
Proceedings of the 29th International Conference on Computational Linguistics, pages 4753–4764
October 12–17, 2022.

4753

WARM: A Weakly (+Semi) Supervised Math Word Problem Solver

Oishik Chatterjee ∗

Flipkart
Bangalore India

Isha Pandey
Department of CSE

IIT Bombay
{oishik75, iishapandey77, aashishwaikar}@gmail.com

Aashish Waikar∗
Quadeye

Gurgaon India

Vishwajeet Kumar
IBM India Research Lab

Bangalore India
vishk024@in.ibm.com

Ganesh Ramakrishnan
Department of CSE

IIT Bombay
ganesh@cse.iitb.ac.in

Abstract
Solving math word problems (MWPs) is an
important and challenging problem in natural
language processing. Existing approaches to
solve MWPs require full supervision in the
form of intermediate equations. However,
labeling every MWP with its corresponding
equations is a time-consuming and expensive
task. In order to address this challenge of equa-
tion annotation, we propose a weakly super-
vised model for solving MWPs by requiring
only the final answer as supervision. We ap-
proach this problem by first learning to gen-
erate the equation using the problem descrip-
tion and the final answer, which we subse-
quently use to train a supervised MWP solver.
We propose and compare various weakly su-
pervised techniques to learn to generate equa-
tions directly from the problem description
and answer. Through extensive experiments,
we demonstrate that without using equations
for supervision, our approach achieves accu-
racy gains of 4.5% and 32% over the state-
of-the-art weakly supervised approach (Hong
et al., 2021), on the standard Math23K (Wang
et al., 2017) and AllArith (Roy and Roth, 2017)
datasets respectively. Additionally, we cu-
rate and release new datasets of roughly 10k
MWPs each in English and in Hindi (a low
resource language). These datasets are suit-
able for training weakly supervised models.
We also present an extension of Warm1 to
semi-supervised learning and present further
improvements on results, along with insights.

1 Introduction

AMathWord Problem (MWP) is a numerical prob-
lem expressed in natural language (problem de-

∗ The author contributed to this work while at IIT Bom-
bay

1Warm stands for WeAkly supeRvised Math solver.

scription), that can be transformed into an equa-
tion (solution expression), which can be solved to
obtain the final answer. In Table 1, we present
an example MWP. Automatically solving MWPs
has recently gained lot of research interest in nat-
ural language processing (NLP). The task of auto-
matically solving MWPs is challenging owing to
two primary reasons: i) The unavailability of large
training datasets with problem descriptions, equa-
tions as well as corresponding answers – as de-
picted in Table 1, equations can provide full super-
vision, since equations can be solved to obtain the
answer, and the answer itself amounts to weak su-
pervision only; ii) Challenges in parsing the prob-
lem description and representing it suitably for ef-
fective decoding of the equations. Paucity of com-
pletely supervised training data can pose a severe
challenge in training MWP solvers. Most exist-
ing approaches assume the availability of full su-
pervision in the form of both intermediate equa-
tions and answers for training. However, anno-
tating MWPs with equations is an expensive and
time consuming task. There exists only two suffi-
ciently large datasets (Wang et al., 2017) in Chi-
nese and (Amini et al., 2019) in English consisting
of MWPs with annotated intermediate equations
for supervised training.

We propose a novel two-step weakly supervised
technique to solve MWPs by making use only
of the weak supervision, in the form of answers.
In the first step, using only the answer as super-
vision, we learn to generate equations for ques-
tions in the training set. In the second step, we
use the generated equations along with answers to
train any state-of-the-art supervised model. We
illustrate the effectiveness of our weakly super-
vised approach on our newly curated reasonably



4754

Problem: It costs Rs 5.0 to buy 10.0 peppermint candies.
If the candies all have the same price,how much does it
cost to buy 1.0 candy ?

Equation: X=(5.0/10.0)× 1.0
(Under full supervision)

Answer: 0.5 (Under weak supervision)

Problem: एक आयताकार बकरी के बाड़े का पȼरमाप 34.0 मीटर
ह।ै बाड़े कɃ चौड़ाई 6.0 मीटर ह।ै बाड़े कɃ लम्बाई िकतनी होगी?

Equation: X=34.0− (2× 6.0)/2
(Under full supervision)

Answer: 11.0 (Under weak supervision)

Table 1: Example of Math Word Problems in English
and Hindi language

large dataset in English and a similarly curated
dataset in Hindi - a low resource language. We
also perform experiments with semi-supervision
and demonstrate how our model can benefit from
a small amount of completely labelled data. Our
main contributions are as follows:
1) An approach, Warm, (c.f., Section 4) for gener-
ating equations from MWPs, given (weak) super-
vision only in the form of the final answer.
2) An extended semi-supervised training method
to leverage a small amount of annotated equations
as strong/complete supervision.
3) A new and relatively large dataset, EW10K,
in English (with more than 10k instances), for
training weakly supervised models for solving
MWPs (c.f., Section 3). Given that weak supervi-
sion makes it possible to train MWP solvers even
in the absence of extensive equation labels, we
also present results on a similarly crawled dataset,
HW10K(with around 10k instances), in a low re-
source language, viz. Hindi, where we can avoid
the additional effort required to generate equation
annotations.
4) We empirically show that Warm outperforms
state-of-the-art models on most of the datasets.
Further, we empirically demonstrate the benefits
of the semi-supervised extension to Warm.

2 Related Work

Automatic math word problem solving has re-
cently drawn significant interests in the natural
language processing (NLP) community. Existing
MWP solving methods can be broadly classified
into four categories: (a) rule-based methods, (b)

statistics-based methods, (c) tree-based methods,
and (d) neural-network-based methods.

Rule-based systems (Fletcher, 1985; Bakman,
2007; Yuhui et al., 2010) were amongst the earli-
est approaches to solve MWPs. They rely heavily
on hand-engineered rules that might cover a lim-
ited domain of problems. Statistics-based meth-
ods (Hosseini et al., 2014; Kushman et al., 2014;
Sundaram and Khemani, 2015; Mitra and Baral,
2016; Liang et al., 2016a,b) use predefined logic
templates and employ traditional machine learning
models to identify entities, quantities, and opera-
tors from the problem text and subsequently em-
ploy simple logical inference to yield the numeric
answer. (Upadhyay et al., 2016) employ a semi-
supervised approach by learning to predict tem-
plates and corresponding alignments using both ex-
plicit and implicit supervision. Tree-based meth-
ods (Roy and Roth, 2015; Koncel-Kedziorski et al.,
2015; Roy et al., 2016; Roy and Roth, 2017, 2018)
replaced the process of deriving an equation by
constructing an equivalent tree structure, step by
step, in a bottom-up manner.

More recently, neural network-based MWP
solving methods have been proposed (Wang et al.,
2017, 2018a,b; Huang et al., 2018; Chiang and
Chen, 2019; Wang et al., 2019; Liu et al., 2019;
Xie and Sun, 2019; Wu et al., 2021; Shen et al.,
2021). These employ an encoder-decoder architec-
ture and train in an end-to-end manner without the
need for hand-crafted rules or templates. (Wang
et al., 2017) were the first to propose a sequence-
to-sequence (Seq2Seq) model, viz., Deep Neu-
ral Solver, for solving MWPs. They employ
an RNN-based encoder-decoder architecture to di-
rectly translate the problem text into equation tem-
plates and also release a high-quality large-scale
dataset, Math23K, consisting of 23,161 MWPs in
Chinese.

(Liu et al., 2019) and (Xie and Sun, 2019) pro-
pose tree-structured decoding that generates the
syntax tree of the equation in a top-down man-
ner. In addition to applying tree-structured decod-
ing, (Zhang et al., 2020) propose a graph-based
encoder to capture relationships and order infor-
mation among the quantities. For a more compre-
hensive review on automatic MWP solvers, read-
ers can refer to a recent survey paper (Zhang et al.,
2018).

Unlike all the previous works that require equa-
tions for supervision, (Hong et al., 2021) propose



4755

a weakly supervised method for solving MWPs,
where the answer alone is required for training.
Their approach attempts to generate the equation
tree in a rule based manner so that the correct an-
swer is reached. They then train their model using
the fixed trees. With the same motivation. we also
propose a novel weakly supervised model, Warm,
(c.f., Section 4) for solving MWPs using only the
final answer for supervision. We show howWarm
can be extended to semi-supervised joint learning
in the presence of weak answer-level supervision
in conjunction with some equation-level supervi-
sion. Further, we empirically demonstrate that
Warm outperforms (Hong et al., 2021) on all the
datasets.

We also took insights from (Kumar et al., 2018),
(Thakoor et al., 2018), (Akula et al., 2021), (Kumar
et al., 2015), (Singh et al., 2016), (Kumar et al.,
2019) and (Tarunesh et al., 2021) for handling
mathematical data in two different languages.

This paper is organized as follows. In Section 3,
we set the premise for our approach by describ-
ing the new datasets (EW10K and HW10K) for
weak supervision that we release. In Section 4, we
describe our weakly supervised approach Warm
and its semi-supervised extensionWarm-S. In Sec-
tion 5, we present the experimental setup whereas
in Section 6 we delve into the results and its anal-
ysis before concluding in Section 7.

3 Dataset

Currently, there does not exist any sufficiently
large English dataset for single and simple equa-
tion MWPs. While there exists an English
dataset (Amini et al., 2019) with sufficiently large
MWPs, the questions in the dataset are meant to
be evaluated in a multiple choice question (MCQ)
manner. Also, the equation associated with each
word problem in this dataset is significantly more
complex and requires several binary and unary op-
erators. On the other hand, Math23K (Wang et al.,
2017) is in Chinese and Dolphin18k (Huang et al.,
2016) contains mostly multi-variable word prob-
lems. To address these gaps, we curate a new
English MWP dataset, viz., EW10K2 consisting
of 10227 word problem instances (each associated
with a single equation) that can be used for training
MWP solver models in a weakly supervised man-
ner.

2https://github.com/iishapandey/WARM

We crawled IXL3 to obtainMWPs for grades VI
until X. These word problems involve a wide va-
riety of mathematical computations ranging from
simple addition-subtraction to much harder mensu-
ration and probability problems. The dataset con-
sists of 10 different types of problems, spanning
3 tiers of difficulty. We also annotate the dataset
with the target unit. The exact distributions are pre-
sented in Figure 1.

We similarly created a MWP dataset in Hindi2 -
a low resource language. It consists of 9,896 ques-
tion answer pairs. To the best of our knowledge,
this is the first MWP dataset of such size in Hindi.

Figure 1: Distribution on different types of questions

4 Our Approach: Warm

We propose a weakly supervised model, Warm,
for solving the MWP using only the answer for
supervision. It is a two-step cascaded approach
for weakly supervised MWP solving. For the first
step, we propose a model that predicts the equa-
tion, given a problem text and answer. This model
uses reinforcement learning to search the space of
possible equations, given the question and the cor-
rect answer only. The answer acts as the goal of
the agent and the search is terminated either when
the answer is reached or when the equation length
exceeds a pre-defined length (this is required, else
the search space would be infinitely large). The
model is designed to be a two layer bidirectional
GRU (Cho et al., 2014) encoder and a decoder
network with fully connected units (described in
Section 4.3). We refer to this model as Warm.
Note that this model requires an answer to deter-
mine when to stop exploring. Since we ultimately
want a model which should only take the prob-
lem statement as input and generate the answer (by
generating the correct equation), this model alone
is insufficient for evaluation. Using this model,
we create a noisy equation-annotated dataset from

3https://in.ixl.com/

https://github.com/iishapandey/WARM
https://in.ixl.com/


4756

the weakly annotated training dataset (the training
dataset has answers since it is weakly supervised).
We use only those instances to create the dataset
for which the equation generated by the model
yields the correct answer. Note that the equations
are noisy, since there is no guarantee that the gen-
erated equation will be the shortest or even correct.
In the second step, we use this noisy data for su-
pervised training of a state-of-the-art model. The
trained supervised model is finally used for eval-
uation. For simplicity, we provide a summary of
notations in Section 1 in supplementary.

Figure 2: Inference Illustration

Figure 3: Architecture for generating equation tree in
Warm.

4.1 Equation Generation

The first step of our approach is to generate equa-
tion given a problem text P and answer A. This is
done by using our Warm model. The problem text
is passed through the encoder of the Warm model
to get its encoded representation which is then fed
to the decoder. At each time step, the decoder gen-
erates an operator and its two operands from the

operator and operand vocabulary list. The opera-
tion is then executed to obtain a new quantity. This
quantity is checked against the ground truth and
if it matches the ground truth, the decoding is ter-
minated and a reward of +1 is assigned. Else we
assign a reward of -1 and the generated quantity is
added to the operand vocabulary list and the decod-
ing continues. The working of the Warm model
and architecture are illustrated in Figure 2 and Fig-
ure 3 respectively. In the following few subsec-
tions, we describe the architecture as well as the
training in details.

4.2 Encoder
The encoder takes as input, the MWP represented
as a sequence of tokens P = x1x2x3...xn. We
replace each number in the question with a special
token< num_j > to obtain this sequence where j
denotes the index of number in the operand vocab
for that question. Each word token xi is first trans-
formed into the corresponding word embeddingxxxi
by looking up an embedding matrix MMMw. Next,
a binary feature is appended to the embedding to
indicate whether the token is a word or a number.
As depicted in the lower half of Figure 3, this ap-
pended embedding vector is then passed through a
2 layer bidirectional GRU (Cho et al., 2014) and
the outputs from both directions of the final layer
are summed to get the encoded representation of
the text. This representation is then passed on to
the decoder.

4.3 Decoder
The decoder consists of 3 fully connected net-
works for generating operator, left operand and
the right operand. As illustrated in the upper half
of Figure 3, the decoder takes as input the previ-
ous decoded operand and the last decoder hidden
state and outputs the operator, left operand, right
operand and hidden state at the current time step.
We initialize the decoder hidden state with the last
state of the encoder:

opt , o
l
t, o

r
t , h

d
t = DecoderFCN(opt−1, h

d
t−1)

Here, hdt is the decoder hidden state at the tth

time step. opt , o
l
t and ort are probability distribu-

tions over operators, left and right operands respec-
tively.

4.3.1 Operator generation
Inside our decoder, we learn an operator embed-
ding matrix Emop(opt−1), where opt−1 is the op-
erator sampled in the last time step. We generate



4757

the operator hidden state hopt using a gating mech-
anism.

gopt = σ(W 1
op[Emop(opt−1);h

d
t−1] + b1op)

hopt = gopt ∗tanh(W 2
op[Emop(opt−1);h

d
t−1]+b2op)

opt = softmax(W 3
oph

op
t + b3op)

Here σ() denotes the sigmoid function and ∗ de-
notes elementwise multiplication. We sample op-
erator opt from the probability distribution opt .

4.3.2 Left Operand Generation
We use the embedding of the current operator
Em(opt) and the operator hidden state hopt to ob-
tain a probability distribution over the operands.
We employ a similar gating mechanism as used for
generating operator.

golt = σ(W 1
ol[Emop(opt);h

op
t ] + b1ol)

holt = golt ∗ tanh(W 2
ol[Emop(opt);h

op
t ] + b2ol)

olt = softmax(W 3
olh

ol
t + b3ol)

We sample the left operand olt from the probability
distribution olt.

4.3.3 Right Operand Generation
For generating the right operand, we use the addi-
tional context information that is already available
from the generated left operand. Thus, in addition
to the operator embedding Emop(opt) and opera-
tor hidden state hopt we also use the left operand
hidden state to get the right operand hidden state
hort .

gort = σ(W 1
or[Emop(opt);h

op
t ;holt ] + b1or)

hort = gort ∗tanh(W 2
or[Emop(opt);h

op
t ;holt ]+b2or)

ort = softmax(W 3
orh

or
t + b3or)

We sample the right operand ort from the probabil-
ity distribution olt. The hidden state hort is returned
as the current decoder state hdt .

4.3.4 Bottom-up Equation Construction
For each training instance, we maintain a dictio-
nary of possible operands OpDict. Initially, this
dictionary contains the numeric values from the in-
stance, i.e., the number tokens we have replaced
with < num_j > during encoding. At the tth

decoding step, we sample an operator opt, left
operand olt and right operand ort. We get an inter-
mediate result by using the operator corresponding

to opt on the operands olt and ort. This intermedi-
ate result is added to OpDict which enables us to
reuse the results of previous computations in future
decoding steps. Thus, OpDict acts as a dynamic
dictionary of operands and we use it to progress
towards the final answer in a bottom-up manner.

4.4 Rewards and Loss

We use the REINFORCE (Williams, 1992) algo-
rithm for training the model using just the final an-
swer as the ground truth. We model the reward
as +1 if the predicted answer matches the ground
truth and−1 if the predicted answer does not equal
the ground truth.

Let Rt be defined as the reward obtained af-
ter generating yt = (opt, ol, or). The probabil-
ity Pt of generating the tuple yt is specified by

pθ(yt) =
t∏

i=1
opi × oli × ori . The loss is specified as

L = −
∑
i
Epθ(yi)[Ri] and the corresponding gradi-

ent is ∇θL =
∑
i

∑
yi

pθ(yi)Ri∇θ log pθ(yi).

Since the space of yi makes it infeasible to com-
pute the exact gradient, we use the standardized
technique of sampling yi from pθ(yi) to obtain an
estimate of the gradient.

4.5 Beam Exploration in Training

Since the reward space for our problem is very
sparse, we observe that during model training, the
gradients go to zero. Our model converges too
quickly to some local optima and consequently,
the training accuracy saturates to some fixed value
despite performing training for a large number of
epochs. In order to counter this problem, we em-
ploy beam exploration in the training procedure.
Instead of sampling operator opt, left operand olt
and right operand ort only once in each decoding
step, we samplew triplets (opt, olt, ort)without re-
placement from the joint probability space in each
decoding step. Here w is the beam width. This
helps in exploring w different paths each epoch,
thus increasing the exploration capabilities and re-
duce the problem of cold start. In order to select
beams from all possible candidates, we have tried
multiple heuristics by inspecting the probability
and reward values. We have observed empirically
that selecting the beam that gives a positive reward
at the earliest decoding step yields the best perfor-
mance. This enables our model to explore more
and mitigates the above problem significantly.



4758

4.6 Warm-S: Adding Semi-supervision
While it is expensive to completely label large
MWP datasets with equations, it is relatively eas-
ier to annotate a small percentage of that data. We
argue that addition of this small amount of semi-
supervision can improve the model training signif-
icantly.

We, therefore, consider a model that benefits
from a relatively small amount of strong supervi-
sion in the form of equation annotated data: Ds,
in addition to a potentially larger sized math prob-
lem datasets with only weak supervision Dw. For
a data instance d: d.p, d.e, and d.a represent
its problem statement, equation, and answer re-
spectively. Ds consists of instances of the form
(d.p, d.e, d.a) while Dw contains instances of the
form (d.p, d.a). We extend the Warm model to
include a Cross-Entropy loss component for in-
stances belonging toDs. The net loss is the sum of
the REINFORCE (RLWarm) and Cross-Entropy
losses shown below:-
Loss 1:

∑
d∈Dw

RLWarm(d.p, d.a)

Loss 2:
∑

d∈Ds

Cross_Entropy(d.e,
Warm(d.p, d.a))

Thus, we facilitate semi-supervision through
Loss 2. That is, we jointly use the equations pre-
dicted (by Warm) for datapoints belonging to Dw

and the ground truth equations for instances be-
longing to Ds, for training any state-of-the-art su-
pervised MWP solver.

5 Experimental Setup

In this section, we report details of the experiments
on four datasets to examine the performance of the
proposed weakly supervised model Warm and its
semi-supervised extension Warm-S. We present
comparisons with various baselines as well as with
fully supervised models.

5.1 Datasets
We perform all our experiments on the publicly
available AllArith (Roy and Roth, 2017) and
Math23K (Wang et al., 2017) datasets and also on
our EW10K andHW10Kdatasets.For each dataset,
we have used a 80 : 20 train-test split.
AllArith contains 831 MWPs, annotated with
equations and answers. It is populated by collect-
ing problems from smaller datasets, viz.,AI2 (Hos-
seini et al., 2014), IL (Roy and Roth, 2015),
CC (Roy and Roth, 2015) and SingleEQ (Koncel-
Kedziorski et al., 2015). All mentions of quantities

are normalized to digits. Further, near-duplicate
problems (with over 80% match of unigrams and
bigrams) are filtered out.
Math23K (Wang et al., 2017) contains 23,161
MWPs in Chinese with 2187 templates, annotated
with equations and answers, for elementary school
students and is crawled from multiple online edu-
cation websites. It is the largest publicly available
dataset for the task of automatic MWP solving.
EW10K (c.f., Section 3) contains 10,227MWPs in
English and HW10K contains 9,896 in Hindi for
classes VI to X. We employ a 80 : 20 train-test
split in each case.

5.2 Dataset Preprocessing

We replace every number token in the problem text
with a special word token< num_j > before pro-
viding it as input to the encoder. We also define
a set of numerical constants Vconst to solve those
problems which might require special numeric val-
ues that may not be present in the problem text.
For example, consider the problem “The radius of
a circle is 2.5, what is its area?”, the solution is
“π x 2.5 x 2.5”, but the constant quantity π can-
not be found in the text. As our model does not
use equations as supervision, we cannot know pre-
cisely what extra numeric values might be required
for a problem, so we fix Vconst = {1, π}. Finally,
the operand dictionary for every problem is ini-
tialised as OpDict = nP ∪ Vconst where nP is
the set of numeric values present in the problem
text.

5.3 Implementation Details

We implement4 all our models in PyTorch (Paszke
et al., 2019). We set the dimension of the word
embedding layer to 128, and the dimension of the
hidden states for other layers to 512. We use
the REINFORCE (Williams, 1992) algorithm and
Adam (Kingma and Ba, 2014) to optimize the pa-
rameters. The initial value of the learning rate is
set to 0.001, and the learning rate is multiplied by
0.7 every 75 epochs. We also set the dropout prob-
ability to 0.5 and weight decay to 1e-5 to avoid
over-fitting. Finally, we set the beam width to 5
in beam exploration.We train our model for 200
epochs with the batch size set to 256.

4Source code is attached as supplementary material



4759

5.4 Models

We compare the MWP solving accuracy of our
weakly supervised models with beam exploration
on the following set of baseline and fully super-
vised models:
Warm is the proposed weakly supervised ap-
proach to equation generation (described from Sec-
tion 4.1 until 4.4) by employing beam exploration
(c.f., Section 4.5).
Warm w/o Beam Exploration is Warm without
beam exploration while decoding.
Warm-S is the semi-supervised extension to
Warm (c.f., Section 4.6) using beam exploration
(Section 4.5).
Warm-S w/o Beam Exploration is the same as
Warm-S but does not use beam exploration while
decoding.
Random Equation Sampling consists of a ran-
dom search over k parallel paths of length d. For
each path, an operator and its two operands are uni-
formly sampled from the given vocabulary and the
result is added to the operand vocabulary (similar
toWarm). The equation is terminated once the cor-
rect answer is reached. We set k = 5 and d = 40
for a fair comparison with our model in terms of
the number of search operations.
Seq2Seq Baseline is a GRU (Cho et al., 2014)
based seq2seq encoder-decoder model. REIN-
FORCE (Williams, 1992) is used to train the
model. Beam exploration is also employed to mit-
igates issues mentioned in Section 4.5.
LBF (Hong et al., 2021) is a weakly supervised
model which uses only answer as supervision by
fixing incorrect equation parse trees in each iter-
ation. It subsequently performs training with the
fixed trees.
Hybrid model w/ SNI (Wang et al., 2017) is a
combination of the retrieval and the RNN-based
Seq2Seq models with significant number identifi-
cation (SNI).
Ensemble model w/ EN (Wang et al., 2018a) is an
ensemble model that selects the result according to
generation probability across Bi-LSTM, ConvS2S
and Transformer Seq2Seq models with equation
normalization (EN).
Semantically-Aligned (Chiang and Chen, 2019)
is a Seq2Seq model with an encoder designed to
understand the semantics of the problem text and a
decoder equipped with a stack to facilitate tracking
the semantic meanings of the operands.
T-RNN+Retrieval (Wang et al., 2019) is a combi-

nation of the retrieval model and the T-RNNmodel
comprising a structure prediction module that pre-
dicts the template with unknown operators and an
answer generation module that predicts the opera-
tors.
Seq2Tree (Liu et al., 2019) is a Seq2Tree model
with a Bi-LSTM encoder and a top-down hierarchi-
cal tree-structured decoder consisting of an LSTM
that makes use of the parent and sibling informa-
tion fed as the input.
GTS (Xie and Sun, 2019) is a tree-structured neu-
ral model that generates the expression tree in a
goal-driven manner.
Graph2Tree (Zhang et al., 2020) consists of a
graph-based encoder which captures the relation-
ships and order information among the quantities.
It also employs a tree-based decoder that generates
the expression tree in a goal-driven manner.

As described earlier in Section 4, we use our
weakly supervised models (Warm andWarm-S) to
generate labelled data (i.e., equations) which we
then use to train a supervised model. We have
performed experiments using GTS (Xie and Sun,
2019) and Graph2Tree (Zhang et al., 2020) as the
supervised models since they are the current state-
of-the-art.

6 Results and Analysis

Weakly Supervised Models AllArith Math23K EW10K HW10K
Warm w/o Beam Exploration 42.1 14.5 57.5 67.3
Warm 97.4 93.8 99.3 99.5
Baselines AllArith Math23K EW10K HW10K
Random Equation Sampling 53.4 17.6 46.3 66.6
Seq2Seq Baseline 67.0 7.1 77.6 75.8

Table 2: Equation generation accuracies of Warm
based models compared to baselines. All models are
trained using ground truth answers on the training set.
Warm outperforms all the remaining models by as sig-
nificant margin on all the datasets. Evidently, beam ex-
ploration significantly improves performance.

6.1 Analyzing Warm

In Table 2, we observe that our modelWarm yields
far higher accuracy than random baselines with the
accuracy values close to 100% on AllArith and
EW10K. Thus we are able to more accurately gen-
erate equations for a given problem and answer
which can then be used to train supervised models.
Please note that, in Table 2, we report equation gen-
eration accuracies on the training set by training
the weakly supervised and baseline models using



4760

Weakly Supervised Models AllArith Math23K EW10K HW10K
Warm w/o Beam Exploration(GTS) 36.1 12.8 52.6 54.1
Warm (GTS) 66.9 55.3 86.9 81.5
Warm w/o Beam Exploration(Graph2Tree) 48.2 13.5 49.8 58.3
Warm (Graph2Tree) 68.7 56.0 87.2 82.9
LBF ‡ 51.8 53.6 81.3 75.8
Fully Supervised Models AllArith Math23K EW10K HW10K
Graph2Tree‡ 71.9 75.5 NA NA
GTS‡ 70.5 73.6 NA NA
Seq2Tree – 69.0 NA NA
T-RNN + Retrieval – 68.7 NA NA
Semantically-Aligned† – 65.8 NA NA
Ensemble model w/ EN – 68.4 NA NA
Hybrid model w/ SNI† – 64.7 NA NA

Table 3: MWP solving accuracy of Warm-based mod-
els compared to various supervised models on AllAr-
ith and Math23K datasets. † denotes that result was re-
ported on 5-fold cross validation. All other models are
tested on the test set. ‡ denotes that the result is on the
same train-test split as ours. “–” denotes code unavail-
ability/reproducibility issues. NA is not applicable.

Problem: Ariel already has 4.0 flowers in her garden, and she
can also grow 3.0 flowers with every seed packet she uses. With
2.0 seed packets, how many total flowers can Ariel have in her
garden ?
Answer: 10.0
Equation Generated: X=(4.0+(2.0*3.0)) (Correct)

Problem: Celine took a total of 6.0 quizzes over the course of
3.0 weeks. After attending 7.0 weeks of school this quarter, how
many quizzes will Celine have taken in total ? Assume the rela-
tionship is directly proportional.
Answer: 14.0
Equation Generated: X=(7.0+7.0) (Incorrect)

Table 4: Equation Generated by Warm model

ground truth answers on the training set.
As has been discussed earlier in Section 4.5,

our model Warm w/o Beam Exploration suffers
from the problem of converging to local optima
because of the sparsity of the reward signal. Train-
ing our weakly supervised models with beam ex-
ploration alleviates the issue to a large extent as
we explore the solution space much more exten-
sively and thus partly circumventing the sparsity
issue. We observe vast improvement in the train-
ing accuracy by introduction of beam exploration.

Problem: Latrell ordered a set of yellow and purple pins. He
received 72.0 yellow pins and 8.0 purple pins. What percentage
of the pins were yellow?
Equation Generated by WARM (G2T):
X=(72.0*(100.0/(72.0+8.0)))(Correct)
Equation Generated by LBF: X=(1.0+(1.0+72.0)) (Incorrect)

Problem: A square barn has a perimeter of 28.0 metres. How
long is each side of the barn ?
Equation Generated by WARM(G2T): X=((28.0/2.0)/2.0)
(Correct)
Equation Generated by LBF: X=((28.0+28.0)/28.0) (Incor-
rect)

Table 5: Comparing Warm and LBF model predicted
equations

The model Warm yields training accuracy signif-
icantly higher than its non-beam-explore counter-
part. Warm yields the best training accuracy over-
all. Since the equation generation accuracies of
the baselines reported in Table 2 are far worse,the
MWP solving accuracies turn out to be signifi-
cantly worse - around 8-10%, and hence we do not
report them.

We also observe that Warm yields results com-
parable to the various supervised models without
requiring any supervision from gold equations. On
AllArith, Warm achieves an accuracy of 66.9%
and 68.7% using GTS and Graph2Tree as the su-
pervised models respectively. The state-of-the-art
supervised model Graph2Tree yields 71.9%. On
Math23k, the difference betweenWarm and the su-
pervised models is more pronounced. Warm’s per-
formance is comparable to that of LBF onMath23k
but significantly better on AllArith, EW10Kand
HW10K, as evident in Table 3. We have shown
a comparison of predicted equations by LBF and
Warm in Table 5

In Table 4, we present some predictions. As can
be seen, the model is capable of producing long
complex equations as well. Sometimes, it may
reach the correct answer but through an incorrect
equation. E.g.: In the last example, the correct
equation would have been X = 7.0 ∗ 6.0/3.0, but
the model predicted X = 7.0 + 7.0.

6.2 Analysing Semi-supervision through
Warm-S

For analyzing semi-supervision, we combined Al-
lArith (831) with EW10K (10227). We randomly
sampled 80% of this data (8846) as our train-
set. In retrospect, our train-set consists of 560 in-
stances from AllArith that are completely labelled
(amounting to 6.3% of the train-set). We compare
our semi-supervised approach against the weakly
supervised approach, wherein the entire training
data is treated as having only answer labels.

In Table 6, we observe that with less than 10%
of fully annotated data, our equation exploration
accuracy increases from 56.7% to 92.0% without
beam exploration and 99.0% to 99.2% with beam
exploration. In Table 7, we also observe a similar
trend while training the supervised models; our fi-
nal MWP solving accuracy increases from 51.2%
to 87.4% for Warm w/o Beam Exploration and
Graph2Tree as the supervised model. We also
study thethere effect of varying amount of com-



4761

plete supervision in Supplementary Section:2.

Weakly Supervised Models AllArith +EW10K
Warm w/o Beam Exploration 56.7
Warm 99.0
Semi Supervised Models AllArith+EW10K
Warm-S w/o Beam Exploration 92.0
Warm-S 99.2

Table 6: Equation generation accuracy ofWarm-S com-
pared to weakly supervised models and baselines.

Weakly Supervised Models AllArith +EW10K
Warm w/o Beam Exploration(GTS) 50.2
Warm (GTS) 87.2
Warm w/o Beam Exploration(Graph2Tree) 51.2
Warm (Graph2Tree) 87.8
Semi Supervised Models AllArith+EW10K
Warm-S w/o Beam Exploration(GTS) 87.2
Warm-S (GTS) 92.1
Warm-S w/o Beam Exploration(Graph2Tree) 87.4
Warm-S (Graph2Tree) 93.6

Table 7: MWP solving accuracy of Warm-S compared
to Warm. With semi-supervision, there is a significant
increase in accuracy for Warm w/o Beam Exploration,
bringing its performance closer to Warm.

7 Conclusion

We have proposed a two step approach to solving
math word problems, using only the final answer
for supervision. Our weakly supervised approach,
Warm, achieves a reasonable accuracy of 56.0 on
the standard Math23K dataset even without lever-
aging equations for supervision. We also curate
and release large scale MWP datasets, EW10K, in
English and HW10K, in Hindi. We observed that
the results are encouraging for simplerMWPs. We
also present the benefits of incorporating a semi-
supervised extension to Warm.

Acknowledgements

We thank anonymous reviewers and Rishabh Iyer
for providing constructive feedback and sugges-
tions. Ganesh Ramakrishnan is grateful to IBM
Research, India (specifically the IBM AI Horizon
Networks - IIT Bombay initiative) as well as the
IIT Bombay Institute Chair Professorship for their
support and sponsorship. We would like to ac-
knowledge Saiteja Talluri and Raktim Chaki for
their contributions in the initial stages of the work.

References
JayaprakashAkula, RishabhDabral, Preethi Jyothi, and

Ganesh Ramakrishnan. 2021. Cross lingual video
and text retrieval: A new benchmark dataset and al-
gorithm. In Proceedings of the 2021 International
Conference on Multimodal Interaction, pages 595–
603.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Yefim Bakman. 2007. Robust understanding of
word problems with extraneous information. arXiv
preprint math/0701393.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
ACL.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Charles R. Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, 17:565–571.

Yining Hong, Qing Li, Daniel Ciao, Siyuan Haung, and
Song-Chun Zhu. 2021. Learning by fixing: Solving
math word problems with weak supervision.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 523–533. ACL.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 213–223. ACL.

Danqing Huang, Shuming Shi, Chin-YewLin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
887–896, Berlin, Germany. Association for Compu-
tational Linguistics.

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/2012.10582
http://arxiv.org/abs/2012.10582
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084
https://doi.org/10.18653/v1/P16-1084


4762

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Vishwajeet Kumar, Nitish Joshi, Arijit Mukherjee,
Ganesh Ramakrishnan, and Preethi Jyothi. 2019.
Cross-lingual training for automatic question gener-
ation. arXiv preprint arXiv:1906.02525.

Vishwajeet Kumar, Ashish Kulkarni, Pankaj Singh,
Ganesh Ramakrishnan, and Ganesh Arnaal. 2015. A
machine assisted human translation system for tech-
nical documents. In Proceedings of the 8th Interna-
tional Conference on Knowledge Capture, pages 1–
5.

Vishwajeet Kumar, Ganesh Ramakrishnan, and Yuan-
Fang Li. 2018. Putting the horse before the cart: A
generator-evaluator framework for question genera-
tion from text. arXiv preprint arXiv:1808.04961.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 271–281. Association for Computational Lin-
guistics.

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung
Huang, Chung-Min Li, Shen-Yu Miao, and Keh-
Yih Su. 2016a. A tag-based english math word
problem solver with understanding, reasoning and
explanation. In Proceedings of the Demonstrations
Session, NAACL HLT 2016, pages 67–71. The
Association for Computational Linguistics.

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung
Huang, Chung-Min Li, Shen-Yu Miao, and Keh-
Yih Su. 2016b. A tag-based statistical english
math word problem solver with understanding,
reasoning and explanation. In Proceedings of the
Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, page 4254–4255.
AAAI Press.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2144–2153. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752. ACL.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, page 3082–
3088. AAAI Press.

Subhro Roy and Dan Roth. 2018. Mapping to declar-
ative knowledge for word problem solving. Trans.
Assoc. Comput. Linguistics, 6:159–172.

Subhro Roy, Shyam Upadhyay, and Dan Roth. 2016.
Equation parsing : Mapping sentences to grounded
equations. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2016, pages 1088–1097. The Associa-
tion for Computational Linguistics.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. arXiv preprint arXiv:2109.03034.

Pankaj Singh, Ashish Kulkarni, Himanshu Ojha, Vish-
wajeet Kumar, and Ganesh Ramakrishnan. 2016.
Building compact lexicons for cross-domain smt by
mining near-optimal pattern sets. In Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 290–303. Springer.

Sowmya S Sundaram and Deepak Khemani. 2015. Nat-
ural language processing for solving simple word
problems. In Proceedings of the 12th International
Conference on Natural Language Processing, pages
394–402. NLP Association of India.

Ishan Tarunesh, Sushil Khyalia, Vishwajeet Kumar,
Ganesh Ramakrishnan, and Preethi Jyothi. 2021.
Meta-learning for effective multi-task and multilin-
gual modelling. arXiv preprint arXiv:2101.10368.

Shantanu Thakoor, Simoni Shah, Ganesh Ramakrish-
nan, and Amitabha Sanyal. 2018. Synthesis of pro-
grams from multimodal datasets. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit and
implicit supervision jointly for algebra word prob-
lems. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 297–306.

http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703


4763

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating math word
problem to expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069. ACL.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018b. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
AAAI, pages 5545–5552. AAAI Press.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings of
the Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI, pages 7144–7151. AAAI Press.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854. ACL.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3–4):229–256.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuan-Jing
Huang. 2021. Math word problem solving with
explicit numerical values. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5859–5869.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pages 5299–
5305. AAAI Press.

M. Yuhui, Z. Ying, C. Guangzuo, R. Yun, and
H. Ronghuai. 2010. Frame-based calculus of solv-
ing arithmetic multi-step addition and subtraction
word problems. In 2010 Second International Work-
shop on Education Technology and Computer Sci-
ence, volume 2, pages 476–479.

Dongxiang Zhang, Lei Wang, Nuo Xu, Bing Tian Dai,
and Heng Tao Shen. 2018. The gap of semantic
parsing: A survey on automatic math word problem
solvers. CoRR, abs/1808.07290.

Jipeng Zhang, LeiWang, RoyKa-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937, Online. Association for Computational Lin-
guistics.

A Appendix

A.1 Notations
We summarize the notations used in section 4 of
the main paper in table 8.

Notation Description
W Weight of the FC layers.
opt Probability distribution of operators at decoding timestep t.
olt Probability distribution of the left operand at decoding timestep t.
ort Probability distribution of the right operand at decoding timestep t.
hd
t Decoder hidden state at timestep t.

Emop Operator Embedding Matrix
hop
t Hidden state for the operator at timestep t

opt Operator sampled from opt .
hol
t Hidden state for the left operand at timestep t.

olt Left operand sampled from olt.
hor
t Hidden state for the right operator at timestep t.

ort Right operator sampled from ort .
OpDict Operand dictionary used while decoding
Rt Rewards obtained at timestep t.

pθ(yt) Probability of generating yt = (opt, olt, ort) at timestep t.

Table 8: Summary of notation used.

A.2 Ablation Study: Varying Amount of
Semi-supervision

We performed an experiment to study the effect
of different amounts of supervision by varying the
number of instances in training set we treat as fully
labelled. The number of fully labelled instances
is X-axis*80. We observe that just having 160
equation-labelled instances (out of 8846 ie. 1.8%)
improves the equation-exploration accuracy signif-
icantly (46.7% to 90.6%) when we don’t use beam
exploration.

Figure 4: Equation Exploration accuracy with varying
supervision

A.3 Infrastructre Details
GPU Model used :
1)Model number: GeForce GTX 1080 Ti
2)Memory : 12GB

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362


4764

Training time :
1) WARM takes 4 hours for training
2) G2T takes 1 hour and 30 minutes to get trained
completely


