (Zeng et al., 2015): window size
dw = 3, sentence embedding size ds = 230, word

3https://code.google.com/p/word2vec/

Algorithm 1 Finding Influential Instances for DS
on RE by Influence Subsampling.

Input: Training and validation data Dtr,Dva;
Hyper-parameters: r and α;

1: for epoch t = 1→ T do
2: repeat
3: Initialize the selected instances set

Xsub = ∅;
4: Sequentially sample a batch of bags
{X1, . . . , XB} from Dtr;

5: for bag b = 1→ B do
6: Obtain instance-level loss as ℓ⃗ ←

(ℓ1(θ̂t), . . . , ℓ|Xb|(θ̂t))
⊤;

7: Compute influences Φi ←
s⊤t ∇θℓi(θ̂t) ∀i = 1, . . . , |Xb|;

8: Compute sampling probability
πi ← 1/(1 + exp(α× Φi)) ∀i;

9: Sample r×|Xb| instances from Xb

to get X̃b, and Xsub ← Xsub ∪ X̃b;
10: end for
11: Update θ̂t using the selected subset

Xsub by gradient descent;
12: until going through all bags in Dtr.
13: Get validation loss by L(θ̂t) ←

1
m

∑m
j=1 ℓ

v
j (θ̂t) on Dva;

14: Obtain st ← H−1
t ∇θL(θ̂t) by stochastic

estimation as done in Eq. (22);
15: end for

dimension da = 50 and position dimension dp = 5
for fair comparison. During training, we fix the
batch size B = 128, dropout ratio p = 0.5, and
use the ADADELTA (Zeiler, 2012) with parameters
ρ = 0.95 and ε = 10−6 for optimization. Since
we find the default hyperparameters already lead
superior performance of REIF, we did not make
further tuning.

E Establishing the Validation Set

Due to lacking clean validation set, we utilize au-
tomatic selection similar to ARNOR (Jia et al.,
2019). It takes top 10% high-frequency patterns
of each relation as initial pattern, then takes max
5 new patterns in one loop for each relation in
bootstrap procedure. We stop bootstrap until 10%
training samples are involved. Our experiments
demonstrate REIF can gain significantly from this
automatically built validation set, although it is
collected by heuristics and not absolutely clean.
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Table 1: Data statistics of used two NYT datasets. “#
Pos", “# Ins", “# Rel": number of postive bags, instances
and relations, respectively.

NYT-SMALL NYT-LARGE
Train Test Train Test

# Bags 65,726 93,574 281,270 96,678
# Pos 4,266 1,732 18,252 1,950
# Ins 112,941 152,416 522,611 172,448
# Rel 26 26 53 53
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