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Abstract

Automatic organization of scholarly literature
is a challenging but essential task. In particu-
lar, assigning key concepts to scientific publi-
cations allows researchers, policymakers, and
the general public to search for and discover
relevant research. But any meaningful organiza-
tion of scientific publications must evolve with
new research, requiring up-to-date and scalable
text classification models. Additionally, scien-
tific research publications benefit from multi-
label classification, particularly with more fine-
grained sub-domains. Prior work has focused
on classifying scientific publications from one
research area (e.g., computer science), referenc-
ing static concept descriptions, and implement-
ing English-only classification models. We
propose a multi-label classification model that
can be implemented in non-English languages,
across all scientific literature, with dynamic
concepts.

1 Introduction

Maintaining an up-to-date organization of scien-
tific literature in any domain requires an automated
approach—a comprehensive and real-time solution
for a constant influx of text data. Specifically, re-
search publications require characterization or in-
dexing in order to be searchable and accessible to
researchers, policymakers, and the public. Many
academic databases and publishers maintain a tax-
onomy that authors or editors reference in order to
manually assign topics, research fields, or concepts
to scientific publications. Yet, manual labeling is
notoriously laborious and error-prone. Automation
is necessary to accurately label documents with
taxonomy concepts in a timely manner.

Here, we focus on scientific publication clas-
sification based on Microsoft Academic Graph’s
field of study taxonomy (Shen et al., 2018). This
taxonomy contains a hierarchy of scientific con-
cepts (fields of study) to organize scholarly litera-

ture. Our objective is to design an updatable and
scalable multi-label classification model that is in-
dependent of manual annotation or input language.
We experiment with scientific research documents
in English and Chinese, as these are by far the two
most frequent languages for publications in our
database.

Our work leverages a multi-lingual knowledge
base, Wikipedia, in order to obtain up-to-date con-
cept descriptions in English and other languages.
Using MediaWiki’s API, we first locate an English
concept’s Wikipedia page and are then able to find
the corresponding page in other languages (Medi-
aWiki, 2022). Hence, a multi-lingual knowledge
base provides multi-lingual concept descriptions
without requiring any direct translating of the con-
cept taxonomy or concept descriptions.

We represent both the concept descriptions and
research publications text data in embedding form.
By using vector space representations of text (word
embeddings) we can compute the cosine similari-
ties between concept embeddings and publication
embeddings, with the cosine similarity score in-
dicating the relevance of a concept to a publica-
tion. In this way, we are able to compute either
one top field (most similar) or multiple fields of
study that are relevant (determined by a similar-
ity score threshold for the task at hand) to a given
publication. A multi-label classification model is a
practical approach to scientific publication classifi-
cation, as most scientific research publications are
relevant to more than one field of study, particularly
at the more granular level of fields. For example,
a publication can be relevant to natural language
processing and machine learning.

We implement our multi-label classification
model in English and Chinese, generating field
descriptions, embeddings, and field-to-publication
similarity scores in each language. Our database of
scholarly literature contains more than 184 million
documents in English and more than 44 million
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documents in Chinese, which serve both as input
text for word embeddings and as target publica-
tions for classification. Applying our scientific
publication word embeddings and field of study
descriptions from Wikipedia, we compute field
embeddings for 313 different fields of study, and
publication embeddings for the scientific research
publications in English and Chinese.

Because we do not have a manually annotated,
ground-truth dataset with field labels assigned to
publications, we provide extensive evaluations of
our results and include a case study on artificial
intelligence and machine learning publications.

The contributions of the paper are summarized
as follows: 1) word embeddings in English and Chi-
nese, trained on a comprehensive set of scholarly
literature, 2) a scientific text classification model
not restricted to the English language, and 3) a
Python library for updating field embeddings and
models in sync with changes to underlying field
definitions (from Wikipedia articles and the sources
they cite), to address conceptual drift. All results
and code will be made public in our GitHub repos-
itory1.

2 Related Work

Classifying text according to a defined taxonomy
is applied across a wide range of domains, such as
patents, news articles, and scientific literature, us-
ing numerous machine learning approaches. Text
classification for scientific literature typically in-
volves text extraction, topic modeling, or citation
graphs to cluster related documents (Aljaber et al.,
2010; Tsai et al., 2013; Yau et al., 2014; Kim and
Gil, 2019). Prior research that uses a predefined
taxonomy for multi-label classification is generally
limited to one broad area of research, and selecting
a dataset with annotated publication data (i.e., a
dataset limited to a classification scheme).

Santos and Rodrigues reference the Association
for Computing Machinery (ACM) Concept Classi-
fication System (CCS) to assign multiple concept
labels to computer science papers (Santos and Ro-
drigues, 2009). The authors crawl relevant web
pages to identify concept-related descriptive text
and implement three different classification mod-
els: Binary Relevance, Label Powerset, and Multi-
Label k-Nearest Neighbors (Santos and Rodrigues,
2009). Similarly, Mustafa et al. reference the ACM

1https://github.com/georgetown-cset/
scientific-field-classification

CCS, but use Word2Vec embeddings to represent
scientific research publication text and cosine simi-
larity to compute a similarity score and determine
concept assignment (Mustafa et al., 2021).

Shen et al. generate a six-level scientific docu-
ment taxonomy for all of science. Using Word2Vec
and term frequency-inverse document frequency
(TF-IDF) embeddings trained on scientific publi-
cation titles and abstracts, Shen et al. generate
field of study embeddings and publication embed-
dings. Each scientific publication is assigned multi-
ple field labels using cosine similarity between the
publication embedding and the field embeddings
(Shen et al., 2018).

3 Data

We use three datasets in our model: 1) scientific
research documents, 2) a scientific research field of
study taxonomy, and 3) a knowledge base.

3.1 Scientific Research Documents

In this work, we use a comprehensive set of sci-
entific research documents that we compiled from
six scholarly literature databases: Clarivate’s Web
of Science (WOS), Digital Science’s Dimensions2

(DS), Microsoft Academic Graph (MAG), arXiv,
Papers with Code (PWC) and the Chinese Na-
tional Knowledge Infrastructure3 (CNKI). There is
no common publication identifier across these six
datasets, so we deduplicate publications to generate
a merged corpus of scholarly literature.

We deduplicate documents in a two-step pro-
cess illustrated in Figure 1. In step one, we ex-
tract six document identifiers (DOI, citations, nor-
malized abstract, normalized author names, nor-
malized title, and publication year) for each doc-
ument. To normalize the document abstracts, au-
thor names, and titles, we implement the Normal-
ization Form Compatibility Composition standard,
which decomposes Unicode characters by compat-
ibility and recomposes them by canonical equiva-
lence. We de-accent letters, strip copyright signs,
HTML tags, punctuation, non-alphanumeric char-
acters, and numbers, and remove white space from
the strings. If any three identifiers between doc-
uments are equal, we assign those documents a

2Data sourced from Dimensions, an inter-linked research
information system provided by Digital Science http://
www.dimensions.ai

3All China National Knowledge Infrastructure content is
furnished for use in the United States by East View Informa-
tion Services, Minneapolis, MN, USA
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Figure 1: Scientific document de-duplication process.

In step two, we use the SimHash fuzzy matching
algorithm with a rolling window of three characters
in order to match articles that were published in
the same year and have similar abstracts and titles
(Manku et al., 2007). Articles matched in step two
are also assigned a merged ID. Articles that do
not have a distinct merged ID assigned in either
deduplication step are included in the final corpus
as unique documents.

From the deduplicated set of scientific research
documents, we generate a set of English docu-
ments, EN-PUBLICATIONS (184,381,319 publi-
cations), and a set of Chinese documents, ZH-
PUBLICATIONS (44,166,696 publications), using
Chromium Compact Language Detector 2 (CLD2).
Each document is represented by the text available
from the title and abstract; if both title and abstract
are present then the text is concatenated.

3.2 Field of Study Taxonomy

We use MAG’s Field of Study (FoS) taxonomy,
which contains six levels (0 through 5) of fields.
Level 0 ("L0") represents the most broad fields,
such as computer science and medicine, and Level
5 ("L5") represents the most granular fields, such
as key clustering and gene density. FoS L0 and
L1 were derived from Science-Metrix classifica-
tion scheme4 and refined manually by the authors,
whereas and L2-L5 were automatically identified
(Shen et al., 2018).

In this study, we select the 19 L0 and the 294
L1 FoS as our target classification scheme; L1 FoS
are sub-domains of L0. In Table 1 we display all

4http://science-metrix.com/en/
classification

19 L0 FoS with several examples of their L1 child
FoS. We denote the total number of L1 FoS under
each L0 in parentheses next to their label. Medicine
has the most L1 child FoS, with 45, followed by
engineering with 44 and economics with 40.

The FoS taxonomy we reference in this study
defines the fields: their names and parent/child
relations. All FoS in this taxonomy are provided in
English only.

3.3 Knowledge Base

For our knowledge base we use Wikipedia, an
open-collaboration online encyclopedia accessible
for free, with articles published in 327 languages
(Wikipedia, 2022). We access Wikipedia arti-
cles through MediaWiki’s API (MediaWiki, 2022).
Given the English Wikipedia page title for a field (if
known) or otherwise the field name in English, we
query the Mediawiki API for metadata on any such
page in English Wikipedia. Specifically, we request
its langlinks property, which describes corre-
sponding pages in other languages/Wikipedias. In
this way, the English FoS can be linked to any
language of interest without manual translation,
making Wikipedia an ideal knowledge base for our
multilingual classification model.

In Figure 2 we display a portion of the Wikipedia
articles for natural language processing, in English
and Chinese. We use the full-body text in the arti-
cle, as well as the publication titles and abstracts
listed in the “References” section.

4 Field of Study Classification Model

Our field of study multi-label classification model
is adapted from MAG’s scientific publication classi-
fication scheme, with key design modifications. In
Shen et al.’s model, the descriptive text used to gen-
erate L0 and L1 FoS embeddings are titles and ab-
stracts from sets of scientific publications for each
field, in which the publications are selected from a
sample of unknown journals and conferences (Shen
et al., 2018). For one of their embeddings set the
authors generate Word2Vec vectors.

We use Wikipedia article text and reference pub-
lications for L0 and L1 FoS descriptive text. In this
way, field descriptions can be replicated, extended
to languages other than English, and updated as
the fields evolve. We describe in this section the
project workflow to process our data and design
our field of study classification model. Figure 3
shows the high-level pipeline to produce the field
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Art (displaying 6 of 6 L1) History (displaying 6 of 7 L1)
Aesthetics, Art History, Classics, Humanities,
Literature, Visual Arts

Ancient History, Archaeology, Classics, Eco-
nomic History, Ethnology, Genealogy

Biology (displaying 7 of 32 L1) Materials Science (displaying 5 of 7 L1)
Anatomy, Animal Science, Bioinformatics,
Botany, Genetics, Immunology, Zoology

Ceramic Materials, Composite Material, Met-
allurgy, Nanotechnology, Optoelectronics

Business (displaying 6 of 13 L1) Mathematics (displaying 6 of 20 L1)
Accounting, Actuarial Science, Commerce, Fi-
nance, International Trade, Marketing

Algebra, Combinatorics, Geometry, Mathe-
matical Optimization, Statistics, Topology

Chemistry (displaying 5 of 21 L1) Medicine (displaying 7 of 45 L1)
Biochemistry, Food Science, Mineralogy, Or-
ganic Chemistry, Radiochemistry

Audiology, Cancer Research, Nursing, Or-
thodontics, Pediatrics, Surgery, Virology

Computer Science (displaying 5 of 34 L1) Philosophy (displaying 6 of 7 L1
Algorithm, Artificial Intelligence, Database,
Internet Privacy, Parallel Computing

Aesthetics, Epistemology, Humanities, Lin-
guistics, Religious Studies, Theology

Economics (displaying 5 of 40 L1) Physics (displaying 5 of 27 L1)
Accounting, International Trade, Manage-
ment, Political Economy, Socioeconomics

Astronomy, Geophysics, Nuclear Physics,
Quantum Mechanics, Thermodynamics

Engineering (displaying 5 of 44 L1) Political Science (displaying 3 of 3 L1)
Aeronautics, Control Theory, Nuclear Engi-
neering, Simulation, Systems-Engineering

Law, Public Administration, Public Relations

Environmental Science (displaying 4 of 8 L1) Psychology (displaying 5 of 14 L1)
Agricultural Science, Agroforestry, Environ-
mental Planning, Environmental Protection

Cognitive Science, Criminology, Neuro-
science, Psychiatry, Social Psychology

Geography (displaying 6 of 11 L1) Sociology (displaying 5 of 13 L1)
Archaeology, Cartography, Forestry,
Geodesy, Meteorology, Regional Science

Anthropology, Demography, Ethnology, Gen-
der Studies, Media Studies, Political Economy

Geology (displaying 6 of 18 L1)
Climatology, Earth Science, Geophysics, Hy-
drology, Oceanography, Petrology

Table 1: The 19 L0 Fields of Study and a sample of their child fields (L1). Next to each field is the number of L1
FoS displayed and the total number of child fields.

and document embedding outputs necessary for our
classification model.

We describe each step in our classification model
pipeline as follows:

Step 1: To normalize the scientific publication
text, we remove all punctuation and numeric to-
kens. For languages that are case-sensitive, we set
all text to lowercase. For example “COVID-19” is
transformed to “covid19” in English. The normal-
ized texts are used as inputs for the TF-IDF and
fastText embeddings in Step 2.

Step 2: With the normalized scientific publica-
tion text (from Step 1) as input, we produce TF-IDF
embeddings using TfIdfTransformer from
gensim and 250-dimensional fastText word em-
beddings using the skipgram model (Rehurek and
Sojka, 2011; Bojanowski et al., 2017). TF-IDF pro-

vides a measurement of how important a word is
to a document based on the word’s occurrences in
the entire document. FastText word embeddings
encode n-grams in a vector space that represents
semantics. Since both vector representations of
words (TF-IDF and fastText) are determined by the
input corpus, it is necessary to use a representative
corpus for the task at hand.

Step 3: For each of the 19 L0 and 294 L1 FoS,
we retrieve the corresponding associated text (page
content and reference publications) in Wikipedia,
which we refer to as descriptive field text. Com-
bining the Wikipedia page text and scientific publi-
cation text we aim to capture both definitions and
exemplar research for a given field.

Step 4: We compute field TF-IDF and fastText
embeddings using the embedding sets from Step
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EngliVh ChineVe

Figure 2: Sample Wikipedia article on Natural Language Processing

2 and the descriptive field text from Step 3. We
follow the procedure in “Algorithm 1” to generate
TF-IDF and fastText embeddings for each FoS.

Algorithm 1 Full Text to Single Embedding
Input: Word embedding dictionary, E

Text, t
Output: Single text vector, ~t

1: procedure EMBED_TEXT(t, E)
2: V = [] . Empty array to store word vectors
3: for word in t do

4: if word in E.keys() then

5: ~w = E[word]
6: V.append(~w)
7: end if

8: end for

9: ~t = sum(V , axis=0)
10: l2 = linalg.norm(~t, 2, axis=0)
11: if l2 == 0 then return ~t
12: else ~t =

~t
l2

13: end if

14: return ~t . The text vector is ~t
15: end procedure

Step 5: Separate from FoS embeddings in Step
4, we compute entity embeddings. We generate
these for a FoS or publication as the average over
the embeddings of each FoS mention in its text.

Step 6: Using “Algorithm 1”, we compute docu-
ment embeddings for each scientific research pub-
lication in our corpus.

Step 7: We use cosine similarity to compute a
similarity score for each document compared to
each FoS, for each embedding set (TF-IDF and
fastText). Our similarity score is the average of
the two cosine similarities. The cosine similarity

between two vectors is defined as:

cos(~f, ~d) =
f · d

kfkkdk (1)

Research PublicationV:
TiWOeV aQd AbVWUacWV

TFIDF
Embeddings

fastText
Embeddings

Field of Study Taxonomy

Field Content:
WiNiSedia

DeVcUiSWiRQ aQd
RefeUeQced
PXbOicaWiRQV

Data Input Data Processing

NRUPaOi]e
Te[W

Data Output

Field TFIDF
Embeddings

Field
fastText

Embeddings

Document 
 Embeddings

Field 
 Embeddings

Figure 3: Process to generate document embeddings
and three sets of FoS embeddings

Here, ~f represents a FoS embedding and ~d rep-
resents a document embedding. Cosine similarity
returns a value between 0 and 1, with 0 indicating
no similarity and 1 indicating perfect similarity. By
computing cosine similarity for all FoS and doc-
ument pairs, we can choose if we want to label
a document with only one field (the most similar
FoS), or set a similarity score threshold and assign
multiple fields. This is particularly useful with
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more granular fields. For example, a publication
can be relevant to computer vision and machine
learning L1 FoS.

5 Experiments

We perform Steps 1-7 on EN-PUBLICATIONS and
ZH-PUBLICATIONS. Text normalization and em-
bedding generation (Steps 1-2) may require differ-
ent tools and packages depending on the choice of
non-English languages; we use jieba for Chinese
text processing.

For knowledge base information retrieval (Step
3), we reference MAG’s FoS metadata for field ID,
field name, field level, and field Wikipedia page.
The field of study attributes metadata includes En-
glish Wikipedia URLs for all fields. We query
MediaWiki with the assigned Wikipedia pages for
each FoS in English to store the descriptive text and
search for the corresponding page in Chinese. This
results in several outcomes that we detail below for
non-English implementations of our model:

1. The Wikipedia page does not exist (maybe it
once did; maybe not). We fall back to search-
ing Wikipedia for this term (in a second API
request), in case there exists a near match. We
store these “near-match” results for manual
review to ensure they are accurate.

2. The desired English Wikipedia page exists

but the langlinks property does not in-

clude a link to a corresponding page on Chi-

nese Wikipedia. We store the English page
name and page ID, and leave the Chinese page
fields blank to flag for manual review.

3. We find the desired English page and a

linked Chinese page. We store each page
name and page ID, for the English and Chi-
nese results.

With the completed links between FoS and
Wikipedia pages, we are able to retrieve the descrip-
tive text from Wikipedia pages and the text from
referenced publications. At this stage in the pro-
cess, the Chinese implementation is self-contained
and no longer relies on any data linkages in En-
glish, which would be the case for any non-English
language implementation.

We generate document embeddings for each sci-
entific document in EN-PUBLICATIONS and ZH-
PUBLICATIONS, and we generate FoS embeddings
and entity embeddings for our English and Chinese
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Figure 4: Percentage of papers in EN-PUBLICATIONS
and ZH-PUBLICATIONS by the top L0 FoS label

results, respectively (Steps 4-6). We then compute
the cosine similarity between every document and
FoS embedding pair in both languages (Step 7).

6 Results and Evaluation

Evaluating our results is particularly challenging
without a ground-truth dataset that contains publi-
cations and their corresponding field of study labels.
Because of this limitation, we offer several meth-
ods of evaluation that do not require annotation (to
limit human bias and error) and can be replicated.
Our evaluation methods compare results at the FoS
level and the publication level in order to measure
our taxonomy representation results (FoS embed-
dings) and our publication classification results.

6.1 Top Field of Study Labels

With each publication in EN-PUBLICATIONS
and ZH-PUBLICATIONS having cosine similarity
scores for the L0 and L1 FoS, we first analyze the
top L0 field assignments (i.e., the L0 field with the
highest cosine similarity score). Figure 4 displays
the percentage of papers from EN-PUBLICATIONS
and ZH-PUBLICATIONS with each top L0 field la-
bel. In EN-PUBLICATIONS, medicine, chemistry,
and computer science have the most top field labels,
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Corpus Computer Science Economics Medicine Sociology

EN-PUBLICATIONS

1. Data Science 1. Economic Growth 1. Cancer Research 1. Media Studies
2. Machine Learning 2. Economy 2. Surgery 2. Socioeconomics
3. Internet Privacy 3. Microeconomics 3. Cardiology 3. Gender Studies

4. Computer Network 4. International Econ. 4. Virology 4. Communication
5. Computer Security 5. Economic Policy 5. Medical Physics 5. Criminology

ZH-PUBLICATIONS 1. Algorithm 1. Commerce 1. Pharmacology 1. Regional Science
2. Data Science 2. Economy 2. Immunology 2. Gender Studies

3. Simulation 3. Monetary Econ. 3. Audiology 3. Law & Economics
4. Real-time Computing 4. Macroeconomics 4. Oncology 4. Social Science
5. Software Engineering 5. Financial System 5. Family Medicine 5. Anthropology

Table 2: Top five L1 fields of study for computer science, economics, medicine, and sociology L0 fields. L1 fields
in bold font indicate that they appear in both the English and Chinese top five results for the same L0 field.

whereas in ZH-PUBLICATIONS political science,
medicine, and chemistry have the most.

Next, we analyze the top L1 FoS (child) for each
L0 FoS (parent). In Table 2, we present results
from four representative L0 FoS (computer science,
economics, medicine, and sociology) and list the
top five L1 FoS from EN-PUBLICATIONS and ZH-
PUBLICATIONS. We bold the fields that appear in
both the English and Chinese top five L1 results;
medicine has no overlapping top five L1 fields.

6.2 L0-to-L0 Similarities

Each FoS has a unique vector representation, cal-
culated in Step 4; thus we can evaluate how similar
FoS are to each other using cosine similarity. In
Figure 5, we compare all L0 FoS embeddings using
their cosine similarity scores; we present the results
for English (left) and Chinese (right).

The diagonal represents the cosine similarity
score for each L0 FoS to itself, which is 1. We
find that the results in English are stronger than
the results in Chinese. For example, in English,
we see high similarities between L0 FoS we know
are related: [computer science, engineering]; [po-
litical science, sociology]. Additionally, we see
low similarities between L0 FoS that are unrelated:
[biology, political science], [chemistry, political
science], [materials science, philosophy]. In Chi-
nese, we find L0 FoS pairs with high similarities
that we would expect, such as [political science,
economics] and [mathematics, physics]. However,
we also find L0 pairs with high similarities that do
not align with field relatedness, such as [chemistry,
economics] and [history, physics].

6.3 L0-to-L1 Field Similarities

We evaluate the parent-child relationship between
L0 and L1 FoS. For each L0 FoS, we generate a
t-Distributed Stochastic Neighbor Embedding (t-
SNE) plot with its corresponding L1 FoS. Using
t-SNE, we implement dimensionality reduction on
our 250-dimensional embeddings and plot the FoS
embeddings in a 2-D space. In this way, we can vi-
sualize the organization of the parent FoS to its chil-
dren. Figure 6 shows our results in both languages;
the L0 FoS (parent) is highlighted in yellow.

We display the same four representative FoS
(economics, computer science, medicine, and soci-
ology) from Section 6.1 in Figure 6, but all L0 FoS
graphs will be available in our GitHub repository.
The t-SNE plots allow us to see how the L1 FoS
are represented in the embedding space, and they
highlight similarities and differences between the
results in English and Chinese. For example, in
computer science the L1 FoS have different group-
ings, such as data science and data mining in En-
glish, and pattern recognition and computer vision
in Chinese. Alternatively, in economics, both lan-
guages have strong similarities between finance
and actuarial science.

The t-SNE plots also help us compare the L1
field embeddings to their L0 (parent) field embed-
dings. We find that the English results for eco-
nomics and medicine show the L0 fields as more
central, with the L1 fields tightly clustered, as op-
posed to the computer science and sociology results.
The Chinese graphs highlight that the L1 fields are
not as tightly clustered as the English L1 fields.



112

CSWiRe SimilaViX]

0 1

Figure 5: L0 Fields of Study cosine similarity heatmaps.

6.4 Case Study: Publication Field of Study

Labels in Artificial Intelligence and

Machine Learning

In order to evaluate how well our model assigns
field labels to scientific research publications, we
select publications from 13 top artificial intelli-
gence (AI) and machine learning (ML) conferences
identified by CSRankings5:

1. AAAI Conference on Artificial Intelligence

2. International Joint Conference on Artificial
Intelligence

3. IEEE Conference on Computer Vision and
Pattern Recognition

4. European Conference on Computer Vision

5. IEEE International Conference on Computer
Vision

6. International Conference on Machine Learn-
ing

7. International Conference on Knowledge Dis-
covery and Data Mining

8. Neural Information Processing Systems

9. Annual Meeting of the Association for Com-
putational Linguistics

5www.csrankings.org

10. North American Chapter of the Association
for Computational Linguistics

11. Conference on Empirical Methods in Natural
Language Processing

12. International Conference on Research and De-
velopment in Information Retrieval

13. International Conference on World Wide Web.

There are 127,257 publications in EN-
PUBLICATIONS that were published in a top
AI/ML conference; this evaluation is limited to
EN-PUBLICATIONS. We find that 57% of these
publications have computer science as the top L0
FoS, with physics coming in second with 27%.
Additionally, we check for the number of L0 FoS
that are children of computer science and find that
59% of the publications have a top L1 FoS that is a
child of computer science.

7 Conclusion and Future Work

Organizing scholarly literature is necessary for ac-
cessibility and usefulness of scientific research pub-
lications. Prior work has focused on a few broad ar-
eas of research, English-only research publications
and taxonomies, and static taxonomy descriptions.
In this paper, we implement a multi-label classifica-
tion model that encompasses research fields from
all of science, can be updated using a comprehen-
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Sociology L0 fields of study
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sive, online knowledge base, and is not restricted
to the English language.

In future work, we plan to expand to additional
languages and explore the longitudinal dynamics
of fields: how their relative positions have shifted,
within and between languages, as Wikipedia article
text and references have changed.
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