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Message from the SDP 2022 Organizing Committee

Welcome to the Third Workshop on Scholarly Document Processing (SDP) at COLING 2022.

The SDP workshop has existed in other forms over the years, mainly in digital libraries or information
sciences venues. In recent years, we have transitioned to organizing the SDP workshop at ACL events
for several reasons. First, ACL events are the premier venues for the confluence of NLP and ML, and
most of the cornerstone tasks in processing scholarly documents are NLP tasks. Improving machine
understanding of scholarly semantics embedded in research papers is essential to furthering many tasks
and applications in scholarly document processing. Second, the clear practical importance of the
scholarly literature makes it an attractive testbed and source of distinctive challenges for researchers
focused more generally on computational linguistics. By co-locating with ACL events, we aimed to
expand the SDP community by drawing the attention of computational linguists and NLP researchers in
search of important, practical problem areas. And third, we have sought to bring together researchers and
practitioners from various backgrounds focusing on different aspects of scholarly document processing.
We believe that the interdisciplinary nature of the ACL venues greatly assists in encouraging submissions
from a diverse set of fields.
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Kyle Loa Philipp Mayrg Michal Shmueli-Scheuerh

Anita de Waarde Lucy Lu Wanga,i

Abstract

With the ever-increasing pace of research
and high volume of scholarly communication,
scholars face a daunting task. Not only must
they keep up with the growing literature in
their own and related fields, scholars increas-
ingly also need to rebut pseudo-science and
disinformation. These needs have motivated
an increasing focus on computational meth-
ods for enhancing search, summarization, and
analysis of scholarly documents. However,
the various strands of research on scholarly
document processing remain fragmented. To
reach out to the broader NLP and AI/ML com-
munity, pool distributed efforts in this area,
and enable shared access to published re-
search, we held the 3rd Workshop on Schol-
arly Document Processing (SDP) at COLING
as a hybrid event (https://sdproc.org/2022/).
The SDP workshop consisted of a research
track, three invited talks and five Shared Tasks:
1) MSLR22: Multi-Document Summarization
for Literature Reviews, 2) DAGPap22: De-
tecting automatically generated scientific pa-
pers, 3) SV-Ident 2022: Survey Variable Iden-
tification in Social Science Publications, 4)
SKGG: Scholarly Knowledge Graph Gener-
ation, 5) MuP 2022: Multi Perspective Sci-
entific Document Summarization. The pro-
gram was geared towards NLP, information
retrieval, and data mining for scholarly doc-
uments, with an emphasis on identifying and
providing solutions to open challenges.

aAllen Institute for AI, USA
bPiiano Privacy Solutions
cSRI International, USA
dÚFAL, MFF, Charles University, Czech Republic
eElsevier, USA
fThe Open University, UK
gGESIS -– Leibniz Institute for the Social Sciences, Germany
hIBM Research AI, Haifa Research Lab, Israel
iUniversity of Washington, USA

1 Workshop description

Over the past several years and at various venues,
the Joint Workshop on Bibliometric-enhanced IR
and NLP for Digital Libraries (BIRNDL1) (Ca-
banac et al., 2020; Mayr et al., 2018), the
CL-SciSumm Shared Task, and the Interna-
tional Workshop on Mining Scientific Publications
(WOSP2) (Knoth et al., 2020) have established
themselves as the principal venues for research in
scholarly document processing (SDP). However,
as these venues are collocated with conferences
that are not focused on NLP, current solutions in
this domain lag behind modern techniques gener-
ated by the greater NLP community.

In 2020, the first SciNLP workshop3 was held
online at the AKBC 2020 conference; the work-
shop brought together interested parties in a talk
series focused on various aspects of scientific NLP.
The first Scholarly Document Processing (SDP)
workshop then took place in co-location with the
EMNLP 2020 conference as an online workshop
(see overview in Chandrasekaran et al. (2020)),
and provided a dedicated venue for those working
on SDP to submit and discuss their research. Fol-
lowing these successes and the clear appetite for
venues to foster discussions around scholarly NLP,
SDP 2021 co-located at NAACL, again aimed to
connect researchers and practitioners from differ-
ent communities working with scientific literature
and data and created a premier meeting point to
facilitate discussions on open problems in SDP.

Program The SDP 2022 workshop consisted
of three Keynote talks, a Research Track and
a Shared Task Track. The full program with
links to papers, videos and posters is available at

1https://philippmayr.github.io/BIRNDL-WS/
2https://wosp.core.ac.uk/
3https://scinlp.org/
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https://sdproc.org/2022/program.html.

2 Keynotes

This year, we had 3 keynote speakers discussing a
variety of recent advancements in scholarly docu-
ment processing: Min-Yen Kan (National Univer-
sity of Singapore), Sophia Ananiadou (University
of Manchester), and Andrew Head (University of
Pennsylvania). More talk info provided below:

Title “Scholarly Document Processing Research
in the Age of AIs”.

Speaker Min-Yen Kan

Abstract Artificial Intelligence is poised to im-
pact many fields, but how will the rise of AI im-
pact the way that we do science and scholarly
work? Thomas Kuhn, in his philosophical anal-
yses of sciences coined the term "paradigm shift"
to describe the resultant progress in science theory
when the normal science of an existing paradigm
collides with theory-unaccountable, replicable ob-
servations. With scientists in AI still expecting
key discoveries to be made, will we expect a new
paradigm to overturn current normal science in AI
and other fields? Will the age of accelerations,
as defined by Thomas Friedman, hold sway over
how real-world contexts are either accounted for
or discarded by research practitioners and schol-
ars alike? I relate my perspective on how nor-
mal science and paradigm shifting science relate
to the notion of research, fast and slow, and how
scholarly document processing can facilitate the
mean and variance in science discovery. I give an
opinionated view of the importance of scholarly
document processing, as a meta-research agenda
that can either aid thoughtful slow research, or
be leveraged to further exacerbate acceleration of
normal science.

Title “Biomedical Text Summarisation: Meth-
ods and Challenges”

Speaker Sophia Ananiadou

Abstract Biomedical text summarization tech-
niques are used to support users in accessing in-
formation efficiently, by retaining only the most
important semantic information contained within
documents. Text summarization is important in
a variety of scenarios, including systematic re-
views (synthesis), evidence-based medicine, clin-
ical decision support, etc. I will discuss current

trends in biomedical text summarization, the use
of pre-trained language models (PLMs), bench-
marks, evaluation measures and challenges faced
in both extractive and abstractive methods. In par-
ticular, I will examine how to extract salient sen-
tences by exploiting both local and global contexts
and explore how the integration of fine-grained
medical knowledge into PLMs can improve ex-
tractive summarisation.

Title “Exploring How Intelligent Interfaces Can
Support the Reading of Scholarly Articles”

Speaker Andrew Head

Abstract In this talk, I share a vision of inter-
active research papers, where user interfaces sur-
face information for readers when and where they
need it. Grounded in tools that I and my collab-
orators have developed, I discuss what it takes to
design reading interfaces that (1) surface defini-
tions of terms where readers need them (2) ex-
plain the meaning of math notation and (3) con-
vey the meaning of jargon-dense passages in sim-
pler terms. In our research, we have found that ef-
fective reading support requires not only sufficient
document processing techniques, but also the care-
ful presentation of derived information atop visu-
ally complex documents. I discuss tensions and
solutions in designing interactive papers, and iden-
tify future research directions that can bring about
powerful augmenting reading experiences.

3 Research Track

We invited submissions from all communities
demonstrating usage of and challenges associated
with natural language processing, information re-
trieval, and data mining of scholarly and scientific
documents. Relevant topics included:

1. Representation learning
2. Information extraction
3. Summarization
4. Generation
5. Question answering
6. Discourse and argumentation mining
7. Network analysis
8. Bibliometrics, scientometrics, and altmetrics
9. Reproducibility

10. Peer review
11. Search and indexing
12. Datasets and resources
13. Document parsing
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14. Text mining
15. Research infrastructure, and others.

In total, we accepted 18 submissions for the re-
search track for presentation.

4 Shared Task Track

SDP 2022 hosted five shared tasks. Each shared
task had its own organizing committee consisting
of several members of the SDP 2022 organizers
and/or other collaborators. Shared task presenta-
tions were held online in parallel sessions to the
main SDP workshop. See short descriptions of the
shared tasks below. Detailed overview papers of
the shared tasks are referred to and followed in the
proceedings.

4.1 Multi-document Summarization for
Systematic Reviews (MSLR2022)

Organizers: Lucy Lu Wang, Jay DeYoung, and
Byron Wallace

Systematic literature reviews aim to compre-
hensively summarize evidence from all available
studies relevant to a question, and provide the
highest quality evidence towards clinical care. Re-
views are expensive to produce manually and
quickly go out of date (Shojania et al., 2007);
(semi-)automation via NLP may facilitate faster
evidence synthesis without sacrificing rigor. To-
ward this end, we provided two datasets of re-
views and studies derived from the scientific lit-
erature to study the task of generating review
summaries (DeYoung et al., 2021; Wallace et al.,
2020). We also encouraged submissions extend-
ing our task/datasets, e.g., proposing scaffolding
tasks, methods for model interpretability, and im-
proved automated evaluation methods. We re-
ceived submissions from 6 teams, with a total of
10 public submissions to the Cochrane and MSˆ2
subtask leaderboards. We observed modest im-
provements in task performance as assessed by
automated evaluation metrics, and gained signifi-
cant insights into the remaining challenges for this
task. Systems reports submitted by 5 teams are in-
cluded in the workshop proceedings along with an
overview paper (Wang et al., 2022) summarizing
potential directions for future work.

4.2 Detecting automatically generated
scientific papers (DAGPap22)

Organizers: Yury Kashnitsky, Drahomira Her-
rmannova, Anita de Waard, Georgios Tsatsaronis,

Catriona Fennell, and Cyril Labbé
Can we automatically distinguish machine-

generated papers from those written by humans?
For this challenge, we provided a corpus of over
4,000 papers that are (probably) synthetic to some
extent, based on the work of Cabanac et al. (2021),
as well as documents collected by our publish-
ing and editorial teams. As a control, we pro-
vided a corpus of open access human-written pa-
pers from the same scientific domains. We also en-
couraged contributions that extended this dataset
with other computer-generated scientific papers,
or papers that propose valid metrics to assess au-
tomatically generated papers against those written
by humans. The DAGPap22 overview paper is
available at Kashnitsky et al. (2022).

4.3 Survey Variable Identification in Social
Science Publications (SV-Ident 2022)

Organizers: Tornike Tsereteli, Yavuz Selim Kar-
tal, Simone Paolo Ponzetto, Andrea Zielinski, Kai
Eckert, Philipp Mayr

The SV-Ident 20224 task is the first shared
task on survey variable identification in the Social
Science domain. Social Science literature often
uses and references survey datasets, which contain
sometimes hundreds of items or questions, called
survey variables or variables. Studies may focus
on and reference only a specific subset of these
variables. While survey datasets that are used in a
publication are typically referenced explicitly in-
text using a bibliographic citation, individual vari-
ables are often only referenced ambiguously. This
lack of explicit linking limits access to research
along the FAIR principles.

The dataset for SV-Ident contains 5,972 expert-
annotated sentences (with and without variable
mentions) that are linked to 11,356 variables of
which 1,165 are unique. The shared task is di-
vided into two sub-tasks: a) variable detection and
b) variable disambiguation. The former deals with
identifying sentences that contain variable men-
tions, while the latter focuses on linking the cor-
rect variables mentioned in a sentence. Results
show that implicit variables, which require con-
textual knowledge, are significantly more difficult
to identify. Furthermore, we find that both tasks
can be conducted in a zero-shot setting using pre-
trained language models.

4https://vadis-project.github.io/
sv-ident-sdp2022/
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The SV-Ident overview paper is available at
(Tsereteli et al., 2022).

4.4 Scholarly Knowledge Graph Generation
(SKGG)

Organizers: Petr Knoth, David Pride, Ronin Wu
and Drahomira Herrmannova

With the demise of the widely used Microsoft
Academic Graph (MAG) (Wang et al., 2020; Her-
rmannova and Knoth, 2016) at the end of 2021, the
scholarly document processing community faces a
pressing need to replace MAG with an open source
community supported service. A number of chal-
lenging data processing tasks are needed to cre-
ate a comprehensive scholarly graph, i.e., a graph
of entities including research papers, authors, re-
search organisations, and research themes. This
shared task aimed to evaluate three key sub-tasks
of scholarly graph generation: 1) document dedu-
plication, identifying and linking different ver-
sions of the same paper, 2) extracting research
themes, and 3) affiliation mining, linking papers
to the organisations that produced them. Un-
fortunately, participants only submitted results in
the first subtask, using a new 50k large dataset
of 36 research themes compiled based on the
UK Research Excellence Framework exercise and
enriched using the CORE (Knoth and Zdrahal,
2012) and the Semantic Scholar (Ammar et al.,
2018) APIs. The task has created a new per-
formance benchmark comparing traditional and
state-of-the-art models under the same experi-
mental conditions. The highest performance was
achieved by a transformer-based classifier model
based on BERT with the use of argumentative zon-
ing. The SKGG overview paper is available at Ós-
car E. Mendoza et al. (2022).

4.5 Multi Perspective Scientific Document
Summarization (MuP 2022)

Organizers: Arman Cohan, Guy Feigenblat,
Tirthankar Ghosal and Michal Shmueli-Scheuer

MuP 2022 shared task is the first shared task
on multi-perspective scientific document summa-
rization. The task provides a testbed representing
challenges for summarization of scientific docu-
ments, and facilitates development of better mod-
els to leverage summaries generated from multiple
perspectives. We received 139 total submissions
from 9 teams. We evaluated submissions both by
automated metrics (i.e., ROUGE) and human judg-
ments on faithfulness, coverage, and readability

which provided a more nuanced view of the differ-
ences between the systems. Systems reports sub-
mitted by 5 teams are included in the workshop
proceedings along with an overview paper sum-
marizing results and insights.

While we observe encouraging results from the
participating teams, we conclude that there is still
significant room left for improving summariza-
tion leveraging multiple references. The MuP
overview paper is available at Cohan et al. (2022).

5 Workshop Overview and Outlook

The organizers were gratified by both the size and
breadth of the response to the third edition of SDP.
The subjects of accepted papers ranged from end
uses of the scholarly literature (such as search,
document expansion, or writing support) to chal-
lenges associated with automated understanding
(such as metadata extraction and disambiguation
or argument mining), to adaptations of recent suc-
cesses in the broader field of NLP. It is apparent
that automated processing of the scholarly litera-
ture is a problem that meets with substantial inter-
est. And it seems likely that we are observing the
beginnings of a research community with a narrow
enough focus to make rapid progress, but a broad
enough set of concerns to offer ample opportuni-
ties for cross-pollination.

To a first approximation, we regard SDP as a
confluence of three communities: NLP, informa-
tion retrieval, and scientometrics. Given our co-
location with COLING, it is perhaps not surpris-
ing that the majority of our submissions empha-
sized NLP. As we consider future iterations of the
workshop, we are discussing ways to increase its
subject diversity. With SDP 2022 we have be-
gun to present a more varied set of shared tasks,
each highlighting challenges unique to the auto-
mated processing of the scholarly literature. As
we proceed with planning and advertising, a key
objective will be to elicit high-quality submissions
from researchers interested in the uses and meta-
linguistic aspects of scholarly communication.

6 Conclusion

The scholarly literature has long served as a rich
source of interesting and challenging problems
for computer science, and there is substantial
prior work in information retrieval, scientomet-
rics, data mining, and computational linguistics,
but many important challenges remain. In many
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respects, our efforts to faithfully capture the se-
mantics of scholarly communication through auto-
mated means are still in their infancy. At the same
time, recent events regarding misinterpretation of
scholarly information accentuate the importance
of better approaches to the automated processing
of scholarly literature.

By drawing attention to these problems and
offering a forum for interested scientists from a
range of disciplines to collaborate, we hope that
this and future instances of SDP encourage the ap-
plication of recent advances in relevant fields to
this problem area, identify new use cases or im-
prove our understanding of existing ones, and ul-
timately foster solutions that improve the practice
of scholarship and serve society.
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Abstract

The ever growing amount of research publica-
tions demands computational assistance for ev-
eryone trying to keep track with scientific pro-
cesses. Topic modeling has become a popular
approach for finding scientific topics in static
collections of research papers. However, the re-
ality of continuously growing corpora of schol-
arly documents poses a major challenge for tra-
ditional approaches. We introduce RollingLDA
for an ongoing monitoring of research topics,
which offers the possibility of sequential model-
ing of dynamically growing corpora with time
consistency of time series resulting from the
modeled texts. We evaluate its capability to de-
tect research topics and present a Shiny App as
an easy-to-use interface. In addition, we illus-
trate usage scenarios for different user groups
such as researchers, students, journalists, or
policy-makers.

1 Introduction

In the era of “Big Literature” (Nunez-Mir et al.,
2015), the exponentially growing number of re-
search publications (Bornmann et al., 2021) poses a
serious challenge to those trying to keep up with the
vast amount of scientific information published ev-
ery day. On the one hand, this affects scientists and
students who want to stay up-do-date. Due to the
accelerating effects of digitization and globaliza-
tion (cf. Hilbert and López, 2011), assessing scien-
tific developments in a timely manner has become
a challenging endeavor – even for experts in their
respective fields. A recent example is the plethora
of research papers on COVID-19 that rapidly grew
after the outbreak in 2020 (Aviv-Reuven and Rosen-
feld, 2021). The exceptionally large number of re-
searchers (Ioannidis et al., 2021) produce scientific
output that is arguably too much to be reviewed
by individual researchers on a case by case basis.
Outside academia, on the other hand, journalists,

Equal contribution.

politicians, and the general public are interested
in research processes and findings as well. For in-
stance, policy-makers need to evaluate whether a
research field is moving toward the intended direc-
tion, e.g., whether funding yields scientific output
as expected. Journalists who want to report the
latest trends in research often depend on (poten-
tially biased) expert opinions or conferences that
take place only once per year or biennially. This
hampers trend detection on a timely, large scale,
and reproducible basis.

1.1 Related Work

Scientific output that is high in volume and velocity
demands statistical methods and tools that assist
in processing such amounts of information. One
strategy to reduce the overload of information is
to condense large volumes of text collections to
their main topics. In recent years, bibliometrics en-
hanced with natural language processing (NLP) has
emerged as a promising solution for handling such
large text corpora (Atanassova et al., 2019). For
finding scientific topics, in particular topic model-
ing became a standard method in scientometrics
(e.g., Colavizza et al., 2021; Griffiths and Steyvers,
2004; Yau et al., 2014). Initially developed for
information retrieval purposes (Blei et al., 2003),
topic modeling is widely used for gaining insights
into the underlying themes of text collections. It re-
duces high dimensional text data to a few groups of
co-occurring terms which are interpreted as topics.
Put differently, the goal is to “analyze the words
of the original texts to discover the themes that run
through them” (Blei, 2012, p. 77). By consider-
ing the document metadata, the analyses can get
more fine-grained. For instance, by incorporating
the date of publication into the model, the topic
prevalence over time can reveal patterns of publica-
tion trends such as “hot” or “cold topics” (Griffiths
and Steyvers, 2004). The main advantage of de-
riving topics from scholarly texts instead of using
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database metadata (such as subject headings or clas-
sification codes; Krampen, 2016) is their ability to
detect novel topics more flexibly (Suominen and
Toivanen, 2016).

In summary, NLP approaches like topic model-
ing can help in coping with the vast amounts of
scholarly documents published every day. From
a methodological point of view, however, the in-
tegration of new texts into existing models fitted
on a previous set of texts poses a major challenge.
In particular, it remains an open question how to
continuously detect research topics in a “living”
corpus of scholarly documents.

1.2 Contribution

The current paper addresses the question of how to
keep track of scientific topics and trends. We apply
a recent topic modeling method to an annually up-
dated corpus of scholarly documents and present
a Shiny App that makes the results accessible to
users without prior knowledge of coding or topic
modeling. Firstly, we describe how topic modeling
works and how traditional approaches deal with
the integration of new documents into the model.
Secondly, we argue that RollingLDA (Rieger et al.,
2021) offers the possibility of sequential modeling
of dynamically growing corpora ensuring time con-
sistency of time series resulting from the modeled
texts. Thirdly, using publications from the field of
psychology as a use case, we investigate whether
the RollingLDA approach can detect novel topics
by comparing its evolved topics to those from a sin-
gle topic model fitted on a corpus of publications
from the year 2020. Fourthly, we describe a Shiny
App that provides a user interface for exploring
and analyzing research topics. Finally, we discuss
practical implications for different user groups, the
assets and drawbacks of our newly presented ap-
proach as well as future directions.

2 Methodological Background

Topic modeling is used in many application do-
mains (cf. Blei, 2012), which might be partly due
to the intuitive explanation of the model idea: a
corpus of documents can be described by distribu-
tions of topics over time, where each word in each
of these documents is assigned to one of the topics.
This in turn yields word distributions for each topic,
which are thereby made interpretable.

Probably the best known model among topic
models is the latent Dirichlet allocation (LDA, Blei

WT
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M
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Figure 1: Schematic (plate) representation of LDA.

et al., 2003). The underlying probabilistic model
(Griffiths and Steyvers, 2004) is given by

W (m)
n | T (m)

n , ϕk ∼ Discr(ϕk), ϕk ∼ Dir(η),

T (m)
n | θm ∼ Discr(θm), θm ∼ Dir(α),

where α and η are Dirichlet priors and K the num-
ber of topics to be modeled chosen by the user
and each document m = 1, . . . ,M is considered a
bag of words set {W (m)

n | n = 1, . . . , N (m)} with
observed words W

(m)
n ∈ W = {W1, . . . ,WV }.

Then, T (m)
n describes the corresponding topic as-

signment for each word. Figure 1 gives a schematic
representation of LDA. The observable variable W
is colored gray, latent variables encircled, while
constants are not. The latent word and topic distri-
butions are represented by ϕ and θ, respectively.

For modeling topics in scientific corpora, we use
a rolling variant of the classical LDA, estimated
with the Gibbs sampler (Griffiths and Steyvers,
2004), named RollingLDA (cf. Sect. 2.2). The
main challenge is to update the topic model with
new publications while preserving the old time se-
ries based on the topic assignments of previous
models on the one hand and allowing for the cre-
ation and mutation of new topics on the other hand.

2.1 Related Methods
Traditional approaches for this kind of task include
the one model fits all approach, which consists
of assigning new documents to topics of the ex-
isting topic model. This type of model is imple-
mented by the online LDA (Zhai and Boyd-Graber,
2013), which is computationally inexpensive but
lacks ability to capture new topics.

A second possible approach is to recalculate
the complete model on the entire corpus for each
update. In this way, it is possible that the model
also catches more recent themes. However, with
this approach, old topics usually change strongly
or become unidentifiable. In addition, the consis-
tency of the time series based on previous models
is lost. Examples for this type of model are topics
over time (Wang and McCallum, 2006) or continu-
ous time dynamic topic model (Wang et al., 2008).
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Both methods use information of future documents
for modeling past documents.

Instead of calculating the new model on the en-
tire data, it is possible to calculate separate mod-
els for each time period. In this way, past topics
remain consistently interpretable, while the tempo-
ral interpretability of topics is lost, so that topics
from different time intervals have to be matched in
a complex (and tricky) way (cf. Niekler and Jäh-
nichen, 2012) to get a minimum of interpretability.

One way to deal with the aforementioned draw-
backs is the restricted memory approach. The
temporal LDA (Wang et al., 2012), which can be
used for monitoring writing styles of individual
authors, or the streaming LDA (Amoualian et al.,
2016), which is rather suitable for thematically
narrower corpora due to a dependence structure
between consecutive documents, are specialized
models that implement this concept. For the given
use case, the RollingLDA (Rieger et al., 2021) im-
plements a more flexible version of the online LDA,
whereby knowledge about previous documents is
forgotten as time passes, thus allowing for muta-
tions and new topics to be created. For the reasons
mentioned above, we use RollingLDA for regular
annual updates of the model.

We do not perform a qualitative comparison of
the RollingLDA and (for instance) the online LDA,
as there is no established evaluation metric for the
quality of topic segmentation for the given appli-
cation. Rather, there is a need for further research
that defines task-based evaluation metrics and eval-
uates their usefulness, cf. Doogan and Buntine
(2021); Ethayarajh and Jurafsky (2020) - for exam-
ple, regarding correlation with human perception
of meaningful structured topics, cf. Chang et al.
(2009); Hoyle et al. (2021).

2.2 RollingLDA

The rolling version of LDA we use is initially based
on one special LDA taken from an user defined ini-
tialization period (parameter init). Up to this
date, a highly reliable run is selected from a set of
LDA runs using the LDAPrototype method (Rieger
et al., 2022a). Then, RollingLDA models the in-
coming data in minibatches (parameter chunks).
For this, only a restricted time directly before each
minibatch is considered as memory. Based on
the topic assignments of the documents within the
memory, the topics are reinitialized for each mini-
batch. By forgetting topic assignments from doc-

uments before the memory period, the model al-
lows evolving topics or weakly populated topics to
mutate strongly. This allows current topics to be
captured by the model as well.

As long as topics are continuously populated,
i.e., that there is no extraordinary drop in the topic’s
frequency, the initialization of the following mini-
batch ensures that existing topics are preserved.
This prevents the problem of matching topics over
time (cf. Niekler and Jähnichen, 2012). By the
same property, the gradual evolution of topics is
made possible by updating the topic initialization
with only the most recent documents for every mini-
batch. In contrast, very weakly populated topics
may be replaced by newly emerging topics due to
the model architecture.

3 Framework

In order to explore the feasibility of RollingLDA
for bibliometric purposes, the goals of the current
study are threefold

• to compare the evolved RollingLDA topics to
a topic model fitted on a specific year only,

• to show an efficient way of top term lifting in
RollingLDA, and

• to illustrate how RollingLDA can be inte-
grated into a Shiny App.

We investigate the eligibility of RollingLDA for
topic identification in scholarly documents by set-
ting different temporal lengths for model initial-
ization as well as different numbers of topics and
compare their evolved topics of 2020 to an indi-
vidual LDA model fitted on the 2020 corpus only.
We propose a method for time restricted top term
weighting that offers additional insights into the
evolution of topics. Moreover, we illustrate the in-
tegration of RollingLDA in a topic app. Leveraging
R Shiny (Chang et al., 2021), we present an easy-to-
use interface to the topic model that, among other
things, visualizes topic trends and topic evolution,
i.e., the change of topic terms over time.

We utilize the approach to the field of psychol-
ogy as a use case, as psychological research is in
most parts empirical, but also comprises theoretical
and methodological contributions. This variety in
study methodology should favor generalizability
of our topic detection approach to other scientific
disciplines.
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3.1 Data
We extracted publication data from PSYNDEX,
the comprehensive reference database for psychol-
ogy publications from the German-speaking coun-
tries. PSYNDEX (www.psyndex.de/en) is
produced by the Leibniz Institute for Psychology
(ZPID) in Germany and has a field structure anal-
ogous to the international PsycInfo database, pro-
duced by the American Psychological Associa-
tion. PSYNDEX is accessible for free via Pub-
Psych (www.pubpsych.eu). The database was
queried in November 2021, including a total of
360,009 publication references (titles, abstracts,
and metadata) from the years 1980 to 2021.

3.2 Preprocessing
For finding scientific topics, we build a text corpus
that consists of English language titles, abstracts,
and standardized keywords. These keywords are
the controlled terms of the American Psychological
Association (Tuleya, 2007), a thesaurus of central
concepts in psychological research similar to the
MeSH terms of the National Library of Medicine.
In contrast to author keywords, such standardized
vocabulary represent the main concepts of the pub-
lications while reducing variance due to spelling
variants or synonyms. This is especially relevant
for methodological terms, as methods like “linear
regression” are only indexed with the respective
keyword, if the method itself was in focus of the
publication, not a mere application for analyzing
the data. Abstracts and titles are lemmatized and to-
kenized, while the keywords are left in their initial
form due to their standardization. As suggested by
Maier et al. (2018), we transformed all text to low-
ercase and removed punctuation as well as the stop
words of scholarly abstracts provided by Christ
et al. (2019) and Bittermann and Klos (2019a).

3.3 Study Design
For selecting a model variant with appropriate pa-
rameters, we first build a reliable reference model
based only on the data from 2020, aiming for a
RollingLDA variant which has a topic structure of
the evolved topics in 2020 that is most similar to
that of the reference model. In addition, the se-
lected RollingLDA model should satisfy traditional
topic quality criteria.

3.3.1 Reference Model for 2020
In order to determine the “actual” topics of 2020,
we fit a topic model to documents published in

2020 only. Multiple LDA runs lead to different
results, stressing the importance of topic reliability
(Maier et al., 2018). We address this issue by ap-
plying LDAPrototype (Rieger et al., 2022a), which
computes several LDA models and determines the
one being the most similar to the other LDA mod-
els. For different numbers of topics K, we run
25 replications. Based on Bittermann and Fischer
(2018) who found 500 topics in a psychology cor-
pus spanning 37 years, we assume that a single
year will have a significantly smaller number of
topics. Hence, we inspect K = 150, 175, . . . , 300.
We set the number of iterations to 500, α = 0.0001
and η = 1/K (package default), to create a few
high probability topics and a lot of close-to-zero
probability topics per publication. In order to re-
duce computation time (Strubell et al., 2019) and
most likely without lack of quality (Maier et al.,
2020), we exclude terms appearing in less than 15
publications.

To determine the optimal number of topics K,
we follow the recommendations of Maier et al.
(2018) and focus on topic interpretability. As pro-
posed by Roberts et al. (2014), we jointly use two
statistical metrics of topic quality: Semantic coher-
ence as defined by Mimno et al. (2011) and topic ex-
clusivity using LDAvis relevance score with λ = 0
(Sievert and Shirley, 2014). Subsequently, we man-
ually inspect top words and the most representative
documents of the three models with highest quality,
leading to a final 2020 reference model with 250
topics.

3.3.2 RollingLDA Candidate Models
For RollingLDA, three model-specific parameters
have to be set: chunks, memory, and a threshold
for vocabularies to be considered, vocab.limit.
The memory parameter determines how much in-
formation from prior years is used to model the
documents from the new publication year. Setting
memory to a larger value has the effect of topics re-
maining rather stable, while smaller values let topic
terms vary more from year to year. For the present
corpus, years are the smallest available unit of time.
Fixing all other parameters for RollingLDA, we in-
spect the results of setting memory to the last two
years, the last year, and a random sample of 30%
of last year’s documents. While the random sam-
ple produce topics that are hard to interpret, using
the documents from the last two years yield only
minor changes in topic terms over time. Hence,
as we were looking for flexibility while preserving
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the overall topic structure over time, we decide to
use all last year’s publications as memory for the
RollingLDA topic assignments.

The vocabulary threshold controls which new
terms are integrated into the overall vocabulary:
Words that occur more than vocab.limit times
in a minibatch are added, otherwise discarded for
modeling the topics of the new publication year.
We set it to ten, as we find this to be the best
compromise of flexibility and computation time
(after inspecting thresholds ranging from 5 to 25,
cf. Strubell et al., 2019; Maier et al., 2020). The
chunks parameter cuts the corpus into intervals,
which is set to yearly updates in the present case.
We inspect K = 200, 250, . . . , 500 (cf. Bittermann
and Fischer, 2018), taking into account that model-
ing topic evolution will result in a lower total num-
ber of psychology topics in the RollingLDA model.
The remaining parameters (α, η, and number of it-
erations) are set analogously to the LDAPrototype
model for 2020 (cf. Sect. 3.3.1).

Another important parameter for the model eval-
uation is the date until which the documents are
used for the initial model, because the RollingLDA
updates are based on these initial topic structures.
For a continuous tracking of scientific topics, we
evaluate whether the topics evolve correctly in the
long term. If the initial model is based on too
little data, the RollingLDA might not be able to
incorporate future changes adequately. Indeed, this
is especially true when a scientific discipline has
broadened its thematic spectrum over the years –
which might be the case for psychology from the
German-speaking countries: In PSYNDEX, the
number of documents is rather low in the 1980s
(cf. Bittermann, 2022, Fig. 14). This suggests that
taking only documents from this period of time
into consideration for the initial model won’t pro-
vide enough information to let the RollingLDA
evolve to the “actual” topics of 2020. Hence,
we test several variants for the initial model, i.e.,
different starting points for RollingLDA, namely
1990, 1995, . . . , 2015. All initial models start with
the publication year 1980 and include terms that
appear in at least 25 publications.

3.3.3 Model Comparisons
In total, we try seven values for K and six dif-
ferent starting years. The resulting 7 × 6 = 42
RollingLDAs are evaluated using the following cri-
teria:

• Cosine similarity to the reference model,

• topic quality metrics, and
• external topic validation.

We consider similarity to the 2020 reference model
as the most crucial factor, as it helps to assess
whether sequential modeling can lead to topic re-
sults comparable to static modeling. Specifically,
we compute the mean cosine similarity between all
possible pairwise combinations of word distribu-
tions of the topics from the 2020 reference model
and each rolling variant’s 2020 topics. We decide
to use cosine similarity as Rieger et al. (2021) pro-
pose this measure to be superior to other metrics for
monitoring topic stability or topic self-similarities.
In order to emphasize this first criterion, we select
the five most similar RollingLDA model variants
for subsequent analysis of topic quality and exter-
nal validation of topic contents.

Despite being able to reflect the semantic con-
tents of the “actual” 2020 topics, high quality top-
ics are still an important issue. Hence, for topic
quality metrics, we calculate semantic coherence
and topic exclusivity (cf. Sect. 3.3.1). Maier et al.
(2018) stresses the importance of topic validity.
While intra-topic semantic validity (Quinn et al.,
2010) via inspecting the top terms and most rep-
resentative documents for each of the model vari-
ants is not feasible (especially w.r.t. change of
top terms over time), we employ a strategy of ex-
ternal validation. Here, we use the concordance
of topics with the database classification system
(cf. Griffiths and Steyvers, 2004). For each topic,
we determine the share of the APA classification
categories (https://www.apa.org/pubs/
databases/training/class-codes) in
those publications where the topic was the overall
most dominant one (i.e., document’s topic proba-
bility > 0.5). By doing so, we retrieve a distribu-
tion of classification category shares for each topic,
which we then correlate with the actual frequency
distribution of these categories in the corpus meta-
data: The higher the resulting correlation coeffi-
cient, the more similar the category distributions
of the RollingLDA variants are to the actual dis-
tributions. For determining the overall best fitting
model, we standardize all values to z-scores and
calculate the mean for each RollingLDA variant.

3.4 Shiny App, Term Lifting, and Topic
Labels

Building upon the LDA-based Shiny App devel-
oped by Bittermann (2019), we design a novel
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Start K Similarity* Coherence Exclusivity Correlation** Mean (of z-scores)

2010 200 0.623 898 −123.997 870 4.137 017 0.960 064 0.188 719
2005 200 0.621 397 −123.516 668 3.949 559 0.962 599 −0.054 622
1995 200 0.621 219 −123.226 158 3.881 941 0.966 658 0.176 869
2010 300 0.621 108 −123.386 484 4.320 748 0.946 135 −0.008 355
2015 200 0.620 810 −123.740 794 4.410 456 0.944 504 −0.302 611

Table 1: Comparison of RollingLDA model variants. The reference model for 2020 (cf. Sect. 3.3.1) comprised
250 topics. The best fitting model variant is printed in bold. Notes: *mean cosine similarity to the topics of the
reference model. **correlations between actual classification category frequencies and classification shares in the
topics (external validation).

user interface that visualizes RollingLDA topics
while keeping it reasonably simple. In order to
be both easy-to-use by novices and adaptable by
the research community, we find R Shiny (Chang
et al., 2021) to be a suitable solution: A slim user
interface allows even users without programming
skills to explore the topics, and the widespread
R programming language (Muenchen, 2019) lets
data analysts easily modify the app to their needs.
Our topic app “PsychTopics” is updated quar-
terly, licensed as open source software, and made
available on GitHub (https://github.com/
leibniz-psychology/psychtopics).

In topic modeling, topics are characterized by
groups of words that tend to co-occur. These so-
called global top terms are determined according to
the occurrence probabilities of the words over the
entire time horizon. In addition, the RollingLDA
approach lets topic terms vary over the years. In
the PsychTopics app, we call these year-specific
words evolution terms. Here, the occurrence proba-
bilities of the words in the topic are determined for
a specific year and weighted for disproportional oc-
currences in this topic compared to other topics (cf.
Rieger et al., 2022a, Formula 9), which allows map-
ping particularly characteristic topic alignments in
individual years. By distinguishing between global
and year-specific evolution top terms, it is possible
both to classify them in the global topic structure
and to identify temporary shifts.

Since the absolute frequency and the exclusivity
of a word for a specific topic can vary greatly, deter-
mining the overall theme of a topic is not trivial. To
facilitate topic interpretation, we manually assign
labels to the topics by adopting best-practice rec-
ommendations by Maier et al. (2018). Specifically,
two researchers independently inspected the evolu-
tion of top terms, the most representative publica-
tions, and the most frequent journals that published

· · ·
1980 2010 2014

LDAPrototype
2010

2011

2012

2013

2014

· · ·

· · ·memory chunks

Figure 2: PsychTopics modeling scheme for the best
fitting model (start = 2010).

articles on this topic. In addition, for each topic
we take the most frequently observed classification
categories into account. In case of topic shifts, i.e.,
new or diverging contents in the topic starting in
a specific year, we assign arrows to the label. For
instance, the topic label “Miscellaneous Disorders
→ Trauma” indicates that over the years, a rather
broad topic on psychological disorders became spe-
cialized on trauma.

4 Analysis

The five model variants with highest cosine sim-
ilarity to the reference model (cf. Sect. 3.3.2 and
3.3.3) comprise either 200 or 300 topics, while their
RollingLDA starting years ranged from 1995 to
2015. Table 1 shows the metrics used for compari-
son. The cosine similarities are rather close, but the
variants differ in topic quality metrics (especially
exclusivity) and correlations with the metadata clas-
sification categories. The five models’ overall high
correlation coefficients (0.95 to 0.97) underline
their high external validity. The mean z-scores in-
dicate that the variant with K = 200 topics and the
starting year of 2010 for RollingLDA is the overall
best fitting model (cf. Figure 2), so we choose this
for integration in the topic app. All analysis scripts
were executed in R (R Core Team, 2022) and can
be found in the supplementary material.

12



Reference Model
250 Topics

Matched Topics
(cos ≥ .5):
205 (82%)

Missed Topics
(cos < .5):
45 (18%)

Prevalence below
average:

34 (13.6%)

Prevalence above
average:

11 (4.4%)

Figure 3: Matched and missed topics of the reference
model for the best fitting model (K = 200, start =
2010).

4.1 Matched and Missed Topics

The best fitting model (K = 200, start = 2010)
is not perfectly aligned to the reference model
(cos = .62), which is not surprising, as the number
of topics in the models differ (200 vs. 250) and
as the variants are initialized with data from 1980
to 2009. The individual topic similarities range
from .30 to .91 (σ = .13, x0.25 = .52, x0.5 = .62,
x0.75 = .72). Of the 250 topics in the reference
model, 45 (18%) get a similarity value of less than
.5, realizing prevalences θm,k ranging from .19% to
.46%, with 11 topics having a prevalence above the
model’s average (1/K = 1/250 = 0.4%). That
is, 205 (82%) topics can be detected satisfactorily
by the RollingLDA, whereas eleven (4.4%) of the
more prevalent topics in 2020 are missed as individ-
ual topics (cf. Figure 3). Despite being not matched
satisfactorily, characteristic terms of these topics
(e.g., dreams, climate, tinnitus) can be found in
other topics, so these themes are not lost, but just
less prevalent. The remaining 34 (13.6%) topics
are negligible due to their low prevalence in the
reference model.

A moderate correlation between cosine similar-
ity and topic prevalence in the reference model
(r = .34) indicates that topics without match in
the variant model (i.e., low similarity) have the
tendency to be less prevalent. Indeed, nine of the
ten most common topics in the reference model
(e.g., psychotherapy, psychoanalysis, mental disor-
ders, memory, group therapy), can be matched to
the most similar variant topics (ranging in cosine
similarity from .64 to .88). The only exception
is a topic on refugee psychotherapy. The highest
value of cosine similarity has a variant topic on

psychotherapy. Nevertheless, six refugee-related
topics are included in the variant model, however,
scoring lower as they focus on refugees in context
of trauma, COVID-19, social issues, or health ser-
vices. In the supplementary material, we provide
tables with global top terms of the reference and
evolution terms of the variant model, as well as a
table including the cosine similarities.

4.2 Topic Interpretability and Topic Shifts
Focusing on the variant’s 200 topics, there is one
topic to be too diverse for a coherent interpreta-
tion (global top terms: “theory, social, process,
model, concept, behavior, development, psychol-
ogy, group, system”). These are rather generic
terms in psychological research, which is why we
regard this as a “background topic”. For 20 (10%)
topics, top terms vary within an overarching theme
(e.g., “Miscellaneous Disorders”) and/or within a
specific period in time (e.g., “Miscellaneous Disor-
ders → Trauma”). In total, shifts are found for 34
(17%) topics, while the remaining 83% of all top-
ics evolve within the same semantic scope. In nine
cases (4.5%), topic shifts are limited to a relatively
close semantic space (e.g., “Child Psychopathol-
ogy → Trauma”) or refined the topic (e.g., “Exper-
imental Psychology → Decision Making”). Eight
(4%) topics “disappear”, as their top terms over
time become too diverse for coherent interpretation
(e.g., “Learning Environments → Miscellaneous”).
Interestingly, for 17 topics “hard shifts” can be de-
tected, as their their top terms change drastically
(e.g., “Psychoanalysis → COVID-19”). Such shifts
reflect the RollingLDA model’s ability to integrate
rising topics (e.g., COVID-19) and to neglect de-
clining topics. This finding does not mean that
these topics became irrelevant to the scientific com-
munity; rather, they are subsumed under broader
topics or they no longer contribute to the main re-
search topics of the field.

4.3 Topic App
Our associated app is called “PsychTopics”
(https://abitter.shinyapps.io/
psychtopics/) and features

• “Start” – a general overview of the overall
most prevalent topics as well as the prelimi-
nary topics of the current year,

• “Browse Topics” – a detailed list of topic char-
acteristics (such as the number of essential
publications or the share of empirical research
within these publications),
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Figure 4: Screenshot of the evolution for topic “Miscel-
laneous Disorders → Trauma”.

• “Popular by Year” – the most prevalent topics
for a specific year,

• “Hot/Cold” – the topics with the largest in-
crease or decrease in publications,

• “Topic Evolution” – the evolution of lifted top
terms across publication years, and

• “Methods” – describing technical details and
links to further literature.

Figure 4 shows a screenshot of the “Topic Evo-
lution” view with the example of the topic “Mis-
cellaneous Disorders → Trauma”. The line chart
depicts the number of essential publications (i.e.,
θm,k > .5) for this topic over time. The table be-
low the chart lists the “evolution terms” for the
years 2015 to 2019. The topic is less prevalent
in the 1980s and at the same time more character-
ized by publications addressing neurological con-
ditions, schizophrenia, and depression in a more
general way. Over the years, and especially from
2001 onwards, there has been a greater special-
ization of the topic. This topic shift is accompa-
nied by a more prominent appearance of the terms
“posttraumatic”, “PTSD” and “trauma”, from 2012
additionally “childhood” and from 2018 addition-
ally “refugee”. In the German-speaking countries,
psychology has increasingly addressed the topic

Figure 5: “Hot” topics with the greatest publication
gradient between 2018 and 2020.

of “flight and migration” as a result of the so-
called “refugee crisis” in 2015 (Bittermann and
Klos, 2019b). A time lag in the appearance of the
topic can be explained by a “publication lag” be-
tween the initial study idea and the publication of
the paper (cf. Björk and Solomon, 2013).

Besides inspecting the evolution of topics, an-
other way to use PsychTopics is to examine trends
in the research literature. The “Hot/Cold” view in
Figure 5 shows the topics with the strongest rising
and the strongest falling linear trend (cf. Griffiths
and Steyvers, 2004). Here it can be seen that be-
tween the years 2018 and 2020 “Personality & So-
cial Psychology” is the hottest topic. By clicking
on the respective points of the lines in the diagram,
details of the topics can be accessed. Moreover,
clicking the “Search PSYNDEX” link automati-
cally queries the evolution terms in the PubPsych
portal and provides relevant publication references.

5 Discussion

In this paper, we applied RollingLDA to a con-
tinuously growing corpus of scholarly documents.
Using the field of psychology as an use case, we
found that RollingLDA is capable of integrating the
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annual updates of the database to meaningful topics.
The framework can be easily applied to any scien-
tific discipline or even to multiple fields. For this,
the text input should at least consist of titles and
abstracts. In addition, we recommend controlled
keywords (e.g., MeSH terms), as they provide the
main contents of the articles in a standardized man-
ner. Regarding metadata, we used the year of pub-
lication, the classification category, and the study
methodology (e.g., empirical research, theoretical
discussion). This allows to analyze temporal trends,
to validate topic contents, and to highlight topics
that might be suitable for meta-analyses. However,
our approach is not limited to these metadata and
many other additions are conceivable. For instance,
the share of open access articles or study prereg-
istrations over time could be compared between
topics and research fields. The model is imple-
mented as a Shiny App that lets users explore and
analyze the topics and trends without the need of
programming skills, while the open source code
facilitates the mentioned modifications to the Psy-
chTopics app.

5.1 Practical Implications
The PsychTopics app encourages exploration and
thus provides an overview of the variety of scien-
tific publications to researchers, students, policy-
makers, and the interested public. For journalists
and policy-makers, it might be of interest to de-
termine the extent to which publications address
topics of social relevance. A corresponding topic
in PsychTopics is “Psychology & Society”, which
is increasingly dedicated to climate change from
2019. The hyperlink to the free literature search in
PSYNDEX helps students in finding reading ma-
terial for class. Furthermore, PsychTopics lists the
three journals that have published the most on the
topics. This can guide early career researchers in
finding suitable journals for their own research pa-
pers. In addition, the proportion of empirical stud-
ies indicates topics that be suitable for quantitative
research syntheses (meta-analyses). In particular,
hot topics with very high publication activity and
a large share of primary studies may be of rele-
vance for living research syntheses (e.g., Burgard
et al., 2022) to keep the meta-analytic evidence as
up-to-date as possible.

5.2 Limitations and Further Research
Like most topic modeling techniques, the presented
approach focuses on texts written in the English

language, but is easily adaptable to other monolin-
gual corpora. In contrast, multilingualism in topic
modeling can lead to different topics despite the
same content (e.g., English “Therapy” topic and
German “Therapie” topic) or lower the semantic
coherence of topics (Mimno et al., 2011). Hence,
the handling of multilingual text input in sequential
modeling of dynamically growing corpora repre-
sents a target for future research (e.g., based on
Mimno et al., 2009; Vulić et al., 2015).

Topic shifts, i.e., changes in top terms over the
years that imply the ending of the prior and the
beginning of a new topic, were detected manually
and indicated in the topic labels using an arrow
symbol. For instance, “Experimental Psychology
→ Decision Making” means that the topic became
more specialized over the years. Topics with an
abrupt shift to completely different contents (e.g.,
“Psychoanalysis → COVID-19”) are split into sep-
arate topics in the app. In this way, misleading
interpretations of topic names are avoided (such
as psychoanalysis became concerned with COVID-
19). However, the different types of changes (e.g.,
abrupt, flowing) remain to be investigated. More-
over, the current manual detection of shifts is la-
bor intensive. This process could be automated by
change detection within topics (cf. Rieger et al.,
2022b).

It is methodologically interesting to split topics
including shifts into two temporal topics, so that
the model would have a dynamic number of topics
over time. Naturally, it is reasonable to assume
that some years of research lead to more different
topics, others to less. An approach for a dynamic
number of topics might be to delete topics from
the initialization of a following minibatch that are
characterized by both few document assignments
and incoherent top words. This specific topic would
end, and the empty topic “slot” could develop a new
topic. Unless this newly emerged topic develops
a coherent context in the following minibatch, the
topic would be neglected. However, as soon as it
develops its own meaning, it is taken up as a new
topic and also detached from the previous meaning,
so that it is considered as an individual topic for
the interpretation.

We tested a total of 42 RollingLDA variants,
using different settings for the number of topics
and starting years of the sequential RollingLDA
modeling. We found 200 topics and an initializa-
tion model for the publication years 1980 to 2019
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yielding the best results in terms of evolving to top-
ics in 2020 comparable to a single 2020 reference
model. As we argued, our corpus shows a strong in-
crease in publication volume during the 1980s with
a steady increase onwards (cf. Bittermann, 2022,
Fig. 14). Other research fields might show a dif-
ferent pattern in publication activity over the years,
making different parameters necessary. Thus, the
generalizability of the specific model parameters
presented might be limited, but our framework and
model selection procedure can give guidance to
find the best parameters for an application to other
corpora of scholarly documents.

The transfer of the framework to other domains
requires the major manual effort for the initial
preparation of the model. During the routine up-
dates there is some monitoring effort (e.g., whether
new subtopics have emerged, whether topics have
strongly mutated), which can be kept to a mini-
mum by automated procedures. Optimal model
parameters (in particular K, init, memory) for
other domains will depend on the publication vol-
ume over time, the desired update intervals and the
topical variety of the modeled texts. With our pro-
posed procedure for finding the optimal parameters
(cf. Sect. 3.3.3 and Table 1), the resulting manual
effort can also be kept to a minimum.

5.3 Conclusion

Taken together, RollingLDA is a suitable method
for an ongoing monitoring of scientific topics. It is
capable of reducing information overload by sum-
marizing a plethora of publications by means of
their main topics. A major benefit of the presented
framework is the high degree of automation once
the initial model is created. Updates can be pro-
duced efficiently and thus timely with regard to
runtime and manual effort. Importantly, the model
integrates new publications while keeping time se-
ries of topic trends consistent. This, in contrast to
standard LDA methods, can help various stakehold-
ers like researchers or policy makers to evaluate
how fields of research evolve over time. The pre-
sented topic app makes these insights easily acces-
sible.

Acknowledgements

The present study is partly supported by the
Dortmund Center for data-based Media Analysis
(DoCMA) at TU Dortmund University.

References
Hesam Amoualian, Marianne Clausel, Eric Gaussier,

and Massih-Reza Amini. 2016. Streaming-LDA: A
copula-based approach to modeling topic dependen-
cies in document streams. In Proceedings of the 22nd
SIGKDD-Conference, pages 695–704. ACM.

Iana Atanassova, Marc Bertin, and Philipp Mayr. 2019.
Editorial: Mining scientific papers: NLP-enhanced
bibliometrics. Frontiers in Research Metrics and
Analytics, 4(2).

Shir Aviv-Reuven and Ariel Rosenfeld. 2021. Publi-
cation patterns’ changes due to the COVID-19 pan-
demic: a longitudinal and short-term scientometric
analysis. Scientometrics, 126:6761–6784.

André Bittermann. 2019. Development of a user-
friendly app for exploring and analyzing research
topics in psychology. In Proceedings of the 17th
Conference of the International Society for Sciento-
metrics and Informetrics, pages 2634–2635. Edizioni
Efesto.

André Bittermann. 2022. Publikationstrends der Psy-
chologie zu Themen gesellschaftlicher und fachlicher
Relevanz: Juni 2022. ZPID Science Information On-
line, 22(2).

André Bittermann and Andreas Fischer. 2018. How to
identify hot topics in psychology using topic model-
ing. Zeitschrift für Psychologie, 226(1):3–13.

André Bittermann and Eva Maria Klos. 2019a. Code
zu: “Ist die psychologische Forschung durchlässig
für aktuelle gesellschaftliche Themen? Eine szien-
tometrische Analyse am Beispiel Flucht und Migra-
tion mithilfe von Topic Modeling”. PsychArchives.

André Bittermann and Eva Maria Klos. 2019b. Ist die
psychologische Forschung durchlässig für aktuelle
gesellschaftliche Themen? Psychologische Rund-
schau, 70(4):239–249.

Bo-Christer Björk and David Solomon. 2013. The
publishing delay in scholarly peer-reviewed journals.
Journal of Informetrics, 7(4):914–923.

David M. Blei. 2012. Probabilistic Topic Models. Com-
munications of the ACM, 55(4):77–84.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Lutz Bornmann, Robin Haunschild, and Rüdiger Mutz.
2021. Growth rates of modern science: a latent
piecewise growth curve approach to model publi-
cation numbers from established and new literature
databases. Humanities and Social Sciences Commu-
nications, 8(224).

Tanja Burgard, Michael Bosnjak, and Robert
Studtrucker. 2022. Psychopen cama: Publication of
community-augmented meta-analyses in psychology.
Research Synthesis Methods, 13(1):134–143.

16



Jonathan Chang, Jordan Boyd-Graber, Sean Gerrish,
Chong Wang, and David M. Blei. 2009. Reading tea
leaves: How humans interpret topic models. In NIPS:
Advances in Neural Information Processing Systems,
volume 22, pages 288–296. Curran Associates Inc.

Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert,
Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan
McPherson, Alan Dipert, and Barbara Borges. 2021.
shiny: Web Application Framework for R. R package
version 1.7.1.

Alexander Christ, Marcus Penthin, and Stephan Kröner.
2019. Research general stop words for: Big data
and digital aesthetic, arts and cultural education: Hot
spots of current quantitative research. PsychArchives.

Giovanni Colavizza, Rodrigo Costas, Vincent A. Traag,
Nees Jan van Eck, Thed van Leeuwen, and Ludo
Waltman. 2021. A scientometric overview of CORD-
19. PLOS ONE, 16.

Caitlin Doogan and Wray Buntine. 2021. Topic model
or topic twaddle? re-evaluating semantic inter-
pretability measures. In Proceedings of the 2021
NAACL-Conference, pages 3824–3848. ACL.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of NLP leaderboards.
In Proceedings of the 2020 EMNLP-Conference,
pages 4846–4853. ACL.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228–5235.

Martin Hilbert and Priscila López. 2011. The world’s
technological capacity to store, communicate, and
compute information. Science, 332(6025):60–65.

Alexander Hoyle, Pranav Goel, Andrew Hian-Cheong,
Denis Peskov, Jordan Lee Boyd-Graber, and Philip
Resnik. 2021. Is automated topic model evaluation
broken? The incoherence of coherence. In NeurIPS:
Advances in Neural Information Processing Systems.

John P. A. Ioannidis, Maia Salholz-Hillel, Kevin W.
Boyack, and Jeroen Baas. 2021. The rapid, mas-
sive growth of COVID-19 authors in the scientific
literature. Royal Society open science, 8(9).

Günter Krampen. 2016. Scientometric trend analyses
of publications on the history of psychology: Is psy-
chology becoming an unhistorical science? Sciento-
metrics, 106:1217–1238.

Daniel Maier, Andreas Niekler, Gregor Wiedemann, and
Daniela Stoltenberg. 2020. How document sampling
and vocabulary pruning affect the results of topic
models. Computational Communication Research,
2(2).

Daniel Maier, A. Waldherr, P. Miltner, G. Wiedemann,
A. Niekler, A. Keinert, B. Pfetsch, G. Heyer, U. Re-
ber, T. Häussler, H. Schmid-Petri, and S. Adam. 2018.

Applying LDA topic modeling in communication re-
search: Toward a valid and reliable methodology.
Communication Methods and Measures, 12(2-3):93–
118.

David Mimno, Hanna M. Wallach, Jason Naradowsky,
David A. Smith, and Andrew McCallum. 2009.
Polylingual topic models. In Proceedings of the 2009
EMNLP-Conference, pages 880–889. ACL.

David Mimno, Hanna M. Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011. Op-
timizing Semantic Coherence in Topic Models. In
Proceedings of the 2011 EMNLP-Conference, pages
262–272. ACL.

Robert A. Muenchen. 2019. The popularity of data
science software [blog post]. Accessed 2022-07-04.

Andreas Niekler and Patrick Jähnichen. 2012. Match-
ing results of latent Dirichlet allocation for text. In
Proceedings of ICCM, pages 317–322.

Gabriela C. Nunez-Mir, Basil V. Iannone III, Keeli Cur-
tis, and Songlin Fei. 2015. Evaluating the evolution
of forest restoration research in a changing world: a
“big literature” review. New Forests, 46:669–682.

Kevin M. Quinn, Burt L. Monroe, Michael Colaresi,
Michael H. Crespin, and Dragomir R. Radev. 2010.
How to analyze political attention with minimal as-
sumptions and costs. American Journal of Political
Science, 54(1):209–228.

R Core Team. 2022. R: A Language and Environment
for Statistical Computing. R Foundation for Statisti-
cal Computing, Vienna, Austria.

Jonas Rieger, Carsten Jentsch, and Jörg Rahnenführer.
2021. RollingLDA: An update algorithm of latent
Dirichlet allocation to construct consistent time series
from textual data. In Findings Proceedings of the
2021 EMNLP-Conference, pages 2337–2347. ACL.

Jonas Rieger, Carsten Jentsch, and Jörg Rahnenführer.
2022a. LDAPrototype: A model selection algorithm
to improve reliability of latent Dirichlet allocation.
Preprint available at Research Square.

Jonas Rieger, Kai-Robin Lange, Jonathan Flossdorf, and
Carsten Jentsch. 2022b. Dynamic change detection
in topics based on rolling LDAs. In Proceedings of
the Text2Story’22 Workshop, volume 3117 of CEUR-
WS, pages 5–13.

Margaret E. Roberts, Brandon M. Stewart, Dustin
Tingley, Christopher Lucas, Jetson Leder-Luis,
Shana Kushner Gadarian, Bethany Albertson, and
David G. Rand. 2014. Structural topic models for
open-ended survey responses. American Journal of
Political Science, 58(4):1064–1082.

Carson Sievert and Kenneth Shirley. 2014. LDAvis: A
method for visualizing and interpreting topics. In
Proceedings of the Workshop on Interactive Lan-
guage Learning, Visualization, and Interfaces, pages
63–70. ACL.

17



Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
ACL-Conference, pages 3645–3650. ACL.

Arho Suominen and Hannes Toivanen. 2016. Map of
science with topic modeling: Comparison of unsu-
pervised learning and human-assigned subject classi-
fication. Journal of the Association for Information
Science and Technology, 67(10):2464–2476.

Lisa Gallagher Tuleya, editor. 2007. Thesaurus of psy-
chological index terms, 11th edition. American Psy-
chological Association.
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Abstract

Recently introduced transformer-based article
encoders (TAEs) designed to produce similar
vector representations for mutually related sci-
entific articles have demonstrated strong per-
formance on benchmark datasets for scientific
article recommendation. However, the exist-
ing benchmark datasets are predominantly fo-
cused on single domains and, in some cases,
contain easy negatives in small candidate pools.
Evaluating representations on such benchmarks
might obscure the realistic performance of
TAEs in setups with thousands of articles in
candidate pools. In this work, we evaluate
TAEs on large benchmarks with more challeng-
ing candidate pools. We compare the perfor-
mance of TAEs with a lexical retrieval baseline
model BM25 on the task of citation recom-
mendation, where the model produces a list
of recommendations for citing in a given in-
put article. We find out that BM25 is still
very competitive with the state-of-the-art neu-
ral retrievers, a finding which is surprising
given the strong performance of TAEs on small
benchmarks. As a remedy for the limita-
tions of the existing benchmarks, we propose
a new benchmark dataset for evaluating sci-
entific article representations: Multi-Domain
Citation Recommendation dataset (MDCR),
which covers different scientific fields and con-
tains challenging candidate pools.

1 Introduction

The introduction of large pre-trained language mod-
els (LMs) (Devlin et al., 2019; Radford et al., 2019;
Lewis et al., 2020; Raffel et al., 2020) based on
the transformer architecture (Vaswani et al., 2017)
has improved performance on numerous NLP tasks.
The adaptation of LMs to scientific corpora (Belt-
agy et al., 2019; Luu et al., 2021; Gupta et al., 2022;
Lee et al., 2020) laid the foundation for applying
transformer-based LMs to various scholarly docu-
ment processing (SDP) tasks, such as named-entity
recognition (Naseem et al., 2020), article summa-

rization (Cai et al., 2022), scientific fact-checking
(Wadden et al., 2020), describing relationships be-
tween articles (Luu et al., 2021), and citation rec-
ommendation (CR) (Nogueira et al., 2020; Gu et al.,
2022), among others.

While some of the SDP tasks rely on word- or
sentence-level representations, others, such as CR
and article summarization, require document-level
representations. To obtain such representations, re-
cent work has proposed various transformer-based
article encoders (TAEs), i.e., LMs that are finetuned
using citation or co-citation information as a train-
ing signal, such as SPECTER (Cohan et al., 2020),
ASPIRE (Mysore et al., 2021a), and SciNCL (Os-
tendorff et al., 2022). Representations obtained
with these models can then be used in various
downstream recommendation tasks where a user
searches for articles that are in some way relevant
to a given query article.

To date, article representations obtained with
TAEs have been evaluated against recommenda-
tion benchmarks such as SCIDOCS (Cohan et al.,
2020), RELISH, (Brown et al., 2019) or TREC-
COVID (Voorhees et al., 2021). While SCIDOCS

focuses mainly on the field of computer science,
RELISH and TRECCOVID cover articles from the
biomedical field. These benchmarks contain a set
of query articles, where each query is paired with
a candidate pool consisting of both relevant and
irrelevant articles for that query. The difference be-
tween the benchmarks, apart from the domains they
cover, is how the candidate pools are constructed:
RELISH and TRECCOVID contain expert-annotated
relevance labels for each candidate in a pool, while
SCIDOCS uses random sampling of negative can-
didates for pool construction. However, they all
contain relatively small candidate pools (e.g., 25
in SCIDOCS). Such small and, in some cases, ran-
domly sampled candidate pools do not resemble
typical use-case scenarios in which query articles
are compared to millions of candidate articles from
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public databases. Thus, evaluating TAEs on such
benchmarks can lead to an overly optimistic per-
formance estimation as the candidate pool does not
constitute a representative sample of the population
of candidate articles in realistic use cases.

In this work, we turn to a more realistic evalua-
tion of TAEs and evaluate them on large (≥200k)
candidate pools and across different scientific fields.
Although emulating such a realistic setup has so far
been avoided due to the prohibitive computational
cost of nearest neighbor search on millions of em-
beddings, research on GPU-based nearest neighbor
(NN) search (Johnson et al., 2019) has given rise to
efficient techniques that enable embedding-based
search in large-scale setups. To make use of fast
NN search, we focus on the bi-encoder models
(Lin et al., 2021), that can be easily coupled with
fast GPU-based NN search. We evaluate TAEs
on the task of CR, in which a model outputs a
list of articles as recommendations for citing in a
given article. Alongside TAEs, we evaluate the tra-
ditional lexical retrieval model BM25 (Robertson
and Walker, 1994), which, in spite of its simplic-
ity, still stands as a hard-to-beat baseline in many
retrieval tasks. Our evaluation shows that BM25
performs on par with TAEs in this setup, especially
as candidate pools grow.

Building on the results of our large-scale evalua-
tion of TAEs, we then construct a new benchmark
dataset for evaluating scientific article representa-
tions on the task of CR. Our Multi-Domain CR-
based benchmark dataset (MDCR), albeit compara-
ble in size to previous benchmarks, spans different
scientific fields and consists of challenging can-
didate pools. More precisely, candidate pools in
MDCR contain different candidate types, ranging
from those obtained from the large-scale evalua-
tion of state-of-the-art TAEs to candidates from the
citation graph neighborhood.

To summarize, the contribution of our work is
twofold: (1) we conduct a large-scale evaluation of
state-of-the-art TAEs on pools of varying sizes, and
(2) present a new and challenging multi-domain
benchmark dataset for evaluating scientific arti-
cle representations that contains challenging candi-
dates identified in the large-scale evaluation.1

The rest of the paper is organized as follows.
In Section 2, we describe the models we evaluate
and give an overview of the existing benchmarks

1Our code, the data splits and the new benchmark data are
publicly available at the following link: https://github.
com/zoranmedic/mdcr.

for scientific article recommendation. Section 3
presents the results of a large-scale evaluation of
TAEs and BM25 in two evaluation setups. In Sec-
tion 4 we describe the construction of a new and
more challenging multi-domain benchmark and
present the initial results for the models we consid-
ered. Section 5 concludes the paper and proposes
future work.

2 Models and Benchmarks

2.1 Transformer-based Article Encoders

As a baseline TAE, we consider SCIBERT (Belt-
agy et al., 2019), a variant of BERT (Devlin et al.,
2019), trained on a corpus of scientific articles with
masked language modeling objective. Next, we
include SPECTER (Cohan et al., 2020), a SCIB-
ERT-based TAE trained with a contrastive learning
objective that minimizes the L2 distance between
embeddings of citing-cited article pairs. Further,
we consider SCINCL (Ostendorff et al., 2022),
another SCIBERT-based TAE that uses citation
graph embeddings for a more informative selection
of negative examples with the same contrastive
learning objective as SPECTER. Finally, we also
evaluate ASPIRE (Mysore et al., 2021a), a TAE
that uses a co-citation signal to make sentence em-
beddings of co-cited articles similar.

Among these four TAEs, only SCIBERT is
trained without any inter-article (i.e., citation or
co-citation) training signal. We thus consider it as
a baseline to investigate how well LMs pre-trained
on domain’s corpora can be used in retrieval sce-
narios without any finetuning. On the other hand,
the rest of the TAEs differ both in the type of inter-
article training signal used (co-citation for ASPIRE

vs. citation for SPECTER and SCINCL) and in the
granularity of representation used for article match-
ing (sentence embeddings for ASPIRE vs. docu-
ment embeddings for SPECTER and SCINCL). All
the considered TAEs are bi-encoders (Lin et al.,
2021), i.e., they produce dense representations of a
single input article, which allows them to be easily
employed in large-scale setups when coupled with
fast nearest neighbor search methods. The alterna-
tive are the cross-encoders, which take two concate-
nated articles as the input and output the relevance
matching score. Although the cross-encoders often
outperform bi-encoders, we do not consider them
here as they are not compatible with nearest neigh-
bor search methods and therefore not suitable for
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large-scale retrieval. 2

All the considered TAEs produce scientific ar-
ticle representations using the article’s title and
abstract as input. Since the title and abstract serve
as a condensed overview of an article, it is clear
that not all possible relationships between a pair of
articles can be detected using such input only. How-
ever, we consider the title and abstract a reliable
proxy for otherwise complex and computationally
expensive processing of the whole article’s content.

2.2 Existing Benchmarks

Scientific article recommendation benchmarks that
TAEs were evaluated on so far were designed for
domain-specific retrieval evaluation across small-
sized and, in some cases, randomly sampled can-
didate pools. Each benchmark consists of a set of
queries, where each query (title and abstract or a
free-form text) is paired with a corresponding can-
didate pool, i.e., a set of query-relevant (positive)
and query-irrelevant (negative candidates) articles.
We review the most commonly used benchmarks
below.

SCIDOCS (Cohan et al., 2020): A collection of
datasets for the evaluation of classification and
retrieval tasks that use abstract-level article
representations. In retrieval tasks, each query
article is paired with a candidate pool of 5
positive and 25 randomly sampled negative
candidates.

RELISH (Brown et al., 2019): A collection of
query and candidate articles expert-annotated
for relevance. Query articles are from the field
of biomedicine, each paired with a set of 60
candidates.

TRECCOVID (Voorhees et al., 2021): A TREC-
style benchmark consisting of various queries
related to COVID-19. Each query is paired
with around 300 candidate articles annotated
for relevance by medical experts.

CSFCUBE (Mysore et al., 2021b): An expert-
annotated dataset of 50 computer science ar-
ticles annotated at sentence-level for aspect-
based relevance with candidate articles. The
average candidate pool size is 125.

2We thus only consider TS-ASPIRE model in our work and
leave out OT-ASPIRE, a variant that uses optimal transport
over sentence embeddings, whose computational complexity
prohibits its use in large-scale retrieval scenarios.

Three of these benchmarks (RELISH, TREC-
COVID, CSFCUBE) are single-domain by design,
while SCIDOCS is constructed with queries from
different scientific fields. However, the majority of
SCIDOCS queries (over 70%) come from a single
domain (computer science), making it a predomi-
nantly computer science-oriented benchmark.

Existing benchmarks also differ in how the can-
didate pools in each of them were constructed.
While RELISH, TRECCOVID, and CSFCUBE con-
tain expert-annotated candidate pools, meaning that
field experts annotated the relevance of each can-
didate to the query, candidate pools for retrieval
tasks in SCIDOCS are made of negative candidates
randomly sampled from a set of articles that are
not related to the query. For example, in the case
of the “Cite” task in SCIDOCS, each query article
is paired with a pool of 5 articles cited in the query,
and 25 negative candidates are randomly sampled
from a held-out set of articles not cited in the query
article. An obvious advantage of random candidate
pools over expert-annotated pools is that they are
less expensive to construct. However, a downside
is that random candidate pools might contain many
candidates that are entirely unrelated to the query
and lead to overly optimistic performance estimates
that are not representative of realistic large-scale
retrieval scenarios.

3 Large-Scale Evaluation

We performed the large-scale evaluation in two se-
tups: dataset- and field-level. Dataset-level evalua-
tion resembles a basic evaluation setup – a random
sampling of both queries and articles in the can-
didate pool. The field-level evaluation focuses on
specific scientific fields using queries and candidate
pools comprised of articles from specific fields.

In both setups, we evaluated the chosen mod-
els on the task of global CR, in which a model is
trained to produce a list of articles as recommenda-
tions for citing in a given query article. Although
CR is not the only task on which TAEs can be
evaluated, it is arguably the most accessible among
the article retrieving tasks. Whereas other tasks
(e.g., user activity tasks) might require data that
is typically not publicly available (e.g., search en-
gine logs), CR datasets are easily obtained through
parsing reference lists of publicly available articles.
Previous research on global CR has proposed many
features that could be used to represent the input
articles (Bhagavatula et al., 2018; Ali et al., 2021).
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However, in this work, we only use the article’s
title and abstract as input, as our focus is not on im-
proving the state-of-the-art in global CR but rather
on evaluating the TAE-produced article representa-
tions in a retrieval scenario. For a detailed overview
of the various tasks and methods in CR, we refer
the reader to (Medić and Šnajder, 2020).

For each TAE that we consider, the input was
constructed by concatenating the input article’s ti-
tle and abstract (separated with a [SEP] token).
For SCIBERT, SPECTER, and SCINCL, we used
the final layer’s [CLS] token embedding as input
article’s representation, while for ASPIRE we mean-
pooled token embeddings across all layers for each
sentence in the input. We used HuggingFace’s3 im-
plementations of TAEs, while for BM25 we used
Lucene’s implementation, i.e., its Python toolkit
pyserini.4 For nearest neighbor search across
article embeddings, we used Faiss (Johnson et al.,
2019).5

We used the S2ORC dataset (Lo et al., 2020)
in all our experiments. S2ORC is a recently re-
leased large dataset of 81.1M scientific articles cov-
ering dozens of scientific fields. Together with the
metadata and article’s title and abstract, the dataset
contains citation links between the articles. There-
fore, we consider it appropriate for the large-scale
evaluation, not just due to its size and coverage
but recency as well. We perform initial filtering of
articles and remove all those with (1) empty publi-
cation year field, (2) empty title field, (3) abstract
shorter than 30 characters, or (4) less than three
citations in S2ORC. This filtering leaves us with a
prefiltered set of around 16M articles that we use
for both sampling of queries and candidate pool
construction in both evaluation setups.

For both evaluation setups, we report the stan-
dard metrics used in prior work on scientific article
recommendation: MAP, NDCG, and R@30. We
set k in R@k to 30, since on average there are 29
positives (cited articles) for each query in the query
set. All metrics range from 0 to 1, where higher
is better. Although defined differently, all the met-
rics yield higher values when relevant articles are
positioned higher in the list of retrieved articles.

3https://github.com/huggingface/
transformers

4https://github.com/castorini/pyserini
5https://github.com/facebookresearch/

faiss

3.1 Dataset-level

We start by describing the dataset-level setup in
which we evaluated how TAEs perform when asked
to provide recommendations over a large candidate
pool for random queries from S2ORC.

First, we sampled a random set of 3800 query
articles6 from the prefiltered set of articles. We left
out the query articles used in the training sets of
SPECTER and SCINCL.7 Next, we sampled candi-
date pools of various sizes: 200k, 500k, 1M, and
2M. Each candidate pool contained all the articles
cited in the query articles, while the remaining
candidates were randomly sampled from the pre-
filtered set. To make the setup more realistic, we
considered the publication years of both query and
candidate articles: queries were sampled from the
articles published in 2019, while candidate articles’
year of publication was 2019 or earlier. Year-based
sampling ensures that no article published after
the query article can be recommended for citing
in that article. Although such year-based sampling
still allows for the articles published after the cit-
ing (later in 2019) to be included as candidates, it
reduces such possibility compared to other bench-
marks (e.g., SCIDOCS) that do not account for it.8

For each candidate pool size, we repeat the pool
sampling procedure three times and report the mean
values of the metrics.

Dataset-level results are given in Table 1. We
retrieved the top 500 ranked candidates for each
model and reported MAP, NDCG, and recall at 30
averaged over three runs for each pool size. For
ASPIRE, we used its “BioMed” variant, i.e., the one
trained on articles from the biomedicine field.9 We
optimized BM25’s parameters b and k1 on separate
validation sets constructed in the same way as test
sets. A detailed description of the BM25 formula
and the role of the two parameters is given in the
Appendix A.

We observe that the best performing model on
the pool sizes of 200k and 500k is SCINCL, with

6In field-level setup, we sampled 200 queries for each of
the 19 MAG fields. To keep the total number of queries the
same over both setups, we sampled 3800 total queries in the
dataset-level setup as well.

7At the time of writing, ASPIRE’s training set was not
publicly available, so we did not account for that overlap.

8Since S2ORC only provides publication years (and not
the dates) for articles it contains, filtering can at most be
year-based. Additionally, excluding from the candidate pools
articles that were published in the same year as the citing
would considerably reduce the pool size in some fields.

9The other available ASPIRE model, trained on computer
science articles, obtained worse results.
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Pool sizes → 200k 500k 1M 2M

Models ↓ MAP NDCG R@30 MAP NDCG R@30 MAP NDCG R@30 MAP NDCG R@30

BM25 40.4 73.8 43.0 32.8 68.9 36.4 27.4 64.9 31.6 22.5 60.8 26.9
SCIBERT 5.5 40.3 5.6 4.6 38.5 3.9 4.1 37.3 3.0 3.8 36.5 2.2
SPECTER 37.4 72.0 40.9 29.5 66.5 33.9 24.1 62.1 28.7 19.2 57.8 23.8
SCINCL 42.5 75.2 45.2 33.4 69.3 37.6 27.1 64.6 31.9 21.6 60.0 26.5
ASPIRE-BM 41.4 74.7 43.3 32.6 68.9 35.9 25.7 63.5 30.5 20.4 59.0 25.2

Table 1: Results on different pool sizes in the dataset-level setup for BM25 and three considered TAEs. Values in
bold indicate the best-performing model for a combination of pool size and metric.

ASPIRE and BM25 not far behind. However, with
larger pool sizes of 1M and 2M, BM25 performs
better than TAEs for most metrics (except R@30 in
the 1M pool, where SCINCL outperforms BM25).
Given the slight difference in performance between
BM25 and SCINCL, our results demonstrate that
traditional lexical retrieval is still very competitive
in large-scale retrieval scenarios. These results are
in line with those of (Reimers and Gurevych, 2021),
who also compared the performance of sparse and
dense retrieval models on varying pool sizes and
found that the performance of the dense retrieval
models decreases quicker for the increasing pool
sizes compared to sparse methods. Looking at dif-
ferences between TAEs, the results show clear ben-
efits of finetuning TAEs with inter-article training
signal – both SPECTER and SCINCL outperform
SCIBERT.

We also observed a significant drop in perfor-
mance for all the evaluated TAEs compared to their
performance on the “Cite” task in SCIDOCS (re-
sults on SCIDOCS are given in Appendix A). For
example, MAP for SCIBERT in the “Cite” task of
SCIDOCS was 48.3 (Cohan et al., 2020), while in
a large-scale setup, it ranges from 5.5 in the case
of 200k pool size to 3.8 with a 2M pool size. This
difference supports our hypothesis that small-scale
evaluation is not indicative of the performance of
a model in a realistic, large-scale setup. However,
our large-scale evaluation results are consistent
with some other findings from the evaluation on
SCIDOCS, as reported in (Ostendorff et al., 2022):
SCINCL’s careful sampling of negatives for the
training set leads to a clear improvement in re-
trieval performance, with SCINCL outperforming
SPECTER for all candidate pool sizes.

3.2 Field-level

In the field-level evaluation, we evaluate TAEs on
a set of queries and candidate pools from specific
scientific fields. Such an evaluation setup resem-

bles a more realistic and also more challenging
large-scale retrieval scenario: in a real-world ap-
plication, given a query article as input, a retrieval
model is expected to detect the query article’s field
and narrow the candidate pool to articles from that
field.

To determine the article’s field, we used Mi-
crosoft Academic Graph (MAG) labels provided in
S2ORC. We sampled 200 query articles for each
of the 19 distinct MAG fields from S2ORC. As in
the dataset-level setup, we used year-based splits
and sample query articles published in 2019. Next,
for each scientific field, we constructed a candidate
pool of size 100k that contains all the articles cited
in the query articles alongside field-specific nega-
tive candidates. To obtain field-specific negative
candidates, we randomly sampled the remaining
pool articles (up to 100k) from a set of field-cited
articles, i.e., a set of articles cited in all S2ORC
articles labeled with a specific MAG field. For ex-
ample, when sampling negative candidates for the
Medicine field, we first filtered all articles labeled
with Medicine in their S2ORC’s MAG field. We
then went through all the articles that they cite and
included those in the newly created set of field-cited
articles, from which we then sampled negative can-
didates. As in dataset-level evaluation, we repeat
the candidate sampling procedure three times for all
the fields where the field-cited article set is larger
than 100k (all except Art, History, and Philosophy)
and report the mean values of the metrics.

Field-level results in terms of MAP are shown in
Table 2 (the NDCG and R@30 results are included
in Appendix A; the best performing models are
the same in all cases except R@30 for the Bio
field). As with dataset-level evaluation, we retrieve
the top 500 candidates and report results on these
sets. In this setup, we also include ASPIRE-CS,
i.e., ASPIRE variant trained on computer science
articles.

BM25 achieves the highest mean MAP across
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Art Bio Bus Ch CS Eco Eng ES Geog Geol His MS Mat Med Phi Phy PS Psy Soc AVG

BM25 36.1 44.3 21.2 42.6 35.6 26.4 34.2 27.5 29.2 32.1 32.8 34.9 35.6 46.3 25.0 35.8 21.2 31.9 17.7 32.1
SCIBERT 6.2 6.7 3.2 6.7 4.2 4.7 4.6 4.8 4.8 4.7 5.3 4.4 4.9 5.4 3.5 5.5 2.8 5.0 3.0 4.8
SPECTER 25.1 37.0 18.0 35.4 33.7 22.6 28.5 22.6 20.1 20.3 17.4 29.0 31.5 48.6 16.2 27.5 14.4 32.0 14.3 26.0
SCINCL 26.9 42.2 18.7 39.6 37.8 23.4 31.5 25.5 23.7 22.7 20.7 30.9 33.5 52.4 18.7 31.4 16.5 34.1 15.7 28.7
ASPIRE-BM 26.8 44.7 19.3 39.9 35.3 24.3 29.7 24.5 23.3 22.9 20.1 29.8 33.1 52.1 17.2 30.0 15.9 33.1 14.3 28.2
ASPIRE-CS 25.8 37.1 20.0 34.9 35.8 23.5 30.2 21.9 21.7 20.1 18.4 27.5 34.2 46.5 17.1 29.0 15.3 32.7 15.7 26.7

Table 2: Results in terms of MAP in the “field-level” evaluation setup. Values in bold indicate the best performing
model per field. Table with field-abbreviation mapping is given in Table 5 in Appendix A.

all fields, again demonstrating the robust perfor-
mance of lexical retrieval. SCINCL performs
close to BM25, performing best on CS, Med, and
Psy fields. While SCINCL’s strong performance
in CS and Med fields could be explained by a
high percentage of SCINCL training queries from
those fields (∼16% and ∼25.3% of SCINCL train
queries come from Med and CS fields, respec-
tively), a high MAP value in Psy field is unex-
pected given the small percentage of Psy queries
in SCINCL’s train set (∼4.1%). Analyzing per-
formance across fields, models perform quite well
in some fields (e.g., Med and Bio) and worse in
others (e.g., Soc, Bus, PS). Regarding these dif-
ferences, we note that training sets of most of the
TAEs (SPECTER, SCINCL, ASPIRE-BM) have a
highly skewed distribution toward Med, Bio, and
CS fields. However, another possible explanation
might be the different levels of interdisciplinarity
in particular fields, which could lead to a richer
vocabulary than in mono-disciplinary fields. We
leave the investigation of the performance across
fields for future work.

Comparing TAEs between each other sup-
ports our dataset-level results: SCINCL performs
slightly better than ASPIRE (BM), but both outper-
form SPECTER, which in turn surpasses SCIBERT.
Just as in dataset-level evaluation, this ordering
is expected given the differences in the training
objectives and the training signal used. When com-
paring different TAEs across fields, we observe that
ASPIRE performs especially well in the fields on
which it was originally trained: ASPIRE-BM out-
performed other TAEs in Bio and Ch fields, which
shows that field-specific sentence-level encoders
might be more successful than other TAEs for other
fields as well. Field-level evaluation results also
confirm the need for large-scale evaluation of TAEs
– their performance is again much worse than in
small-scale benchmark evaluation scenarios, such
as SCIDOCS.

To sum up, both of our setups demonstrated (1)
a strong performance of a lexical retrieval model
BM25, which either surpassed (field-level) or per-
formed competitively to TAEs (dataset-level) in
large-scale evaluation scenarios, and (2) a large de-
crease in performance of all the evaluated TAEs
compared to previous small-scale benchmark se-
tups (SCIDOCS). Although we argue that large-
scale evaluation is mandatory for more realistic per-
formance estimates, we also recognize the benefits
of standardized evaluation benchmarks as they en-
able the research community to track the improve-
ment on a task easily. However, even when evalua-
tion is not performed on a large scale, we argue that
to keep the benchmark-obtained performance esti-
mation as realistic as possible, small benchmarks
should contain realistic candidate pools with chal-
lenging negatives. With this in mind, in the next
section, we describe the construction of a small
but more realistic benchmark for evaluating article
representations.

4 Multi-Domain Citation
Recommendation Benchmark

We now present our newly constructed Multi-
Domain Citation Recommendation benchmark –
MDCR. As queries in MDCR, we use the same
200 queries per field as in the field-level evaluation
setup (§3.2). For the candidate pools, we start with
a random sampling of 5 articles cited in the query
article and then select negative candidates.

4.1 Benchmark Construction

To construct challenging candidate pools, we used
four different candidate selection strategies: (1)
model-based, (2) graph neighbors-based, (3) cita-
tion count-based, and (4) random selection. Each
candidate strategy produces different candidate
types that can be used for a more detailed eval-
uation of the model’s performance. We outline the
selection strategies below.
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Model-based selection. This strategy aims to
capture difficult candidates for the models eval-
uated in the large-scale setup. As these candi-
dates are difficult for current models, we expect
at least some of these candidates to be challeng-
ing for some of the future models. Brown et al.
(2019) used a similar method for candidate pool
construction in RELISH, where candidates were se-
lected using three different retrieval models and
then annotated for relevance by the field experts.
In MDCR, we do not provide expert-level annota-
tions for candidates but instead, rely on citations as
proxy signals for relevance.

We started with compiling lists of the top 200
candidates per query obtained with each model on
the candidate pool from the field-level setup. As
we evaluate models that are both trained and used
differently, it is reasonable to expect each model to
have difficulties with different negative candidates.
With this in mind, we intended to select those can-
didates that are difficult for different models. To
determine the degree to which the models’ top can-
didates overlap, we calculated the average Jaccard
index between the highest-ranked negative candi-
dates of different model pairs. The models that
obtained a low average Jaccard index tend to make
different mistakes (i.e., rank different negative can-
didates highly) than other models. We chose the
three models with the lowest average Jaccard index
for selecting negative candidates in this strategy:
BM25, SCINCL, and SPECTER. For each query
and each of the three selected models, we randomly
sampled ten negative candidates from the top 200
highest ranked candidates by the model and added
them to the query’s candidate pool. We call these
candidate types BM25, SPECTER, and SciNCL
for candidates obtained from the respective mod-
els.

Graph neighbors-based selection. Research on
citation-seeking behavior states that scientists of-
ten traverse citation graphs to find articles rele-
vant to their needs (Belter, 2016; Hinde and Spack-
man, 2015). This suggests that challenging articles
should be sampled from the same source, i.e., from
a set of articles that either cite or are cited in the
articles relevant to the query.

To include such candidates in our pools, we
employed the following procedure over the cita-
tion graph. Let q be a query article and OCq =
{c1, ..., cn} a set of articles that are cited in q
(i.e., outgoing citations). For each ci ∈ OCq ,

we constructed corresponding OCci and ICci =
{i1, ..., im} sets, where ij represents an article that
cites ci (i.e., incoming citations). Using such sets,
we calculated the overlap similarity as Oq,ci =
|OCq ∩ (OCci ∪ ICci )|/|OCq |, which represents
the similarity between q’s outgoing citations and
ci’s incoming and outgoing citations. The high
Oq,ci value suggests a considerable overlap in ci-
tation links between q and ci, which indicates that
these articles are highly topically related.

We calculated Oq,ci for all the query articles and
their cited articles. We then sorted the cited arti-
cles by their Oq,ci values, starting from the highest
(highly topically relevant) to the lowest (slightly
topically related). Since we wanted to make our
candidate pool challenging, we started with the
ci that has the highest Oq,ci value and added to
the query’s candidate pool all the articles from its
OCci ∪ ICci set that are not in OCq (i.e., cited in
the query article). We repeated this procedure until
ten negative candidates were added to the pool. We
call this candidate type Graph.

Citation count-based selection. In this selection
strategy, we created a list of the top 200 most cited
articles in each scientific field. We used S2ORC’s
MAG field to detect articles from each field and
sorted them by the citation counts in descending
order. We then randomly sampled ten candidate
articles for each query article based on the query
article’s MAG field and added these articles to the
candidate pool. This type of candidates is called
Most cited.

Random selection. Finally, as a less challenging
and baseline candidate set, we settled for a random
selection strategy, where we randomly sampled
ten candidates from the prefiltered set of S2ORC
articles. We call this candidate type Random.

4.2 Benchmark Size
Overall, MDCR contains 200 queries per each of
the 19 MAG fields, where each query is paired
with a set of 60 negative candidates and five cited
articles, totalling 247,000 query-candidate pairs
that need to be evaluated. Compared to SCIDOCS,
where 1,000 queries are paired with candidate pools
of size 25 (a total of 25,000 query-candidate pairs),
MDCR is almost ten times bigger. While this
growth in size increases the computational com-
plexity when using MDCR compared to other
smaller benchmarks, it arguably makes the results
more realistic. In addition, we also note that since
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MDCR is split across different scientific fields,
models can be evaluated on specific fields only,
which reduces the number of query-candidate pairs
to be evaluated.

4.3 Results
Results of evaluation on MDCR are given in Ta-
ble 3. We report MAP and R@5 (each query is cou-
pled with five positive candidates) across all pairs
of the scientific fields and evaluated the model. We
evaluate the same set of models as in the field-level
large-scale evaluation.

Results demonstrate, yet again, a strong perfor-
mance from BM25, which outperformed all other
models in terms of average metric scores across all
fields. Interestingly, when evaluated on MDCR’s
small-sized pools, the difference in performance be-
tween SCIBERT and other TAEs (e.g., SCINCL)
is smaller than in large-scale evaluation (11.7 in
MAP on MDCR vs. 37 in MAP on dataset-level,
200k pool size). Such a difference in results con-
firms the benefits of evaluating TAEs on larger
pools to obtain more realistic results. Another ob-
servation is a similar average performance between
SCINCL and ASPIRE, despite ASPIRE variants be-
ing trained only on the articles from specific fields
(biomedicine and computer science). As in the
field-level evaluation, competitive results from AS-
PIRE indicate that sentence-level representations
might be able to capture a more informative signal
between related articles than document-level ones.

Although BM25 outperforms other models in
most fields, TAEs obtain the best scores in some
cases when looking at performance in specific
fields. Specifically, ASPIRE-BM is the top-
performing model in the Bio, Med, and Soc fields
(and Psy in MAP value), which is not surprising as
it was trained on articles from the biomedicine field.
Similar goes for ASPIRE-CS and its performance
in the Mat field, although it does not yield the best
results in the field it was trained on (CS). However,
when analyzing ASPIRE’s performance, it is worth
noting that we did not account for the overlap of
ASPIRE training queries with our new benchmark
since ASPIRE’s training set was not publicly avail-
able at the time of writing. For this reason, the
results of both ASPIRE variants might be too opti-
mistic if the train-test overlap is significant.

4.4 Performance across Candidate Types
To analyze the difficulty of candidate types that
we introduced in §4.1, we evaluate the models on

subsets of candidate pools consisting of 5 cited
articles and all negative candidates from specific
candidate type. Evaluation across candidate types
allows us to analyze how difficult each candidate
type is for each model. As the candidates obtained
via model-based selection are chosen precisely be-
cause they were difficult for the particular models,
we do expect these models to not perform well on
such candidates. However, such evaluation can re-
veal interesting insights into the differences across
the evaluated models, e.g., whether the same candi-
date types are difficult for all neural-based models.

Results of this evaluation are presented in Ta-
ble 4. Unsurprisingly, Random candidates are the
easiest candidate type for all the evaluated mod-
els. Candidates from the Most cited type are
also relatively easy for the models, with on average
>90 score in MAP. On average, the most chal-
lenging candidate type is the Graph candidates
subset, with an average MAP score of 55.9. Inter-
estingly, the best-performing model on the Graph
candidates subset is SCINCL, which explicitly uses
citation graph embeddings in selecting training ex-
amples. Such a training strategy seems to help the
model distinguish between relevant and irrelevant
graph neighbors.

The performance on the candidate types obtained
with the model-based selection strategy differs be-
tween TAEs and BM25, which is somewhat ex-
pected given the difference between neural (TAEs)
and non-neural (BM25) models. As expected,
negative candidates from the BM25 type are the
most difficult for BM25 itself since those were
sampled from a set of top candidates provided by
BM25. On the other hand, TAEs (SCIBERT ex-
cluded) all perform similarly well on the BM25
candidate type. Likewise, SPECTER and SciNCL
candidates are the most difficult for SPECTER and
SCINCL, respectively, while BM25 performs bet-
ter than TAEs on these candidate types. It is in-
teresting to note the difference in the performance
of SCINCL on SPECTER candidates compared to
the performance of SPECTER on SciNCL candi-
dates. While SCINCL outperforms SPECTER on
SPECTER candidates with more the 10 points in
the absolute value (for both metrics), SPECTER

improves over SCINCL on SciNCL candidates
with only 3.7 absolute points. These results again
confirm that the way in which negative candidates
are sampled when training the models with the
contrastive learning objective is important. As for
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Models → BM25 SCIBERT SPECTER SCINCL ASPIRE-BM ASPIRE-CS

Fields ↓ MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5

Art 38.2 32.3 22.4 16.6 34.1 28.8 34.7 29.2 34.0 27.7 34.1 28.0
Bio 38.3 33.6 20.4 14.0 34.6 30.0 36.8 32.3 38.7 33.7 35.7 29.9
Bus 28.1 22.5 19.1 13.1 27.5 21.8 28.5 24.6 28.5 23.4 29.6 23.1
Ch 38.0 32.6 20.0 13.7 33.7 29.3 36.5 31.5 36.5 31.0 34.1 28.3
CS 34.8 30.5 19.5 12.7 35.6 30.4 37.2 32.2 35.4 30.4 35.4 30.1
Eco 30.5 26.0 21.4 15.4 27.3 21.9 28.3 23.2 29.3 24.3 28.0 22.7
Eng 34.6 29.3 20.5 13.9 31.3 27.3 34.2 28.0 32.7 27.7 33.4 28.1
ES 31.6 26.2 21.3 15.1 30.1 24.2 31.5 25.5 30.8 24.7 29.9 23.7
Geog 31.8 27.8 21.9 16.7 26.4 22.2 29.5 23.8 30.3 26.0 28.4 22.2
Geol 33.1 28.0 19.5 13.9 24.8 20.1 25.7 19.9 28.5 23.5 25.8 21.4
His 38.1 32.9 20.8 15.2 27.1 20.6 30.9 23.9 31.0 24.2 28.5 22.1
MS 36.1 30.7 22.1 15.5 34.1 28.2 35.8 29.6 35.8 29.8 34.0 29.2
Mat 35.3 28.3 22.8 18.3 34.2 28.9 34.9 30.1 36.2 31.0 36.9 32.2
Med 38.6 32.5 22.0 16.4 41.4 36.3 42.7 36.5 44.0 37.8 41.7 36.7
Phi 30.2 25.7 19.2 13.3 27.1 21.1 29.9 23.5 28.7 24.1 29.1 23.3
Phy 35.1 30.2 23.9 18.1 30.8 26.3 34.5 30.3 32.9 27.7 32.9 28.7
PS 28.6 23.1 19.4 14.0 24.2 18.0 26.4 21.7 25.9 21.2 26.8 21.7
Psy 32.5 28.9 20.3 16.2 32.3 28.1 34.2 30.5 34.3 29.4 34.2 28.3
Soc 26.8 20.5 20.2 15.8 25.2 20.5 26.7 21.9 27.3 22.2 26.7 22.2

AVG 33.7 28.5 20.9 15.2 30.6 25.5 32.6 27.3 32.7 27.4 31.8 26.4

Table 3: Results in terms of MAP and R@5 on MDCR. Values in bold indicate the best performing model for a
combination of field and metric.

Candidate types → BM25 SPECTER SciNCL Graph Most cited Random

Models ↓ MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5 MAP R@5

BM25 52.2 39.0 68.8 57.5 68.0 56.9 58.0 46.7 90.3 82.2 93.0 86.3
SCIBERT 50.5 39.1 47.6 36.0 49.0 37.7 47.2 36.1 79.6 69.3 84.9 75.8
SPECTER 67.4 56.3 51.1 38.7 57.8 45.8 57.3 46.3 92.8 86.5 99.0 97.1
SCINCL 68.3 57.6 61.2 49.8 54.1 42.1 58.1 47.3 94.0 88.3 99.0 97.2
ASPIRE-BM 66.7 55.6 57.7 46.5 59.3 47.5 57.3 46.5 93.6 87.6 99.1 97.2
ASPIRE-CS 66.0 54.9 55.7 43.8 58.5 46.8 57.2 46.6 94.3 88.7 98.9 96.8

AVG 61.8 50.4 57.0 45.4 57.8 46.1 55.9 44.9 90.8 83.8 95.7 91.7

Table 4: Results in terms of MAP and R@5 for different candidate types on MDCR.

the ASPIRE variants and candidate types obtained
with the model-based strategy, ASPIRE variants
perform better on the BM25 candidate type than on
the SPECTER or SciNCL type. We hypothesize
that such difference is due to TAEs being simi-
lar neural models and therefore prone to similar
errors regarding semantic vs. lexical matching of
texts. In contrast, BM25, a purely lexical model,
makes different errors. We leave the analysis of
the differences in performance between neural and
non-neural models for future work.

5 Conclusion

We evaluated transformer-based article encoders
in large-scale citation recommendation scenarios
across different scientific fields and candidate pool
sizes. Together with transformer-based encoders,
we evaluated the performance of a robust lexical re-
trieval baseline BM25 and demonstrated that it still

performs competitively with recent neural-based
models. In the case of large field-specific candi-
date pools, BM25 outperformed transformer-based
models in most fields.

Furthermore, to promote a more realistic and
a more diverse evaluation across different fields
in comparison to the existing benchmarks used
for evaluating scientific article representations, we
presented a new multi-domain benchmark dataset
based on citation recommendation task, which we
call MDCR. Evaluation on MDCR demonstrated
the difficulty of specific candidate types and set
the ground for evaluating future scientific article
encoders.

Our evaluation demonstrated the varying perfor-
mance across scientific fields, which we believe
should be analyzed in future work to improve en-
coders’ performance across all fields, not just those
prevailing in the datasets. Given that our bench-
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mark dataset is not expert-annotated but rather
based on citations as relevance signals, we pro-
pose constructing an expert-annotated dataset with
articles from different scientific fields. We hope our
contributions will stimulate the community to work
on more realistic and challenging evaluation setups
of scientific article recommendation models.
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A Appendix

A.1 BM25
Here we provide details about the relevance score
function used by BM25 (Robertson and Walker,
1994). Before calculating relevance scores for pairs
of articles, article texts are first transformed into
bag-of-words vectors. Given a query Q, containing
terms q1, ..., qn, and a document D, BM25 calcu-
lates relevance score s as follows:

s(Q,D) =
n∑

i=1

IDF(qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(
1− b+ b · |D|

avgdl

)

where f(qi, D) is the frequency qi in document D,
|D| is the length of D in words, avgdl is the aver-
age document length, and k1 and b are parameters
that can be tuned for a specific document collection.
IDF(qi) is the inverse document frequency for qi,
and is typically calculated as:

IDF(qi) = ln

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)

where N is the total number of documents in the
collection and n(qi) is the number of documents
containing the term qi.

Intuitively, s will output higher scores for a doc-
ument D that contains many terms as Q, that also
do not appear often in other documents. When it
comes to parameters b and k1, b controls to what
degree the length of a document will affect the fi-
nal score (Lipani et al., 2015), while k1 controls
to what degree an additional occurrence of a term
affects the final score (Lv and Zhai, 2011).

A.2 Field Abbreviations
Table 5 shows the abbreviations for MAG fields.

A.3 Evaluation on SCIDOCS

Table 6 shows the results of evaluation of SCIB-
ERT, SPECTER, SCINCL, and ASPIRE on SCI-
DOCS benchmark, as reported in the previous
work.

A.4 Field-level Evaluation Results
Results for “field-level” evaluation setup in terms
of NDCG and recall@30 are given in Tables 7
and 8, respectively. Best scoring combinations of
model and field are mostly the same as in case of
MAP (reported in Table 2), with the exception of

MAG field Abbreviation

Art Art
Biology Bio

Business Bus
Chemistry Ch

Computer Science CS
Economics Eco

Engineering Eng
Environmental Science ES

Geography Geog
Geology Geol
History His

Materials Science MS
Mathematics Mat

Medicine Med
Philosophy Phi

Physics Phy
Political Science PS

Psychology Psy
Sociology Soc

Table 5: Abbreviations for MAG fields that we use in
the field-level evaluation and in the new benchmark.

Model MAP NDCG

SCIBERT 48.3 71.7
SPECTER 88.3 94.9
SCINCL 93.6 97.3

TS-ASPIRE 91.0 95.0

Table 6: Results of different TAEs evaluated on SCI-
DOCS’s “Cite” task. Values as reported in (Cohan et al.,
2020), (Mysore et al., 2021a), and (Ostendorff et al.,
2022).

recall@30 in Bio field, where BM25 yields the
best result (as opposed to ASPIRE-BM in case of
MAP).

30



Model Art Bio Bus Ch CS Eco Eng ES Geog Geol His MS Mat Med Phi Phy PS Psy Soc AVG

BM25 64.2 78.8 56.9 76.2 69.3 65.0 68.0 62.6 64.5 69.2 62.7 69.8 70.1 77.8 56.9 70.1 56.2 70.2 54.0 66.5
SCIBERT 33.2 45.8 33.6 43.7 36.0 39.6 36.4 36.8 37.6 39.6 32.9 37.3 37.9 39.8 31.2 39.5 32.1 40.9 32.9 37.2
SPECTER 53.5 74.2 53.9 71.8 67.7 61.9 63.6 58.2 56.5 59.2 47.0 65.6 66.5 79.2 48.6 63.8 49.2 70.5 49.9 61.1
SCINCL 55.3 77.5 54.1 74.0 70.3 62.5 66.0 60.7 59.6 61.2 50.5 67.0 68.0 81.1 50.8 67.1 51.4 71.7 51.3 63.1

ASPIRE-BM 55.6 79.2 55.2 74.4 69.1 63.5 64.8 60.0 59.4 61.5 50.1 66.2 68.1 81.0 50.1 66.2 50.6 70.9 49.8 62.9
ASPIRE-CS 54.8 74.2 56.1 71.1 69.4 62.9 65.0 57.7 57.8 59.0 48.1 64.3 69.1 77.9 49.6 65.5 50.4 70.8 51.4 61.8

Table 7: Results in terms of NDCG in the “field-level” evaluation setup. Values in bold indicate the best performing
model per field.

Model Art Bio Bus Ch CS Eco Eng ES Geog Geol His MS Mat Med Phi Phy PS Psy Soc AVG

BM25 46.5 38.9 27.5 41.7 43.1 29.7 42.7 35.3 34.6 34.2 42.7 39.5 42.2 48.2 34.0 40.9 28.3 32.0 24.0 37.2
SCIBERT 9.0 4.8 2.1 5.8 5.0 3.3 5.5 5.1 5.0 3.9 8.0 4.1 6.0 4.8 3.8 6.6 1.6 3.4 2.4 4.8
SPECTER 35.5 33.4 24.7 35.3 41.9 25.7 36.4 30.3 24.3 23.4 24.8 34.2 38.5 49.0 24.1 33.4 19.9 32.6 19.8 30.9
SCINCL 38.9 36.8 25.4 39.3 46.4 26.0 39.5 33.0 28.0 25.5 28.2 35.5 40.2 52.0 26.4 37.1 23.0 34.7 21.5 33.5

ASPIRE-BM 34.9 38.2 25.1 38.6 42.5 27.3 37.0 31.5 27.5 25.3 28.0 34.5 39.9 51.6 25.0 35.2 22.2 32.3 19.2 32.4
ASPIRE-CS 34.9 33.0 25.5 34.7 42.1 25.9 37.5 29.4 25.6 23.2 25.3 33.0 40.1 47.3 24.7 34.5 21.4 32.2 20.1 31.1

Table 8: Results in terms of recall@30 in the “field-level” evaluation setup. Values in bold indicate the best
performing model per field.
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Abstract

With the help of online tools, unscrupulous
authors can today generate a pseudo-scientific
article and attempt to publish it. Some of these
tools work by replacing or paraphrasing ex-
isting texts to produce new content, but they
have a tendency to generate nonsensical expres-
sions. A recent study introduced the concept of
“tortured phrase", an unexpected odd phrase
that appears instead of the fixed expression.
E.g. counterfeit consciousness instead of ar-
tificial intelligence. The present study aims at
investigating how tortured phrases, that are not
yet listed, can be detected automatically. We
conducted several experiments, including non-
neural binary classification, neural binary clas-
sification and cosine similarity comparison of
the phrase tokens, yielding noticeable results.

1 Introduction

Scientific texts generated by computer programs
can be meaningless, and fake generated papers are
served and sold by various publishers with the
estimation of 4.29 documents every one million
reports (Cabanac and Labbé, 2021). But gener-
ated texts are also meaningful: with the inputs
of a thousand articles, new books are now pro-
duced (e.g. Beta Writer, 2019). Despite the ability
of text-generators to produce counterfeit publica-
tions, meaningless generated papers can be easily
spotted by both machines and humans (Cabanac
et al., 2021). Texts produced by neural language
models are more difficult to spot (Hutson et al.,
2021). These neural language models can produce
paraphrased texts that are closer to human-written
texts (Brown et al., 2020), and therefore machine-
paraphrased texts are harder to differentiate from
the human-written texts.

Online tools such as Spinbot, and Spinner Chief
are used to paraphrase texts. However the capacity
of a paraphrasing software to assist a writer can be
harmful to the scientific literature. Cabanac et al.

(2021) screened recent publications (e.g. in the
journal Microprocessors and Microsystems) and
discovered over 500 meaning less phrases in those
scientific papers. They called it "tortured phrases",
unexpected odd phrases replacing the lexicalised
expression, such as counterfeit consciousness in-
stead of artificial intelligence (i.e., the expected
phrase). The database of tortured phrases, and arti-
cles that contain them, have since been expanded to
over 9000 publications in different domains such
as Computer Sciences, Biology or Medicine.

In this paper, we investigate strategies to auto-
matically detect new (i.e. unlisted) tortured phrases.
Focusing solely on tortured phrases detection, and
not paraphrased text in general, we will use recent
machine learning techniques and state-of-the-art
language models. Our methods were trained on a
corpus composed of 141 known tortured phrases,
taking their sentences as contexts, and aims at de-
tecting never-seen-before tortured phrases. All
code and corpus used are available online.

2 Related Works

Up to now, no dataset has been built for the auto-
matic detection of tortured phrases. In Cabanac
et al. (2021), authors and contributors collected a
set of tortured phrases and their expected phrases
that we will use as dataset. Wahle et al. (2021)
used Spinbot and Spinnerchief to paraphrase orig-
inal data from several sources such as an arXiv
test sets, graduation theses, and Wikipedia arti-
cles. Their study aims at detecting whether a para-
graph is machine-paraphrased or not. The authors
tested classic machine learning approaches and neu-
ral language models based on the Transformer ar-
chitecture (Vaswani et al., 2017), such as BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2019), Longformer (Beltagy
et al., 2020), and others. They showed that such ap-
proaches can complement text-matching software,
such as PlagScan and Turnitin, which often fail to
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notice machine-paraphrased plagiarism.
Because paraphrasing tools like Spinbot and

Spinnerchief can generate tortured phrases, the
dataset created by Wahle et al. (2021) surely con-
tains such phrases. But the task we aim at, i.e.
detecting new tortured phrases, is more specific
than detecting paraphrased text. Thus, we investi-
gated three supervised machine learning classifiers:
Random Forest, Perceptron, and Transfomer-based
model. Random Forest classifier (Breiman, 2001)
is an ensemble learning method that builds decision
trees and classifies each data according to the most
selected class. Perceptron (Rosenblatt, 1958) is a
linear classifier used to classify vectors of numbers.
Term Frequency-Inverse Document Frequency (TF-
IDF), GloVe (Pennington et al., 2014), and BERT
(Devlin et al., 2018) were used for word vector rep-
resentation. These models were chosen for their
state-of-the-art performances and to compare how
a model with fixed vectors (i.e. GloVe) compares
with a model using dynamic ones (i.e. BERT).

3 Building datasets of tortured phrases

This experiment uses two data sources: the tortured
phrases (Cabanac et al., 2021) database and the con-
texts containing tortured phrases from Wahle et al.
(2021). We automatically extracted the context of
known tortured phrases from the corpus of Wahle
et al. (2021) to build a training set.

Tortured phrases identified by Cabanac et al.
(2021) consists of 558 tortured phrases (e.g. Table
1). These phrases were annotated by the authors
and other contributors in several media (e.g. Pub-
Peer, Twitter) in 2021-2022. After pre-processing,
we retained 545 tortured phrases.

Tortured phrases Expected phrases

innocent Bayes naive Bayes
ghostly grouping spectral clustering
Unused Britain New England
Joined together states United States
immature nations developing countries

Table 1: Example of tortured and expected phrases.

The dataset of Wahle et al. (2021) is constituted
of 193, 646 paragraphs, paraphrased using Spin-
bot and Spinnerchief. 65, 433 original data were
retrieved from several sources: arXiv, graduation
theses of ESL students at the Mendel University in
Brno (Czech Republic) and Wikipedia articles.

We extracted the paragraphs containing tortured
phrases (Cabanac et al., 2021) to build a training
and evaluation corpus. This resulted in 1, 104 para-
graphs with tortured phrases and 1, 668 paragraphs
without tortured phrases (randomly extracted from
the non-paraphrased original data).

Data augmentation: five-grams extraction To
increase the training data, we extracted the n-grams
(i.e. sequences of n adjacent tokens) of each sen-
tence, with n = 5, as it is the maximum length of
the known tortured phrases. A five-gram is consid-
ered positive if a complete tortured phrase appears
in that five-gram.This produced 38, 397 five-grams,
5, 024 positive five-grams (in the ’1’ class) and
33, 373 negative five-grams (in the ’0’ class).

4 Experiment and Result

We investigated binary classifiers to check the dif-
ference between paragraphs or five-grams contain-
ing tortured phrases in several settings. The para-
graphs and five-grams containing tortured phrases
are considered positives, with label ’1’, while neg-
ative paragraphs are labeled as ’0’. Accuracy, pre-
cision, recall, and F-measure are used to evaluate
the classification performances.

Classifiers: Random Forest and Perceptron In
this experiment, five-grams data are used in the
classification. The five-grams are converted to a nu-
merical representation using Sklearn TF-IDF count
vectorizer and split randomly 80% for training and
20% for testing. We used the Scikit Learn library
for the Random Forest and Perceptron with the
default value of all parameters.

The result in Table 2 shows an accuracy for the
Random Forest classifier of .98 and the Perceptron
of .94. The precision, recall, and F1-score of the
Random Forest classifier are high, especially in
class 0, and the results in class 1 is slightly lower
than in class 0. The precision, recall, and F1-score
of the Perceptron method is slightly lower than that
of the Random Forest classifier, but it is still com-
parable for class 0. In class 1, Perceptron results
are significantly lower compared to the results of
Random Forest classifier. We also observe results
higher in class 0 than in class 1, this might be due
to the data imbalance.

After observing the accuracy, precision, recall,
and F1-score, we see that the models perform well
based on TF-IDF vector representation. However,
it is believable that the models learned to classify
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five-grams based solely on specific words: since
the training and test data were split randomly, a
tortured phrase can be present in both sub-sets.

Transformer-based classifier on paragraphs
Here, we seek at detecting paragraphs containing
at least one tortured phrase. The data are split
67% for training and 33% for test set. The ar-
chitecture of this model is based on the Trans-
former technique. Pre-trained transformers from
Huggingface, distilbert-base-uncased
model (Sanh et al., 2019), was chosen for its light-
ness and speed. We applied transfer learning by
adding one linear layer for classification purposes.
In that linear layer, the number of input features
was set to 768 with an output size of 2, indicating
class 0 and class 1. The model was trained on 10
epochs.

The results in Table 2 show an accuracy of .86.
The .92 precision on class 1 is higher than on class
0. For the recall and F1-score, class 0 gets a better
result than class 1. Since the amount of paragraph
data are small, we suspect that only a few tokens
constitute the tortured phrases, and that the rest of
the token’s paragraph affect the performance.

Transformer-based classifier on five-grams
The data of class ’1’ was split 79% for training
and 21% for testing by filtering the test set with
tortured phrases not present in the training set. In
this experiment, two versions of the model were
trained: one using the entire dataset and one with a
proportion of data balanced in both classes.

The training data are made of 28, 995 five-grams
(25, 029 in class ’0’ and 3, 966 in class ’1’). The
test data are made of 9, 402 five-grams (8, 344 and
1, 058). Table 2 shows an accuracy of .88. Preci-
sion, recall, and F1-score on class ’1’ are excep-
tionally low compared to the ’0’ class.

Regarding the classifier with balanced data, the
size of the training set is 7, 932 five-grams (3, 966
in each class) and the size of the testing set is 2, 116
five-grams (1, 058 in each class). The accuracy
is .71, and the precision, recall, and F1-score are
around .70 in both classes (cf. bold values in Table
2). In this experiment, the balance of the classes
induces a greater reliability of the results and we
believe this approach presents the best applicability.
The model focuses on the tortured phrases in five-
grams rather than tortured phrases in the whole
paragraph, so the model can learn to generalize the
five-grams containing tortured phrases or not.

4.1 Cosine similarity comparison

We studied the cosine similarity between tokens
in the tortured phrases compared to the similarity
of tokens in the expected phrases. Cabanac et al.
(2021) annotated a dataset of tortured phrases, and
their respective expected phrases, from several me-
dia such as PubPeer during 2021-2022.

We intuitively expect that the cosine score of
the tokens in the phrases could yield noticeable re-
sults, useful to differentiate tortured and expected
phrases due to the similarity, or non-similarity, of
adjacent tokens. The expected phrases are idioms
(i.e. multi-word-expression forming a lexical and
semantic unit) and, as such, we hypothesize that
the semantic score defined by the cosine of the vec-
tors between their terms should be higher than for
the tortured phrases, which words are less likely
to be semantically related or frequently associated.
If validated, such observation could help distin-
guish tortured phrases from legitimate ones. For
this experiment, only the similarity of two-tokens
phrases were computed, using two kinds of word
embedding models: GloVe and BERT.

Cosine similarity on phrases using BERT In
this study, we used BERT (Devlin et al., 2018)
as the word embedding model. We followed the
architecture of McCormick (2019) by summing
the last four layers of 12 layers of BERT to get
one-word vectors with 768 values.

Since the BertTokenizer will separate unknown
words into sub-words (e.g. vitality utilize becomes
vital, #ity, and utilize), it can be complicated to
compute their cosine similarity. We chose to dis-
card tortured phrases containing words unknown
by the model. We retained 82 tortured phrases after
the tokenization process.

The scores obtained from cosine computation be-
tween word pairs in tortured and expected phrases
present slight differences, as shown in Figure 1.
The median scores of expected and tortured phrases
are .51 and .49, respectively. The absence of signif-
icant differences can be explained by the nature of
the BERT model: a two-word context is probably
not sufficient to differentiate tortured and expected
phrases using cosine similarity.

Cosine similarity on phrases using GloVe
For this experiment, we computed the co-
sine similarity of token pairs in tortured and
expected phrases. We used the pre-trained
GloVe word embedding (Pennington et al., 2014)

34



Classifiers Data type Accuracy Precision Recall F1-score
class 0 1 0 1 0 1

Random Forest Random five-grams .98 .99 .92 .99 .91 .99 .92
Perceptron Random five-grams .94 .96 .84 .98 .69 .97 .75
Transformer Paragraph .86 .82 .92 .94 .77 .87 .84
Transformer Random five-grams .88 .89 .42 .99 .03 .93 .06
Transformer Balanced five-grams .71 .67 .75 .79 .62 .73 .68

Table 2: Classification results.

(glove.6B.200d.txt)which was trained on
Wikipedia 2014 and Gigaword. Unlike BERT,
GloVe is a context-free model, meaning that each
word in this pre-trained model is assigned to one
constant vector. However, GloVe vocabulary is lim-
ited and thus some tokens in the phrases might
not appear in this model. For this issue, we
padded the out-of-vocabulary word with 0. For
the phrases in which both words do not appear in
the model, the cosine similarity is 0. We discarded
the phrases whose scores were lower than or equal
to 0 (cosine_score ≤ 0). As a result, 139 phrases
are used for this experiment.

The Figure 1 indicates that the cosine similarity
scores of tortured phrases tend to be smaller than
those of expected phrases when using GloVe. The
median score of expected phrases is .3 and the
median score of tortured phrases is .12.

Figure 1: Comparison of cosine score of phrases using
BERT and GloVe.

These results indicate that the cosine score be-
tween terms could be employed to differentiate
tortured phrases from legitimate ones. Since Bert
relies on embeddings, it is overly influenced by the
phrase contexts to yields useful results. With Glove,
or another language model with static vectors, one
could chose a threshold to classify phrases, e.g. as
legitimate, tortured, or requiring human expertise.

5 Conclusions

In this research, we aimed at detecting new tor-
tured phrases. We studied different classification
approaches and examined the characteristics of tor-
tured phrases using cosine similarity. The result of
Perceptron and Random Forest classifier are high,
but we intuitively suspect they are not reliable due
to the word representation using TF-IDF vector-
ization. The Transformer-based classifier model
with paragraph data provided the best result among
Transformer models. However, we suspect that the
model learned to classify paragraphs based only
on a few tokens, and classifying paragraphs is not
sufficient to detect the exact tortured phrases. Thus,
the Transformer-based classifier model five-gram
data yields the best result with balanced classes (i.e.
results above .70 for all metrics).

We also studied the use of cosine similarity be-
tween the phrase tokens to identify new tortured
phrase. This showed that language model with
fixed vectors (e.g. Glove) could be used to classify
part of the phrases.

Future research should include more human eval-
uation of tortured phrases and a bigger dataset
tortured phrases with their context. To improve
the classification, future work could investigate
Support Vector Machine (SVM) and Naïve Bayes
model (NB): SVM performs better with a small
dataset and binary class, while NB can provide
probabilities of a prediction.Finally, computing the
cosine similarity of the tortured phrase and ex-
pected phrase pairs within the whole context to
see tortured phrases’ performance.
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Abstract

Logical structure recovery in scientific articles
associates text with a semantic section of the ar-
ticle. Although previous work has disregarded
the surrounding context of a line, we model this
important information by employing line-level
attention on top of a transformer-based scien-
tific document processing pipeline. With the
addition of loss function engineering and data
augmentation techniques with semi-supervised
learning, our method improves classification
performance by 10% compared to a recent state-
of-the-art model. Our parsimonious, text-only
method achieves a performance comparable to
that of other works that use rich document fea-
tures such as font and spatial position, using
less data without sacrificing performance, re-
sulting in a lightweight training pipeline.

1 Introduction

Logical structure recovery in scientific document
processing (SDP) provides fundamental informa-
tion about scientific documents. The logical struc-
ture of a document is “the hierarchy of logical la-
bels that indicates the construction of the document”
(Mao et al., 2003; Luong et al., 2010). Recovering
the logical structure gives insight into the structure
of a long scientific document and aids further SDP
tasks such as abstractive summarization, metadata
extraction, and information extraction, etc.

Logical structure recovery classifies the lines of
a scientific document into predefined semantic cat-
egories that represent its role in the document (cf.
Table 1). Previous work considered this classifica-
tion in isolation, without considering the context of
the line (Ramesh Kashyap and Kan, 2020). Some
works have tried to alleviate this problem by pro-
viding better context by including feature-rich in-
formation such as font type, text position (Luong
et al., 2010; Rahman and Finin, 2019). However,

∗ Corresponding Author

we have to rely on external systems (such as Op-
tical Character Recognition, OCR) to obtain such
features, which makes the process cumbersome and
error-prone. Can we obtain similar performance
on logical structure recovery without relying on
feature-rich information?

We answer this challenge by creating a parsi-
monious but robust model that operates on purely
textual data without incorporating such features.
Instead, we rely on better context modeling of sur-
rounding lines, identifying the continuity of logical
structure of the document, and making use of abun-
dant unlabeled data.

First, we consider multiple lines of marginally
breaked text as context (cross-line context) and use
attention (Yang et al., 2016; Beltagy et al., 2020)
on top of transformer models (Vaswani et al., 2017;
Devlin et al., 2019) to obtain context-sensitive sen-
tence embeddings of lines. Second, we employ
semi-supervised learning (Xie et al., 2020; Sohn
et al., 2020) over the abundance of unlabeled data
to address the lack of labeled data in the recovery
of logical structures. Lastly, we employ elements
of loss engineering from recent semi-supervised
learning frameworks such as UDA (Xie et al., 2020)
without the use of unlabeled data to increase perfor-
mance under a supervised training regime to deploy
a lightweight training pipeline.

Although only plain text is used for training, our
model achieves results close to the current state-
of-the-art (SOTA) compared to models based on
rich text features. Furthermore, we show that semi-
supervised learning helps improve SOTA for logical
structure recovery by 10% on macro-F1.

2 Related Work

Aside from the text of scientific papers, previous
work extracts rich text information — such as font
size, font style, paragraphing — as rich text infor-
mation is a primary factor in discerning the log-
ical structure of a document (Rahman and Finin,
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2019). For example, SectLabel (Luong et al., 2010)
extracts rich text information from scientific docu-
ments using OCR, then subsequently applying Con-
ditional Random Fields (CRF; Lafferty et al. 2001)
to classify the extracted text into predetermined
labels. Tao et al. (2014) extends this approach fur-
ther, combining the usage of spatial measures, type-
setting, and minimal text patterns with contextual
meaning into a 2D CRF model for classification.
Koreeda and Manning (2021)’s work involves us-
ing remnant visual cues extracted from text data
including line breaks, indentation, and text align-
ment to augment logical structure extraction while
using random forest as their primary model.

Other work focus on the usage of layout itself
to discern such logical structures, utilizing deep
object detection models such as R-CNN models
(Ren et al., 2015; He et al., 2017; Cai and Vascon-
celos, 2018) to capture logical structures, taking
“screenshots” of the PDF document as input. Lay-
outLM models (Xu et al., 2020, 2021; Huang et al.,
2022) combine object detection models with tex-
tual transformers (Vaswani et al., 2017) along with
positional embeddings of logical structures on the
page to form multimodal models, while Document
Image Transformers (DiT; Li et al. 2022) use Vi-
sion Transformers (ViT; Dosovitskiy et al. 2021)
as backbone models for further image-based detec-
tions of the logical structures.

Although rich text information is usually incor-
porated, there are models, such as the SciWING
toolkit (Ramesh Kashyap and Kan, 2020), for log-
ical structure recovery that operate only on plain
text. Our work is in line with such lightweight text-
only methods, which benefit from the simple and
streamlined input without redundant metadata. In
contrast to SciWING’s simple text representation
for each line, we aim to incorporate richer textual
information from the cross-line context and make
use of abundant unlabeled data available.

3 Contextual Model Construction

We attempt the task of logical structure classifica-
tion, as proposed by Luong et al. (2010), and label
each line in scientific papers to represent its logical
structure. We address this task in a purely textual
method, employing modern NLP model architec-
tures and training techniques to achieve our goal
of creating a more lightweight and streamlined ap-
proach. We consider this task as a line-based classi-
fication problem as we want to preserve the notion
of margin breaks without having to include layout
or spatial information. Given a document Dn of
length n, we have the following:

Dn = {ℓ1, ℓ2, . . . , ℓn}, (1)

where ℓi refers to the ith line extracted by a PDF
text extractor. Our objective is to construct a model
M that classifies each line ℓi into one of 23 prede-
fined categories C defined by Luong et al. (2010)1.

3.1 Baseline Model
We use Ramesh Kashyap and Kan (2020)’s logical
structure classification model from the SciWING
toolkit as a baseline, as the toolkit takes only pure
text data as input. SciWING’s model produces
contextual sentence embeddings for each line in-
dividually via ELMo (Peters et al., 2018) and biL-
STMs (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005) for linear classification.

3.2 Line-Level Attention
In contrast to the baseline, we propose a model
that considers the context of neighboring lines, as

1Luong et al. (2010) classify each document line into the
following 23 classes: address, affiliation, author,
bodyText, category, construct, copyright,
email, equation, figure, figureCaption,
footnote, keyword, listItem, note, page,
reference, sectionHeader, subsectionHeader,
subsubsectionHeader, table, tableCaption,
and title.

38



Figure 1: Our proposed architecture which considers cross-line context with an inserted attention layer and
contextual modeling.

logical structures tend to span multiple consecutive
lines. Inclusion of such context reduces misclassifi-
cations in the middle of large logical structures.
We refine the current neural models for logical
structure classification by adapting Hierarchical
Attention Networks (HAN; Yang et al. 2016). By
selecting context-sensitive embedders, we forgo
word-level encoding and word-level attention lay-
ers and generate contextual sentence embeddings
directly. We then add a line-level attention layer
between the encoder and the classification layer to
account for cross-line context (Figure 1).

To account for cross-line context, without in-
creasing the runtime quadratically in proportion
to the document length, we introduce a similar
method to the sliding window attention model used
in Longformers (Beltagy et al., 2020) for the line-
level attention layer. Longformers replace the ex-
pensive global self-attention mechanism with a lo-
cal version that is based on sliding windows and
allows building representations from neighboring
lines. In our case, for each target sentence to be
labeled, we take into account the contextual infor-
mation of neighboring lines, the amount of which
depends on the size of the sliding window. Tak-
ing the surrounding context of d lines upward and
downward as the key K and value V matrices and
the target line ℓi as the query matrix Q as input to
the attention layer, we obtain the sentence embed-
ding ℓ′i as follows:

K = V = Stack({ℓi−d, . . . , ℓi−1, ℓi+1, . . . , ℓi+d}),
(2)

ℓ′i = Concat(ℓi,MultiHead(Q = ℓi,K, V )). (3)

3.3 Sentence Embeddings with Transformers
We also improve the quality of contextual sentence
embeddings using pretrained transformer models

such as BERT (Devlin et al., 2019), SciBERT (Belt-
agy et al., 2019), Sentence-BERT (Reimers and
Gurevych, 2019), and RoBERTa (Liu et al., 2019).
Sentence embeddings are generated from trans-
former outputs by either:

1. Using the embedding of special classifica-
tion token [CLS] that signals the beginning
of the sentence (Devlin et al., 2019). Upon
fine-tuning for downstream tasks, such tokens
model the input’s contextual meaning;

2. Obtaining the mean pooling of the output
subword embeddings, which Reimers and
Gurevych (2019) concluded produced more
accurate sentence embeddings, and can be fur-
ther enhanced with finetuning, or;

3. Obtaining an attentively pooled embedding
by adding an extra attention layer, similar
to the hierarchical attention structure that of
Yang et al. (2016), using the [CLS] as the
query matrix and the remaining subword em-
beddings as the key and value matrices.

4 Semi-Supervised Learning

Supervised learning can be used to produce accu-
rate models when adequate labeled data are pro-
vided. While unlabeled data is easy to obtain, la-
beled data are scarce, particularly in the SDP do-
main. Semi-supervised learning (SSL) methods ad-
dress this problem using both labeled and unlabeled
data, resulting in better performance compared to
purely supervised means.

4.1 Preliminaries
Notations. Prior to discussing SSL frameworks,
we define some necessary notation. Let X =
{(xb, yb) : b ∈ (1, . . . , B)} be a batch of B la-
beled data samples with xb being the input sam-
ple and yb being the ground-truth label. We let
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U = {ub : b ∈ (1, . . . , µB)} be a batch of µB
unlabeled data samples. We denote ŷ(x) as the
predicted class distribution of the sample x made
by the model. Further, we also denote H(q, p) as
the standard cross-entropy loss of predicted distri-
bution p and target distribution q, and D(q||p) as
the Kullback–Leibler divergence between distribu-
tions p and q. We denote A(·) and α(·) as “strong”
and “weak” data augmentations, respectively. We
discuss the difference between strong and weak
augmentations in the next section.

Data Augmentation. Recent semi-supervised
learning frameworks for image classification such
as MixMatch (Berthelot et al., 2019), ReMix-
Match (Berthelot et al., 2020), and FixMatch (Sohn
et al., 2020) use both “strong” and “weak” aug-
mentations as a form of robust data augmentation.
Weak augmentations refer to simple flip-and-crops
of the input image, while strong augmentations con-
tain more complex operations such as RandAug-
ment (Cubuk et al., 2020) and CTAugment (Berth-
elot et al., 2020), which perform multifold image
transformations to inject valid yet diverse noise
into the input data (Xie et al., 2020).

In the text domain, we employ back-
translation (Sennrich et al., 2016; Edunov
et al., 2018) as a form of strong augmentation
as proposed by Xie et al. (2020). The use of
back-translation retains the contextual meaning of
the text (validity), and reorganizes the text into
different writing (diversity). Although there is
no counterpart for weak augmentation in current
semi-supervised learning frameworks, we follow
the spirit of the flip-and-crop and apply Easy
Data Augmentation (EDA; Wei and Zou 2019) to
simulate the effects of weak augmentation. EDA
employs synonym replacement, random insertion,
random swap, and random deletion of words in
a sentence at random, augmenting the sentence
in a way that may not be grammatically correct
or human-readable but contextually similar and
sufficient for sentence embedding generation.

4.2 SSL Frameworks

We now review some SSL frameworks we use in
our work (Figure 2).

Unsupervised Data Augmentation (UDA; Xie
et al. 2020) is an SSL framework that uses con-
sistency training in conjunction with data augmen-
tation on unlabeled data to regularize the model

to be invariant to noise in classification tasks. La-
beled data are used to compute cross-entropy loss
(Equation 4), similar to supervised training, while
unlabeled data are used to compute consistency
loss against its strongly augmented version gener-
ated by back-translation (Equation 5). The training
objective would be minimizing the loss term L:

Ls =
1

B

B∑

b=1

H(yb, ŷ(xb)), (4)

Lu =
1

µB

µB∑

b=1

D(ŷ(A(ub))||ŷ(ub)), (5)

L = Ls + λLu, (6)

where λ is a hyperparameter to scale the relative
weight of the unsupervised loss.

FixMatch (Sohn et al., 2020) is a simplified
SSL framework for image classification that com-
bines elements from MixMatch (Berthelot et al.,
2019) and UDA (Xie et al., 2020). Like UDA,
FixMatch also employs data augmentation on unla-
beled data to increase robustness, but replaces the
consistency training of UDA with a cross-entropy
loss on a pseudo-label. For supervised learning, the
FixMatch algorithm trains on a weakly augmented
version of the labeled data against its label (Equa-
tion 7); while for unsupervised learning, it infers a
pseudo-label from the weakly augmented data, and
obtains the cross-entropy loss of the strong aug-
mented data against the pseudo-label (Equation 8).
The training objective would be minimizing the
loss term L:

Ls =
1

B

B∑

b=1

H(pb, pm(y, α(xb)), (7)

Lu =
1

µB

µB∑

b=1

1(max(pm(y|α(ub)) > τ)·

H(argmax(pm(y, α(ub)), pm(y,A(ub)),

(8)

L = Ls + λLu, (9)

where λ is a hyperparameter to scale the relative
weight of the unsupervised loss and τ is a threshold
to which we retain the pseudo-label.
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Figure 2: Frameworks Used for Semi-Supervised Training (Left: UDA (Xie et al., 2020), Right: FixMatch (Sohn
et al., 2020))

4.3 Loss Engineering as a Supervised
Training Strategy

While semi-supervised training does indeed in-
crease training accuracy and robustness, SSL
frameworks such as UDA often employ techniques
that regulate the loss term for better training, beg-
ging the question: Does employing such loss term
engineering techniques improve training under a
supervised setting?

4.3.1 Training Signal Annealing

We focus first on Training Signal Annealing (TSA),
a technique originally used in Xie et al. (2020)’s
UDA framework (omitted for simplicity in the pre-
vious section) as a method to reduce overfitting on
the training data. TSA employs a moving ceiling
ηt on the probabilities of the model prediction:

ηt = αt ·
(
1− 1

K

)
+

1

K
, (10)

where K is the number of label classes, and αt is a
schedule function in accordance to three schedules
with training progress percentile t as a variable:

• Exponential: αt = e5(t−1),

• Linear: αt = t,

• Logarithmic: αt = 1− e−5t.

Each sample is only added to the calculation of
the loss function if the highest probabilities of the
prediction are lower than the ceiling ηt. This al-
lows the model to select non-confident samples for
training, to improve the robustness of the training

process. We then get the loss term:

LTSA =

B∑
b=1

H(y,b,ŷ(xb))·1(max(ŷ(xb))<ηt)

max

(
1,

B∑
b=1

1(max(ŷ(xb))<ηt)

) .

(11)
We noted that the selection of non-confident sam-

ples for training during the early stages of the train-
ing can be beneficial to training on imbalanced
datasets, as classes that have fewer instances are
computed into the loss function more. As train-
ing progresses, the full dataset can still be trained
as the ceiling for the prediction certainty based
on the loss increases, adding more samples for
loss function computation. Due to the continuous
nature of the training data and the importance of
cross-line context, we employ TSA as a method
to combat performance degradation caused by an
imbalanced dataset, as other discrete techniques
such as SMOTE (Chawla et al., 2002) may not be
easy to leverage due to its lack of lexical versions
of such methods.

4.3.2 Supervised Data Augmentation
We also employ UDA (Xie et al., 2020) in a super-
vised setting, which we denote here as SDA (Super-
vised Data Augmentation; Figure 3). We simulate
the usage of unlabeled data from the unsupervised
consistency training component by stripping the
labels from our labeled data. We pass both the
original labeled data and the augmented version
of the text simultaneously into the model and run
the consistency loss training for augmented data
against the labeled text alongside the original cross-
entropy loss for the text and label within the same
batch, returning the sum of both losses as the loss
term. We also employ the usage of TSA on top of
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Figure 3: Our Proposed Supervised Data Augmentation
Framework

the cross-entropy loss, resulting in the loss term L:

LAug =
1

B

B∑

b=1

D(ŷ(A(xb)||ŷ(xb)), (12)

L = LTSA + LAug, (13)

where LTSA is the same loss term as Equation 11.

5 Experiments

Dataset. We use the dataset that contains 20 ACL
and 20 ACM articles from various years collected
and labeled by Luong et al. (2010), which we re-
fer to as the SectLabel dataset. Each line of the
dataset included the original text, as well as for-
matted versions of the rich context information of
that particular line. The version of the dataset we
use is the one used to train the contextual models
in SciWING, where the contextual data are dis-
carded, and only the raw data and the label remain.
The SectLabel dataset in SciWING randomly splits
each individual line into the training, validation,
and test dataset without considering neighboring
lines. However, due to our need to feed consec-
utive lines into the model with the inclusion of a
sliding window attention, we needed to reconstruct
the train–validation–test split in the dataset by ran-
domly select 4 papers each to form the validation
and test dataset, training the model on the remain-
ing 32 papers only, to cleanly separate the splits to
avoid data snooping.

Furthermore, to scale the performance to a
slightly outside of domain setting for the evalu-
ation of the inference performance, we constructed
an independent test dataset in addition to the test

dataset partitioned from the SectLabel data, which
we refer to as the extended test dataset. We manu-
ally label 20 randomly selected papers from ACL
2020, assigning each extracted text line to a par-
ticular label with the help of the original PDF file
to ensure that the labels are correct. The text ex-
traction engine and manual labeling differ from the
SectLabel dataset, allowing this dataset to have a
slight out-of-domain property that tests the model’s
ability to generalize.

For semi-supervised training, we assembled a
new corpus of unlabeled training data consisting
of 570 long articles from ACL 2021 and 1895 ar-
ticles from NeurIPS 2021, which we refer to as
the unlabeled dataset. The unlabeled dataset is
then augmented by data augmentation techniques
such as EDA (Wei and Zou, 2019) and back-
translation (Sennrich et al., 2016; Edunov et al.,
2018) to form the unlabeled dataset used for semi-
supervised training. (See Table 2 for sample aug-
mentations.)

Evaluation Metric. As categories such as
bodyText and reference comprise most of
the text in scientific articles, our data are extremely
skewed and unbalanced, requiring us to utilize the
macro F1 score.

Results. Table 3 presents the main performance
results, where we take the SciWING logical struc-
ture classification engine (Ramesh Kashyap and
Kan, 2020) as our baseline model. Our best model
increases SOTA performance in plain text-based log-
ical structure recovery networks by 10%. Among
architecture types, we find that the RoBERTa-
Sliding Attention model (RoBERTa-Attn) performs
well, outperforming SciWING by 7% in the Sect-
Label test dataset. We note that these results are
not directly comparable as the training data are
sampled differently.

When we further incorporate TSA and UDA, we
find that the performance grows even more, with
SDA improving performance on the SectLabel test
dataset by 10%, and UDA increasing the general-
izability of the model and increasing performance
on the extended test dataset.

6 Analysis

We analyze in detail both the architectural changes
(§6.1, 6.2) and training techniques (§6.3, 6.4). We
employ an iterative alteration of models in our
experiments, starting with SciWING’s SectLabel
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Original Once upon a midnight dreary, while I pondered, weak and weary,

Synonym Replacement (EDA) Erstwhile upon a midnight dreary, while I pondered, weak and weary,
Random Insertion (EDA) Once upon a midnight dreary, while I pondered, weak and once weary,
Random Swap (EDA) Once upon I midnight dreary, while a pondered, weak and weary,
Random Delete (EDA) Once upon a dreary, while I pondered, and weary,

Back Translation Once at midnight it was bleak while I was thinking, weak and tired,

Table 2: Sample Augmentation of EDA and Back Translations

SectLabel Extended
Model Macro F1 Micro F1 Macro F1 Micro F1

SciWING (Ramesh Kashyap and Kan, 2020) 0.732 0.900 - -
RoBERTa-Attn Model (OURS) 0.806 0.904 0.596 0.870
RoBERTa-Attn Model + UDAlog

† 0.784 0.906 0.669 0.887
RoBERTa-Attn Model + SDAlog

† 0.832 0.929 0.623 0.886

SectLabel (Luong et al., 2010)‡ 0.847 0.934 - -
* Bold text indicates SOTA performance.
† The subscript refers to the logarithmic Training Signal Annealing schedule used in training (§ 4.3.1).
‡ Uses rich text information in addition to plain text.

Table 3: Abridged Comparison of Our Models and Other Relevant Models

Window SectLabel Test Extended Test
Size Macro Micro Macro Micro

1† 0.693 0.869 0.446 0.791
3 0.770 0.907 0.531 0.855
5 0.779 0.909 0.579 0.871
7 0.778 0.907 0.564 0.876
5 (dilated) 0.758 0.900 0.539 0.856
* The model architecture for this experiment follows Sci-

WING in using ELMo-biLSTM as the backbone sen-
tence embedder model.

† Using a window size of 1 reduces the model back to the
SciWING baseline.

Table 4: Effects of Sliding Window Size

model as our baseline, and iteratively adding tech-
niques experimentally proven to be beneficial to
act as the baseline of the next batch of experiments.

6.1 Sliding Window Attention

For better context modeling, we incorporate a slid-
ing window attention layer to account for neighbor-
ing lines. We study the effect of varying window
size 1, 3, 5, 7, and 5 (dilated) in Table 4. Here, a
window size of 1 reduces the model back to the
baseline, while a dilated sliding window skips ev-
ery other line in the window.

With the inclusion of sliding window attention,

the model is less prone to misclassify lines in the
middle of a large logical structure (Table 5). We
observe, however, with the increase of window size
from 1 to 3, some categories in which single line
contextual information suffices to determine the la-
bel such as address and email drops in perfor-
mance slightly, but recover when the window size
increases to 5. Taking a window size of 7, we find
that the categories that exist within the boundaries
of the document, such as title, affiliation,
have dropped in performance, while other cate-
gories of the spanned text, such as listItem
and footnote have also dropped, possibly due
to the window size being too large and including
too much "noise".

For the dilated window size of 3, although such
a setting is able to include a larger span of con-
text, we find that although most categories per-
form slightly worse for the dilated version, title
and author performed particularly badly. We
believe the overall decrease in performance is be-
cause some logical structures only span one line
and using a dilated window skips over such logical
structures and lowers the continuity of the contex-
tual information.

Overall, we consider the window size of 5 to
have the best performance in total and we use such
a window size on further experiments.
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Baseline Sliding Window 5

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt author reference
Gardner, Christopher Clark, Kenton Lee, and Luke reference reference
Zettlemoyer. Deep contextualized word representa- bodyText reference
tions. arXiv preprint arXiv:1802.05365, 2018. reference reference

Table 5: Sample Classification Result of Sliding Window on Consecutive Lines (Citation of Peters et al. (2018))

Extended Test (Macro-F1) [CLS] Mean Attention

BERT (uncased) 0.506 0.485 0.511
BERT (cased) 0.546 0.581 0.580
SciBERT (uncased) 0.493 0.514 0.505
SciBERT (cased) 0.581 0.571 0.568
S-BERT 0.074 0.381 0.117
RoBERTa 0.555 0.564 0.596

* Sliding window attention of size 5 is employed.

Table 6: Training Results of Different Pretrained Trans-
formers

6.2 BERT and Pooling

We test the three different pooling methods for
producing sentence embeddings ([CLS] token,
mean pooling, and attention pooling), cross-
examining the results with the following pre-
trained transformer models: BERT (Devlin et al.,
2019), SciBERT (Beltagy et al., 2019), Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019),
and RoBERTa (Liu et al., 2019) in Table 6.

We observe that uncased models underperform,
returning worse results than the SciWING base-
line model. In particular, categories that require
capitalization to convey context such as address,
sectionHeader, title, etc, underperform.

Furthermore, as Sentence-BERT models are
trained specifically to produce sentence embed-
dings of entire sentences, it may not be suitable
for our purposes, as the stripped lines in our train-
ing data are broken into lines on a typesetting basis
rather than a contextual basis that takes contextual
completeness into account.

In contrast, among BERT variants, RoBERTa
produces the best result when applying attention
pooling. Our further analysis found no perfor-
mance correlation between the model and the pool-
ing technique used.

6.3 Semi-Supervised Learning

We train our model in a semi-supervised setting in
hopes of increasing performance levels due to the
limited amount of labeled data. We also attempt

Macro F1 UDA FixMatch
Exp Linear Log No Aug w/EDA

SectLabel 0.781 0.818 0.784 0.796 0.820
Extended 0.499 0.627 0.669 0.570 0.642

* Backbone model is the RoBERTa model with a sliding
window of size 5 employed.

Table 7: Training Results of Different SSL Frameworks

to increase the robustness of the model in terms of
out-of-domain data, and evaluate on the extended
test dataset.

We experimented with all three Training Signal
Annealing (TSA) training schedules in conjunction
with Unsupervised Data Augmentation (UDA). For
FixMatch, we also attempt a version where weak
augmentation is not employed, performing cross-
entropy loss on the labeled data directly for su-
pervised learning. The results in Table 7 show
that FixMatch is able to achieve the highest perfor-
mance in the partitioned data set, which is in line
with the results reported by (Sohn et al., 2020) in
image classification. In addition, we see that UDA
with a logarithmic TSA schedule is able to increase
robustness of the model most, as exemplified on
the performance of the out-of-domain extended test
dataset.

With FixMatch, we see that the weakly aug-
mented version has increased performances on both
the SectLabel and extended test data, which vali-
dates Sohn et al. (2020)’s explanation that remov-
ing weak augmentation may lead to overfitting on
the guessed pseudo-labels. As seen from the results
of the extended test data, the model reinforces its
inference and fails to generalize without the use of
weak augmentation on the training data.

Turning our discussions to UDA, although the
exponential schedule should in theory work well in
a semi-supervised setting due to the need to regu-
late the release of training signals slowly to avoid
overfitting the labeled data, we observe that such a
schedule underperforms (Xie et al., 2020). Observ-
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Figure 4: Training Progress of UDA (Semi-Supervised) under Different Annealing Schedules

ing the validation metrics in Figure 4, we see that
convergence is slow and conclude that this may be
due to the minimal release of training signals early
in the training, allowing initial errors to amplify
themselves in the unsupervised consistency loss.

On the other hand, we find that the logarithmic
schedule limits the amount of training signals of
the supervised data, hence placing more emphasis
on the unlabeled data during training. This can lead
to a more robust model, given that the unlabeled
data are diverse enough. We expect this property to
be useful when dealing with cross-domain training.

While semi-supervised learning does increase
performance, ultimately it does not improve the
accuracy of minority classes by much, due to the
inherent reinforcement of noisy model prediction.
As the unlabeled data are pseudo-labeled according
to the predictions of the model, they contain the
model’s biases from the labeled data (Kim et al.,
2020; Wei et al., 2021). The result is that the minor-
ity classes’ performance are only improved a bit as
the majority classes still have an outsized influence
on the overall accuracy.

6.4 Loss Engineering

We now attempt to optimize the training process
by engineering the training loss term and observe
whether this is enough to improve training without
the requirement of additional unlabeled data and
the lengthy training procedure of semi-supervised
techniques. This includes the integration of ele-
ments of UDA (Xie et al., 2020) – TSA to counter
the imbalanced dataset, and training our model with
a supervised version of UDA (SDA).

Regarding the annealing schedules for the TSA
function αt, we believe that under a supervised
background, due to the large difference in the
amount of training signals released in the first half

Macro F1 Exp Linear Log

SectLabel Test TSA 0.790 0.824 0.819
SDA 0.761 0.819 0.836

Extended Test TSA 0.568 0.608 0.632
SDA 0.548 0.606 0.623

* Backbone model is the RoBERTa model with a sliding
window of size 5 employed.

Table 8: Training Results of Loss Engineering Tech-
niques

of the training process, the distribution of data dif-
fers greatly from schedule to schedule and would
greatly affect performance.

Table 8 shows convex annealing schedules (ex-
ponential) perform worse than the baseline, likely
due to there being insufficient training signals to
properly train the data, as observed from the slow
loss convergence in Figure 5. On the other hand,
non-convex annealing schedules (linear and loga-
rithmic) generally perform better, due to an earlier
increase in the moving ceiling ηt, so the model can
emphasize more training on non-confident samples
while still retaining enough training signals.

We find that the inclusion of consistency loss
enhances the effects of the TSA schedule itself,
returning a worse performance on the exponen-
tial schedule, while improving performance on the
logarithmic schedule. However, judging from the
extended testing data, such an addition of the con-
sistency loss may run a risk of overfitting as a result
of using two loss terms on the same sample, as the
performance decreased with such an inclusion.

From the experimental results, we observe that
utilizing training signal annealing is indeed able to
mitigate negative effects brought by data skewness
and improve model performance, even exceeding
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Figure 5: Training Progress of Supervised Learning Under Different Annealing Schedules

Parameters Modality Image Embedding

BERT 110M T ×
RoBERTa 125M T ×
LayoutLM

Vanilla 113M T+L ×
+ Image 160M T+L+I ResNet101

LayoutLMv2 200M T+L+I ResNeXt101

Table 9: Comparison of Selected Text-Only and Multi-
modal (with Layout and Image) Transformers

Batch Size

BERT/RoBERTa w/Sliding Attention 32
BERT/RoBERTa w/Sliding Attention + SSL 16
LayoutLM w/ResNet 8
LayoutLM w/ResNet + Sliding Attention 4
LayoutLMv2 MemoryError

Table 10: Batch Sizes of Transformer Models Compared
on a Single Nvidia RTX3090

that of the semi-supervised training results. How-
ever, as it still utilizes fewer training data, under
out-of-domain conditions, the model is not as ro-
bust as that of the semi-supervised training.

6.5 Comparison With Multimodal Models
We conclude our discussion with a brief mention
of multimodal models that can be used for logical
structure recovery. Related works such as Lay-
outLM (Xu et al., 2020) and LayoutLMv2 (Xu
et al., 2021) use positional coordinates and im-
age embeddings to encode the position and font
attributes of text in the embedding. The addition
of image embeddings not only increases the model
size (as shown in Table 9, but also lengthens the
inference timing, as multimodal models like the
LayoutLM series are, in essence, ensemble models,
requiring the finetune/inference timing to include
both the main transformer model and the image

embedding model. Furthermore, the batch size of
the input must be similarly reduced, as the input
now includes the full image albeit compressed.

A preliminary testing of corresponding largest
batch sizes on a 24GB RAM Nvidia RTX3090
is shown in Table 10. On the other hand, while
image-based models such as the Document Im-
age Transformer (DiT; Li et al. 2022) are not as
hard to train, we find the subsequent need of em-
ploying OCR engines to such models to be an ex-
tra inference dependency that can increase error.
Given the high amount of resources needed to train
a multimodal model, our work provides a purely
contextual model that serves as a lightweight and
accessible alternative.

7 Conclusion

This paper shows that, with effective use of multi-
line context, the results of plain text logical struc-
ture recovery models are comparable with other
models that use rich text information. We achieve
this by employing transformers to produce high-
quality sentence embeddings, applying sliding win-
dow attention to consider cross-line context, and
further optimizing by engineering loss functions
such as employing training signal annealing, incor-
porating consistency loss, and/or training under a
semi-supervised regime.

Further work on purely contextual models may
extend to solving the class imbalance problem of
logical structures, which is further amplified due
to the usage of semi-supervised training. Given
the importance of neighboring context, one cannot
simply rebalance the dataset. These issues require
other methods to decrease such biases.
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Abstract

Recently, there have been numerous research
in Natural Language Processing on citation
analysis in scientific literature. Studies of ci-
tation behavior aim at finding how researchers
cited a paper in their work. In this paper, we
are interested in identifying cited papers that
are criticized. Recent research introduces the
concept of Critical citations which provides
a useful theoretical framework, making criti-
cism an important part of scientific progress.
Indeed, identifying critics could be a way to
spot errors and thus encourage self-correction
of science. In this work, we investigate how
to automatically classify the critical citation
contexts using Natural Language Processing
(NLP). Our classification task consists of pre-
dicting critical or non-critical labels for citation
contexts. For this, we experiment and compare
different methods, including rule-based and ma-
chine learning methods, to classify critical vs.
non-critical citation contexts. Our experiments
show that fine-tuning pretrained transformer
model RoBERTa achieved the highest perfor-
mance among all systems.

1 Introduction

In scientific papers, citations acknowledge the
sources and help the reader to find more informa-
tion about the citation context. Citations are also an
important indicator exploited to identify significant
publications in a specific scientific field (Aragón,
2013). They are used for different purposes, e.g.
referring to state of the art, to a specific method
or result, and they reflect how authors frame their
work and this diversity impacts future academics’
adoption (Jurgens et al., 2018).

According to Bordignon (2022), the study of
critical citation appears to give an applicable the-
oretical framework, making criticism a vital phe-
nomenon for scientific development. We believe

that classifying citation contexts into critical/non-
critical categories could be essential to down-
stream process, such as identifying scientific claims
or observing controversial papers.

Bordignon (2022) identifies three different func-
tions for Critical citation context : "to criticize,"
"to compare," and "to question" where :

• "to criticize" function refers when the citing
paper points out a weakness or a fault in the
cited paper. For instance, “X1 method did
not work well, although they reported 80%
accuracy in (Y1 and Y2, 2002).”

• "to compare" function refers to a link made
between two studies with the indication that
one research is superior to another, without
necessarily including one’s own work. One
must have the criticizing meaning in the ci-
tation contexts. For example, “(Y1 and Y2,
2008) outperformed (Y3 and Y4, 2007).”.

• "to question" function refers to a citation made
by the citing paper to raise concerns, doubts,
and uncertainty about the cited paper. For
instance, "Thus, the full model proposed by Y1
(2002) has remained empirically unproven."

There have been numerous researches on cita-
tion analysis in NLP, with for instance determining
citation sentiments (Athar, 2011; Liu, 2017). In
addition to citation sentiment, there have been re-
search to define citation function which refers to
the specific purpose a citation plays with respect
to the citing paper (Bakhti et al., 2018; Jurgens
et al., 2016; Pride et al., 2019; Yu et al., 2020).
These researches have been conducted to find the
real reason behind the citation. Nevertheless, how
citation might be utilized to point out criticism and
encourage correction have not been studied yet.

Given a set of citation contexts, our work aims
at determining critical ones using NLP methods.
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First, we present the construction process of the
corpus, which contains citation contexts annotated
with critical and non-critical labels. Then, we ex-
periment different methods to classify citation con-
texts into critical/non-critical labels using our con-
structed corpus. Indeed, we compare and discuss
rule-based methods and machine learning ones.

2 Related Works

In this section, we present different existing works
for citation analysis. Some of them are rule-based
methods, while others are based on machine learn-
ing methods.

Since 2000, several researches on automation
citation classification have been using rule-based
approaches (Garzone and Mercer, 2000; Nanba
et al., 2000; Pham and Hoffmann, 2003). The rule
creation process is generally composed of 2 steps.
In the first step, cue words/phrases are extracted
from dataset samples. In the second step, rules are
created based on the extracted cue words/phrases.
These rules are the bases to classify citation con-
texts. For instance, in (Avanço, 2020) a rule-based
method is used to identify negative or contradictory
citation contexts. The authors built CitaNeg corpus
(Table 1) and created functions (linguistic patterns)
grouped by category: 13 functions for weakness
category (WF), 5 functions for compare category
(CF), 4 functions for background category (BF),
6 functions for hedges category (HF) and 14 for
additional category (GF). However, only WF and
CF categories were used for evaluation giving a
precision of 0.72 and a recall of 0.69.

More recently, several approaches relying on
machine learning have been proposed. For exam-
ple, Teufel et al. (2006) used IBk, a form of K-
Nearest Neighbor (kNN), to classify citation con-
texts into 4 polarities (Weakness, Positive, Contrast
and Neutral) and obtained an f1-score of 0.61 us-
ing Athar corpus (Table 1). Jurgens et al., 2016,
2018 introduced a representative corpus contain-
ing nearly 2 000 citations annotated with 6 labels
(background, motivation, extension, use, contrast
or future) and reached an f1-score of 0.53 with a
Random Forest classifier on their data and a por-
tion of CFC (cf. Table 1). Raza et al. (2019)
conducted citation sentimental analysis and cita-
tion function analysis by experimenting six ma-
chine learning models (Naïve-Bayes, Support Vec-
tor Machine, Logistic Regression, Decision Tree,
K-Nearest Neighbors and Random Forest). Using

CFC corpus, the SVM model gave the best per-
formance with an f1-score of 0.88. Using deep
learning techniques, Nicholson et al. (2021) de-
veloped a smart citation index called scite, which
classifies citations based on their contexts. It in-
dicates whether the context mentions, supports or
contrasts the citation. Scite is trained on more than
880 million labeled citation contexts, but this data
is proprietary and not publicly available. Recently,
Karim et al. (2022) evaluated convolutional neural
network (CNN) for citation sentiment analysis us-
ing different pre-trained word embeddings such as
fastText and GloVe. With GloVe embeddings, their
CNN model obtained a precision of 0.94 on the
Athar corpus. Finally, Visser and Dunaiski (2022)
used the pre-trained transformer model RoBERTa
for citation sentimental analysis and obtained an
accuracy of 0.89 on Athar.

Table 1 regroups different existing citation con-
text corpora available to the community.

Type Name Size

Citation
sentiment

Athar (Athar, 2011) 8 736
Liu (Liu, 2017) 3 581
CitaNeg (Avanço,
2020)

19 309

Critical corpus 1 1 690

Citation
function

CFC (Teufel et al.,
2006)

2 829

Concit (Hernández
and Gómez, 2015)

2 195

IMS (Jochim and
Schütze, 2012)

2 008

DFKI (Dong and
Schäfer, 2011)

1 768

Table 1: Available citation context corpora ( the Size
column contains the number of citation contexts).

3 Experimental setup

We present our methods used for critical/non criti-
cal classification in section 3.1. Then, we describe
our corpus in section 3.2.

3.1 Methods

We experimented different classification methods
to predict critical/non-critical classes. Two rule-
based methods (RB and RB+) and 3 machine learn-
ing ones (LR, CNN and F-Roberta) were tested.

1Critical corpus is provided by LISIS and LIGM and will
be published soon
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• RB represents the rule-based method pro-
posed by (Avanço, 2020). It is considered
as a baseline in this work.

• RB+ represents the improved version of RB
method after analyzing and selecting only the
rule functions corresponding to the definition
of critical citation in Bordignon (2022).

• LR refers to Logistic Regression using Tf-Idf
for n-grams in range of 1 and 3 grams

• CNN represents an inspiration of Karim et al.
(2022) using CNN with Glove embeddings.

• F-RoBERTa represents a Fine-tuning
RoBERTa (Visser and Dunaiski, 2022).In this
model, we assigned the class weights of the
training set to the model during training in
order to deal with imbalance dataset2.

3.2 Corpus
In order to build a corpus containing critical and
non-critical citation contexts, we used available ex-
isting annotated datasets presented in Table 1. For
the critical class, we used Critical corpus which
contains 1 690 critical citation contexts. The non-
critical citation contexts have been selected from
CitaNeg dataset based on the definitions of citation
functions. In fact, we kept only citation functions
that don’t contain critical meaning in their defi-
nitions. Our final corpus contains 2 413 citation
contexts: 1 464 critical citation contexts and 949
non-critical citation contexts. The dataset was ran-
domly split into training and test sets of 75% and
25%, respectively. Table 4 shows the number of
citation contexts in the training and test sets.

Train Test Overall
Critical 1098 366

2643
Non-critical 711 238

Table 2: Train and test sets with numbers of citation
contexts

4 Results and Discussion

Table 3 exhibits the performances of the models on
the test set. It can be seen that F-RoBERTa outper-
formed all other models. Foremost, we observe that
machine learning based approaches systematically
outperform rule-based ones.

The confusion matrix in Figure 1 shows that the
rule-based system RB+ has some difficulties in the
prediction of critical class (119 are misclassified

2We tested RoBERTa model without/with class weights.
We reported in this paper the best results obtained with
RobERTa with class weights assignment (F-RoBERTa)

(a) F-RoBERTa (b) RB+

(c) CNN (d) LR

Figure 1: Confusion matrix of the methods

among 366 critical citation contexts). To improve
the quality of the RB+ system, we need to add
more rules to identify critical citation contexts. For
instance, we could analyze in depth the grammar
or cue words/phrases to define more patterns for
critical citation contexts. We could also analyze
the concept "to question" of critical citation context
that has not been taken into account by our rule-
based system RB+ yet.

If we take a look at confusion matrix of LR and
CNN systems in Figure 1d and Figure 1c respec-
tively, the number of misclassified non-critical ex-
amples is greater than the number of misclassified
critical ones. It could be explained by imbalanced
training set. Indeed, critical class represents around
60% of the training set. Being aware of imbalanced
training set, we might enhance CNN and LR perfor-
mances by assigning class weights while training.
However, the CNN model does not exhibits a strong
bias towards a particular class, so it is likely that
a class weighting strategy would have a marginal
impact on the performance.

F-RoBERTa (Figure 1a) predicts well non-
critical examples, only 1 non-critical and 3
critical examples are misclassified. This could
be explained by the class weights’ assignment
while training F-RoBERTa in order to deal with
class imbalance. To go further, we analysed these
4 misclassified examples. One of them is “It is
based on modal logic and owes much to the work
of Blackburn 1994.” has been classified critical
while it should not. If we check out the linguistic
aspect of the citation context above, the use of the
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Approach Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

Rule-based
RB 73.50 86.31 67.02 75.46
RB+ 74.33 86.30 68.66 76.47

Machine Learning
LR 80.00 75.84 97.81 85.44
CNN 91.00 88.93 87.81 88.37
F-RoBERTa 98.84 98.73 98.31 98.52

Table 3: Evaluation results of experimented methods

word “owes” may reflect critical citation aspect.
But, we still can argue if “owes” here did not be
used to criticize the cited paper, it seems like an
incomplete context. In this case, we might need
more investigation of corpus. The misclassified
critical citation contexts are reported in Table 4.
Such miss-classification by F-RoBERTa could be
explained by the existence of positive and negative
words in the same citation context. For example
in Doc_2, “perform very well” is positive and

“dramatically fails” is negative. To go further, we
will use attention mechanism to determine relevant
words participating in the prediction.

Critical citation contexts
Doc_1: The morphological processing in Pair-
Class (Minnen et al., 2001) is more sophisti-
cated than in Turney (2006).
Doc_2: In particular, we showed that using a
general purpose machine translation (MT) sys-
tem such as SYSTRAN, or a general purpose
parallel corpus - both of which perform very
well for news stories (Peters, 2003) - dramati-
cally fails in the medical domain.
Doc_3: In particular, these problems affect the
processing of predicate argument structures an-
notated in PropBank (Kingsbury and Palmer,
2002) or FrameNet (Fillmore, 1982).

Table 4: Misclassified critical examples by F-RoBERTa

5 Conclusion and Future work

In this paper, we were interested in identifying crit-
ical citation contexts in scientific papers. We pro-
posed and tested five methods for citation context
classification into critical/non-critical labels. The
methods RB and RB+ were rule-based. The three
others, LR, CNN and F-RoBERTa, were machine
learning based. We also built a corpus to evalu-
ate and compare these methods. Our task-specific
corpus was composed of 2643 citation contexts la-
beled as being critical or non-critical.

Machine learning based systems outperformed rule-
based ones. The best system F-RoBERTa gave
98.84% of accuracy and 98.52% of F1-score. The
performances could be explained by the use of
transfer learning in F-RoBERTa. Class weight
assignment while training might also explain the
good accuracy of F-RoBERTa’s performance com-
pared to other systems, since our training set was
imbalanced.

Some improvements can be made to the pro-
posed systems. In particular, we will assign class
weights while model training to solve imbalanced
datasets. Moreover, we could operate the data it-
self (and not the model) to balance the corpus by
applying sampling methods either oversampling
or undersampling. Dealing with scientific docu-
ments, It could be crucial to train our best system
F-RoBERTa, initially trained on standard corpora,
on scientific texts by using for example SciBERT
embeddings (Beltagy et al., 2019). Another per-
spective consists on expanding corpus. To go fur-
ther, we would extend this work of identifying crit-
ical citation contexts in NLP field and study field
portability. Indeed, we would identify critical cita-
tions in other fields, such as biology or medicine.
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Abstract

Communicative functions are an important
rhetorical feature of scientific writing. Sen-
tence embeddings that contain such features
are highly valuable for the argumentative anal-
ysis of scientific documents, with applications
in document alignment, recommendation, and
academic writing assistance. Moreover, em-
beddings can provide a possible solution to
the open-set problem, where models need to
generalize to new communicative functions un-
seen at training time. However, existing sen-
tence representation models are not suited for
detecting functional similarity since they only
consider lexical or semantic similarities. To
remedy this, we propose a combined approach
of distant supervision and metric learning to
make a representation model more aware of the
functional part of a sentence. We first lever-
age an existing academic phrase database to
label sentences automatically with their func-
tions. Then, we train an embedding model to
capture similarities and dissimilarities from a
rhetorical perspective. The experimental results
demonstrate that the embeddings obtained from
our model are more advantageous than exist-
ing models when retrieving functionally similar
sentences. We also provide an extensive analy-
sis of the performance differences between five
metric learning objectives, revealing that tra-
ditional methods (e.g., softmax cross-entropy
loss and triplet loss) outperform state-of-the-art
techniques.1

1 Introduction

Scientific articles explain new ideas or discoveries
and attempt to convince readers of their validity
and importance. A key characteristic that distin-
guishes these articles from other texts is their spe-
cific rhetorical structures. The most well-known
example is the main section of a paper, organized

1Our code, data and trained models are publicly available
at https://github.com/kaisugi/rhetorical_
aspect_embeddings

Lexical similarity

Functional similarity

So far, however, there has been little discussion
about the explainability in machine learning.

In the following section, we will introduce an

explainable machine learning framework.

So far, however, there has been little discussion
about the explainability in machine learning.

Up to now, little attention has been paid to neural
dependency parsing.

(a)

(b)

(a)

(c)

Figure 1: The upper panel shows an example of lexically
similar sentences. Sentence (a) conveys the commu-
nicative function of “showing lack of previous work”,
whereas (b) conveys a different function, “showing the
outline of the paper”. In contrast, the lower panel shows
a pair of functionally similar sentences.

as Introduction, Methods, Results, and Discussion.
Several attempts have also been made to identify
argumentative roles within a section (Swales, 1990;
Teufel et al., 1999; Lauscher et al., 2018). For ex-
ample, a sentence in a paper beginning with “little
attention has been paid to ...” shows the background
of the research, or more specifically, the lack of
previous research on that topic. In our work, we
collectively refer to this rhetorical aspect of scien-
tific writing as a communicative function, following
Kanoksilapatham (2005).

Although previous studies have mainly focused
on classifying sentences into a predefined set of
communicative-function labels (Hirohata et al.,
2008; Fisas et al., 2015; Cohan et al., 2019; Brack
et al., 2022), we shift the focus to developing a
sentence representation model for communicative
functions. In other words, we consider sentence
embeddings that can handle functional similar-
ity, as opposed to lexical or semantic similarities
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(Figure 1). There are two main reasons to prefer
this approach: (i) The embedding model serves as
an off-the-shelf tool to discover the most similar
sentences to a query from a rhetorical perspective,
which is beneficial for practical applications, in-
cluding scientific document alignment (Zhou et al.,
2020) and aspect-based scientific paper recommen-
dation (Kobayashi et al., 2018; Chan et al., 2018).
Such models can also contribute to writing assis-
tance systems (Liu et al., 2016; Shioda et al., 2017)
by suggesting sentences that have the same rhetor-
ical feature as a query. (ii) Embeddings obtained
from neural networks have shown the generaliza-
tion ability to deal with the cases in which train-
ing and test sets do not share the same labels (i.e.,
open-set settings) (Musgrave et al., 2020; Geng
et al., 2021). We argue that models for scholarly
document processing (SDP) should perform well
in open-set settings and generalize to unseen com-
municative functions, because there is no prepared
list that covers all functional categories used in
scientific articles.

In this paper, we introduce a new method
for training a sentence representation model
to capture functional similarity. We first ad-
dress the scarcity of fine-grained datasets with
communicative-function labels. Inspired by the
success of distant supervision on low-resource nat-
ural language processing (Hedderich et al., 2021),
we retrieve sentences from the Semantic Scholar
Open Research Corpus (S2ORC) (Lo et al., 2020)
and annotate labels based on simple text matching
using an academic phrase dictionary, Academic
Phrasebank (Davis and Morley, 2018). The result-
ing dataset, dubbed the Communicative-Function-
labeled Semantic Scholar Sentence Dataset (CFS3),
contains 100,016 sentences, classified into 77 func-
tion labels. We use this dataset to fine-tune SciB-
ERT (Beltagy et al., 2019) with a metric learning
loss so that functionally similar sentences come
close together and dissimilar sentences are sepa-
rated. As several recent studies (Musgrave et al.,
2020; Boudiaf et al., 2020; Coria et al., 2020) have
claimed that the performance of conventional met-
ric learning losses (e.g., softmax cross-entropy loss)
is comparable to or even better than that of state-
of-the-art methods (e.g., ArcFace loss (Deng et al.,
2019)), we also investigate whether these findings
are valid in our settings.

We evaluate the trained model, named SCI-

TORICSBERT2, on sentence retrieval tasks de-
signed to assess the rhetorical aspects of sentence
representations. The experimental results show
that our model is more suitable for retrieving func-
tionally similar sentences than existing sentence
representation models. We also observe that, in
most cases, softmax cross-entropy loss yields bet-
ter performance than other state-of-the-art methods.
Furthermore, we train the same model using a lim-
ited number of communicative-function labels to
better understand the generalizability of the trained
models in open-set settings. The results reveal that
the performance gain of conventional methods be-
comes even larger when the number of labels used
for training becomes smaller.

Our contributions are as follows:

• We release CFS3, a distantly-labeled sentence
dataset that includes 100K+ samples with 77
communicative-function labels.

• We present sentence embeddings that focus
on the functional part of a sentence. Our
model outperforms existing models in retriev-
ing functionally similar sentences.

• We empirically demonstrate that the state-of-
the-art metric learning methods do not im-
prove performance on learning task-specific
sentence embeddings.

2 Related Work

2.1 Argumentative Analysis of Scientific Texts
There is a large body of literature on assessing the
argumentative status of scientific articles. Some
notable schemes include move analysis (Swales,
1990) and argumentative zoning (Teufel et al.,
1999). Another area of study is the annotation of
communicative-function labels in abstracts using
structured abstracts (Dernoncourt and Lee, 2017) or
through crowdsourcing (Cohan et al., 2019; Huang
et al., 2020).

Machine learning algorithms, such as condi-
tional random fields (Hirohata et al., 2008), logis-
tic regression, and support vector machines (Fisas
et al., 2015), have been used to automatically clas-
sify sentences into function labels. Recently, SciB-
ERT, a pre-trained language model on scientific
texts, has pushed the limits of the classification
accuracy (Cohan et al., 2019; Huang et al., 2020).

2The term SCITORICS was coined by Lauscher et al. (2018)
to represent the rhetorical aspects of scientific writing.
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2.2 Sentence Representation Models

Work on sentence embeddings can be divided into
unsupervised and supervised methods. Conven-
tional unsupervised models produce sentence em-
beddings by averaging each word or subword em-
bedding from static or contextualized language
models. This approach allows us to assess the
lexical similarity of two sentences based on the
distributional hypothesis (Harris, 1954). Recent su-
pervised models trained on natural language infer-
ence (NLI) datasets (Conneau et al., 2017; Reimers
and Gurevych, 2019; Gao et al., 2021) have shown
significant improvements in semantic textual simi-
larity (STS) tasks. These models can compute the
semantic similarity of two sentences more faith-
fully than unsupervised models.

To the best of our knowledge, Iwatsuki et al.
(2022) is the only study that investigated sentence
representations for functional similarity. Their ap-
proach assigns different weights to word embed-
dings in the functional and non-functional parts of
a sentence, whereas our proposed model eliminates
the need to identify the functional part in advance.

2.3 Metric Learning

Metric learning (Kaya and Bilge, 2019) aims to
learn a new mapping function from samples to vec-
tors to reduce the distance between similar samples
while increasing the distance between dissimilar
samples. This training procedure is also called
contrastive learning when the training data are an-
notated with pairwise labels (positive and negative
pairs denote similar and dissimilar samples, respec-
tively).

Triplet loss (or triplet margin loss) is one of the
most studied learning methods. Neural networks
associated with a triplet loss are known as “triplet
networks”, and they have been used in several ap-
plications, such as face recognition (Schroff et al.,
2015), person re-identification (Hermans et al.,
2017), sentence-level similarity learning (Ein Dor
et al., 2018; Reimers and Gurevych, 2019), and
document-level similarity learning (Cohan et al.,
2020). Another classical approach is softmax cross-
entropy loss. Although this loss is typically chosen
for classification tasks, several studies have used
it to train embedding models (Sun et al., 2014;
Boudiaf et al., 2020).

Recently, much research has been devoted to
designing loss functions to learn effective visual
representations (Musgrave et al., 2020). These loss

functions have been successfully applied to learn-
ing textual information, such as sentences (Yan
et al., 2021; Giorgi et al., 2021; Kim et al., 2021;
Gao et al., 2021), dialogues (Liu et al., 2021a), so-
cial media behaviors (Andrews and Bishop, 2019),
and biomedical entities (Liu et al., 2021b). How-
ever, some studies have also shown that state-of-
the-art loss functions do not necessarily outperform
classical methods (Musgrave et al., 2020; Boudiaf
et al., 2020; Coria et al., 2020).

3 Methods

Our approach can be roughly divided into two parts:
phrase-guided distant supervision (Sections 3.1 and
3.2) and metric learning (Section 3.3), as illustrated
in Figure 2.

3.1 Acquisition of Labeled N-gram List

Academic Phrasebank3 is an online public database
of generic academic phrases (Davis and Morley,
2018). Based on the observation that specific (for-
mulaic) phrases serve as key markers for commu-
nicative functions (Swales, 1990), the database
identifies 80 functions according to the main sec-
tions of a paper and samples approximately 20
phrases for each.

Our motivation is to utilize Academic Phrase-
bank for annotating sentences with communicative
functions. Prior research has also leveraged this
database to label sentences (Iwatsuki and Aizawa,
2021). However, their study relied on manual
phrase extraction and annotation to maintain the
quality of the labeling process. In contrast, we pur-
sue a fully automated approach to create a larger,
finer-grained dataset.

As the number of phrases in Academic Phrase-
bank is relatively small, we first perform data aug-
mentation on the entire database using PPDB 2.0
(Pavlick et al., 2015) by randomly paraphrasing one
noun, adjective, or adverb in a phrase. This results
in a total of 30,505 phrases, which is approximately
20 times larger than the original.

The augmented phrases themselves are unsuit-
able for annotating sentences, because most of
them are too lengthy to include specific content
words that are irrelevant to communicative func-
tions (e.g., “metabolism” in the phrase “X plays
a vital role in the metabolism of ...”). We there-
fore extract every n-gram from the phrases. In

3https://www.phrasebank.manchester.ac.
uk/
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1. Phrase-guided distant supervision

Academic Phrasebank (augmented w/ PPDB)

01: Establishing the importance of
the topic for the world or society 

X plays a vital role in the
metabolism of …
In the new global economy, X has
become a central issue for …

labeled n-gram list

(plays, a, vital, role, in)

(a, vital, role, in, the)

(vital, role, in, the, metabolism) 

(role, in, the, metabolism, of)

...

(has, become, a, central, issue)

...

01

sentences in S2ORC

Serine hydroxymethyltransferase 2
(SHMT2) plays a vital role in one-
carbon metabolism and drives
colorectal carcinogenesis.

...

In spite of noticeable progress in
the uptake of maternal health care
services, inequity has become a
central issue in Bangladesh in the
last decade [20, 24, 25].

...

(blue: sentence root)

01

01

sentence embedding space

01

02

03

2. Metric learning

01

Serine hydroxymethyltransferase 2
(SHMT2) plays a vital role in one-
carbon metabolism and drives
colorectal carcinogenesis.

In spite of noticeable progress in
the uptake of maternal health care
services, inequity has become a
central issue in Bangladesh in the
last decade [20, 24, 25].

Figure 2: Overview of a combined approach of phrase-guided distant supervision and metric learning.

this study, we set n = 5.4 We exclude from the
list the lemmatized n-grams that have more than
one label. As a result, we obtain 68,242 pairs of
n-grams and their corresponding function labels.
Although some of the n-grams (e.g., “vital role in
the metabolism”) still include content words, we
find that they are negligible because such n-grams
rarely retrieve sentences in Section 3.2.

3.2 Automatic Annotation of Sentences

We use the S2ORC (Lo et al., 2020) dataset to
draw example sentences that contain specific n-
grams. First, we randomly sample approximately
1M papers from S2ORC. Some are excluded during
the preprocessing phase (see Appendix A for de-
tails). Then, we split each paper’s abstract and body
text into sentences using the NLTK tokenizer (Bird
et al., 2009). This process produces approximately
19M sentences. Subsequently, for each labeled n-
grams in Section 3.1, we inherit the same label for
a sentence that satisfies the following constraints:
(i) the sentence includes the n-gram, and (ii) the
n-gram includes a root word in the dependency
tree. The latter condition is derived from the obser-

4We empirically determine that n = 5 is optimal. As we
observe, for the case of n < 5, n-grams (e.g., “has been shown
to”) tend to be too generic to convey a specific communicative
function. For the case of n > 5, on the other hand, n-grams
often fail to retrieve any sentence.

vation that the functional part of a sentence often
contains a sentence root (Iwatsuki et al., 2022). We
use the spaCy (Honnibal et al., 2020) dependency
parser to confirm whether the n-gram includes the
root. This automatic annotation provides us with
100,016 labeled sentences.

Of the 80 function classes in Academic Phrase-
bank, three classes are assigned to no sentence;
thus, the sentences are categorized into 77 classes.
We name our dataset the Communicative-Function-
labeled Semantic Scholar Sentence Dataset (CFS3).
Table 1 contains randomly selected samples from
CFS3. We find that the automatically-annotated
sentences have expected function labels overall,
except that, in the third sentence, the phrase “is in-
teresting to note that” is not necessarily connected
to the label “restating the result or one of several
results”, causing an annotation error.

3.3 Training with Metric Learning Loss
We train our embedding model using a metric learn-
ing framework to create a vector space in which
sentences with similar functions have smaller dis-
tances, and those with different functions have
longer ones. This trained model is referred to as
SCITORICSBERT.

We begin from the pre-trained checkpoint of
SciBERT (Beltagy et al., 2019) and take 768-
dimensional embeddings from the [CLS] token
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in the last layer as the output. Then, we train the
model with one of the five metric learning objec-
tives mentioned below (the first two losses are con-
ventional methods, while the rest are state-of-the-
art methods that have been initially introduced in
computer vision but also applied to natural lan-
guage processing):

Softmax Cross-entropy Loss Let xi ∈ Rd de-
notes the output embeddings of the i-th sample,
which belongs to the yi-th communicative-function
label (1 ≤ yi ≤ n). Here, d is set to 768. We then
minimize the following loss function:

L1 = − 1

N

N∑

i=1

log
exp(W⊤

yixi + byi)∑n
j=1 exp(W

⊤
j xi + bj)

,

(1)
where Wj is the j-th column vector of the linear
matrix, W ∈ Rd×n, and bj is the j-th element of
the bias term, b ∈ Rn. N denotes the batch size.

Triplet Loss Triplets {ai, pi, ni}Ni=1 are col-
lected from a training batch, provided that pi has
the same label as ai, and that ni has a different
label.5 We denote by xa

i ,x
p
i ,x

n
i ∈ Rd the corre-

sponding model outputs. Triplet loss is formulated
as follows:

L2 =
1

K

N∑

i=1

max (∥xa
i − xp

i ∥2 − ∥xa
i − xn

i ∥2 +m, 0) ,

(2)

where margin m denotes a hyperparameter, and K
denotes the number of cases in which ∥xa

i −xp
i ∥2−

∥xa
i − xn

i ∥2 +m > 0.

ArcFace Loss ArcFace loss (or additive angu-
lar margin loss) (Deng et al., 2019; Andrews and
Bishop, 2019) modifies the softmax cross-entropy
loss to make the learned embeddings more discrim-
inative between classes.

We define xi ∈ Rd and Wj ∈ Rd (1 ≤ j ≤ n),
which is similar to softmax cross-entropy loss. Let

θj = arccos

(
W⊤

j xi

∥Wj∥2∥xi∥2

)
be the angle between

the output vector and the j-th column vector of the
weight matrix. Then, ArcFace loss is defined as

5In our work, all possible triplets are used for training
without negative sampling.

Optical Flow: The estimation of optical flow
is a classic problem in computer vision [18, 24] . (02:
Establishing the importance of the topic for the disci-
pline)

Initial and final nutrient concentrations, and significance
between time points within each treatment group (t-test,
p < 0.05) are shown in Figure 1 . (48: Referring to data
in a table or chart)

It is interesting to note that one obtains Re J = 0 if cos
0̆3b1 e = 0 and U 0 is tri-bimaximal (t a = 1, (63: Restat-
ing the result or one of several results)

Method: A total of 104 participants (44 SZ patients
and 60 age-and gender-matched healthy controls (HC))
were recruited for this study. (36: Describing the char-
acteristics of the sample)

It has been suggested that dietary Zn is mostly absorbed
in the duodenum, ileum, and jejunum by active transport
through ZIP4 [48] . (22: Previous research: what has
been established or proposed)

It has been suggested that bacteria may use hemolysin to
obtain nutrients from the host cells (e.g., irons released
from lysed red blood cells) [35] . (22: Previous research:
what has been established or proposed)

This finding is consistent with other analyses, indicating
that Tu-138 cells are more sensitive to E2F-1-induced
apoptosis than are Tu-167 cells. (65: Comparing the
result: supporting previous findings)

The modified QPM and the Delta method
were used to analyse the data for each calendar
month. (47: Referring back to the research aims or
procedures)

It has been argued that the purposeful inclusion of social
work values in social work research is one of its distin-
guishing features (Shaw et al., 2006) . (22: Previous
research: what has been established or proposed)

Statistical analysis was performed using unpaired two-
tailed Student’s t-test where *P<0.05; **P<0.01. (45:
Describing the process: statistical procedures)

Table 1: Ten randomly-selected examples from the
CFS3 dataset. Function labels and corresponding n-
grams are shown in bold and underlined, respectively.

follows:

L3 =− 1

N

N∑

i=1

log
exp(s cos θ′yj )∑n
j=1 exp(s cos θ

′
j)
,

s.t. θ′j =

{
θj +m (j = yi)

θj (j ̸= yi)
,

(3)

where angular margin m and scale s are hyperpa-
rameters.

MS Loss Multi-similarity (MS) loss (Wang et al.,
2019; Liu et al., 2021b) considers multiple types of
similarities for a pair, aiming to generalize previous
loss functions.

Let S ∈ RN×N be a similarity matrix whose
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Datasets #sentences #labels

CF-labeled

Introduction 773 11
Methods 468 6
Results 521 6
Discussion 781 9

CSAbstruct 1,349 5
PubMed-RCT 30,135 5

Table 2: Dataset statistics.

(i, j)-th element satisfies Sij =
x⊤
i xj

∥xi∥2∥xj∥2 , where
xi is the i-th model output in a N -sized training
batch.

We regard a pair of two in-batch samples with
the same label to be positive, and otherwise neg-
ative. We denote the sets of indices of positive
and negative pairs by P and N , respectively. The
training objective is formulated as follows:

L4 =
1

N

N∑

i=1

{
1

α
log

[
1 +

N∑

j=1,
(i,j)∈P

exp(−α(Sij − λ))
]

+
1

β
log

[
1 +

N∑

j=1,
(i,j)∈N

exp(β(Sij − λ))
]}

,

(4)

where α, β, and λ are hyperparameters.

NT-Xent Loss Normalized temperature-scaled
cross-entropy (NT-Xent) loss (Chen et al., 2020;
Giorgi et al., 2021) takes a form similar to softmax
cross-entropy loss, but it differs in that it maximizes
the similarity of a positive pair.

We define S ∈ RN×N ,P,N in the same manner
as MS loss. NT-Xent loss can be expressed as
follows:

L5 = − 1

|P|
∑

(i,j)∈P
log

exp(Sij/T )

exp(Sij/T ) +

N∑

k=1,
(i,k)∈N

exp(Sik/T )

,

(5)

where temperature T is a hyperparameter.

4 Experiments

4.1 Settings
Task Description We conduct sentence retrieval
tasks on communicative-function labeled datasets
to see how successfully SCITORICSBERT contains
rhetorical features. This task begins by converting
all the sentences in a dataset into embeddings using
a given representation model. We select one sen-
tence as a query and regard the others as references.

We then retrieve the nearest neighbors of the query
and evaluate whether the extracted sentences have
the same label as the query.6 This procedure is
repeated for the entire dataset, and the performance
scores are averaged.

Evaluation Datasets We employ three datasets:
the CF-labeled sentence dataset (Iwatsuki and
Aizawa, 2021), CSAbstruct (Cohan et al., 2019),
and PubMed-RCT (Dernoncourt and Lee, 2017).
The CF-labeled sentence dataset is manually anno-
tated with communicative-function labels for each
section of papers from multiple disciplines. The
other two datasets collect sentences from the ab-
stracts of the computer science and biomedical do-
mains, respectively. We report the dataset statistics
in Table 2. Note that with CSAbstruct and PubMed-
RCT, sentences in scientific abstracts are classified
into one of the five categories {BACKGROUND,
OBJECTIVE, METHOD, RESULT, CONCLUSION

(OTHER)}, the granularity of which is much
coarser than that of the CF-labeled sentence dataset
(32 labels total).

Evaluation Metrics We use two evaluation met-
rics: precision at 1 (P@1) and mean average pre-
cision at R (MAP@R) (Musgrave et al., 2020).
Whereas P@1 focuses on the top retrieval result,
MAP@R measures the overall retrieval quality.7

For SCITORICSBERT, we report the average re-
sults from five trained models with different ran-
dom seeds.

Baselines We compare SCITORICSBERT with
unsupervised language models, including aver-
age GloVe embeddings (Pennington et al., 2014),
BERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019). Other baselines include domain-
specific language models, such as SciBERT (Belt-
agy et al., 2019) and PubMedBERT (Gu et al.,
2020).8 We also compare SCITORICSBERT with
SRoBERTa (Reimers and Gurevych, 2019) and (su-
pervised) SimCSE-RoBERTa (Gao et al., 2021),
which are both fine-tuned RoBERTa models on
NLI datasets.

Training Details To train SCITORICSBERT, we
split our CFS3 dataset into a training and validation
set at a ratio of 4:1. As the dataset is imbalanced,

6All the embeddings are L2 normalized beforehand.
7R denotes the total number of references with the same

label as the query.
8Regarding transformer-based unsupervised models, we

take the average of their last hidden layers.
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Introduction Methods Results Discussion Avg.

Model P@1 MAP P@1 MAP P@1 MAP P@1 MAP P@1 MAP

GloVe avg. .391 .073 .462 .089 .484 .125 .325 .058 .415 .086
BERTbase avg. .523 .099 .434 .099 .511 .140 .361 .063 .457 .100
RoBERTabase avg. .507 .106 .451 .102 .557 .152 .392 .068 .477 .107
SciBERT avg. .604 .151 .526 .117 .612 .156 .483 .093 .556 .129
PubMedBERT avg. .547 .134 .521 .108 .570 .140 .435 .078 .518 .115
SRoBERTabase .422 .099 .325 .075 .501 .148 .335 .072 .396 .099
SimCSE-RoBERTabase .551 .165 .429 .095 .511 .162 .403 .088 .474 .128

SCITORICSBERT (Softmax loss) .857 .537 .765 .375 .866 .501 .741 .334 .807 .437
SCITORICSBERT (Triplet loss) .858 .514 .776 .368 .855 .494 .734 .329 .806 .426
SCITORICSBERT (ArcFace loss) .840 .513 .741 .378 .845 .462 .708 .301 .783 .414
SCITORICSBERT (MS loss) .829 .485 .721 .354 .832 .475 .684 .314 .767 .407
SCITORICSBERT (NT-Xent loss) .839 .511 .741 .385 .838 .494 .708 .312 .781 .425

Table 3: Precision@1 and MAP@R scores for sentence retrieval tasks on the CF-labeled sentence dataset. The
best-performing scores are highlighted in bold. The underlined scores are the highest among the baseline scores.

CS PubMed

Model P@1 MAP P@1 MAP

GloVe avg. .445 .124 .627 .167
BERT avg. .553 .166 .681 .196
RoBERTa avg. .523 .159 .681 .185
SciBERT avg. .563 .169 .700 .204
PubMedBERT avg. .553 .169 .694 .213
SRoBERTa .480 .136 .566 .143
SimCSE-RoBERTa .529 .164 .646 .187

SCITORICSBERT

(Softmax loss) .616 .226 .761 .325
(Triplet loss) .599 .214 .760 .324
(ArcFace loss) .576 .205 .748 .307
(MS loss) .583 .191 .739 .300
(NT-Xent loss) .591 .216 .752 .324

Table 4: Precision@1 and MAP@R scores in sentence
retrieval tasks on CSAbstruct and PubMed-RCT.

we follow stratified random sampling to ensure that
both sets have similar label distributions. We mea-
sure the MAP@R score in the validation dataset for
each epoch and select the best-performing model.
The maximum number of epochs is set to five. See
Appendix B for further detailed configurations.

4.2 Overall Results
We present the evaluation results for the CF-labeled
sentence dataset in Table 3 and the other two
datasets in Table 4.

Among the baseline models, SciBERT and Pub-
MedBERT achieve the highest average scores.
These domain-specific models consistently out-
perform BERT, indicating that pre-training on
scientific texts provides distributional functions
(i.e., words that occur in similar contexts have
similar functions). As for supervised models,

both SRoBERTa and SimCSE-RoBERTa perform
poorly, sometimes even worse than RoBERTa. This
suggests that semantic similarity does not help com-
pare sentences from a rhetorical perspective.

Turning to our proposed method, we find that
SCITORICSBERT yields substantial improvements
over the baselines in all the datasets. On the CF-
labeled sentence dataset, the model achieves ap-
proximately 0.25 points gain in P@1 and 0.30
points gain in MAP@R over the best baseline. This
result is not surprising because the labels in the CF-
labeled sentence dataset are similar to those in our
CFS3. More importantly, SCITORICSBERT also
outperforms on CSAbstruct and PubMed-RCT, al-
though these datasets are generated from abstracts
and are thus annotated with more coarse-grained
function labels than CFS3.

Regarding the metric learning loss, there is no
clear evidence that state-of-the-art methods are
more competitive than conventional methods. Al-
though triplet and NT-Xent losses achieve slightly
better performance on some subsets of the CF-
labeled sentence dataset, softmax cross-entropy
loss outperforms all other methods in CSAbstruct
and PubMed-RCT.

To illustrate the efficacy of our method, we com-
pare the sentences retrieved by SciBERT and SC-
ITORICSBERT on the Introduction subset of the
CF-labeled sentence dataset in Table 5. As the ex-
amples show, SCITORICSBERT successfully sug-
gests similar sentences based on the functional part
of the query sentence. Additional examples are
presented in Appendices C and D.
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Query sentence The main question addressed in this paper concerns whether it is possible to
achieve a comparable or even better accuracy using just a small and non-redundant
set of subtrees.

(Query function) (Showing the outline of the paper)

SciBERT avg. #1 The main challenge is the search problem, which is to find an optimal parse tree
among all that can be constructed with any word choice and order from the set of
input words.

✓ #2 Another issue addressed in this paper is automatic construction of a lexicon for
verbs related to activities and events.

#3 Thus, the aim of this paper is to find an appropriate level of comparison for the
combinatorial properties of music and language, ideally, in a way that is independent
of controversies specific to one or the other field.

SCITORICSBERT (ours) ✓ #1 The third issue addressed in this paper concerns the nature of the category to be
formed.

✓ #2 The problem addressed in this paper is how to model and capture temporal contexts
and how to enhance NED with this novel asset.

✓ #3 Another issue addressed in this paper is automatic construction of a lexicon for
verbs related to activities and events.

Query sentence Second, it remains unclear under which circumstances higher inertia of positive
emotions (PE) is maladaptive.

(Query function) (Showing limitation or lack of past work)

SciBERT avg. #1 However, the notion of automaticity has been challenged by subsequent studies.

#2 Consequently, narrowing down which constructs are tied to ego depletion will help in
solving the current controversy surrounding the effect.

✓ #3 Currently, little is known about how auditory distraction impacts upon metacognitive
regulation of memory responses as captured by the [CITATION] framework.

SCITORICSBERT (ours) ✓ #1 However, despite the success of NNLMs on large datasets ([CITATION], [CITA-
TION], [CITATION]), it remains unclear whether their advantages transfer to
scenarios with extremely limited amounts of data.

✓ #2 It remains unclear whether similar enhancements in creativity can be observed if
negatively arousing music is used.

✓ #3 However, the molecular mechanism of NTP-induced cancer cell death remains
unclear.

Table 5: Examples of top-3 sentences retrieved by SciBERT and SCITORICSBERT. ✓ stands for the same function
label as the query. For ease of comparison, we show phrases that appear to accord with the function in bold.

4.3 Generalizability Analysis

We now investigate whether SCITORICSBERT gen-
eralizes across scientific documents or only memo-
rizes specific phrasal patterns that accord with the
communicative functions in our CFS3 dataset. We
randomly sample 10, 20, or 40 of the 77 function
labels in CFS3, train the model using only those
data, and measure the average P@1 and MAP@R
scores on the CF-labeled sentence dataset.9 We
hypothesize that models that have good generaliz-
ability can successfully retrieve similar sentences
when trained on a portion of CFS3.

The results are shown in Figures 3 and 4. We see
that all the models show strong performance over

9To align the number of training samples, we vary the
maximum training epoch in inverse proportion to the number
of training labels. We report the average results from five
trained models with different training labels and random seeds.

the best baseline, even if they are trained with only
ten labels. This suggests that SCITORICSBERT
can, to some extent, handle functional similarity
in general. We also observe that P@1 scores keep
higher values than MAP@R when training labels
are reduced, indicating that the model uses clues
to find the most similar sentence, which is easy to
learn and generalizes well.

Notably, conventional softmax cross-entropy
and triplet losses perform even better than the other
methods when the number of training labels de-
creases. This contradicts our expectation as the
other methods have achieved state-of-the-art results
on the open-set image recognition tasks, where
training and test sets do not share the same labels.
One possible explanation is that the number of
labels in our CFS3 is too small to train state-of-
the-art methods effectively, considering that those
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Figure 3: Effect of the number of classes on Preci-
sion@1 scores in the CF-labeled sentence dataset.
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Figure 4: Effect of the number of classes on MAP@R
scores in the CF-labeled sentence dataset.

methods are usually trained on a large-scale face
recognition dataset containing thousands or mil-
lions of labels (e.g., the MS1MV2 dataset (Deng
et al., 2019) contains 85K labels).

5 Conclusions and Future Work

This paper presents SCITORICSBERT, a sentence
representation model that recognizes the rhetor-
ical aspects of scientific writing. The proposed
model achieves more successful results than exist-
ing representation models in retrieving functionally
similar sentences. We also provide empirical evi-
dence that softmax cross-entropy loss is a strong
baseline for learning task-specific sentence embed-
dings, which has practical implications for other
studies on representation learning.

Future work should focus on improving our train-
ing methods using hard negatives (e.g., functionally
dissimilar but lexically similar samples) and inves-

tigating our model in downstream applications.
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A Preprocessing in Dataset Construction

We conduct preprocessing before extracting texts
from the S2ORC dataset. This phase proceeds
in three steps. First, we exclude papers that lack
venue or journal information in their metadata.
Second, we exclude papers that do not contain
body texts. Finally, we remove papers that are
collected in one of the following corpora: ACL
anthology, Molecules, Oncotarget, and Frontiers
in Psychology. These four corpora are also used
in the CF-labeled sentence dataset (Iwatsuki and
Aizawa, 2021); thus, we consider that including
them could cause data leakage. Note that the other
two evaluation datasets contain papers in the com-
puter science and biomedical domains, but we do
not exclude them from the training data as some
baselines such as SciBERT (Beltagy et al., 2019)
and PubMedBERT (Gu et al., 2020) are already
pre-trained on massive texts in those domains.

B Training Details

We use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 2e-5. The batch size is set to
64. Following Hermans et al. (2017) and Musgrave
et al. (2020), we adopt PK-style batches that first
randomly sample P classes and then K instances
for each class. We set P = 64 and K = 1 for
Softmax and ArcFace losses and P = 8 and K = 8
for the others.

We conduct a hyperparameter search with fixed
random seeds using the validation dataset, except
for softmax cross-entropy loss. Table 6 lists hyper-
parameter configurations for each metric learning
objective.

C Retrieval Examples by
SCITORICSBERT

Table 7 shows the retrieval examples by SCI-
TORICSBERT on the Introduction subset of the
CF-labeled sentence dataset.

D A Case Study on Document Alignment

We showcase the utility of SCITORICSBERT in
the scenario of comparing different scientific pa-
pers. Specifically, we consider Devlin et al. (2019)
and Lewis et al. (2020), which propose BERT and
BART, respectively. We first retrieve texts from
PDF files using S2ORC-doc2json (Lo et al., 2020),
and split them into sentences using the NLTK tok-
enizer (Bird et al., 2009). Then, for each sentence
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Loss Hyperparameters

Triplet m ∈ {0.025, 0.05•, 0.1, 0.2, 0.4}
ArcFace m ∈ {0.1, 0.3, 0.5•}, s ∈ {16•, 32, 64}
MS α ∈ {1, 2•}, β ∈ {30, 40•, 50}, λ ∈ {0.5, 0.75•, 1.0}
NT-Xent T ∈ {0.0125, 0.025, 0.05, 0.1•, 0.2}

Table 6: Values tested during the hyperparameter search. • denotes those used for reporting the results.

in Lewis et al. (2020), we retrieve the most similar
one from Devlin et al. (2019) using SCITORICS-
BERT. We present a few selected examples in Ta-
ble 8.
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Query sentence Dystrophin is an important protein for cytoskeletal structure and normal muscle
function and plays a vital role in membrane stability and signaling [[CITATION]].

(Query function) (Showing the importance of the topic)

SCITORICSBERT (ours) ✓ #1 VEGF is a major modulator of endothelial cell function, such as blood vessel for-
mation during embryonic development, and plays a vital role in the proliferation,
migration, and invasion of vascular endothelial cells [[CITATION]].

✓ #2 Thrombin is an extracellular serine protease that plays a crucial role in the blood
coagulation cascade, thrombosis, and hemostasis [[CITATION], [CITATION]].

✓ #3 Copper is an essential element which plays a critical role in human metabolism.

Query sentence From a computational standpoint, the main challenge is to ensure that the model
scales well as the number of languages increases.

(Query function) (Showing the main problem in the field)

SCITORICSBERT (ours) ✓ #1 , the main challenge is to detect the pattern without being distracted by background
noise from other events.

✓ #2 The main challenge is to maintain the continuity and coherence of the original text.

✓ #3 The main challenge is to create a lexicon of dialect word forms and their associated
probability maps.

Query sentence Thus, in this paper we describe, for the first time, a straightforward synthesis of
novel 1-(2’-α-O-D-glucopyranosyl ethyl) 2-arylbenzimidazoles via one-pot glyco-
sylation of hydroxyethyl arylbenzimidazole aglycones and 2,3,4,6-tetra-O-benzyl
1-hydroxylglucose employing the Appel-Lee reagent [[CITATION], [CITATION]].

(Query function) (Showing the importance of the research)

SCITORICSBERT (ours) #1 The theoretical analysis developed in this paper aims to contribute to existing stage
models of decision-making ([CITATION] [CITATION] [CITATION] [CITATION]
[CITATION]).

#2 Considering this, and in order to propose a greener route to fully epoxidized oligo-
isosorbide glycidyl ethers, this paper reports a new protocol of heterogeneous
ultrasound-assisted epoxidation in the presence of atomized sodium hydroxide.

✓ #3 We argue for the first time that discourse parsing should be viewed as an extension
of, and be performed in conjunction with, constituency parsing.

Query sentence Recently, there has been a breakthrough in cancer immunotherapy against various can-
cer types by employing immune checkpoint blockade, particularly using antibodies
directed against programmed death-ligand 1 (PD-L1) pathway members [[CITA-
TION]].

(Query function) (Showing brief introduction to the methodology)

SCITORICSBERT (ours) #1 In recent years, there has been an increasing interest in controlled environment
(CE) plant production which reduces variation related to climate, soil, and nutrition
[[CITATION], [CITATION], [CITATION]], decreases contamination of samples by
weeds, insects, and foreign matter [[CITATION]] and enhances the standardization
of secondary metabolite production [[CITATION]].

#2 In recent years, there has been an increasing interest in lichens as a potential source
of pharmacologically bioactive agents for therapeutic treatments [[CITATION], [CI-
TATION], [CITATION]].

✓ #3 Non-human animal consciousness research has also witnessed groundbreaking ad-
vances in the study of contents of consciousness by employing perceptual rivalry
paradigms and elucidating the effect of reversible thalamic and cortical inactivations.

Table 7: Examples of top-3 sentences retrieved by SCITORICSBERT. ✓ stands for the same function label as the
query.
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Query sentence from Lewis et al. (2020) Retrieved sentence from Devlin et al. (2019)

We present BART, a denoising autoencoder for pretraining
sequence-to-sequence models.

We introduce a new language representation model called
BERT, which stands for Bidirectional Encoder Representa-
tions from Transformers.

The most successful approaches have been variants of masked
language models, which are denoising autoencoders that are
trained to reconstruct text where a random subset of the words
has been masked out.

To pretrain word embedding vectors, left-to-right language
modeling objectives have been used (Mnih and Hinton, 2009)
, as well as objectives to discriminate correct from incorrect
words in left and right context.

BART uses a standard Tranformer-based neural machine
translation architecture which, despite its simplicity, can be
seen as generalizing BERT (due to the bidirectional encoder),
GPT (with the left-to-right decoder), and many other more
recent pretraining schemes (see Figure 1) .

Model Architecture BERT’s model architecture is a multi-
layer bidirectional Transformer encoder based on the original
implementation described in Vaswani et al.

A key advantage of this setup is the noising flexibility; ar-
bitrary transformations can be applied to the original text,
including changing its length.

The advantage of these approaches is that few parameters
need to be learned from scratch.

In total, BART contains roughly 10% more parameters than
the equivalently sized BERT model.

By contrast, BERT BASE contains 110M parameters and
BERT LARGE contains 340M parameters.

Unlike existing denoising autoencoders, which are tailored to
specific noising schemes, BART allows us to apply any type
of document corruption.

Unlike left-toright language model pre-training, the MLM
objective enables the representation to fuse the left and the
right context, which allows us to pretrain a deep bidirectional
Transformer.

Because BART has an autoregressive decoder, it can be di-
rectly fine tuned for sequence generation tasks such as ab-
stractive question answering and summarization.

As a result, the pre-trained BERT model can be finetuned
with just one additional output layer to create state-of-the-art
models for a wide range of tasks, such as question answering
and language inference, without substantial taskspecific ar-
chitecture modifications.

Similar to BERT (Devlin et al., 2019), we use concatenated
question and context as input to the encoder of BART, and
additionally pass them to the decoder.

We use a gelu activation (Hendrycks and Gimpel, 2016)
rather than the standard relu, following OpenAI GPT.

Following RoBERTa , we use a batch size of 8000, and train
the model for 500000 steps.

We use a batch size of 32 and fine-tune for 3 epochs over the
data for all GLUE tasks.

We mask 30% of tokens in each document, and permute all
sentences.

In all of our experiments, we mask 15% of all WordPiece
tokens in each sequence at random.

The most directly comparable baseline is RoBERTa, which
was pre-trained with the same resources, but a different ob-
jective.

The most comparable existing pre-training method to BERT
is OpenAI GPT, which trains a left-to-right Transformer LM
on a large text corpus.

BART reduces the mismatch between pre-training and gener-
ation tasks, because the decoder is always trained on uncor-
rupted context.

BERT alleviates the previously mentioned unidirectionality
constraint by using a “masked language model” (MLM) pre-
training objective, inspired by the Cloze task (Taylor, 1953) .

Code and pre-trained models for BART are avail-
able at https://github.com/pytorch/fairseq and
https://huggingface.co/transformers

The code and pre-trained models are available at
https://github.com/google-research/bert.

Table 8: Example of document alignment using SCITORICSBERT.
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Abstract 

Scientific medical terms are difficult to 

understand for laypeople due to their 

technical formulas and etymology. 

Understanding medical concepts is 

important for laypeople as personal and 

public health is a lifelong concern. In this 

study, we present our methodology for 

building a French lexical resource 

annotated with paraphrases for the 

simplification of monolexical and 

multiword medical terms. In order to find 

medical paraphrases, we automatically 

searched for medical terms and specific 

lexical markers that help to paraphrase 

them. We annotated the medical terms, the 

paraphrase markers, and the paraphrase. 

We analysed the lexical relations and 

semantico-pragmatic functions that exists 

between the term and its paraphrase. We 

computed statistics for the medical 

paraphrase corpus, and we evaluated the 

readability of the medical paraphrases for a 

non-specialist coder. Our results show that 

medical paraphrases from popularization 

texts are easier to understand (62.66%) than 

paraphrases extracted from scientific texts 

(50%). 

1 Introduction 

Understanding medical terms is a challenge for 

laypeople of all ages and education level. In this 

study, we concentrated on adults that are not 

professionals of the medical field but are interested 

in understanding medical knowledge and research. 

Medical language is difficult to understand due to, 

partially, the large number of medical terms. The 

term represents a lexical unit that expresses 

concepts specific to a field of knowledge, 

recognised and shared by members of a community 

of specialists (Costa, 2005). The term belongs to an 

autonomous “subsystem” of the language with the 

goal of communicating technical or scientific 

knowledge (Contente, 2005). Medical terms are 

particularly difficult to understand because of their 

Greek and/or Latin etymology (Grabar and 

Hamon, 2015). They can be composed of a mix of 

prefixes/suffixes from these two ancient languages 

together with morphemes of the modern language. 

Laypeople have difficulties in understanding the 

meaning of medical terms such as 

“cholecystectomy”, which is formed with two 

Greek basis, “chole” (=bile) and “ectomy” 

(=surgical removal), and in the middle of these, a 

Latin basis, “cystis” (=bladder) (Grabar and 

Hamon, 2015). We can simplify medical terms by 

using synonyms from the common language, but it 

is sometimes difficult to find the right synonym. In 

this paper, we explore the medical paraphrases as 

means of simplification of medical terms in French. 

Paraphrasing is the process of rewriting in order to 

explain or simplify a word, sentence, or phrase, 

while keeping the same meaning. 

In this paper, we worked on scientific medical texts 

in French that treat a certain medical concept 

(diseases, treatments, medical procedures) and on 

their versions written for laypeople. We looked for 

paraphrases of these concepts created with simpler 

words and expressions from the common language. 

We evaluated the level of difficulty of these 

medical paraphrases for adult lay readers. 

The annotated paraphrases will constitute a corpus 

of medical paraphrases that could be used as a 

textual resource in Natural Language Processing 

(NLP) and deep learning tasks. 

Section 2 presents the medical corpus exploited 

and in Section 3 we describe the methodology we 

used to identify medical terms and paraphrase 

markers, and thus, the medical paraphrase. We 

continue with the annotation process in Section 4. 

Section 5 describes the evaluation of the medical 

paraphrases and their readability level according to 

a non-expert coder whose native language is 
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French. We conclude with the potential use of our 

annotated corpus for scientific medical term 

simplification (in Section 6). 

2 Related Work 

In this section, we present several studies on the 

themes that our research is related to: paraphrases, 

medical paraphrase corpus, paraphrase markers, 

medical terms, and automatic paraphrase 

identification in French. 

2.1 Paraphrases 

In linguistics, paraphrasing represents the 

process of rewriting in order to explain or simplify 

a concept or phrase. There are multiple studies on 

the concept of paraphrase (Gühlich and Kotschi, 

1983; Fuchs, 1994; Rossari, 1990; Vassiliadou, 

2013; Grabar and Eshkol-Taravella, 2016; Eshkol-

Taravella and Grabar, 2017; Steuckardt, 2018; 

Fuchs, 2020; Pennec, 2020; Vassiliadou, 2020), 

from which we highlight: 

• The concept of paraphrasing as the process 

of preserving the meaning and intending to 

get close to a semantic equivalence (Fuchs, 

2020; Pennec, 2020; Vassiliadou, 2020); 

• Subphrastic paraphrase (Bouamor, 2012), 

composed of words or groups of words that 

are semantically tied and are integrated in a 

sentence; 

• Subphrastic paraphrasing, defined as the 

process of intra-lingual translation 

(translation with elements of the same 

language system, keeping the same 

meaning) that does not exceed the length of 

a sentence (our definition); 

• The classical paraphrase, which expresses 

an equivalence based on a common semantic 

core (Fuchs, 1982; Bouamor, 2012; 

Kampeera, 2013; Pennec, 2020). 

In this study, we chose to work on the large 

concept of paraphrasing, as our goal was to 

identify the largest sequence of words that are 

semantically equivalent. As we searched for 

paraphrases that coexist with the medical term in 

the same sentence, we worked exclusively on 

subphrastic paraphrases. We looked for any 

paraphrase that can be used to explain and simplify 

medical terms. The goal of our project was to build 

a corpus of medical paraphrases that can be used as 

a database for simplifying scientific medical 

concepts and adapting medical knowledge to 

laypeople (Cardon, 2021; Grabar and Hamon, 

2015; Grabar and Hamon, 2016). 

2.2 Paraphrase Markers 

The classical way of identifying paraphrases is 

through specific markers. The paraphrase markers 

are linguistic elements that help to identify 

paraphrases in texts. They can be lexical, 

grammatical, or orthographic markers or cues of 

paraphrase (Fuchs, 2020; Steuckardt, 2018). 

Several studies on French focused on paraphrase 

markers based on the verb dire (to say), such as 

c’est-à-dire (that is), ça veut dire (that means), pour 

dire autrement (to say otherwise), autrement dit 

(otherwise said) (Vassiliadou, 2013; Grabar and 

Eshkol-Taravella, 2016; Steuckardt, 2018; Magri, 

2018). These markers can have a narrative or 

paraphrastic role. Vassiliadou (2013) considers the 

marker c’est-à-dire (that is) as the typical 

paraphrase marker. Grabar and Eshkol-Taravella 

(2016) worked on specific markers for lexical 

paraphrases (c’est-à-dire (that is), disons (let's say), 

ça veut dire (it means)) using a rule-based system 

and manual annotations. Their study aimed at 

automatically classifying phrases with and without 

paraphrases. To identify paraphrases, Grabar and 

Eshkol-Taravella (2016) looked for the 

syntagmatic structure "S1 marker S2", where S1 is 

the paraphrased element and S2 is the paraphrase. 

These two parts are linked by the paraphrase 

markers cited above. Their study was conducted on 

two general oral language corpora and a medical 

forum corpus.  

In our work, we also took into consideration the 

possibility of the absence of the paraphrase marker. 

We looked for paraphrase cues specific to the 

medical domain, as a scientific and specialized type 

of text. We classified the paraphrase cues into 

three types: 

• General language cues that, through their 

semantics and use in discourse, refer to the 

simplification, definition, or explanation of 

concepts: définition (definition), défini/e 

(defined), etc.; 

• Grammatical cues that announce a list of 

hyponyms of the medical term: comme (such 

as), par exemple (for example); 
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• Cues specific to the medical domain which 

are hypernyms of the medical terms: maladie 

(disease), affection (affection), trouble 

(disorder). 

We manually analysed the corpus to find more 

paraphrases without markers or lexical cues. We 

found other markers, such as the typographical 

cues (parentheses or commas) (Steuckardt, 2018). 

Unlike Grabar and Eshkol-Taravella (2016), who 

worked on medical forum texts (which contain text 

that are very similar to oral written speech), we 

analysed written medical texts (scientific and 

popular articles) in order to create a set of sentences 

that contain medical paraphrases in natural 

language context (and not only in a lexicon). For 

this purpose, we used markers analysed in other 

similar works, but we also added additional 

markers and cues of paraphrase, presented in 

section 3.2. 

2.3 Scientific Medical Terms and their 

Paraphrases 

In order to locate the paraphrase, we first identified 

the medical term that is paraphrased. The aim of 

paraphrasing medical terms is to propose a 

meaning equivalent to the sequence of words from 

the common language, adapted to non-specialist 

readers, such as patients, students, or laypeople in 

general (Leroy et al., 2013; Brouwers et al., 2012; 

Pecout, Tran and Grabar, 2019). 

Several different methods were experimented to 

identify medical terms and their paraphrases, for 

example searching for Latin or Greek prefixes and 

suffixes, using medical ontologies (Grabar and 

Hamon, 2016) or with term detection tools with n-

gram patterns (Buhnila, 2018). Grabar and Hamon 

(2016) searched for medical terms in a corpus of 

Wikipedia articles using medical terminologies 

(Snomed International (Côté, 1996) and the French 

part of UMLS (Unified Medical Language System) 

(Donald et al., 1993). Their study focused on 

paraphrases that appear in free contexts, meaning 

that the technical terms and their paraphrases can 

be separated by several words. In the same study, 

they used the French morphological analyser DériF 

(Namer, 2009) to extract words in modern French 

from medical terms of Greek or Latin origin. For 

example, the term “myocardique” contains the 

modern French words “muscle” / muscle (myo) 

and “cœur” / heart (carde). The authors looked for 

these words in the corpora and extracted 2,596 

definitory contexts automatically. 

In this paper, we focused on simple and multiword 

medical terms and we used the SNOMED-3.5VF 

medical ontology (Côté, 1996) for scientific term 

extraction. 

2.4 Medical Paraphrase Corpus for French 

We can mention the study of Cardon and Grabar 

(2021) on 4,596 pairs of parallel sentences 

extracted from the CLEAR corpus (Grabar and 

Cardon, 2018), a medical corpus of popularization 

and scientific texts. The goal of the study was to 

automatically simplify biomedical texts using 

neural networks. Cardon and Grabar (2021) used 

several resources: the parallel phrases of the 

CLEAR corpus, a lexicon that matches complex 

medical terms with paraphrases easy to understand 

to laypeople (7,580 paraphrases for 4,516 medical 

terms) and 297,494 parallel sentences in the 

common language from WikiLarge (Zhang and 

Lapata, 2017). The WikiLarge corpus was 

automatically translated from English to French. 

Their experiments proved that using a medical 

lexicon of paraphrases and medical simplified 

phrases helped simplify biomedical texts. 

The goal of our study was to build an annotated 

corpus of sentences that contain medical 

paraphrases in a natural language context and that 

can be used for the simplification of medical texts 

and scientific medical concepts. We present our 

method in Section 3. 

3  Methodology 

For this study, we worked on the CLEAR corpus 

which is composed of French scientific medical 

texts and medical texts adapted for laypeople 

(Grabar and Cardon, 2018). Our method consisted 

of automatically identifying simple and multiword 

medical terms with the SIFR-BioPortal annotator 

(Tchechmedjiev et al., 2018). We also tested other 

annotators for French, such as Bio-YODIE (Gorrell 

et al., 2018) and PyMedTermino (Lamy et al., 

2015), but SIFR-BioPortal proved to be the most 

intuitive to use. SIFR-BioPortal works by parsing 

texts for medical terms from the SNOMED-3.5VF 

medical ontology (Côté, 1996) (released by ASIP 

Santé). This ontology contains 150,906 scientific 

medical concepts in French. In order to identify 

specific markers for the medical domain, we 

looked for words that collocate with a term and the 

relations that this term may have with other 

elements of the sentence. More precisely, we run a 
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Perl script to identify relation markers 

(Condamines, 2018) that link a medical term to its  

paraphrase (Ramadier, 2016), such as hypernymy, 

hyponymy, synonymy, meronymy. 

We expected to find paraphrases in the context of 

the medical term in the same sentence. After the 

automatic identification of the medical terms and 

paraphrase markers, we manually annotated the 

sentences to find out whether the paraphrases are 

correct or not. We also annotated the paraphrases 

for the lexical relations and semantico-pragmatic 

functions, such as definition, explanations, etc. 

(presented in detail in section 4.2 and 4.3). We 

present each step of the methodology in detail as it 

follows. 

3.1 Corpus of Study 

Our corpus of study was the CLEAR Cochrane 

corpus, which is a part of the CLEAR corpus 

(Grabar and Cardon, 2018). CLEAR is a 

comparable corpus composed of scientific texts 

from the medical field designed for experts and 

simplified texts written for laypeople. The texts 

were written by researchers of the Cochrane 

Foundation. Grabar and Cardon (2018) collected a 

number of 8,789 texts in November 2017, of which 

3,815 were duplicates of the same medical concept: 

asthma, arthritis, motor neuron disease, etc. The 

expert corpus contains 2,840,003 tokens and the 

laypeople corpus counts 1,515,051 tokens. 

The CLEAR Cochrane corpus is built with 

comparable texts on the same theme, where a 

scientific text is followed by its simplified version. 

For our study, we decided to separate expert and 

laypeople texts in two sub-corpora: scientific 

corpus written for experts (CLEAR EX) and 

general public corpus (CLEAR GP). Our 

hypothesis is that scientific texts have more 

medical terms while general public texts contain 

more synonyms, paraphrases, or explanations in 

the common language. We split the texts into 

sentences using end-of-line characters (. ; ! ; ?) to 

display one sentence per line. Once the corpus was 

cleaned and aligned, we proceeded to 

automatically identify the medical terms (see Table 

1). 

3.2 Automatic Annotation of Medical Terms 

and Paraphrase Markers 

We identified the medical terms in our corpus with 

the help of a Perl script and the French version of 

the SIFR-BioPortal annotator (Tchechmedjiev et 

al., 2018). The annotator provides 28 medical 

terminologies in French. We chose the SNOMED-

3.5VF ontology because it contains a wide variety 

of medical concepts: administrative and 

treatments, agents, anatomy, diagnoses, drugs, 

symptoms, disease, procedures, etc. This large 

panel of medical concepts and the search by lemma 

helped us tag a large number of medical terms in 

our corpus of study.  

As for the paraphrase markers, we listed the 

most frequent ones from the literature, to which we 

added markers according to our own observations 

from the corpus: 

• Markers formed on the French verb dire (to 

say) (c'est-à-dire (it means), ça veut dire / 

veut dire (meaning), pour dire autrement (to 

say otherwise), autrement dit (in other 

words) (Vassiliadou, 2013; Vassiliadou, 

2016; Grabar and Eshkol-Taravella, 2016; 

Steuckardt, 2018; Magri, 2018); 

• Markers derived from the verbs désigner (to 

designate) and signifier (to signify) (Péry-

Woodley and Rebeyrolle, 1998; Charolles 

and Coltier, 1986); 

• Markers derived from the verb être (to be) 

with its different morphological forms, est 

un/une/des (is a), sont un/une/des (are 

a/some) (Meyer, 2001; Grabar and Hamon, 

2016) followed by hypernyms from the 

medical domain such as "disease", 

"affection" and "disorder"; 

• Markers that are specific to our corpora, such 

as the ones formed on the verb appeler (to 

call) (qu’on appelle, ce que l'on appelle 

(what it’s called), est aussi appelé / aussi 

appelé (is also called / also called) and 

others, such as doit être compris comme 

(must be understood as), au sens de (in the 

sense of). 

CLEAR 

Cochrane 

N° of 

texts 

Same theme 

texts 

Size 

(token) 

Expert (EX) 8,789 3,815 2,840,003 

Laypeople 

(GP) 

1,515,051 

Table 1:  Size of the CLEAR Cochrane corpus by text 

type (Grabar and Cardon, 2018). 
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These paraphrase markers are domain-

independent (except medical hypernyms) and can 

indicate different types of relations between the 

medical term and its paraphrase (further details in 

Section 4.2). 

4 Paraphrase Annotation Process 

In this section we present different levels of the 

annotation process of the medical paraphrases. 

This annotation was manually done in order to 

assess the quality of the paraphrases that were 

automatically identified with previous tasks. In this 

paper we annotated the status of the paraphrase, the 

lexical relations and the semantico-pragmatic 

relations that exists between the medical term and 

its paraphrase. 

4.1 Status of the Paraphrase 

We chose five different possible values for the 

status of the paraphrase, as follows:  

• yes: the sentence contains a correct 

paraphrase; 

• yes<rev>: the sentence contains a reversed 

paraphrase (the paraphrase is found before 

the medical term); 

• yes<2+>: there are two or more correct 

paraphrases in the same sentence; 

• yes<2+><rev>: there are two or more 

correct paraphrases in the same sentence, 

with at least one reversed paraphrase; 

• no: the sentence does not contain a correct 

paraphrase. 

4.2 Lexical Relations 

We classified the lexical relations that exist 

between the paraphrase and the corresponding 

medical term: synonymy, hyponymy, hypernymy, 

meronymy. Medical hypernyms (Săpoiu, 2013) 

have an important role in the classification of 

scientific medical concepts (e.g. “scrub typhus”) 

into wide classes that are easier to understand for 

laypeople, such as “bacterial disease” (Grabar and 

Hamon, 2015). For instance, in the case of 

hyponymy, the term “antibiotics” is the hypernym, 

and the paraphrase simplifies the meaning of the 

term by using hyponyms such as 

“chloramphenicol, tetracycline and doxycycline”. 

4.3 Semantico-pragmatic Functions  

The semantico-pragmatic functions express the 

reasons that motivate the writer to use paraphrases 

(such as definition, designation, exemplification, 

explanation, rephrasing) (Eshkol-Taravella and 

Grabar, 2017). In this study, we adapted this 

taxonomy, originally created on oral texts of 

common language, to written texts in the medical 

domain. We defined these functions as follows: 

• Definition: the term is given a definition 

because it is considered to be too technical or 

domain specialised, thus difficult to 

understand; 

• Designation: the term is paraphrased using 

another word or term; 

• Exemplification: the paraphrase is a list of 

examples (several entities of the same type) 

that help to illustrate the meaning of the 

term; 

• Explanation: the term is explained through a 

particular situation or procedure; 

• Rephrasing: the meaning of the term is 

expressed with simpler words; 

Definitive contexts are marked by specific lexical 

cues: définition (definition), défini/e (defined), 

défini/e comme (defined as). The phrases 

tel/lle/s/lles que (such as) and par exemple (for 

example) announce the paraphrase through an 

exemplification. 

4.4 Readability Level of Paraphrases 

Paraphrases can be easier or more difficult to 

understand by laypeople. The complexity is given 

by the use of technical words. For instance, the 

medical term “antibiotics” could be simpler to 

understand than “chloramphenicol”. In this sense, 

we asked a coder who is not a specialist in the field 

of medicine to evaluate a sample of correct medical 

paraphrases. We evaluated the level of 

comprehension of paraphrases through the manual 

annotation of a sample of correct paraphrases. We 

selected a sample of 300 paraphrases that were 

labelled as correct by our two coders (both not 

specialists in medicine), 150 from each type of 

corpus (scientific and for laypeople). We evaluate 

the comprehension of the paraphrases by three 

levels: 
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• Level 1 – easy to understand: the paraphrase 

is easier to understand than the term (there 

are words from the common language in the 

paraphrase); 

• Level 2 – same complexity: same level of 

complexity or technicity between the term 

and the paraphrase, meaning that both the 

term and the paraphrase are difficult to 

understand; 

• Level 3 – difficult to understand: the 

paraphrase is more complex or technical than 

the term. 

The annotation is done by a French native speaker, 

who is studying Linguistics at a Masters 2 degree 

level. The student annotated the paraphrases 

identified by the other coder of the study 

(ourselves). We present the results of this 

evaluation in the next section. 

5 Results and Data Evaluation 

The automatic extraction of the sentences 

containing both the medical terms annotated by 

SIFR-BioPortal and occurrences of markers or 

paraphrase indicators is done with Perl scripts. We 

adapted our scripts to identify all morphological 

forms and to automatically annotate medical terms 

and markers/cues. We obtained 4,681 sentences for 

the corpus of scientific texts (CLEAR EX) and 

3,975 sentences for the corpus of medical texts for 

the general public (CLEAR GP). These sentences 

were therefore analysed manually by two coders. 

We present the results and statistics of these 

annotations in the tables below. 

5.1 Coder Agreement 

We computed the agreement between two coders, 

ourselves, and a French native speaker, Master-

level student. We computed the Kappa annotator 

agreement (Cohen, 1960), the precision and recall 

of paraphrases identified. We show in Table 2 and 

3 the number of paraphrases that were identified as 

correct medical paraphrases by both coders, the 

number of paraphrases that received the same 

“status” tag (“yes”, “yes-rev”, “no”), in both 

corpora. We also computed the number of 

paraphrases tagged differently by both coders. We 

decided to not include “yes<2+>” and 

“yes<2+><rev>” tags in this study, as these 

paraphrases appear in a small number. We will 

analyse them in future studies. 

CLEAR EX 

Statistics Coder 

1 

Coder 

2 

Paraphrases with yes 1321 1714 

Paraphrases with yes-rev 37 50 

Paraphrases with no 3323 2917 

Different tag paraphrases - total 948 

Same tag paraphrases - yes 1059 

Same tag paraphrases - yes-rev 7 

Same tag paraphrases - no 2667 

Same tag paraphrases - total 3733 

Total number of paraphrases 4681 

As for the general public corpus, we analysed only 

the annotated sentences (1,903 out of 3,975). We 

calculated the precision, the recall, and the relative 

frequencies in order to interpret data equally. 

CLEAR GP 

Statistics Coder 

1 

Coder 

2 

Paraphrases with yes 671 707 

Paraphrases with yes-rev 55 22 

Paraphrases with no 1177 1174 

Different tag paraphrases - total 291 

Same tag paraphrases - yes 552 

Same tag paraphrases - yes-rev 17 

Same tag paraphrases - no 1043 

Same tag paraphrases - total 1612 

Total number of paraphrases 1903 

We calculated the recall as the number of 

paraphrases tagged with “yes” or “no” by both 

coders, divided by the number of paraphrases 

tagged with “yes” or “no” by coder 1 and 

respectively by coder 2. We considered one 

annotation as the gold standard and then we 

changed the other way around (in Tables 4 and 5, 

the recall is computed with coder 1, and coder 2 

respectively, as reference). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑎𝑟𝑎𝑝ℎ𝑟𝑎𝑠𝑒𝑠 𝐶𝑜𝑑𝑒𝑟1& 𝐶𝑜𝑑𝑒𝑟2

𝑝𝑎𝑟𝑎𝑝ℎ𝑟𝑎𝑠𝑒𝑠 𝐶𝑜𝑑𝑒𝑟1
  

Table 2: Coder data statistics on CLEAR EX 

Table 3: Coder data statistics on CLEAR GP 

Figure 1: Coder recall formula 
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CLEAR EX 

Measures Coder 

1 

Coder 

2 

Precision - yes 0.29 0.38 

Precision - yes - average 0.34 

Precision - no 0.71 0.62 

Precision - no - average 0.67 

Precision - same tag 0.80 

Recall - yes 0.78 0.60 

Recall - yes - average 0.69 

Recall - no 0.80 0.91 

Recall - no - average 0.86 

Recall - total average 0.78 

Kappa annotator score 0.55 

 

CLEAR GP 

Measures Coder 

1 

Coder 

2 

Precision - yes 0.38 0.38 

Precision - yes - total 0.38 

Precision - no 0.62 0.62 

Precision - no - average 0.62 

Precision - same tag 0.85 

Recall - yes 0.84 0.80 

Recall - yes - total 0.82 

Recall - no 0.89 0.89 

Recall - no - average 0.89 

Recall - total average 0.86 

Kappa annotator score 0.68 

 

 

The big differences in the number of “yes” tag 

paraphrases were due to different decisions of the 

coders, as the coder 1 decided not to consider 

abbreviations as paraphrases, while the coder 2 

considered them as paraphrases. We intend to 

automatically annotate abbreviations in future 

studies for further analysis and conduct new 

analysis with and without abbreviations as 

paraphrases. Results proved that precision, recall, 

and Cohen’s Kappa annotator are higher for the 

general public corpus than for the expert corpus. 

We also used the ReCal tool (Freelon, 2013) to do 

ordinal, interval, and ratio-level scores on both 

annotations. We gave numeric values to our tags, 

1 for “yes”, 2 for “yes-rev” and 3 for “no”. The 

highest agreement score was the ordinal one, with 

0.707 for the general public corpus and of 0.566 

for the expert corpus. 

We assume that these score differences were due 

to the higher level of technicity of the expert 

corpus, thus making it more difficult to assess the 

same tags for the paraphrases by both coders, 

while in the general public corpus the paraphrases 

were easier to analyse and evaluate. 

Data CLEAR EX CLEAR GP 

File size 23405 bytes 9515 bytes 

N° coders 2 2 

N° cases 4681 1903 

N° decisions 9362 3806 

 

ReCal Tool EX GP 

Measures Score Score 

Krippendorff's alpha (nominal) 0.552 0.688 

Krippendorff's alpha (ordinal) 0.566 0.707 

Krippendorff's alpha (interval) 0.565 0.705 

Krippendorff's alpha (ratio) 0.562 0.701 

We analysed the absolute and relative frequencies 

of lexical relations and semantico-pragmatic 

functions for both corpora. We compared the 

average relative frequencies of both annotations, 

and we observed that the lexical relation of 

hypernymy is the most frequent in both corpora 

with a score of 63.32% for the expert corpus and 

a score of 62.39% for the general public corpus. 

We observed that the semantic-pragmatic 

function of definition had similar scores (49.95% 

and 52.28% respectively). This can be justified by 

the fact that the definitory context has, most of the 

time, the following syntax:  

medical term – paraphrase marker – medical 

hypernym – paraphrase 

Table 4: Corpus data for the ReCal Tool 

Table 5: Statistics on CLEAR EX 

Table 6: Measure scores obtained with ReCal 

Table 7: Statistics on CLEAR GP 

Semantico-

pragmatic 

functions 

CLEAR EX CLEAR GP 

A.F 

C1 

A.F 

C2 

Av 

R.F 

A.F 

C1 

A.F 

C2 

Av 

R.F 

Definition 723 342 49.95

% 

356 239 52.28

% 

Designation 30 152 8.53

% 

18 83 8.87

% 

Exemplifica

-tion 

242 222 21.76

% 

128 113 21.17

% 

Explanation 28 209 11.11

% 

30 97 11.15

% 

Rephrasing 43 141 8.63

% 

37 37 6.50

% 

N° phrases 1066 100% 569 100% 
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 In the example: La bronchectasie est une maladie 

respiratoire chronique (Bronchiectasis is a 

chronic respiratory disease), the term “La 

bronchectasie” is paraphrased in a definitory 

sentence introduced by the medical hypernym 

“une maladie”.  

We observed the same situation for the lexical 

relation of hyponymy and the semantico-

pragmatic function of exemplification, as they 

have almost the same scores (21.71% and 21.76% 

for CLEAR EX and 21.26% and 21.17% for 

CLEAR GP), meaning that they were annotated as 

appearing in the same context. 

5.2 Complexity for Laypeople 

The manual annotation of the level of 

comprehension of paraphrases showed that 

paraphrases from CLEAR GP are easier to 

understand (62.66% in comparison with 50% for 

the scientific corpus). Meanwhile, the number of 

opaque paraphrases (where the paraphrase is as 

difficult to understand as the medical term 

because few words from the common language 

are used) is higher in the scientific corpus (42% 

compared to 27.33% for the simplified version). 

This can be explained by the bigger number of 

scientific terms used as paraphrases in the expert 

texts. 

6 Conclusion and further research 

 Our study has shown that medical paraphrases 

are present in both scientific and popularization 

texts. There is a higher number of paraphrases in 

the general corpus and are also easier to 

understand, both for annotation tasks and for lay 

readers comprehension. The analysis and 

evaluation of lexical relations and semantico-

pragmatic functions that can be identified 

between the medical term and its paraphrase 

highlighted relations such as hyponymy and 

hyponymy help to identify more correct 

paraphrases. The same result is observed with the 

semantico-pragmatic functions of definition and 

exemplification. In further studies we will also 

conduct quantitative and qualitative analyses of 

paraphrase markers (or their absence) and 

compare them in scientific and popular texts. We 

could also evaluate the level of readability of each 

type of lexical relation and semantico-pragmatic 

function and assess which type of simplifications 

are easier to understand for laypeople. Further 

analysis could focus on whether the identified 

paraphrases are scientifically accurate and allow 

laypeople to be correctly informed about medical 

topics. 

Here we created a corpus of 1,635 paraphrases 

of scientific medical terms in French and an 

annotated corpus of 6,584 phrases that contain 

scientific medical terms and paraphrase markers. 

Once the annotation process is finished, the 

annotated corpora will be shared with the 

scientific community on the github repository. We 

are currently using the corpus for Natural 

Language Processing (NLP) tasks such as 

generating medical paraphrases for scientific 

Table 8: Lexical relations between medical terms and 

their paraphrases (A.F=absolute frequency; Av 

R.F=average relative frequency; C1=coder 1; 

C2=coder 2; N° phrases: phrases with “yes” and “yes-

rev” in common for both coders) 

Table 10: Assessment of the level of comprehension 

of medical paraphrases (Abs F=absolute frequency; 

Rel F=relative frequency) 

Level CLEAR EX CLEAR GP 

 Abs F Rel F Abs F Rel F 

1: Easy to 

understand 

75 50% 94 62.66

% 

2: Same level 

of complexity 

63 42% 41 27.33

% 

3: Difficult to 

understand 

12 8% 15 10% 

Paraphrases 150 150 

Lexical 

relations 

CLEAR EX CLEAR GP 

A.F 

C1 

A.F 

C2 

Av 

R.F 

A.F 

C1 

A.F 

C2 

Av 

R.F 

Synonymy 86 162 11.63

% 

57 83 12.30

% 

Hyponymy 245 218 21.71

% 

128 114 21.26

% 

Hypernymy 668 682 63.32

% 

339 371 62.39

% 

Meronymy 67 4 3.33% 45 1 4.04

% 

N° phrases 1066 100% 569 100% 

Table 9: Semantico-pragmatic functions between 

medical terms and their paraphrases (A.F=absolute 

frequency; Av R.F=average relative frequency; 

C1=coder 1; C2=coder 2; N° phrases: phrases with 

“yes” and “yes-rev” in common for both coders) 
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terms and binary classification with deep learning 

and neural networks such as OpenNMT (Klein et 

al., 2020) and APT (Adversarial Paraphrasing 

Task) (Nighojkar et Licato, 2021). 

Our method and experiences can also be applied 

on other Romance languages close to French, 

such as Romanian (Buhnila, 2021). Our corpus of 

medical paraphrases can constitute a useful 

lexical resource for scientific medical texts 

simplification system for adult lay readers or 

patients.  
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Abstract

Existing dense retrieval models for scientific
documents have been optimized for either re-
trieval by short queries, or for document sim-
ilarity, but usually not for both. In this paper
we explore the space of combining multiple
objectives to achieve a single representation
model that presents a good balance between
both modes of dense retrieval, combining the
relevance judgements from MS MARCO with
the citation similarity of SPECTER, and the
self-supervised objective of independent crop-
ping. We also consider the addition of training
data from document co-citation in a sentence
context and domain-specific synthetic data. We
show that combining multiple objectives yields
models that generalize well across different
benchmark tasks, improving up to 73% over
models trained on a single objective.

1 Introduction

With the explosive growth of the volume of scien-
tific publications, researchers increasingly rely on
sophisticated discovery and recommendation tools
to find relevant literature and related work (Ammar
et al., 2018; Fadaee et al., 2020). In particular, the
development of neural information retrieval (Lin
et al., 2021) has led to a quest for dense docu-
ment representations that capture the semantics
of documents better than the previous generation
of keyword-based retrieval methods. Such repre-
sentations are typically achieved by specializing
pre-trained large language models for the retrieval
task. In this paper, we focus on the case of the bi-
encoder (Humeau et al., 2019), where at indexing
time documents are embedded as dense vector rep-
resentations and stored in a fast approximate near-
est neighbor system, and at retrieval time queries
are encoded using the same model and similarity
search is performed in the vector space.

The data set that has powered a lot of advances
in this area is MS MARCO (Bajaj et al., 2016),

BEIR
subset

SciDocs ICLR
2022

Single objective
MS MARCO 0.270 68.72 0.260
SPECTER 0.207 79.75 0.407
Multi-objective
ICrop+context2doc 0.285 78.29 0.450

∆MS MARCO +5.6% +13.9% +73.1%
∆SPECTER +37.7% -1.8% +10.6%

AllObj-Alt 0.278 79.44 0.424
∆MS MARCO +3.0% +15.6% +63.1%
∆SPECTER +34.3% -0.4% +4.2%

Table 1: Single objective compared to multi-objective
training. Metrics are ndcg@10 for BEIR and ICLR2022
(doc2doc dataset), and average over all tasks for Sci-
Docs. ∆ +/- percentages represent the relative improve-
ment compared to single objective models for the given
benchmark. ICrop+context2doc is a model trained on
independent cropping and finetuned on unarXiv con-
text2doc. AllObj-Alt is trained alternating batches of
independent cropping, SPECTER, and MS MARCO .

which consists of user queries combined with hu-
man relevance judgements for documents and pas-
sages. Models trained on this data set are the cur-
rent state of the art for retrieval based on queries,
though the discussion is still ongoing about their
effectiveness in terms of out-of-domain generaliza-
tion (Thakur et al., 2021). As Table 1 shows, mod-
els based on this data set tend to perform less well
on benchmarks that test document-to-document
retrieval. In (Cohan et al., 2020), a scientific docu-
ment retrieval model called SPECTER was intro-
duced that is specifically optimized for document-
to-document similarity, based on exploiting the
signal in the citation graph between documents.
Model trained for document representations tend to
perform less well than MS MARCO based models
on query-to-document retrieval tasks such as those
presented in the BEIR data set (Table 1).

Additional evidence suggests that self-
80



supervised tasks, such as the Inverse Cloze
Task (Lee et al., 2019) or Independent Crop-
ping (Izacard et al., 2021) can make document
representations more robust and improve retrieval
relevance (Chang et al., 2020; Izacard et al.,
2021). Also, in-domain synthetic data has been
explored to enhance retrieval effectiveness in new
domains (Bonifacio et al., 2022).

So far, however, no systematic study were per-
formed on the combination of multiple objectives
for scientific document representation learning. In
this paper, we explore several methods to com-
bine different data sets and training objectives and
study the effectiveness of these training strategies
on a number of scientific document retrieval bench-
marks. In addition to this, we introduce and make
available a new data set that emphasises document-
to-document similarity. By doing this, we try to
answer the following research question:

How can we best combine multiple data sets and
task objectives to train a scientific document re-
triever that can be queried both using short queries
and documents?

Although in practice a retrieval system could
use multiple different document embeddings for
multiple tasks, a single multi-purpose document
representation offers great advantages in terms of
storage space, computational resources, and opera-
tional efficiency.

The main contributions of this paper are the fol-
lowing:

1. We train a dense retriever that performs well
on both query2doc and doc2doc retrieval;

2. We introduce a new way to use citation con-
text to generate semi-supervision signal for
scientific documents;

3. We release a scientific document to document
data set with 1844 human annotations among
which 441 are positive relevance judgements;
and

4. We publish the code and data sets
used for our experiments at https:
//github.com/zetaalphavector/
multi-obj-repr-learning

2 Related work

Document retrieval. Multiple recent papers focus
on learning representations for scientific documents
and dense neural document retrieval (Tan et al.,

2022; Zhang et al., 2022; Ostendorff et al., 2022a).
(Cohan et al., 2020) presents how to use weak su-
pervision from the scientific citation graph to train
a dense retrieval model (SPECTER) and introduces
SciDocs, a benchmark to evaluate document repre-
sentations. (Ostendorff et al., 2022b) improves on
SPECTER by using a graph embedding model to
sample positive and negative documents and create
better training triplets. (Abolghasemi et al., 2022)
combines a ranking and representation loss to train
a query by document retriever. (Althammer et al.,
2022) proposes a method to disregard the input
length restriction of transformer-based models by
using a paragraph aggregation retrieval model. In
our own work, we build on (Cohan et al., 2020) and
use the same framework but explore how adding
multiple training objectives can improve the perfor-
mance of a document retriever.

citation context. Earlier work by (Colavizza
et al., 2017) already shows that co-citation of
documents, especially at the sentence level, is a
strong signal for semantic relatedness of docu-
ments. (Mysore et al., 2022) explores co-citation
context supervision for document representation
learning, and applies it to aspect matching. We
add this signal to our mix of potentially useful con-
straints in a multi-objective learning setting, and fo-
cus on document representation and training mod-
els which can be used for both query to document
and document to document retrieval. Moreover,
we introduce a new co-citation supervision by us-
ing the citing sentence context as a query for the
documents cited.

3 Method

3.1 Bi-encoder and losses

We focus on dense retrieval using a bi-encoder ar-
chitecture (Humeau et al., 2019) with a shared en-
coder E for the query q (here q can be a short
query or a document query) and document d. The
model E encodes the query and document into rep-
resentations Eq = E(q) and Ed = E(d) ∈ Rn

respectively. Note that, in our case, the encoder
E is a transformer-based model (Vaswani et al.,
2017) which means that its output is a sequence of
token representations. We aggregate this sequence
into a single representation using mean pooling
(we also experimented with using the [CLS] token
representation without success over mean pooling).
The relevance between the query and document is
expressed using a distance metric, cosine similar-
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ity in our case, between the two representations:
s(q, d) = dist(Eq, Ed).

To train the model, we use data sets of triples of
the form: (q, d+, d−) where d+ and d− are docu-
ments that are respectively relevant and not rele-
vant for the query q. When possible, we concate-
nate the title and abstract of a document as follow:
Ed = E(dtitle[SEP ]dabstract)

We experiment with two losses: Multiple Nega-
tive Ranking Loss (MNRL) and Triplet Loss (TL).
With MNRL, the single negative document d− is
enriched into a set of negative documents D− com-
posed of the positive and negative documents from
the other triples in the training batch.

MNRL(q,D) = − log
exp (s(q, d+))/τ∑

d∈D
exp (s(q, d))/τ

(1)
Where D = D−∪{d+} is the set of all positive and
negative documents of all the queries in the batch.
With TL, each query uses exactly one positive and
one negative document.

TL(q, d+, d−) = max {d(q, d+)− d(q, d−) + ϵ, 0}
(2)

Where d(q, d) = ||Eq − Ed||2 is the L2 norm be-
tween the representations of the query and docu-
ment. While several works (Cohan et al., 2020;
Ostendorff et al., 2022b) use TL as their loss func-
tion,in most of our experiments, MNRL performed
better across different data sets and domains. All
the presented results in this paper use MNRL.

3.2 Multi-objective training (multiple types of
supervision and domain)

Multi-task learning (Caruana, 1993) has shown
good results to improve the generalization of lan-
guage models. Tasks can be machine translations,
next-word predictions, information retrieval, and
others. Following those advances, we focus here
on a single task (information retrieval) but are inter-
ested in combining several types of supervision ob-
jectives, data sets, and data domains with the goal
to increase the amount of useful training signals
and to train a more general-purpose dense retriever.

We experiment with multiple types of supervi-
sion: fully supervised data, weakly supervised,
and self-supervised training. We also explore two
domains: online question answering and scien-
tific document representation for finding related
documents. The goal of those experiments is to
study whether combining multiple objectives can

improve performance across the board. Here, an
objective refers to a type of supervision combined
with a domain.

We start by considering the following three ob-
jectives:

• MS MARCO data as fully supervised out-of-
domain (question answering) data.

• Scientific citation graph data as weakly su-
pervised data, automatically extracted from
the scientific literature. There are several ways
to use the citation graph as supervision sig-
nals. A common approach to derive relevance
information is to use cited documents as pos-
itive examples (Cohan et al., 2020). We also
explore other ways such as using co-cited doc-
uments within a given citation context and
using the context as the query for the docu-
ments that it cites.

• Unsupervised data generated via
independent-cropping (Izacard et al.,
2021) on a scientific corpus. Given a
document, independent-cropping samples
two independent spans of tokens (which can
overlap) forming the query and the positive
document. The negative document is sampled
similarly from another document in the
corpus. The original authors suggest that
the overlap between query and documents
encourages the model to learn lexical match-
ing between query and document. In our
implementation, both the query and document
spans contain at least ten tokens.

3.3 Combining objectives
This subsection describes three ways to combine
objectives.

In-batch mixing. One way to combine objec-
tives is in-batch objective mixing. Here, data from
different objectives are randomly mixed within the
same batch. Each of the N objectives is assigned a
weight wi (

∑N
n=1wi = 1). A batch of B instances

is composed of wi × B instances on average of
a given objective i. We experiment with multiple
weighting configurations. When using MNRL, be-
cause the negative documents are shared within
the batch, in-batch mixing negatives are more di-
verse compared to the two other ways to combine
objectives.

Alternate batch mixing. Another way to com-
bine objectives is to change the objective for each

82



training iteration. Overall, the training data is
equally distributed across the objectives, but there
is no mix within a given batch. As opposed to in-
batch mixing, the set of negative documents comes
from the same objective.

Finetuning. The last way we explore is finetun-
ing. For a given objective A, we train a model on
A until convergence and then finetune it on a target
objective B. The training on the second objective
is shorter and commonly uses a lower learning rate.

4 Experimental Setups

Figure 1: Descriptions of two ways to extract relevant
pairs of text for citation contexts. doc2doc uses citation
contexts to associated co-cited documents. context2doc
uses the context as the query for a cited document.

This section describes details about our exper-
imental setups. We discuss the training and eval-
uation data sets as well as our choice of hyper-
parameters.

4.1 Training data

MS MARCO (Bajaj et al., 2016) is a large-scale
information retrieval data set created from Bing’s
search query logs. Sentence-BERT (Reimers and
Gurevych, 2019) provides a data set of hard nega-
tives1 mined from dense models for this data set.
We create triplets (q, p, n) where q is the query,
p is the annotated positive document, and n is a
negative document sampled from the data set. For
our experiments, we mined 5 negative documents
per system, all with a cross-encoder score of 3.0 or
less.

1https://huggingface.co/datasets/sentence-
transformers/msmarco-hard-negatives

SPECTER, a data set extracted from the Seman-
tic Scholar corpus (Ammar et al., 2018), a data set
of scientific papers. We train our models with the
subset of the corpus used by Cohan et al.. The data
set is composed of triplets (q, p, n) where q is the
query paper, p is a paper cited by p, and n is a
paper not cited by q but cited by a paper cited by
the query paper q. The data set contains 684,100
training triplets and 145,375 validation triplets.

unarXiv (Saier and Färber, 2020) is a large
scholarly data set with annotated in-text citations.
From it, we extract all one-sentence contexts con-
taining at least two arXiv papers and only select
the contexts with citing papers that are posted on
arXiv (with an associated arXiv identifier). Our
final data set contains a collection 343,578 one-
sentence context citing a total of 300,736 arXiv
papers across multiple scientific fields (see Figure
2). The contexts and documents contain respec-
tively 29.8 and 152.5 words on average. We use
unarXiv for 2 tasks (see Figure 1). First, we use
the co-cited documents as positive examples in a
document-to-document retrieval setup (we refer to
this objective as doc2doc). Then, we use the con-
text as the query for any of the documents it cites.
We refer to this objective as context2doc short for
context to document. Our version of the dataset is
available here 2.

Figure 2: Counts of ArXiv categories for the documents
in unarXiv collection. Categories with less than 10,000
documents are grouped into "Other".

InPars (Bonifacio et al., 2022) is a recent
method to generate synthetic training data sets for
information retrieval tasks. The idea is to use large
language models, such as GPT-3 (Brown et al.,
2020), to generate queries that are relevant to a

2[github link]
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given document. Bonifacio et al. generated syn-
thetic data for all the data sets present in BEIR. We
combine all the synthetic data sets 3 into one and
use it as training data. We only experiment with
this data set for finetuning models pre-trained on
other objectives.

4.2 Evaluation

BEIR (Thakur et al., 2021) is a benchmark con-
taining 15 information retrieval tasks. We select
5 openly available long document data sets from
the benchmark: SciDocs (Cohan et al., 2020);
NFCorpus (Boteva et al., 2016) a medical infor-
mation retrieval data set of 3,244 queries and
9,964 documents; SciFact (Wadden et al., 2020)
a scientific fact-checking data set of 300 queries
and 5,183 documents; TREC-COVID (Voorhees
et al., 2020) a pandemic information retrieval
data set of 50 queries and 171,332 documents;
ArguAna (Wachsmuth et al., 2018) a counter-
argument data set of 1,406 queries and 8,670 doc-
uments. Except for ArguAna, where queries have
192.98 words on average, all the other selected
BEIR data sets are short queries to document re-
trieval tasks. The selected data set with the longest
queries is SciFact with 12.37 words per query on
average.

SciDocs (Cohan et al., 2020) is a framework eval-
uating scientific paper embeddings. It is composed
of 4 tasks: document classification, citation pre-
diction, user activity, and recommendation. Note
that the SciDocs task presented above in the BEIR
benchmark is only a subtask.

ICLR2022 . Furthermore, we introduce a new
specialized document to document retrieval data set
of artificial intelligence scientific papers. We create
our corpus from all the 1094 papers presented at
ICLR 2022 4. We randomly sample 40 of those
papers and use them as our queries. We index the
corpus using FAISS (Johnson et al., 2019) library
and retrieve a list of 10 documents with cosine sim-
ilarity using multiple models. We distribute the
query-document pairs across 4 in-house annotators
and manually annotate the pairs using 3-scale rele-
vance judgements: 0 not-relevant, 1 relevant and 2
very relevant. Removing the duplicate pairs across
the ranking lists of different models, the data set
contains 1,844 relevance judgements out of which
358 are relevant and 83 are very relevant. The

3https://github.com/zetaalphavector/inPars
4https://iclr.cc/Conferences/2022

dataset is available here 5.

4.3 Hyper-parameters and training details

We use a pre-trained MiniLM-L66 Transformer
model as a basis, and train each of our models from
this for a maximum of 200,000 steps or until con-
vergence of the validation loss with a patience of
2. Each training batch contains 16 triplets and we
accumulate the gradients during 2 steps. When
multiple objectives are combined during training,
the convergence metric is the average of the valida-
tion losses of the training objectives. The optimizer
is AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 2 × 10−5, no weight decay and
ϵ = 10−8. The learning rate follows a linear sched-
ule without warmup. When finetuning models on
a target objective, we train the model on a single
epoch of the target data set using a learning rate
of 10−5. The rest of the optimizer and scheduler
parameters stay the same.

All the experiments were run on a single NVDIA
Titan RTX GPU with 24GB GDDR6. The use of
the MiniLM-L6 model means that we were able
to do fast experiments, but also that the results we
report in this paper are not directly comparable
to the state-of-the-art achieved using much larger
models.

5 Results and Discussion

Single vs. Multi-objective training. We first study
the impact of adding supervision signals from mul-
tiple sources compared to a single training objec-
tive. Table 1 presents the results of ICrop. + con-
text2doc and AllObj-Alt two multi-objective mod-
els compared to the best single-objective models
on each of the 3 evaluation metrics. Both multi-
objective models manage to outperform the base-
line model trained on MS MARCO for all metrics
with at least 3% and up to 38% improvement on
single metrics. The multi-objective models reached
performance on SciDocs close to the baseline
model trained on SPECTER while toping its score
on BEIR and ICLR2022 . We take those results
as empirical evidence that multi-objective training
leads to models that generalize better across multi-
ple domains.

Combining objectives. We study the impact
of the four combining methods: in-batch mixing,

5[link to dataset]
6https://huggingface.co/nreimers/MiniLM-L6-H384-

uncased
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Training objectives Combining BEIR-subset
(ndcg@10)

SciDocs
(avg.)

ICLR2022
(ndcg@10)

2 objectives

(1) MS MARCO , (2) ICrop.

in batch mix 0.269 74.93 0.342
alternate 0.282 74.51 0.341
finetune 1 → 2 0.262 74.27 0.343
finetune 2 → 1 0.324 75.09 0.396

(1) SPECTER, (2) MS MARCO

in batch mix 0.230 78.90 0.396
alternate 0.258 79.25 0.381
finetune 1 → 2 0.307 75.08 0.330
finetune 2 → 1 0.265 78.91 0.419

(1) SPECTER, (2) ICrop.

in batch mix 0.127 78.85 0.413
alternate 0.239 78.57 0.384
finetune 1 → 2 0.242 75.78 0.375
finetune 2 → 1 0.248 79.40 0.471

3 objectives

MS MARCO , SPECTER, ICrop.
in batch mix 0.244 77.78 0.389
alternate 0.278 79.44 0.424

Table 2: Comparison of combining objectives methods. BEIR subset is the average ndcg of the 5 tasks, SciDocs avg
is the average metric of all the tasks. Results in bold are the best result given a set of objectives, underlined results
are the best overall.

alternate, and finetuning in both directions. To do
so we combine three objectives: MS MARCO ,
SPECTER, and independent cropping. The results
are presented in Table 2. When using only two
data sets, finetuning is a better option than both
in-batch mixing and alternating between batches.
The results are consistent across the 3 pairs of ob-
jectives. There is no clear preference between alter-
nating batches and in-batch mixing for two objec-
tives. The models trained with the latter perform
best on SciDocs and ICLR2022 while the mod-
els trained with alternate batches perform best on
BEIR. Maybe the diverse domains of the BEIR
data sets create negatives that are too easy to spot,
while the domains of SciDocs and ICLR2022 are
relatively similar making the negative harder and
forcing the model to learn better representations.
When using three objectives, alternating between
batches performs well across the three evaluation
metrics and seems like the best compromise.

Split proportion. We analyze the effect of the
split proportion when combining 2 objectives us-
ing in-batch mixing. Figure 3 presents the perfor-
mances of a model trained using in-batch mixing
on MS MARCO and SPECTER objectives. We
explore 5 split-proportions going from a model
trained on only SPECTER data (0% MS MARCO )
to one trained using 100% MS MARCO data. The
figure shows that only adding a small proportion

Figure 3: Performance on SciDocs, BEIR, and
ICLR2022 when combining SPECTER and MS
MARCO objectives with in-batch mixing and vary-
ing the proportion of data instances coming from MS
MARCO . When MS MARCO proportion is 25% the
split is 75%-25%. The evaluation metric for SciDocs is
divided by 100 for clarity.

of MS MARCO data results in better performance
on BEIR while maintaining high performance on
SciDocs and ICLR2022 (25% MS MARCO gives
the highest score on ICLR2022 ). As expected,
training on a larger proportion of MS MARCO in-
creases the performance on BEIR but the trade-off
is not interesting as the document representation
and document retrieval performance suffer signifi-
cantly.
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Training BEIR-subset
(ndcg@10)

SciDocs
(avg.)

ICLR2022
(ndcg@10)

ICrop. 0.244 74.93 0.370
MS MARCO 0.270 68.72 0.260
ICrop. + MS MARCO 0.324 75.09 0.396
SPECTER 0.207 79.75 0.407
ICrop. + SPECTER 0.248 79.40 0.471
unarXiv doc2doc 0.170 75.42 0.378
ICrop. + unarXiv doc2doc 0.251 78.19 0.467
unarXiv context2doc 0.252 75.08 0.379
ICrop. + unarXiv context2doc 0.285 78.29 0.450

Table 3: Comparison of training on a single objective versus using independent croping (ICrop) and finetuning on
the target objective (Ind. Crop. + {target}). BEIR subset is the average ndcg of the 5 tasks, SciDocs avg is the
average metric of all the tasks. Results in bold are the best result given a target objective.

Independent cropping. Furthermore, we study
how well self-supervised pre-training on an in-
formation retrieval task performs. In this exper-
iment, we train a model using independent crop-
ping and finetune it on four target objectives. Ta-
ble 3 presents the results when finetuning on MS
MARCO , SPECTER, unarXiv document to doc-
ument, and unarXiv context to document objec-
tives. We find that independent cropping is an
effective pre-training method. For every one of
the target objectives (except SPECTER on the
SciDocs benchmark), pre-training using the self-
supervised method leads to an increase in perfor-
mance compared to only training on the target ob-
jective. The results are consistent across the three
evaluation metrics for all the target objectives ex-
cept SPECTER (the performance on SciDocs is
slightly less but similar).

Using citation contexts as semi-supervised sig-
nal. In addition, we make use of citation contexts
to extract semi-supervised relevance signals. In
particular, we study two ways to define relevancy:
the first is co-occurring documents within a cita-
tion context (unarXiv doc2doc), and the second
uses the context as the query for any document ap-
pearing in it (unarXiv context2doc). The last four
rows in Table 3 presents the doc2doc in context
vs. context2doc. Using unarXiv doc2doc as a sin-
gle training objective does not perform well across
the three evaluation metrics but using it as a target
objective after training on independent cropping
improves the performance but does not compare
to finetuning on SPECTER which gets similar re-
sults on BEIR but higher results on SciDocs and
ICLR2022 . One explanation could be the differ-

ence in data set size: SPECTER training set con-
tains 684,100 triplets and unarXiv doc2doc only
contains 456,766. Using citation context as queries
(unarXiv context2doc) is a better alternative. When
pre-trained on independent cropping and finetuned
on unarXiv context2doc, our model performs well
on the three evaluation metrics. In particular, the
model performs well on the subset of BEIR whose
tasks contain mostly short queries. We find that
using citation contexts, which are shorter than doc-
uments (on average 29.8 words per context), is
an effective way to introduce query to document
supervision for the scientific document domain.

Pre-train data BEIR SciDocs ICLR
2022

Baselines
MSMARCO 0.270 68.72 0.260
SPECTER 0.207 79.75 0.407
ICrop. 0.244 74.93 0.370
Finetuning on InPars
MSMARCO 0.300 69.70 0.248
SPECTER 0.304 74.88 0.300
ICrop 0.313 75.12 0.341

Table 4: Finetuning models on InPars synthetic data.
The first 3 rows are models trained on a single objective.
Metrics are ndcg@10 for BEIR and ICLR2022 , and
average over all tasks for SciDocs.

Using synthetic data. Finally, following (Boni-
facio et al., 2022), we experimented with InPars,
the introduction of in domain synthetic data (query
document pairs generated using GPT-3 (Brown
et al., 2020)). Table 4 presents the results of fine-
tuning on InPars data compared to single objec-
tive training. We find that InPars significantly im-
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proves the performance on BEIR regardless of the
pre-training objective. The performance on Sci-
Docs increases when for both MS MARCO and
independent cropping pre-training. The results
are mitigated when finetuning a model trained on
SPECTER, the performance on BEIR increases by
50% with the cost of 6.1% and 11.1% decrease on
SciDocs and ICLR2022 respectively. The synthetic
data contains mostly short queries, therefore the
increase in performance on BEIR, which contains
a majority of short query to document tasks, is ex-
pected. Future work could explore generating long
query synthetic data.

6 Conclusion

We explored multi-objective dense retrieval train-
ing as a way to optimize models for both short
queries and document queries. We study three
ways to combine objectives (in-batch mixing, al-
ternating between batches, and finetuning). We
find that using multiple objectives is a way to train
dense retrievers that perform well for short and
long query retrieval. Considering the performances
across a subset of BEIR, SciDocs and ICLR2022
our best models achieve an average relative im-
provement between 13.4 and 19.2% compared to
the best single objective models. Our work here
focused on bi-encoders, and future work could ex-
plore whether multi-objective training is also ben-
eficial for a cross-encoder architecture (Lin et al.,
2021).

Furthermore, we find that pre-training a model
using independent cropping and finetuning it on a
target objective consistently improves the retrieval
performance compared to only training on the tar-
get objective.

We also introduced context-to-document, a new
weakly supervised training objective using the ci-
tation context sentence as the query for the cited
document. This signal outperforms the co-cited rel-
evance signal and improves the model performance
on short query retrieval. For future work, we would
like to explore how to pre-filter citation contexts
that do not contain useful information to identify a
relevant document, thus removing potential noise
from the training data.

Finally, we released a new document to docu-
ment retrieval data set composed of ICLR 2022
papers and 1,844 human relevance judgement.

All our experiments were conducted using
a MiniLM-L6 (22.7 million parameters) model

which is more than 10 times smaller than
BERT (Devlin et al., 2019) (345 million param-
eters). Future work should consider how multi-
objective training scales to larger models.

With this work, we hope to make a step in the di-
rection of a multi-purpose document representation
to reduce storage space, computational resources,
and increase the operational efficiency of scientific
retrieval systems.
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Abstract

The meaning and usage of a concept or a word
changes over time. These diachronic semantic
shifts reflect the change of societal and cultural
consensus as well as the evolution of science.
The availability of large-scale corpora and re-
cent success in language models have enabled
researchers to analyze semantic shifts in great
detail. However, current research lacks intu-
itive ways of presenting diachronic semantic
shifts and making them comprehensive. In this
paper, we study the PubMed dataset and com-
pute semantic shifts across six decades. We
develop three visualization methods that can
show, given a root word: the temporal change
in its linguistic context, word re-occurrence, de-
gree of similarity, time continuity, and separate
trends per geographic location. We also pro-
pose a taxonomy that classifies visualization
methods for diachronic semantic shifts with
respect to different purposes.

1 Introduction

Diachronic semantic shift or concept drift studies
how a language (the meaning and usage of words)
evolve over time (Wang et al., 2011). Studying
such semantic shifts is valuable for researchers who
are interested in either the societal and cultural
evolution, or the development of scientific research.
In the latter case, innovations and groundbreaking
discoveries often introduce new concepts, bring
new meanings to existing ones, or shift existing
meanings completely. Automatically identifying
and understanding diachronic semantic shifts is
thus desirable.

The availability of large-scale corpora (Hilpert
and Gries, 2008) and recent success in language
models (Tum, 2020) have enabled researchers to
analyze semantic shifts in great detail (Jatowt and
Duh, 2014; Hamilton et al., 2016; Azarbonyad
et al., 2017; Gonen et al., 2020). Most of the re-
search focuses on discovering general trends in

semantic shifts, tracing the dynamics of the rela-
tionships between words, and elaborates on the
methods used to detect such a shift (Kutuzov et al.,
2018). Little research has explored the visual repre-
sentation of such semantic shifts to help understand
them intuitively. The visuals used across multiple
studies include word graphs (Wijaya and Yeniterzi,
2011; Li et al., 2021), scatterplots (Kulkarni et al.,
2015; Mahmood et al., 2016), and storylines (Mah-
mood et al., 2016). However, these methodologies
currently fail in explicitly showing the temporal
changes of a word and require the user to have
some domain knowledge to fully comprehend the
drifts. There is a strong need for further exploring
the nature of this semantic shift by employing new
visualization methods to make the semantic shift
understandable, explainable, and explorable.

The goal of the this study, therefore, is to present
a classification of visualization methods for a
word’s semantic shift based on the type of con-
cept the user wishes to analyze, which leads us to
the following objectives:

(a) Introduce intuitive methods for visualizing di-
achronic semantic shifts

(b) Propose a taxonomy that classifies visualiza-
tion methods for diachronic shifts based on
the type of concept one wishes to visualize

In this paper, we compute diachronic seman-
tic shifts in PubMed across six decades, and pro-
pose three visualization methods utilising radial
bars, spiral lines and word-cloud maps that can
show, given a root word: the temporal change in
its linguistic context, word re-occurrence, degree
of similarity, time continuity, and separate trends
per geographic location. We compare different vi-
sualization methods and propose a taxonomy that
classifies methods for visualizing diachronic se-
mantic shift.
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2 Data

Our study is based on PubMed (National Library
of Medicine, 2022), a large, long-term corpus of
citations and abstracts of biomedical literature. We
include articles from 1970 onward (when abstracts
are available). We randomly sample 106 out of
the available 1114 xml data files, to keep the data
relatively balanced over the 52 years, enough to
create a word embedding for each decade. We then
divide the corpus into six decades, from the 1970s
to the 2020s. Table 1 shows the distribution of
articles per decade.

Decade No. articles
1970s 222771
1980s 258171
1990s 247961

Decade No. articles
2000s 434448
2010s 458802
2020s 426790

Table 1: PubMed: the distribution of articles per decade

The biomedical abstracts have all their punctua-
tion removed, and are tokenized into words which
are then lowercased and lemmatized, with numerals
and stop words also removed. On this preprocessed
corpus, concept drift can be measured.

3 Method

3.1 Quantifying semantic drift
Inspired by Gonen et al. (2020), word embeddings
are computed per decade (so the six decades are
treated separately). We use the Continuous Bag of
Words (CBOW) model of word2vec (Mikolov et al.,
2013) with window size 10 to train each decade,
and store the resulting embeddings. Then, the top
k = 50 neighbours of a word in the embedded
space make up the “linguistic context” of the word.
Parameter k is tunable; Li et al. (2021) also showed
that this model generally produces stable similarity
scores across the corpus, when varying k. To mea-
sure concept drift, we look at the similarity of its
contexts across time. The Jaccard index measures
the context similarity of any word between any two
decades. Let C1 and C2 be two different word
contexts of the same word related to two different
decades, the Jaccard index is defined as follows:

J(C1, C2) =
|C1 ∩ C2|
|C1 ∪ C2|

=
|C1 ∩ C2|

|C1|+ |C2| − |C1 ∩ C2|

3.2 Visualizing semantic drift
Using the word embeddings and contexts, we pro-
pose three visualization methods. The features
of these visualization methods are summarized in

Table 2, and compared to those of the related work.
These features were chosen to help visualize at a
glance the change of a word over time. The similar
words and the degree of similarity are standard mea-
sures of closeness of a word or change in meaning.
The continuity of a word is able to show precisely
how its meaning changes over time. The word re-
occurrence informs a user whether a linguistic shift
has occurred or not, and geography adds an extra
dimension to study the context of concept drift.

Table 2 also forms a taxonomy that classifies vi-
sualization methods for diachronic semantic shifts
with respect to different purposes. While all related
work is focused on showing the top similar words
and the degree of similarity with the root word,
our methods also capture a combination of word
re-occurrence and continuity through time, so the
temporal factor becomes clearer. We also add a
geographic dimension in the word-cloud map.

Radial bar chart This visualization shows the
concept drift of a root word over time periods at a
glance. A circle is divided into time slices (here,
per decade). In each slice, the k words in the con-
text of that time period are arranged. Their order is
informative, so the words are sorted twice: first by
their re-occurrence (whether the word is present
in the context of any other decade), and then by
their similarity to the root word (their closeness
in embedded space). The length of the bar shows
this degree of similarity. The bars have one of two
colours: orange if re-occurring and blue otherwise.
The proportion of colours and the length of the bars
provide a global picture of the concept drift over
time. The user can then also read the individual
words to understand the local context.

Spiral line chart This visualization focuses on
showing the continuity of a context word across
time. Per root word, each context word is repre-
sented as a line that runs through each decade. A
spiral (rather than line) shape is chosen to compress
multiple time periods and words in a small space.
The spiral starts in summary: a bar chart with the
root word’s aggregate context over all time periods
(taller bars mark context words which re-occur in
the context of the root word). The spiral then con-
tinues through time periods. The continuity of a
context word through time is seen in the continuity
of its line through the spiral. A segment is present
in a time period only if the respective word occurs
in the word embedding for that particular decade.
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top similar words word re-occurrence degree of similarity continuity geography
Radial bar chart (this work) ✓ ✓ ✓
Spiral line chart (this work) ✓ ✓ ✓
Word-cloud map (this work) ✓ ✓ ✓
Word graph ✓ ✓
Scatterplot ✓ ✓
Storyline chart ✓ ✓

Table 2: Features of visualizations compared with related work: word graphs (Li et al., 2021; Wijaya and
Yeniterzi, 2011), scatterplots (Kulkarni et al., 2015; Mahmood et al., 2016), storyline charts (Mahmood et al., 2016)

This visualization is similar to storyline visualiza-
tion (Mahmood et al., 2016), but has the added
benefit of determining, at a glance, the words that
are a closest match to and retain the context of the
root word.

Word-cloud map This visualization tracks
changes geographically, as well as across time peri-
ods, in a word cloud of the top k = 100 neighbours
(with k tunable). Kulkarni et al. (2015) performed
studies on tracking geographic changes, but they
use a scatterplot which doesn’t make geographic
differences explicit. The geographic data here is the
home country of the journal publishing the work.

4 Results

First, the Jaccard index (the context similarity of
any word between any two decades) shows a clear
trend for each combination of decades, and various
root words. Namely, many root words have a Jac-
card similarity close to 0 (they exhibit a near-total
change in their context across the time periods).
However, these root words are not common scien-
tific terms. The distribution of Jaccard index values
has a long tail towards the maximum value 1, and
the more interesting terms (such as those presented
in the next examples) lie on this tail.

Figure 1 shows the radial bar charts for the terms
“anxiety”, “cigarette”, “coronavirus”, and “misin-
formation”. We see that the context around “anxi-
ety” and “cigarette” stay relatively stable, but the
difference is that the context of “anxiety” is much
stronger than that of “cigarette” as the length of
the bars does not change much among the top 50
contextual words.

The lower left radial bar chart shows that the
context of “coronavirus” (especially in the 2020s)
has changed dramatically, suggesting how the re-
search around coronavirus has shifted its focus due
to the ongoing Covid-19 pandemic. For the rela-
tively modern word “misinformation”, interesting
patterns are visualized. From being nearly com-

pletely missing in the 1970s, its context has largely
changed, with quite different degrees of similar-
ity. Words such as “journalist” and “trump” show
up in the 2010s, owing to the rise of the “fake
news” phenomena that was prevalent at the time,
and words like “twitter”, “antivaccination”, “neti-
zens”, “celebrity”, “socialmedia”, “facebook”, and
“instagram” in the 2020s, signifying social media
and the internet as primary modes through which
information, or in this case misinformation, is be-
ing disseminated.

In Figure 2, we track the continuity of the word
“anxiety” over time. We have manually annotated
the category a word may belong to and assigned a
colour to each of them. The continuity of the word
can be seen if the line corresponding to the word
is present in all the decades. Some words, such as
“alienation” and “apprehension” are only present in
a single decade, while “fear” is present in the initial
few decades, moves out of the word context, and
is present in the later decades again. Words such
as “anger”, “mood”, and “selfesteem” are present
across all decades and can be seen as uninterrupted
lines across all the time periods.

Figure 3 shows the geography of the word “di-
vorce” over three pairs of decades, respectively
1970s/1980s, 1900s/2000s and 2010s/2020s. The
countries selected are USA, UK and The Nether-
lands and the choice was motivated by the large
volume of articles that they presented in the dataset.
As can be observed from the picture, an interesting
pattern is identified; during the 1970s and 1980s
divorce had context words related to social status
and level of education. However, in more recent
years, the word seems to be more associated to the
negative consequences that divorce itself can cause,
such as increased criminal behaviour, violence and
self-harm. This phenomenon is more apparent in
the USA and The Netherlands, but is not as evident
in the UK, where divorce is still closely related to
paternity and motherhood.
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Figure 1: Radial bar charts (k = 50) for the terms “anxiety”, “cigarette”, “coronavirus”, and “misinformation”.
Interactive versions online (Raef Kazi, 2022a).

5 User Study

To test the usability of these visualizations and
measure whether they provide the desired benefit,
we conducted a user study incorporating a self-
assessment questionnaire. This study was con-
ducted using the “VisEngage” questionnaire de-
veloped for interactive visualizations by (Hung and
Parsons, 2017). Our questionnaire consisted of 11
questions which were grouped together based on
type of characteristics they were meant to measure,
which were, aesthetics, ease of finding informa-
tion, usability, and user engagement. For each
question, participants provide their response on a
seven-point Likert scale, ranging from strongly dis-
agree (1) to strongly agree (7).

Our study consisted of 5 visualizations, includ-
ing previous visualization techniques from related
work, the proposed methods in this paper, and the
same information in tabular data for a comparison
of usability. For each visualization, the study con-
sisted of 2 task-related questions whose answers

could be found within the visualization, the ques-
tionnaire for measuring the categories, and an open
feedback form for the user to share their opinion
on the visualization.

The results of this study from 8 participants
have been summarized Figure 4. The heatmap
shows that the average scores of the proposed Ra-
dial Bar Chart and Spiral Line Chart are 4.96 and
4.43 respectively, both above a “neutral" score (4),
whereas, from the related work, only the Word
Graph (4.7) scores above a “neutral" score, with
the Scatterplot scoring a 3.74 and plain tabular
data scoring 3.77. The Radial Bar Chart performs
best in categories of aesthetics, usability, and user
engagement, and is second to the Word Graph
in ease of finding information. We see that the
Word Graph performs better overall compared to
the Spiral Line Chart (except in the aesthetics cate-
gory), and is a close second to the Radial Bar Chart
overall, allowing it to also be a viable option for
visualizing semantic shifts.
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Figure 2: Spiral line chart for the word “anxiety”.
Interactive versions online ((Raef Kazi, 2022b)).

These scores from the study, taken in conjunc-
tion with the features visualized by each chart from
Table 2, can aid in the selection of the right chart
to use to best visualize a concept.

6 Conclusion

In this paper we have studied the diachronic se-
mantic shift of words over time and have proposed
methods to visualize these shifts. We perform a
user study to test the usability of the proposed
methods. Our interactive visualization tool helps
users explore and understand these semantic shift.
We also study previous visualization methods by
other researchers and compare them to our pro-
posed methods with a classification taxonomy.

In the future, we will study the complete Pub-
Meb dataset and apply different methods to identify
semantic shifts. More metrics need to be devel-
oped to further quantify the semantic shift so that
highly dynamic words can be identified automati-
cally. Furthermore, instead of manually annotating
radial bar charts and selecting words for storylines,
we will explore different possibilities of automatic
annotation and selection.

This method does not capture the context of mul-
tiple words occurring together. For example, the
meaning of the words “vaccine” and “news” may
stay the same throughout time, but the context in
which these words occur together can differ across

(1970s-1980s) (1990s-2000s) (2010s-2020s)

Figure 3: Word-cloud maps (k = 100) for the word
“divorce” by the publisher location (UK, The Nether-
lands, and USA)

time periods (these 2 words could have different
neighbours if considered during the coronavirus
pandemic). We will also develop additional ways
of visualizing diachronic semantic shift.

Figure 4: Heatmap of average scores for each question
of each item across 5 visualizations. Values 1 and 7
have been removed from the score legend as they were
never used by the participants. Sections have been su-
perimposed for discussion purposes.
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Abstract

Given a citation in the body of a research pa-
per, cited text identification aims to find the
sentences in the cited paper that are most rel-
evant to the citing sentence. The task is fun-
damentally one of sentence matching, where
affinity is often assessed by a cosine similarity
between sentence embeddings. However, (a)
sentences may not be well-represented by a sin-
gle embedding because they contain multiple
distinct semantic aspects, and (b) good matches
may not require a strong match in all aspects.
To overcome these limitations, we propose a
simple and efficient unsupervised method for
cited text identification that adapts an asymmet-
ric similarity measure to allow partial matches
of multiple aspects in both sentences. On the
CL-SciSumm dataset we find that our method
outperforms a baseline symmetric approach,
and, surprisingly, also outperforms all super-
vised and unsupervised systems submitted to
past editions of CL-SciSumm Shared Task 1a.

1 Introduction

The goal of a sentence-matching task is to extract a
sentence that is most relevant to the query sentence
from a collection of candidate sentences. In addi-
tion to information retrieval (IR) methods, a com-
mon unsupervised approach to sentence-matching
tasks is to represent the query and candidate sen-
tences by dense vectors, each computed by aver-
aging the (contextualized) word embeddings cor-
responding to all constituent words in the sen-
tence (Milajevs et al., 2014; Arora et al., 2017).

In this way, all semantic aspects of each sentence
are collapsed into a single embedding representing
the entirety of its semantics. By applying a cosine
similarity to each query-candidate pair of these em-
beddings to evaluate affinity, the implicit assump-
tion is that the most similar pair of sentences should
contain exactly the same set of semantic aspects.

∗* Equal contribution

Citing Paper Reference 
Paper

Cites

Query Citing 
Sentence

Cited 
Sentence 

Candidates
While EM has worked quite well for a 
few tasks, notably machine translations 
(starting with the IBM models 1-5 
(Brown et al, 1993), it has not had 
success in most others, such as part-of-
speech tagging (Merialdo, 1991), 
named-entity recognition (Collins and 
Singer, 1999) and context-free-grammar 
induction (numerous attempts, too many 
to mention).

The Expectation Maximization (EM) 
algorithm (Dempster, Laird and Rubin 
77) is a common approach for 
unsupervised training; in this section 
we describe its application to the 
named entity problem.

Collins and Singer, 1999Charniak and Elsner, 2009

EM EMnamed entity named entity
…

the with the In
Matched similar words Stop words

Unmatched words
context free grammar induction unsupervised training section

… ………

……

Cited Text 
Identification

Figure 1: A sample query citing sentence and gold cited
sentence from the CL-SciSumm dataset illustrating how
shared semantic aspects, emphasized in the figure, may
be accompanied by additional aspects in both sentences.

However, this approach is suboptimal for some
applications, such as the task of identifying the “tar-
get” cited sentence(s) from a reference academic
paper given a “query” citing sentence. As the ex-
ample in Figure 1 shows, the target matching cited
sentence may contain extra semantic aspects in ad-
dition to those that are shared, perhaps providing
further details. Similarly, the query citing sentence
might contain extra aspects referring to other work
or to the relation of the cited information to the
citing paper.

Motivated by this observation, we propose a sim-
ple and efficient unsupervised method that can ac-
commodate extra semantic aspects in both query
and candidates in the cited sentence identification
task. To achieve this, our method employs an asym-
metric sentence similarity measure to ignore words
in the candidate that have little similarity to any
query words, and we introduce a scaling function
that de-emphasizes the unmatched words in the
query citing sentence as well.
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On F1 of CL-SciSumm Shared Task 1a (Chan-
drasekaran et al., 2019, 2020), our method out-
performs the corresponding symmetric similarity
baseline, a strong unsupervised IR approach (Au-
miller et al., 2020), and the best supervised ap-
proach among the past submissions between 2018
and 2020, which ensembles four BERT-based mod-
els (Chai et al., 2020).

2 Method

Figure 2 illustrates our similarity estimation
method given a pair of sentences. In Section 2.1,
we ignore the details in the cited sentence candi-
date and only consider its matched words. In Sec-
tion 2.2, we softly remove the stop words because
the similarity score should not consider the num-
ber of matched stop words. Finally, we reduce the
influence of irrelevant words in the query citing
sentence and let the similarity score be determined
more by the exactly matched words in Section 2.3.

2.1 Asymmetric Sentence Similarity Measure

Kobayashi et al. (2015) perform extractive sum-
marization by extracting the summary sentences
that cover the original document best. Inspired
by their work, we extract the cited sentences that
cover the query citing sentence best, which means
not penalizing the details or extra words in the cited
sentences.

Specifically, we represent the query citing sen-
tence as a multiset of the word embeddings. For
each token in the query citing sentence, we find the
most similar word in the extracted sentence candi-
date, and compute the asymmetric similarity score
sim(Sq, Sc) as

∑

wq∈Sq

W (wq) max
wc∈Sc

σ(wT
q wc), (1)

where wq are the embeddings of the constituent
words w in the query sentence Sq and wc are the
word embeddings from the cited sentence candidate
Sc. The word embeddings are normalized by their
l2-norms so that the dot product between two word
embeddings is their cosine similarity. W (wq) is
the weight of word wq and σ is a scaling function,
which are detailed in Section 2.2 and Section 2.3,
respectively.

We output the top K sentences Sc with the
highest similarities to the query citing sentence
sim(Sq, Sc). We find that this optimization method
is better than the greedy selection for extractive

tasksnamed entity the with context free grammar induction… … …

The Expectation Maximization (EM) algorithm (Dempster, Laird and Rubin 77) is a 
common approach for unsupervised training; in this section we describe its application 
to the named entity problem.


Cited Sentence Candidate

tasksnamed entity the with context            free            grammar     induction… … …

problemnamed entity the in describe… … …describeunsupervised application
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Ignoring the unmatched words in the cited sentence                    (Sec. 2.1)

Deemphasize the stop words in the citing sentence by
tasksnamed entity context            free            grammar     induction… … …

problemnamed entity describe… … …describeunsupervised application
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the in
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Figure 2: Illustration of our asymmetric similarity es-
timation. Smaller font sizes or arrows indicate smaller
contribution to the output similarity score. Our method
can extract the partially matched cited sentence candi-
dates by decreasing the influence of unmatched words
and stop words to highlight the matched semantic words.

summarization proposed in Kobayashi et al. (2015).
See Appendix C.1 for details.

2.2 Inverse Frequency Weighting
Unlike Kobayashi et al. (2015) which treats each
word equally, we assign a lower weight to a com-
mon word (e.g., a stop word) in the query citing sen-
tence because a high-frequency word is naturally
more likely to be matched to irrelevant sentences
in the cited paper.

Following Arora et al. (2017), we set the weight
of the word wq in Equation 1 as

W (wq) =
α

α+ p(wq)
, (2)

where frequency probabilities p(wq) are computed
by f(wq)

N , f(wq) is the frequency of words, and
N is total number of words in the corpus. We let
α = 10−4, which is a typical value suggested by
Arora et al. (2017).

2.3 Scaling Function for Word Similarities
In Figure 2, the correct sentence pair only shares
a few terms, such as named entity, while there are
several unmatched words in the query citing sen-
tence, such as context free. To let the matching
terms in the query contribute more to the final sim-
ilarity score than the unmatched words, we set the
scaling function in Equation 1 to be

σ(x) = xd, (3)
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where d > 0 is a fixed hyperparameter.
When d is large, our method effectively ignores

the cosine similarities that are smaller than 1, which
means it only considers the exact lexical matching
words. In contrast, a small d encourages the cited
sentences to contain more words that are topically
related to the words in the query. We can tune d to
balance the hard matching and soft matching.

3 Experiments

We evaluate our method on the CL-SciSumm
dataset (Chandrasekaran et al., 2019), comparing
our results to past submissions to Shared Task
1a. In the official evaluation, performance is mea-
sured based on sentence overlap F1 and ROUGE-
S*1 (Lin and Och, 2004), both micro-averaged over
all sentences selected by all annotators.

We train 300-dimensional word embeddings us-
ing Word2Vec skip-gram (Mikolov et al., 2013).
We use the ACL Anthology Reference Corpus Ver-
sion 2 (Bird et al., 2008) as our training corpus,
because the papers in CL-SciSumm are sampled
from the computational linguistics domain. For
each query citing sentence in the corpus, we se-
lect the top K = 2 sentences from our candidate
ranking to submit for evaluation. All the hyperpa-
rameters are experimentally chosen to maximize
average F1 scores on the training set.

3.1 Preprocessing

We use a regular expression to remove citation
markers (e.g., of the form (Author, Year)) from the
word-embedding training corpus, citing sentences,
and candidate sentences. These markers do not
contribute to the semantics of the sentences, yet the
weights of these low-frequency markers in Equa-
tion 2 are high and the markers may erroneously
match with words in our similarity computations.
Our ablation study in Appendix C.2 finds that omit-
ting this preprocessing step indeed significantly
degrades performance.

Our objective function in Equation 1 encourages
the selected cited sentence candidates to cover the
query citing sentence. The method has a prefer-
ence for selecting longer sentences because the
asymmetric similarity measurement does not pe-
nalize the unmatched details in the cited sentences,
and more words in each candidate tend to cover
the query sentence better (Kobayashi et al., 2015).

1We discover that the official evaluation script outputs
ROUGE-S* rather than ROUGE-SU4.

Best-Performing Model Configuration (and Tuning Range)

Asymmetry Direction: Candidate Covers Query (or Reverse)
Word Similarity: Cosine (or Dot Product)
Optimization: Top K (or Greedy)
Extracted Sent. Num. K: 2 (or 1-10)
Weights of Query Words: Arora et al. (2017) (or Uniform)
Scaling Function Power (d): 4 (or 1-10)
Citation Markers: Remove (or Keep)
Truncation: After 100 Tokens (or 50 or None)
Casing: Cased (or Uncased)
Word2Vec Min. Word Count: 35 (or 50 or 100)

Table 1: Configuration of our best-performing
Word2Vec-based model, Asymm (d=4), on CL-
SciSumm training set. The hyperparameters in paren-
theses are the ranges we tested.

Our scaling function alleviates the problem by em-
phasizing the exactly matched words. To further
alleviate the issue, we truncate sentences to a cho-
sen maximum length under the assumption that
most of the relevant semantic aspects occur at the
beginning of a long citing or candidate sentence.

3.2 Model and Baselines

We consider the following methods (see Ap-
pendix C.2 for more ablation baselines).

• Asymm (d=4): Our proposed asymmetric
method with the configuration in Table 1, the
best-performing Word2Vec-based configuration
on the training set. d refers to the power of our
scaling function in Equation 3.

• Asymm (d=1): Same configuration as Asymm
(d=4) but using the trivial scaling function
σ(x) = x.

• Symm: The symmetric method that computes a
cosine similarity between average word embed-
dings (Milajevs et al., 2014). Our best Symm
configuration removes stop words and does
not employ the inverse frequency weighting of
Arora et al. (2017), which we found to lower
performance in our experiments.

• Asymm SciBERT (d=4): Replacing Word2Vec
in Asymm (d=4) with SciBERT (Beltagy et al.,
2019).

• BERT ensemble: Best-performing submission
to Shared Task 1a from 2018-2020 (Chai et al.,
2020). The supervised approach creates an en-
semble of four SciBERT-based models. They
also set the number of output sentences K = 2.

• BM25 ensemble: An unsupervised retrieval
97



method proposed by Aumiller et al. (2020)2

that considers the exact term overlap using
BM25 (Robertson and Walker, 1994). The
approach, which achieves the second-best F1
score on Shared Task 1a of all 2018-2020 sub-
missions, is an ensemble of two search config-
urations with additional preprocessing steps to
remove citation markers, as we do, and to mask
math-like text.

Notice that both BERT ensemble and BM25
ensemble utilize the position information of the
candidate sentence within the reference text, while
all of our methods do not make any assumption on
the position of extracted sentences.

3.3 Main Result
The results in Table 2 show that, according to
F1, Asymm (d=4) outperforms Asymm (d=1) and
Symm. On the test set, Asymm (d=4) outperforms
BERT ensemble and BM25 ensemble in terms
of F1, with the latter’s reported F1 and ROUGE
scores similar to those of Asymm (d=1). This
demonstrates that the unsupervised approach for
cited text identification can outperform supervised
approach due to the small training dataset size.

We observe that the performance of Asymm
SciBERT (d=4) is inconsistent on training and test
data. On the test set, Word2Vec significantly out-
performs SciBERT. One reason might be that the
keywords in ACL papers are less ambiguous com-
pared to other text domains such as news. The
result also highlights the advantages of the non-
contextualized word embeddings: we can easily
weight or mask individual word embeddings when
matching the sentences. It is also much more effi-
cient to train Word2Vec on a new corpus and en-
code a new sentence into their word embeddings.

4 Related Work

A variety of unsupervised approaches to sentence-
matching tasks have been proposed. A traditional
method uses an average (contextualized) word em-
bedding as a sentence representation and computes
a cosine similarity between query and candidate
embeddings (Milajevs and Purver, 2014; Arora
et al., 2017). Another approach solves optimal
transportation to match the words between two sen-
tences (Kusner et al., 2015). In addition, Skip-
Thought (Kiros et al., 2015), BERT (Devlin et al.,

2Aumiller et al. (2020) also propose a two-stage re-ranking
approach using a BERT re-ranker, but the second stage does
not improve the result.

Method
Training Set Test Set

Recall F1 R-S* Recall F1 R-S*

Symm 15.5 13.5 12.0 18.0 12.4 9.6
Asymm (d=1) 18.0 15.6 10.2 23.1 16.0 11.3
Asymm (d=4) 18.8 16.4 11.2 25.1 17.4 12.9

Asymm SciBERT (d=4) 19.5 17.0 12.2 22.1 15.3 11.4

BM25 ensemble† – – – – 16.1 11.3
BERT ensemble♮♯ – – – 24.6 17.2 14.7

Table 2: Results of evaluation on the CL-SciSumm train-
ing and test sets. All scores are reported as percentages.
♮ a supervised method. † results taken from Aumiller
et al. (2020). ♯ results taken from Chai et al. (2020).

2019), and SimCSE (Gao et al., 2021) encode the
sentence into a single embedding to predict the
nearby sentences or augmented original sentence.
These methods assume that all the semantic aspects
in a sentence should be matched and lack a way to
emphasize the matched aspects.

Kobayashi et al. (2015) propose an asymmetric
similarity measure to be used in unsupervised ex-
tractive summarization. BERTScore (Zhang et al.,
2020) automatically evaluates generated text using
similar asymmetric similarity scores. The coverage
score from the generation to reference is its recall,
and the score with the reverse direction is its pre-
cision. However, they do not use the asymmetric
similarity to solve partial sentence matching tasks
such as cited text identification.

There are also many supervised approaches for
estimating the relevancy of two sentences. For
example, the approaches built on BERT include
the cross-encoder model (Devlin et al., 2019), bi-
encoder model (Sentence-BERT) (Reimers and
Gurevych, 2019), and the model that maximizes
the coverage score from the retrieved document to
the query (ColBERT) (Khattab and Zaharia, 2020).
Although effective, these approaches often require
a large training dataset to learn a good sentence-
matching. Thus, such methods might not perform
well in scientific sentence-matching tasks where
annotations are very limited and expensive.

5 Conclusion

We observe that many target cited sentences and
query citing sentences are only partially matched,
which motivates us to propose a simple asymmet-
ric sentence similarity measurement that down-
weights or masks the unmatched words, stop words,
and citation markers. With only a few training la-
bels, learning the prior weighting on contextual-
ized word embeddings could be challenging, and
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we suspect that this is the main reason that our
simple unsupervised approach could outperform a
well-tuned BERT-based supervised approach.
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7 Ethical and Broader Impact

There are several potential applications of our ap-
proach. For example, it could be used to accelerate
the labeling process, trace the claims made by the
citing sentence to verify their correctness, or serve
as a baseline for future supervised cited text identi-
fication approaches.

One potential risk of our approach is that its as-
sumptions might not be always valid and might
create biases in downstream applications. For ex-
ample, we assume that high-frequency words or
unmatched words are less important in cited text
identification tasks. This assumption could bias our
method toward outputting longer sentences with
more low-frequency words, which might be less
comprehensible to users.
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A Appendix Overview

In the appendix, we list our main contributions in
Appendix B, conduct more experiments and anal-
yses in Appendix C, provide more details of CL-
SciSumm Shared Task 1a in Appendix D, provide
more details of computing our objective function
in Appendix E, and discuss some potential future
work in Appendix F.

B Main Contributions

• Inspired by Kobayashi et al. (2015), we pro-
pose a sentence-matching model that allows
both query sentence and retrieved sentence to
contain unmatched semantic aspects.

• We discover that some preprocessing steps such
as removing the citation markers are crucial in
a cited text identification task.

• Our extensive experiments on CL-SciSumm
Shared Task 1a show that a simple, efficient,
and unsupervised method based on Word2Vec
can achieve slightly higher F1 score than the
state-of-the-art supervised method that ensem-
bles multiple BERT-based models.

C More Experimental Results

We describe our baselines for our ablation study in
Appendix C.1, analyze the results of the ablation
study in Appendix C.2, test different d values in
our scaling function and reverse the asymmetry
direction in Appendix C.3, compare the average
length of extracted sentences in Appendix C.4, and
report the Recall@K in Appendix C.5.

C.1 Ablation Study Setup
We start from Asymm (d=4), which uses the best
Word2Vec-based configuration reported in Table 1,
and change one design choice or hyperparameter
at a time. In addition, we test a few variants of
Asymm SciBERT.

Kobayashi et al. (2015) theoretically show that
a greedy optimization is effective for maximiz-
ing Equation 1. Hence, we also tried to greed-
ily select the kth cited sentence Sk

c such that
the selected sentence candidates up to this point
∪k
i=1{Si

c} best cover the query citing sentence:
argmaxSk

c
sim(Sq,∪k

i=1{Si
c}). This baseline is

called Greedy Optimization.
To confirm the effectiveness of our word weight-

ing described in Section 2.2, we set the weights
W (wq) in Equation 2 to be always 1 and call this

Method
Training Set Test Set
F1 R-S* F1 R-S*

Asymm (d=4) 16.4 11.2 17.4 12.9
Word Similarity: Dot Product 13.0 9.1 15.1 11.4
Greedy Optimization 13.8 10.0 15.3 12.0
Unif. Weights 9.5 7.1 8.9 6.9
Unif. Weights, No Stop Words 14.1 10.4 15.3 11.4
Keep Citation Markers 11.0 8.2 13.1 9.1
No Truncation 16.3 10.9 17.2 12.8
Truncate after 50 Tokens 15.9 10.9 17.4 12.7
Uncased 16.2 10.3 17.4 12.8
Word2Vec Min. Word Count: 100 15.7 11.1 16.7 12.5
Word2Vec Min. Word Count: 50 15.9 11.1 17.4 12.8

Asymm SciBERT (d=4) 17.0 12.2 15.3 11.4
Asymm SciBERT (d=1) 16.8 12.5 15.0 11.6
Asymm SciBERT (d=4), Unif. Weights 15.1 11.6 13.4 10.1

Table 3: Results of the ablation study. We report F1
(%) and ROUGE-S* (%) on training and test sets. See
Table 1 for the configuration of Asymm (d=4).

baseline Unif. Weights. In addition to this, Unif.
Weights, No Stop Words sets W (wq) as 0 if the
word wq is in our stop word list and as 1 otherwise.

Finally, to decrease the vocabulary size, we map
the words to the [UNK] token if the word frequency
is below a threshold. By default, the threshold is set
to be 35, and we also try 50 and 100 in Word2Vec
Min. Word Count: 50 or 100.

C.2 Ablation Study Results

Table 3 reports the results of our ablation study on
both training and test sets. When using Word2Vec
embeddings, we find that the following ablation
baselines significantly degrade the performance
measured by F1: (1) using a dot product instead
of cosine similarity to compute word similarity
(Word Similarity: Dot Product), (2) using greedy
optimization, (3) removing the inverse frequency
weighting of Arora et al. (2017) (Unif. Weights),
and (4) omitting citation marker removal (Keep
Citation Markers). Changing the truncation or
casing configuration, or raising the minimum word
count, only slightly decreases scores on the training
set and results in little or no decrease in F1 on the
test set.

We additionally find that the greedy sentence
selection used in Kobayashi et al. (2015) is less
effective than ranking sentences by their individ-
ual similarity scores when using our method for
this task. We hypothesize that the effectiveness
discrepancy comes from the length of the query. In
the extractive summarization, the query is a long
document, so we usually want the extracted next
sentence to cover the aspects of query documents
that are not covered by the previously extracted
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sentences. In contrast, the query in cited text iden-
tification is much shorter, so the first citing sen-
tences often can cover the important keywords of
the query. As a result, the greedy method might ex-
tract the incorrect second cited sentence that does
not mention these important keywords in the query
citing sentences.

Furthermore, the ablation study shows that sim-
ply removing the stop words from a list (Unif.
Weights, No Stop Words) is significantly worse
than the inverse frequency weighting (Asymm
(d=4)). This means that non-stop high-frequency
words often carry less semantic information and
thus, their matches should also be counted with
smaller weights.

When using SciBERT embeddings, we also ob-
serve that removing inverse frequency weighting
degrades performance, but the difference is smaller
than the difference between Asymm (d=4) and
Unif. Weights. This might highlight the difficulty
of weighting the contextualized embeddings of in-
dividual words.

We note that the effect on F1 and ROUGE scores
of setting d = 1 in the scaling function is mixed
for Asymm SciBERT. A possible reason for this
is that when using contextualized embeddings, an
exact lexical match of two words does not yield a
cosine similarity of 1, which makes a higher d also
decrease the similarity scores between the exactly
matched words from the sentence pair.

C.3 Varying the Power Hyperparameter in
our Scaling Function and Reversing the
Asymmetry Direction

Figure 3 plots the F1 score of Asymm on training
and test sets against the value of the power hyper-
parameter d in our proposed method’s scaling func-
tion. They plot the same quantity for the method
that has the same configuration but reverses the
standard direction of asymmetry such that the query
aspects must cover the candidate aspects (Asymm
Reverse). That is, we select the top 2 citation
sentences with the highest sim(Sc, Sq). Symm,
BERT ensemble, and BM25 ensemble are also
represented.

Reversing the direction of the asymmetry is an
inherently challenging approach: the variability in
candidate sentence length causes the system to pre-
fer the longest candidates, as there are more terms
in the summation over query words in Equation 1.

However, Figure 3 shows that, on the training set,

Method Selected Sentence Avg. Length

Symm 39.3

Asymm (d=1) 47.0
Asymm (d=4) 41.0

Asymm Reverse (d=1) 132.5
Asymm Reverse (d=4) 56.4

Table 4: Average sentence length of the top K = 2
sentences selected for all citing sentences in the training
set.

the F1 score of Asymm Reverse becomes closer
to that of Asymm as d is increased. Furthermore,
on the test set, the F1 score of Asymm Reverse
approaches that of BM25 ensemble, as does the
score of Asymm after surpassing that of BM25
ensemble for more moderate values of d.

This observation is consistent with the intuition
that as the power is increased, the mechanism of
the asymmetric method approaches that of an exact
word-matching method. The figure further suggests
that an optimal value of d (on the training set, it
is 4) might allow our method to strike a balance
between a soft matching method that considers all
query words and an exact matching method that
considers only query words with a lexical match
in the candidate, leading to improved performance
over both these approaches.

C.4 Retrieved Sentence Lengths

Table 4 contains the average length of the top
K = 2 sentences selected by each of the listed
methods for the training set. An expected effect of
our proposed method is to decrease the tendency
of the basic asymmetric method with d = 1 to se-
lect longer sentences, noted in Section 3.1. From
the table it is evident that adding the scaling func-
tion with d = 4 indeed leads to the selection of
shorter sentences on average, reducing the aver-
age selected sentence length by 6 tokens to more
closely approach the corresponding figure for our
symmetric baseline, Symm.

The same effect is apparent when the standard
direction of asymmetry in the similarity measure
is reversed such that the query must cover the can-
didate (Asymm Reverse). In this case, we see
that Asymm Reverse (d=1) generally selects very
long candidate cited sentences, as expected due to
the variability in candidate length, noted in Ap-
pendix C.3. However, increasing the power of
the scaling function to d = 4 more than halves
the average selected sentence length, likely by de-
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Figure 3: Training (Left) and test (Right) set F1 score of our proposed asymmetric method, Asymm, and the same
method with the direction of asymmetry reversed (Asymm Reverse), as the hyperparameter d of the scaling function
is varied. Scores for Symm, BERT ensemble, and BM25 ensemble are drawn from Table 2 for comparison where
available.

Figure 4: Recall on the test set as the number of selected
sentences, K, is increased from 1 to 10.

emphasizing irrelevant words in relatively long can-
didates. Figure 3 show that this effect is accom-
panied by a drastic improvement in performance,
although Asymm Reverse continues to be outper-
formed by Asymm for all choices of d in our ex-
periments.

C.5 Recall@K

Figure 4 plots the test set recall performance of
Symm, Asymm (d=1), and our best-performing
Word2Vec-based configuration, Asymm (d=4).
Asymm (d=4) consistently outperforms the two
baselines as the number of selected sentences K is
increased from 1 to 10. Within 10 predictions out
of possibly 200 sentence candidates in a reference
paper, the ability of our method to identify around
50% of all cited sentences selected by annotators
indicates its practicality to a user who wishes to
identify relevant sentences within the cited text.

Training Test

Num. Annotators per Citing Sentence 1 3
Num. Reference Papers 40 20
Avg. Num. Citing Sentences per Reference Paper 18.8 19.2
Num. (citing sentence,{gold cited sentences}) Pairs 753 1149

Table 5: CL-SciSumm corpus statistics.

D Experiment Details

The CL-SciSumm Shared Task was last held in
2020, and in that year the official task overview
(Chandrasekaran et al., 2020) reported results for
Task 1a from up to five runs from each of eight par-
ticipants. Previous task offerings in 2018 (Jaidka
et al. (2018); 10 participants) and 2019 (Chan-
drasekaran et al. (2019); 9 participants) evaluated
submissions using the same blind test set, which is
now public.

The dataset includes manual annotations for each
citing sentence, each consisting of up to five spans
from the reference paper that best reflect the citing
sentence. The task statistics are reported in Table 5.
We use the official evaluation script used in past
editions of the Shared Task 1a to obtain our micro-
averaged sentence overlap and ROUGE results.

E Method Details

Word2Vec training. The ACL Anthology
Reference Corpus Version 2 (ACL ARC 2), used
as our Word2Vec training corpus, contains 86M
tokens. We train embeddings of dimension 300
using the Gensim library3.

Word-frequency statistics. When our method is
used with Word2Vec embeddings, the query word

3https://radimrehurek.com/gensim/
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weights of Arora et al. (2017) are computed from
word-count statistics collected from the training
corpus. When our embeddings are contextualized
embeddings from SciBERT, we similarly use the
ACL ARC 2 corpus to compute word frequencies,
but do so after WordPiece tokenization using the
SciBERT tokenizer.

Stop words. We use the following lowercased stop
word list: @-@, =, <eos>, <unk>, disambigua-
tion, etc, etc., –, @card@, ∼, -, _, @, ,̂ &, *, <, >, (,
), \, |, {, }, ], [, :, ;, ’, ", /, ?, !, „ ., ’t, ’d, ’ll, ’s, ’m, ’ve,
a, about, above, after, again, against, all, am, an,
and, any, are, aren, as, at, be, because, been, before,
being, below, between, both, but, by, can, cannot,
could, couldn, did, didn, do, does, doesn, doing,
don, down, during, each, few, for, from, further, had,
hadn, has, hasn, have, haven, having, he, her, here,
here, hers, herself, him, himself, his, how, how, i, if,
in, into, is, isn, it, it, its, itself, let, me, more, most,
mustn, my, myself, no, nor, not, of, off, on, once,
only, or, other, ought, our, ours, ourselves, out, over,
own, same, she, should, shouldn, so, some, such,
than, that, the, their, theirs, them, themselves, then,
there, these, they, this, those, through, to, too, under,
until, up, very, was, wasn, we, were, weren, what,
when, where, which, while, who, whom, why, with,
won, would, wouldn, you, your, yours, yourself,
yourselves.

F Future Work

How to combine our approach with contextualized
word embeddings more effectively is a promising
research direction. For example, we can pretrain
BERT on ACL papers as in Chai et al. (2020) after
removing the citation markers. Furthermore, all of
our experiments are done on CL-SciSumm Shared
Task 1a, and we hope to also test our methods on
other datasets such as SCIFACT (Wadden et al.,
2020).

Recently, Gao et al. (2021) propose SimCSE,
an effective unsupervised sentence similarity es-
timation method. Izacard et al. (2021) and Ram
et al. (2022) propose unsupervised dense IR ap-
proaches. We are curious about the effective-
ness of these approaches on partial sentence-
matching tasks such as cited text identification.
Furthermore, training Sentence-BERT (Reimers
and Gurevych, 2019) on various kinds of similar
sentences results in a general-purpose sentence sim-
ilarity model (sbert.net, 2021). We leave the com-

parison with these approaches for future work.
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Abstract

Automatic organization of scholarly literature
is a challenging but essential task. In particu-
lar, assigning key concepts to scientific publi-
cations allows researchers, policymakers, and
the general public to search for and discover
relevant research. But any meaningful organiza-
tion of scientific publications must evolve with
new research, requiring up-to-date and scalable
text classification models. Additionally, scien-
tific research publications benefit from multi-
label classification, particularly with more fine-
grained sub-domains. Prior work has focused
on classifying scientific publications from one
research area (e.g., computer science), referenc-
ing static concept descriptions, and implement-
ing English-only classification models. We
propose a multi-label classification model that
can be implemented in non-English languages,
across all scientific literature, with dynamic
concepts.

1 Introduction

Maintaining an up-to-date organization of scien-
tific literature in any domain requires an automated
approach—a comprehensive and real-time solution
for a constant influx of text data. Specifically, re-
search publications require characterization or in-
dexing in order to be searchable and accessible to
researchers, policymakers, and the public. Many
academic databases and publishers maintain a tax-
onomy that authors or editors reference in order to
manually assign topics, research fields, or concepts
to scientific publications. Yet, manual labeling is
notoriously laborious and error-prone. Automation
is necessary to accurately label documents with
taxonomy concepts in a timely manner.

Here, we focus on scientific publication clas-
sification based on Microsoft Academic Graph’s
field of study taxonomy (Shen et al., 2018). This
taxonomy contains a hierarchy of scientific con-
cepts (fields of study) to organize scholarly litera-

ture. Our objective is to design an updatable and
scalable multi-label classification model that is in-
dependent of manual annotation or input language.
We experiment with scientific research documents
in English and Chinese, as these are by far the two
most frequent languages for publications in our
database.

Our work leverages a multi-lingual knowledge
base, Wikipedia, in order to obtain up-to-date con-
cept descriptions in English and other languages.
Using MediaWiki’s API, we first locate an English
concept’s Wikipedia page and are then able to find
the corresponding page in other languages (Medi-
aWiki, 2022). Hence, a multi-lingual knowledge
base provides multi-lingual concept descriptions
without requiring any direct translating of the con-
cept taxonomy or concept descriptions.

We represent both the concept descriptions and
research publications text data in embedding form.
By using vector space representations of text (word
embeddings) we can compute the cosine similari-
ties between concept embeddings and publication
embeddings, with the cosine similarity score in-
dicating the relevance of a concept to a publica-
tion. In this way, we are able to compute either
one top field (most similar) or multiple fields of
study that are relevant (determined by a similar-
ity score threshold for the task at hand) to a given
publication. A multi-label classification model is a
practical approach to scientific publication classifi-
cation, as most scientific research publications are
relevant to more than one field of study, particularly
at the more granular level of fields. For example,
a publication can be relevant to natural language
processing and machine learning.

We implement our multi-label classification
model in English and Chinese, generating field
descriptions, embeddings, and field-to-publication
similarity scores in each language. Our database of
scholarly literature contains more than 184 million
documents in English and more than 44 million
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documents in Chinese, which serve both as input
text for word embeddings and as target publica-
tions for classification. Applying our scientific
publication word embeddings and field of study
descriptions from Wikipedia, we compute field
embeddings for 313 different fields of study, and
publication embeddings for the scientific research
publications in English and Chinese.

Because we do not have a manually annotated,
ground-truth dataset with field labels assigned to
publications, we provide extensive evaluations of
our results and include a case study on artificial
intelligence and machine learning publications.

The contributions of the paper are summarized
as follows: 1) word embeddings in English and Chi-
nese, trained on a comprehensive set of scholarly
literature, 2) a scientific text classification model
not restricted to the English language, and 3) a
Python library for updating field embeddings and
models in sync with changes to underlying field
definitions (from Wikipedia articles and the sources
they cite), to address conceptual drift. All results
and code will be made public in our GitHub repos-
itory1.

2 Related Work

Classifying text according to a defined taxonomy
is applied across a wide range of domains, such as
patents, news articles, and scientific literature, us-
ing numerous machine learning approaches. Text
classification for scientific literature typically in-
volves text extraction, topic modeling, or citation
graphs to cluster related documents (Aljaber et al.,
2010; Tsai et al., 2013; Yau et al., 2014; Kim and
Gil, 2019). Prior research that uses a predefined
taxonomy for multi-label classification is generally
limited to one broad area of research, and selecting
a dataset with annotated publication data (i.e., a
dataset limited to a classification scheme).

Santos and Rodrigues reference the Association
for Computing Machinery (ACM) Concept Classi-
fication System (CCS) to assign multiple concept
labels to computer science papers (Santos and Ro-
drigues, 2009). The authors crawl relevant web
pages to identify concept-related descriptive text
and implement three different classification mod-
els: Binary Relevance, Label Powerset, and Multi-
Label k-Nearest Neighbors (Santos and Rodrigues,
2009). Similarly, Mustafa et al. reference the ACM

1https://github.com/georgetown-cset/
scientific-field-classification

CCS, but use Word2Vec embeddings to represent
scientific research publication text and cosine simi-
larity to compute a similarity score and determine
concept assignment (Mustafa et al., 2021).

Shen et al. generate a six-level scientific docu-
ment taxonomy for all of science. Using Word2Vec
and term frequency-inverse document frequency
(TF-IDF) embeddings trained on scientific publi-
cation titles and abstracts, Shen et al. generate
field of study embeddings and publication embed-
dings. Each scientific publication is assigned multi-
ple field labels using cosine similarity between the
publication embedding and the field embeddings
(Shen et al., 2018).

3 Data

We use three datasets in our model: 1) scientific
research documents, 2) a scientific research field of
study taxonomy, and 3) a knowledge base.

3.1 Scientific Research Documents

In this work, we use a comprehensive set of sci-
entific research documents that we compiled from
six scholarly literature databases: Clarivate’s Web
of Science (WOS), Digital Science’s Dimensions2

(DS), Microsoft Academic Graph (MAG), arXiv,
Papers with Code (PWC) and the Chinese Na-
tional Knowledge Infrastructure3 (CNKI). There is
no common publication identifier across these six
datasets, so we deduplicate publications to generate
a merged corpus of scholarly literature.

We deduplicate documents in a two-step pro-
cess illustrated in Figure 1. In step one, we ex-
tract six document identifiers (DOI, citations, nor-
malized abstract, normalized author names, nor-
malized title, and publication year) for each doc-
ument. To normalize the document abstracts, au-
thor names, and titles, we implement the Normal-
ization Form Compatibility Composition standard,
which decomposes Unicode characters by compat-
ibility and recomposes them by canonical equiva-
lence. We de-accent letters, strip copyright signs,
HTML tags, punctuation, non-alphanumeric char-
acters, and numbers, and remove white space from
the strings. If any three identifiers between doc-
uments are equal, we assign those documents a

2Data sourced from Dimensions, an inter-linked research
information system provided by Digital Science http://
www.dimensions.ai

3All China National Knowledge Infrastructure content is
furnished for use in the United States by East View Informa-
tion Services, Minneapolis, MN, USA
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Figure 1: Scientific document de-duplication process.

In step two, we use the SimHash fuzzy matching
algorithm with a rolling window of three characters
in order to match articles that were published in
the same year and have similar abstracts and titles
(Manku et al., 2007). Articles matched in step two
are also assigned a merged ID. Articles that do
not have a distinct merged ID assigned in either
deduplication step are included in the final corpus
as unique documents.

From the deduplicated set of scientific research
documents, we generate a set of English docu-
ments, EN-PUBLICATIONS (184,381,319 publi-
cations), and a set of Chinese documents, ZH-
PUBLICATIONS (44,166,696 publications), using
Chromium Compact Language Detector 2 (CLD2).
Each document is represented by the text available
from the title and abstract; if both title and abstract
are present then the text is concatenated.

3.2 Field of Study Taxonomy
We use MAG’s Field of Study (FoS) taxonomy,
which contains six levels (0 through 5) of fields.
Level 0 ("L0") represents the most broad fields,
such as computer science and medicine, and Level
5 ("L5") represents the most granular fields, such
as key clustering and gene density. FoS L0 and
L1 were derived from Science-Metrix classifica-
tion scheme4 and refined manually by the authors,
whereas and L2-L5 were automatically identified
(Shen et al., 2018).

In this study, we select the 19 L0 and the 294
L1 FoS as our target classification scheme; L1 FoS
are sub-domains of L0. In Table 1 we display all

4http://science-metrix.com/en/
classification

19 L0 FoS with several examples of their L1 child
FoS. We denote the total number of L1 FoS under
each L0 in parentheses next to their label. Medicine
has the most L1 child FoS, with 45, followed by
engineering with 44 and economics with 40.

The FoS taxonomy we reference in this study
defines the fields: their names and parent/child
relations. All FoS in this taxonomy are provided in
English only.

3.3 Knowledge Base

For our knowledge base we use Wikipedia, an
open-collaboration online encyclopedia accessible
for free, with articles published in 327 languages
(Wikipedia, 2022). We access Wikipedia arti-
cles through MediaWiki’s API (MediaWiki, 2022).
Given the English Wikipedia page title for a field (if
known) or otherwise the field name in English, we
query the Mediawiki API for metadata on any such
page in English Wikipedia. Specifically, we request
its langlinks property, which describes corre-
sponding pages in other languages/Wikipedias. In
this way, the English FoS can be linked to any
language of interest without manual translation,
making Wikipedia an ideal knowledge base for our
multilingual classification model.

In Figure 2 we display a portion of the Wikipedia
articles for natural language processing, in English
and Chinese. We use the full-body text in the arti-
cle, as well as the publication titles and abstracts
listed in the “References” section.

4 Field of Study Classification Model

Our field of study multi-label classification model
is adapted from MAG’s scientific publication classi-
fication scheme, with key design modifications. In
Shen et al.’s model, the descriptive text used to gen-
erate L0 and L1 FoS embeddings are titles and ab-
stracts from sets of scientific publications for each
field, in which the publications are selected from a
sample of unknown journals and conferences (Shen
et al., 2018). For one of their embeddings set the
authors generate Word2Vec vectors.

We use Wikipedia article text and reference pub-
lications for L0 and L1 FoS descriptive text. In this
way, field descriptions can be replicated, extended
to languages other than English, and updated as
the fields evolve. We describe in this section the
project workflow to process our data and design
our field of study classification model. Figure 3
shows the high-level pipeline to produce the field
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Art (displaying 6 of 6 L1) History (displaying 6 of 7 L1)
Aesthetics, Art History, Classics, Humanities,
Literature, Visual Arts

Ancient History, Archaeology, Classics, Eco-
nomic History, Ethnology, Genealogy

Biology (displaying 7 of 32 L1) Materials Science (displaying 5 of 7 L1)
Anatomy, Animal Science, Bioinformatics,
Botany, Genetics, Immunology, Zoology

Ceramic Materials, Composite Material, Met-
allurgy, Nanotechnology, Optoelectronics

Business (displaying 6 of 13 L1) Mathematics (displaying 6 of 20 L1)
Accounting, Actuarial Science, Commerce, Fi-
nance, International Trade, Marketing

Algebra, Combinatorics, Geometry, Mathe-
matical Optimization, Statistics, Topology

Chemistry (displaying 5 of 21 L1) Medicine (displaying 7 of 45 L1)
Biochemistry, Food Science, Mineralogy, Or-
ganic Chemistry, Radiochemistry

Audiology, Cancer Research, Nursing, Or-
thodontics, Pediatrics, Surgery, Virology

Computer Science (displaying 5 of 34 L1) Philosophy (displaying 6 of 7 L1
Algorithm, Artificial Intelligence, Database,
Internet Privacy, Parallel Computing

Aesthetics, Epistemology, Humanities, Lin-
guistics, Religious Studies, Theology

Economics (displaying 5 of 40 L1) Physics (displaying 5 of 27 L1)
Accounting, International Trade, Manage-
ment, Political Economy, Socioeconomics

Astronomy, Geophysics, Nuclear Physics,
Quantum Mechanics, Thermodynamics

Engineering (displaying 5 of 44 L1) Political Science (displaying 3 of 3 L1)
Aeronautics, Control Theory, Nuclear Engi-
neering, Simulation, Systems-Engineering

Law, Public Administration, Public Relations

Environmental Science (displaying 4 of 8 L1) Psychology (displaying 5 of 14 L1)
Agricultural Science, Agroforestry, Environ-
mental Planning, Environmental Protection

Cognitive Science, Criminology, Neuro-
science, Psychiatry, Social Psychology

Geography (displaying 6 of 11 L1) Sociology (displaying 5 of 13 L1)
Archaeology, Cartography, Forestry,
Geodesy, Meteorology, Regional Science

Anthropology, Demography, Ethnology, Gen-
der Studies, Media Studies, Political Economy

Geology (displaying 6 of 18 L1)
Climatology, Earth Science, Geophysics, Hy-
drology, Oceanography, Petrology

Table 1: The 19 L0 Fields of Study and a sample of their child fields (L1). Next to each field is the number of L1
FoS displayed and the total number of child fields.

and document embedding outputs necessary for our
classification model.

We describe each step in our classification model
pipeline as follows:

Step 1: To normalize the scientific publication
text, we remove all punctuation and numeric to-
kens. For languages that are case-sensitive, we set
all text to lowercase. For example “COVID-19” is
transformed to “covid19” in English. The normal-
ized texts are used as inputs for the TF-IDF and
fastText embeddings in Step 2.

Step 2: With the normalized scientific publica-
tion text (from Step 1) as input, we produce TF-IDF
embeddings using TfIdfTransformer from
gensim and 250-dimensional fastText word em-
beddings using the skipgram model (Rehurek and
Sojka, 2011; Bojanowski et al., 2017). TF-IDF pro-

vides a measurement of how important a word is
to a document based on the word’s occurrences in
the entire document. FastText word embeddings
encode n-grams in a vector space that represents
semantics. Since both vector representations of
words (TF-IDF and fastText) are determined by the
input corpus, it is necessary to use a representative
corpus for the task at hand.

Step 3: For each of the 19 L0 and 294 L1 FoS,
we retrieve the corresponding associated text (page
content and reference publications) in Wikipedia,
which we refer to as descriptive field text. Com-
bining the Wikipedia page text and scientific publi-
cation text we aim to capture both definitions and
exemplar research for a given field.

Step 4: We compute field TF-IDF and fastText
embeddings using the embedding sets from Step
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EngliVh ChineVe

Figure 2: Sample Wikipedia article on Natural Language Processing

2 and the descriptive field text from Step 3. We
follow the procedure in “Algorithm 1” to generate
TF-IDF and fastText embeddings for each FoS.

Algorithm 1 Full Text to Single Embedding
Input: Word embedding dictionary, E

Text, t
Output: Single text vector, ~t

1: procedure EMBED_TEXT(t, E)
2: V = [] . Empty array to store word vectors
3: for word in t do
4: if word in E.keys() then
5: ~w = E[word]
6: V.append(~w)
7: end if
8: end for
9: ~t = sum(V , axis=0)

10: l2 = linalg.norm(~t, 2, axis=0)
11: if l2 == 0 then return ~t
12: else ~t =

~t
l2

13: end if
14: return ~t . The text vector is ~t
15: end procedure

Step 5: Separate from FoS embeddings in Step
4, we compute entity embeddings. We generate
these for a FoS or publication as the average over
the embeddings of each FoS mention in its text.

Step 6: Using “Algorithm 1”, we compute docu-
ment embeddings for each scientific research pub-
lication in our corpus.

Step 7: We use cosine similarity to compute a
similarity score for each document compared to
each FoS, for each embedding set (TF-IDF and
fastText). Our similarity score is the average of
the two cosine similarities. The cosine similarity

between two vectors is defined as:

cos(~f, ~d) =
f · d

kfkkdk (1)

Research PublicationV:
TiWOeV aQd AbVWUacWV

TFIDF
Embeddings

fastText
Embeddings

Field of Study Taxonomy

Field Content:
WiNiSedia

DeVcUiSWiRQ aQd
RefeUeQced
PXbOicaWiRQV

Data Input Data Processing

NRUPaOi]e
Te[W

Data Output

Field TFIDF
Embeddings

Field
fastText

Embeddings

Document 
 Embeddings

Field 
 Embeddings

Figure 3: Process to generate document embeddings
and three sets of FoS embeddings

Here, ~f represents a FoS embedding and ~d rep-
resents a document embedding. Cosine similarity
returns a value between 0 and 1, with 0 indicating
no similarity and 1 indicating perfect similarity. By
computing cosine similarity for all FoS and doc-
ument pairs, we can choose if we want to label
a document with only one field (the most similar
FoS), or set a similarity score threshold and assign
multiple fields. This is particularly useful with
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more granular fields. For example, a publication
can be relevant to computer vision and machine
learning L1 FoS.

5 Experiments

We perform Steps 1-7 on EN-PUBLICATIONS and
ZH-PUBLICATIONS. Text normalization and em-
bedding generation (Steps 1-2) may require differ-
ent tools and packages depending on the choice of
non-English languages; we use jieba for Chinese
text processing.

For knowledge base information retrieval (Step
3), we reference MAG’s FoS metadata for field ID,
field name, field level, and field Wikipedia page.
The field of study attributes metadata includes En-
glish Wikipedia URLs for all fields. We query
MediaWiki with the assigned Wikipedia pages for
each FoS in English to store the descriptive text and
search for the corresponding page in Chinese. This
results in several outcomes that we detail below for
non-English implementations of our model:

1. The Wikipedia page does not exist (maybe it
once did; maybe not). We fall back to search-
ing Wikipedia for this term (in a second API
request), in case there exists a near match. We
store these “near-match” results for manual
review to ensure they are accurate.

2. The desired English Wikipedia page exists
but the langlinks property does not in-
clude a link to a corresponding page on Chi-
nese Wikipedia. We store the English page
name and page ID, and leave the Chinese page
fields blank to flag for manual review.

3. We find the desired English page and a
linked Chinese page. We store each page
name and page ID, for the English and Chi-
nese results.

With the completed links between FoS and
Wikipedia pages, we are able to retrieve the descrip-
tive text from Wikipedia pages and the text from
referenced publications. At this stage in the pro-
cess, the Chinese implementation is self-contained
and no longer relies on any data linkages in En-
glish, which would be the case for any non-English
language implementation.

We generate document embeddings for each sci-
entific document in EN-PUBLICATIONS and ZH-
PUBLICATIONS, and we generate FoS embeddings
and entity embeddings for our English and Chinese
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Figure 4: Percentage of papers in EN-PUBLICATIONS
and ZH-PUBLICATIONS by the top L0 FoS label

results, respectively (Steps 4-6). We then compute
the cosine similarity between every document and
FoS embedding pair in both languages (Step 7).

6 Results and Evaluation

Evaluating our results is particularly challenging
without a ground-truth dataset that contains publi-
cations and their corresponding field of study labels.
Because of this limitation, we offer several meth-
ods of evaluation that do not require annotation (to
limit human bias and error) and can be replicated.
Our evaluation methods compare results at the FoS
level and the publication level in order to measure
our taxonomy representation results (FoS embed-
dings) and our publication classification results.

6.1 Top Field of Study Labels

With each publication in EN-PUBLICATIONS

and ZH-PUBLICATIONS having cosine similarity
scores for the L0 and L1 FoS, we first analyze the
top L0 field assignments (i.e., the L0 field with the
highest cosine similarity score). Figure 4 displays
the percentage of papers from EN-PUBLICATIONS

and ZH-PUBLICATIONS with each top L0 field la-
bel. In EN-PUBLICATIONS, medicine, chemistry,
and computer science have the most top field labels,
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Corpus Computer Science Economics Medicine Sociology

EN-PUBLICATIONS

1. Data Science 1. Economic Growth 1. Cancer Research 1. Media Studies
2. Machine Learning 2. Economy 2. Surgery 2. Socioeconomics
3. Internet Privacy 3. Microeconomics 3. Cardiology 3. Gender Studies
4. Computer Network 4. International Econ. 4. Virology 4. Communication
5. Computer Security 5. Economic Policy 5. Medical Physics 5. Criminology

ZH-PUBLICATIONS 1. Algorithm 1. Commerce 1. Pharmacology 1. Regional Science
2. Data Science 2. Economy 2. Immunology 2. Gender Studies
3. Simulation 3. Monetary Econ. 3. Audiology 3. Law & Economics
4. Real-time Computing 4. Macroeconomics 4. Oncology 4. Social Science
5. Software Engineering 5. Financial System 5. Family Medicine 5. Anthropology

Table 2: Top five L1 fields of study for computer science, economics, medicine, and sociology L0 fields. L1 fields
in bold font indicate that they appear in both the English and Chinese top five results for the same L0 field.

whereas in ZH-PUBLICATIONS political science,
medicine, and chemistry have the most.

Next, we analyze the top L1 FoS (child) for each
L0 FoS (parent). In Table 2, we present results
from four representative L0 FoS (computer science,
economics, medicine, and sociology) and list the
top five L1 FoS from EN-PUBLICATIONS and ZH-
PUBLICATIONS. We bold the fields that appear in
both the English and Chinese top five L1 results;
medicine has no overlapping top five L1 fields.

6.2 L0-to-L0 Similarities

Each FoS has a unique vector representation, cal-
culated in Step 4; thus we can evaluate how similar
FoS are to each other using cosine similarity. In
Figure 5, we compare all L0 FoS embeddings using
their cosine similarity scores; we present the results
for English (left) and Chinese (right).

The diagonal represents the cosine similarity
score for each L0 FoS to itself, which is 1. We
find that the results in English are stronger than
the results in Chinese. For example, in English,
we see high similarities between L0 FoS we know
are related: [computer science, engineering]; [po-
litical science, sociology]. Additionally, we see
low similarities between L0 FoS that are unrelated:
[biology, political science], [chemistry, political
science], [materials science, philosophy]. In Chi-
nese, we find L0 FoS pairs with high similarities
that we would expect, such as [political science,
economics] and [mathematics, physics]. However,
we also find L0 pairs with high similarities that do
not align with field relatedness, such as [chemistry,
economics] and [history, physics].

6.3 L0-to-L1 Field Similarities

We evaluate the parent-child relationship between
L0 and L1 FoS. For each L0 FoS, we generate a
t-Distributed Stochastic Neighbor Embedding (t-
SNE) plot with its corresponding L1 FoS. Using
t-SNE, we implement dimensionality reduction on
our 250-dimensional embeddings and plot the FoS
embeddings in a 2-D space. In this way, we can vi-
sualize the organization of the parent FoS to its chil-
dren. Figure 6 shows our results in both languages;
the L0 FoS (parent) is highlighted in yellow.

We display the same four representative FoS
(economics, computer science, medicine, and soci-
ology) from Section 6.1 in Figure 6, but all L0 FoS
graphs will be available in our GitHub repository.
The t-SNE plots allow us to see how the L1 FoS
are represented in the embedding space, and they
highlight similarities and differences between the
results in English and Chinese. For example, in
computer science the L1 FoS have different group-
ings, such as data science and data mining in En-
glish, and pattern recognition and computer vision
in Chinese. Alternatively, in economics, both lan-
guages have strong similarities between finance
and actuarial science.

The t-SNE plots also help us compare the L1
field embeddings to their L0 (parent) field embed-
dings. We find that the English results for eco-
nomics and medicine show the L0 fields as more
central, with the L1 fields tightly clustered, as op-
posed to the computer science and sociology results.
The Chinese graphs highlight that the L1 fields are
not as tightly clustered as the English L1 fields.
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Figure 5: L0 Fields of Study cosine similarity heatmaps.

6.4 Case Study: Publication Field of Study
Labels in Artificial Intelligence and
Machine Learning

In order to evaluate how well our model assigns
field labels to scientific research publications, we
select publications from 13 top artificial intelli-
gence (AI) and machine learning (ML) conferences
identified by CSRankings5:

1. AAAI Conference on Artificial Intelligence

2. International Joint Conference on Artificial
Intelligence

3. IEEE Conference on Computer Vision and
Pattern Recognition

4. European Conference on Computer Vision

5. IEEE International Conference on Computer
Vision

6. International Conference on Machine Learn-
ing

7. International Conference on Knowledge Dis-
covery and Data Mining

8. Neural Information Processing Systems

9. Annual Meeting of the Association for Com-
putational Linguistics

5www.csrankings.org

10. North American Chapter of the Association
for Computational Linguistics

11. Conference on Empirical Methods in Natural
Language Processing

12. International Conference on Research and De-
velopment in Information Retrieval

13. International Conference on World Wide Web.

There are 127,257 publications in EN-
PUBLICATIONS that were published in a top
AI/ML conference; this evaluation is limited to
EN-PUBLICATIONS. We find that 57% of these
publications have computer science as the top L0
FoS, with physics coming in second with 27%.
Additionally, we check for the number of L0 FoS
that are children of computer science and find that
59% of the publications have a top L1 FoS that is a
child of computer science.

7 Conclusion and Future Work

Organizing scholarly literature is necessary for ac-
cessibility and usefulness of scientific research pub-
lications. Prior work has focused on a few broad ar-
eas of research, English-only research publications
and taxonomies, and static taxonomy descriptions.
In this paper, we implement a multi-label classifica-
tion model that encompasses research fields from
all of science, can be updated using a comprehen-
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sive, online knowledge base, and is not restricted
to the English language.

In future work, we plan to expand to additional
languages and explore the longitudinal dynamics
of fields: how their relative positions have shifted,
within and between languages, as Wikipedia article
text and references have changed.
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Abstract

Long document summarisation, a challenging
summarisation scenario, is the focus of the re-
cently proposed LongSumm shared task. One
of the limitations of this shared task has been
its use of a single family of metrics for evalu-
ation (the ROUGE metrics). In contrast, other
fields, like text generation, employ multiple
metrics. We replicated the LongSumm evalu-
ation using multiple test set samples (vs. the
single test set of the official shared task) and in-
vestigated how different metrics might comple-
ment each other in this evaluation framework.
We show that under this more rigorous evalua-
tion, (1) some of the key learnings from Long-
summ 2020 and 2021 still hold, but the relative
ranking of systems changes, and (2) the use
of additional metrics reveals additional high-
quality summaries missed by ROUGE, and (3)
we show that SPICE is a candidate metric for
summarisation evaluation for LongSumm1.

1 Introduction

Text summarisation is an increasingly sought-after
capability that is required by corporations and gov-
ernments for productivity gains. For such use-
cases, long documents with complex structures are
often used as the input data. However, work on
summarizing long documents into detailed sum-
maries has not dominated the summarisation re-
search field. There have been some exceptions
to this, for example, work on government reports
(Huang et al., 2021; Cao and Wang, 2022) and
PubMed literature (Gupta et al., 2021). In contrast,
most of the text summarisation work focuses on
shorter documents or generating shorter summaries
(for example, Wikipedia data (Gholipour Ghalan-
dari et al., 2020), scientific articles (Teufel and
Moens, 2002; Cohan et al., 2018), and news sum-
marisation (See et al., 2017)) ).

∗Work done during the internship at CSIRO Data61.
1Our code is available at https://github.com/

caiyangcy/SDP-LongSumm-Metric-Diversity

Figure 1: An example of a long document abstractive
summary from the LongSumm data set, presented using
SUMMVis (Vig et al., 2021).

To bridge this gap, the shared task of summariz-
ing long scientific articles (LongSumm) was pro-
posed, where the system should produce a detailed
and informative technical summary of a source ar-
ticle. This shared task was introduced in the 2020
Scholarly Document Processing workshop (Chan-
drasekaran et al., 2020). The shared task includes
an extractive and abstractive version of the prob-
lem. The former is based on the TalkSumm dataset
(Lev et al., 2020), an alignment of presentation
transcripts to the publication. The latter is captured
using a data set of technical blogs and publications
(Chandrasekaran et al., 2020).

The abstractive data set is interesting in that sum-
maries must provide both high-level and low-level
details. An example is provided in Figure 1, where
the summary is a blog "walkthrough" of the main
points of a paper (presented using the SUMMVis
tool (Vig et al., 2021), showing colored alignments
of content to the source material).

The 2020/2021 LongSumm shared tasks resulted
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in a couple of key learnings for abstractive sum-
marisation: (1) that there was no clear difference
in performance between extractive and abstractive
methods; and (2) approaches that focus on the rep-
resentation of long documents, such as the Bigbird
(Zaheer et al., 2020) and Pegasus (Zhang et al.,
2020a) combination outperformed simpler abstrac-
tive methods like BART (Lewis et al., 2020).

One potential weakness of the LongSumm
shared tasks is that they were limited to the ROUGE
family of metrics (Lin, 2004), including recall of
unigrams (ROUGE-1), bigrams (ROUGE-2), and
longest common subsequences (ROUGE-LCS). In
contrast, current trends in Natural Language Gen-
eration (NLG), for example, the E2E evaluation
(Dušek et al., 2020), and Image Caption Genera-
tion (ICG), for example, the MS Coco evaluation
(Chen et al., 2015), employ multiple metrics.

There are also issues with the application of
ROUGE to new data sets. For example, ROUGE
has been shown to be problematic when used on
text types other than news, like microblogs (Mackie
et al., 2014), meeting summaries, (Liu and Liu,
2008) and online review text (Tay et al., 2019).2

Given that it is not clear that ROUGE is neces-
sarily the best metric for this new domain, we take
the approach that diversity of metrics is key. We
thus employ the metrics from NLG E2E shared
task and MS Coco evaluation scripts. We also
add some of the new metrics from these fields,
such as SPICE (Anderson et al., 2016), a metric
considering semantic graphs that has been demon-
strated to improve image captioning evaluation,
and BERTScore (Zhang et al., 2020b), a metric
that utilizes BERT contextual embeddings to better
capture lexical and structural semantics and which
is increasingly used in evaluating text summari-
sation.3 These metrics can be seen as covering a
range of linguistic phenomena. We provide more
detail on the metrics in Section 4.

To consider the role of the different metrics for
the LongSumm evaluation, we use a spectrum of
different system approaches, including oracle meth-
ods, baselines, and state-of-the-art approaches. In
addition, where the original LongSumm evaluation
uses a single test set, we repeat our experiments

2Note: the ROUGE metric was originally designed for the
DUC 2001 data set of news articles at a time when extractive
summarisation methods were the dominant method. For more
information about DUC 2001, visit https://duc.nist.
gov/pubs.html#2001

3Indeed, BERTScore is an official metric of the Long-
Summ 2022 shared task.

multiple times with different training-testing data
set splits to account for variance.

Our contributions are as follows. (I) We retest
key outcomes from the earlier shared tasks, e.g, (i)
abstractive and extractive methods perform simi-
larly on the LongSumm abstractive data set, and
(ii) the relative performance of tested algorithms.
(II) We show that the informativeness of ROUGE
might be affected by stopword matching. (III) We
show that SPICE agrees somewhat with ROUGE
and BERTScore, offering a complementary view
on summarisation quality.

The remainder of the paper is structured as fol-
lows. In Section 2, we outline related work. Sec-
tion 3 describes the different summarisation meth-
ods and baseline approaches. We outline our ex-
perimental procedure in Section 4. In Section 5,
we describe our experimental results that address
the research questions above. Section 6 presents
qualitative analysis and future work. We present
concluding remarks in Section 7.

2 Related Work

In this section, we outline some of the highlights in
which the NLP community has critically examined
evaluation methodology. We provide more details
on shared task data, leading approaches, and met-
rics examined in subsequent sections.

We note that the field of machine translation has
been a source of inspiration for other NLP fields.
Indeed, the ROUGE metric is itself inspired by the
BLEU metric from translation research. This field
has shown that reliance on intrinsic metrics and
reference summaries is problematic. For example,
the BLEU metric may not correlate with human
judgments (Callison-Burch et al., 2006). Indeed,
in recent years, machine translation has turned to
the research topic of Quality Estimation (QE) (Spe-
cia and Astudillo, 2018), the task of estimating
run-time translation quality without ground truth
data. Our work has some superficial similarities to
QE methodology, in examining summary rankings
and high and low-quality quartiles. However, our
analysis differs from the core focus of QE, as we
investigate the utility of multiple metrics.

Within the NLG community, BLEU has been
used as an evaluation metric even though it is prob-
lematic. For example, it has been shown not to cor-
relate with human judgments (for example, (Belz
and Reiter, 2006) and (Cahill, 2009)). The use of
these metrics is further called into doubt when we
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see that n-gram matching metrics like BLEU are
also not suitable for evaluating text simplification
(Sulem et al., 2016), a closely related task to text
summarisation. This has led to the research in new
metrics (for example, GLEU (Mutton et al., 2007)
and BLEURT (Das and Parikh, 2019)). In this
work, we follow the NLG and ICG best practice,
which is to use a combination of metrics, knowing
that each individual metric may have its failings.

There have been some recent works on evaluat-
ing summarisation metrics (Bhandari et al., 2020;
Fabbri et al., 2021), which highlights the limitation
of current metrics and the need for upgrading eval-
uation protocols. We note that other metrics exist
to overcome some of the limitations of ROUGE
(Schluter, 2017), such as needing to account for
multiple judgments of content saliency as in the
Pyramid method (Nenkova and Passonneau). A
linear ensemble of diverse metrics has also been
shown to be able to outperform metrics in isola-
tion (Kasai et al., 2022). The NLG community
has tended to report human quality assessments,
for example, collecting judgments for quality and
naturalness (Novikova and Rieser, 2018). In this
respect, our work is again complementary in that
we use SUMMVis (Vig et al., 2021) to inspect the
quality of the system summaries.

3 Baselines and Approaches

3.1 Oracles

To estimate an upper bound on performance for the
metrics, we employ a series of "oracle" methods,
so-called because they use the reference summaries
to approximate a perfect content selection mecha-
nism. The oracle methods are:

(Or-TopK) Oracle-Top K Sentences Matching
For each sentence from the reference summary,
we extract the k most similar sentence from the
document. Similarity is measured through the
longest contiguous matching subsequence by using
SequenceMatcher from difflib.

(Or-TopK-SS) Oracle-Surrounding Sentences
The process is similar to Oracle-Single Sentence
Matching, except the preceding and subsequent
sentence of the most similar sentence will also be
selected.

(Or-TopK-PM) Oracle-Paragraph Matching
Instead of finding the most similar sentence, para-
graphs are chosen and included in the summary.

We do this by selecting the paragraph to which the
most similar sentence belongs.

(Or-SW) Oracle-only Stopwords This entry
only includes stopwords in the summaries. We
do this by selecting stopwords from the reference
summaries and including them in the summary.

3.2 Baseline Text Summarizers

The baseline summarisation methods are:

(RandN) Randomly select n sentences and in-
clude them in the summary.

(LeadN) Select the first n sentences. This is
known to be a strong baseline for other data sets.

3.3 2020/2021 Best Published Methods

For this study, we take the extractive and abstractive
entries from the 2020 (Chandrasekaran et al., 2020)
and 2021 (Ying et al., 2021a) LongSumm shared
tasks. For each method tested, we use the authors’
public code repository and use system parameters
as described in the original published works.

The published performance of these methods
is presented in Table 1. The extractive methods
ranking using ROUGE-LCS is: DGCNN > Sum-
maRuNNer > BERTSum-Multi. The abstractive
methods ranking is: Bigbird-Pegasus > BART.

3.3.1 DGCNN
Dilated Gated Convolutional Neural Networks
(DGCNN) have been used for extractive summari-
sation (Ying et al., 2021b). It is based on Conv1D
layers with residual connections and different di-
lation rates. The sentences from each document
are passed through RoBERTa and the output from
the last hidden layers with average pooling is used
as the feature representations. These are passed
into the DGCNN layers to output a binary label for
sentence selection.4

3.3.2 SummaRuNNer
SummaRuNNer (Nallapati et al., 2017) is an extrac-
tive model consisting of a two-layer bi-directional
GRU. The first layer operates on the word level
to produce hidden state representations of words
while the second layer operates on the sentence
level to encode sentence representations. A doc-
ument representation is obtained through a non-
linear transformation of the sentence representa-
tions. Selection (binary) classification is made on

4https://aclanthology.org/2021.sdp-1.12
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Recall F-measure
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

BERTSum-Multi (Sotudeh Gharebagh et al., 2020) 0.5460 0.1728 0.2090 0.5311 0.1677 0.2034
SummaRuNNer (Ghosh Roy et al., 2020) 0.4390 0.1498 0.1898 0.4938 0.1686 0.2138
DGCNN (Ying et al., 2021a) 0.5275 0.1711 0.2209 0.2262 0.1747 0.5415
Bigbird-Pegasus (Ying et al., 2021a) 0.5080 0.1740 0.2156 0.1634 0.4755 0.2016
BART (Ying et al., 2021a) 0.1921 0.0533 0.1062 0.1122 0.0310 0.0620

Table 1: Top-performing entries reported by SDP-2020 and SDP-2021 and their reported performance.

sentences, which considers the content, document
context, salience and novelty. Ghosh Roy et al.
(2020) apply this method in LongSumm.5 6

3.3.3 BERTSum-Multi
BERTSum-Multi (Sotudeh Gharebagh et al., 2020;
Sotudeh et al., 2021) is a variant of extractive sum-
marisation approach BERTSum (Liu and Lapata,
2019). The variant, proposed for the LongSumm
shared task, uses joint task training to select sen-
tences and predict section labels for each sentence.
It outperforms the standard BERTSum algorithm
for LongSumm data (Sotudeh Gharebagh et al.,
2020; Sotudeh et al., 2021).7

3.3.4 Bigbird-Pegasus
The Bigbird-Pegasus approach (Ying et al., 2021a)
is an abstractive model proposed for the Long-
Summ shared task. It incorporates Bigbird (Zaheer
et al., 2020), a sparse attention mechanism that
overcomes the quadratic complexity in the encoder,
which is designed to capture more context at the
document level. This document representation is
then used with Pegasus, an abstractive summarisa-
tion approach that is pretrained through gap sen-
tences generation and masked language modeling
(Zhang et al., 2020a).89

3.3.5 BART
BART (Lewis et al., 2020) is an abstractive model
whose pretrained objective is to denoise the input
text, which is corrupted by token deletion, token
masking, sentence permutation, text infilling and
document rotation. It was proposed for use in Long-
Summ by (Ying et al., 2021a).1011

5https://github.com/sayarghoshroy/Summaformers
6model: https://github.com/hpzhao/SummaRuNNer
7github.com/Georgetown-IR-Lab/ExtendedSumm
8aclanthology.org/2021.sdp-1.12
9Pretrained model: summarisation/arxiv. See

console.cloud.google.com/storage/browser/bigbird-
transformer/summarisation/arxiv/pegasus

10Pretrained model: "facebook/bart-large".
11huggingface.co/docs/transformers/model_doc/bart

4 Experimental Procedure

4.1 Data
In this work, we use the abstractive subset of the
LongSumm data set for evaluation purposes. As
the public release of this data set does not have a
specified test set, we are required to create our own
training, development, and testing partitions.

4.2 Evaluation conditions
We randomly sample 22 test cases from the public
data set as held out data, repeating this procedure
10 times, ensuring disjoint training and testing sets.
Summaries are limited to 600 words for evaluation,
following the LongSumm shared task.

4.3 Evaluation Metrics
In this work, we use a diverse set of evaluation
metrics, following best practices from the NLG
and ICG communities. Unless otherwise specified,
we use the implementation from the E2E shared
task.12

Our categories of metrics are (with the dominant
metrics used in that community in bold):

• Translation: BLEU, NIST, METEOR
• Summarisation: ROUGE family of metrics
• Image Captioning: CIDEr, SPICE
• Semantic: BERTScore, METEOR, SPICE

4.3.1 BLEU
BLEU (Papineni et al., 2002) was originally pro-
posed for machine translation. It is based on the
product of modified n-gram precision and brevity
penalty that penalizes short sentences. BLEU
weights each n-gram equally.

4.3.2 NIST
Adapted from BLEU, NIST (Doddington, 2002)
pays more attention to less frequent n-grams. It
uses the arithmetic mean as opposed to the geo-
metric mean in BLEU for the modified n-gram

12github.com/tuetschek/e2e-metrics
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precision and weights each n-gram by its frequency
in the references.

4.3.3 ROUGE*
ROUGE family of metrics (Lin, 2004) is based
on n-gram overlap between system-generated sum-
maries and reference summaries. Following the
SDP workshops, we use ROUGE-1 , ROUGE-2
and ROUGE-LCS as our evaluation metrics.

4.3.4 CIDEr
CIDEr (Vedantam et al., 2015) was first proposed
for image captioning tasks to capture consensus.
CIDEr computes the cosine similarity using Term
Frequency Inverse Document Frequency (TF-IDF)
vectors for each n-gram. We use a variant of
CIDEr with Gaussian penalty (named CIDEr-D)
introduced to reduce the effects of word repetition.

4.3.5 METEOR
METEOR (Banerjee and Lavie, 2005) aligns the
system output and references based on exact word
matching and morphological variations such as
stems, synonyms, and paraphrases of words. ME-
TEOR is calculated as the harmonic mean of pre-
cision and recall, along with a penalty factor to
favour longer matching sequences.

4.3.6 SPICE
Metrics mentioned above are sensitive to n-gram
overlap. However, n-gram overlap is neither nec-
essary nor sufficient for two sentences to convey
the same meaning (Giménez and i Villodre, 2007).
SPICE is based on the hypothesis that semantic
propositional content is an important component of
image caption human evaluation (Anderson et al.,
2016). SPICE constructs scene graphs based on
input text processed via semantic parsing. It com-
putes precision, recall and F1 score based on the bi-
nary matching of logical tuples, which contains ob-
jects, attributes and relations from the scene graphs.

Although SPICE is designed to operate on a
system generated and reference caption, we adapt
it to the summarisation scenario, and use a full
system generated and reference summaries as in-
put.13 While the captioning scenario corresponds
to a comparison of two sentences, our usage is a
comparison of sets of sentences. We show that
even this simple adaptation shows agreement with
ROUGE and BERTScore metrics.

13github.com/tylin/coco-caption

4.3.7 BERTScore
N-gram models can under-estimate performance
on semantically-correct matched phrases (Zhang
et al., 2020b) and fail to penalize semantically-
critical ordering changes (Isozaki et al., 2010). To
overcome such issues, BERTScore (Zhang et al.,
2020b) maps tokens to BERT contextual embed-
dings (Devlin et al., 2019) and computes precision,
recall and F-measure through cosine similarity of
word tokens, optionally weighted by the inverse
document frequency to emphasize rare tokens.14

5 Results

5.1 Agreement of Metrics on Baselines

We begin by examining how the metrics score the
oracle and baseline methods. These will provide
some insights on upper bounds in performance (or-
acle methods), performance due to chance (random
methods), and performance due to trivial genera-
tion (stopword baseline).

We present the baseline and oracle methods in
Table 2. We see that the best oracle method is one
that takes the best matching source document sen-
tence (that is aligned with a reference sentence),
and that adding additional context, whether by para-
graph or surrounding sentences, does not improve
performance (e.g., Or-TopK=1-PM does not im-
prove on Or-TopK=1). Similarly, returning the top
3-5 aligned sentences does not help. This may be
due to lexical divergences between the reference
and system summaries, so matches are predomi-
nantly in the first sentence.

Interestingly, there is not a large difference in
scores between random and lead methods; both
increase as more sentences are selected. Note,
BERTScore measures for baselines and oracle
methods have a narrow range of 2-3 points.

We note that stopwords account for a large pro-
portion of lexical correspondences in ROUGE, as
evidenced by the high ROUGE-1 and ROUGE-2
scores for Or-SW, which are in the same range as
the SOTA scores in Table 3. This suggests yet an-
other weakness; namely, word recall may be overly
dominated by non-content words like stopwords.

5.2 Agreement of Metrics on Systems

We present the results of system comparisons in
Table 3. It is clear that the best systems outperform
the baseline methods in every case. However, there

14pypi.org/project/bert-score/
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system BLEU NIST ROUGE-1-F1 ROUGE-2-F1 ROUGE-LCS-F1 CIDEr METEOR SPICE BERTScore

Or-TopK=1 0.2739(0.0432) 6.2682(0.5135) 0.5439(0.0233) 0.2453(0.0336) 0.3430(0.0299) 0.2207(0.1656) 0.2456(0.0141) 0.3061(0.0387) 0.8521(0.0057)
Or-TopK=3 0.1403(0.0216) 4.5371(0.1952) 0.4959(0.0193) 0.1828(0.0196) 0.2281(0.0132) 0.0324(0.0342) 0.1973(0.0090) 0.2225(0.0184) 0.8380(0.0044)
Or-TopK=1-PM 0.0937(0.0115) 3.6976(0.1293) 0.4256(0.0165) 0.1233(0.0110) 0.1802(0.0118) 0.0446(0.0398) 0.1732(0.0049) 0.1719(0.0117) 0.8218(0.0035)
Or-TopK=1-SS 0.1241(0.0150) 4.1964(0.1516) 0.4668(0.0176) 0.1553(0.0150) 0.1979(0.0126) 0.0346(0.0358) 0.1848(0.0071) 0.1969(0.0160) 0.8285(0.0036)
Or-SW 0.0134(0.0020) 0.0314(0.0084) 0.4959(0.0090) 0.1484(0.0058) - 0.0001(0.0002) 0.0885(0.0032) 0.0063(0.0025) 0.7378(0.0039)

RandN=3 0.0001(0.0001) 0.0000(0.0000) 0.1360(0.0174) 0.0265(0.0069) 0.0809(0.0093) 0.0003(0.0008) 0.0252(0.0029) 0.0577(0.0077) 0.8067(0.0028)
RandN=5 0.0016(0.0009) 0.0002(0.0004) 0.1993(0.0182) 0.0405(0.0070) 0.1049(0.0080) 0.0008(0.0011) 0.0414(0.0040) 0.0822(0.0090) 0.8103(0.0032)
RandN=10 0.0158(0.0032) 0.1156(0.0876) 0.3054(0.0118) 0.0630(0.0067) 0.1348(0.0050) 0.0016(0.0037) 0.0776(0.0057) 0.1166(0.0057) 0.8144(0.0030)
LeadN=3 0.0001(0.0001) 0.0000(0.0000) 0.1695(0.0125) 0.0470(0.0046) 0.1019(0.0060) 0.0004(0.0010) 0.0303(0.0021) 0.0850(0.0059) 0.8236(0.0042)
LeadN=5 0.0018(0.0010) 0.0001(0.0002) 0.2424(0.0111) 0.0673(0.0075) 0.1315(0.0071) 0.0081(0.0140) 0.0495(0.0037) 0.1145(0.0087) 0.8262(0.0038)
LeadN=10 0.0202(0.0040) 0.1399(0.0928) 0.3279(0.0142) 0.0837(0.0088) 0.1539(0.0080) 0.0032(0.0054) 0.0864(0.0044) 0.1321(0.0080) 0.8204(0.0041)

Best Oracle 0.2739 6.2682 0.5439 0.2453 0.4857 0.2207 0.2456 0.3061 0.8521
Best Baseline 0.0202 0.1399 0.3279 0.0837 0.1539 0.0032 0.0864 0.1321 0.8204
δ(Oracle-Baseline) 0.2537 6.1283 0.2160 0.1616 0.3318 0.2175 0.1592 0.1740 0.0317

Table 2: Baselines and Non-trivial Measurement, where N=number of sentences in the ground truth summary. Each
cell contains the average score across the 10 test sets (with standard deviation in brackets). Best values are in bold.

system BLEU NIST ROUGE-1-F1 ROUGE-2-F1 ROUGE-LCS-F1 CIDEr METEOR SPICE BERTScore

SummaRuNNer 0.0840(0.0130) 3.2979(0.2287) 0.4205(0.0236) 0.1204(0.0175) 0.1772(0.0161) 0.0119(0.0140) 0.1508(0.0066) 0.1619(0.0148) 0.8230(0.0051)
DGCNN 0.0783(0.0164) 3.3395(0.2509) 0.3975(0.0240) 0.1075(0.0151) 0.1613(0.0109) 0.0135(0.0180) 0.1606(0.0078) 0.1522(0.0139) 0.8145(0.0036)
BERTSum-Multi 0.0757(0.0089) 3.4014(0.2060) 0.4204(0.0200) 0.1050(0.0078) 0.1644(0.0089) 0.0140(0.0219) 0.1819(0.0067) 0.1570(0.0104) 0.8207(0.0031)

BART 0.0642(0.0078) 2.3875(0.5556) 0.4248(0.0249) 0.1256(0.0119) 0.1845(0.0109) 0.0173(0.0185) 0.1406(0.0064) 0.1559(0.0118) 0.8304(0.0046)
Bigbird-Pegasus 0.0285(0.0041) 2.0301(0.4101) 0.3438(0.0162) 0.0662(0.0055) 0.1551(0.0063) 0.0064(0.0095) 0.1161(0.0070) 0.1113(0.0092) 0.8023(0.0030)

Best Extractive 0.0840 3.4014 0.4205 0.1204 0.1772 0.0140 0.1819 0.1619 0.8230
Best Abstractive 0.0642 2.3875 0.4248 0.1256 0.1845 0.0173 0.1406 0.1559 0.8304
Ex vs Ab Winner (ex) (ex) (ab) (ab) (ab) (ab) (ex) (ex) (ab)

Table 3: Extractive or Abstractive models. Each cell contains the average score across the 10 test sets (with standard
deviation in brackets). Best values in bold, second best in italics.

is still a considerable margin between the oracle
methods (an estimate of an upper bound) and the
best system, suggesting that there is still plenty of
room for improvement for the task of selecting the
content for the generated summary.

As we use multiple test set samples, our results
are not exactly the same as the published results dis-
played in Table 1, however the scores are roughly
in the same neighbourhood as the published results.
Using ROUGE-LCS F1, our ranking of extractive
systems in this replication of LongSumm results is
SummerRuNNer > BERTSum-Multi > DGCNN.
Curiously, the best-placed extractive method is now
ranked last based on ROUGE-LCS alone. For the
abstractive systems, we note that Bigbird-Pegasus
performed worse than BART, and that the BART
ROUGE performance was very different from pub-
lished results. We suspect the difference is in part
due to our use of multiple test sets, which will
account for variance in the test data.

Rankings by other metrics are different again.
However, the three methods which were repeat-
edly ranked first were SummaRuNNer, BERTSum-
Multi, and BART. The translation metrics ranked
extractive approaches best. ROUGE metrics ranked
the BART system first. CIDER and SPICE, favour
different systems, BART and SummaRuNNer, re-
spectively. For the semantic metrics, the METEOR
and SPICE systems ranked extractive methods

highest, and BERTScore ranked BART best. Note
that only differences measured by BERTScore and
METEOR were statistically significant.

We also find that there is no clear winner be-
tween the extractive and abstractive methods on
this data set, when evaluating with the multiple
metrics. If we group together all ROUGE metrics,
extractive and abstractive methods are tied on 4
metrics apiece (last row, Table 3).

We thus conclude that our replication weakly
agrees with prior published results. We observe, as
in prior work, that extractive and abstractive meth-
ods perform similarly on the abstractive data set.
However, the ranking of methods differs slightly.

5.3 Inspecting top and bottom ranks per
metric

We explore the notion of the complementarity of
the metrics by examining the top and bottom n
ranked generated summaries, as ranked by each
of the different metrics. Due to space constraints,
we present and discuss a subset of the results here,
limiting the discussion to the dominant community
metrics (BLEU, ROUGE-LCS (hereafter ROUGE),
SPICE, and BERTScore), and considering only out-
put from the three systems that had some agreement
across the metrics as performing well (SummaRuN-
Ner, BERTSumm-Multi, and BART).

In Table 4, we present a summary of the sim-
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Comparisons BART SummaRunner BERTSum Avg.

RL. vs BS. 0.62(0.19)/0.64(0.12) 0.70(0.13)/0.56(0.15) 0.72(0.13)/0.62(0.11) 0.67(0.15)/0.61(0.13)
RL. vs BL. 0.34(0.13)/0.46(0.22) 0.30(0.18)/0.44(0.15) 0.28(0.16)/0.40(0.15) 0.31(0.16)/0.43(0.17)
RL. vs SP. 0.60(0.15)/0.70(0.10) 0.64(0.15)/0.74(0.04) 0.56(0.15)/0.74(0.20) 0.60(0.15)/0.73(0.11)
BS. vs BL. 0.26(0.18)/0.36(0.22) 0.22(0.17)/0.38(0.14) 0.26(0.13)/0.46(0.20) 0.25(0.16)/0.40(0.18)
BS. vs SP. 0.56(0.15)/0.68(0.13) 0.68(0.13)/0.60(0.18) 0.52(0.10)/0.62(0.17) 0.59(0.13)/0.63(0.16)
BL. vs SP. 0.44(0.20)/0.44(0.20) 0.30(0.18)/0.44(0.15) 0.38(0.11)/0.60(0.18) 0.37(0.16)/0.49(0.18)

Avg. 0.47(0.17)/0.55(0.17) 0.47(0.16)/0.53(0.14) 0.45(0.13)/0.57(0.17) 0.46(0.15)/0.55(0.16)

Table 4: Agreement in the top and bottom quartiles of test cases, as ranked by the BLEU (BL), ROUGE-LCS (RL),
SPICE (SP), and BERTScore (BS) metrics.

ilarities in rankings in a pairwise comparison of
metrics, across different systems. Specifically, we
examine the top and bottom quartiles of a test set of
22 documents (where we take the top and bottom 5
ranked documents).15 Each cell in the table shows
two numbers, one for the agreement of test case ids
in the top quartile and the corresponding agreement
of the bottom quartile.16

We note that the agreement of the bottom quar-
tile is usually higher than the top quartile. This
is because this quartile contains the difficult test
cases to score automatically, which will tend to be
the same for all metrics. The difficulty lies, for
example, in the fact that the reference summaries
are very short (leaving less opportunity to match
the content that might well be reasonable).

Curiously, there are some summaries that are in
the top quartile for some metrics which are in the
bottom quartile for others. Occasionally, BLEU
will place summaries judged to be in the top quar-
tile by another metric into its bottom quartile. We
assume this relates to critiques of using BLEU for
NLG, where novel text differing from the reference
will be penalized.

Most interesting is the diversity of summaries
selected in the top quartile. When looking at the av-
erage agreement for each metric pair (last column
of Table 4), we note that ROUGE and BERTScore
have the best agreement of all pairs of metrics,
which is constant across different summarisation
systems. SPICE metric has the second-best agree-
ment when paired with either ROUGE-LCS or
BERTScore. The BLEU metric has the lowest
agreement with the others. These results indicate
that one should consider the use of SPICE as a
summarisation metric.

15We use a test set with a size of 22 documents as in the
official evaluation.

16The values are the mean across over 10 test sets, and the
standard deviation is in brackets

6 Discussion

6.1 Qualitative Analysis of Metric
Complementarity

The results in Table 4 raise an interesting question.
When utilizing a diverse set of metrics, what are
the complementary qualities of a system summary
that might be captured by the metrics? That is, do
the summaries ranked highly by SPICE and BLEU
represent quality summaries that are neglected by
ROUGE and BERTScore? For this manual analy-
sis, there are 3 test cases agreed upon by ROUGE
and BERTscore, and 4 complementary test cases
ranked highly by SPICE and BLEU. Upon inspec-
tion of these summaries manually, we find that all
seven summaries are generally reasonable.

For insight, we examine the source-summary
alignments generated SUMMVis for the 3 test cases
that ROUGE and BERTScore agree upon, and the 4
complementary, presented in Figure 3. We note that
the last 4, representing the complementary sum-
maries, seem to share the property that content is se-
lected later in the source document. That is 3 sum-
maries ranked highly by ROUGE/BERTScore sum-
maries seem "top-heavy" and the complementary
set seem "bottom-heavy", with respect to where
content from the source is drawn from.

We present an example of the
ROUGE/BERTScore highly-ranked summary
and an example from the complementary set in
Figure 2. Upon inspection, the leftmost summary
seems to rely heavily on copying and rewriting
content from the source document, as indicated
by the SUMMVis color-coding of long common
sequences. In contrast, the complementary
summary (rightmost) seems to exhibit shorter
fragments, possibly from novel sentences.
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Figure 2: BART summaries in the ROUGE top quartile (left) and the SPICE top quartile (right).

Figure 3: The first three images are ROUGE and
BERTSCORE common test cases in the top quartile.
The last four images are complementary high-quality
summaries in top quartile suggested by SPICE and
BLEU. The figures depict portions of the source docu-
ment that align with the system-generated summary.

6.2 Future Work

Our results show that using multiple metrics may
be beneficial in identifying summaries that are of
a similar high calibre. In future work, we aim
to investigate how the multiple metrics might be
used in concert to evaluate systems and provide
incremental intrinsic measures of progress.

We also intend to investigate how metrics like
SPICE might be used to identify high-quality novel
sentences, and to see if the graph comparison un-
derpinnings allows SPICE to make qualitatively
different judgments to metrics like BERTScore. Fi-
nally, we will explore other adaptations of SPICE
accounting for multiple sentences in texts.

7 Conclusions

We present a detailed evaluation of multiple text
summarisation metrics for long document summari-
sation. Utilising a oracle, baseline and state-of-the-
art systems, we show that a diverse suite of metrics
can capture work in a complementary fashion, so
that an evaluation framework is not subject to the
limitations of a single metric. In a rigorous analysis
over 10 repeated trials, we show that performance
of the tested approaches is roughly the same as
published results. However, while some findings
from the LongSumm shared task can be replicated,
we find the ranking of methods in our experiments
differs from prior results. When we examine the
top and bottom quartiles of summarisation perfor-
mance, we show that ROUGE and BERTScore are
often in agreement. Further diversity in evaluation
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may be obtained using the metrics commonly used
natural language generation and image captioning.
In particular, we present preliminary results that
show that the SPICE metric, which considers graph
comparisons of semantic information, also agrees
with the ROUGE and BERTScore metrics. We see
that SPICE can identify other situations in which
summarisation systems are performing well, com-
plementing the insights gained from ROUGE and
BERTScore.
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Abstract

Relation extraction models typically cast the
problem of determining whether there is a re-
lation between a pair of entities as a single de-
cision. However, these models can struggle
with long or complex language constructions
in which two entities are not directly linked,
as is often the case in scientific publications.
We propose a novel approach that decomposes
a binary relation into two unary relations that
capture each argument’s role in the relation
separately. We create a stacked learning model
that incorporates information from unary and
binary relation extractors to determine whether
a relation holds between two entities. We
present experimental results showing that this
approach outperforms several competitive re-
lation extractors on a new corpus of planetary
science publications as well as a benchmark
dataset in the biology domain.

1 Introduction

For many scientific domains, information extrac-
tion (IE) systems can play a valuable role in har-
vesting information from the scientific literature
to automatically populate knowledge bases. Our
work is motivated by the goal of populating a Mars
knowledge base by extracting information from
the planetary science literature about observations
made by the rovers on Mars. Specifically, we seek
to extract information about the composition and
properties of named "Targets" (rocks, soils, dunes,
etc.) on the surface of Mars. Figure 1 shows an
example sentence from this domain.

Several hypotheses could explain the abundance
of potassium feldspar observed by CheMin
X-ray diffraction of the Windjana drill sample.

Figure 1: Example sentence from the planetary sci-
ence domain with a CONTAINS relation between Target
Windjana and Component potassium feldspar.

Our IE task requires identification of three
types of entities (Components, Properties, and Tar-
gets) and two types of relations (CONTAINS and
HASPROPERTY). The Component entities can be
minerals or elements. The sentence in Figure 1
mentions one Target (Windjana) and one Compo-
nent (potassium feldspar), which participate in a
CONTAINS relation. Intuitively, this relation means
that potassium feldspar was detected at the Wind-
jana site on Mars 1.

Typically, relation extraction (RE) systems de-
termine whether a pair of entities participate in a
relation. In many scientific domains, relation ex-
traction can be challenging because of complex
language constructions that do not directly link two
relevant entities, even when they occur in the same
sentence. For example, the relation in Figure 1
derives from the following complex path: potas-
sium feldspar was observed by X-ray diffraction ...
diffraction of a drill sample ... a drill sample taken
at the Windjana site. This type of sentence struc-
ture is challenging for NLP systems to recognize,
both lexically and syntactically.

However, even in long or complex sentences, our
intuition is that local context is often sufficient to
recognize one argument of a relation, even when
recognizing both arguments simultaneously is dif-
ficult. To explore this hypothesis, our research
decomposes two-argument (binary) relations into
a pair of one-argument unary relations and trains
separate unary relation extractors for each argu-
ment. For example, let us revisit Figure 1 and the
CONTAINS relation. We can decompose the binary
relation CONTAINS(X,Y) into two unary relations:
CONTAINER(X) and CONTAINEE(Y). In Figure
1, the phrase potassium feldspar observed strongly
suggests the unary relation CONTAINEE(potassium
feldspar) (i.e., potassium feldspar is part of the

1The sentence refers to the result of X-ray diffraction by
the CheMin instrument (on the Mars Science Laboratory rover)
applied to a drill sample at the Windjana site.
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composition of something). The phrase Wind-
jana drill sample suggests the unary relation CON-
TAINER(Windjana) (i.e., Windjana was studied
(drilled) for its composition).

When the local context around one argument is
compelling, the unary relation extractor can pro-
vide a strong signal that the full binary relation
may also exists. But challenges remain with unary
relation extractors alone: (1) only one argument
may be recognized, and (2) it can be challenging
to pair up the individual unary relations correctly.
Consequently, we expect that unary relations can
be most useful when considered alongside other
features to accurately extract binary relations.

In this paper, we present a stacked learning ar-
chitecture for relation extraction that uses a tradi-
tional binary relation extraction model alongside
new information from unary relation extractors
and features about the entity pair (Section 4). In
our stacked learning framework, a meta-classifier
makes a decision about a pair of entities based on
two perspectives of the sentence context: the broad
perspective of the binary relation extraction model
and the local perspectives of the corresponding
unary relation extractors. As a result, the meta-
classifier can be more robust then either approach
on its own. We evaluate this stacked learning model
on relation extraction tasks for two scientific do-
mains: the Mars mission planetary science domain
and a biology domain (chemical-protein interac-
tions) (Section 5). We find that our stacked learning
model consistently outperforms traditional binary
relation extraction models in both domains.

2 Related Work

Many relation extraction models have used feature-
based or kernel-based approaches, such as (Zelenko
et al., 2003; Bunescu and Mooney, 2005; Nguyen
et al., 2015). Recent relation extraction models
often use deep learning methods to learn represen-
tations of entities and their contexts and avoid the
need for manual feature engineering (e.g., Socher
et al., 2012; Zhang and Wang, 2015; Verga et al.,
2018; Wang et al., 2019; Christopoulou et al., 2018;
Zhang et al., 2018). Many of these methods also
fine-tune pretrained language models to better cap-
ture contextual information. Such models include
BERT (Devlin et al., 2019), SciBERT (Beltagy
et al., 2019), which is pretrained over scientific pub-
lications, and LinkBERT (Yasunaga et al., 2022),
which is pretrained to also capture dependencies

between documents.
Pipeline architectures have been widely used for

relation extraction, which perform entity recogni-
tion as the first stage and then extract relations
among the detected entities (e.g., Kambhatla, 2004;
Chan and Roth, 2011; Zhong and Chen, 2021). An-
other approach is to perform entity recognition and
relation extraction jointly, which aims to eliminate
the problem of error propagation that can occur
with pipelines (e.g., Miwa and Bansal, 2016; Zhang
et al., 2017; Luan et al., 2019; Wadden et al., 2019;
Dixit and Al-Onaizan, 2019; Lin et al., 2020).

Nearly all previous systems make decisions
about a relation based on all arguments at the same
time. One exception that bears some similarity to
our work is (Wei et al., 2020), which trains a classi-
fier to recognize the first argument (“subject”) of a
relation before trying to detect its second argument
(“object”). However, their classifier uses informa-
tion about the subject to identify the object, and
then uses both arguments to make its final decision.
In contrast, our unary models completely decou-
ple the tasks of recognizing the first and second
arguments of a binary relation.

There has been growing interest in information
extraction from scientific publications across a va-
riety of domains (e.g., Gupta and Manning, 2011;
Tsai et al., 2013; Tateisi et al., 2014; Li et al.,
2016a, 2017; Verga et al., 2018; Watanabe et al.,
2019). However, relatively little work has been
done for planetary science. The GeoDeepDive
project extracts information about rock formations
and stratigraphy on Earth from geology publica-
tions (Zhang et al., 2013). The Mars Target En-
cyclopedia project (Wagstaff et al., 2018) extracts
named entities (targets, minerals, and elements)
and compositional relations from planetary science
publications. Their relation extraction component
used jSRE (Giuliano et al., 2006), an SVM clas-
sifier based on shallow parsing features. We in-
cluded their data (covering one Mars mission and
one relation, CONTAINS) in our experiments, and
we augmented it with three more missions, hun-
dreds of additional documents, and a new relation,
HASPROPERTY (see Section 5.1). We compare
the performance of jSRE models with our relation
extraction models in Section 5.4.

3 Mars Target Relations

Our study focuses on relation extraction tasks in the
planetary science domain. Rovers and landers have
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been exploring the surface of Mars for decades,
and the science teams directing their activities have
identified and named thousands of individual ob-
servation targets (rocks, soils, dunes, etc.). These
targets are mentioned in subsequent scientific pub-
lications in conference and journal venues.

Our goal is to construct a relation extraction
system that can successfully identify statements
about the composition and properties of Mars tar-
gets. We assume that entities of type Target, Com-
ponent (element or mineral), and Property (e.g.,
“layers”, “dusty”, “pits”) have already been iden-
tified within the text, and the relation extraction
system must determine which pairs of entities ex-
hibit a given relation. We study two relations
of interest: CONTAINS(Target, Component) and
HASPROPERTY(Target, Property). An example of
the CONTAINS relation was shown in Figure 1.

The sentence below includes three instances of
the HASPROPERTY relation.

The dark rocks such as Barnacle Bill are more
silica-rich, while the Bright Rocks such as Yogi
and Wedge are more sulfur-rich and probably
more weathered.

The complete set of relations includes:

HASPROPERTY(Barnacle Bill, dark),

HASPROPERTY(Yogi, weathered),

HASPROPERTY(Wedge, weathered),

CONTAINS(Barnacle Bill, silica),

CONTAINS(Yogi, sulfur), and

CONTAINS(Wedge, sulfur).

It is common in this domain for multiple Targets
to share a relation with the same Property (or the
same Component in the CONTAINS relation). Con-
versely, it is also common for multiple Properties
or Components to share a relation with a single
Target. Relation extraction for this domain can be
quite complex even when focusing on a single sen-
tence. Additional challenges arise from the use of
abbreviations for mineral names (e.g., Fe for iron),
locally defined shorthand such as BB for Barnacle
Bill, complex grammar with multiple clauses per
sentence, and “hedging language” (Lakoff, 1972)
that captures the uncertainty about properties of
targets on another planet. Examples of hedging
occur as the words “likely” and “possibly” in this
sentence:

Figure 2: Stacked Learning Model

The Big Sky tailings were spectrally flat (similar
to Telegraph Peak) likely from the presence of
magnetite, and include a weak downturn
> 750 nm, possibly from minor hematite.

This complex sentence entails two relations:
CONTAINS(Big Sky, magnetite) and
CONTAINS(Big Sky, hematite).

4 Stacked Learning with Unary Relation
Extractors

Our task is to perform within-sentence relation ex-
traction given pre-specified (“gold”) entities. We
propose a stacked RE system in which a meta-
classifier employs the output of a traditional binary
relation extractor as well as two unary relation ex-
tractors, as shown in Figure 2. At a high level,
the binary relation extractor captures the context
spanning two arguments, while each unary rela-
tion extractor captures local information for one
argument of the relation. The meta-classifier also
includes features that describe the pair of entities
under consideration. We utilize existing models
from prior work for the binary relation extraction
models. In this section, we present the design of
our new unary relation extraction models and the
meta-classifier.

4.1 The Stacked Learning Model

4.2 Unary Relation Extraction

A novel contribution of this work is the focus on
unary relations. Each binary relation R(E1, E2)
that applies to two entities can be decomposed into
unary relations R1(E1) and R2(E2). Unary rela-
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tions operate on a single entity to predict whether
that entity acts as the appropriate argument for the
relevant binary relation. For example, the sentence
“X provided guidance for Y’s university studies”
includes an instance of the binary relation AD-
VISES(Person, Person) in the form of ADVISES(X,
Y). This relation can be decomposed into ADVI-
SOR(Person) and ADVISEE(Person) which can be
separately evaluated for each of X and Y. Local
context may lead us to infer ADVISOR(X) and AD-
VISEE(Y), indicating their argument status and dif-
ferentiating X and Y despite their identical entity
types.

For the planetary science domain, we decompose
CONTAINS(Target, Component) into two unary re-
lations: (1) the CONTAINER unary relation focuses
on Target entities that contain an unspecified com-
ponent (i.e., CONTAINS(Target, *)), and (2) the
CONTAINEE unary relation focuses on Component
entities that are part of an unspecified Target’s com-
position (i.e., CONTAINS(*, Component)).2 Simi-
larly, we decompose the HASPROPERTY(Target,
Property) relation into (1) PROPERTYHOLDER,
which corresponds to HASPROPERTY(Target, *),
and (2) PROPERTYHELD, which corresponds to
HASPROPERTY(*, Property). All of our unary re-
lation extractors share the same model architecture,
which is explained in the following section.

4.2.1 Unary Relation Extractors
Each unary relation extractor takes an entity along
with its sentence as input and predicts whether
the entity participates in a specific unary relation.
We define the input sentence S to consist of n to-
kens S1, S2, . . . , Sn and represent the entity of in-
terest, e, with its beginning and ending indices,
BGN(e) and END(e) respectively. Following prior
work (Zhong and Chen, 2021), we insert a begin
marker 〈B〉 and an end marker 〈/B〉 around e in the
sentence to highlight the entity of interest:

S′ = ..., 〈B〉, SBGN(e), ..., SEND(e), 〈/B〉, ...

We use a pre-trained language model to encode
S′ and produce a contextual representation for the
sentence. We then use the representation of the start
marker 〈B〉 as the entity representation, denoted
as E. Intuitively, we expect the representation of
the start marker to encode the relevant contextual
evidence around the entity (e.g., “an increase in

2We use the asterisk (*) symbol to indicate when an argu-
ment is unspecified.

potassium”). We pass E into a ReLU activation
layer, a dropout layer, and finally a single-layer neu-
ral network to produce a predicted probability for
whether the entity participates in the unary relation.

4.2.2 Training the Unary Models

The positive training instances for unary relation
Ri(T ) consist of all annotated instances of entity
type T that participate as argument i in a binary
relation of type R. Negative training instances
consist of all instances of T that do not partici-
pate as argument i of a relation of type R. We
trained the extraction models by fine-tuning a pre-
trained language model with cross-entropy loss:
L(θ) =

∑
x, y∈train logP (y|x, θ), where x is an in-

stance, y ∈ {0, 1} is the unary relation label, and θ
are the model parameters. We experimented with
several different language models, which we will
discuss in Section 5.

We create one stacked model for each relevant
pair of entity types (e.g., one model to extract rela-
tions for (Target, Component) and another for (Tar-
get, Property)). Each model takes a pair of entities
(E1, E2) of types (T1, T2) in a sentence as input
and produces a prediction for whether a relation of
type R exists between E1 and E2 (see Figure 2).
We represent each pair of entities with a feature
vector based on three sets of features: unary rela-
tion features, binary relation features, and entity
pair features.

4.2.3 Unary Relation Features

The unary relation features consist of the outputs
(confidence scores) of both unary relation extrac-
tors and a “unary pairing” feature. The latter fea-
ture is true if either entity Ei ∈ {E1, E2} satisfies
the following two criteria: 1) Ei receives a con-
fidence score of at least 50% for a unary relation
Ri(Ti), and 2) Ei is the closest entity of type Ti
relative to the other entity in the pair. Intuitively,
this rule hypothesizes a probable binary relation
when at least one of the entities is predicted to par-
ticipate in a unary relation and no other entity of
the same type is closer to the other entity.

More generally, if there are k > 1 rela-
tions for the same kind of entity pairs (e.g., AD-
VISES(Person, Person) or MARRIED(Person, Per-
son)), the unary relation features consist of 2*k
confidence scores and k unary pairing features.
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4.2.4 Binary Relation Features
The binary relation feature is the output (confidence
score) of the binary relation extractor. If there are
k > 1 relations, a multi-class binary relation ex-
tractor is used to generate k posterior probabilities
for the feature vector.

4.2.5 Entity Pair Features
The entity pair features capture general information
about the context in which the entities occur.

Negation: Negation may suggest that there is no
relation, so we create a binary feature to indicate if
there is a negation word between E1 and E2.3

Order of Entities: One binary feature indicates
the relative order of the two entities in the sentence.

Number of Entity Pairs: We count the num-
ber of entity pairs of type (T1, T2) in the sen-
tence, and then bucket the counts into five bins
([1, 2), [2, 4), [4, 10), [10,∞)).

Nearest Entity: One binary feature indicates
whether E1 is the closest entity of type T1 to E2.
Similarly, another binary feature indicates whether
E2 is the closest entity of type T2 to E1.

Entity Distribution: We hypothesize that the
distribution of entities around E1 and E2 affects
the likelihood that a relation exists between them.
For example, a relation may be less likely if other
entities occur between E1 and E2. So we develop
two binary features to capture whether there is an
entity of type T2 to the left or to the right of E1.
Similarly, we develop two features to capture the
same information for E2 with type T1.

Distance: Capturing the distance between two
entities has shown to be useful in previous work.
We create a distance feature by binning the num-
ber of words between the entities into q quantile
bins, where the quantiles are computed over the
distances observed in the training set. We explore
different values (2, 5, 10, 15, 20) for q (the number
of bins), and choose the one that performs best on
the development set.

4.2.6 Meta-classifier
The input to the meta-classifier is a sentence with
two entities marked. We then create a feature vector
based on the three aforementioned feature sets, and
feed it into the meta-classifier to predict a relation.
While the model choice is flexible, we used a linear
SVM in our experiments.

3The negation words we use are: no, not, none, nothing,
never, nowhere, hardly, barely, scarcely.

Count
Documents 602
Targets 5,140
Components 15,826
Properties 14,895
CONTAINS 3,045
HASPROPERTY 2,764

Table 1: Annotation statistics for LPSC corpus.

5 Experiments

We conducted experiments to evaluate the stacked
relation extraction approach on the planetary sci-
ence document collection as well as a bench-
mark data set to compare directly with recent
prior work. We release the dataset and codes at
https://github.com/yyzhuang1991/
StackedLearningWithUnaryModels.

5.1 Planetary Science (LPSC) Data Set

We used a total of 602 documents that were man-
ually annotated by three planetary scientists from
the Jet Propulsion Laboratory, who are also co-
authors of this work, to indicate the presence of
relevant entities (Target, Component, Property) and
relationships between them as CONTAINS(Target,
Component) or HASPROPERTY(Target, Property).
The corpus consists of text extracted from publicly
available two-page extended abstracts that were
published at the Lunar and Planetary Science Con-
ference (LPSC). We started with a public collection
of 117 documents from 2015 and 2016 that were an-
notated with CONTAINS relations for targets from
the Mars Science Laboratory mission (Francis and
Wagstaff, 2017). To expand the collection size and
have more than one relation to study, we anno-
tated almost 500 additional documents from 1998
to 2020 for targets from three more Mars missions:
Mars Pathfinder, Mars Phoenix Lander, and the
MER-A (Spirit) Mars Exploration Rover (Wagstaff
et al., 2022). We also added the new relation
HASPROPERTY. Table 1 shows the total number
of annotated entities and relations.

5.2 Planetary Science Domain Methodology

We randomly selected 25% of the documents (151
documents) for a development set to tune hyper-
parameters and performed 5-fold cross validation
over the other 451 documents. We report the pre-
cision, recall, and F1 score averaged across the 5
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runs. All of our relation extraction models take
gold (manually annotated) entities as input.

To populate a knowledge base, it is sufficient
to store each relation once. The planetary science
domain experts who annotated the corpus had this
mindset, so they did not always annotate duplicate
instances of the same relation within a document.
For example, if CONTAINS(Windjana, potassium
feldspar) occurs three times in a document, they
may have only annotated it once. Therefore, we
report precision, recall, and F1 score by comparing
the set of distinct predicted relations in a document
against the set of distinct annotated relations, a
metric that has been used in other RE work (Li
et al., 2016b). Specifically, for each document and
relation R, we compiled the unique occurrences
of entity pairs (E1, E2) annotated with relation R
as the set of annotated relations. This approach
ignores (and therefore does not require) duplicate
occurrences of the same relation found in different
sentences of a document.

5.3 Relation Extraction Models

We compared the performance of the stacked learn-
ing model to that of existing binary relation extrac-
tors as well as unary relation extraction alone. For
binary relation extraction, we experimented with
fine-tuning pre-trained language models (LMs) on
our planetary science data, since previous work (Gu
et al., 2022; Yasunaga et al., 2022) has found this
approach to work quite well. We created mod-
els with BERT (Devlin et al., 2019), which has
been widely used across many NLP tasks and do-
mains, as well as SciBERT (Beltagy et al., 2019)
and LinkBERT (Yasunaga et al., 2022), which
have proven to be beneficial for other scientific
domains.4

Specifically, each binary relation extraction sys-
tem is a pre-trained language model with an addi-
tional classification layer on top. The input is a
sentence with exactly two entities marked as rel-
evant. The sentence is encoded by the language
model, and its representation (as captured by the
special [CLS] token) is then fed into a single layer
feedforward network that produces a probability
distribution over the set of possible relations.5 For
hyperparameters, we used a batch size of 10 and

4We used BERTbase-uncased, SciBERTscivocab-uncased, and
LinkBERTbase.

5The [CLS] token is used in language models of BERT
variants for classification tasks.

a dropout rate of 0.1.6 We then performed a grid
search over all combinations of learning rates (1e-
5, 2e-5) and epochs (4, 5, 10) and used the values
which performed best on the development set.

To our knowledge, the only previous work on re-
lation extraction for the planetary science domain
was reported by Wagstaff et al. (2018), for the
CONTAINS relation only. They used jSRE (Giu-
liano et al., 2006), which employs an SVM classi-
fier to predict the presence of a relation between
two entities given features derived from a shallow
parser. For comparison with that earlier work in
this domain, we also trained a jSRE model for each
of our binary relations. For hyperparameter-tuning,
we explored every possible combination of SVM
kernels (LC, GC, SL) and window sizes (1, 2, 5, 10,
15, 20), choosing the values that performed best on
the development set.

We also created a binary relation extraction sys-
tem that uses only unary relation extractors. The
challenge for this approach is how to recover binary
relations from the unary predictions, particularly
because multiple entities are often predicted for
each unary relation. After exploring several strate-
gies, the best approach seemed to be aggressively
pairing each entity predicted to be in a unary rela-
tion with all other entities of the appropriate type
in the sentence. For example, to produce the CON-
TAINS(Target, Component) relation, we pair each
predicted CONTAINER(Target) with all Component
entities, and likewise we pair each predicted CON-
TAINEE(Component) with all Target entities. We
refer to this approach as the Paired Unary (PU)
Model.

The logic behind this approach is that one unary
relation can have strong local evidence, while the
other may not. For example, this model performs
well in situations where (say) two Targets are cor-
rectly recognized as CONTAINERS but the mineral
detected at those sites is not recognized as being in
a CONTAINEE context. We found that this heuris-
tic worked fairly well in the planetary science do-
main, with substantially higher recall but lower
precision. But an advantage of stacked learning is
that it avoids the need to manually create heuristics
because the meta-classifier learns what will work
well in different domains and for different relations.

6We found that different batch sizes did not impact perfor-
mance much, and a dropout rate of 0.1 consistently outper-
formed other rates from 0.1 to 0.5 with increments of 0.1.
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Model Pr Rec F1
jSRE 69.1 75.8 72.3
PUSciBERT 59.6 94.1 72.6
PULinkBERT 59.3 95.1 72.7
PUBERT 60.2 94.6 73.2
BRSciBERT 68.6 83.9 74.7
BRBERT 66.5 87.9 75.0
BRLinkBERT 68.4 86.6 76.0

Table 2: Results for the CONTAINS relation (LPSC)
.

Model Pr Rec F1
jSRE 56.3 60.8 58.3
PULinkBERT 54.0 97.1 69.1
PUSciBERT 55.4 95.8 69.8
PUBERT 56.0 94.2 70.0
BRBERT 74.5 75.0 74.6
BRSciBERT 76.0 76.9 76.2
BRLinkBERT 74.4 79.9 76.9

Table 3: Results for the HASPROPERTY relation
(LPSC)

.

5.4 Results for Binary Relation Extraction

Table 2 shows the experimental results for jSRE,
the Binary Relation (BR) extraction models, and
the Paired Unary (PU) model for the CONTAINS

relation. We fine-tuned the BERT, SciBERT, and
LinkBERT language models for the planetary sci-
ence domain for the PU and BR extractors.

The jSRE model achieved the highest precision
but the lowest F1 score. All Paired Unary models
slightly outperformed jSRE, but the Binary Rela-
tion models performed the best. Of the language
models, BERT performed best for the PU models
but LinkBERT performed best for the BR models.

Table 3 shows the results for the HASPROPERTY

relation. The jSRE model performs substantially
worse than for CONTAINS, and the performance of
the PU models is lower too. However, the BR mod-
els achieve similar F1 scores, albeit with higher
precision and lower recall than for CONTAINS.
For both relations, LinkBERT is the best language
model for binary relation extraction.

5.5 Results for Stacked Learning

For our stacked learning approach, we created a
meta-classifier by training a linear SVM using the
scikit-learn package (Pedregosa et al., 2011). We
created three different stacked learning models con-

Model Pr Rec F1
StackedSciBERT 67.5 86.9 75.6
StackedBERT 68.4 89.3 77.2
StackedLinkBERT 72.1 86.3 78.5

Table 4: Stacked learning results for CONTAINS.

Model Pr Rec F1
StackedBERT 68.8 86.2 76.5
StackedSciBERT 71.2 85.0 77.4
StackedLinkBERT 74.1 82.8 78.1

Table 5: Stacked learning results for HASPROPERTY.

sisting of fine-tuned component models (unary
and binary extractors) that all employed either
BERT, SciBERT, or LinkBERT. For the SVM meta-
classifier, we explored different values for the regu-
larization parameter C within the set (0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1, 5) and used the best value
based on the development set.

Tables 4 and 5 show the results for stacked
learning for the CONTAINS and HASPROPERTY

relations respectively. The results are remarkably
consistent. In every case, the stacked model that
uses language model L performs better than the
binary relation extractor that uses language model
L. The best models use LinkBERT, where stack-
ing improves performance from 76.0% → 78.5%
for CONTAINS and from 76.9% → 78.1% for
HASPROPERTY. These results demonstrate the
value of combining unary and binary relation ex-
tractors in a stacked ensemble.

As a concrete example of the benefits of includ-
ing unary relation extractors in the stacked model,
consider the following sentence. It contains three
CONTAINS relations between Target Home Plate
and Px (an abbreviation for the mineral pyrox-
ene), Mt (magnetite), and npOx (nanophase oxides).
However, Home Plate does not contain Ol (olivine),
which is a false positive for the BRLinkBERT model,
but a true negative for StackedLinkBERT, which had
access to the unary extractor and correctly pre-
dicted no CONTAINEE(Ol) relation.

Vesicular basalts investigated in the vicinity of
Home Plate such as the rock Esperanza have
the same Fe mineralogical composition as
eastern Home Plate: rich in Px and Mt,
no Ol and little npOx.
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5.6 Experiments on Chemprot Data

To assess the effectiveness of our approach in other
domains, we conducted another experiment on
the Chemprot task (Taboureau et al., 2010). The
Chemprot task is designed to extract chemical-
protein relations (CPR) from PubMed abstracts.
In the dataset, five chemical-protein relations are
used for evaluation (CPR:3, CPR:4, CPR:5,
CPR:6 and CPR:9). We used code provided
by Yasunaga et al. (2022) to obtain and prepro-
cess the training, development, and test sets.7

LinkBERTBioLinkBERT-base after fine-tuning is re-
ported to achieve the best performance on this
data set, so we used it as the pre-trained language
model in unary extractors. The unary extractors
and stacked model were trained as described in
Section 5.3. A single stacked model is sufficient
since all Chemprot relations operate on (Chemical,
Protein) pairs. The binary relation features were
generated by LinkBERTBioLinkBERT-base predictions
kindly released by Yasunaga et al. (2022).

Table 6 shows the performance of different mod-
els, reported as precision, recall and F1 scores,
micro-averaged and macro-averaged across the five
relations. The Paired Unary model achieves the
lowest overall performance due to its extremely
low precision. It allows an entity to be mistakenly
extracted by multiple unary relations in Chemprot.
This emphasizes that heuristic rules to construct
full relations using only the unary relation extrac-
tors may not work well for different domains.

The following rows show results reported by Gu
et al. (2022) for competitive binary relation ex-
tractors produced by fine-tuning different lan-
guage models.8 Among these methods, LinkBERT
achieves the best performance. The bottom row
shows that our stacked model based on LinkBERT
improves upon LinkBERT alone and achieves
state-of-the-art performance on this task. Specif-
ically, the micro-F1 score increases from 77.6%
to 78.3% and the macro-F1 score from 76.8% to
77.9%. According to the precision-recall break-
down, the stacked model achieves a substantial
increase in precision (by 3.2% absolute points in
micro-average, and 5.7% in macro-average) al-
though at the expense of some recall.

7The source code can be found at https://github.c
om/michiyasunaga/LinkBERT .

8For most binary extractors, only the micro-F1 score was
reported.

Model Micro Average Macro Average
P R F1 P R F1

PULinkBERT 36.3 88.5 51.5 34.5 87.6 49.4
Binary Extractors

BERT† - - 71.8 - - -
SciBERT† - - 75.2 - - -
BioBERT† - - 76.1 - - -
PubMedBERT† - - 77.2 - - -
LinkBERT 76.6 78.5 77.6 75.6 76.1 76.8

Stacked Model
SVMLinkBERT 79.8 76.8 78.3 81.3 75.0 77.9

Table 6: Performance of relation extraction models on
Chemprot. †: Scores reported by Gu et al. (2022).

Dataset FULL w/o UNARY w/o EP w/o BINARY
LPSC

CONTAINS 78.5 77.5 77.2 75.3
HASPROPERTY 78.1 76.9 77.0 76.5

Chemprot
CPR:3 75.6 74.5 75.6 65.5
CPR:4 81.8 81.7 81.8 78.6
CPR:5 81.3 78.2 81.6 67.3
CPR:6 82.6 82.9 81.3 75.1
CPR:9 68.2 67.6 68 62.9
Micro-AVG 78.3 77.6 78.2 72.7
Macro-AVG 77.9 77.0 77.6 70.0

Table 7: F1 scores of the stacked model SVMLinkBERT
in ablation experiments.

6 Analysis

We performed additional manual analyses to better
understand the behavior of our stacked models.

We performed ablation experiments to assess
the contributions of different components of the
stacked ensemble by separately removing the
Unary Relation Features (UNARY), Binary Rela-
tion Features (BINARY), and Entity Pair Features
(EP) from the best stacked model SVMLinkBERT.
Table 7 shows the F1 score for each relation within
the LPSC and Chemprot data sets. For LPSC, re-
moving any feature set reduces performance, so
they are all valuable. For Chemprot, however, only
BINARY and UNARY are important; excluding
EP does not significantly impact the overall per-
formance. Looking at individual CPR relations,
we find that including unary relation features ben-
efits CPR:3, CPR:5, and CPR:6 the most. This
result suggests that those relations have more local
contextual cues that are associated with one or the
other side of the relation.

Next, we examined whether the stacked model
extracts relations from sentences with more enti-
ties better. Figure 3 shows a graph that plots the
F1 scores of SVMLinkBERT and LinkBERT against
the number of entity pairs in a sentence for the
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Figure 3: F1 scores versus the number of entity pairs
(Target, Component) in a sentence for the CONTAINS
relation. The binary relation extractor is LinkBERT
and the stacked model is SVMLinkBERT. Scores are av-
eraged across the 5-fold cross validation.

CONTAINS relation. The stacked model performs
comparably to the binary relation extractor over
sentences with fewer entity pairs, but it consistently
outperforms the binary relation extractor over sen-
tences with more than 10 pairs of entities. We
hypothesize that it is important to filter out entities
that do not participate in any unary relation when
there are many entities in a sentence. By recogniz-
ing unary relations, the stacked model is able to
handle the complexity of a large number of entity
pairs.

Finally, Table 8 shows some correct and incor-
rect cases extracted by SVMLinkBERT. In the top
portion, we show examples of the CONTAINS rela-
tion that the binary relation extractor, LinkBERT,
missed but the stacked model correctly extracted.
We found that a lot of these cases contain strong
local cues (such as "suggestive of" in 1), and "abun-
dance" in 2)) that signify relevant unary relations.
The bottom portion of Table 8 shows some false
positive examples where the stacked model incor-
rectly extracted the CONTAINS relation. 3) is a chal-
lenging case where the local context is misleading
(e.g., "Humphrey contains cumulate Olivine") and
it is important to understand the more global con-
texts "there is not enough data". 4) is a common
error we have observed, where both the Target and
the Component entities are in the relevant unary
relations but they do not participate in the same
binary relation.

Missed −→ Extracted

1. An APXS analysis of the "Hula" sample (Figs.3, 4)
shows elevated MgO (11wt%), SO3 (33wt%), and Ni (900
ppm), suggestive of Mg-Nickel sulfate.

2. The Hematite abundance (8 wt%) is significantly more
than observed in other samples from Gale Crater: 0.8, 0.6,
0.7, and 0.6 wt% for Rocknest, John Klein , Cumberland ,
and Windjana, respectively[4, 5].

Falsely Extracted

3. At this time there is not enough data, experimental and
petrologic, to suggest whether or not Humphrey contains
cumulate Olivine.

4. Rock Humphrey shows similar Phosphorus contents
in RU and RB and a decrease in RR , whereas for rock
Mazatzal the highest P concentration is measured in its
weathering rind of RB[5].

Table 8: Examples of correct and incorrect extraction
by the stacked model, SVMLinkBERT, for the CONTAINS
relation. Components are highlighted in blue and Tar-
gets are highlighted in green.

7 Conclusions and Future Work

The goal of this work is to perform an automated
analysis of scientific publications that enables the
construction of domain-specific knowledge bases.
We focused on the planetary science discipline,
which to date has not received much attention from
automated information extraction work. The com-
plex grammar often employed in scientific publica-
tions can pose problems for state-of-the-art relation
extraction systems. We proposed the use of unary
relation extractors to enable specialization for each
argument of a relation, within a stacked learning
framework. Our approach performed well both in
this domain and the Chemprot benchmark (biol-
ogy) data set. In future work, we plan to expand
the scope of this approach to include relations that
cross sentences, which is a major challenge for cur-
rent relation extraction systems and for which local
unary relation modeling is especially well suited.
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Abstract

Researchers have explored novel methods for
both semantic indexing and information re-
trieval of biomedical research articles. More-
over, most solutions treat each task indepen-
dently. However, both tasks are related. For
instance, semantic indexes are generally used
to filter results from an information retrieval
system. Hence, one task can potentially im-
prove the performance of models trained for
the other task. Thus, this study proposes a
unified retriever-ranker-based model to tackle
the tasks of information retrieval (IR) and se-
mantic indexing (SI). Particularly, our proposed
model can adapt to rapid shifts in scientific re-
search. Our results show that the model effec-
tively leverages task similarity to improve the
robustness to dataset shift. For SI, the Micro
f1 score increases by 8% and the LCA-F score
improves by 5%. For IR, the MAP increases by
5% on average.

1 Introduction

The pandemic caused the rapidly evolving curation
of scientific publications about COVID-19, result-
ing in an information crisis (Roberts et al., 2020).
As a result, healthcare practitioners, policymakers,
and other individuals fighting against COVID-19
require specialized information retrieval (IR) and
semantic indexing (SI) systems to keep track of
the ever-evolving literature landscape (Esteva et al.,
2020; Wang et al.). Researcher’s methods to ad-
dress these tasks have generally focused on one
task, IR or SI (Zhang et al., 2020; Colic et al.,
2020).

IR and SI are related. For example, IR addresses
the question, “what are the most relevant research
papers, and why are they deemed relevant?” SI is
essential to facilitate easy browsing and filtering
of IR-retrieved manuscripts. For instance, if a user
finds all relevant papers related to the question,
“What vaccines are the most effective for COVID-
19?”, they can use SI to filter papers associated with

a specific COVID-19 variant, e.g., MeSH terms
on PubMed (Lipscomb, 2000). Hence, this paper
proposes a novel architecture that jointly addresses
both tasks.

There has been an array of research in IR
and SI of biomedical documents. For instance,
since 2012, there has been an annual competition
where researchers compete to develop more ac-
curate biomedical IR and SI methods (BioASQ1).
The competition is essential to improve the Na-
tional Library of Medicine’s (NLM) infrastructure,
which provides IR and SI systems for biomedical
scientists and healthcare professionals to search
for biomedical research articles. NLM manually
indexes biomedical research articles with Medi-
cal Subject Headings (MeSH). MeSH terms are
used for biomedical SI purposes (e.g., filtering
search results), to facilitate hypothesis generation
by biomedical scientists, and to help general knowl-
edge discovery. Unfortunately, there are over 29
thousand MeSH terms. Thus manually identify-
ing the subset of terms applicable to each article
is difficult and expensive to complete in a timely
manner. Hence, the competition has helped re-
searchers introduce various methods for automated
MeSH coding. For instance, many researchers have
trained linear models, which still result in strong
baselines (Liu et al., 2014; Rios and Kavuluru,
2015). For example, Liu et al. (2014) combined
linear models with a learning-to-rank framework,
which is still used today in combination with neural
networks (Dai et al., 2020).

Similarly, BioASQ had a part in advancing
biomedical IR systems. For instance, Pappas et al.
(2020) used convolutional neural networks for
biomedical snippet retrieval. Similar to BioASQ,
recent IR efforts have focused on COVID-related
IR as part of the annual TREC competition (TREC-
COVID) (Roberts et al., 2020). For example, Soni
and Roberts (2021) evaluated two commercial deep

1http://www.bioasq.org/
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learning IR systems on the TREC-COVID dataset,
showing that both systems underperformed the ex-
pected results. Researchers have proposed other
models beyond the commercial systems, includ-
ing pre-trained transformer models for text rank-
ing (Lin et al., 2020), along with zero-shot retrieval
systems for COVID (MacAvaney et al., 2020).
Some researchers have recently explored combin-
ing IR and SI. As an example, researchers have
used an IR system as part of a KNN-based com-
ponent of an ensemble model to improve MeSH
identification (Liu et al., 2014; Dai et al., 2020).
Nevertheless, to the best of our knowledge, no prior
work has used SI to improve IR systems, especially
in IR systems for COVID-related retrieval.

There are four major technical challenges with
developing COVID-related IR and SI systems:
sparse datasets, shifts in the data distribution, scale,
and interpretability. The limited amount of labeled
data and dynamic changes in the COVID-19 land-
scape has made it challenging to generalize IR
and SI methods beyond the datasets used to train
them (Shokraneh and Russell-Rose, 2020). Be-
cause information is quickly becoming outdated
in research articles, understanding what is relevant
is difficult for current IR methods. For example,
expert human judgments did not identify 70% of
the retrieved results as relevant (Voorhees et al.,
2021). However, the manual assessment process
is time-consuming. Therefore, it is important to
improve current models and provide textual evi-
dence for “why” it detected a document as relevant
to facilitate easier manual assessments by human
experts (Xun et al., 2019)—providing answers to
“why” is useful, especially if we develop systems
that work to help experts. For instance, Jin et al.
(2018) shows that human indexers at NLM become
significantly more efficient and accurate if they
are provided semantically sensible associations be-
tween the input text and system outputs.

To address the technical challenges, we propose
a specialized IR and SI approach that combines
interpretability, multi-task learning, and a mecha-
nism of using unlabeled data via self-supervised
learning to improve model robustness. Overall, our
model will allow for quick adaptation and robust-
ness to the dataset shift problem, becoming suitable
for the context of the pandemic. We summarize the
major contributions of this paper below: (1.) We
propose a novel interpretable, self-supervised, mul-
ti-task learning method to tackle the tasks of IR

and SI COVID-19-related research articles. We de-
vise a mechanism to train a unified retriever-ranker
on a self-supervised masked language modeling
(MLM), SI, and an IR task. This joint training
framework enables inter-document representation
learning, quick adaptation to new changes in the
data distribution, and interpretability, which we
demonstrate to be important for the context of the
pandemic. To the best of our knowledge, this is the
first study to show the utility of joint training of
SI and IR tasks—showing both tasks complement
each other in a single model, not just one task help-
ing the other one. (2.) We introduce a novel output
layer transformation method that allows us to pre-
dict new concepts as they appear over time without
retraining the model. (3.) Our study provides de-
tailed quantitative and qualitative analysis of our
model’s interpretability and transfer learning com-
ponents that highlight the dataset shift challenges
of IR and SI tasks during a health crisis.

2 Related Work

Biomedical Semantic Indexing. NLM has col-
lected biomedical literature from the last 150 years.
As of 2020, the PubMed database contains about
30 Million biomedical journal citations. This num-
ber has risen from 12 Million citations in 2004
to 30 Million citations in 2020, having a growth
rate of 4% per year. Through a laborious process,
NLM curators fully examine every document and
annotate it with a set of hierarchically organized ter-
minologies developed by NLM called Medical Sub-
ject Headings (MeSH2) along with supplementary
concepts for more fine-grained categorization (Pa-
pagiannopoulou et al., 2016). In 2019, more than
900K biomedical citations were added to PubMed
and manually indexed to more than 29K MeSH
concept categories3.

Researchers have been trying to address biomed-
ical natural language processing problems effec-
tively for more than a decade, e.g. BioASQ (Tsat-
saronis et al., 2015c), which has led to introduction
of many models for IR and SI (Jin et al., 2018;
Peng et al., 2016; Müller et al., 2017; Zavorin et al.,
2016; Xun et al., 2019). A successful group of
submissions involves deep learning models with
substantial hand-coded features and supervision.
DeepMesh (Peng et al., 2016), the best performing
model in the BioASQ challenge, combines docu-

2
https://www.nlm.nih.gov/mesh/meshhome.html

3
https://www.nlm.nih.gov/pubs/techbull/mj18/

brief/mj18_updates_2018_baseline_stats.html
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ment to vector models with crafted features from
the document and MeSH indexes, along with en-
semble models fed by those features. Other deep
learning approaches include UIMA concept extrac-
tor links (Peng et al., 2016), and AUTH, which also
uses a document-to-vector approach with an ensem-
ble of machine learning classifier (SVM) fed with
document-MeSH features (Papagiannopoulou et al.,
2016). Jin et al. (2018) and Xun et al. (2019) com-
bined retrieval systems with deep recurrent neural
networks and attention mechanism and also pro-
vide explainability for MeSH indexing decisions.
The amount of hand-crafted features and supervi-
sion required for these models make it difficult to
scale up as the biomedical databases change during
pandemic crises (Foroughi Pour et al., 2020).

Most SI models are developed to perform well in
normal situations across a broad range of biomedi-
cal concepts. Researchers evaluate SI models based
on their overall performance on all major MeSH
indices (Nentidis et al., 2019). In the pandemic sit-
uation, however, the focus of the literature has dras-
tically shifted toward the specific concepts and sub-
concepts related to the current Coronavirus disease.
The number of published documents related to
Coronavirus has risen from a few articles per month
to more than 10K articles in June 2020—roughly 1
out of every 11.5 citations are about Coronavirus
these days. Chen et al. (2020) The rapidly grow-
ing and evolving literature on COVID-19 causes
challenges for automatic SI models (Shokraneh
and Russell-Rose, 2020). Previously introduced
SI models are based on supervised learning ap-
proaches and heavily hand-coded features. There-
fore, they require large amounts of labeled data
for a specific concept to perform well. They also
have challenges scaling up to newly introduced
terminologies and sub-concepts. Hence, they are
unsuitable for emergencies, like the ongoing health
crisis. In this paper, we focus on measuring and
improving shifts in this setting.

Biomedical Information Retrieval. As previ-
ously mentioned, BioASQ challenge (Tsatsaronis
et al., 2015a) is the largest challenge for SI and
IR. Since 2015. BioASQ have shared a set of
question—answering-related datasets every year.
IR systems work in two phases. First, a broad
(simple) method is used to retrieve the initial can-
didate’s articles, and the second stage is to re-rank
the candidates using a more complex method. The
re-ranking model is usually based on the cross-

attention model and fine-tuned for the binary clas-
sification task (Nentidis et al., 2020). For the first
stage, many researchers use BM25 (Rosso-Mateus
et al., 2018; Almeida and Matos, 2020; Kazaryan
et al., 2020; Pappas et al., 2020). Likewise, sev-
eral methods have been developed for the second
stage. Rosso-Mateus et al. (2020) developed a sys-
tem that takes as input learns distance metric to
match question-passage pairs. Specifically, they
use siamese and triplet networks to create a novel
similarity learning method using a max-margin ap-
proach.

To the best of our knowledge, our study is the
first to combine the two specific tasks of extraction
of semantic indexes (which is essentially a multi-
label text classification into a set of pre-defined,
hierarchically organized semantic indexes) and IR
(ranking a list of documents based on their related-
ness to a query)—two tasks for which high-quality
annotation by human experts exists compared to
other domains. Other multi-task learning bench-
marks mostly combine text problems that take a
single piece of text as input rather than multiple
documents, such as masked language modeling,
NLU, and text classification (Raffel et al., 2019;
McCann et al., 2018). Semantic search studies use
the pre-trained models on such single input text
problems, then fine-tune and use the representation
of the document along with a similarity function
or task-specific layers to compute the similarity
between mid-level representations from the pre-
trained encoder. These approaches cause discrep-
ancies between the operations required for pre-text
and downstream tasks. Therefore, they may not
leverage the transfer learning (Ratner et al., 2018)
effectively.

The most similar work to this paper is by Liu
et al. (2019) which combines binary text classi-
fication with an information retrieval task via a
multi-task learning framework. However, our work
differs from Liu et al. (2019) in three major ways.
First, we focus on semantic indexing, which is
multi-label and contains more than 29k classes.
Hence, rather than assigning a binary class to an
instance (yes vs. no), our method must be able to as-
sign a set of classes. Moreover, training large-scale
multi-label models requires substantially different
methodological choices beyond what binary classi-
fication needs. Second, their work does not focus
on the biomedical domain, particularly biomedical-
related scientific documents. Third, most of their
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work focuses on single sentences rather than com-
plete documents. Because of the sequence length
limitation of BERT (Beltagy et al., 2020) multi-
document and long-document analysis is only fea-
sible by truncating the text. Hence, our approach
can scale beyond sentence-level tasks.

3 Datasets

This paper uses three datasets: BioASQ Tasks 8a
and 8b dataset, CORD-19 (Wang et al., 2020), and
TREC-COVID. We describe each dataset below:

BioASQ 8a and 8b. First, we use the SI and IR
datasets that were part of the BioASQ 8a and 8b
competitions. Specifically, we use the PubMed
articles from BioASQ’s (Tsatsaronis et al., 2015b)
Task 8a dataset, which includes almost 15 million
article abstracts and titles. We select 8M recent
articles published from 2007 to 2019.

For IR, we use BioASQ’s Task 8b dataset, which
includes 3,243 questions paired with related arti-
cle abstracts. We use validation sets for each task
for hyperparameter tuning. We also use the vali-
dation dataset as a pretraining procedure for the
COVID-19-related corpora. But, we ensure there
is no overlap between these general sets and their
corresponding COVID-19 datasets.

CORD-19. The models are trained and/or evalu-
ated on the following three COVID-19 datasets cor-
responding to the three tasks: SI, IR, and Masked
Language Modeling (MLM). For our Semantic In-
dexing task, we use CORD-19 dataset (Wang et al.,
2020) which includes 200K research articles about
Coronavirus published in peer-reviewed venues and
archival services such as bioRxiv4 and medRxiv5.
We select CORD-19 articles whose MeSH indexes
are manually annotated in PubMed. We crawl and
collect each article’s MeSH indexes. The COVID-
related SI dataset contains 17K articles which we
chronologically sort and split into 13.6K for train-
ing (the oldest 80%) and 3.4K for testing (the latest
20%)—the number of articles is less than 200k
because NLM has not yet indexed many articles.

During a data crisis, such as what is occurring
with COVID-19, it is likely that we will collect
unlabeled data quickly. However, it is unclear how
to best use the unlabeled data. In response to this
issue, we add an unsupervised task of incorporat-
ing COVID-related information into our models.

4https://www.biorxiv.org
5https://www.medrxiv.org

Specifically, we perform a self-supervised pre-text
task similar to Masked Language Modeling in (De-
vlin et al., 2019) to introduce knowledge about
the pandemic. The masked article is treated as a
query, and masked tokens are selected from a list
of COVID-19-related terms6. The model attempts
to detect articles that include the masked term(s),
which allows our model to learn context matching
using intra- and inter-document information (Co-
han et al., 2020). To train this task, we use the
entire CORD-19 training dataset, even the articles
that have not been indexed yet at the time of the
experiments.

TREC-COVID (Information Retrieval). As for
the COVID-19-specific IR task, we use the TREC-
COVID dataset (Roberts et al., 2020), which is
an IR dataset for question answering similar to
BioASQ QA task 8b. TREC-COVID includes 50
topics as queries represented by (concept, ques-
tion, narrative) tuples. It also includes a dataset of
191K candidate documents from CORD-19. Ex-
perts manually evaluated the relevance of 69,317
topic-document pairs and annotated with three la-
bels: unrelated, partially related, and related. Our
task is to return a list of related articles, which in-
clude the target answer using the topic assigned
to each question and given question as a query.
This task structure is the same as used in BioASQ
IR task 8b.

4 Methods

Intuitively, our method reformulates the semantic
indexing task as IR such that we can train a single
model—with a single output layer—that can per-
form both indexing and retrieval. Furthermore, our
method does not require learning class-level param-
eters, thus allowing it to adapt easily to changes in
the data distribution. Specifically, our method has
three main phases: 1. Given an input document, we
query all similar PubMed articles using a robust
IR approach (combining BM25 and document em-
beddings). 2. We generate document embeddings
that combine information from the input document
(query) with each candidate (similar) document
returned in step 1 (the initial retrieval phase) 3. Fi-
nally, given the query-candidate joint embeddings,
we introduce a novel output layer that can apply
to both the Semantic Indexing (classification) and

6We have used the list of related terms published by NLM
https://www.nlm.nih.gov/pubs/techbull/
nd20/nd20_mesh_covid_terms.html
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Figure 1: Intuitive attention modification diagram between the query Q (i.e., the purple items in the Figure) and
candidates D (i.e., the orange items). The candidates (document-document) attentions are masked in our model.

IR tasks. Given the novel output layer, we take
advantage of multi-task learning, jointly training
the model for SI, IR, and additional tasks (self-su-
pervised learning) to improve performance further.
We describe each step in the following subsections.

Initial Retrieval. For the first stage, we use an
initial retrieval system to identify a subset of re-
lated articles along with their task-specific annota-
tions (for example, for extraction of semantic in-
dexes, the task annotations include each candidate
article’s MeSH terms). Our initial retrieval sys-
tem combines a document-level embedding model
of SPECTER (Cohan et al., 2020) with a Bag-
of-Words representation fused with BM25 follow-
ing the schema of (Jin et al., 2018) and (Esteva
et al., 2020). We initialize sPECTER with SciB-
ERT (Beltagy et al., 2019) and trained on a bipartite
graph of citations to capture document-level relat-
edness and minimize a triplet loss between related
articles and maximize over unrelated ones. We fur-
ther pre-train SPECTER on PubMed articles and
fine-tune it on the COVID-19 dataset only. In ad-
dition, we use a BM25 weighted sum of article
tokens to compute a keyword-based representation
as well.

Formally, the input query and each candidate
document are described as sequences of word to-
kens, denoted as Q = {qi}ni=1 and D = {dj}mj=1,
respectively. For every candidate article, we also
track associated metadata such as manually as-
signed MeSH terms defined as LD = {lj}UD

j=1,
where UD is the total number of MeSH terms as-
signed to candidate document C. We represent
every article as an embedding c ∈ Rz defined as

cd =

∑n
i=1 Score(wi, D) · vwi∑n

i=1 Score(wi, D)
(1)

where z is the size of the SPECTER embedding, n
is the number of tokens in document D, Score() ∈
R represents a token-level BM25 score, wi is the i-

th word in article d, and vwi ∈ Rz is the token-level
embeddings from the pre-trained model. Equa-
tion 1 is used to represent every document D which
is used to represent both query dQ and candidate
dD documents.

Next, we use the cosine similarity scores be-
tween each input query representation dQ and
every candidate article representation dD in our
database to find the top K most relevant articles
C = {D1, . . . , DK}.

Transformer-based Representations and
Reranking Next, given a query document Q and a
set of candidate documents C = {D1, . . . , DK},
we use a BERT-like transformer model to rerank
each candidate document Di with respect to the
input query. Specifically, we first concat the query
Q with each candidate Di to form a long sequence
[CLS, Q,SEP,CLS, D1, . . . ,SEP,CLS, DK ],
where each candidate is separated with a CLS and
SEP token. Next, we predict a score for each
candidate ŷi = σ(CLSDi), where σ represents a
sigmoid function and CLSDi represents the CLS
token directly preceding the start of candidate Di’s
sequence of tokens.

At each level of the BERT representation, our
input structure provides the ability to interpret that
model in three unique ways using attention scores:
token-to-token, token-to-document, and document-
to-document. A high-level depiction of the atten-
tion scores is shown in Figure 1. First, the token-
to-token scores between words within each query
Q or within each candidate document D (i.e., the
self-attention scores in Figure 1) calculates the im-
portance of each word. For instance, the model
can learn that the word "the" is unimportant for the
downstream task. The token-to-token scores are
also calculated between the tokens in the query and
each candidate document (i.e., the token-to-token
cross-attention scores in Figure 1), which can be
interpreted as a similarity between the two words
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across two documents regarding the downstream
tasks.

Given that we care about relations between the
query and candidates, but we do not care about
token-to-token relations between two candidates,
we mask the attention weights at each level of the
BERT representation such that they are ignored.
Next, the CLS-to-token attention is calculated be-
tween each token within a query or candidate doc-
ument and the CLS representing each other docu-
ment, which can be interpreted as the importance of
how similar that token is regarding the topical con-
tent of another document. Finally, the CLS-to-CLS
attention scores can be interpreted as a similarity
score between each document—either between the
query and each candidate or between each candi-
date, respectively. For instance, for semantic index-
ing of MeSH terms, the model should learn to give
large CLS-to-CLS attention scores (for attention
scores between the query and each candidate) to
candidate documents with many MeSH terms that
should be assigned to the query. Finally, because
of the input sequence size, we use the Longformer
model (Beltagy et al., 2020).

Output Layer Transformation. The output of
the reranker transformer model is a set of sigmoid
scores representing similarities between each candi-
date document and the input query. However, while
these scores can directly be used to train the IR
models to detect relevant documents for reranking
purposes, we propose to use these identical scores
to generate other types of output, such as MeSH
code predictions for semantic indexing. Specifi-
cally, we propose a simple output layer transfor-
mation and training procedure to handle this task.
Intuitively, our model is a Transformer-weighted k-
NN, where scores of the scores for each "neighbor"
is learned and contextual.

Formally, given a candidate score ŷi for each
candidate Dj ∈ C, we generate a score for MeSH
term as

l̂i =

K∑

j=1

ŷj · 1[li ∈ Lj ]

where ŷj represents the sigmoid score for candi-
date Dj ∈ C, li represents the j-th MeSH code,
Lj represents the set of MeSH codes assigned to
candidate Dj , and l̂i is the final prediction score
for MeSH code li with respect to the input query
Q. At inference time, we optimize the thresholds
to maximize the micro-f1 score (Pillai et al., 2013).

For the SSL task, we generate scores for each of
the COVID-related terms that are masked within
the candidate documents.

To train the model, we first sample a task ran-
domly, then sample training instances for the task,
apply the output transformation, and train using Bi-
nary Cross-Entropy loss. For instance, for MeSH
prediction, we train the model as

L =
U∑

i=1

li log (l̂i) + (1− li) log (1− l̂i)

where li represents the ground-truth label (1 or 0)
for the i-th MeSH term and l̂i is the prediction for
the i-th term.

Note that for the IR task, we also train on rele-
vance using binary cross-entropy. Hence, instead of
using li as the ground-truth and l̂i as the prediction,
we use l̂j and lj , where l̂j is the sigmoid output
described in Section 4 that scores the relevance be-
tween the query and the j-th candidate and lj is the
ground-truth relevance (1 if relevant, 0 otherwise).
Overall, this output transformation procedure has
two major advantages. First, we do not need to
learn any label-specific parameters. Many MeSH
terms appear infrequently. As new MeSH terms are
added, models must be retrained to predict them.
However, our method can hypothetically predict
terms as soon as new terms are used to annotate
existing documents without retraining the model.
Second, the output layer can predict any meta-data
manually assigned or computed (as is the case for
the SSL task) to the candidate database instances.

5 Results

Evaluation Metrics. To evaluate the performance
of SI we use two sets of evaluation measures; i) flat
measures such as micro- and macro-f1 scores, and
ii) hierarchical measures such as Lowest Common
Ancestor F-measure (LCA-F) (Kosmopoulos et al.,
2015) for which we leverage BioASQ suggested
algorithm7.

For evaluation of IR tasks, we leverage trec_eval,
the evaluation metrics and algorithms provided
by TREC-COVID 8. The evaluation metrics in-
clude normalized discounted cumulative gain
(nDCG@N), P@N, Mean Average Precision

7https://github.com/BioASQ/
Evaluation-Measures/tree/master/
hierarchical

8https://trec.nist.gov/trec_eval/
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Model Micro F1

Medical Text Indexer (MTI) (default) .658
MTI (first line indes) .649
Average top score .714

R+TR (base) (full attention) .553

R+TR (base) (w/o multi-task) .660
R+TR (base) (w/ multi-task) .667
R+TR (large) (w/o multi-task) .698
R+TR (large) (w/ multi-task) .705

(a)

Model MAP

Average top score .464

R+TR (base) (full attention) .191

R+TR (base) (w/o multi-task) .328
R+TR (base) (w/ multi-task) .344
R+TR (large) (w/o multi-task) .355
R+TR (large) (w/ multi-task) .410

(b)

Table 1: Semantic Indexing (a) and Information Retrieval (b) performances of our models, Retriever and Transformer-
based Ranker (R+TR), along with the baselines (best performing models of BioASQ Task 8a for SI, and Task
8b Phase A for IR). The baseline scores are the average of their provided Micro F1 and Mean Average Persision
(MAP) for IR and SI, respectively. The results are averaged across all test batches. Our model Retriever and
Transformer-based Ranker is abbreviated as R+TR.

(MAP), and Binary preference (Bpref) (Esteva
et al., 2020).

Baselines. We compare to three baseline mod-
els: the default MTI, MTI first line index, and the
top models from the BioASQ competition. We
explore MTI with base and “first line” parame-
ters. MTI is a pre-trained model that is for SI
of biomedical articles by the US National Library
of Medicine. The first line version is the current
version used by NLM that partially automates the
standard indexing process at the US National Li-
brary of Medicine before human annotators further
fine tune the indexes. We also report the scores
for the best BioASQ team in each batch as “Aver-
age top score”. Finally, to compare state-of-the-art
methods on the COVID data, we retrain Attention
MeSH (Grishchenko et al., 2020).

Hyperparameters and Model Variations. We
optimize hyperparameters using a held-out valida-
tion dataset. For the SI experiments, K (i.e., the
number of relevant articles retrieved) is set to 512.
For the IR experiments, we set K to 1024. We use
two versions of our re-ranker, a longformer base
version (4 layers, 256 hidden size, 8 heads) and a
large version (6 layers, 512 hidden size, 8 heads).
Furthermore, we evaluate different attention mech-
anism on the base model. We also experiment with
a naïve full attention mechanism (R+TR (full atten-
tion)) to compare the effect of the specific attention
mechanism suggested by (Beltagy et al., 2020)9.
All hyperparameters were chosen using the valida-

9R+TR (full attention) requires truncation of the input doc-
uments, resulting in poor performance. However, Longformer
uses dilated sliding window attention to avoid truncation. Di-
lation and window sizes are the target hyperparameters here.
See the appendix for results with various dilation parameters.

All Training Data Micro F1

Model LCA-F MiF MaF Accu. 0% 5% 10% 20%

MTI (default) .563 .730 .506 .491 .222 .332 .459 .564
MTI (first line indes) .553 .722 .501 .507 .218 .309 .462 .578
Attention MeSH .579 .764 .529 .558 .271 .396 .504 .619

R+TR (base) (w/o ssl & mt) .540 .700 .492 .485 .307 .433 .504 .591
R+TR (base) (w/ ssl) .552 .728 .506 .510 .380 .486 .616 .663
R+TR (base) (w/ ssl & mt) .563 .755 .511 .523 .485 .592 .656 .724
R+TR (large) (w/o ssl & mt) .562 .742 .502 .523 .363 .474 .559 .595
R+TR (large) (w/ ssl) .597 .777 .532 .569 .490 .619 .698 .733
R+TR (large) (w/ ssl & mt) .612 .810 .558 .586 .564 .676 .741 .789

Table 2: Semantic indexing performance of our pro-
posed models in comparison with baselines and ablation
studies. For ablation, we experiment with (w/) and with-
out (w/o) self-supervised learning (ssl) and multi-task
learning (mt). For evaluation, we use Micro F1 (MiF)
and Macro F1 (MaF). The second half of the table shows
the MiF score based on the size of the COVID-19 train-
ing dataset, ranging from 0% (zero-shot) to 20% (few-
shot).

tion data. Refer to the Appendix for a comprehen-
sive list of hyperparameters we searched over in
our experiments.

BioASQ Experiments (Non-COVID). We analyze
several design decisions for our transformer-based
ranking system, such as the effect of multi-task
learning on the general datasets and experimentally
compare our use of the masked attention mecha-
nisms. We report the results of each design deci-
sion in Table 5aa for BioASQ SI Task 8a, and Table
1bb for the BioASQ IR Task 8b, respectively. Our
model Retriever and Transformer-based Ranker is
abbreviated as R+TR.

Overall, for both IR and SI, we find that the full
attention mechanism requires truncating the input
documents, resulting in poor performance. The
multi-task learning improves the performance of
IR without affecting the SI’s performance. Such
improvement is expected not only because of the ef-
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fect of transfer learning but also because the SI task
improves retrieval and reinforces the latent space
to be closer to those of the semantic indexes which
human experts believed to be a better representa-
tion. For the IR results, we find that the multi-task
improvement is higher for larger versions of our
ranker (.328→.344 vs. .355→.410), showing that
the knowledge transfer capability increases with
the size of the transformer model. We do not re-
port the effect of the self-supervision results here
because it is only for COVID-19 datasets and dis-
regarded in our ablation analysis on the general
data. However, its effect is analysed in the follow-
ing sections. Overall, the SI results in match the
top contestants in the BioASQ competition (.714
vs .705). This is substantial given the submissions
use ensemble methods while we are just training a
single model. Similarly, for the IR task, we do not
match the best contestants. However, we will show
in the next results sections our model generalizes
better to out of domain data related to COVID-19.

COVID-19 Semantic Indexing Experiments. Ta-
ble 2 shows the SI performance of our models and
baselines on the COVID-19 SI test set. Results
on the left side (All Training Data) show the per-
formance of the models once trained on the entire
COVID-19 SI training set. The baselines are simi-
larly fine-tuned with the training data for fair com-
parison. Our proposed “R+TR(large) w/o SSL &
MT” model (i.e., without self-supervied learning
and without multi-task learning) performs similar
to the state-of-the-art baselines without leveraging
the proposed self-supervised task and multi-task
learning with IR (.742 Micro F1 vs .764). However,
when combined, each of these transfer learning
techniques substantially improves the SI perfor-
mance. Leveraging the self-supervised learning
task contributes and multi-task learning (SI + IR)
helps because R+TR models gets acquainted with
the context of the novel pandemic and its distri-
butions, improving the Micro F1 score to 0.810.
Overall, this experiment supports our hypothesis
that IR tasks with SI improves model performance,
particularly for COVID-related data.

The right side of Table 2 shows the performances
based on the size of the COVID-specific training
data. We chronologically sort the data and train
the SI models with a proportion of them from the
beginning. As shown in Table 2 the partitions in-
clude:0% which represents the zero shot learning
ability, 5%, 10%, and 20% denoting the few-shot

Model nDCG@20 P@20 Bpref MAP

top score .850 .876 .638 .473
ranke#1 in nCDG@20 .850 .876 .637 .472
ranke#1 in P@20 .850 .876 .637 .472
ranke#1 in Bpref .850 .870 .638 .473
ranke#1 in MAP .850 .870 .638 .473

R+TR (base) (w/o ssl & mt) .792 .838 .602 .455
R+TR (base) (w/ ssl) .821 .856 .626 .468
R+TR (base) (w/ ssl & mt) .857 .870 .642 .464
R+TR (large) (w/o ssl & mt) .805 .849 .620 .457
R+TR (large) (w/ ssl) .830 .861 .633 .475
R+TR (large) (w/ ssl & mt) .889 .891 .657 .492

R+TR (base) (w/ ssl & mt) (w/ f.t.) .899 .915 .664 .506
R+TR (large) (w/ ssl & mt) (w/ f.t.) .924 .946 .691 .523

Table 3: Information retrieval performance of our model
with and without pre-training on self-supervised and
semantic extraction tasks.

learning. 0% represents a model only trained on the
original BioASQ dataset (i.e., no COVID-specific
data). Our large R+TR’s zero-shot micro-f1 score
is significantly higher than the baselines, by 0.32
on average. It achieves 97% of its optimum per-
formance by using only 20% of the training data.
Again, providing evidence that our SI + IR multi-
task learning framework can adapt better across
domains.

Information Retrieval on COVID-19 Experi-
ments.

Table 3 shows the IR performance of our mod-
els evaluated on TREC-COVID round 5 dataset.10.
Our model trained without SSL and Multi-Task
learning (R+TR (base) (w/o ssl & mt) was only
trained on the BioASQ QA dataset (i.e., No
COVID-specific data), hence, it shows inferior per-
formance which is because of the inconsistencies
between two tasks. However, leveraging SSL and
multi-task learning, our base model beats the top
nDCG@20 and Bpref scores. This shows how
the proposed transfer learning framework improves
model’s ability to scale up to a new domain. Our
large R+RT achieves significantly superior perfor-
mance in every metric score.

To analyze the zero- and few-shot learning abil-
ity of our model, we fine-tune our SSL multi-task
learning models with TREC-COVID dataset. We
choose round 3 dataset for training which has 40
topics identical to the first 40 topics in round 5.
This is because the competition stated from 30 top-
ics in round 1 and every time added 5 topics for the
next round. We leave the last 10 topics of round 5
for evaluation.

10See for other baselines https://ir.nist.gov/
covidSubmit/archive.html
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query article:

semantic indexes (annotated by experts):

semantic indexes (extracted by our model):

related articles:

semantic indexes (annotated by experts):

semantic indexes (annotated by experts):
0.23

0.47

0.11

0.302

0.44

Figure 2: Illustration of attention weights between the input query and candidate articles along with the extracted
outputs. The intensity and the color of the highlights denotes attention weights’ values which is averaged and set to
three scalar between the highly correlated terms.

We also expand the 40 samples of (topic , set
of candidate documents) to 1,530 samples by ran-
domly selecting a subset of 128 candidate docu-
ments for every given topic rather than 1024. As
shown in the bottom of Table 3, our base and large
model can leverage such fine-tuning and achieve
significantly better scores than the top ones, by 0.05
MAP score. Note that in TREC-COVID challenge
also participants could use results from previous
rounds.

Interpretability.
As mentioned in Section 1, if our models im-

prove human productivity, it is important for them
to be interpretable. The interpretability can help
human experts comprehend the decision making
of a model and what has caused a mistaken output.
As shown in Figure 2, the local-global attention of
our model can assist human experts even when it
makes an error by providing evidence for the mis-
taken output and suggesting other alternatives. The
model extract the semantic index of SARS-CoV-
2 while the manual annotator believes the article
is about the general SARS viruses rather than a
specific variant. Highlights in the figure show the
global attention between the related articles and
the query article, and the local attention within
the query article. The weights are averaged and
set to three scalar values, following (Sarker et al.,
2019), to make the visualization simple (Lei et al.,
2017). As depicted by Figure 2, the extraction of
SARS-CoV-2 is because of the highly matched con-
text about COVID-19 (the top related article) and
the last sentence. However, the global attention

provides another related article along with sugges-
tions for the correct index. Knowing these, one can
quickly identify and fix the error.

The interpretability can also help to understand
the performance of the model in mitigating the
challenges of COVID-19 infodemic. Please refer
to A for more interpretability analysis.

6 Conclusion

In this study, we have unified the tasks of IR for
question answering with the extraction of semantic
indexes and with a self-supervised pre-text task.
Our approach allows us to simultaneously train on
downstream tasks and unlabeled data to maximize
the advantages of transfer learning in addressing
the data efficiency, generalization, and dataset shift
issues. Compared to benchmarks, our model learns
with less labeled data (it does not even need to
learn class-specific parameters) and shows a sub-
stantially higher zero-shot (out-of-domain) perfor-
mance. Overall, our study brings focus towards
state-of-the-art remedies to the current challenges
of the pandemic, which opens up new doors to
a more systematic analysis of each of these chal-
lenges and more sophisticated algorithms.

As future research, we will look to combine
more IR and SI-related tasks as more data is be-
ing annotated and prepared for the domain-specific
environment of the pandemic. To better evaluate
the performance of the global-local interpretability,
we plan to perform qualitative analysis by provid-
ing this tool to human experts. The goal is for the
tool to improve their time efficiency and perfor-
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mance when they are performing manual indexing
of biomedical research articles.
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A Interpretability

As a case study, to analyze the performance of our
model in handling the shift in the topics and termi-
nologies of COVID-19 related literature, we look
at attention weights between the various stigma-
tized and standard terms for the novel Coronavirus
over the time. The stigmatized terms include those
which have been used prior to the provisional stan-
dard term “2019-nCoV”, such as “Wuhan Coron-
avirus,” “Chinese Virus,” “Wuhan Novel Pneumo-
nia” to name a few (Hu et al., 2020). We use the
aggregated weights11 when these terms attend to or
get attended by the standard ones (i.e. COVID-19
and SARS-CoV-2). We use the chronologically
sorted dataset and looked at the weights as the
model gets trained over the different time frames.

As shown in Figure 3, as the distribution of ter-
minologies changes over time, the attention mecha-
nism learns to relate to the well-established terms

11Summed and averaged over all sample queries and candi-
date articles, using both local and global attentions.

Hyperparameter Value(s)

|V | 20M, 30M
K 128, 256 , 512, 1024
w (sliding window size) 32,..., 512, inc[32 : 512], dec[32 : 512]
dilation 0, 1, 2, 3, inc[0 : 3]
dilation heads 1, 2, 3
dorpout 0.1, 0.2, 0.3, 0.4∗
batch size 8, 16, 32, 64 (gpu memory limit)
output vector size 512, 1024, 2048
w.e. size 128, 256, 512∗
hidden size 128, 256, 512∗
#layers 4, 5, 6∗, 7, 8
learning rate 0.001, 0.0005, 0.00025, 0.0001

Table 4: Hyperparameter values. w.e.: embedding size
for initial retrieval step. We use bold text for the optimal
ones among all tried values. ∗ refer to those for large
ranker. Best dilation size is achieved by increasing it by
1 from first layer to the last.

mitigating the effect of the dataset shift. In the be-
ginning, the model shows high attention weights
toward SARS-CoV as it is another variant of Coron-
avirus, which has also originated from China. This
finding shows that the model matches the new con-
text. Specifically, the model quickly relates stigma-
tized terms even prior to introducing their standard
terms. With the standard terms, the model pays less
attention to stigmatized and provisional terms. The
attention over SARS-CoV-1 and other related vari-
ants decreases as the model dissolves the confusion
between them.

B Hyperparameters

In Table 4, we list all of the hyperparameters we
search over in this study. The best hyperparameters
we found on the validation dataset are marked via
bold and an asterisk (*). When training the trans-
former reranker model, we use a dropout value
of 0.2, batch size of 16, 2 dilation heads, with a
dilation varying from 0 to 3 from the first to last
layer of the Longformer (increasing or decreasing
every/every other layer).

C Dilation Results

In Table 5, we experiment with the longformer di-
alation parameter w, fixing it at 230, varying it
from size 32 to 512 from the first to last layer, vary-
ing it from 512 to 32 from the first to last layer
(i.e., in reverse), using dilation on two heads, and
combining global dilation with dialated sliding win-
dows. See Beltagy et al. (2020) for more details on
the dilation parameters. Overall, we find that the
combination of global and dilated sliding window
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Figure 3: Attention weights of terms attending to COVID-19 and SARS-CoV-2 over different time frames. These
weights are normalized for visualization purpose, following (Nguyen and Salazar, 2019)

with increasing window size shows better perfor-
mance than other combinations in both IR and SI.
However, the performance still does not match our
custom attention filtering as shown in Tables 5a
and 1b.
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Model Micro F1

R+TR (base) (full attention) .553

R+TR (increasing w) (from 32-512) .628
R+TR (fixed w) (=230) .614
R+TR (decreasing w) (from 512-32) .600
R+TR (increasing w) (dilation on 2 heads) .633
R+TR (global + dilated sliding window*) .660

(a)

Model MAP

R+TR (base) (full attention) .191

R+TR (increasing w) (from 32-512) .293
R+TR (fixed w) (=230) .280
R+TR (decreasing w) (from 512-32) .258
R+TR (increasing w) (dilation on 2 heads) .303
R+TR (global + dilated sliding window*) .328

(b)

Table 5: Semantic Indexing (a) and Information Retrieval (b) performances of our models, Retriever and Transformer-
based Ranker (R+TR), along with the baselines (best performing models of BioASQ Task 8a for SI, and Task
8b Phase A for IR). The baseline scores are the average of their provided Micro F1 and Mean Average Persision
(MAP) for IR and SI, respectively. The results are averaged across all test batches. Our model Retriever and
Transformer-based Ranker is abbreviated as R+TR.
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Abstract

We release a pretrained Japanese masked lan-
guage model for an academic domain. Pre-
trained masked language models have recently
improved the performance of various natural
language processing applications. In domains
such as medical and academic, which include
a lot of technical terms, domain-specific pre-
training is effective. While domain-specific
masked language models for medical and SNS
domains are widely used in Japanese, along
with domain-independent ones, pretrained mod-
els specific to the academic domain are not
publicly available. In this study, we pretrained
a RoBERTa-based Japanese masked language
model on paper abstracts from the academic
database CiNii Articles. Experimental results
on Japanese text classification in the academic
domain revealed the effectiveness of the pro-
posed model over existing pretrained models.

1 Introduction

Academic papers in various fields and languages
are accumulating daily on the Web. For example,
more than 76k papers in the field of natural lan-
guage processing (NLP) are currently available on
the ACL Anthology.1 Since the cost for humans to
exhaustively learn from these large numbers of aca-
demic papers is immeasurable, scholarly document
processing by NLP (Cohan and Goharian, 2015;
Singh et al., 2018; Mohammad, 2020) is promising.

In NLP based on deep learning, which is cur-
rently the mainstream, supervised learning with a
large-scale labeled corpus is effective. However,
in domains where technical terms are frequently
used, such as in academic fields, hiring professional
annotators is very expensive. Therefore, the low-
resource problem is a serious issue in various lan-
guages, domains, and tasks.

In recent NLP, finetuning of pretrained masked
language models on large-scale raw corpora, such

1https://aclanthology.org/

as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), has been widely employed to address
the low-resource problem. Especially in domains
such as medical (Alsentzer et al., 2019) and aca-
demic (Beltagy et al., 2019; Lee et al., 2020), the
effectiveness of domain-specific pretraining has
been reported. Similar to these previous studies
in English, domain-specific masked language mod-
els for medical (Kawazoe et al., 2021) and SNS2

are widely used in Japanese, along with domain-
independent masked language models.3,4 However,
there are no publicly available pretrained Japanese
models that are specific to the academic domain.

In this study, we pretrained a RoBERTa-based
Japanese masked language model (Liu et al., 2019)
using 6.28M sentences of paper abstracts from
a scholarly article database CiNii Articles5 to
improve the performance of scholarly document
processing in Japanese. Experimental results on
Japanese text classification in the academic domain
revealed the effectiveness of the proposed model,
which is specific to the academic domain, com-
pared to the domain-independent masked language
models. Our model (Academic RoBERTa) will be
available on GitHub6 when this paper is published.

2 Related Work

Finetuning of pretrained Transformer (Vaswani
et al., 2017) achieves excellent performance on
many NLP tasks (Wang et al., 2018). BERT (De-
vlin et al., 2019), a typical pretraining model, trains
the Transformer encoder by multi-task learning of
masked language modeling and next sentence pre-

2https://github.com/hottolink/
hottoSNS-bert

3https://huggingface.co/cl-tohoku/
bert-base-japanese

4https://huggingface.co/nlp-waseda/
roberta-base-japanese

5https://ci.nii.ac.jp/
6https://github.com/hirokiyamauch/

AcademicRoBERTa
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diction. RoBERTa (Liu et al., 2019) outperforms
BERT by pretraining only masked language mod-
eling, through dynamic masking and increasing
batch size and number of training steps. This study
conducts powerful RoBERTa-based pre-training to
develop a Japanese masked language model spe-
cific to the academic domain.

The effectiveness of domain-specific pretrain-
ing to address technical terms and style-specific
expressions has been reported. In English, domain-
specific masked language models are publicly
available for various domains, including medi-
cal (Alsentzer et al., 2019), academic (Beltagy
et al., 2019; Lee et al., 2020), and SNS (Nguyen
et al., 2020). Domain-specific masked language
models have also been developed in Japanese, such
as UTH-BERT (Kawazoe et al., 2021) for the med-
ical domain and hottoSNS-BERT2 for the SNS do-
main. However, no pretraining Japanese model
specific to the academic domain has been released.

3 Methods

To improve the performance of scholarly docu-
ment processing in Japanese, we release a Japanese
masked language model specific to the academic
domain. First, in Section 3.1, we create a Japanese
corpus consisting of paper abstracts. Then, in Sec-
tion 3.2, we use this corpus to conduct pretraining
based on RoBERTa (Liu et al., 2019).

3.1 Corpus

We use CiNii Articles,5 a scholarly article database,
to create a Japanese corpus specific to the academic
domain. We extracted 1.27 million abstracts of
academic papers included in CiNii Articles as of
March 2022, containing Japanese characters (hira-
gana or katakana). Then, a corpus of approximately
6.28 million sentences (about 180 million words)
was created by applying the five-step preprocessing
shown in Table 1.

Deletion of Fixed Expressions Paper abstracts
extracted from CiNii Articles contain noise due
to automatic information extraction, such as “論
文タイプ ||研究ノート” (paper type || research
notes). To exclude these fixed expressions from
the corpus, we remove them when the same doc-
ument appears more frequently than a threshold.
Since there were cases where the same document
appeared 5 or 6 times due to ID registration errors,
we set the threshold as 7 or more times.

Preprocess Corpus size

Number of paper abstracts 1.27 M docs.
1. Deletion of fixed expressions 1.15 M docs.
2. Segmentation into sentences 7.31 M sents.
3. Extraction of Japanese sentences 6.68 M sents.
4. Deletion of duplicate sentences 6.33 M sents.
5. Limitation of sentence length 6.28 M sents.

Table 1: Change in corpus size due to preprocessing.

Segmentation into Sentences For 1.15 million
documents obtained by the previous preprocess-
ing, sentence segmentation is performed. Approx-
imately 7.31 million sentences were obtained by
rule-based sentence segmentation.7

Extraction of Japanese Sentences To clean our
Japanese corpus, we remove sentences written in
languages other than Japanese. Since technical
terms are often expressed in other languages, sen-
tences in which the characters above the threshold
are Japanese (hiragana or katakana or kanji) are ex-
tracted. In this study, this threshold was set at 50%,
resulting in about 6.68 million Japanese sentences.

Deletion of Duplicate Sentences To prevent bias
caused by high-frequency expressions, sentences
that occur frequently in specific fields, such as “下
腹部痛を主訴に来院。” (Visited the hospital
with a chief complaint of lower abdominal pain.)
and fixed form sentences in academic papers, such
as “その結果を以下に示す。” (The results are
shown below.) are removed. In the case of sentence
duplication, the sentence was left in the corpus only
once and the others were deleted, resulting in a
corpus of about 6.33 million unique sentences.

Limitation of Sentence Length Finally, ex-
tremely short and long sentences are removed to
completely eliminate errors in fixed expressions
and sentence segmentation. Sentences of less than
10 characters often contained expressions such as
“（編集委員会作成）” (prepared by the editorial
board) that would not be included in the actual pa-
per abstracts. Therefore, in this study, we created
a corpus of approximately 6.28 million sentences
by extracting sentences with between 10 and 200
characters.

7https://github.com/wwwcojp/ja_
sentence_segmenter
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3.2 Pretraining

The corpus created in Section 3.1 is used to pre-
train masked language modeling equivalent to
RoBERTa (Liu et al., 2019). Subword segmen-
tation by SentencePiece8 (Kudo and Richardson,
2018) with a vocabulary size of 32, 000 was per-
formed for tokenization. Our model is a Trans-
former (Vaswani et al., 2017) with the same struc-
ture as the roberta-base, implemented by the
fairseq toolkit.9 (Ott et al., 2019) That is, our
masked language model consists of 12 layers of
768 dimensions with 12 self-attention heads. We
set the maximum number of tokens per input in-
stance to 512, the batch size to 64 sentences, and
the dropout rate to 0.1. We used Adam (Kingma
and Ba, 2015) with learning rate scheduling by
polynomial decay as the optimizer and we set the
maximum learning rate to 0.0001 and the warmup
step to 10, 000. The number of training steps was
set to 700, 000 for a fair comparison with a previ-
ous study.4 Our model was pretrained on two CPUs
(Intel Xeon GOLD 5115) with 192 GB RAM and
four GPUs (RTX A6000 48 GB).

4 Evaluation

To evaluate the effectiveness of our masked lan-
guage model (Academic RoBERTa) specific to the
academic domain, we empirically compare our
model with existing domain-independent masked
language models through experiments on Japanese
text classification in the academic domain.

4.1 Baselines

In this experiment, BERT (Tohoku BERT)3 and
RoBERTa (Waseda RoBERTa)4, which are domain-
independent masked language models for Japanese,
are employed as baseline models. Both baselines
are Transformer models (Vaswani et al., 2017) with
the same structure as Academic RoBERTa and have
the same size vocabulary. However, they differ in
the corpus used for pretraining, its preprocessing,
and the hyperparameters during pretraining. We
used HuggingFace Transformers (Wolf et al., 2020)
to implement our baseline models.

Tohoku BERT is a BERT model (Devlin et al.,
2019) pretrained on Japanese Wikipedia. Mor-
phological analysis with MeCab (IPADIC) (Kudo

8https://github.com/google/
sentencepiece

9https://github.com/facebookresearch/
fairseq

et al., 2004) and subword segmentation with Word-
Piece (Wu et al., 2016) were used as preprocessing.
The maximum number of tokens per input instance
is 512, the batch size is 256 sentences, and 1 mil-
lion steps of pretraining is performed.

Waseda RoBERTa is a RoBERTa model (Liu
et al., 2019) pretrained on both Japanese Wikipedia
and the Japanese part of CC100 (Wenzek et al.,
2020). Morphological analysis with Juman++ (Tol-
machev et al., 2020) and subword segmentation
with SentencePiace (Kudo and Richardson, 2018)
are used as preprocessing. The maximum number
of tokens per input instance is 128, the batch size
is 256 sentences (×8 GPUs), and 700, 000 steps of
pretraining is performed.

4.2 Tasks
As evaluation tasks in the academic domain, we
experiment with two types of Japanese text clas-
sification on the titles of research projects funded
by Grants-in-Aid for Scientific Research (KAK-
ENHI). KAKENHI is a competitive research fund
in Japan that covers scientific research in all fields.
For this experiment, we collected 73, 000 KAK-
ENHI proposals from 2013 to 2017. We designed
two evaluation tasks: an author identification task
to estimate whether the principal investigator is the
same or not from pairs of research project titles,
and a category classification task to estimate the
research fields from research project titles. In both
tasks, each masked language model is automati-
cally evaluated by the accuracy of its classification.

Author Identification This task is a sentence-
pair classification task that performs a binary clas-
sification of whether the principal investigators
of two research projects are identical or not. In
this experiment, a total of 120, 000 pairs, 50, 000
positive examples consisting of research project
titles proposed by the same principal investigator
and 70, 000 negative examples consisting of those
proposed by different principal investigators, were
paired and randomly split for training, validation,
and evaluation as shown in the top row of Table 2.
Two sentences were input simultaneously into the
masked language model with a special token of
[SEP] in between.

Category Classification This task is a sentence
classification task to estimate research fields from
the titles of research projects. KAKENHI employs
a four-level hierarchical structure of research fields,
which include 4, 14, 77, and 318 categories, in
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Author indentification Category classificaton

# examples for Train/Valid/Test 100k / 10k / 10k 70k / 1.5k / 1.5k
# classes 2 4 14 77 318

Tohoku BERT 95.1 83.7 69.6 53.3 40.3
Waseda RoBERTa 97.1 83.9 71.9 55.4 42.7
Academic RoBERTa 98.7 84.7 72.9 58.8 44.6

Table 2: Accuracy of academic text classification in Japanese.

descending order from the largest categories. In
this experiment, each level of classification was
performed independently. That is, the classification
results for the larger categories do not affect the
classification of the smaller categories.

4.3 Finetuning

The corpus described in Section 4.2 was used to
finetune the masked language models. As a prepro-
cessing, subword segmentation was performed for
each model using the same settings as in the pre-
training. For finetuning, the batch size was 256
sentences, the dropout rate was set to 0.1, and
Adam (Kingma and Ba, 2015) was used as the
optimizer with a maximum learning rate of 5e−5.
Finetuning was terminated when the accuracy in
the validation dataset did not improve for 10 epochs
as early stopping.

4.4 Results

Table 2 shows the experimental results. RoBERTa
consistently achieved better performance than
BERT, and Academic RoBERTa, which is specific
to the academic domain, showed the best perfor-
mance on all tasks. In particular, the proposed
method showed significant performance improve-
ment in classifying minor categories (i.e., 77-class
and 318-class classifications), which require more
detailed expertise than major categories (i.e., 4-
class and 14-class classifications).

There is no difference in model structure or num-
ber of training steps between Waseda RoBERTa
and Academic RoBERTa. In addition, since To-
hoku BERT and Waseda RoBERTa are pretrained
using corpora of approximately 17 million and 4
billion sentences, respectively, our approximately
6.28 million sentences have no advantage in terms
of corpus size. Therefore, the performance im-
provement of our model can be attributed only to
its specialization in the academic domain.

4.5 Discussion

We analyze the vocabulary of the domain-specific
model. We found that 49.4% of the tokens in Aca-
demic RoBERTa’s vocabulary are not included in
that of existing masked language models.10 Exam-
ples of characteristic tokens that only Academic
RoBERTa has include phrases that frequently ap-
pear in academic papers in any field, such as “であ
ることが確認された” (It was confirmed that the
...) and technical terms that frequently appear in
certain fields, such as “ニューラルネットワーク”
(neural networks). Our model may have achieved
high performance for text classification in the aca-
demic domain because our vocabulary includes
many such domain-specific tokens.

5 Conclusion

In this study, we released Academic RoBERTa, a
Japanese masked language model specific to the
academic domain, pretrained on abstracts of aca-
demic papers included in CiNii Articles. Exper-
imental results on Japanese text classification in
the academic domain revealed that our model con-
sistently outperforms existing domain-independent
masked language models. Detailed analysis con-
firmed the effectiveness of domain-specific pre-
training, as many domain-specific expressions were
included in the vocabulary and the accuracy of text
classification improved significantly for more de-
tailed categories requiring more expertise.

Our future work includes making Japanese text
generation models such as GPT-2 (Radford et al.,
2019) and BART (Lewis et al., 2020) specific to the
academic domain. These models could contribute
to summarization and grammatical error correction
in the academic domain.

10The vocabulary of the existing masked language model
refers to the following union sets: the vocabulary of Tohoku
BERT, the vocabulary of Waseda RoBERTa, and the vocabu-
lary when training the subword segmentation of SentencePiece
on Japanese Wikipedia with a vocabulary size of 32, 000.
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Abstract

We address the named entity omission - the
drawback of many current abstractive text sum-
marizers. We suggest a custom pretraining ob-
jective to enhance the model’s attention on the
named entities in a text. At first, the named
entity recognition model RoBERTa is trained
to determine named entities in the text. After
that, this model is used to mask named enti-
ties in the text and the BART model is trained
to reconstruct them. Next, the BART model
is fine-tuned on the summarization task. Our
experiments showed that this pretraining ap-
proach improves named entity inclusion preci-
sion and recall metrics.

1 Introduction

Current state-of-the-art abstractive summarization
methods achieved significant progress, yet they
are still prone to hallucinations and substitution of
the named entities with vague synonyms or omit-
ting mention of some of them at all (Kryscinski
et al., 2020a), (Maynez et al., 2020a), (Gabriel
et al., 2021). Such inconsistencies in the summary
limit the practicability of abstractive models in real-
world applications and carry a danger of misin-
formation. Example in Table 1 demonstrates the
difference that named entity inclusion could make
in the generated summary.

Scientific texts are especially vulnerable to this
issue. Omitting or substituting the name of the
metric used or the method applied can make a sum-
mary useless or, in the worst case scenario, totally
misleading for a reader.

We make the following contributions:

• present a new method for pretraining a sum-
marization model to include domain-specific
named entities in the generated summary;

• show that the BART model with the Masked
Named Entity Language Model (MNELM)
pretraining procedure is able to achieve higher

Without named entities With named entities

Famous North-American Andrew Ng from Stanford
scientist suggested suggested a new way
a new way of training of training feed-
AI algorithms. forward neural networks.

Table 1: Example of NE omission

precision and recall metrics of named entity
inclusion.

2 Related work

For automatic summarization, one of the impor-
tant issues is extrinsic entity hallucinations, when
some entities appear in summary, but do not occur
in the source text (Maynez et al., 2020b; Pagnoni
et al., 2021). A number of studies have been de-
voted to this problem, such as fixing entity-related
errors (Nan et al., 2021), ensuring the factual con-
sistency of generated summaries (Cao et al., 2020),
and task-adaptive continued pertaining (Gururan-
gan et al., 2020). In our paper, we address the
problem of named entity awareness of the summa-
rization model by first training it on the NER task
before final finetuning to make the model entity
aware.

The idea of utilizing named entities during
the pretraining phase first was described back in
(Zhang et al., 2019), where the authors proposed
the usage of knowledge graphs by randomly mask-
ing some of the named entity alignments in the
input text and asking the model to select the ap-
propriate entities from the graphs to complete the
alignments. One of the disadvantages of that ap-
proach is the need for a knowledge base, which is
extremely difficult to build. Only a limited num-
ber of domain-specific knowledge bases exist, and
none of them can be considered complete.

The study (Kryscinski et al., 2020b) addresses
the problem of the factual consistency of a gen-
erated summary by a weakly-supervised, model-
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based approach for verifying factual consistency
and identifying conflicts between source docu-
ments and a generated summary. Training data is
generated by applying a series of rule-based trans-
formations to the sentences of the source docu-
ments.

A similar approach is suggested by the authors
of the paper (Mao et al., 2020) who try to preserve
the factual consistency of abstractive summariza-
tion by specifying tokens as constraints that must
be present in the summary. They use a BERT-based
keyphrase extractor model to determine the most
important spans in the text (akin to the extractive
summarization) and then use these spans to con-
strain a generative algorithm. The big drawback of
this approach is the vagueness of the keyphrases
and the limited amount of training data. Also, the
use of the BERT model leaves room for improve-
ment.

The analogous solution uses (Narayan et al.,
2021), where the authors suggest entity-level con-
tent planning, i.e. prepending target summaries
with entity chains – ordered sequences of entities
that should be mentioned in the summary. But,
as the entity chains are extracted from the refer-
ence summaries during the training, this approach
cannot be used in an unsupervised manner, like
MNELM, proposed in this work.

3 Method

We propose a three-step approach that aims to avoid
all the aforementioned drawbacks: 1) at the first
step the NER model is trained on a domain-specific
dataset; 2) then the trained NER model is used for
the MLM-like unsupervised pretraining of a lan-
guage model; 3) the pretrained model is finetuned
for the summarization task.

By following these steps, we can use a large
amount of unlabeled data for the pretraining model
to select domain-specific named entities and there-
fore to include them in the generated summary.
In comparison with a regular MLM pretraining,
the suggested approach helps the model converge
faster, shows an increased number of entities in-
cluded in the generated summary, and drastically
improves the avoiding of hallucinations, i.e. elim-
inates named entities that did not appear in the
original text.

4 Datasets and evaluation metrics

In this work, we use two datasets: SCIERC (Luan
et al., 2018) for training named entity extraction
model and ArXiv (Cohan et al., 2018) dataset
for pretraining and training of the summarization
model. The SCIERC dataset includes annota-
tions for scientific entities for 500 scientific ab-
stracts. These abstracts are taken from 12 AI con-
ference/workshop proceedings in four AI commu-
nities from the Semantic Scholar Corpus. These
conferences include general AI (AAAI, IJCAI),
NLP (ACL, EMNLP, IJCNLP), speech (ICASSP,
Interspeech), machine learning (NIPS, ICML), and
computer vision (CVPR, ICCV, ECCV) confer-
ences. The dataset contains 8.089 named enti-
ties and defines six types for annotating scientific
entities: Task, Method, Metric, Material, Other-
Scientific-Term and Generic. SCIERC utilizes a
greedy annotation approach for spans and always
prefers the longer span whenever ambiguity occurs.
Nested spans are allowed when a subspan has a
relation/coreference link with another term outside
the span.

The second dataset is the Arxiv dataset which
takes scientific papers as an example of long docu-
ments and their abstracts are used as ground-truth
summaries. Authors of the dataset removed the
documents that are excessively long or too short, or
do not have an abstract or some discourse structure.
Figures and tables were removed using regular ex-
pressions to only preserve the textual information.
Also, math formulae and citation markers were nor-
malized with special tokens. Only the sections up
to the conclusion section of the document were
kept for every paper.

This dataset contains 215,912 scientific papers
with the average length of 4,938 words and the
average summary length of 220 words. To evaluate
the performance of the model we used ROUGE-1,
ROUGE-2, and ROUGE-L metrics.

For scoring the occurrence of named entities and
their soundness and completeness we use named-
entity-wise precision and recall:

NE precision =
correct NE in summary

number of NE in summary

NE recall =
correct NE in summary

number of NE in source
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5 Experiments

The training procedure of our model consists of the
three main stages, illustrated in Figure 1.

Figure 1: Training sequence

5.1 NER preparation

To start our pipeline, we trained the Named Entity
Recognition model. For this purpose, we used the
RoBERTa (Liu et al., 2019) language model. After
the training for 7 epochs, we obtained an F1 macro
score of 0.51 on the test dataset.

5.2 Custom LM pretraining

BART (Lewis et al., 2020) uses the standard
sequence-to-sequence Transformer architecture
(Vaswani et al., 2017) and it is pretrained by cor-
rupting documents and then optimizing a recon-
struction loss – the cross-entropy between the de-
coder’s output and the content of the original doc-
ument. Unlike most of the existing denoising au-
toencoders, which are tailored to specific noising
schemes, BART allows us to apply any type of
document corruption. In the extreme case, where
all information about the source is lost, BART is
equivalent to a regular language model.

This unique ability opens the road to usage of our
previously trained NER model. We use it to find
named entities in scientific texts from the ArXiv
dataset and substitute them with [mask] tokens.
This way, we bring the model’s attention to the
named entities instead of just random words, most
of which might be from a general domain. In our
experiments, we used a 0.5 probability of masking.

This approach was inspired by the original
BART paper, in the conclusion of which authors
encourage further experiments with noising func-
tions: “Future work should explore new methods
for corrupting documents for pre-training, perhaps
tailoring them to specific end tasks” (Lewis et al.,
2020).

We pretrained on 215,912 scientific articles on
a single epoch starting with a learning rate of 5
* 10−5 and a linear scheduler with gamma = 0.5
every 10,000 steps.

MNELM MLM
NE Precision 0.93 0.86
NE Recall 0.39 0.38

Table 2: Named Entity inclusion scores.

MNELM MLM

ROUGE-1
F1 0.36 0.35
precision 0.51 0.49
recall 0.29 0.29

ROUGE-2
F1 0.13 0.12
precision 0.21 0.19
recall 0.10 0.10

ROUGE-L
F1 0.32 0.31
precision 0.45 0.43
recall 0.26 0.25

Table 3: Summarization scores. MNELM was trained
for 20k steps, MLM was trained for 25k steps.

5.3 Summarization training

After pretraining the BART model, we finetuned
it on a summarization task. Because BART has an
autoregressive decoder, it can be directly fine-tuned
for sequence generation tasks such as abstractive
question answering and summarization. In both of
these tasks, information is copied from the input,
but manipulated, which is closely related to the
denoising pre-training objective. Here, we trained
BART with a batch size of 1 for a single epoch. We
figured out that the model easily overfits, so we had
to use a learning rate scheduled every 5,000 steps
with gamma = 0.5. The initial learning rate was
set to be 2 * 10−5. For training we used NVIDIA
Tesla K80 GPU, the training took around 30 hours.

6 Results

Our model shows higher precision and recall in
named entity inclusion in comparison to the same
architecture, which was pretrained using regular
masked language model objective - results of both
models can be found in Table 2. Examples of gen-
erated summaries are shown in Appendix A.

7 Discussion

During the training of our model, we noticed that
increase in common metrics for text summarization
causes a decrease in named entity inclusion. We
believe the reason for this is the limited length of
the generated summary - one can have only so
many named entities, before they will displace
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other words from the original text, causing the
model to reformulate sentences and miss more
words from the source. Therefore, during train-
ing, we tried to find the optimum point, at which
the model will have high ROUGE scores and will
still have high NE inclusion. At this point the
MNELM-pretrained model, while keeping higher
NE inclusion, converges faster than a regular MLM
(in terms of ROUGE metrics). The comparison
can be found in Table 3. Obtained summarization
scores are inferior to the recently published state
of the art models like PRIMER (Xiao et al., 2022)
(ROUGE-1 = 47.6; ROUGE-2 = 20.8) or Deep-
Pyramidon (Pietruszka et al., 2022) (ROUGE-1 =
47.2; ROUGE-2 = 20), but their ability to preserve
named entities in text is yet to be determined.

8 Conclusion

In this work, we described the task of preserving
named entities in an automatically generated sum-
mary and presented the Masked Named Entity Lan-
guage Model (MNELM) pretraining task. We show
that with the MNELM pretraining procedure the
BART model can achieve higher precision and re-
call of named entity inclusion.

Pretraining with the MNELM task helps the
model concentrate on domain-specific words,
whereas MLM learns to reconstruct mostly com-
mon words. This leads to stronger attention on
named entities, more likely preserving them in a
generated text. The suggested model shows solid
results in summarization metrics in comparison to
the regular approach and converges faster.

In further research, we plan to improve the qual-
ity of the pretraining by masking a sequence of
named entities with a single mask – the step that
could help the model, according to the original
BART paper (Lewis et al., 2020). Also, we plan to
conduct more experiments with different hyperpa-
rameters (such as masking probability), on more
datasets, including PubMed (Cohan et al., 2018)
and to train an even better NER model. In addition,
we plan to improve the proposed model by over-
coming the internal limitation on the number of
input tokens (currently, it only has access to 1024
tokens).
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A Appendix

Below is the comparison of the generated sum-
maries. Named entities are in bold. First text is gen-
erated by the MNELM-pretrained model, second
text is produced by the MLM-pretrained model:

1. "the problem of admission control for web
- based applications is typically considered as a
problem of system sizing : enough resources are to
be provisioned to meet quality of service require-
ments under a wide range of operating conditions.
while this approach is beneficial in making the
site performance satisfactory in the most common
working situations, it still leaves the site incapable
to face sudden and unexpected surges of traffic. in
this context , it is impossible to predict the inten-
sity of the overload. this work is motivated by the
need to formulate a fast reactive and autonomous
approach to admission control. in particular, we
propose an original self- * overload control pol-
icy ( soc ) which enables some fundamental self
- * properties such as self - configuration, self -
optimization, self - protection."

2. "we propose an autonomous approach to ad-
mission control in distributed web systems. the
proposed policy is based on self - configuration,
self - optimization, and self - protection. in par-
ticular, the proposed system is capable of self -
configuring its component level parameters ac-
cording to performance requirements, while at the
same time it optimizes its own responsiveness to
overload. at session granularity , it does not re-
quire any prior knowledge on the incoming traffic
and can be applied to non - session based traffic
as well."

MNELM model scores: NE precision = 0.91; NE
recall = 0.49. MLM model scores: NE precision =
0.71; NE recall = 0.20.
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Abstract

A scientific paper is traditionally prefaced by
an abstract that summarizes the paper. Recently,
research highlights that focus on the main find-
ings of the paper have emerged as a comple-
mentary summary in addition to an abstract.
However, highlights are not yet as common
as abstracts, and are absent in many papers.
In this paper, we aim to automatically gener-
ate research highlights using different sections
of a research paper as input. We investigate
whether the use of named entity recognition
on the input improves the quality of the gen-
erated highlights. In particular, we have used
two deep learning-based models: the first is
a pointer-generator network, and the second
augments the first model with coverage mech-
anism. We then augment each of the above
models with named entity recognition features.
The proposed method can be used to produce
highlights for papers with missing highlights.
Our experiments show that adding named entity
information improves the performance of the
deep learning-based summarizers in terms of
ROUGE, METEOR and BERTScore measures.

1 Introduction

Every research domain has an overabundance of
textual information, with new research articles pub-
lished on a daily basis. The number of scientific pa-
pers is increasing at an exponential rate (Bornmann
et al., 2021). According to reports, the number of
scientific articles roughly doubles every nine years
(Van Noorden, 2014). For a researcher, keeping
track of any research field is extremely difficult
even in a narrow sub-field. Nowadays, many pub-
lishers request authors to provide a bulleted list of
research highlights along with the abstract and the
full text. It can help the reader to quickly grasp the
main contributions of the paper.
Automatic text summarization is a process of short-
ening a document by creating a gist of it. It encap-
sulates the most important or relevant information

from the original text. Scientific papers are gener-
ally longer documents than news stories and have
a different discourse structure. Additionally, there
are less resources available on scholarly documents
to train text summarization systems. There are two
broad approaches used in automatic text summa-
rization (Luhn, 1958; Radev et al., 2002): Extrac-
tive summarization and abstractive summarization.
Extractive summarization generally copies whole
sentences from the input source text and combines
them into a summary, discarding irrelevant sen-
tences from the input (Jing and McKeown, 2000;
Knight and Marcu, 2002). But recent trends use
abstractive summarization which involves natural
language generation to produce novel words and
capture the salient information from the input text
(Rush et al., 2015; Nallapati et al., 2016). Our
aim is to generate research highlights from a re-
search paper using an abstractive approach. But an
abstractive summarizer using a generative model
like a pointer-generator network (See et al., 2017)
sometimes generates meaningless words in the out-
put. In particular, for named entities which are
multi-word strings, incorrect generation of a sin-
gle word within the string (e.g., suppose instead of
generating ‘artificial neural network’, it generates
‘artificial network’) may corrupt the meaning of the
whole entity and its parent sentence. So we propose
to perform named entity recognition (NER) on the
input and treat a named entity as a single token be-
fore the input passes through the summarizer. This
will avoid their fragmentation in the output.

The main contributions of this paper are:

1. We propose a mechanism to combine named
entity recognition with pointer-generator net-
works having coverage mechanism to auto-
matically generate research highlights, given
the abstract of a research paper. To the best of
our knowledge, this work is the first attempt
to use NER in pointer-generators with cover-
age mechanism (See et al., 2017) to generate
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research highlights.

2. We analyze the performance of generating re-
search highlights for the following different
input types: (a) the input is the abstract only,
(b) the input comprises the abstract and the
conclusion, (c) the input comprises the intro-
duction and the conclusion.

3. We evaluate the performance of the models
using ROUGE (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), and BERTScore (Zhang
et al., 2020b) metrics.

2 Literature survey

Early works on summarization of scientific articles
include (Kupiec et al., 1995) where an extractive
summarization technique is proposed and evalu-
ated on a small dataset of 188 scientific documents,
and (Teufel and Moens, 2002) which exploits the
rhetorical status of assertions to summarize scien-
tific articles. More recently, Lloret et al. (Lloret
et al., 2013) have developed a new corpus of com-
puter science papers from arXiv.org that con-
tains pairs of (Introduction, Abstract). An approach
proposed to generate abstracts from a research pa-
per using Multiple Timescale model of the Gated
Recurrent Unit (MTGRU) may be found in (Kim
et al., 2016). Surveys on summarization of schol-
arly documents appears in (Altmami and Menai,
2020), (El-Kassas et al., 2021). Generating re-
search highlights from scientific articles is not the
same as document summarization. A supervised
machine learning approach is proposed in (Collins
et al., 2017) to identify relevant highlights from the
full-text of a paper using a binary classifier. They
have also contributed a new benchmark dataset
containing author written research highlights for
more than 10,000 documents. All documents ad-
here to a consistent discourse structure. Instead of
a simple binary classification of sentences as high-
lights or not, (Cagliero and La Quatra, 2020) used
multivariate regression methods to select the top-
K most relevant sentences as research highlights.
(Hassel, 2003) proposed a method to use appro-
priate weight for the named entity tagger into the
SweSum summarizer for Swedish newspaper texts.
(Marek et al., 2021) proposed an extractive sum-
marization technique that determines a sentence’s
significance based on the density of named enti-
ties. (Rehman et al., 2021) used a pointer-generator
model with coverage (See et al., 2017) to gener-

ate research highlights from abstracts. The present
work, unlike the existing ones, uses NER to avoid
incorrect phrases from being generated by the de-
coder. Note that pretrained summarization models
like PEGASUS (Zhang et al., 2020a), T5 (Raffel
et al., 2019), and BART (Devlin et al., 2019) are
trained on generic texts. Fine-tuning them to a spe-
cific (e.g., scientific) domain requires large memory
and computational resources; in this context, this
paper provides a simpler alternative.

3 Methodology

We use a pointer-generator network (See et al.,
2017) as our baseline model. While the pointer-
generator model (See et al., 2017) first tokenizes a
document using Stanford CoreNLP tokenizer and
converts the tokens to word embeddings (trained
with the model), the method we propose here per-
forms NER on the input document and considers
a named entity as a single token when training the
model. We perform experiments with 4 variants:
(1) the original pointer-generator model proposed
in (See et al., 2017) (PGM), (2) pointer-generator
model integrating coverage mechanism (proposed
in (Tu et al., 2016)) (PGM + Cov), described in
the same work (See et al., 2017), (3) NER-based
pointer-generator model (NER + PGM), and (4)
NER-based pointer-generator model with coverage
mechanism (NER + PGM + Cov).

3.1 NER-based pointer-generator network
This model consists of an NER-based tokenizer
layer and a pointer-generator network. The NER-
based tokenizer layer converts the words in the
input document to a sequence of tokens, thus pre-
serving an entity name as a single token. In partic-
ular, it uses the named entity recognizer in spaCy1

However, we do not use entity types. We do not
use pretrained word embeddings as (Nallapati et al.,
2016) do; in our case token embeddings are learned
from scratch during training. Here, the main role of
NER is that instead of directly feeding the normal
tokens of the input document into the encoder, we
are passing the NER-based tokens.

4 Experimental setup

4.1 Data sets
We use the data sets published by Collins
et al. (Collins et al., 2017), which

1https://spacy.io/usage/
linguistic-features.
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Input Model Name ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

abstract
only

PGM 35.44 11.57 29.88 25.4 83.80
PGM + Cov 36.57 12.3 30.69 25.4 84.05
NER + PGM 35.88 12.78 33.21 29.14 86.02
NER + PGM + Cov 38.13 13.68 35.11 31.03 86.3

abstract +
conclusion

PGM 29.85 8.16 25.80 19.38 83.19
PGM + Cov 31.70 8.31 26.72 20.92 83.49
NER + PGM 35.12 12.37 32.37 28.34 86.08
NER + PGM + Cov 37.48 13.26 34.95 28.97 86.64

introduction
+
conclusion

PGM 29.78 7.47 25.15 19.25 83.05
PGM + Cov 31.63 7.65 26.25 20.24 83.32
NER + PGM 31.74 9.18 29.44 23.82 85.78
NER + PGM + Cov 34.24 9.82 31.92 25.36 86.1

Table 1: Evaluation of pointer-generator type models: F1-scores for ROUGE, METEOR and BERTScore on various
inputs from CSPubSumm dataset. All our ROUGE scores have a 95% confidence interval of at most ± 0.25 as
reported by the official ROUGE script.

contains URLs of 10147 computer sci-
ence publications from ScienceDirect
(https://www.sciencedirect.com/).
Title, abstract, author-written research highlights,
a list of keywords referenced by the authors,
introduction, related work, experiment, conclusion,
and other important subsections as found in typical
research papers are all included for each document.
In our setup, every example in this data set is
organised as follows: (abstract, author-written
research highlights, introduction, and conclusion).
We use 8116 examples for training, 1017 examples
for validation, and 1014 examples for testing.

4.2 Data processing

We have removed digits, punctuation, and special
characters from the documents and lowercased
the entire corpus. The retokenizer.merge
method of spaCy is used to tokenize and merge
several tokens into one single token based on the
named entities in the document. Instead of indi-
vidual tokens of “artificial", “neural", and “net-
work", we pass all the three tokens together as
a single token “artificial neural network" (refer-
enced as vocab index 17). The data set is then
reorganized in several ways to conduct various ex-
periments. We organize the data set as (abstract,
author-written research highlights), (abstract +
conclusion, author-written research highlights),
and (introduction + conclusion, author-written re-
search highlights) where ‘+’ denotes text concate-
nation. Since abstract and introduction usually em-
phasize the same aspects of the paper, we have not
included them together. In this data set, the average
abstract length is 186 tokens, while the average

author-written-highlight length is 52 tokens. When
we considered abstract and conclusion, the average
length was 643. When we considered introduc-
tion and conclusion, the average length was 1234.
Therefore in our model, we have set the maximum
number of input tokens to 400 when the abstract
is taken as the input. For all other cases, the max-
imum count of input tokens is set to 1500. In all
cases, the generated research highlights have a max-
imum token count of 100. We trained all models
on Tesla V100-SXM2-16GB Colab Pro+ that
supports GPU-based training. For all models, we
used two bidirectional LSTMs with cell size of 256,
word embeddings of dimension 128, and maximum
vocabulary size of 50K tokens. We considered gra-
dient clipping with a maximum gradient norm of
1.2. We use other hyperparameters as suggested by
(See et al., 2017).

4.3 Comparison with previous works
Table 2 compares the performance of our proposed
approach (NER + PGM + Cov) with other competi-
tive baselines in the literature, on the CSPubSumm
data set in terms of the ROUGE-L F1-score.

Model Name ROUGE-
L (F1)

LSTM (Collins et al., 2017) 29.50
GBR (Cagliero and La Quatra, 2020) 31.60
PGM + Cov + GloVe (Rehman et al.,
2021)

29.14

NER + PGM + Cov (ours) 35.11

Table 2: Comparison of ROUGE-L (F1-score) of the
proposed model with that of the other approaches.
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Author-written research highlights: This paper studies an image collection planning problem for a korean satellite kompsat
2( korea multi purpose satellite 2). We present a binary integer programming model for this problem in a multi orbit long
term planning environment. A heuristic solution approach based on the lagrangian relaxation and subgradient methods is
provided.
PGM: Image collection with 2 korea 2 image acquisition [UNK] of segment square lengths as well as well as

collection relaxation . Integer programming model exploiting lagrangian relaxation. Results of our computational experi-
ment based on the lagrangian relaxation and subgradient methods.
PGM + Cov: Image collection planning problem with a multi orbit multi purpose satellite 2
korea multi purpose. A binary integer programming model for a multi orbit long term plan-
ning. A heuristic solution approach based on the lagrangian relaxation and subgradient methods.
A heuristic solution approach based on the lagrangian relaxation and subgradient methods .

NER + PGM: We present a binary integer programming model for this image collection planning problem for
a korean satellite kompsat. We present a binary integer programming model for this problem in a multi or-
bit long term planning environment. Combining the lagrangian relaxation and subgradient methods using the
lagrangian relaxation and subgradient methods to solve the top problem.

NER + PGM + Cov: We present an image collection planning problem for a korean satellite kompsat. We present a
binary integer programming model for image collection planning. We show the heuristic approach based on the lagrangian
relaxation. We present the results on a multi orbit long term planning environment.

Figure 1: Input is only an abstract from CSPubSumm data set. Highlights produced by
each of the four models are shown. Input and author-written research highlights taken
https://www.sciencedirect.com/science/article/pii/S037722171300307X

5 Results

5.1 Comparison of pointer-generator type
models

In this sub-section, we report the results of ex-
periments on the CSPubSumm data set for vari-
ous input types. Table 1 shows the F1-scores for
ROUGE-1, ROUGE-2, ROUGE-L, METEOR and
BERTScore metrics for various inputs from the test
dataset. Among the four models, the NER-based
pointer-generator network with coverage mecha-
nism achieves the highest ROUGE, METEOR and
BERTScore values. It appears that treating an en-
tity as a single token in the input helps to learn
better embeddings and results in more controlled
generation of the output, thereby reducing semanti-
cally invalid words and phrases. We aim to investi-
gate this aspect in future. The (NER + PGM + Cov)
model achieves the highest scores when the input
is the abstract, indicating that most of the findings
reported by the research highlights are already in
the abstract, and adding additional sections to the
input contributes to noise for the model.

5.2 Case study

Figure 1, 2 and 3 shows sample outputs gener-
ated by our models for various input types. In
all the case studies reported below, we highlight
examples of factual errors , repeating words and

correct named entities . Note that the NER-based
models correctly generate the named entities in the
output.

5.3 Manual evaluation
We selected a set of 25 papers, their author-written
highlights (A) and their highlights from only the
(NER + PGM + Cov) model (M). We recruited
16 human annotators (possessing or pursuing ad-
vanced degrees in software engineering at premier
universities in India) to independently rate a given
summary on a scale of 1(low) to 5(high) for ad-
equacy and fluency (separately). Each rater was
given the full text of a paper and either the author-
written or the machine-generated highlights of the
paper, but not told which one. Each summary was
rated independently by two raters. On fluency, the
average score for A was 4.02 and that for M was
3.3, while on adequacy, the average score for A
was 3.82 and that for M was 3.12. This shows
the machine-generated highlights are only slightly
worse than the human-written ones.

6 Conclusion

We applied four different deep neural models to
generate research highlights from a research paper.
The NER-based pointer-generator model with cov-
erage mechanism achieved the best performance
in all cases. In future, we intend to investigate in
detail why NER improves the generated highlights.
We also aim to ensure that the generated highlights
are correct in syntax and semantics.
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Author-written research highlights: We present a lightweight non parametric approach to generate
wrinkles for 3d facial modeling and animation. Our method represents a convenient approach for
generating plausible facial wrinkles with low cost. Our method enables the reconstruction of captured
expressions with wrinkles in real time.
PGM: We propose a non parametric facial modeling 3d face models from the 3d facial modeling .
Synthesize the 3d face expression model with 3d depth camera is considered. Propose a non parametric
face method to evaluate the performance of the 3d facial modeling . Method is provided to evaluate

the performance of the proposed approach with respect to the existing method.
PGM + Cov: We propose non parametric face acquisition 3d facial modeling models. Face expression
model is based on the texture synthesis of multiple subjects. Synthesis method guarantees to 3d face
face acquisition. One high quality 3d face model is studied.

NER + PGM: A novel synthesis method is proposed to enhance the wrinkles using a single low cost
kinect camera. The lightweight feature of the method is that it can generate plausible wrinkles using a
single low cost kinect camera and one high quality 3d face model with details as the example. User
specific expressions are used as blendshapes to capture facial animations in real time kinect camera
and one high quality 3d face model with details.
NER + PGM + Cov: We present a lightweight non parametric method to generate wrinkles for 3d
facial modeling and animation. The lightweight feature of the method is that it can generate plausible
wrinkles. Our method is low cost and convenient for common users.

Figure 2: Input is (abstract + conclusion) from CSPubSumm data set. Highlights produced
by each of the four models are shown. Input and author-written research highlights taken
https://www.sciencedirect.com/science/article/pii/S0010448514001857

Author-written research highlights: We propose a novel parallel 3d delaunay meshing algorithm
for large scale simulations. The model information is kept during parallel triangulation process. A 3d
local non delaunay mesh repair algorithm is proposed. The meshing results can be very approaching to
the model boundary. The method can achieve high parallel performance and perfect scalability.
PGM: We propose a solid model boundary preserving method for large scale parallel 3d delaunay
meshing. Parallel 3d local mesh 3d delaunay meshing algorithm is proposed. Mesh reconstruction
is iteratively performed to meet both the mesh and the shared interfaces . Propose a parallel 3d local
mesh reconstruction algorithm to construct delaunay triangulation . Results show high performance
and perfect scalability.
PGM + Cov: A new semantic parallel algorithm is proposed for large scale parallel 3d delaunay mesh-
ing. Numerical local mesh is the sampling vertices for the problem 3d delaunay meshing. Propose

a parallel su based partitioning algorithm by solving the algorithm . Proposed algorithm is highly
parallelized to large scale sets and high quality partition walls.
NER + PGM: We propose a solid model boundary preserving method for
large scale 3d delaunay meshing. The 3d boundary representation model in-
formation is kept during the entire parallel 3d delaunay triangulation process.
The 3d boundary representation model information is kept during the entire parallel 3d delaunay

triangulation process . A parallel 3d local mesh optimization algorithm is presented. Experimental
results demonstrate high performance and perfect scalability.
NER + PGM + Cov: We propose a solid model boundary preserving method for large scale parallel
delaunay meshing. The 3d boundary representation model information is during the entire parallel
3d delaunay triangulation process. A parallel local mesh refinement algorithm to repair the non
delaunay mesh is proposed. A parallel 3d delaunay mesh refinement is presented. Experimental results
demonstrate scalability performance.

Figure 3: Input is (introduction + conclusion) from CSPubSumm data set. Highlights pro-
duced by each of the four models are shown. Input and author-written research highlights taken
https://www.sciencedirect.com/science/article/pii/S0010448514001821
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Jan Pichl, and Jan Šedivỳ. 2021. Text summarization
of Czech news articles using named entities. arXiv
preprint arXiv:2104.10454.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing
Xiang, et al. 2016. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv
preprint arXiv:1602.06023.

Dragomir Radev, Eduard Hovy, and Kathleen McKe-
own. 2002. Introduction to the special issue on sum-
marization. Computational Linguistics, 28(4):399–
408.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Tohida Rehman, Debarshi Kumar Sanyal, Samiran Chat-
topadhyay, Plaban Kumar Bhowmick, and Partha Pra-
tim Das. 2021. Automatic generation of research
highlights from scientific abstracts. In EEKE@
JCDL, pages 69–70.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

A. See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Simone Teufel and Marc Moens. 2002. Articles sum-
marizing scientific articles: Experiments with rele-
vance and rhetorical status. Computational Linguis-
tics, 28(4):409–445.

168



Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, pages 76–85.

Richard Van Noorden. 2014. Global scientific output
doubles every nine years. Nature News blog.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020a. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the International Conference on Machine
Learning (ICLR), pages 11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2020b. BERTScore: Eval-
uating text generation with BERT. In International
Conference on Learning Representations.

169



Proceedings of the Third Workshop on Scholarly Document Processing, pages 170–174
October 12–17, 2022.

Citation Sentence Generation Leveraging the Content of Cited Papers

Akito Arita
Osaka Institute of Technology

m21a02@oit.ac.jp

Hiroaki Sugiyama
NTT Communication Science Laboratories

h.sugi@ieee.org

Kohji Dohsaka,Rikuto Tanaka
Akita Prefectural University

{dohsaka,B20P025}@akita-pu.ac.jp

Hirotoshi Taira
Osaka Institute of Technology

hirotoshi.taira@oit.ac.jp

Abstract

We address automatic citation sentence gen-
eration, which reduces the burden on writ-
ing scientific papers. For highly accurate ci-
tation senetence generation, appropriate lan-
guage must be learned using information such
as the relationship between the cited source
and the cited paper as well as the context in
which the paper cited. Although the abstracts
of papers have been used for the generation
in the past, they often contain extra informa-
tion in the citation sentence, which might neg-
atively impact the generation of citation sen-
tences. Therefore, this study attempts to learn
a highly accurate citation sentence generation
model using sentences from cited articles that
resemble the previous sentence to the cited
location, thereby utilizing information that is
more useful for citation sentence generation.

1 Introduction

In recent years, the use of such preprint servers
as arXiv (McKiernan, 2000) has increased the
amount of scientific literature. With this, we need
a lot of citations to write a new paper and writ-
ing the related work section has become time-
consuming. The development of automatic ci-
tation sentence generation system can support
the writing of papers and relieve scientific re-
searcher’s burden on tracking and editing cita-
tions (Wu et al., 2021; Narimatsu et al., 2021).
There have been several studies on citation sen-
tence generation. Hoang and Kan (2010) con-
structed a keyword-based tree from the cited pa-
pers and utilized to generate citation sentences.
Xing et al. (2020) used a multi-source pointer-
generator network with cross attention mechanism
to generate a single citation sentence for a sin-
gle citation. Wu et al. (2021) used the Fution-in-
Decoder (FiD) model (Izacard and Grave, 2021) to
generate citation sentences for citing multiple pa-
pers, which is commonplace in real papers. They

also consider differences in citation intent (Cohan
et al., 2019). There are many different relation-
ships between citing paper and the cited papers.
The expression of the citation depends on what the
intent of the citation is.

Citation intent such as background information,
methods, and comparison of results which is im-
portant to improve the quality of citation sentence
generation.

Citation sentence generation methods, that have
been proposed in recent years, often use deep
learning, which has the limitation of word se-
quence size. For that reason, most previous works
have used abstracts of the citing and cited papers
(Xing et al., 2020; Ge et al., 2021; Wu et al., 2021),
that are relatively short to the entire paper, to rec-
ognize the relationship between them and generate
the citation sentence.

A single sentence in the abstract is compact in
length and merely expresses an overview of the
characteristics of the study. However, citation sen-
tences are often sentences that describe in detail
the differences in characteristics between the cit-
ing and cited papers. The information in the sen-
tences in the abstracts tends to be rather coarse to
generate a description of those relationships, and
this is one of the reasons for the lower quality of
citation sentence generation.

On the other hand, in the task of generating sen-
tences describing the relationship between two pa-
pers, which is different from citation sentence gen-
eration, Luu et al. (2021) used sentences in the in-
troduction, rather than in the abstract of the paper,
to generate high-quality, sentences describing the
relationship between the two papers.

Inspired by this work, we propose a method to
use all the sentences in the cited and citing papers.
In order to reduce the input size to the neural net-
work, our method retrieves and uses useful sen-
tences for generating citation sentences from all
the sentences in the cited paper with reference to
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Figure 1: Overview of our method

the contents of the citing paper. The mehod finds a
sentence from the cited paper, semantically similar
to the previous sentence of the citation sentence to
be generated, and uses it as input for generating it.
Experiments with an evaluation dataset show that
the method improves accuracy by about 2 points in
ROUGE evaluation, compared to the method that
uses only abstracts as input to generate citations.

2 Proposed Method

Citation generation is the task of generating the
citation sentence to describe a cited paper under
the context in a citing paper.

Figure 1 illustrates an overview of our proposed
method. In the training phase, the mehod con-
sists of three steps: a) preparing the full text of the
cited papers contained in the citation sentences in
the training data; b) extracting semantically sim-
ilar sentences to each citation sentence from the
cited papers using cosine similarity; c) learning to
generate citation sentence from the semantically
similar sentences.

In the prediction phase, the mehod consists of
three steps: a) preparing the full text of the cited
papers contained in the quoted sentences in the test
data; d) extracting sentences from the cited papers
that are semantically similar to the previous sen-
tence in the target citation using cosine similarity;
c) learning to generate citations from semantically

similar sentences.
The major difference between training and pre-

diction is in steps b) and d). In step b) of training
phase, the system extracts sentences from the cited
papers, that are similar to the citation sentence and
useful for generating the citation sentence.

On the other hand, in step d) of prediction
phase, the system extracts the two sentences im-
mediately before the citation sentence, because we
cannot use the citation sentence, which is the sen-
tence itself to generate and does not exist in the
phase.

To utilize the all sentences of a cited paper,
excluding its abstract, the text is divided into
sentences using NLTK (Loper and Bird, 2002),
and we calculated the embedded representation of
each sentence using SentenceBERT (Reimers and
Gurevych, 2019).

In the step c), we performe fine-tuning a pre-
trained model for generating citation sentences.
We used T5 (Raffel et al., 2020) as a pre-trained
model.

3 Experiments

We observed changes in the accuracy of the gen-
erated citation sentences by combining the cita-
tion intent, the citing paper’s abstract, the citation
context, the cited paper’s abstract, and the cited
paper’s content. Then we investigated which in-
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Table 1: Experimental results for each combination of inputs

Model Citing Citing Cited Cited Citation ROUGE-1 ROUGE-2 ROUGE-L
abstract context abstract content Intent

A 3 3 3 20.87 2.60 15.40
B 3 3 3 21.02 2.54 14.30
C 3 3 3 19.44 2.14 14.11
D 3 3 3 22.08 3.43 16.52

formation contributes to the generation of citation
sentences.

3.1 Experimental Data

We used the citation sentence generation dataset
created by Xing et al. (2020) for the evaluation
data. It is based on the ACL Anthology Network
(AAN) corpus (Radev et al., 2013), which con-
sists of 21,121 papers in computational linguistics
and contains citation relationship information for
them. The dataset is based on the assignment of
pseudo-labels for all of the citations in the AAN
corpus, using a model trained by 1,000 manually
labeled sentences. The training data consisted of
85,652 sentences, and the test data consisted of
400 sentences. However, since we found that some
of the test data were also included in the training
data, we removed 103 duplicated sentences from
the training data.

3.2 Experimental Settings

The input available size for the deep neural net-
work was limited, and we could not use all sen-
tences in the cited paper for learning to generate
the citation setence. Therefore, we used the top
six sentences in the cited paper, with a cosine sim-
ilarity of 0.6 or more. If the number of sentences
more than the threshold was less than three, we
used the top three sentences. These extracted sim-
ilar sentences, which were to be used as the cited
paper’s content,were concatenated for both train-
ing and prediction.

We used the following citation intent categories
defined by Cohan et al. (2019): “Background in-
formation,” “Method” and “Result comparison.”
Since “Result comparison” is divided into two la-
bels, “supportive” and “not supportive,” we have a
total of four labels. These four citation intent cate-
gories were automatically assigned to the citation
sentence by the Cohan et al. (2019) model.

We assigned a prefix token to the beginning of

the text so that the citation generation model could
recognize the type of data given during training.
The citation intent was assigned a prefix token
such as “cit_intent:”.

In our experiments, we used T5-base (Raffel
et al., 2020) as a pre-trained model for generating
citation sentences and performed fine-tuning. We
used ROUGE-1, ROUGE-2, and ROUGE-L (Lin,
2004), to calculate the abstract evaluation score.

3.3 Experimental Results

We combined the input data and show the result-
ing accuracy of our experiments in Table 1. We
compared the two types of methods to test whether
the abstracts of cited papers or their content con-
tributed to accuracy and confirmed that the cited
content only improved accuracy when combined
with the citation content.

First, we compared A and B in Figure 1. A
and B use the abstract as the information on the
cited paper side, and A uses abstract as the infor-
mation on the cited paper side, while B uses con-
tent. Compared to A , B is 0.15 points higher in
the ROUGE-1 evaluation, and 0.06 points and 1.1
points lower in the ROUGE-2 and ROUGE-L eval-
uations. Second, we compared C and D in Figure
1. C and D use the citing context as the informa-
tion on the citing paper side, and C uses abstract
as the information on the cited paper side, while
D uses content. Compared to C, D showed that
ROUGE-1, ROUGE-2, and ROUGE-L improved
by 2.64, 1.29, and 2.41 points,when the cited con-
tent was used. These results confirm that cited
content alone is not particularly meaningful, and
that accuracy can only be improved by using the
citing and cited content.

Next, examples of the citation sentence genera-
tion results using the proposed method and a base-
line method using abstracts as input, are shown in
Table 2.

Our proposed method is expected to extract sen-
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Table 2: Example of citation sentence generation using the proposed method

Citation intent : Background
Previous sentences to citation sentence (citation context) :
For example, whereas the first sentence of a news paper might be an effective abstract of its contents.
Of course ... identify what genre or genres a text belongs to.
Sentences in cited paper (three of sentences most similar to the citation context):
(1st) The genre of a text can also be very important
(2nd) Genres in terms of author/speaker purpose, while text types classify texts
(3rd) Which form the basis for assigning a given text to a certain genre are reflected…
Target (ground truth):
Fortunately, there is a growing body of work on genre based text classification, including.

Baseline method’s output (input both abstracts):
The resulting results are based on the results of #REFR, which is a German equivalent of the Brown
corpus.

Proposed method’s output (using cited paper content):
This is a problem that has been explored in previous work on genre of text categorisation.

tences that are semantically similar to the citation
context in the cited paper’s content. In the ac-
tual example, some similar words appear: “text,”
“genre,” “belongings,” and “assigning,” indicat-
ing that keywords that are basically common to a
topic.

Next we discuss a case where the most accu-
rate citation context and the cited paper’s con-
tent are used as input, based on the generation re-
sults. The proposed method’s generation results
show that words are generated that are synony-
mous with the common words discussed earlier:
“genre,” “text,” and “categorisation.” Words that
are synonymous with “genre,” “text,” and “classi-
fication” were also generated in the actual citation
sentence. The above results confirm that the char-
acteristic keywords overlap. This suggests that the
reason for the large increase in accuracy when the
citation context and the cited paper’s content are
input as a set is that the keywords appear multi-
ple times in both the citation context and the cited
paper’s content.

Next we analysed the training data by examin-
ing the proportion of words that overlap with the
citations in each set of paper abstracts, citation
contexts, and the cited paper’s content. The re-
sults showed that the proportion of words overlap-
ping with citations is 24% in the abstracts and 30%
for the citation contexts and the cited papers’s con-
tent. This is 6 points increase indicates that unnec-

essary information is more likely to be included in
the generation of citations than in abstracts.

Finally, we discuss the generation results of
our proposed method when the citation context
and the cited paper’s content are entered as a set,
and when the baseline paper abstracts are entered.
The baseline generation results are quite differ-
ent compared to the actual citations that we used,
because a paper’s abstract summarizes an entire
paper. Hence it is unclear which sentences of a
given text should be focused on to generate cita-
tions. This situation resembles the results analysed
above, which show that citations are more likely to
contain unnecessary information.

4 Conclusion

We performed the task of generating an appro-
priate citation sentence from a citing paper, cited
papers, and the citation context. While citation
sentence generation in previous studies has been
based on sentences in abstracts, we proposed cita-
tion sentence generation based on sentences in the
citing paper and the cited papers. Experimental re-
sults show that our proposed method is more accu-
rate in generating citation sentences than the con-
ventional method of using sentences in abstracts.
In the future, we will evaluate using people or
other methods than ROUGE and larger citation
datasets.
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Abstract

We provide an overview of the MSLR2022
shared task on multi-document summarization
for literature reviews.1 The shared task was
hosted at the Third Scholarly Document Pro-
cessing (SDP) Workshop at COLING 2022.
For this task, we provided data consisting of
gold summaries extracted from review papers
along with the groups of input abstracts that
were synthesized into these summaries, split
into two summarization subtasks. In total, six
teams participated, making 10 public submis-
sions, 6 to the Cochrane subtask and 4 to the
MSˆ2 subtask. The top scoring systems re-
ported over 2 points ROUGE-L improvement
on the Cochrane subtask, though performance
improvements are not consistently reported
across all automated evaluation metrics; quali-
tative examination of the results also suggests
the inadequacy of current evaluation metrics
for capturing factuality and consistency on this
task. Significant work is needed to improve
system performance, and more importantly, to
develop better methods for automatically eval-
uating performance on this task.

1 Introduction

Systematic literature reviews aim to comprehen-
sively summarize evidence from all available stud-
ies relevant to a research question. In medicine,
such reviews constitute the highest quality evidence
used to inform clinical care. Reviews are expen-
sive to produce manually, taking teams of experts
months to years to complete, and go out of date
quickly (Shojania et al., 2007); (semi-)automation
may facilitate faster evidence synthesis without
sacrificing rigor. Toward this end, we initiated the
MSLR2022 shared task to investigate challenges in
multi-document summarization and synthesis for
medical literature review. In addition to soliciting
direct submissions towards the task, we encouraged
work extending our task/datasets, e.g., proposing

1https://github.com/allenai/mslr-shared-task

scaffolding tasks, methods for model interpretabil-
ity, and improved automated evaluation methods.

We organized the task into two subtasks based on
two datasets we provided: MSˆ2 (DeYoung et al.,
2021) and Cochrane (Wallace et al., 2020). We
received submissions and/or system reports from
six participating groups. A selection of generated
summaries from the final submissions will be sam-
pled and subject to human annotation for quality
and consistency against the gold summaries. The
human annotations produced following the shared
task will be released as a public dataset to encour-
age further work on this task and its associated
automated evaluation metrics. In the rest of this
overview, we provide descriptions of the shared
task (Section 2), the baseline models (Section 3),
submitted systems (Section 4), and a summary of
insights and directions for future work (Section 5).

2 Task description

We give a brief description of the datasets, task,
evaluation metrics, and submission protocol for the
shared task.

Datasets We provided two datasets for model it-
eration and evaluation. The MSˆ2 dataset consists
of 20k reviews (comprising 470K studies) from
the literature to study the task of generating review
summaries (DeYoung et al., 2021). Reviews and
studies for MSˆ2 were collected from PubMed. In-
put studies were filtered from cited articles using
keyword heuristics and a SciBERT-based suitabil-
ity classifier trained on human annotations, and the
target summary was extracted from the review ab-
stract using a SciBERT-based sequential sentence
classifier trained on manually-labeled sentences
from over 200 abstracts (see DeYoung et al. (2021)
for details). Target summaries in the test set were
manually reviewed and corrected. In addition to
the abstracts of input studies and summaries, MSˆ2
extracts a background section from each review as
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context for the research question.
The Cochrane dataset consists of 4.6K reviews

from the Cochrane Library (Wallace et al., 2020).2

The target summaries are the Authors’ Conclusions
sections of the review abstracts. The Cochrane
dataset is smaller and more consistent than the
MSˆ2 dataset since all Cochrane reviews follow
a similar process. For more information on dataset
construction, please refer to the original dataset pa-
pers (DeYoung et al., 2021; Wallace et al., 2020).

Task Given the abstracts of input studies per-
taining to a research question (and in the case
of MSˆ2, a background section describing that re-
search question), the task is to produce a summary
that synthesizes the information from the input
studies. The synthesis of information typically re-
sults in an evidence “direction,” e.g., the evidence
overall suggests that the intervention studied in-
creases/decreases/does not change the outcome
measure for the studied population (DeYoung et al.,
2020). The direction of the evidence indicated in a
good generated summary should agree with that in
the reference (gold) summary.

Evaluation We perform automated evaluation us-
ing ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2020), and the evidence inference (Lehman et al.,
2019) divergence metric defined in Wallace et al.
(2020) and modified by DeYoung et al. (2021). For
ROUGE, we report ROUGE-1, ROUGE-2, and
ROUGE-L. For the evidence inference-based met-
ric, we report the average divergence (∆EI Avg)
and the Macro-F1 (∆EI F1) computed using a
model trained on the dataset provided by DeYoung
et al. (2020).

For human evaluation, we developed and iterated
on an annotation protocol based on the analysis
conducted by Otmakhova et al. (2022b). For each
annotation task, annotators are shown a gold sum-
mary and a generated summary and asked to assess
the latter for (i) fluency and (ii) agreement with
the gold summary in terms of the “PICO” element
alignment,3 evidence inference directional agree-
ment, and alignment regarding the strength of the
claims made in summaries. We will provide further
details on human annotation results following the
shared task meeting.

2Cochrane is an international non-profit dedicated to using
evidence to inform decision-making.

3A framework describing question important to evidence-
based medicine. PICO stands for Population/Problem, Inter-
vention, Comparator, and Outcome.

Submissions Leaderboards for submissions are
provided for the two subtasks: MSˆ24 and
Cochrane.5 Submissions to the leaderboard are
judged against the gold summaries in the test splits
using the automated metrics described previously.

3 Baselines

We provide several baseline models for comparison.
Baseline models from DeYoung et al. (2021) are
based on the BART (Lewis et al., 2020) and Long-
former (Beltagy et al., 2020) architectures. For
both subtasks, we report results of the two baseline
models finetuned on the subtask dataset and evalu-
ated on the corresponding subtask test set, as well
as on the opposing test set (e.g. trained on MSˆ2
and tested on Cochrane and vice versa).

For MSˆ2, we also evaluate the condition of sim-
ply providing the background section as the gen-
erated summary. This baseline performs relatively
well, indicating potential limitations of the cho-
sen automated evaluated metrics as alluded to in
Otmakhova et al. (2022b).

4 Participating systems

We provide brief descriptions of all participating
systems. System performance as assessed using
automated evaluation metrics are given in Table 1.

ITTC (Otmakhova et al., 2022a) The team
adapted PRIMERA (Xiao et al., 2022), a model
based on Longformer Encoder-Decoder (Beltagy
et al., 2020) that has been designed for multi-
document summarization, resulting in strong per-
formance on the MSLR Cochrane subtask. In ad-
dition to fine-tuning on the entire training sets of
the MSLR shared task, the team also experimented
with zero- and few- shot learning scenarios. The
authors found that ROUGE did not adequately cap-
ture the performance drops observed in the zero-
and 10-shot settings, where factuality of the gen-
erated summaries was poor. The team also experi-
ment with using global attention to highlight PICO
elements in the input and target texts. Though
ROUGE did not vary significantly between these
two settings, the authors found that when PICO
spans are given global attention, the resulting sum-
maries tended to be more abstractive.

LongT5-Pubmed (Yu, 2022) The author at-
tempted to finetune a LongT5 model (Guo et al.,

4https://leaderboard.allenai.org/mslr-ms2/
5https://leaderboard.allenai.org/mslr-cochrane/
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Submitted system (Cochrane) R-1↑ R-2↑ R-L↑ BERTScore↑ ∆EI-Avg↓ ∆EI-F1↓
SciSpace (Shinde et al., 2022) 0.262 0.057 0.197 0.859 0.223 0.301
ITTC-2 (Otmakhova et al., 2022a) 0.246 0.069 0.184 0.876 0.220 0.309
LED-base-16k (Giorgi et al., 2022) 0.257 0.066 0.180 0.871 0.275 0.399
ITTC-1 (Otmakhova et al., 2022a) 0.241 0.064 0.179 0.873 0.288 0.338
PuneICT (Tangsali et al., 2022) 0.247 0.055 0.173 0.859 0.271 0.379
LongT5-Pubmed (Yu, 2022) 0.113 0.015 0.090 0.786 0.467 0.287

Baselines

BART-Cochrane 0.240 0.067 0.176 0.863 0.208 0.335
Longformer-Cochrane 0.239 0.066 0.176 0.864 0.235 0.332
Longformer-MSˆ2 0.224 0.054 0.162 0.857 0.375 0.375
BART-MSˆ2 0.230 0.054 0.161 0.854 0.436 0.364

Submitted system (MSˆ2) R-1↑ R-2↑ R-L↑ BERTScore↑ ∆EI-Avg↓ ∆EI-F1↓
LED-base-16k (Giorgi et al., 2022) 0.275 0.092 0.206 0.869 0.487 0.424
PuneICT (Tangsali et al., 2022) 0.206 0.035 0.144 0.848 0.532 0.356
LongT5-Pubmed (Yu, 2022) 0.120 0.013 0.096 0.828 0.528 0.343

Baselines

Longformer-MSˆ2 0.264 0.080 0.196 0.867 0.462 0.412
BART-MSˆ2 0.263 0.077 0.195 0.864 0.451 0.414
Copying background section 0.268 0.085 0.181 0.854 0.502 0.395
BART-Cochrane 0.242 0.061 0.170 0.857 0.460 0.331
Longformer-Cochrane 0.221 0.042 0.153 0.850 0.441 0.277

Table 1: System performance for the Cochrane (above) and MSˆ2 (below) subtasks. For baseline systems, the suffix
‘-MSˆ2’ means the model is trained on the MSˆ2 training data, while ‘-Cochrane’ means the model is trained on the
Cochrane training data. Top scores among submitting systems are bolded; systems are ordered by ROUGE-L.

2022) on the MSLR datasets but found that training
was cost and resource prohibitive. The final model
submitted to the leaderboards is a LongT5 model
pretrained on the Pubmed corpus but which had
not been finetuned to the MSLR datasets.

Extract+BART-base (Obonyo et al., 2022) The
team explored how input selection strategies can
improve the performance of a BART-base mode.
The authors fined BART-base on the summarization
dataset introduced by Cohan et al. (2018). They
considered several extractive techniques to reduce
the size of the input sequence, comparing Text-
Rank, LexRank, and models for results extraction
to select salient sentences from input documents.
Their results suggest that input sampling strategies
are promising, though performance gains are incon-
sistent across the two MSLR subtasks.

PuneICT (Tangsali et al., 2022) The team exper-
imented with finetuning BART-large, DistillBART,

and T5-base for both the MSˆ2 and Cochrane sub-
tasks. On the MSˆ2 subtask, finetuned BART-large
had the highest performance of the three models
based on ROUGE score; on the Cochrane subtask,
DistillBART performed best.

SciSpace (Shinde et al., 2022) The team com-
bined a BERT-based extractive method with a Big-
Bird PEGASUS-based abstractive summarization
model (Zaheer et al., 2020), leading to strong per-
formance on the MSLR Cochrane subtask. For
the extractive step, the authors use a Lecture Sum-
marizer model to identify the most important sen-
tences from the input documents; this method en-
codes input sentences using BERT, then clusters
the contextual representations and selects the sen-
tences closest to the cluster centroids. The resulting
sentences are used as input into a BigBird PEGA-
SUS model pretrained on Pubmed, which is fine-
tuned on the MSLR training data. In analysis, the
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authors observed that a common error is duplica-
tion of statements in the generated summary. The
model submitted by the team to the Cochrane sub-
task leaderboard performs best among submissions
based on ROUGE-L, though the authors report that
the same training strategy does not lead to good
performance on the MSˆ2 subtask due to the much
longer input sequences in MSˆ2.

LED-base-16k (Giorgi et al., 2022) The team
fine-tuned Longformer Encoder-Decoder following
a similar protocol to PRIMERA (Xiao et al., 2022),
improving performance over baselines in both sub-
tasks. Their input sequence included the titles and
abstracts of up to 25 studies, separated by special
tokens. No system description was submitted.

5 Insights & future directions

Though we observe modest overall improvements
to task performance based on automated summa-
rization evaluation metrics such as ROUGE and
BERTScore, results are inconsistent across evalua-
tion metrics. This is especially the case when con-
sidering the evidence inference divergence metrics
introduced to measure and bolster inference direc-
tion alignments between generated and gold sum-
maries. Further, several participant groups discov-
ered problems with factuality, consistency, dupli-
cation, and more with generated summaries upon
qualitative examination of their results (Otmakhova
et al., 2022a; Shinde et al., 2022). Based on the
observations of submitting teams, we summarize
two key directions for future research.

Multidocument representation strategies Sev-
eral submissions explored methods for input ex-
traction and filtering to reduce the size of the in-
put sequence and increase the saliency of the in-
put texts. For both subtasks, a large portion of
input instances extend beyond even the token lim-
its of long-sequence transformer language models,
and this is especially the case for MSˆ2 (the me-
dian number of input documents for MSˆ2 is 17,
nearly twice the number for the Cochrane dataset).
Obonyo et al. (2022) explored several strategies
for sentence selection, including results extraction
models, and found promising but inconsistent per-
formance gains over a base model. Shinde et al.
(2022) employed a sentence embedding clustering
and selection approach, which led to top perfor-
mance on the Cochrane subtask when combined
with a powerful long-sequence trained summariza-

tion model. However, Shinde et al. (2022) noted
that their methods did not extend well to MSˆ2 due
to the larger number of input documents.

Extension of such methods would be a promising
future direction. Beyond salient sentence selection,
a strategy based on PICO alignment and results
extraction may be more pertinent for the specific
task. For example, one may only want to include
the results sentence from an input document if it
studies the same population and research question
described in the review. Compression-based meth-
ods yielding less computationally intensive rep-
resentations may also allow for full information
retention, enabling salience determinations at the
model-level, depending on other input studies and
the review question at hand.

Evaluation metrics that better capture sum-
mary quality Unsurprisingly, our defined au-
tomated evaluation metrics are lacking, in many
cases failing to capture summary quality issues
identified during qualitative analysis (Otmakhova
et al., 2022a; Shinde et al., 2022). Both of our
task datasets are highly compressive, e.g. the av-
erage compression ratio for the Cochrane dev set
is around 33 while that of the MSˆ2 dev set is over
100! Yet, a baseline such as copying the back-
ground section of MSˆ2 leads to fairly good perfor-
mance when assessed using (fuzzy-)token overlap
metrics such as ROUGE and BERTScore. This
indicates that the task is perhaps less about summa-
rizing and more about synthesizing relevant results,
and hence, n-gram and token similarity-based met-
rics would be insufficient for capturing content sim-
ilarity. These are similar concerns to those raised in
single-document summarization evaluation (Fabbri
et al., 2021; Deutsch et al., 2022).

We included evidence inference metrics in eval-
uation to offer a counterpoint to more traditional
metrics, yet they bring their own challenges. The
values of these metrics are not particularly compa-
rable between the two subtask datasets, nor are the
numbers easy to interpret, e.g., how much worse
is a model that scores 0.4 to 0.3 ∆EI-F1 at a sys-
tem level? Additionally, we currently perform ev-
idence inference scoring for all possible PICO tu-
ples, regardless of whether a relationship occurs
between members of each tuple, which can lead to
degradation in performance (where most tuples are
classified as “no effect,” washing out actual differ-
ences between documents; see discussion in De-
Young et al. 2021). Improvements on PICO tuple
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detection and alignment between documents could
dramatically improve the value of evidence infer-
ence for MSLR evaluation. In addition to evidence
inference-based metrics, we anticipate investigat-
ing how entailment or question-answering-based
evaluation metrics for single-document summariza-
tion evaluation (Pagnoni et al., 2021) could be ex-
tended into the multi-document space for this task
(and how well existing approaches fare on this spe-
cialized data and task).

Further data is needed to iterate upon model-
based evaluation metrics. Towards this, we intend
to collect and release a dataset of human annota-
tions of summary quality for a sample of genera-
tions submitted to this shared task, as described
in Section 2: Evaluation. Initial results will be
presented at the SDP 2022 workshop.

6 Conclusion

The MSLR2022 shared task initiated further in-
vestigation into the challenging task of automat-
ically synthesizing study results into a literature
review summary. The task received submissions
from six teams, leading to modest improvements
on task performance and significant insights into
the remaining challenges for this task. A primary
challenge involves the insufficiency of automated
evaluation metrics for assessing performance im-
provements on this task, towards which we intend
to provide new datasets and methods to support and
incentivize further research on this problem.
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Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

John Giorgi et al. 2022. MSLR leaderboard: led-base-
16384-ms2. https://leaderboard.allenai.org/mslr-
ms2/submission/ccfknkbml1mljnftf7d0. Accessed:
2022-09-15.

Mandy Guo, Joshua Ainslie, David C. Uthus, Santi-
ago Ontañón, Jianmo Ni, Yun-Hsuan Sung, and Yin-
fei Yang. 2022. Longt5: Efficient text-to-text trans-
former for long sequences. In NAACL-HLT.

Eric Lehman, Jay DeYoung, Regina Barzilay, and By-
ron C Wallace. 2019. Inferring which medical treat-
ments work from reports of clinical trials. arXiv
preprint arXiv:1904.01606.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ishmael Obonyo, Silvia Casola, and Horacio Saggion.
2022. Exploring the limits of a base BART for multi-
document summarization in the medical domain. In
Proceedings of the Third Workshop on Scholarly Doc-
ument Processing, Gyeongju, Republic of Korea. As-
sociation for Computational Linguistics.

179



Yulia Otmakhova, Hung Thinh Truong, Timothy Bald-
win, Trevor Cohn, Karin Verspoor, and Jey Han Lau.
2022a. LED down the rabbit hole: exploring the
potential of global attention for biomedical multi-
document summarisation. In Proceedings of the
Third Workshop on Scholarly Document Processing,
Gyeongju, Republic of Korea. Association for Com-
putational Linguistics.

Yulia Otmakhova, Karin Verspoor, Timothy Baldwin,
and Jey Han Lau. 2022b. The patient is more dead
than alive: exploring the current state of the multi-
document summarisation of the biomedical literature.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5098–5111, Dublin, Ireland.
Association for Computational Linguistics.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia
Tsvetkov. 2021. Understanding factuality in abstrac-
tive summarization with frank: A benchmark for
factuality metrics. arXiv preprint arXiv:2104.13346.

Kartik Shinde, Trinita Roy, and Tirthankar Ghosal.
2022. An extractive-abstractive approach for multi-
document summarization of scientific articles for lit-
erature review. In Proceedings of the Third Work-
shop on Scholarly Document Processing, Gyeongju,
Republic of Korea. Association for Computational
Linguistics.

Kaveh G Shojania, Margaret Sampson, Mohammed T
Ansari, Jun Ji, Steve Doucette, and David Moher.
2007. How quickly do systematic reviews go out
of date? a survival analysis. Annals of internal
medicine, 147(4):224–233.

Rahul Tangsali, Aditya Vyawahare, Aditya Mandke,
Onkar Litake, and Dipali Kadam. 2022. Abstrac-
tive approaches to multidocument summarization of
medical literature reviews. In Proceedings of the
Third Workshop on Scholarly Document Processing,
Gyeongju, Republic of Korea. Association for Com-
putational Linguistics.

Byron C. Wallace, Sayantani Saha, Frank Soboczenski,
and Iain James Marshall. 2020. Generating (factual?)
narrative summaries of RCTs: Experiments with neu-
ral multi-document summarization. In AMIA Annual
Symposium.

Wen Xiao, Iz Beltagy, Giuseppe Carenini, and Arman
Cohan. 2022. PRIMERA: Pyramid-based masked
sentence pre-training for multi-document summariza-
tion. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5245–5263, Dublin,
Ireland. Association for Computational Linguistics.

Benjamin Yu. 2022. Evaluating pre-trained language
models on multi-document summarization for liter-
ature reviews. In Proceedings of the Third Work-
shop on Scholarly Document Processing, Gyeongju,
Republic of Korea. Association for Computational
Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. 2020. Big
bird: Transformers for longer sequences. ArXiv,
abs/2007.14062.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with BERT. ArXiv,
abs/1904.09675.

180



Proceedings of the Third Workshop on Scholarly Document Processing, pages 181–187
October 12–17, 2022.

LED down the rabbit hole: exploring the potential of global attention for
biomedical multi-document summarisation

Yulia Otmakhova1,∗, Hung Thinh Truong1,∗, Timothy Baldwin1,3,
Trevor Cohn1, Karin Verspoor2,1, Jey Han Lau1

1The University of Melbourne, 2RMIT University, 3MBZUAI
{yotmakhova,hungthinht}@student.unimelb.edu.au, tb@ldwin.net,

trevor.cohn@unimelb.edu.au, karin.verspoor@rmit.edu.au, jeyhan.lau@gmail.com

Abstract

In this paper we report on our submission to
the Multidocument Summarisation for Liter-
ature Review (MSLR) shared task. Specifi-
cally, we adapt PRIMERA (Xiao et al., 2022) to
the biomedical domain by placing global atten-
tion on important biomedical entities in several
ways. We analyse the outputs of the 23 result-
ing models, and report patterns in the results
related to the presence of additional global at-
tention, number of training steps, and the input
configuration.

1 Introduction

In this paper we describe our experiments and re-
sults on the Multidocument Summarisation for Lit-
erature Review (MSLR) shared task.1 In particular,
we attempt to improve on previous multi-document
summarisation models in the biomedical domain,
which have tried to integrate domain knowledge
by marking important biomedical entities (Wallace
et al., 2021; DeYoung et al., 2021). We hypothesise
that highlighting such entities by placing global at-
tention on them will enable better aggregation and
normalisation of related entities across documents,
and thus improve the factuality of the generated
summaries. To explore this idea, we experiment
with four different ways of modifying the global
attention mechanism of PRIMERA (Xiao et al.,
2022), a recent state-of-the-art model designed for
multi-document summarisation (MDS). In particu-
lar, while by default the global attention tokens in
Primera are used to separate documents in the input
and capture their relationships, we assign global
attention to important biomedical entities in input
documents to create links between them. More-
over, to examine the effect of content selection on
the quality of summaries produced by this under-
lying model, we compare results where we use the

*Equal contribution
1https://github.com/allenai/

mslr-shared-task

whole abstract as input vs. only the concluding sen-
tences (which we expect to be more informative).
We train and analyse models in zero-shot, few-shot
(10 and 100), as well as fully fine-tuned scenarios.
Overall we evaluate (using both automatic met-
rics and human evaluation) a total of 23 models,
two of which formed our official submissions to
the leaderboard.2 Both submitted models substan-
tially outperform the baseline approaches (DeY-
oung et al., 2021) in terms of automatic metrics,
and one achieves the best performance in terms
of BERTScore and ROUGE-2 among all submis-
sions. Overall, our contributions in comparison to
the previously published domain-specific models
for MDS are the following:

• We explore the potential of using global atten-
tion as a means to highlight important biomed-
ical entities, in order to improve aggregation
across input documents.

• We examine how the amount of training data
influences the quality of generated summaries,
and propose several scenarios where the per-
formance of few-shot and even zero-shot mod-
els is on par with that of fully fine-tuned ones.

• We show that in the fine-tuned scenario, the
model is able to select important content with-
out additional marking.

2 Dataset

We use the Cochrane dataset as provided in the
shared task without any additional data. See Table 5
in Appendix A for dataset statistics.

2.1 Pre-processing

As the trials are collected automatically from the
Cochrane library, they contain redundant metadata

2Additional results and code for all models is
provided at https://github.com/joey234/
PRIMER-pico-attn.
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such as hyperlinks, trial identifiers, funding in-
formation, copyright statements, and publication
records. We perform string matching using regular
expressions to remove this content. Following Wal-
lace et al. (2021), for each review, we concatenate
all corresponding documents and add a separator
token to denote the end of each document.

2.2 Entity marking

The PICO framework describes several essential
components of the central question in a clinical
trial, including Populations (e.g. diabetics), Inter-
ventions (e.g. animal insulin), Comparators (e.g.
human insulin), and Outcomes (e.g. glycaemic con-
trol) (Huang et al., 2006). We tag PICO spans
in input and target documents to make the sum-
marisation models explicitly attend to them. We
train a tagger on the EBM-NLP dataset (Nye et al.,
2018), which contains annotations for the P, I, and
O classes3 on abstracts of randomized controlled
trials. Using this dataset, we fine-tune the Bi-
oLinkBERT model (Yasunaga et al., 2022), a BERT
variant that leverages links between documents that
achieve state-of-the-art results on various biomedi-
cal NLP tasks, including the PI(C)O tagging task.
We adopt the same hyperparameters as in Yasunaga
et al. (2022) using the BioLinkBERTbase model,
and achieve 74.06 macro-F1 score on the EBM-
NLP test set, which is comparable to the reported
results in Yasunaga et al. (2022). We run the trained
PIO tagger on the Cochrane dataset for both the
documents and summaries. For simplicity, we only
use two new special tokens <ent> and </ent> to
mark the beginning and the end of each PICO span
(e.g. <ent> Magnesium sulfate </ent> does not
have a major impact on disease progression in
<ent> women with mild preeclampsia </ent>.).

Table 5 presents basic statistics of the Cochrane
dataset used in this challenge. The average number
of PIO spans in the summary and input documents
is based on the output of the trained PIO tagger.
Note that target summaries for the test set are not
provided to participants.

3 Evaluation

For the automatic evaluation, in addition to
ROUGE scores (Lin, 2004) and BERTScore4

3Comparators are grouped with Interventions in the dataset
due to the difficulty in distinguishing them.

4Hash code: roberta-large_L17_no-idf_
version=0.3.11(hug_trans=3.1.0)

(Zhang et al., 2019), we report the metrics intro-
duced in DeYoung et al. (2021), namely ∆EI which
measures the distance in predicted direction of the
conclusions (increases, decreases, or no change) in
the target and generated summaries. For this met-
ric, we report the average distance across samples
and also macro-F1 score, in which the predicted
direction for the target summary is treated as the
correct label (∆EI-F1).

To estimate quality of the generated summaries,
especially in terms of their factuality, we also per-
form human evaluation, for which we adopt the
binary decision method proposed in Otmakhova
et al. (2022). As we need to assess results from a
large number of models, we simplify the evalua-
tion, focusing only on factual errors and collapsing
the categories of modality and polarity into a single
category with five potential values (positive, neg-
ative, no effect, no evidence, no claim), similar to
how it was done by DeYoung et al. (2021). Thus,
we report if PICO elements used in the correct and
generated summaries are aligned, if the direction
of the findings is the same, and if the summaries
are factual, that is, correct in these two aspects.
In addition, to analyse common errors, we anno-
tate generations as contradictory (i.e. containing
statements with the same set of PICO elements but
different polarity), malformed (i.e. including lexi-
cal and grammatical errors or repetitions), and not
evidential (i.e. claiming that there is not enough
evidence to determine the effect of intervention).
We list some examples of contradictory, malformed
and non-evidential summaries in Appendix B.

As the vast majority of the target summaries
were multi-aspect — that is, contained statements
regarding several groups of patients, interventions
or outcomes — one of the difficulties we experi-
enced during the evaluation was comparing them
to generated summaries which were either single-
aspect or contained different sets of PICO elements.
We adopted a precision-based approach when eval-
uating such pairs of summaries: while it is not
necessary for the generated summary to contain all
PICO elements included in the target to be consid-
ered correct, it must not include any extra PICO
elements. In the case of extra PICO elements in the
generated summaries, we compared them against
the Objectives section of the review’s abstract to
determine if they were truly erroneous or if the tar-
get conclusion underreported some of the elements.
Moreover, in the case of multi-aspect summaries
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Setting Description

DocSep The global attention is only set on the
document separation token (<doc-sep>)
as in the original PRIMERA model. The
attention on <doc-sep> is used across
the board in all settings described below.

EntMarkers In addition to the <doc-sep> global at-
tention, we set global attention on tokens
which mark the beginning and end of en-
tities (i.e. <ent>, </ent>).

EntMarkersSpans In addition to the <ent> and </ent> tags,
global attention is set on the tokens be-
tween them, that is, the entities them-
selves.

EntSpans We only assign global attention to the
entity spans. The <ent> and </ent> to-
kens are replaced by the padding mask
token to mask them in inputs and thus do
not get either global or local attention.

EntOnly We additionally mask out all tokens out-
side the entity spans so they do not get
either global or local attention; thus we
only pass entities with global attention
on them to the decoder. We test this
scenario to see how well the summaries
can be recovered from only the essen-
tial entities plus information collected
by <doc-sep> tokens.

Table 1: Global attention settings

we consider direction to be correct only if it is cor-
rect for the corresponding set of PICO elements.

Thus though our evaluation approach is less de-
tailed than the one proposed in Otmakhova et al.
(2022), it is more strict in terms of alignment of
multi-aspect summaries.

4 Experiments

4.1 Model

We base our experiments on PRIMERA (Xiao et al.,
2022), which was designed for multi-document
summarisation, and experiment with zero-, 10-,
100-shot, and fine-tuning scenarios with the same
hyperparameters reported by the authors of the pa-
per. We use the same random seed for all models
to ensure consistency. For the baseline model (No
entity) we use documents and summaries without
any entity marking; all other models use documents
with entity tags.

4.2 Entity marking and global attention

PRIMERA is based on Longformer-Encoder-
Decoder (LED) (Beltagy et al., 2020), which
uses sparse attention (global attention) in addition
to fixed-sized window attention (local attention).
Here, we experiment with employing the global

attention mechanism to highlight PICO elements
and aggregate them across the documents. Specif-
ically, for the scenario with entity spans in input
and target texts, we use the five settings for global
attention listed in Table 1.

4.3 Manipulating inputs
As dealing with lengthy inputs is a well-known is-
sue for multi-document summarisation, especially
in scientific and biomedical domains, we experi-
ment with several settings to control the length of
individual input documents:

• Default: The default PRIMERA setting where
LED’s token budget of 4096 tokens is dis-
tributed evenly across all input documents and
they are truncated to the corresponding length.

• Last 3: In the biomedical domain the most
important information appears in conclusions
at the end of the paper, so we include only
the last three sentences, based on NLTK’s sen-
tence tokenizer.5

5 Results

Tables 2 and 3 report the results of automatic and
human evaluation, correspondingly.

5.1 Models with and without global attention
on entities

Though we do not see major improvements in
ROUGE scores between the model without PICO
entity marking (No entity) and the models with
global attention on PICO entities (with the excep-
tion of EntMarkers and EntSpans) and even ob-
serve some decrease in factuality scores, on closer
inspection the summaries generated by those sys-
tems prove to be qualitatively different. In partic-
ular, the No entity model is more extractive and
more extensively copies the input studies, while
the results of models with global attention on enti-
ties are more abstractive. For example, for review
CD005963 (Table 7 in Appendix C), the No entity
model copies the term Mental Health Act often
mentioned in source documents but absent in target
conclusions, while the other models do not.

Table 8 in Appendix D shows how the overlap
with source documents decreases when the entity
marking with global attention is used, thus mak-
ing the summaries more abstractive. This, how-
ever comes at a cost: we notice that the models

5https://github.com/nltk/nltk
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R-1↑ R-2↑ R-L↑ BERTScore↑ ∆EI↓ ∆EI-F1 ↓

Ze
ro Default 0.215 0.032 0.132 0.834 0.580 0.321

Last 3 0.245 0.063 0.179 0.871 0.260 0.385

10
-s

ho
t

No entity 0.229 0.037 0.147 0.857 0.269 0.328
DocSep 0.234 0.041 0.155 0.864 0.267 0.367
EntOnly 0.197 0.024 0.139 0.834 0.297 0.330
EntMarkers 0.208 0.035 0.143 0.859 0.286 0.327
EntSpans 0.235 0.036 0.155 0.854 0.307 0.295
EntMarkersSpans 0.187 0.266 0.122 0.831 0.322 0.319

10
0-

sh
ot

No entity 0.259 0.052 0.171 0.864 0.302 0.376
DocSep 0.251 0.048 0.164 0.862 0.339 0.452
EntOnly 0.237 0.038 0.157 0.851 0.308 0.389
EntMarkers 0.244 0.048 0.164 0.864 0.284 0.369
EntSpans 0.259 0.049 0.170 0.863 0.273 0.314
EntMarkersSpans 0.251 0.048 0.166 0.863 0.301 0.315

F
ul

l

No entity 0.256 0.064 0.182 0.871 0.308 0.409
DocSep 0.234 0.060 0.170 0.869 0.337 0.373
EntOnly 0.236 0.060 0.174 0.872 0.256 0.310
EntMarkers 0.244 0.066 0.179 0.874 0.246 0.312
EntSpans 0.237 0.061 0.174 0.874 0.251 0.302
EntMarkersSpans 0.230 0.059 0.168 0.873 0.244 0.321

Table 2: Results of automatic evaluation; ↑: higher is better, ↓: lower is better

PICO↑ Direction↑ Factual↑ Contradict.↓ Malformed↓ No evid.↓

Ze
ro Default 50 15 5 0 0 0

Last 3 50 50 30 0 5 70

10
-s

ho
t

No entity 25 45 10 5 30 100
DocSep 25 50 10 15 20 95
EntOnly 10 30 0 10 75 35
EntMarkers 25 50 15 0 0 70
Ent Spans 30 35 5 5 30 65
EntMarkersSpans 20 35 10 5 70 40

10
0-

sh
ot

No entity 50 50 20 5 5 60
DocSep 50 50 20 10 15 65
EntOnly 45 35 5 5 35 45
EntMarkers 50 45 30 25 25 85
EntSpans 35 40 15 20 10 100
EntMarkersSpans 60 40 25 0 0 75

F
ul

l

No entity 50 60 35 10 10 35
DocSep 50 50 25 5 10 65
EntOnly 30 40 20 0 5 85
EntMarkers 35 40 20 10 0 90
EntSpans 55 40 25 5 5 90
EntMarkersSpans 50 40 25 5 0 100

Table 3: Results of human evaluation; ↑: higher is better, ↓: lower is better. Zero denotes the zero-shot setting.

with additional global attention produce remark-
ably more no evidence summaries, and in the fully
fine-tuned scenario the number of such summaries
grows with the number of tokens on which we
place global attention. This is consistent with the
results of another model which extensively uses
global attention (DeYoung et al., 2021) which also
produces a large number of no evidence summaries
(Otmakhova et al., 2022). Another behaviour of
models with extra global attention observed both in
DeYoung et al. (2021) and here is that they generate

sequences which are representative of biomedical
text style. For example, in addition to conclusions,
the summaries generated by such models contain
generic sentences such as There is a need for more
studies of high methodological quality. Thus we
hypothesise that tokens with global attention tend
to accumulate and reproduce information common
to a large number of documents in the training set
rather than information shared by a particular set
of input documents. Finally, though we expected
the EntOnly model, which only uses only PIO enti-
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R-1↑ R-2↑ R-L↑ BERTScore↑ ∆EI↓ ∆EI-F1 ↓

D
ef

au
lt Zero-shot 0.215 0.032 0.132 0.834 0.580 0.321

10-shot 0.229 0.037 0.147 0.857 0.269 0.328
100-shot 0.259 0.052 0.171 0.864 0.302 0.376
Full 0.256 0.064 0.182 0.871 0.308 0.409

La
st

3
Zero-shot 0.245 0.063 0.179 0.871 0.260 0.385
10-shot 0.211 0.030 0.135 0.853 0.289 0.342
100-shot 0.250 0.046 0.164 0.862 0.341 0.424
Full 0.239 0.061 0.171 0.870 0.279 0.382

Table 4: Results of automatic evaluation; ↑: higher is better, ↓: lower is better

ties as inputs and thus loses information about the
relations between them, to perform much worse
than the other models, it is very similar to them
both in automatic metrics and Direction scores. We
maintain that it shows that even if the models are
able to attend to all tokens, they only reproduce
PIO entities and are not able to consistently capture
the relationships between them.

5.2 Zero-shot vs. few-shot vs. fully fine-tuned
models

We notice that in terms of automatic metrics, zero-
shot models are comparable to fine-tuned ones or
even outperform them; however they perform sub-
stantially worse in terms of factuality, especially
for the direction. We find that in zero-shot scenar-
ios, PRIMERA copies spans of text from one or
several of the input documents, focusing mostly
on their beginnings, rather than aggregates infor-
mation across documents. Thus it outputs either
conclusions copied from a single document, or,
more often, makes no claims at all by reporting the
objectives of the review or its setup.

Another interesting finding is that the ROUGE
scores tend to be the highest in the 100-shot sce-
nario and go down for the fully fine-tuned models.
We maintain that in 10-shot scenarios the mod-
els are still unable to correctly capture and repro-
duce important entities (which is also reflected in
their low accuracy in terms of PICO), while in
the fully fine-tuned models, there is a tendency to
generate broader and generic entities, for example
metal-protein attenuation compounds instead of
PBT1/PBT2 in the target summary.

Not surprisingly, the number of malformed gen-
erations decreases with increasing the number of
training samples: the majority of summaries pro-
duced by EntOnly and EntMarkersSpans after 10
shots are malformed, but even 100-shot training
significantly reduces this amount. On the other
hand, it is surprising to see that the more the mod-

els are fine-tuned the more no evidence statements
they produce, with some models generating only
such summaries in fully fine-tuned scenario.

Lastly, we find that the 100-shot EntMarkers
model is similar in terms of factuality to the fully
fine-tuned model without entity marking (No en-
tity). This is an encouraging result as high-quality
multi-document summarisation data is scarce in
biomedical domain, so few-shot learning is a prac-
tically important direction to explore.

5.3 Default vs. Last3

For few-shot and fine-tuned models we find no ma-
jor improvements in quality when restricting the
inputs to the last three sentences only (Table 4).
This shows that after fine-tuning PRIMERA is able
to detect most useful spans without relying on their
explicit marking. On the other hand, for the zero-
shot scenario, where the model tends to copy from
the beginning of input documents, the quality dra-
matically improves when we force it to extract only
from a more informative span at the end of docu-
ments. Interestingly, such an easy manipulation of
inputs allows to achieve results comparable to the
best 100-shot and fully fine-tuned models without
any training on the in-domain dataset. Again, this
is a promising direction for research considering
the scarcity of high-quality data.

6 Conclusion

We tackle the problem of biomedical multi-
document summarisation by incorporating PICO
information into a strong summarisation model,
and using global attention to enhance the represen-
tation of this information. Through automatic and
human evaluations on an extensive set of experi-
ments, we find that adding global attention to PICO
spans would help in (1) generating more abstrac-
tive summaries, and (2) improving summarization
quality in few-shot settings, which is especially
important in the biomedical domain.
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A Dataset statistics

Table 5 reports some basic statistics of the
Cochrane dataset used in this challenge. The Aver-
age number of PICO spans in the summary and the
input documents (Avg. # PICO spans) are obtained
using the trained PICO tagger. Note that target
summaries for the test set are not provided.

Train Valid. Test

# samples 3752 470 470
Avg. input length 2417 2389 2677
Avg. summary
length

68 70 n/a

Avg. # PICO spans
in input

213 209 236

Avg. # PICO spans
in summary

4 4 n/a

Table 5: Cochrane dataset statistics.

B Examples of malformed, contradictory
and non-evidential summaries

To clarify the criteria we used for evaluation, Table
6 lists some examples of contradictory, malformed
and non-evidential summaries. Malformed sum-
maries are ones containing repetitions, incomplete
text or corrupted tokens. The spans of text corre-
sponding to errors are in bold.

C Examples of generated summaries

Table 7 shows the examples of summaries gener-
ated for input documents for review CD005963.
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Error Summary

Contradiction There is insufficient evidence to support the use of edaravone as a therapy for acute ischemic
stroke. However, it may be useful for treating other types of ischemic stroke. The current review
provides a rationale basis for the use of edaravone as a therapy for acute ischemic stroke.
In the absence of evidence to support the use of PBT2 in patients with severe Alzheimer’s
disease, clinicians and patients should recommend the continued use of PBT2.

Malformed
There is inadequate evidence to evaluate the effect of percutaneous endoscopic gastrostomy on
the incidence of percutaneous wound infections. The current evidence base is limited due to the
differing methodologies employed in the trials. The current evidence base is limited due to the
differing methodologies employed in the trials. The current evidence base is limited due to the
differing methodologies employed in the trials...
We found no clear evidence to support the use of
There is limited evidence to suggest that the use of apleuapleuapleuapleuapleuapleua...

No evidence There is insufficient evidence to support the use of metal-protein-attenuating compounds for the
treatment of AD. Further trials are needed.

Table 6: Examples of contradictory, malformed and non-evidential summaries

Setting Summary

No entity ... the results suggest that advance direc-
tives may be beneficial in reducing the
number of people admitted to hospital
under the Mental Health Act.

DocSep There is insufficient evidence to support
or refute the use of advance directives
for people with mental illnesses.

EntMarkers There is insufficient evidence to support
or refute the use of advance directives
for people with severe mental illness.

EntMarkersSpans There is insufficient evidence to support
the use of advance directives for people
with severe mental illness.

EntSpans There is insufficient evidence to support
the use of advance directives for people
with mental illness.

EntOnly There is insufficient evidence to support
the use of advance directives for people
with severe mental illness.

Table 7: Examples of generated summaries

D Lexical overlap with the input
documents

Table 8 shows the amount of lexical overlap with
the source documents in terms of ROUGE scores.
The lower the score is, the less is copied from the
source and the more abstractive the summary is.

R-1↓ R-2↓ R-L↓

F
ul

l

No entity 0.052 0.022 0.040
DocSep 0.042 0.019 0.034
EntOnly 0.043 0.021 0.036
EntMarkers 0.042 0.018 0.033
EntSpans 0.040 0.017 0.032
EntMarkersSpans 0.037 0.016 0.030

Table 8: Token overlap with the source as a measure of
extractiveness; lower = more abstractive
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Abstract
Systematic literature reviews in the biomedi-
cal space are often expensive to conduct. Au-
tomation through machine learning and large
language models could improve the accuracy
and research outcomes from such reviews. In
this study, we evaluate a pre-trained LongT5
model on the MSLR22: Multi-Document Sum-
marization for Literature Reviews Shared Task
datasets. We weren’t able to make any improve-
ments on the dataset benchmark, but we do es-
tablish some evidence that current summariza-
tion metrics are insufficient in measuring sum-
marization accuracy. A multi-document sum-
marization web tool was also built to demon-
strate the viability of summarization models
for future investigators: https://ben-yu.
github.io/summarizer

1 Introduction

With recent advances in natural language process-
ing and deep learning, large language models are
now capable of generating summaries of large vol-
umes of documents that are arguably human read-
able and logically consistent. With the growing
amount of research being published, it has become
increasingly difficult to process all the available re-
search and literature in any particular field of study.
This has become exceedingly important within the
biomedical field as the community has learned
with the global COVID-19 pandemic. Speed of re-
search directly impacts patient outcomes and how
fast medical practitioners can respond to a con-
stantly changing health landscape. The MSLR22:
Multi-Document Summarization for Literature Re-
views shared task proposes a challenging research
problem that pushes current state of the art multi-
document summarization models to generalize over
two different datasets: MS^2 Dataset (DeYoung
et al., 2021) and Cochrane Dataset (Wallace et al.,
2020) We will evaluate in this research study if
pre-trained summarization models can successfully
solve the proposed task.

2 Related Work

Recent studies in document summarization have
mostly focused on Transformer-based models, but
applied to the biomedical context either through
transfer learning or fine-turning on a specific
biomedical dataset (Wang et al., 2021). BioBERT-
Sum is a recent example of using such pre-training
methodologies, which used a pre-trained model as
an encoder and fine-tuned on a specific task (Du
et al., 2020). (Moradi and Samwald, 2019) inno-
vated in this space by applying hierarchical cluster-
ing to group contextual embeddings of sentences to
select the most informative sentences from a given
group to generate summaries. (Sotudeh et al., 2020)
also recently proposed a mechanism to leverage do-
main knowledge and embed it into their SciBERT-
based clinical abstractive summarization model.

Scaling such transformer models to longer input
sizes has been difficult since the attention layers get
exponentially larger and become computationally
infeasible to train. Recent advances in model ar-
chitecture like PEGASUS (Zhang et al., 2019) and
Longformer (Beltagy et al., 2020) have introduced
different ways around this by introducing sparse
attention mechanisms like local attention which re-
places the full-attention mechanism with a sparse
sliding window. Researchers at Google were able
to innovate on these findings further by combin-
ing pre-training strategies from PEGASUS along
with a new sparse attention mechanism called Tran-
sient Global which mimics ETC’s local/global at-
tention mechanism and achieve state of the art per-
formance on multiple summarization benchmarks.
(Guo et al., 2021)

3 Data Analysis

3.1 MS^2 Dataset

The MS^2 dataset consists of 470k studies mapped
to 20k reviews from PubMed (DeYoung et al.,
2021). The dataset was further augmented with
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PICO span labels and evidence inference classes.
The goal for this dataset is to generate an accurate
summary given a set of multiple review abstracts.

To understand the relative difficulty of this sum-
marization task, we measured text similarity be-
tween abstracts and their target summaries based
on Term Frequency–Inverse Document Frequency
(TF-IDF) and Jaccard similarity.

Figure 1: Distribution of MS^2 distances from abstract
to target summary

The mean cosine difference was 0.4 and Jacard
distance was 0.1. This indicates there was no sub-
stantial overlap between the target summaries and
their source reviews.

3.2 Cochrane Dataset

This was a smaller dataset of 4.5K reviews col-
lected from Cochrane systematic reviews (Wallace
et al., 2020). This dataset was cleaner than the
MS^2 dataset, but substantially smaller. The re-
views on average included 10 trials each and the
average abstract length of included trials was 245
words. We use the authors’ conclusions subsec-
tion of the systematic review abstract as our target
summary (75 words on average).

We also did a similar measurement of cosine and
Jaccard distances for the Cochrane dataset:

Figure 2: Distribution of Cochrane review distances
from abstract to target summary

Similar to the MS^2 dataset, the cosine and Jac-
card distances were normally distributed and had

roughly the same average difference from their
target review. This seemed to indicate that both
datasets were similarly difficult and have roughly
the same level of sentence overlap.

4 Experiments

The original goal of this study was to experiment
with two different approaches to the MSLR22
Shared Task:

1. Fine-tune LongT5 models with both datasets

2. Evaluate existing LongT5 language models
on similar datasets like PubMed (Cohan et al.,
2018)

We selected the LongT5 model due to its pur-
ported state of the art performance numbers and
its ability to scale its input size to up to 16384 to-
kens. We leveraged several cloud providers such
as Google Cloud and AWS Sagemaker along with
HuggingFace’s transformers library for model fine
tuning (Wolf et al., 2019). We also experimented
with HuggingFace’s AutoTrain framework to au-
tomatically search for the correct hyperparameters
for training. All we had to provide was an initial
training and validation datasets, and AutoTrain au-
tomated the model training and tuning process. To
allow the model to train on multiple documents at
once, we pre-processed the training data such that
all review abstracts with the same Review ID were
appended into a single input string. The single in-
put would then be fed into our model of choice after
doing some minimal input validation like checking
if the input isn’t more than our maximum token
length of 16384. We immediately hit several limita-
tions with cloud training including not having suf-
ficient spend to qualify using larger GPU instances
for training. HuggingFace’s AutoTrain framework
also never successfully completed and would often
timeout after several days of training. We also at-
tempted to fine tune our models locally, but we only
had access to a single RTX 3080 10GB GPU which
couldn’t even fit the model and dataset even with
a batch size of 1. Our conclusion from this experi-
ence has demonstrated how the trend towards larger
language models might risk increasingly making
this type of research inaccessible to hobbyists and
practitioners. State-of-the-art model performance
will likely only be achieved by researchers with
access to compute power and capital unless we pri-
oritize research into reduce model size and resource
utilization.
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- Training Training Target Test
Characters 1745.81 435.60 1746.66
Words 299.88 68.53 301.42
Sentences 11.2 2.74 11.17

Table 1: MS^2 Dataset Properties

- Training Training Target Test
Characters 1526.79 489.8 1510.42
Words 224.3 72.2 221.14
Sentences 10.2 3.4 10.09

Table 2: Cochrane Dataset Properties

Figure 3: HuggingFace AutoTrain on LongT5

For our second approach, rather than fine-tuning
a base model, we wanted to evaluate if a model
that was pre-trained on a similar dataset would still
be able to solve this summarization task without
any fine-tuning. We found a pre-trained LongT5
model on the PubMed dataset that was trained for
around 3k steps (Stancl, 2022). We believed the
fine-tuning should be transferable to these datasets
as they largely cover the same type of biomedical
content and the MS^2 dataset also gets its train-
ing data from PubMed. We leveraged Hugging-
Face’s Inference API for model evaluation against
the MSLR22 datasets. This also restricted our abil-
ity to fine-tune the output size which probably also
hindered our performance.

To aid in the model development process and
also as a validation that these summarization mod-
els have a practical use, we created an online tool
that allows anyone to invoke the models for any 6
paper abstracts. The tool can be found at: https:
//ben-yu.github.io/summarizer

Figure 4: Multi-Document Summarization Tool with
HuggingFace Inference API

5 Discussion

Unsurprisingly the pre-trained models were unable
to exceed the dataset benchmarks on the shared
task. One key failing came from our inability to
configure target generation length using Hugging-
Face’s Accelerated Inference Text2Text Generation
API. On the MS^2 Dataset our outputs only had
an average sentence length of 1.1 and character
count of 87.97, which significantly deviated from
our target length of 2.74 sentences and 435.6 char-
acters. This likely due to the out-of-the-box model
not properly generalising over the entire PubMed
dataset as the model was also only trained for about
3k steps and further training steps would have im-
proved it’s performance. The Rouge-L scores were
particularly indicative, scoring sometimes up to
50% worse than the benchmarks. Increasing our
model output length would have likely dramati-
cally improved our Rouge scores. Our model didn’t
score that poorly in terms of a delta EI on the MS^2
dataset with only a 0.06 difference from the Long-
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Model R-1 R-2 R-L EI↓ F1 BERT
BART Benchmark 0.2626 0.0770 0.1950 0.4509 0.4142 0.8636
Longformer Benchmark 0.2637 0.0795 0.1961 0.4621 0.4118 0.8666
LongT5 - Pubmed 0.1200 0.0133 0.0961 0.5280 0.3433 0.8276

Table 3: Model performance on MS^2 Dataset

Model R-1 R-2 R-L EI↓ F1 BERT
BART Benchmark 0.2397 0.0671 0.1760 0.2081 0.3348 0.8632
Longformer Benchmark 0.2387 0.0655 0.1755 0.2345 0.3316 0.8641
LongT5 - Pubmed 0.1130 0.0154 0.0903 0.4671 0.2873 0.7863

Table 4: Model performance on Cochrane Dataset

former benchmark. This could be an indicator that
delta EI is a flawed metric that doesn’t adequately
capture the factual correctness of a summary. Re-
cent work by (Otmakhova et al., 2022) evaluated
Longformer and BART models along similar met-
rics and showed that both models failed to pick
up and aggregate important details when manually
evaluated against with expert human evaluators.
Stronger metrics will likely be required in the fu-
ture if there is to be significant progress in this
domain.

We also found that experimenting with language
models and training these large language models
can be extremely cost prohibitive and potentially
inaccessible to hobbyists and novice machine learn-
ing practitioners. These models are getting increas-
ingly large and can’t be built unless one has access
to sufficient GPU-computing or cloud resources.
Training these models can take upwards of 48 hours
and there is no guarantee that your model is improv-
ing or converging at a reasonable rate.

6 Conclusion

We weren’t able to improve upon existing bench-
marks for either the MS^2 or Cochrane datasets.
We did show there is a need for stronger summa-
rization metrics that can capture different linguistic
dimensions such as factual correctness and read-
ability. The summaries from our pre-trained model
were significantly shorter than the target summaries
and often factually incorrect upon manual inspec-
tion, but this couldn’t directly be inferred from
our model scores outside of comparing it to task
benchmarks.
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Abstract
This paper is a description of our participation
in the Multi-document Summarization for Lit-
erature Review (MSLR) Shared Task, in which
we explore summarization models to create an
automatic review of scientific results. Rather
than maximizing the metrics using expensive
computational models, we placed ourselves in
a situation of scarce computational resources
and investigate the limits of a base sequence
to sequence models (thus with a limited input
length) to the task. Although we explore meth-
ods to feed the abstractive model with salient
sentences only (using a first extractive step),
we find that the results still need some improve-
ments.

1 Introduction

To summarize medical knowledge on specific is-
sues, researchers undertake systematic reviews of
the available literature. The process is usually long
and expensive; it requires identifying appropriate
studies, critically interpreting their findings, and
finally synthesizing the results.

Recently, Natural Language Processing (NLP)
researchers have explored the use of automatic
text summarization models and tools to assist re-
searchers with the process. Previous works by DeY-
oung et al. (2021); Wallace et al. (2021) have tried
to model the problem as a multi-document sum-
marization task, where several input papers (or ab-
stracts) are summarized to generate review conclu-
sions. Summarizing several documents is challeng-
ing, and few resources exist (DeYoung et al., 2021)
compared to single-document summarization tasks.

The shared task of Multi-document Summariza-
tion for Literature Review (MSLR) adopted a simi-
lar approach and challenged participants to explore
the state-of-the-art systems with two large-scale
multi-document summarization datasets for litera-
ture review. To this end, instead of aiming at using
very complex models to maximize the target met-
rics, we place ourselves in a situation of scarce

computational resources and explore the limits of
a base sequence-to-sequence model, BART, to the
task. Our contributions to this shared task, there-
fore, are as follows:

• We explore the performance of a simple base
transformer, namely BART, for this task.

• We explore ways to deal with the limited input
size of such models, applying an extractive
step before the abstractive one.

• We aim at creating general models, and ex-
plore how the two datasets can be combined
during training to improve performance.

After analyzing the datasets (Section 2), we first
experiment with baseline models (Section 3.1);
since the model can only deal with a limited num-
ber of input tokens, we explore various strategies
to reduce the input size (Section 3.2).

2 Datasets and metrics

We evaluated the models on two datasets:

Cochrane (Wallace et al., 2021): The dataset con-
sists of 4,692 systematic reviews from the
Cochrane collaboration1. The target is the
“authors’ conclusions” of the systematic re-
view abstracts, while the input is a set of titles
and abstracts of the related clinical trials.

MS^2 (DeYoung et al., 2021): is built from pa-
pers in the Semantic Scholar literature corpus
(Ammar et al., 2018). It consists of 17,876
reviews. The dataset also contains some back-
ground text derived from the reviews. The
dataset creation was semi-automatic: for each
review, each sentence is classified as back-
ground, target or other and sentences are then
aggregated.

1https://www.cochrane. org/
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Table 1 reports some statistics of the two datasets.
Notice that the Cochrane dataset contains some
input documents for which no abstract is provided.

Results are evaluated using:

ROUGE (Lin, 2004) (ROUGE-1, ROUGE-2,
ROUGE-L): These are classical metrics for
summarization, and compute the token over-
lap between the prediction and the gold-
standard in terms of n-grams and longest com-
mon subsequence. The higher the value the
better the score.

BERTScore (Zhang* et al., 2020): Instead of
computing exact matches, this metric consid-
ers contextual embeddings (as generated by
BERT (Devlin et al., 2019)); after computing
the cosine similarity among each pair in the
generated sequence and the gold standard, the
maximum similarities over the gold-standard
tokens (Recall) and the generated tokens (Pre-
cision) are summed and normalized; they are
later used to compute f1-like metric. The
higher the value the better the score.

∆ EI (DeYoung et al., 2021): It is a model-based
metric; the disagreement of (Is, Os, EI) triplets
between the input studies and the generated
summary is considered, where Is are the Inter-
ventions, Os are the Outcomes and EI is Evi-
dence Inference. The measure aims to better
correlate with the factuality of the generated
summary with respect to the sources. The
lower the value the better the score.

3 Experiments and results

In this work, we explore the use of a simple BART
base model (Lewis et al., 2020) – that we leave
unchanged – for the task of multi-document sum-
marization.

The BART model is limited to input size of 1024
sub-token. However, as figure 1 shows above, con-
catenating the abstracts leads to very long input
sentences, that cannot be dealt with by the model.
To this end, we explore if performing a previous
extractive step improves performance. Since the tar-
get text summarizes the findings of previous work,
we also explore the use of a classifier to extract
results only from the input.

Figure 1: The number of token in the Cochraine and in
the MS^2 datasets with concatenated inputs

3.1 Baselines

We train a base BART model, fine-tuned for 4
epochs on the Pubmed summarization dataset2 (Co-
han et al., 2018) to predict the target given the
concatenated abstracts. Specifically, we use the
concatenated abstracts as input and the target as
output. We do not generally use the titles, with a
few exceptions in case no abstract is present. For
MS^2, we do not use any additional background
information, as we want to construct models that
are as general as possible. We separate the inputs
using the <sep> special tokens. We do not perform
any other preprocessing to the dataset text. Table 2
reports the results for our base configuration on the
validation set. We report results for all metrics.

3.2 Unsupervised algorithms for decreasing
the input size

Since the base model can only process a fraction
of our very long input, we explore if performing
an extractive step can improve performance, fol-

2Model mse30/bart-base-finetuned-pubmed from the Hug-
ging Face model hub
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C train C dev C test M train M dev M test
Number of input docs 40,497 5,033 5,678 323,608 5,033 5,678
Number of empty abstracts 2,611 464 470 0 0 0
Number of targets 3,752 470 470 14,188 2,021 1667
Number of docs per target (avg) 10.79 10.71 12.08 22.81 24.24 25.63
Number of tokens per abstract (avg) 224.33 222.47 14.88 299.88 302.83 301.42
Number of tokens per target (avg) 67.78 69.9 - 61.28 61.05 -

Table 1: Statistics on the Cochrane (C) and the MS^2 (M) datasets

Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M M 13.18 1.31 10.17 83.2 50.22 42.53

C + M (mix) M 13.18 1.31 10.18 83.2 50.22 42.53
C, M (sequential) M 13.23 1.35 10.18 83.14 49.33 42.55

C C 22.48 6 16.43 86.81 31.03 38.23
C + M (mix) C 22.86 6.03 16.82 85.1 27.85 36.44

M, C (sequential) C 18.78 2.77 12.97 84.52 36.54 37.22

Table 2: Baseline results obtained with a base BART model on the raw input. Some models are trained on the MS^2
dataset (M) or on the Cochrane dataset (C) independently. We also trained a single model with the mixed MS^2 and
Cochrane data, in random order (mix) and evaluate it on both datasets independently. Finally, we experiment with
sequential fine-tunings over the two datasets (with the fine-tuning over the target dataset being the last one); for
example, M, C (sequential), means that the BART model was first fine-tuned on the MS^2 dataset and then on the
Cochrane dataset. All measures are obtained using the official evaluation script on the validation set.

lowing previous work (Huang et al., 2019). Specif-
ically, we use classical unsupervised algorithms,
namely TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004), that we chose
since they are simple, well-studied and have a low
computational cost. For each target, the extraction
is performed on the whole pool of the concatenated
abstracts. We also experiment with extracting sen-
tences related to the results only from each abstract
(which we then concatenate).

3.2.1 TextRank
TextRank constructs a graph using sentences as
nodes and their similarity in terms of normalized
number of words as edges. Then, the algorithm
extracts the most central sentences according to
PageRank (Page et al., 1999).

In order to extract the most important sentences
only and minimize repetitions, we grouped all ab-
stracts related to a single target and extracted the
salient sentences from the whole pool of text. We
used the summa library3; we constrained the sum-
mary obtained through TextRank to be approxi-
mately 1000 tokens (as this is the maximum num-
ber of tokens BART can process) and 500 tokens

3https://github.com/summanlp/textrank

long (to experiment with even shorter salient in-
puts). Then, we fine-tuned a base BART model
with the output data. Table 3 shows the results.

3.2.2 LexRank
Similarly to TextRank, LexRank constructs a graph
using sentences as nodes and their similarity as
edges; the similarity is computed in terms of term
frequency-inverse document frequency (TF-IDF)
vectors. Then most central sentences are extracted.
We used the sumy4 library for extraction and ex-
plored with outputs of a maximum of 30 sen-
tences (as we estimate this will be compatible with
BART’s input constraint). Then, we fine-tuned a
base BART model with the output data. Table 4
shows the results.

3.3 Extracting the abstracts’ results to
decrease the input size

Since a systematic review aims in assessing the
knowledge in a given area, we explored extracting
the results of each abstract only. To do so, we down-
loaded 150,000 random structured abstracts in En-
glish using the Pubmed Advanced Search Builder5.

4https://github.com/miso-belica/sumy
5https://pubmed.ncbi.nlm.nih.gov/advanced/
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Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M - 1k tokens M 12.7 1.15 9.79 83.02 51.98 43.32

C + M (mix) - 1k tokens M 12.5 1.07 9.73 83.01 53.26 41.83
C + M (mix) - 500 tokens M 13.21 1.3 10.13 83.24 49.87 42.87

C - 1k tokens C 19.9 2.98 13.56 84.81 37.52 37.14
C + M (mix) - 1k tokens C 22.63 6.09 16.95 86.89 31.92 38.83

M, C (sequential) - 1k tokens C 19.47 3.4 13.75 84.94 36.63 38.43
C + M (mix) - 500 tokens C 22.63 6.07 16.8 87 28.71 36.88

Table 3: Results obtained with a base BART model on inputs capped at around 1000 and 500 tokens extracted by
TextRank algorithm. Some models are trained on the MS^2 dataset (M) or on the Cochrane dataset (C) independently.
We also trained a single model with the mixed MS^2 and Cochrane data, in random order (mix) and evaluate it on
both datasets independently. Finally, we experiment with sequential fine-tunings over the two datasets (with the
fine-tuning over the target dataset being the last one); for example M, C (sequential), means that the BART model
was first fine-tuned on the MS^2 dataset and then fine-tuned on the Cochrane dataset. All measures are obtained
using the official evaluation script on the validation set.

Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M M 13.18 1.3 10.2 83.12 50.09 43.08

C + M (mix) M 13.96 1.55 10.66 83.44 47.52 42.99
C C 18.1 2.52 12.6 84.24 37.43 37.65

C + M (mix) C 22.03 5.61 16.28 86.71 26.98 39.29

Table 4: Results obtained with a base BART model on inputs capped at around 30 sentences extracted by LexRank
algorithm. Some models are trained on the M S2 dataset (M) or on the Cochrane dataset (C) independently. We
also trained a single model with the mixed MS^2 and Cochrane data, in random order (mix) and evaluate it on both
datasets independently. All measures are obtained using the official evaluation script on the validation set.

Trained on Eval on R-1 R-2 R-L BertScore ∆EI avg ∆EI macro
M M 12.97 1.27 10.02 83.09 49.59 42.48

C + M (mix) M 12.61 1.61 9.69 82.96 52.36 41.98
C C 22.42 5.84 16.59 86.82 30.05 38.02

C + M (mix) C 22.95 6.17 16.9 86.94 28.43 36.97

Table 5: Results on the development set for the BART model after extracting the results only with a classifier.
Some models are trained on the M S2 dataset (M) or on the Cochrane dataset (C) independently. We also trained
a single model with the mixed MS^2 and Cochrane data, in random order (mix) and evaluate it on both datasets
independently. All measures are obtained using the official evaluation script on the validation set.

Structured abstracts are divided into a number of
sections with a related label (e.g., AIM, METHOD,
CONCLUSIONS). We used regular expressions to
divide the abstract into sections and extract the re-
lated label (we identified a label as a cased word
or set of words at the start of a line followed by
columns) and considered a section containing re-
sults as any section having as label CONCLU-
SION(S), CONCLUDING *, RESULT(S), SIG-
NIFICANCE, IMPORTANCE, RECOMMENDA-
TION(S). We constructed a dataset assigning the
positive label to sentences in such section and the
negative label to sentences in the others. Since

the negative instances were more than an order of
magnitude more common than the positive ones,
we balanced the dataset and obtained a sample of
700 negative sentences and 524 positive sentences.
Then, we trained a Roberta base model to classify
the sentences according to their labels. We used
the dataset to extract sentences from the abstracts
that have at least a 0.4 log prob of belonging to
the positive class (we prefer to increase recall over
accuracy, as the summarization step will remove
pleonastic content). Then, we fine-tuned a BART
base model with the concatenated results. Table 5
shows the obtained results.
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Figure 2: Effect of the extractive step. For each dataset, we consider the base model trained and evaluated on
the target dataset as our baseline, and show the relative difference in performance when compared to the best
model for each extractive algorithm. For LexRank, we considered the model trained on M+C mixed data, after
extracting the salient sentences with LexRank. For TextRank, we considered the model trained on M+C mixed data,
after extracting the salient sentences (500 tokens long for MS^2 and 1000 for Cochrane); for the Results only, we
considered the model fine-tuned on MS^2 only for MS^2 and the mixed one for Cochrane.

4 Conclusions

We have explored a number of base BART models
for the task of generating systematic reviews in the
medical domain. Given the limited number of to-
kens BART can handle, we adopted several simple
extractive strategies to retrieve salient sentences
to the abstractive model; we also trained a model
from the abstract results sentences only.

Generally, we found results on the Cochrane
datasets are much more encouraging than those on
the MS^2 and we believe that using the background
info might improve performance. We found that
the results obtained from the salient sentences only
show mixed results. For MS^S, extracting the re-
sults sentences only seems to be the most promising
method. For the Cochrane dataset, all extractive
methods show small improvements over the base-
line. LexRank seems to be the most promising, as
it slightly improves the results, both in terms of
ROUGE and factuality metrics.

In addition to ours, other strategies could be ex-
plored to sort the input abstract: DeYoung et al.
(2021), for example, sorts abstracts by some mea-
sures of quality; it would be interesting to see how
this compares to our proposed strategies. We also
plan to explore different input representations that
go beyond the simple concatenation of abstract and

data augmentation techniques. Another possible
route could be that of extracting domain-specific
concepts, through, e.g., PubTator (Wei et al., 2013),
to enrich abstracts.
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Abstract

Text summarization has been a trending domain
of research in NLP in the past few decades. The
medical domain is no exception to the same.
Medical documents often contain a lot of jar-
gon pertaining to certain domains, and perform-
ing an abstractive summarization on the same
remains a challenge. This paper presents a sum-
mary of the findings that we obtained based on
the shared task of Multidocument Summariza-
tion for Literature Review (MSLR). We stood
fourth in the leaderboards for evaluation on the
MS^2 and Cochrane datasets. We finetuned
pre-trained models such as BART-large, Dis-
tilBART and T5-base on both these datasets.
These models’ accuracy was later tested with a
part of the same dataset using ROUGE scores
as the evaluation metrics.

1 Introduction

The last few decades have witnessed a wide range
of research applications in the field of natural lan-
guage processing, especially text summarization.
Text summarization has been applied in a num-
ber of domains including healthcare and medicine.
With the tremendous amounts of big data getting
generated in the medical industry each day, there is
a need realized for effective techniques to summa-
rize the data for further purposes. With the expo-
nential rise in data getting accumulated in hospital
databases and medical research labs, the need is
increasing correspondingly. Text summarization
in the healthcare domain has enabled far-reaching
benefits for medical professionals. Effective sum-
marization techniques help researchers and other
individuals to parse long documents effectively,
and gain valuable insights in shorter time periods.

The history of text summarization in NLP dates
back to 1958, when the first paper on text sum-

∗ equal contribution
† equal contribution
‡ equal contribution

marization was published. Since then, its incorpo-
ration in healthcare has been widely done. Text
mining and NLP methods have played an essential
role in developing automatic text processing tools
(Fleuren and Alkema, 2015). Automatic text sum-
marization, thus proves to be an effective means
of gaining valuable information from large docu-
ments and reports. In the medical domain, many
approaches have been proposed for effective docu-
ment summarization(Mishra et al., 2014) (Moradi
and Ghadiri, 2019). Subfields in the biomedical
domain where summarization is used include medi-
cal literature(Moradi and Ghadiri, 2016), evidence-
based medical care (Fiszman et al., 2009), clinical
notes(Moen et al., 2016), and drug information
extraction(Fiszman et al., 2006).

Summarization approaches are broadly classi-
fied as abstractive and extractive. In extractive
summarization(Gupta and Lehal, 2010), important
sentences from the text are directly extracted and
put into the summary, whereas for abstractive sum-
marization(Moratanch and Chitrakala, 2016), new
sentences depicting the summary of the topic are
formed. Summarization approaches based on the
number of documents can be classified as single
document and multi-document(more than one doc-
uments are searched). In this paper, we present
our findings obtained from performing multi-
document summarization on the MS^2(DeYoung
et al., 2021a) and Cochrane(Wallace et al., 2020a)
datasets.

We finetune a few models on the MS^2 and
Cochrane datasets, and research upon the best
possible hyperparameters that could give us good
results. We experimented with the BART-large
model (Lewis et al., 2020) provided by Facebook
AI on HuggingFace, the CNN version of the
DistilBART model (Shleifer and Rush, 2020),
and T5-base model (Raffel et al., 2020a) for text
summarization. We preprocessed the inherently
messy data provided, and generated summariza-
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MS^2 (Provided Dataset) Total input studies Target summaries
Train 323608 14191
Validation 49002 2021
Test 42723 -
Cochrane (Provided Dataset) Total input studies Target summaries
Train 40497 3752
Validation 5033 470
Test 5678 -

Table 1: Statistics of the dataset used for training

tions on the same. We have experimented and
compared the results of the aformentioned models.
The datasets were provided by AllenAI. We have
used the ROUGE evaluation metric (Lin, 2004) for
comparing summarization accuracies.

2 Dataset Description

2.1 MS^2 (Multi-Document Summarization
of Medical Studies)

The MS^2 (Multi-Document Summarization of
Medical Studies) dataset (DeYoung et al., 2021b)
is derived from documents and summaries from
systematic literature reviews constructed from the
papers in the Semantic Scholar literature Corpus
(Ammar et al., 2018). Systematic literature reviews
are a type of biomedical paper that compiles results
from many different studies. The MS^2 dataset
uses clustering before splitting into train, valida-
tion and test to avoid the learning of the test data
during training. For each review, sentences were
classified into 2 categories: Target sentences which
contained information about the findings or sum-
mary of the paper and background sentences which
described the research question. The statistics of
the data provided are given in Table 1.

2.2 Cochrane Dataset
The Cochrane dataset (Wallace et al., 2020b) con-
sists of the systematic reviews, created by the
Cochrane collaboration, along with the title and
abstract of the trials summarized by these reviews.
The reviews summarized about 10 trials on average.
The abstracts of the systematic reviews contained
an average length of 75 words. The dataset statis-
tics provided by the organizers are given in Table 1.

3 Data Preparation

The MS^2 and Cochrane datasets were provided to
us in the CSV format. The input dataset consisted

of the following columns: "ReviewID", "PMID",
"Title" and "Abstract", whereas the target dataset
consisted of the following columns: "ReviewID"
and "Target". For the MS^2 dataset, additional
’Reviews-Info’ files were included, which consisted
of background information associated with the re-
view. However, we didn’t utilize them for training
purposes.

In data preprocessing, the reviews present in
the MS^2 and Cochrane datasets contain unneces-
sary delimiters and redundant line breakers, which
made it necessary to clean them, before they could
be passed to the model. We used simple Pandas
preprocessing(Mckinney, 2011) on the CSV files,
and cleaned these reviews into simple plain text
which could be passed to the model.

We mapped each of the documents correspond-
ing to a particular review ID, to the corresponding
target summary in the target dataset, thus estab-
lishing a many-to-one relationship between the ab-
stracts and the targets. We then removed all the
other columns which were unnnecessary for sum-
marization ("Background", "Title", etc). Newly
formed dataframes, consisting of the source texts
(multiple documents merged together for each re-
view ID) and the target text (target summaries)
were formed and passed for preprocessing.

We used the pretrained BART-base tokenizer pro-
vided by Facebook AI for the BART-large and Dis-
tilBART models, whereas for the T5-base model
training, the t5-base tokenizer was used. Both of
these tokenizers are available open-source on the
HuggingFace1 model hub.

4 Experiments

4.1 Training Details
For training the models we used the Simple Trans-
formers 2 library, an API used for transformer mod-

1https://huggingface.co
2https://simpletransformers.ai/
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System/Model rougeL rouge1 rouge2 RougeLsum
facebook/bart-large 0.1449 0.2139 0.0349 0.172
sshleifer/distilbart-cnn-12-6 0.1377 0.2082 0.0298 0.1347
t5-base 0.1139 0.1762 0.1830 0.1179

Table 2: Scores recorded on the MS^2 dataset.

System/Model rougeL rouge1 rouge2 RougeLsum
facebook/bart-large 0.1751 0.2638 0.0576 0.1775
sshleifer/distilbart-cnn-12-6 0.1821 0.2898 0.0503 0.1820
t5-base 0.1549 0.2278 0.0319 0.1549

Table 3: Scores recorded on the Cochrane dataset.

els (Vaswani et al., 2017), which provides built-in
support for various natural language processing
tasks including text summarization.

We trained our models on the Nvidia K80 GPU
which has a GPU RAM of 15 gigabytes. CUDA
was utilized for effective computing, and making
the training and evaluation processes faster. All the
models were trained on 10 epochs, with training
and validation losses measured over time for each
epoch.

We trained the BART-large and the DistilBART-
CNN models on the datasets, by instantiating
Seq2Seq models (Sutskever et al., 2014) and ar-
guments provided by Simple Transformers. We
later modified some of the arguments by making
the maximum length for each sequence equal to
140. Due to limited RAM available on the CUDA
used, we faced memory errors. Hence, after each
epoch, the weights directory was overwritten for
memory availability. Maximum sequence length
for the tokenized sequences of each input docu-
ment was set to 512. For T5 (Text-To-Text Transfer
Transformer), we used the t5-base models (Raffel
et al., 2020b), after providing t5-base tokenization,
and trained them with the same aforementioned
hyperparameters.

All the above mentioned hyperparameters were
giving the best possible results, and hence we pro-
ceeded with the use of the same. We finetuned
the basic configurations specified in the Fairseq
documentation. 3

4.2 Evaluation Metrics

ROUGE Score (Lin, 2004), which stands for
Recall-Oriented Understudy for Gisting Evalua-
tion, was used as the evaluation metric. To cal-

3https://fairseq.readthedocs.io/en/latest/index.html

culate the rouge score we used the rouge metric
provided by HuggingFace library 4. We recorded
rouge1, rouge2, rougeL and RougeLsum scores for
our summaries. Rouge1 measured the overlap of
unigram between the candidate and the reference
summaries whereas rouge2 compared the bigram
similarities between the summaries. RougeL and
RougeLsum measured the Longest Common Subse-
quence (LCS)(Lin and Och, 2004) words between
predicted and target summaries. All the Rouge
scores recorded are scored out of 1; where, closer
to 1 means more accurate summaries.

5 Results

For the results please refer to Table 2 and Ta-
ble 3. The table contains different models which we
tried for the summarization task and the ROUGE
recorded on those models. For the submission of
the summarization task on both datasets, we used
the BART-base tokenizer and trained BART-large
model provided by Facebook AI.

6 Competition Results

We obtained high rouge1 and deltaEi-macrof1
scores for the multi-document summarization task
on the Cochrane dataset. We stood 5th when ranked
according to rougeL metric.

For the MS^2 data summarization subtask, we
stood 4th when ranked according to the rougeL
metric. We attained high delta EI-avg scores for
the summarization subtask.

The scores obtained in the MSLR MS^2 and
Cochrane subtask are given in Table 4

4https://huggingface.co/spaces/evaluate-metric/rouge
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MSLR Subtask rougeL rouge1 rouge2 BERTScore DeltaEI-avg DeltaEI-macrof1
MS^2 0.1439 0.2060 0.0350 0.8479 0.5319 0.3558
Cochrane 0.1725 0.2468 0.0545 0.8591 0.2707 0.3789

Table 4: Rouge and BERT scores of the summarizations submitted to MSLR MS^2 and Cochrane Subtasks.

7 Conclusion

Thus, we implemented multi-document summariza-
tion of different clinical studies and their literature
surveys in the medical field. We implemented vari-
ous architectures and analysed their performance.
Finally, we evaluated the models using ROUGE
metric. We plan to explore other models and tok-
enization methods to provide more accurate sum-
marizations. Also, we plan to train the models on
different medical survey datasets for better results
in our summarizations.
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Abstract

Research in the biomedical domain is con-
stantly challenged by its large amount of ever-
evolving textual information. Biomedical re-
searchers are usually required to conduct a lit-
erature review before any medical interven-
tion to assess the effectiveness of the con-
cerned research. However, the process is time-
consuming, and therefore, automation to some
extent would help reduce the accompanying
information overload. Multi-document sum-
marization of scientific articles for literature
reviews is one approximation of such automa-
tion. Here in this paper, we describe our
pipelined approach for the aforementioned task.
We design a BERT-based extractive method
followed by a BigBird PEGASUS-based ab-
stractive pipeline for generating literature re-
view summaries from the abstracts of biomedi-
cal trial reports as part of the Multi-document
Summarization for Literature Review (MSLR)
shared task1 in the Scholarly Document Pro-
cessing (SDP) workshop 20222. Our proposed
model achieves the best performance on the
MSLR-Cochrane leaderboard3 on majority of
the evaluation metrics. Human scrutiny of our
automatically generated summaries indicates
that our approach is promising to yield readable
multi-article summaries for conducting such lit-
erature reviews.

1 Introduction

The effectiveness of medical treatments following
medical diagnosis can have both acknowledgments
and contradictions with respect to various studies
conducted. Prior to any medical treatment, evi-
dence synthesis is essential to understand and stay
up-to-date with medical advances from different
clinical studies. A literature survey provides high-

1https://github.com/allenai/
mslr-shared-task

2https://sdproc.org/2022/
3https://leaderboard.allenai.org/

mslr-cochrane/submissions/public

quality evidence for healthcare. However, such a
task is very time-consuming if done manually.

To mitigate these issues high-quality largescale
multi-document summarization datasets, e.g., The
Cochrane Dataset (Wallace et al., 2021) and
Multi-Document Summarization of Medical Stud-
ies (MS2) Dataset (DeYoung et al., 2021) were
developed. Both the datasets consists of a wide
variety of task-oriented summaries from clinical
trials. To further encourage community research in
multi-document summarization of biomedical re-
views, the Allen Institute for Artificial Intelligence
(or "AI2" for short) proposed a shared task named
Multi-document Summarization for Literature Re-
view (MSLR) 20224.

The MSLR shared task aims at summarizing and
analyzing medical evidence from different clini-
cal studies. The task consists of two datasets -
Cochrane and MS2, which provide a brief narrative
summary from the abstracts of different clinical
studies communicating the main findings.

In this paper, we describe our system submis-
sion for the task. We participated in the Cochrane
subtask. In our system submission, we design a
pipelined approach leveraging state-of-the-art neu-
ral extractive and abstractive summarization mod-
els. Our system first extracts the vital information
from the abstracts of all papers under a particular
review ID and then generates an abstractive sum-
mary, with the help of pre-trained BigBird PEGA-
SUS model (Zaheer et al., 2020), as the literature
review test for that review ID.

2 Related Work

The concerned task in MSLR is a novel one and
hence not much prior works were conducted except
the papers that proposed the datasets. However, in
this section we discuss some relevant recent works
on multi-document summarization. Agarwal et al.
(2011) propose an unsupervised method of using
topic based clustering of fragments extracted from
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Output - Literature Review (CD005137)


Pharmacologic interventions for amblyopia are
effective in improving visual acuity and improving

contrast sensitivity. The is no evidence that patching
is more effective than placebo or glasses in treating

severe amblyopia

...

The is no evidence that patching is more effective
than placebo or glasses in treating mild amblyopia.


Extractive 

Summarization

Abstractive

Summarization

Figure 1: Workflow of the hybrid model - Original Abstracts from different PMIDs under a Review ID (Top Left),
Combined Extractive summary being used as input for the abstractive summarizer (Right), Generated Output as a
Literature Review Text (Bottom).

each co-cited article.

These fragments are ranked by relevance via a
query generated from the context surrounding the
co-cited list of papers. Multi-document summa-
rization techniques can be broadly categorized into
graph based (Mihalcea and Tarau, 2004; Meena
et al., 2014; Hariharan and Srinivasan, 2009; Ge
et al., 2011; Nguyen-Hoang et al., 2012), clus-
ter based (Schlesinger et al., 2008; Meena et al.,
2014; Gupta and Siddiqui, 2012) term frequency
based (Salton, 1989; Fukumoto and SUGIMURA,
2004), context based (Sonawane et al., 2019), and
latent semantic analysis based methods (Varma,
2019; Steinberger et al., 2004). Zakowski et al.
(2004) describes a PICO (Population, Intervention,
Comparator and Outcome) framework for system-
atic review research. The study gives an account of
the population that is being studies, what interven-
tion was studied, what the intervention was com-
pared to and what was the outcome. As an exten-
sion of PICO, DeYoung et al.; Fabbri et al. groups
and identifies overall findings in reviews. However,
multi document summarization needs expansion in
the biomedical domain so as to reduce time and cost
for addressing the delay in creating and updating re-

views, thereby needing automation (DeYoung et al.,
2021). Studies like (Marshall et al., 2016; Tsafnat
et al., 2014) make an attempt at such automation
tasks. Further, DeYoung et al. explore the use of
Bi-directional and Auto-Regressive Transformers
(Lewis et al., 2019) based approach on the MS2
Dataset. Pertaining to the peculiarities of the task,
we formulate a hybird extractive-abstractive ap-
proach using a BERT-based extractive summarizer
with K-means Clustering and a BigBird-PEGASUS
based abstractive summarizer. Our system achieved
the best performance among all the participating
systems with a ROUGE-L score of 0.1969.

3 Dataset Description

The MSLR2022 shared task consists of two sub-
tasks based on the Cochrane dataset (Wallace et al.,
2021) and the MS2 dataset (DeYoung et al., 2021).
In the Cochrane dataset there are approximately
4.5K systematic reviews of all trials relevant to a
given clinical question, compiled by members of
the Cochrane Collaboration. The dataset consists
of the summarized systematic reviews along with
the titles and abstracts of, on an average, 10 clinical
trials each. The average length of the abstracts of
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Model ROUGE-L ROUGE-1 ROUGE-2 BERTscore F1 Delta EI Avg.
Divergence

Delta EI
Macro F1

BERT+PEGASUS 0.1969 0.2622 0.0574 0.8590 0.2234 0.3011
ittc2 0.1837 0.2464 0.0692 0.8762 0.2195 0.3089
ittc1 0.1787 0.2413 0.0643 0.8729 0.2880 0.3375
BART 0.1760 0.2397 0.0671 0.8632 0.2081 0.3348
Longformer BART 0.1755 0.2387 0.0655 0.8641 0.2345 0.3316

Table 1: Evaluation Scores of different models in the MSLR2022 Cochrane Subtask.

the included trials is 245 words and the target sum-
mary is of the average length of 75 words. MS2 is a
dataset containing 20K medical systematic reviews
from approximately 470K studies collected from
PubMed, created as an annotated subset of the Se-
mantic Scholar research corpus. The MS2 dataset
is much larger than the Cochrane dataset, but the
latter contains cleaner data. For this shared task,
the inputs and the target summaries are oriented in
the same format which is then split into train, dev
and test.

4 Methodology

Multi-document summarization aims to have a
summary with maximum coverage and cohesive-
ness with less redundant data from the given set
of papers pertaining to a topic. Sequence-to-
sequence models do not perform well with large
input sizes (Zaheer et al., 2020). Hence, we choose
to leverage an extractive-abstractive summarization
technique in our approach, to summarize biomed-
ical reviews of correlated papers. In extractive
summarization, we select a pre-decided number of
statements from a given text as a relatively shorter
representation of the entire text. We choose the
Lecture Summarizer model in order to extract the
most important sentences. This extraction is done
by using a clustering algorithm on a set of embed-
dings, which are basically the contextual represen-
tations of sentences obtained from a BERT encoder.
Hence, this also assists in maintaining some sort of
coherence withing the input text.

We primarily use the provided abstracts as inputs
to the extractive summarizer. For the titles that
do not have any abstract, we use the titles as the
inputs instead. We shorten these inputs to have
at most five sentences from every different paper
within a given Review_Id. We use BERT Extractive
Summarizer (Miller, 2019), a model that performs
extractive text summarization on lecture transcripts.
We pass the abstracts separately to this model. The
model first generates the contextual embeddings
of the the input sentences. Further, the K-means
clustering algorithm is used to find the k-sentences

closest to the cluster’s centroids. We proceed with
the top 5 sentences from the cluster. The workflow
of the model is provided in Figure 1.

For every Review_Id, we join the short extracts
from different papers under that particular ID, and
use the resulting sequence as the input sequence
for training the abstractive summarization mod-
ule. These shortened extracts, put together with the
target summaries from original Cochrane dataset,
give us a new data. We choose the BigBird PE-
GASUS model from (Zaheer et al., 2020), and
finetune it on this newly obtained dataset. This
model uses global attention and random attention
on the input sequences apart from sparse-attention,
which theoretically approximates to full attention.
This sparse-attention mechanism can handle se-
quences of length up to 8x compared to what was
possible prior to this and simultaneously reduces
the quadratic dependency to linear, hence making
the model suitable to learn using longer input se-
quences.

We finetune the model from the checkpoint
‘google/bigbird-pegasus-large-pubmed’ using the
newly created data for 6 epochs with a batch size
of 4 and an initial learning rate of 2e-5 accompa-
nied by FP16 precision training. The final output
of the abstractive summarization module is the ’Re-
lated Works’ text corresponding to the research
topic aligned with a particular Review_Id. Fig-
ure 1 shows the workflow of our hybrid extractive-
abstractive system.

5 Result and Analysis

The task realizes ROUGE (-1,2,L) (Lin, 2004),
BERTScore F1 (Zhang et al., 2019), along with
Delta EI Average Divergence and Macro F1 to be
best suitable metrics for evaluation. Hence, to mon-
itor the training, we use ROUGE as the basis of
evaluation. Table 1 shows the comparison among
all the participant teams on the Cochrane subtask
where our best submission ranks first in ROUGE-L
(0.1969) and ROUGE-1 (0.2622) scores.

ROUGE scores do not sufficiently measure the
factual correctness of statements. Table 2 shows a
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Review ID Model Generated Summary
CD007066 There is some evidence that aliskiren 300 mg is superior to placebo in lowering blood pressure in patients with hypertension.

The data are based on a single study and therefore we can not draw any conclusions about the relative efficacy of aliskiren
300 mg versus placebo.

CD005616 Devain disease is a common cause of pain in women of childbearing age. The evidence is limited and the use of cortisone
injections in devain disease is not currently recommended.

CD007926 Menopausal hormone therapy is effective in the treatment of women with advanced or recurrent endometrial cancer. The is
insufficient evidence to recommend the use of hormonal therapy alone or in combination with other hormonal agents.

CD002869 There is insufficient evidence to support or refute the effectiveness of any intervention to improve maternal and neonatal
outcomes. The evidence is limited, and the results are not consistent across studies. The evidence is limited, and the results
do not support the use of any intervention to improve maternal and neonatal outcomes.

Table 2: Example outputs of the hybrid model on the Cochrane dataset.

Review ID Error outputs
CD004366 There is insufficient evidence to support the use of exercise as a treatment for depression. The is insufficient evidence to

support the use of exercise as a treatment for depression. The is insufficient evidence to support the use of exercise as a
treatment for depression.

CD010256 There is no evidence to support the use of aminophylline in the treatment of acute asthma. The is no evidence to support the
use of salbutamol in the treatment of acute asthma. The is no evidence to support the use of aminophylline in the treatment
of acute asthma.

Table 3: Observed erroraneous outputs from the model on the Cochrane dataset.

few instances with the review IDs and the generated
literature review text. We can see that the gener-
ated text is coherent and does not contradict within
itself. We observe that all the summaries were fac-
tually true and matched with the statements from
input abstracts. Although the model generates bet-
ter among other systems, a few issues still persist.
Table 3 shows the most observed error case in the
generation of model. We see that the model repeats
the same statements multiple times. This might be
attributed to the fact that a Literature Review OR
Related Works section from a paper often consists
of statements that are very coherent, and reinforce
each other in order to establish an overall review
of literature from a particular research topic. They
highlight different findings, and more often than
not, they have a similar gist.

For instances, consider a) "We found only low
quality evidence comparing ultra-radical and stan-
dard surgery in women with advanced ovarian
cancer and carcinomatosis.", b) "It was unclear
whether there were any differences in progression-
free survival, QoL and morbidity between the two
groups.", and c) "We are, therefore, unable to reach
definite conclusions about the relative benefits and
adverse effects of the two types of surgery.". All
these statements are very closely related in terms of
the message they deliver. Hence, the finetuned sum-
marizer does not account for facts, instead repeats
the overall gist of the literature review.

6 Limitations

There are no ground truth summaries for lecture
summarizer and therefore no metric for evaluating
the outputs that we receive from the model. Due

to the use of a clustering algorithm, the extractive
part of out system is not readily trainable. We
notice that the same model could not perform well
in the subtask using the MS2 dataset. This can
pertain to the long input sequences which is much
greater than the Cochrane input sizes. Sequence-
to-sequence models tend to not perform well with
larger input sizes. Even if we shorten the input
sequences, we would be losing out of essential
information from the original data.

7 Conclusion

With the increasing rate of research and publica-
tions, literature reviews help keep track of the vari-
ous advancements in the respective domains. Au-
tomation, although essential, also opens up new
challenges including summarization over contra-
dictory information present in different studies over
a particular topic and summarization quality. Al-
though our results show that our hybrid approach
can be used for generating fluent high-quality lit-
erature review summaries, there is still significant
scope for improvement. Additionally, ethical con-
cern involving the factuality of the summaries also
comes into play because deploying such a system
without proper monitoring is speculative when it
comes to such a high-impact domain as healthcare.
This task helps us understand the challenges in
multi-document summarization in the high-impact
biomedical domain. The future scope of research
can include trying real-world applications of such
systems having proper evaluation and monitoring
strategies to test the correctness of the summaries.
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Abstract

This paper provides an overview of the
2022 COLING Scholarly Document Process-
ing workshop shared task on the detection of
automatically generated scientific papers. We
frame the detection problem as a binary classi-
fication task: given an excerpt of text, label it
as either human-written or machine-generated.
We shared a dataset containing excerpts from
human-written papers as well as artificially
generated content and suspicious documents
collected by Elsevier publishing and editorial
teams. As a test set, the participants were pro-
vided with a 5x larger corpus of openly ac-
cessible human-written as well as generated
papers from the same scientific domains of
documents. The shared task saw 180 sub-
missions across 14 participating teams and re-
sulted in two published technical reports. We
discuss our findings from the shared task in
this overview paper.

1 Introduction

There are increasing reports that research papers
can be written by computers, which presents a se-
ries of concerns (e.g., see Cabanac et al. (2021)).
For scientific publishers, the problem of automatic
detection of generated scientific content provides
a technical and ethical challenge. Technically, any
detector of automatically generated content is hard
to remain effective for long: e.g., if a new lan-
guage or summarization model is developed to
generate text, the detector no longer works (for
more details see the paper by (Rosati, 2022)). In
terms of ethics, it is important to distinguish ma-
licious and benign scenarios of generated content
appearing in submitted scientific manuscripts. It
is possible that authors might resort to translation
systems to aid their writing process, e.g. helping
to translate some excerpts from their native lan-
guage into English. However, there is increased

evidence of fraudulent papers, partially or entirely
artificially generated, that have passed the peer-
review process and were published. Most noto-
riously, there has been an experiment called SCI-
gen1 where an entire conference workshop was
generated comprised of gibberish talks. See (No-
orden, 2021) and (Labbé and Labbé, 2012) for
more details on SCIgen’s impact on science, SCI-
gen detectors, and other examples of gibberish pa-
pers lurking into scientific literature. Recently,
“paper mills” (Else, 2021) have caught increased
attention as the main source of potentially fabri-
cated research content. In (Cabanac et al., 2021),
the authors found traces of GPT2-generated con-
tent in scientific literature, along with “tortured
phrases” appearing as a side effect of using gen-
erating models and paraphrasing tools like Spin-
Bot2.

Partly driven by this work, we have organised
a competition to encourage the NLP community
to detect automatically generated papers. This
project is a collaboration between a publisher (El-
sevier) and the research community to attempt a
resolution through technical means. To build on
the excellent detective work by the (Cabanac et al.,
2021) team, excerpts from the papers in their pa-
per were added as examples of “fake” text to the
dataset in this competition.

2 Corpus creation

The data provided for this competition contains
text excerpts from scientific papers and an indi-
cation of whether these texts are “fake” (probably
generated) or “real”, i.e. human-written. The data
comes from both published and retracted Scopus
papers with 5,327 records in the training set and

1https://pdos.csail.mit.edu/archive/
scigen/

2https://spinbot.com
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21,310 records in the test set. Around 69% of all
texts in both sets are “fake”. The code reproduc-
ing some steps of the data generation process is
publicly available (Kashnitsky, 2022).

The data comes from the following sources:

1. MICPRO retracted papers (“fake”). These
are excerpts from a set of retracted papers
of the “Microprocessors and microsystems”
journal (MICPRO). Some of those are ex-
plored in (Cabanac et al., 2021) in the context
of “tortured phrases”;

2. Good MICPRO papers (“real”). Similar ex-
cerpts from earlier issues of the “Micropro-
cessors and microsystems” journal;

3. Abstracts of papers related to UN’s Sus-
tainable Development Goals3 (“real”). Sus-
tainable Development Goals (SDGs) cover
a wide range of topics, from poverty and
hunger to climate action and clean energy;

4. Summarized SDG abstracts (“fake”). These
texts were generated using “pszemraj/led-
large-book-summary” model;

5. Summarized MICPRO abstracts (“fake”).
The same model as above was applied to
MICPRO abstracts;

6. Generated SDG abstracts (fake). These texts
were generated using the “EleutherAI/gpt-
neo-125M” model with the first sentence of
the abstract being a prompt;

7. Generated MICPRO abstracts (fake). The
same model as above was applied to
MICPRO abstracts;

8. SDG abstracts paraphrased with Spinbot
(“fake”);

9. GPT-3 few-shot generated content with the
first sentence of the abstract as a prompt
(“fake”).

We also experimented with back-translated con-
tent, e.g. when the original excerpt is translated to,
say, German and then back to English. We found
that modern translation systems are so advanced
that the back-translated snippets look almost iden-
tical to the originals, hence we rejected the idea of

3https://sdgs.un.org/2030agenda

Source N Source Acc, %
4 summarized_sdg 100
5 summarized_micpro 99.9
8 spinbot_paraphrased 98.9
1 micpro_retracted 97
9 generated_gpt3 95.5
7 generated_micpro 87.3
6 generated_sdg 74
3 sdg_abstracts_original 57.4
2 micpro_original 57.3

Table 1: Validation accuracy split by data provenance
type from Sec. 2. Model: logistic regression with Tf-
Idf text representation.

including such content as “fake”. Repeated back-
translation, especially with under-represented lan-
guages (say, En -> Swahili -> Korean -> En)
might introduce some artefacts and help the back-
translated snippets look "more fake", but we didn’t
conduct such experiments.

3 Competition setup

3.1 Metric and data split

The metric chosen in the competition is average
F1-score. We merged all data sources described
in Sec. 2 (skipping only back-translated content
as almost identical to the original), and performed
a stratified 20/80 train-test split intentionally leav-
ing a small train set. This resulted in 5327 train-
ing records and 21310 test records forming the
datasets described on the competition page4.

3.2 Baselines

As organizers, we provided 2 baselines: Tf-Idf
& logistic regression5 and fine-tuned SciBERT
achieving 82% and 98.3% test set F1 score, re-
spectively.

4 Experiments with data provenance

Given one of the simplest possible baseline mod-
els, namely, Tf-Idf & logistic regression, we ex-
plored model accuracy w.r.t. to data provenance,
i.e. types of content described in Sec. 2.

Table 1 shows validation accuracy for the test
set split by data provenance type, see Sec. 2 for
details. The Tf-Idf & logistic regression model

4https://www.kaggle.com/competitions/
detecting-generated-scientific-papers/

5Kaggle Notebook: https://bit.ly/3dJR9m0
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was trained with 5,327 training records (contain-
ing data from all 9 sources listed in Sec. 2), and
then the predictions were evaluated separately for
each data source, i.e. first for excerpts from re-
tracted MICPRO papers, then for excerpts from
good MICPRO papers, and so on, up to excerpts
of text generated with GPT-3.

We see that summarized content was easily
detected, probably due to peculiarities of the
“pszemraj/led-large-book-summary” summariza-
tion model, e.g. most of the summaries are opened
with “This paper is focused on...” or “In this paper,
the authors ...”. Likewise, SpinBot-generated con-
tent is easily detected, probably because SpinBot
was found to introduce “tortured phrases” (Ca-
banac et al., 2021) and those can be spotted even
with Tf-Idf. Somewhat surprisingly, the model
had no problem with retracted MICPRO content.

The model had most trouble identifying original
human-written content, a possible reason is that
with all the generated content due to class imbal-
ance ( 70% of the data is “fake”), it’s easy to get
false positives when a normal human-written text
is easy to be confused with fake content.

5 Systems Overview

14 teams participated in the task this year, with a
total of 180 submissions. Out of these, 11 teams
managed to beat the publicly shared Tf-Idf & lo-
greg baseline, and 5 teams managed to beat the
fine-tuned SciBERT baseline which was not pub-
licly shared. Three teams submitted peer-reviewed
technical reports, of which two are published as
part of the workshop proceedings. Both teams
managed to achieve >99% test set F1-score.

In “Detecting Generated Scientific Papers using
an Ensemble of Transformer Models” (Glazkova
and Glazkov, 2022) the authors describe an en-
semble of SciBERT, RoBERTa, and DeBERTa
fine-tuned using random oversampling technique.

The winning team led by Domenic Rosati “Syn-
SciPass: detecting appropriate uses of scientific
text generation” (Rosati, 2022) generates a par-
tially synthetic dataset similar to what we as com-
petition organizers had done. Then Rosati shows
that the models trained with the DAGPap22 gener-
alize badly to a new data source. Ablations stud-
ies show that generalization to unseen text genera-
tion models might not be possible with current ap-
proaches. Rosati concludes that the results in his
paper should make it clear that at this point ma-

chine generated text detectors should not be used
in production because they do not perform well on
distribution shifts and their performance on realis-
tic full-text scientific manuscripts is currently un-
known.

6 Discussion

It turned out that the task turned was very easy
to solve, with winners’ models hitting >99% of
the test set F1 scores. Although this suggests that
the task of detecting machine-generated content is
easy, both work done at Elsevier and as reported
by the team led by Rosati convinces us that we are
far from developing a general detector of gener-
ated content. Each new model (say, GPT-4) for
which we don’t have training data poses a new
challenge, and any detector is likely to fail at iden-
tifying content generated with such a model due
to a data shift. In summary, the problem is far
from being solved: at this point we can not rely on
detectors of generated content to support our pro-
duction systems. However, the DAGPap22 shared
task did offer a step forward to explore this chal-
lenging problem, and we hope to work together
with the community on resolving this pernicious
issue.
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Abstract

Approaches to machine generated text detec-
tion tend to focus on binary classification of
human versus machine written text. In the
scientific domain where publishers might use
these models to examine manuscripts under
submission, misclassification has the potential
to cause harm to authors. Additionally, authors
may appropriately use text generation models
such as with the use of assistive technologies
like translation tools. In this setting, a binary
classification scheme might be used to flag ap-
propriate uses of assistive text generation tech-
nology as simply machine generated which is
a cause of concern. In our work, we simulate
this scenario by presenting a state-of-the-art
detector trained on the DAGPap22 with ma-
chine translated passages from Scielo and find
that the model performs at random. Given this
finding, we develop a framework for dataset
development that provides a nuanced approach
to detecting machine generated text by having
labels for the type of technology used such as
for translation or paraphrase resulting in the
construction of SynSciPass. By training the
same model that performed well on DAGPap22
on SynSciPass, we show that not only is the
model more robust to domain shifts but also
is able to uncover the type of technology used
for machine generated text. Despite this, we
conclude that current datasets are neither com-
prehensive nor realistic enough to understand
how these models would perform in the wild
where manuscript submissions can come from
many unknown or novel distributions, how they
would perform on scientific full-texts rather
than small passages, and what might happen
when there is a mix of appropriate and inappro-
priate uses of natural language generation.

1 Introduction

While estimated submission rates of machine gen-
erated scientific papers are still small (Cabanac
and Labbé, 2021), contemporary text generation
models can generate highly fluent scientific text

DAGPap22 SynSciPass Scielo
DAGPap22 99.6 31.4 52.0
SynSciPass 81.3 98.6 65.6
SciBERT 98.3
TF-IDF 82.0

Table 1: F1 scores on the DAGPap22, SynSciPass, and
Scielo datasets including baselines for DAGPap22 (see
Appendix B for model details)

(Generative Pretrained Transformer et al., 2022)
and manuscripts constructed this way could easily
be produced en masse potentially introducing an
unprecedented threat to scientific publishing and
research integrity. Despite this risk, machine gener-
ated text in scientific settings have appropriate uses
such as with assistive technology like translation,
paraphrasing, and speech-to-text (Li et al., 2022). 1

Scientific manuscripts may increasingly use both
appropriate and inappropriate text generation tech-
nologies. If appropriate uses of text generation
cause a manuscript to be flagged or rejected this
could harm populations that might already struggle
with manuscript writing and submission. For in-
stance, even if publisher’s intention is only to guide
editors, misclassified manuscripts can unintention-
ally bias editors decisions. Inspired by Schuster
et al. (2020), we ask whether we can develop a
method that could adequately distinguish between
appropriate and inappropriate uses of text genera-
tion by identifying the category of tool being used
such as for translation or paraphrase.

Alarmingly, our study finds that a DeBERTa v3
(He et al., 2021) detector that achieves state-of-
the-art performance when finetuned on a dataset
designed for detecting generated academic text
(DAGPap22 kag (2022)) does poorly on flagging

1This is not to say that other malicious applications of
these technologies such as disguising plagarism do not exist
or that use of poor quality text generation technologies don’t
introduce problems such as nonsensical phrases (see Cabanac
et al. (2021))
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machine generated text under realistic scenarios
of appropriate text generation (see Table 1 which
shows SciBERT and logistic regression with TF-
IDF baselines trained on DAGPap22 as well as
DeBERTa v3 trained on DAGPap22 and SynSci-
Pass). Since misflagging a manuscript as machine
generated is harmful to the submitting author, we
reframe the problem as detecting the type of tool
used for generating text so that authors and publish-
ers can have a more nuanced and neutral approach
to understanding flagged texts and guiding edito-
rial decisions. We develop a framework to gen-
erate academic texts including labels of the type
of technology being used resulting in our dataset
of synthetic scientific passages (SynSciPass). Sec-
tion 2 explores how this dataset was constructed
and how it could be extended to further improve
robustness under domain shifts. In section 3, we
show training on SynSciPass results in being able
to distinguish the type of technology and how our
reframed task helps us move beyond brittle attribu-
tion tasks that rely on having access to particular
models or the less informative and potentially mis-
leading binary detection task. Finally in section 4,
we show that while models trained on our dataset
are able to improve robustness under domain shifts
for machine generated scientific texts, models for
detecting machine generated scientific text are far
from ready for safe use by publishers. We provide
a roadmap for how to close the gap by focusing
on realistic dataset construction that is designed to
test detectors ability to robustly generalize across
domain shifts.

2 A framework for robust and granular
detection datasets

Previous work on detecting machine generated text
has focused on attribution of text to particular mod-
els (Uchendu et al., 2020; Munir et al., 2021).
These approaches have shown the utility of hav-
ing knowledge of the underlying models for text
generation since by having access to those models
synthetic corpora can be built for the detection of
synthetic text (Liyanage et al., 2022). However
those approaches are limited to attributions on spe-
cific models trained on particular datasets and do
not present a realistic or comprehensive scenario
where models may be trained on different datasets
or models might be unknown. Our framework im-
proves upon model attribution methods by creating
corpora from a variety of distributions with a hier-

archy of labels including parent labels based on the
type of tool used such as for paraphrasing, trans-
lation, or novel text generation. By having access
to the type of tool used, we are able to make more
sophisticated judgments about machine generated
text such as allowing translation and paraphrase as
appropriate uses of text generation while requiring
more scrutiny for fully generated passages. Our
framework consists of (1) proposing a taxonomy
of approaches, model families, and models with
a variety of pretraining or finetuning datasets that
might be used for text generation and (2) sampling
machine generated text from each model in the
taxonomy so that each text can be labeled with a
granular labeling scheme according to (1). By do-
ing so, we hope to be able to attribute generated
text not only to specific models but also model
families and types of technology. With these more
generic labels we are able to determine if mod-
els generalize detection across model families or
across approaches used like if an unseen model for
translation were to be introduced.

2.1 SynSciPass

In order to address these issues we constructed
SynSciPass. For our dataset, we theorized three
potential sources of machine generated text (1)
free-form text generation using generative models
like GPT-2 (2) paraphrase models and (3) transla-
tion models. While other approaches like speech-
to-text or summarization are also likely used in
practice, we restricted to the previously mentioned
three. We also did not consider the use of mul-
titask models like GPT-3 that are able to use in-
context learning to also do paraphrase and transla-
tion (Brown et al., 2020) which future work should
follow up on to understand if different uses of the
same model can be properly distinguished. For
each approach, we selected a variety of models
from different model families in order to try to syn-
thesize a distribution of text generations that might
be found in manuscripts (as have been identified
by Cabanac et al. (2021) and Cabanac and Labbé
(2021)). These included common services a user
might have access to like GPT-2, Spinbot, SCIgen
(cf. Cabanac et al. (2021)) and Google translate
as well state of the art approaches for each source
such as BLOOM for text generation (BigScience,
2022). For each technology type, we also included
at least one model that was trained on a distribu-
tion of scientific text. The final dataset consisted of
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Figure 1: Confusion matrix for multi-class prediction
on SciSynPass test set

110,474 passages of which 99,989 (90.5%) were
not synthetic to introduce more realistic class im-
balance given the estimation that only a few papers
per million are machine generated (Cabanac and
Labbé, 2021). Please reference Appendix A and
B for construction details and Table 4 for full de-
tails on dataset construction including the models
used to generate data and which model family and
technology type they belong to.

3 Reframing synthetic text detection as
multi-class classification for
understanding appropriate use

Beyond making models more robust through pro-
ducing a more comprehensive dataset, our frame-
work reframes binary synthetic text detection as
multi-class classification that asks not “Is this pas-
sage of text synthetic?” but asks “If this passage is
synthetic, how was it created?”. Given that there
are several legitimate uses of text generation tools
in the scientific writing process such as using assis-
tive technology, in practice this reframing could al-
low journal editors to make a more nuanced assess-
ment of potentially synthetic text. For example, if a
passage of text was detected as using a translation
tool, an editor or submitting author can assess if the
translation tool was adequate in conveying mean-
ing or if professional translation services should
be employed during revisions. If a paraphrase tool
was used, editors can assess whether it might have
been used to disguise plagiarism or be the result of
a poor quality tool such as Spinbot which is known
to introduce non-idiomatic phrases (Cabanac et al.,
2021).

Using this approach we trained a multi-class
classifier resulting in a micro-averaged F1 score

of 99.6% (97.4%, 96.9%, 99.8%, and 96.2% per
class F1 for generation, paraphrase, human written,
and translation classes respectively) on our held-
out test set. To illustrate the models performance
we present the confusion matrix in Figure 1 show-
ing that our model does quite well across classes
even with the large class imbalance. Additionally
as seen in Table 1, the model achieves a F1 score
of 81.3% on DAGPap22 which is quite good con-
sidering the different domains and notably is about
the same as logistic regression with TF-IDF despite
not being trained on the DAGPap22 dataset. How-
ever, this might simply be that DAGPap22 contains
a similar underlying distribution. Unfortunately
the distribution of DAGPap22 was not known at
the time of writing preventing us from providing
a nuanced picture of the differences and overlap
between DAGPap22 and SynSciPass.

In order to see how our multi-class model might
generalize across families of text generation mod-
els, we performed an ablation study (Table 2) mea-
suring the performance of DeBERTa v3 trained
on SynSciPass as a whole, DeBERTa v3 trained
on SynSciPass with texts generated by gpt2-arxiv
removed and finally DeBERTa v3 trained on Syn-
SciPass with texts generated by BLOOM removed.
F1 scores were reported on model performance on
each text generate dataset (see Appendix A and B
for details on dataset and model names). In Table
2 we see that removing gpt2-arxiv samples results
in a small drop in average performance from the
model trained on SynSciPass as a whole (96.5 F1
down from 97.0 F1) indicating that when we test
against a seen model trained on a new dataset de-
tectors may still be effective at detecting the type
of technology used. Interestingly removing gpt2-
arxiv samples causes the model to do better on
gpt2 than SynSciPass as a whole (94.4 F1 up from
90.7 F1). This indicates that having access to the
model on a generic domain might be more impor-
tant than having access to a model pretrained on
a specific distribution as has been studied in Ro-
driguez et al. (2022). Along these lines we see
that removing BLOOM drops performance dramat-
ically on BLOOM from 96.3 to 28.0 F1 score fur-
ther indicating that having access to underlying
models are particularly important and that unseen
models may cause detectors to fail. Future work
should try to analyze detection models trained to
generalize across tools with a wider variety of mod-
els including more shifts in underlying pretraining

216



BLOOM distilgpt2 gpt2-arxiv gpt2 SCIgen average
SynSciPass 96.3 100.0 97.9 90.7 100.0 97.0
-gpt2-arxiv 93.5 96.6 97.9 94.4 100.0 96.5
-BLOOM 28.0 97.8 96.8 91.7 100.0 82.9

Table 2: Ablation study reporting F1 scores on each text generation subset using DeBERTa v3 trained on SynSciPass
as a whole, SynSciPass without the samples generated by gpt2-arxiv and SynSciPass without samples generated by
BLOOM. See Appendix A and B for more details.

distribution, a variety of model sizes, different sam-
pling procedures, and introducing unseen models.

4 Out-of-domain Synthetic Passage
Detection

Following poor performance of models trained only
on DAGPap22 on SynSciPass and vice versa (See
Table 1). We wanted to investigate additional do-
main shifts to understand how robust these models
could be in realistic scenarios like seeing new sub-
ject domains or new models as this might give us a
better picture of how these models might perform
in practice. To test robustness over domain shift,
we created an additional dataset by sampling hu-
man written English passages from Scielo (using
Soares et al. (2019)) aligned with human written
Spanish passages that were translated back into
English. This was done to (1) simulate detection
where manuscripts might have used translation and
(2) simulate where the underlying distribution from
Scielo represents a potential stylistic and disci-
plinary shift from the Pubmed and arXiv domains
which have been seen in SynSciPass.

We sampled 1,000 bilingual English-Spanish hu-
man written passages from the Scielo bilingual
scientific texts dataset (Soares et al., 2019). We
kept the human written English passages labeled as
human generated. Then we translated the aligned
human written Spanish passages into English us-
ing Google translate and labeled these as machine
generated. To get a sense of the resulting lexi-
cal overlap between the human and machine trans-
lated passages, the BLEU score was 40.9 where the
overlap between the English passages with them-
selves is a BLEU score of 100.0. We tested the
resulting dataset of 2,000 passages using (1) De-
BERTa v3 trained on DAGPap22 only (DAGPap22)
(2) DeBERTa v3 pretrained on the Pubmed split
of scientific papers and pretrained on the test and
train texts from DAGPap22 and then finetuned on
DAGPap22 only (DAPT-TAPT) (3) DeBERTa v3
trained on SynSciPass only (SynSciPass) (4) De-

BERTa v3 trained on only translations from Syn-
SciPass (SynSciPass (Translation)) (5) DeBERTa
v3 trained with potential confounding factors re-
moved (passages generated by google translate and
passages generated by a model finetuned on sci-
elo) SynSciPass (SynSciPass (Removed)) (6) De-
BERTa v3 trained on both SynSciPass and DAG-
Pap22 (SynSciPass+DAGPap22) (See Appendix B
for full training details). In order to compare the
results fairly, we should be clear that SynSciPass
uses 1 translation model that was finetuned on the
same Scielo dataset (Soares et al., 2019) to back
translate between English and Spanish as well as
Google translate to back translate between English
and Chinese so there may be some confounding
effect of having samples produced by these mod-
els. SynSciPass does not contain any samples from
Scielo itself. In order to address this potential con-
founding factor readers should reference the results
from SynSciPass (Removed) where both of those
sample sets are removed.

In Table 3, we see that DAGPap22 does quite
poorly with an F1 score of 52%, mostly due to
poor recall indicating that a state-of-the-art model
trained on DAGPap22 would perform as if it’s ran-
domly assigning a human generated or machine
generated label on translated material mixed in
with human written passages from the Scielo do-
main. Even though this is somewhat expected given
that DAGPap22 does not contain information about
translations, it is alarming that this is what per-
formance would look like in real life manuscript
flagging systems if manuscripts used translators.

A standard approach to improving robustness
is pretraining on in-domain and expected task
datasets (Gururangan et al., 2020), when utilizing
this (DAPT-TAPT) the model does not do too much
better (57% F1) than the one trained on DAGPap22
only. Models trained on SynSciPass do improve
(up to 66.5 F1 for SynSciPass (Translation)) but
do not perform well enough to be considered safe.
These results indicate that common approaches for
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AURC ↓ F1 ↑ Precision ↑ Recall ↑
DAGPap22 47.9 52.0 49.6 54.6
DAPT-TAPT 49.3 57.0 50.4 65.7
SynSciPass 51.3 65.6 50.2 94.5
SynSciPass (Translation) 41.3 66.5 50.0 99.1
SynSciPass (Removed) 49.6 66.5 50.1 99.1
SynSciPass+DagPap22 45.6 65.6 50.4 93.9

Table 3: Performance of models presented in Section 4 on an out of distribution translation dataset (Scielo
Translations) showing a more than 13 point increase over a model trained on DAGPap22 when using SynSciPass.

machine generated text detection are not robust
against shifts in domain and result in dismal perfor-
mance under a realistic scenario. We also measured
the area under risk-coverage (AURC) (El-Yaniv
and Wiener, 2010) to present what it might be like
if we calibrated our models to only select answers
they are most confident in. For AURC, DAGPap22
actually does better than SynSciPass and DAPT-
TAPT indicating that it’s selective predictions can
be made safer. Not surprisingly SynSciPass (Trans-
lation) achieves the best AURC of 41.3 indicating
that its confidence scores are more meaningful than
the others and would perform best at selective pre-
diction, however this requires knowing where the
test distribution comes from.

5 Limitations

Given the above results it should be clear that ma-
chine generated text detectors in the scientific do-
main are not very robust to realistic domain shifts.
While adding nuance to classifications with the
multi-class classifier and providing a more compre-
hensive dataset enables enhanced robustness, the
approach is still sensitive to even small shifts in
distribution such as using a known model, google
translate in the Scielo case, trained on an unseen
dataset, Spanish to English scientific passage trans-
lation. The major limitation with our framework
is that in order to become more robust we will
have to continue to collect more distributions to
synthesize from and even as we collect a critical
mass of potential distributions of machine gener-
ated text, our results are inconclusive as to whether
models will continue to be more robust to distri-
butions shifts. Our results with BLOOM removed
indicate that generalization to unseen text gener-
ation models might not be possible with current
approaches. Since machine generated text will con-
tinue to approach human-level fluency and new
approaches will continue to be developed, it will

not be tractable to develop a comprehensive dataset
that is representative of the underlying distribu-
tion of machine generated text. Additionally, since
these models are still sensitive to slight shifts in
distribution, we suggest that future work should
shift focus to improving robustness of detection
on out of domain samples such as with selective
prediction or more sample efficient approaches of
collecting data to become robust as in Rodriguez
et al. (2022). In order to accomplish this, future
work should develop a comprehensive suite of tests
to evaluate the effects of domain shifts on detectors.

While a multi-class labeling approach might help
human evaluators of texts understand why a pas-
sage was flagged, this approach should additionally
be extended to provide interpretability on why par-
ticular passages of texts were flagged. This can
be with generating human-like rationales or using
methods similar to GLTR (Gehrmann et al., 2019)
to assist authors and journal editors in understand-
ing places their manuscript might be improved.

Another limitation of both SynSciPass and DAG-
Pap22 is that they both consist of small pas-
sages extracted from scientific texts. Since most
manuscripts are submitted as long texts, we are
not sure how these results would apply to realis-
tic scientific full-texts, especially when those full-
texts include tables, figures, and other non-textual
items. While Rodriguez et al. (2022) does pro-
vide approaches to address this with passage-based
models, future work should still aim to construct
datasets that are more realistic and close to the task
by providing full-text scientific documents that in-
clude layout, figures, and tables. Finally, these
datasets should aim to match the extreme class
imbalance that has been observed in real world dis-
tribution of machine generated texts identified in
Cabanac and Labbé (2021).
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6 Related Works

Jawahar et al. (2020) outlines many recent ap-
proaches to detecting machine generated text in
a variety of domains. The closest to our approach
is attribution models that attempt to use a stylo-
metric approach for uncovering the authorship of
a text where the author is a particular model or
particular model using a particular dataset (Jones
et al., 2022; Munir et al., 2021). Our approach is
unique in that it focuses on attribution of general
classes of tools such as translation, paraphrase, and
generation rather than specific models.

While we agree in principal with criticisms of
the stylometric approaches that seek to center the
veracity and coherence of texts (Dou et al., 2022;
Schuster et al., 2019), as text generation models
improve, the factuality and fluency gap between
machine and human generated text will get smaller
and smaller and methods that utilize veracity and
coherence will no longer work 2. Additionally,
many humans make errors and write poor quality
manuscripts so we do not feel like this is a good
criterion for detecting machine generated texts but
should be clearly separated as an equally important
but orthogonal task of understanding the quality
of scientific texts. Similarly, we are skeptical of
approaches like MAUVE (Pillutla et al., 2021) that
rely on distributional artifacts produced by machine
generated texts since as text generation models ma-
ture the gap between human and machine distribu-
tions will also close.

Rodriguez et al. (2022) is the closest to our work
in examining the effects of domain shifts in detect-
ing machine generated scientific texts showing that
detectors do not generalize well when subject do-
mains shift from physics to biomedicine. While
they show that generating even a small number
of samples in another domain improves detection,
their work is limited to only GPT-2 making their
findings reliant on having access to the underlying
models. Data augmentation like we used is a com-
mon strategy shown to improve the robustness of
models in NLP (Wang et al., 2022) and is common
for examining text generation model attribution
in detecting machine generated text since we have
access to the underlying text generation models dur-
ing analysis (Uchendu et al., 2020). Finally, recent
work has examined the robustness of these mod-

2Clark et al. (2021) find that humans already cannot reli-
ably distinguish between human and machine generated text
produced by GPT-3)

els (Gagiano et al., 2021; Wolff, 2020) but these
methods focus on robustness to adversarial attacks
such as homoglyphs and misspellings rather than
robustness to domain shifts and generalization to
unseen models which is studied in this work and
which we understand as area with the most promise
for both understanding and improving detectors.

7 Ethics Statement

The results in this paper should make it clear that at
this point machine generated text detectors should
not be used in production because they do not per-
form well on distribution shifts and their perfor-
mance on realistic full-text scientific manuscripts is
currently unknown. Further development is needed
on both interpretable and robust detection methods
as well as better datasets that are both realistic (such
as including full-texts rather than passages) and
varied (including comprehensive samples across
scientific disciplines). Because erroneously detect-
ing a manuscript as machine generated is a high
harm activity, future work should continue more
nuanced harm-reduction approaches to synthetic
paper detection like the ones introduced in this pa-
per.

8 Data Availability

The final constructed dataset, SynSciPass,
source code, and models are available at
https://github.com/domenicrosati/
synscipass.

9 Conclusion

Given our findings, we envision future work along
three lines (1) developing machine generated text
detectors that are robust across domain shifts and
developing realistic datasets that test this robust-
ness comprehensively (2) developing methods of
interpretability that help editorial teams detect and
manage the use of both appropriate and inappro-
priate use of text generation models (3) discussion
about the safe and ethical application of these tech-
nologies and the potential harm involved in their
deployment when use cases such as assistive tech-
nology are not considered.

We introduced a framework for collecting
datasets to improve the robustness and interpretabil-
ity of detecting machine generated text in the sci-
entific domain. By developing a comprehensive
dataset, SynSciPass, we were able to show that
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models trained on it were not only more robust un-
der domain shifts but also that those models were
able to detect the generic type of text generation
technology such as for translation, paraphrase, or
novel generations which could help understand if
a passage was generated by appropriate or inap-
propriate means. Despite these findings, our work
has also shown that current models, including our
own, do not perform well in realistic scenarios that
change the distribution of text seen. Because of
this lack of robustness, we suggest that future work
concentrate on formulating both datasets and ap-
proaches that comprehensively test machine gener-
ated text detectors in a wide variety of realistic and
unseen scenarios.
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A Construction of SynSciPass

SynSciPass was constructed using 100,000 pas-
sages that were randomly sampled from the sci-
entific papers dataset (Cohan et al., 2018). Each
passage was between 2 and 10 sentences randomly
sampled from the full-text of single publication
from both the arXiv and Pubmed training splits
with a resulting mean token length of 142 tokens
roughly matching the 140 token mean of the DAG-
Pap22 dataset. From these passages 1,000 items

were randomly sampled (with replacement) for
each model found in Table 4. Passages that were
constructed using BLOOM and GPT-2 proceeded
following the approach of (Liyanage et al., 2022)
where the first sentence of the real passage was used
as the prompt to construct the synthetic passage,
subsequent generations were used to re-prompt the
model to sample passages between 2 and 10 sen-
tences. The first sentence from the real passage
was then removed. For these models greedy de-
coding with a temperature of 1.0 was used. For
SCIgen, 1,000 papers were generated and then a
random passage of between 2 and 10 sentences was
extracted from each one. For the paraphrase mod-
els, a randomly sampled passage from the human
written passages were sent through a paraphrase
tool. For the translation models, a human written
passage was sent through the translation tool into
a target language and then back translated into en-
glish. For all models generations, text similarity
was measured between the original passage and the
synthesized example, if the sample was more than
10% similar it was not kept. This does simplify
the problem and make the data less realistic as it
removes synthetic passages that have a high lexical
overlap with reference passages which might be
common with inapporiate uses such as masking
plagarism. The final dataset consisted of 110,474
passages of which 99,989 (90.5%) were human
written. This was done to try to match the extreme
class imbalance that has been observed on synthetic
scientific papers in the wild (Cabanac and Labbé,
2021). The final dataset was split by 80%/10%/10%
into train, validation, and test sets.

B Training details on models used

For this work, all of our classification models
were trained by finetuneing DeBERTa v3 large (He
et al., 2021) using the following hyperparameters:
adamW optimizer, learning rate of 6e-6, batch size
of 8, weight decay of 0.01 with warmup steps of 50.
All classification models were trained for 3 epochs.
For the domain adaptive pretraining (DAPT) model,
we further pretrained using the parameters men-
tioned above with a masked language modeling
objective on the Pubmed train split from the scien-
tific papers dataset (Cohan et al., 2018) using 128
token chunks for 5 epochs. For the task adaptive
pretraining (TAPT) model, we used the same ap-
proach with 5 epochs on the DAGPap22 dataset.
Details of the SciBERT and logistic regression TF-
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type model family model passages
generate bloom bloom 1073

gpt2 GPT-2-arxiv_generate 998
distilgpt2 998
gpt2-medium 998

SCIgen SCIgen 822
paraphrase pegasus pegasus-xsum-finetuned-paws* 1000

pegasus-xsum-finetuned-paws-parasci* 1000
spinbot spinbot 990

real real real 99064
translate google_translate google_translate 901

opus opus-es-en 794
opus-es-en-scielo* 901

Table 4: Approaches used for data augmentation and number of passages generated. Models with an asterisk were
trained by the authors. Spinbot, SCIgen, and google translate are the names of the services used available online.
The rest of the models are or will be made available on the huggingface repository under those names.

IDF model baselines were not made available at
the time of writing this paper.
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Abstract

The paper describes neural models developed
for the DAGPap22 shared task hosted at the
Third Workshop on Scholarly Document Pro-
cessing. This shared task targets the au-
tomatic detection of generated scientific pa-
pers. Our work focuses on comparing differ-
ent transformer-based models as well as using
additional datasets and techniques to deal with
imbalanced classes. As a final submission, we
utilized an ensemble of SciBERT, RoBERTa,
and DeBERTa fine-tuned using random over-
sampling technique. Our model achieved
99.24% in terms of F1-score. The official eval-
uation results have put our system at the third
place.

1 Introduction

State-of-the-art natural language processing
(NLP) tools generate high-quality texts that could
hardly be distinguished from human-written texts.
This represents a remarkable achievement in
modern science, but raises challenges in terms
of detecting machine-generated texts. Detection
of automatically generated texts is crucial for
many NLP tasks, in particular, for prevention
of spreading fake scientific publications and
citations (Else et al., 2021). Here we focus on
the task of detecting automatically generated
scientific excerpts as a part of the Third Workshop
on Scholarly Document Processing shared tasks.
The source code that we used for fine-tuning our
models as well as additional data generated by us
are freely available1.

The work is based on the participation of our
team in the DAGPap22 shared task. The objec-
tive of the task is to detect automatically gen-
erated papers in terms of a binary classification
task. This task is challenging due to the develop-
ing models for text generation and wide spread-

1https://github.com/oldaandozerskaya/
DAGPap22

ing of untruthful content on the internet. To
date, language models for generating texts are
widely used in the scientific domain, for example
for producing long and short summaries (Ghare-
bagh et al., 2020; Cachola et al., 2020; Takeshita
et al., 2022), citation texts (Xing et al., 2020; Ge
et al., 2021), keyphrases (Glazkova and Moro-
zov, 2022; Chowdhury et al., 2022), peer reviews
(Yuan et al., 2021). The scientific community
has held several machine learning competitions to
identify machine-generated texts in different do-
mains (Uchendu et al., 2021; Shamardina et al.,
2022).

The paper is organized as follows. We provide
the dataset and task description in Section 2. In
Section 3, we describe our experiments during the
development phase and report the official results.
Section 4 concludes this paper.

2 Task Overview

2.1 Task Definition

The objective of the task is to identify whether
a text is automatically generated. Therefore, the
task represents a binary classification problem, the
purpose of which is to split the given texts into two
mutually exclusive classes. Formally, the problem
is described as follows.

• Input. Given a scientific excerpt.

• Output. One of two different labels, such as
"human-written" or "machine-generated".

2.2 Data

The original training set contains 5350 excerpts
from a scientific papers, among which 1686 are
human-written and 3664 are machine-generated.
The test set includes 21403 excerpts. The text cor-
pus is based on the work by Cabanac et al. (2021),
as well as fragments collected by Elsevier publish-
ing and editorial teams. The statistics is presented
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in Table 12. Table 2 contains some examples of
automatically generated texts.

Characteristic Train Test
Avg number of words 157.4 158.37
Min number of words 51 51
Max number of words 1895 1784
Avg number of sentences 5.8 5.75
Min number of sentences 1 1
Max number of sentences 63 68

Table 1: Data statistics.

ID Excerpt
23 Electronic nose or machine olfaction are

systems used for detection and identifica-
tion of odorous compounds and gas mix-
tures Electronic nose or machine olfaction
are systems used for detection and iden-
tification of odorous compounds and gas
mixtures. Olfactors, e.g. motorbikes, are
used for odor detection. These devices do
not detect volatile agents or gas mixtures,
and cannot be used for quantitative odor
determination.

55 For the low price of coal and ineffec-
tive environmental management in min-
ing area, China is in the dilemma of the
increasing coal demand and the serious
environmental issues in mining area For
the low price of coal and ineffective en-
vironmental management in mining area,
China is in the dilemma of the increasing
coal demand and the serious environmen-
tal issues in mining area.

242 The motivation behind this paper is to
answer analysis of the past portrayals of
Sandler and Smith of the numeraire in an
intertemporal investigation of Pareto ef-
fectiveness conditions. This reevaluation
recommends that the job of the numeraire
is demonstrated to be less obvious than
Cabe infers. In addition, the examination
shows that the prior ends are not critically
subject to the numeraire presumption.

Table 2: Examples of generated texts from the official
training set.

2The number of words and sentences was defined using
NLTK (Bird, 2006)

3 Our Work

3.1 Models

Model Value
Vocabulary (K)

SciBERT 30
RoBERTa 50
DeBERTa 50
Backpone Parameteres (M)
SciBERT 110
RoBERTa 355
DeBERTa 350

Hidden Size
SciBERT 768
RoBERTa 1024
DeBERTa 1024

Layers
SciBERT 12
RoBERTa 16
DeBERTa 24

Table 3: Hyperparameteres of the considered BERT-
based models (SciBERTbase−cased, RoBERTalarge,
and DeBERTalarge).

In this work, we used neural models based
on Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) be-
cause they showed high results in the scientific do-
main (Glazkova, 2021; Pan et al., 2021; Zhu et al.,
2021). We experimented with the following mod-
els, the overview of which is presented in Table
3:

• SciBERTbase−cased (Beltagy et al., 2019), a
BERT-based model that is pretrained on the
texts of papers taken from Semantic Scholar.

• RoBERTalarge (Liu et al., 2019), a modifi-
cation of BERT that is pretrained using dy-
namic masking.

• DeBERTalarge (He et al., 2020), a model that
is pretrained using disentangled attention and
enhanced mask decoder.

To evaluate our models during the development
phase, we performed 3-fold cross-validation on
the training set. The results were evaluated in
terms of macro-averaged F1-score (F1), precision
(P), and recall (R).
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Model P R F1
SciBERT128 96.19 94.69 95.38
SciBERT256 97.58 96.49 96.99
SciBERT512 97.84 97.16 97.49
RoBERTa 96.54 94.89 95.65
DeBERTa 97.35 97 97.17
SciBERT512 + oversampling 98.2 97.92 98.06
SciBERT512 + undersampling 97.07 95.42 96.15
SciBERT512 + class weighting 98.05 97.81 97.93
RoBERTa + oversampling 96.92 96.5 96.7
RoBERTa + undersampling 95.55 92.83 93.89
RoBERTa + class weighting 96.62 96.49 96.56
DeBERTa + oversampling 97.51 96.61 97.04
DeBERTa + undersampling 95.62 93.04 94.13
SciBERT512 + KP20K (BT) + oversampling 97.65 98.18 97.91
SciBERT512 + KP20K (GPT-2) + oversampling 97.16 97.03 97.07
SciBERT512 + original (BT) + oversampling 97.44 97.75 97.59
SciBERT512 + original (GPT-2) + oversampling 97.56 98.15 97.84
RoBERTa + KP20K (BT) + oversampling 96.86 96.48 96.66
RoBERTa + KP20K (GPT-2) + oversampling 96.49 95.2 95.8
RoBERTa + original (BT) + oversampling 96.56 95.99 96.26
RoBERTa + original (GPT-2) + oversampling 96.12 96.12 96.12
DeBERTa + KP20K (BT) + oversampling 96.76 97.03 96.89
DeBERTa + KP20K (GPT-2) + oversampling 94.16 95.86 94.95
DeBERTa + original (BT) + oversampling 96.51 96.7 96.59
DeBERTa + original (GPT-2) + oversampling 96.58 96.94 96.76

Table 4: Results (%, development phase).

3.2 Experiments
We adopted pretrained models from Hugging-
Face (Wolf et al., 2020) and fine-tuned them us-
ing SimpleTransformers3. We fine-tuned each
pre-trained language model for three epochs with
the learning rate of 2e-5 using the AdamW op-
timizer (Loshchilov and Hutter, 2017). We set
batch size to 16 and used the sliding window tech-
nique to prevent truncating longer sequences. We
utilized the maximum sequence length equal to
128, 256, and 512 for SciBERT (SciBERT128,
SciBERT256, and SciBERT512 respectively) and
128 for RoBERTa and DeBERTa due to the lim-
ited computing resources. Similar to our previous
work (Glazkova et al., 2021), we used raw texts as
an input.

Since the corpus provided by the organizers
is imbalanced, we explored several techniques to
handle imbalanced data. Namely, we used a) ran-
dom oversampling, b) random undersampling, c)
class weighting, d) generating new data. Ran-

3https://simpletransformers.ai

dom oversampling and undersampling are imple-
mented using the Imbalanced-learn library4. To
generate new data, we experimented with the orig-
inal corpus and the fragment of the KP20K dataset
(Meng et al., 2017). KP20K is a large-scale schol-
arly papers dataset for keyphrase extraction con-
taining 568K papers with their abstracts. To pro-
duce new machine-generated data, we utilized two
techniques for text generation: a) Back Transla-
tion (BT)5 through Googletrans6, and b) zero-shot
generation by prompting GPT-2 (Radford et al.)
and specifying the maximum number of generated
tokens equal to the number of tokens in the source
text (see Figure 1 for example).

The results are presented in Table 4. In our ex-
periments, the model fine-tuned on longer input
sequences (SciBERT512) performed better than
other baselines despite the use of the sliding win-

4https://imbalanced-learn.org
5https://github.com/hhhwwwuuu/

BackTranslation
6https://py-googletrans.readthedocs.

io/en/latest
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Figure 1: Example of generating new data using BT and GPT-2.

dow technique. Due the processing of class im-
balance, we found that oversampling and class
weighting increase the performance of the models
while undersampling produces lower results. Fur-
ther, we experimented with using additional data.
First, we made an attempt to add scientific ab-
stracts from KP20K utilizing texts of 1000 random
abstracts and 1000 texts generated by BT or GPT-2
and than perform oversampling. Second, we tried
to produce new examples of machine-generated
excerpts from the dataset provided by the organiz-
ers of the competition. We generated 1000 exam-
ples using BT and GPT-2, added them to the train-
ing set, and finally performed oversampling. The
use of additional data showed no increase com-
pared to the models fine-tuned with oversampled
texts.

3.3 Results

During the evaluation phase, we experimented
with the hard and soft voting ensembles of
transformer-based models. The results were eval-
uated on the official test set. Our best submis-
sion is an ensemble of SciBERT, RoBERTa, and
DeBERTa fine-tuned using random oversampling
technique. The confusion matrix for this solution
is presented in Figure 2. The ensembling of pre-
dictions was performed at two levels:

1. Model level, i. e. soft voting calculated for
three models of the same type fine-tuned with
different random seeds.

2. Ensemble level, i. e. hard voting for the la-
bels produced by the models of different type.

Table 5 shows the comparison of our best solu-
tion to the official scores from the private leader-

Figure 2: Confusion matrix for our model.

board of the competition7. In this competition,
only five models outperformed the baseline pro-
vided by the organizers. Our model achieved
99.24% of F1-score and ranked the third place of
the leaderboard for this task.

Run name F1
Our solution 99.24
Stronger benchmark 98.32
Tf-Idf & logreg benchmark 82.04
Average scores 92.96

Table 5: Official results (%, private leaderboard).

4 Conclusion

In this work, we have explored the application
of BERT-based models to the task of detecting
machine-generated scientific texts. We have eval-
uated several techniques for handling imbalanced
data and compared three models in a variety of
settings. Our results on the test data showed that

7https://www.kaggle.com/competitions/
detecting-generated-scientific-papers
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the ensemble of different transformer-based mod-
els outperforms other our submissions and strong
baselines. Moreover, our final model ranked third
in this task.

A further study could explore the state-of-the
art-in detecting automatically generated papers for
other languages and multilingual corpora. An-
other future direction is to continue our experi-
ments with generating new data to improve the
classification performance.
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Abstract

In this paper, we provide an overview of the SV-
Ident shared task as part of the 3rd Workshop
on Scholarly Document Processing (SDP) at
COLING 2022. In the shared task, participants
were provided with a sentence and a vocabu-
lary of variables, and asked to identify which
variables, if any, are mentioned in individual
sentences from scholarly documents in full text.
Two teams made a total of 9 submissions to
the shared task leaderboard. While none of
the teams improve on the baseline systems,
we still draw insights from their submissions.
Furthermore, we provide a detailed evaluation.
Data and baselines for our shared task are
freely available at https://github.com/
vadis-project/sv-ident.

1 Introduction

Social science publications often use and reference
survey datasets, containing hundreds or thousands
of questions, using so-called survey variables.1

While publications may focus only on a specific
subset of these variables, explicit references are
usually missing: the lack of explicit links between
survey variables and publications, in turn, limits ac-
cess to research along the FAIR principles (Wilkin-
son et al., 2016). To address this issue, we propose
a task where variable mentions in unstructured doc-
uments are linked to items from a catalog of sur-
vey research datasets using Natural Language Pro-
cessing (NLP) methods. Automatically identifying
which variable is mentioned in a given text is chal-
lenging due to the diverse linguistic realizations
of variables (Zielinski and Mutschke, 2018). A
short example text is shown in Figure 1. All three

1In the following, we use the terms survey variable and
variable interchangeably.

QD3_1

EU CITIZENSHIP:


FEEL TO BE EU CITIZEN


QD2_3

ATTACHMENT TO:

EUROPEAN UNION

In the subsequent section, we focus on
two theoretical concepts - mere exposure
and hostile media perceptions - both of
which have not been employed within the
context of European identity.

The dependent variable (identity) was
operationalized by two indicators: Citizens
were asked to answer the following
question: “Please tell me how attached
you feel to the European Union” by using
a scale from 1 (not attached at all) to 4
(very attached).

Furthermore, the item “You feel you are a
citizen of the EU” was used in index
building.


...

Figure 1: Example of explicit (blue) and implicit (red)
variable mentions in sentences from a social science
article (source: Ejaz et al. (2017)) mapped to survey
variables. Lines with arrows show contextual depen-
dence. Linked variables: QD2_3 and QD3_1.

sentences mention and are linked to relevant vari-
ables. The first sentence mentions three concepts:2

mere-exposure effect, hostile media perceptions,
and European identity. The first two concepts are
defined later in the text (we omit their links in this
example), while the latter is defined in the bot-
tom two sentences in the figure. The second and
third sentences both are explicit mentions, as they
include direct quotations of variable questions. Ide-
ally, a system should link relevant variables to each
of the sentences in the example. Specifically, when
only provided the given context, it should link the
first sentence to the variables QD2_3 and QD3_1,
the second sentence to QD2_3, and the third sen-
tence to QD3_1. A larger variant of the example is
provided in Figure 3 in the Appendix.

The Survey Variable Identification3 (henceforth,

2Concepts that have been operationalized by variables are
also treated as variables throughout this work.

3https://vadis-project.github.io/
sv-ident-sdp2022/
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SV-Ident) shared task aims at promoting the devel-
oping of systems that can identify variables within
the text of scholarly publications from the social
sciences in different languages (initially, we focus
here on English and German). The shared task
is divided into two sub-tasks: a) Variable Detec-
tion and b) Variable Disambiguation. The former
deals with identifying sentences that contain vari-
able mentions, while the latter focuses on linking
the correct variables mentioned in a sentence. Vari-
able mentions are often implicit (e.g., sentences
1 and 3 in Figure 1), and understanding when a
variable is mentioned may require contextual infor-
mation as well as knowledge from external sources
(e.g., a variable vocabulary). Since annotating sci-
entific texts requires domain knowledge, training
data is costly to create and thus scarce. To over-
come these limitations, NLP systems, e.g., mod-
els using pre-trained language models (PLMs) and
transfer learning are promising technologies to use.

In this paper, we report the results on the first edi-
tion of the SV-Ident shared task. Two teams made
a total of 9 submissions to the leaderboard. One of
the teams developed systems for both sub-tasks and
submitted a system description paper. While none
of the teams improve on the baselines, we use the
submissions provided by the teams to collect a few
initial findings on the difficulties and challenges of
the SV-Ident task. Crucially, we find that there is a
difference between the performance on two types
of variable mentions: explicit and implicit. Implic-
itly mentioned variables (sentence 1 in Figure 1)
are significantly more difficult to detect and dis-
ambiguate, as they require contextual knowledge.
This opens up new research questions for future
work, such as, for instance: can implicit mentions
of survey variables be further categorized into finer-
grained classes or can co-reference resolution be
used to link variable mentions across different parts
of a document? In order to foster future research on
this task, we release all of our code to reproduce the
analysis results and the annotation guidelines for
creating the dataset at https://github.com/
vadis-project/sv-ident.

The remainder of this paper is organized as fol-
lows: we provide an overview of the dataset used
in §2. In §3, we describe the task definition and
evaluation metrics. We present the submitted sys-
tems in §4 and provide a detailed analysis of the
results in §5. We briefly discuss related work in §6
and frame the shared task into a broader context

in §7. Finally, we summarize the shared task and
propose future work in §8.

2 Data

The SV-Ident 2022 shared task has been conceived
in the context of the VADIS project4 and organized
as part of the third Workshop on Scholarly Doc-
ument Processing (SDP) (Chandrasekaran et al.,
2020), co-located at the 2022 International Confer-
ence on Computational Linguistics. In the follow-
ing, we describe the data collection process and the
dataset used for the shared task.

2.1 SV-Ident Corpus

The SV-Ident Corpus contains publicly-available
scientific publications from the Social Science
Open Access Repository (SSOAR)5 in full text.
To collect the corpus, we first filter the 5,000 most
popular research datasets using search logs from
GESIS Search.6 We then retrieve the publications
linked to these datasets as our candidate set. Fi-
nally, only those publications that had at least one
associated research dataset with indexed variables
on the GESIS Search platform are retained. This
results in 285 documents from the original set of
120k publications. For this set of candidates, we
then select 44 documents for annotation, which in-
clude the most popular ones as well as publications
linked to variable vocabularies of different sizes.

Each document in our dataset has been annotated
in PDF format using the INCEpTION software
(Klie et al., 2018) by two domain experts (graduate
students trained in the social sciences). Annotators
are provided with the whole document and asked
to label all sentences that contained variables, in-
cluding the variables the sentences mentioned. We
first conduct two calibration rounds, for which an-
notators are given 50 two-page documents from
the dataset collected by Zielinski and Mutschke
(2018). Afterwards, the selected 44 documents are
annotated in three annotation rounds over a period
of 8 weeks (on average, each annotator spent be-
tween 1-2 hours on each document). Texts are then
extracted, and all parsing errors are manually cor-
rected. Common errors include sentence breaks
(due to incorrect splitting of abbreviations, such as
et al. or i.e.), page breaks (due to improper han-
dling of footnotes), and missing spaces between

4https://vadis-project.github.io/
5https://www.gesis.org/ssoar/home
6https://search.gesis.org/
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{'doc_id': '55534',

 'is_variable': 1,

 'lang': 'en',

 'research_data': ['ZA5876'],

 'sentence': 'The respondents were asked, “Do

              you think that the [national]-

              television present(s) the EU to

              opositively, objectively, or too 

              negatively?”',

 'uuid': '39238aee-2d44-4aa9-999f-eb597a1f0da9',

 'variable': ['exploredata-ZA5876_Varqc3b',

              'exploredata-ZA5876_Varqe11_1',

              'exploredata-ZA5876_Varqc3a',

              'exploredata-ZA5876_Varqe11_3']}

Figure 2: Example sentence with provided metetadata
and labels.

words. Because annotators have access to all parts
of the document at once, the annotation setup al-
lows the use of document-level knowledge to infer
sentence-level labels.

The annotations include the variable IDs that are
mentioned in a text from a set of possible candi-
dates, confidence scores for the annotations, and,
for the test set, annotators also classified each men-
tioned variable into an explicit or an implicit men-
tion (examples of explicit and implicit mentions
were both found in the annotation guidelines). We
generally define explicit mentions as those which
do not require contextual information to be labeled
correctly. The opposite is true for implicit men-
tions.

2.2 SV-Ident Shared Task Dataset

When annotating, the set of candidate variables
is potentially made up of all variables from the
research datasets linked to a publication on the
GESIS platform: this set usually contains hun-
dreds or thousands of variables, thus making the
annotation task impractical and hard to scale. To
help reduce the size of the set of possible sur-
vey variable labels, annotators are provided with a
tool to find matches using different methods. The
first method uses an ensemble of four sentence-
transformer models to predict the top 20 variables
that are semantically most similar to the reference
sentence for each model. The annotators receive
recommendations for variables for which at least
two models predict them to be in the top 20 results.
The second method allows annotators to search us-
ing a method of matching strings approximately
rather than exactly: specifically, we use the Token
Set Ratio metric, which compares the number of in-
sertion and deletion operations for unique and com-

English German Total
Train 1,882 1,941 3,823
Dev 209 216 425
Test 944 780 1,724
Total 3,035 2,937 5,972

Table 1: Total number of sentences in the SV-Ident
shared task dataset per language for each dataset split.

mon words between the strings to be compared.7

The last method simply provides annotators with
the full list of variables to manually search through.
All three methods have their drawbacks. The first
two might fail to recommend valid variables for
cases with high linguistic variation, vagueness, or
infrequent words, while the last may provide anno-
tators with a search space that is too large. While
we do not control for such possible failures, future
work may draw insights from the analysis of the
annotations.

The dataset for the shared task is a subset of
the SV-Ident corpus. More specifically, 14 out
of the 44 annotated documents from the SV-Ident
Corpus are additionally filtered out due to missing
links to research data, incorrect annotations, or PDF
parsing errors, leaving 30 documents in total. The
dataset consists of 18 documents (7 English and 11
German) for the training and development sets and
12 documents (6 for each English and German) for
the blind test set.

An example of a sentence and its metadata, in-
cluding annotated labels from the dataset, is shown
in Figure 2. Each instance in our dataset contains: a
document ID (doc_id); a binary label (is_variable),
where a value of 1 implies that the sentence con-
tains a variable; the language of the sentence (lang);
a list of document-level linked research datasets (re-
search_data); the sentence (sentence); a unique ID
(uuid); and a list of annotated variables (variable).
Raw sentence counts for each of the dataset splits
are provided in Table 1. Since the test set contains
more English sentences, during evaluation, we com-
pute the mean of the scores for each language for
the competing systems (see §5 for more details).
In total, there are 3,823 training, 425 validation,
and 1,724 test sentences. English and German sen-
tences are roughly evenly distributed at 3,035 and
2,937 instances for each language, respectively.

7We use the RapidFuzz library (https://github.
com/maxbachmann/RapidFuzz) to match relevant vari-
ables given a search query.
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Task / Metric English German
Detection

0.48 0.46
(Cohen’s κ)
Disambiguation

0.08 0.08
(Krippendorff’s α)

Table 2: Inter-annotator agreement scores. We use
Cohen’s Kappa for Task 1 (detection), while Krippen-
dorff’s Alpha is used for Task 2 (disambiguation).

Type Count
Total # variables (vocab. size) 27,365
# annotated variables (tokens) 11,356
# uniquely used Variables (types) 1,165

Table 3: Vocabulary size, variable types, and tokens in
our SV-Ident dataset.

Because of the challenging nature of the annota-
tion task, we join the annotated instances of vari-
able mentions and link variables of each annota-
tor. We provide agreement scores between annota-
tors for English and German instances separately
(Table 2). We calculate the Cohen’s Kappa score
for agreement on Variable Detection. The scores
for both English and German range between 0.46
and 0.48, which indicate that there is a moderate
agreement. For Variable Disambiguation, we use
Krippendorff’s Alpha. Both languages have an
agreement score of 0.08, which implies that the
agreement is close to random. One reason for such
low agreement is the large number of possible vari-
ables to choose from, given that the total vocabu-
lary size for all the documents is very large (27,365
variables that are often similar). The annotators
labeled 1,165 unique variables (around 4% of the
vocabulary) a total of 11,356 times (Table 3). In
the future, we plan to analyze this disagreement
with respect to the choice of variables further.

Looking at the document-level, variables occur
with different frequency in different documents
(shown in Table 4). The size of the variable vocab-
ulary (i.e., the subset of all variables, containing
only the variables from the research datasets that
are linked to a publication) related to a publication
ranges from 64 to 5,733. The number of annotated
variables is at least 13 and at most 1,204 for En-
glish, and for German 20 and 1,143, respectively.
The number of uniquely annotated variables is at
most 153. In the final analysis, we investigate at
which ratio sentences of a document are annotated.
While the annotation ratio is at least 7%, it is at

Type English German
Min Max Min Max

Rel. Variables 134 3,062 64 5,733
Variable tokens 13 1,204 20 1,143
Variable types 4 153 5 54
(%) Annt. Sent. 7 80 12 86

Table 4: Maximum and minimum number of related
variables, annotated variables, and the ratio of annotated
sentences for each document in English and German.

most 86% for relatively dense documents.8

In addition to document-level differences, vari-
ables may require contextual knowledge to be dis-
ambiguated. Based only on the test set, annotators
agree that 242 sentences had explicit, 13 implicit,
and 18 both types of mentions. At the fine-grained
annotator-level, the first annotator labeled close to
37% more implicit than explicit mentions, while
the second labeled nearly thirteen times as many
explicit as implicit mentions. Given that we did not
conduct calibration rounds on this specific concept,
annotators may not have shared the same under-
standing, since this distinction was introduced only
in the third round of annotations. Future work
will focus on further analyzing and validating the
annotations. We make our dataset available on
GitHub as well as on HuggingFace.9 In addition,
we also release, as the trial dataset, the data that
were originally created by Zielinski and Mutschke
(2018) (while the annotation procedure does not
follow the same guideline, the data can be used
as additional training data). Notably, consecutive
sentences mentioning the same variable as well as
vague variable mentions were not annotated in the
trial data. We manually filter the trial data, after
which, 446 English and 573 German sentences re-
main in the training set and 87 and 111 in the test
set for each language, respectively.

3 Experimental Setup

The task of SV-Ident deals with identifying vari-
able mentions in a text. For simplicity, the task is
formulated as a sentence-level task, but can also
be solved using document-level information (in-
line with the data annotation process). The shared
task is decomposed into two sub-tasks: Variable
Detection and Variable Disambiguation, where the

8Variable-dense documents are usually short in our dataset.
9https://huggingface.co/datasets/

vadis/sv-ident
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former task can be used to help filter candidate
sentences for the latter.

3.1 Tasks

Task 1: Variable Detection. The first task can
be seen as a binary text classification task. More
formally, given a set of texts T (in our case, sen-
tences), for each t, where t ∈ T , systems should
predict the binary label l ∈ [0, 1] for t, where a
value of 1 implies that t mentions a variable.

Task 2: Variable Disambiguation. The second
task can be viewed as an information retrieval (IR)
task, where the goal is to identify all relevant docu-
ments (i.e., variables) for a given query (i.e., input
sentence). More formally, given a set of queries
Q that mention variables, where Q ⊆ T , and the
set of all documents D (in our case, variables), for
each q, where q ∈ Q, systems should predict the
subset of documents D′ that are mentioned in q,
where D′ ⊆ D.

3.2 Evaluation Metrics

To evaluate systems, we use standard text classifi-
cation and information retrieval evaluation metrics.
For the first task, systems are evaluated using the
standard F1 −macro score averaged across lan-
guages and documents. F1−macro is defined as
follows:

F1 =
1

N

n∑

n∈N
F1n

=
1

N

n∑

n∈N

2PnRn

Pn +Rn
, (1)

where P and R are the precision and recall scores,
respectively. The F1−macro averages the scores
for P and R across classes (i.e., scores are com-
puted for each class separately and each is weighted
equally). For the second task, systems were eval-
uated using the (Mean) Average Precision (MAP)
score with a recall cutoff value of 10 (denoted as
MAP@10). Average Precision (AP) measures the
average of the precision scores at each relevant
item returned (i.e., recall level) in a search result
set. MAP is the mean of the AP scores when com-
puted across more than one query. MAP considers
the ranking position of each relevant document. It
further assumes that a user desires to retrieve many

relevant documents. MAP is defined as follows:

MAP@K =
1

N

n∑

n∈N
AP@Kn

=
1

N

n∑

n∈N

1

K

k∑

k∈K
P@k, (2)

where P is the precision score, K the recall level,
and N the number of queries. We choose MAP
over accuracy, because MAP incorporates the rank
of the predicted document, which accuracy ignores.
In a realistic use-case, a user may be interested in
being recommended up to K relevant variables per
sentence. While we did not empirically test what
value of K would be most suitable for a user, we
choose K to equal 10, since 95% of all sentences
are labeled with up to 10 variables. In addition to
F1−macro and MAP@10, we provide secondary
metrics, which are not used for ranking the submit-
ted systems, but can provide additional insights into
the results. These include precision (P), recall (R),
different values of K for MAP, and R-precision,
which is the precision at recall R, where R is the
number of relevant documents for a query.

In order to account for dataset imbalance during
evaluation, for each score function f (i.e., evalua-
tion metric), we compute the average score across
languages and documents. The intuition is that lan-
guages and documents are equally important, and
a model should perform well on all. The average
score is computed as follows:

average score =
1

L

l∑

l∈L

1

Dl

d∑

d∈Dl

f(d), (3)

where L is the set of languages, D the set of doc-
uments, and Dl the set of documents for a given
language, for l ∈ L and Dl ⊆ D.

3.3 Shared Task Setup
The shared task was hosted on CodaLab.10 After
registering for the shared task, participants could
download the test set and were asked to submit
their predictions on CodaLab as a single file for
each task (submissions were allowed from July
18th through August 1st, 2022). Submissions were
limited to 20 for each task. For each submission,
an automated evaluation system would upload the
computed scores to the public leaderboard.

10https://codalab.lisn.upsaclay.fr/
competitions/6400
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4 Participating Systems

Two teams participated in our challenge on Co-
daLab, and one of the teams submitted a sys-
tem description, which is included in the proceed-
ings. We summarize the report here. The partici-
pant (Hövelmeyer and Kartal, 2022) treated both
tasks, at least partly, as a problem of semantic
textual similarity (Agirre et al., 2013). For Task
1, sentences were first preprocessed by randomly
undersampling in order to balance the data, re-
moving stopwords, lemmatizing the data, and us-
ing only a subset of the fields from the vocabu-
lary metadata based on preliminary experiments.
Then, test sentences and vocabulary data were
converted into dense sentence representations us-
ing Sentence-T5 (Ni et al., 2022) for English and
Sahajtomar/German-semantic11 (hence-
forth, GS) for German. Similarity scores were
computed for those test sentence and vocabulary
item pairs. Pairs with a score greater than a pre-
determined threshold were classified as sentences
containing variables. For Task 2, the same sen-
tence representations were used, but for all test sen-
tences. The variables were then ranked based on
their scores, with a higher score implying a greater
similarity. While other methods were also imple-
mented, such a Logistic Regression and Multinom-
inal Naive Bayes classifiers, the best performing
systems used Sentence-T5.

5 Evaluation

This section first describes the baseline systems
for each task and later provides the results of the
shared task.

5.1 Baselines

We train a transformer-based model for Variable
Detection and implement lexical and neural zero-
shot baselines for Variable Disambiguation.

The baseline system for the first task uses a trans-
fer learning approach by fine-tuning a pre-trained
language model (PLM) on the training and vali-
dation datasets. We use a PLM that was further
pre-trained on a corpus of English social science
abstracts, SsciBERT (Shen et al., 2022), which
outperforms BERT (Devlin et al., 2019) and SciB-
ERT (Beltagy et al., 2019) models on the SV-Ident
test set. Because no multilingual or German PLM

11https://huggingface.co/Sahajtomar/
German-semantic

counterparts exist that have been pre-trained on sci-
entific texts, we use the specialized monolingual
SsciBERT for both English and German data.

For the second task, we implement three base-
line systems in a zero-shot setting: a lexical as
well as sparse and dense retrieval models. We
choose BM25 as our lexical baseline, using Elas-
ticsearch.12 For the sparse model, we use SPARTA
(Zhao et al., 2021) and a multilingual sentence-
transformer13 (Reimers and Gurevych, 2019, 2020)
as the dense retriever. Rather than training the
models on the data, we use them to first encode
the query and documents (i.e., variable metadata)
and later rank those which are most semantically
similar to a query by computing the cosine similar-
ity between query-document pairs. The similarity
computation assumes that instances that are closer
together in vector space are semantically more sim-
ilar. While participant 2 conducts an ablation study
on the choice of metadata to use for matching the
variables, we choose to include all metadata and
leave finding the the optimal combination of meta-
data to future work.

5.2 Results

Task 1 had two participants and a single baseline
system, while Task 2 had one participant and three
baseline systems. In the tables below, the systems
are denoted as follows: participant 1 as Unk, partic-
ipant 2 as S-T5/GS (or S-T5 for English and GS for
German), the baseline for Task 1 as SSBert*, and
the baselines for Task 2 as BM25*, Sparse* for the
SPARTA model, and Dense* for the multilingual
sentence-transformer (all baselines across text and
tables are always marked with a * asterisk).

Variable Detection. For this task, none of the
participating systems are able to beat the average
score of the baseline. Unk scores lower than chance
likelihood, while, with a score of 60.17, S-T5/GS
comes close to SSBert*, which has a score of 66.10
(Table 5). Breaking the scores down into the av-
erage scores across documents for each language,
S-T5 outperforms the baseline for English. Thus,
Task 1 can also be solved in a zero-shot setting,
given that the Sentence-T5 model was not fine-
tuned on the provided data. Similar large PLMs
may show further improvements.

12https://www.elastic.co/
13https://huggingface.

co/sentence-transformers/
distiluse-base-multilingual-cased-v1
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Language System P R F1

English
Unk 65.03 55.24 38.64
S-T5 68.38 67.77 66.96
SSBert* 70.94 70.04 64.28

German
Unk 51.66 52.66 30.88
GS 59.18 56.04 53.37
SSBert* 68.38 68.53 67.91

Average
Unk 58.35 53.95 34.76
S-T5/GS 63.78 61.91 60.17
SSBert* 69.66 69.29 66.10

Table 5: Results for task 1 (detection).

At the document-level, systems show varying
performance (see Table 8 in the Appendix). For
the document with the ID 21357, participants’ sys-
tems have low scores, while SSBert* has the high-
est score across all documents. Furthermore, for
7 out of the 12 documents, the baseline system
has the highest score. In addition to the number
of positive and negative instances, we also report
the number of variables associated with a docu-
ment as well as the year of the publication. When
computing the Pearson correlation coefficient, we
find a weak correlation between the F1 scores
and the size of the search space (i.e., vocabulary
size) for Unk (r = 0.132, p = 0.68), S-T5/GS
(r = 0.266, p = 0.26), and SSBert* (r = 0.152,
p = 0.64). With respect to the year of the doc-
ument, we find a moderate correlation for Unk
(r = 0.272, p = 0.39), S-T5/GS (r = 0.274,
p = 0.39), and SSBert* (r = 0.392, p = 0.21).
However, these correlations may not generalize
due to the small number of documents.

Given the low annotator agreement with respect
to the fine-grained labels, explicit and implicit, we
report scores for the cases where both annotators
agree on the label (see Table 9 in the Appendix)
as well as for each annotator independently (see
Tables 10 and 11 in the Appendix). We divide
the labels into explicit, implicit, and mixed classes,
where sentences that contain explicit and implicit
variables are labeled as mixed. In cases where
both annotators agree on the label, systems per-
form better on explicit than on implicit or mixed
mentions. The same is true for annotator 1, except
for S-T5/GS. This implies that explicit mentions
are easier to detect and disambiguate. This is not
the case for annotator 2. A possible explanation
could be the low number of implicit annotations,
which may be due to a difference in understanding

of the labels. Unk outperforms all systems for the
cases when both annotators agree on the label. This
is surprising given the low average performance of
the system (unfortunately, no system description
was provided).

Variable Disambiguation. For the second task,
we report only a single submission together with
the results for three baselines (Table 6). As de-
scribed in Section 5, the baselines include BM25,
SPARTA (henceforth, Sparse*), and a multilingual
sentence-transformer (henceforth, Dense*). While
we provide participants all the test sentences, we
only evaluate performance on the subset of in-
stances that contain variable mentions, as Task 1
already validates Variable Detection performance
(this setup ignores false positive queries submit-
ted by the participants). Unless explicitly stated,
the following discussion mainly focuses on the
MAP@10 scores. While the participant’s sys-
tem performs close to Dense* for English, Dense*

scores twice as high for German. Sparse* outper-
forms all systems on English data. This is likely
due to the system having been trained on a large
English retrieval corpus.14 BM25* and Sparse* per-
form worse on German. Lexical models, such as
BM25*, are prone to perform worse for languages
that have many rare words, such as German, which
allows compound nouns. Furthermore, because
Sparse* is only specialized for English, it does not
perform well for data in a different language. Over-
all, Dense* outperforms all systems by at least 0.5
points for English, except for Sparse*, and by at
least around 10 points for German.

At the document-level, scores vary significantly
(see Table 12 in the Appendix). Scores across dif-
ferent values of K improve as K increases. For
dense documents (i.e., documents with a high ra-
tio of variable mention sentences), scores increase
significantly when going from k = 1 to k = 5,
such as for the IDs 21357, 57204, and 66324. Fur-
thermore, while some systems perform well on a
document, others perform poorly. For example, the
document with ID 66324 shows the lowest perfor-
mance by all systems except for BM25*, which
has a score of 22.01 and is the second-highest
document score for BM25*. For 57561, BM25*

achieves only a score of 1.60, while all other sys-
tems score higher than 16. S-T5/GS outperforms
all baselines only once and twice when compared

14https://github.com/microsoft/
MSMARCO-Passage-Ranking
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Language System MAP@10 R-Prec

English

S-T5 16.27 14.83
BM25* 12.39 12.10
Sparse* 19.02 18.87
Dense* 16.96 15.34

German

GS 10.91 10.35
BM25* 6.46 7.02
Sparse* 3.52 3.69
Dense* 20.89 17.96

Average

S-T5/GS 13.59 12.59
BM25* 9.43 9.56
Sparse* 11.27 11.28
Dense* 18.93 16.65

Table 6: Results for task 2 (disambiguation).

to only Dense*. Such exceptions may be caused
by a larger overlap between the tokens in the doc-
ument and the underlying data used to train the
models. In addition, we find a moderate corre-
lation between MAP@10 scores and the vocabu-
lary size (and a strong correlation for Dense*) for
S-T5/GS (r = 0.395.p = 0.20), BM25* (r =
0.465.p = 0.13), Sparse* (r = 0.427.p = 0.17),
and Dense* (r = 0.623.p = 0.03). As the search
space increases, performance goes down. Finally,
we find that MAP@10 is highly correlated with
R-Precision (r = 0.941, p = 4.99), which implies
that MAP is a good metric in the absence of the
ground truth number of relevant variables.

Performance on the annotator-level is similar to
that of Task 1: scores are highest when both an-
notators agree on the label (see Table 13 in the
Appendix). For both annotators, scores for the ex-
plicit class are consistently higher than for either
implicit or mixed classes (see Tables 14 and 15
in the Appendix). This means that for the task of
Variable Detection, knowing whether a variable is
mentioned explicitly or implicitly can mean a 10
to 20 point absolute difference in performance. In
the case when either both annotators agree on the
label or when looking only at annotator 1, Sparse*

outperforms all systems. Exploring other sparse
models is a promising future direction for disam-
biguating implicit variable mentions.

6 Related Work

Identifying mentions of survey variables in text
was first introduced by Zielinski and Mutschke
(2017, 2018) in the OpenMinTeD project (OM).15

15http://openminted.eu/

OM SV-Ident
Documents 64 44
Research Datasets 1 76
Total # variables

406 27,365
(vocabulary size)
# annotated

414 8,721
variables (tokens)
# uniquely used

243 851
variables (types)
Instances annotate

1,217 5,972
(# annotated sentences)

Table 7: Comparison between the OpenMinTeD and
SV-Ident datasets.

As the predecessor of our task, they created the
first dataset for the problem of SV-Ident. Table 7
shows the statistical differences between the OM
and SV-Ident datasets. Although fewer documents
are annotated in SV-Ident, the number of instances
in SV-Ident is almost 5 times that of OM. To have a
greater diversity of survey variables, SV-Ident cor-
pus uses 76 datasets with more than 27k variables
from different research studies, such as ALLBUS,
ISSP, and Eurobarometer, whereas OM only used
a single dataset. Moreover, the SV-Ident corpus
comes up with modified and additional annotation
features: the unknown (UNK) token was used for
ambiguous variable mentions; consecutive men-
tions of the same variable were included; confi-
dence levels of the annotations and variable men-
tion types were labeled; and variables were linked
across languages. As a result, our corpus is much
larger and more diverse.

Given that identifying variables requires seman-
tic relations, other NLP tasks deal with a funda-
mentally similar perspective, such as entity linking
(EL), recognizing textual entailment (RTE), seman-
tic textual similarity (STS), plagiarism detection,
and detecting previously fact-checked news. EL
can be conceptualized as linking mentions to vari-
ables in a knowledge base (Rao et al., 2013). Since
there are many similar survey variables in research
datasets, disambiguating the right variable for a
sentence is similar to determining the identity of
an entity from a knowledge base. The RTE task is
to identify whether a sentence entails a given can-
didate hypothesis or not (Dzikovska et al., 2013).
A question answering adaptation of RTE (Dagan
et al., 2013) is similar to SV-Ident, as the question
and each answer form a hypothesis, which then re-
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quires the system to determine whether a sentence
entails a given candidate hypothesis. STS is yet an-
other similar task, which aims to find the similarity
level between given texts (Agirre et al., 2013). STS
was organized as a shared International Workshop
on Semantic Evaluation between 2012 and 2017,
and STS models have been developed for various
domains (Wang et al., 2020; Yang et al., 2020; Guo
et al., 2020). In the task of Plagiarism Detection of
PAN,16 a system should extract all plagiarized pas-
sages from a given set of candidate documents with
(external) or without (intrinsic) comparing them to
potential source documents (Potthast et al., 2013).
Lastly, Detecting Previously Fact-Checked Claims,
a shared task by the CheckThat! Lab (Nakov et al.,
2022), aims to match the most similar claims —
text fragments from social media or political debate
scripts — to a corpus of verified claims. The corpus
is used to find the most similar claims, which does
not require direct linking, as is done in SV-Ident
Task 2, because implicit links are inferred.

7 Why SV-Ident?

Today’s search engines are the core elements of in-
formation access for social scientists. While search
engines have seen many improvements in terms of
keyword search and text understanding, they suffer
from a limited capability of retrieving information
from interconnected data sources, such as academic
literature and research datasets. Nonetheless, they
show outstanding performance on retrieving such
documents individually. Current interlinking in-
frastructures typically only link research datasets
to publications on the citation-level. Such systems
do not yet consider fine-grained linking of publica-
tions to individual survey variables from research
datasets. As demonstrated in the SV-Ident shared
task, survey variables may be mentioned implicitly,
which makes their manual or automatic identifica-
tion non-trivial. Currently, social scientists have
to manually identify such variables, which is time-
consuming. In addition to these limitations, search
engines do not yet support queries specific to social
science topics, concepts, or relations. Yet, keyword
search, which is widely used, has many known
problems (e.g., vocabulary mismatch or complex
queries). As a result, social scientists are unable to
access interlinked publications and research data.
Thus, the re-use and reproducibility of research is
limited.

16https://pan.webis.de/

SV-Ident, and more generally the VADIS project,
plays an important role in filling the gap in the lack
of infrastructure for social scientists (Kartal et al.,
2022). SV-Ident aims to build automatic models
for identifying survey variables in social science
publications. This directly enables a more fine-
grained interlinking of publications and research
datasets. More specifically, variables can be linked
on the sentence-level, which allows new features
to be developed. Within the VADIS project, we
aim to develop variable-based automatic summa-
rization, which will allow scientists to quickly get
an overview of a publication with respect to the
variables used. Furthermore, we plan to incorpo-
rate variable recommendation algorithms into the
GESIS Search platform to enable scientists to find
relevant variables outside the scope of variables
they are already familiar with.

8 Conclusion

This overview reports on the results of the SV-
Ident 2022 shared task. We introduce two sub-
tasks relevant for SV-Ident, namely, Variable De-
tection and Variable Disambiguation. We report
on data, which is currently the largest of its kind,
that was collected, annotated, and made publicly
available for this challenge. Baseline as well as par-
ticipants’ systems are described and evaluated. We
find that nearly all systems perform better on ex-
plicit variable mentions, opening up new directions
of research. Finally, we contextualize the shared
task into related work and highlight its importance
within a broader context. Future work will further
analyze the distinction between different variable
mention types. In addition, multi-task learning
could solve both tasks jointly or in combination
with adjacent tasks. Co-reference resolution could
be used to help disambiguate implicit variable men-
tions. Finally, evaluating systems on more diverse
metrics, such as fairness or robustness, is critical
for applied research.
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Appendix

This section contains a figure with example sen-
tences mapped to variables and additional detailed
evaluation results for both SV-Ident tasks. More
specifically, Tables 8 and 12 provide results for
each document, while Tables 9–11 and Tables 13–
15 provide results for explicit, implicit, and mixed
mention types for each annotator individually as
well as for the case when both annotators agreed
on the labels.
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QD3_1   - EU CITIZENSHIP: FEEL TO BE EU CITIZEN


QD2_3   - ATTACHMENT TO: EUROPEAN UNION

QE3_1   - MEDIA USE - TELEVISION VIA TV SET

QE3_2   - MEDIA USE - TELEVISION VIA INTERNET

QE3_3   - MEDIA USE - RADIO

QE3_4   - MEDIA USE - WRITTEN PRESS

QE3_5   - MEDIA USE - INTERNET

QE5b_1 - EUROP POLIT MATTERS NEWS: TELEVISION

QE11_1 - MEDIA PRESENTATION EU: TELEVISION

QE5b_2 - EUROP POLIT MATTERS NEWS: PRESS

QE5b_3 - EUROP POLIT MATTERS NEWS: RADIO

QE5b_4 - EUROP POLIT MATTERS NEWS: INTERNET

QE11_2 - MEDIA PRESENTATION EU: TELEVISION

QE11_3 - MEDIA PRESENTATION EU: TELEVISION

In the subsequent section, we focus on
two theoretical concepts - mere exposure
and hostile media perceptions - both of
which have not been employed within the
context of European identity.

The dependent variable (identity) was
operationalized by two indicators: Citizens
were asked to answer the following
question: “Please tell me how attached
you feel to the European Union” by using
a scale from 1 (not attached at all) to 4
(very attached).

Furthermore, the item “You feel you are a
citizen of the EU” was used in index
building.


The independent variable was
operationalized by a combination of
several items: The participants were first

asked the following question: “Could you
tell me to what extent you…a) watch
television on a TV set or via the Internet,
b) listen to the radio, c) read the written
press d) use the Internet?”


Later they were questioned: “Where do
you get most of your news on European
political matters? Firstly? And then?”

Possible answers were respectively:
Television, the Press, Radio, and the
Internet.


The respondents were asked, “Do you
think that the [national] television
present(s) the EU too positively,
objectively, or too negatively?”


The same question was repeated
regarding the radio and the press.


Even the unintended, casual contact with
news on the EU provided by the media
fostered European identity.


...

...

...

...

...

Figure 3: Example explicit (blue) and implicit (red) sentences from a social science article (source: Ejaz et al.
(2017)) mapped to survey variables. Lines with arrows show contextual dependence. Linked variables: QD2_3,
QD3_1, QE3_1, QE3_2, QE3_3, QE3_4, QE3_5, QE5b_1, QE5b_2, QE5b_3, QE5b_4, QE11_1, QE11_2, and
QE11_3.
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ID System F1 P R # p/n Vars Lang Year

16547
Unk 33.47 25.16 50.00

160/162 209 de 2003S-T5/GS 65.77 69.20 66.88
SSBert* 65.50 65.61 65.55

19944
Unk 33.54 73.27 50.91

110/94 457 de 1999S-T5/GS 51.95 67.05 57.38
SSBert* 63.16 63.20 63.28

21279
Unk 22.22 60.00 52.94

51/12 477 de 1993S-T5/GS 42.61 42.85 42.40
SSBert* 67.56 67.08 68.14

21357
Unk 24.68 16.38 50.00

39/19 239 de 2002S-T5/GS 45.96 47.07 46.69
SSBert* 79.20 81.86 77.73

21622
Unk 30.43 59.80 58.16

49/10 142 de 1991S-T5/GS 63.39 62.30 65.82
SSBert* 75.70 73.66 78.88

56983
Unk 40.96 75.35 53.95

38/36 367 de 2018S-T5/GS 50.51 66.58 57.09
SSBert* 56.31 58.87 57.60

49163
Unk 26.12 64.23 52.06

97/37 211 en 2005S-T5/GS 63.20 63.06 65.62
SSBert* 54.27 62.75 64.38

49734
Unk 54.73 78.39 61.36

66/67 148 en 1998S-T5/GS 71.94 76.37 72.80
SSBert* 69.30 79.05 71.23

57204
Unk 31.29 53.07 50.38

119/77 134 en 2017S-T5/GS 66.45 67.89 66.08
SSBert* 66.82 71.17 70.63

57561
Unk 25.51 62.13 53.18

110/33 134 en 2017S-T5/GS 61.81 61.47 64.70
SSBert* 56.49 65.34 70.15

61603
Unk 52.92 66.16 61.92

71/42 336 en 2016S-T5/GS 77.90 80.75 76.73
SSBert* 76.84 78.51 80.23

66324
Unk 41.26 66.20 52.50

105/120 775 en 2020S-T5/GS 60.44 60.71 60.71
SSBert* 61.96 68.84 63.63

Table 8: Fine-grained results across documents for Task 1. Sys = system, P = precision, R = recall, # p/n = number
of positive/negative sentences, Vars = total number of variables, Lang = language of the document.
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Type System F1 P R #

A1+2exp
Unk 59.45 66.96 57.49

242S-T5/GS 38.16 53.99 58.73
SSBert* 53.62 58.51 70.52

A1+2imp
Unk 48.58 49.60 47.60

13S-T5/GS 25.96 49.92 47.72
SSBert* 36.28 50.02 50.72

A1+2mix
Unk 48.51 49.45 47.60

18S-T5/GS 26.18 49.88 47.50
SSBert* 36.97 50.35 58.28

Average
Unk 52.18 55.34 50.90
S-T5/GS 30.10 51.27 51.31
SSBert* 42.29 52.96 59.84

A1+2
Unk 57.66 66.01 56.25

273S-T5/GS 39.08 53.80 57.34
SSBert* 54.70 58.88 68.92

Table 9: Fine-grained results across types of variable mentions for Task 1. Sys = system, P = precision, R = recall, #
= number of (positive) sentences.

Type System F1 P R #

A1exp
Unk 57.51 69.06 56.39

339S-T5/GS 41.11 54.31 57.15
SSBert* 57.05 60.17 68.59

A1imp
Unk 46.00 47.67 49.37

403S-T5/GS 44.86 55.42 57.19
SSBert* 50.77 53.41 54.99

A1mix
Unk 49.06 49.15 49.53

166S-T5/GS 36.33 53.91 60.79
SSBert* 49.40 56.00 68.23

Average
Unk 50.85 55.29 51.76
S-T5/GS 40.77 54.55 58.38
SSBert* 52.40 56.53 63.94

A1
Unk 42.31 65.88 52.89

908S-T5/GS 60.51 63.65 62.29
SSBert* 69.49 69.58 69.45

Table 10: Fine-grained results across types of variable mentions for annotator 1 for Task 1. Sys = system, P =
precision, R = recall, # = number of (positive) sentences.
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Type System F1 P R #

A2exp
Unk 47.38 70.97 54.03

864S-T5/GS 58.40 63.71 63.03
SSBert* 65.45 65.39 66.13

A2imp
Unk 48.82 49.15 48.60

74S-T5/GS 27.95 50.08 50.66
SSBert* 37.60 49.78 47.99

A2mix
Unk 50.51 50.49 50.59

74S-T5/GS 28.93 50.14 50.82
SSBert* 39.59 50.66 54.28

Average
Unk 48.91 56.87 51.07
S-T5/GS 38.43 54.64 54.84
SSBert* 47.55 55.27 56.13

A2
Unk 44.21 70.61 53.77

1012S-T5/GS 60.37 63.93 62.62
SSBert* 65.81 65.82 65.81

Table 11: Fine-grained results across types of variable mentions for annotator 2 for Task 1. Sys = system, P =
precision, R = recall, # = number of (positive) sentences.
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ID System M@1 M@5 M@10 M@20 R-Prec # Vars Lang Year

16547

S-T5/GS 11.55 14.12 15.20 16.72 16.55

160 209 de 2003
BM25* 2.98 3.30 3.49 3.57 3.52
Sparse* 0.03 0.24 0.51 0.86 1.34
Dense* 20.50 27.88 30.41 32.06 31.73

19944

S-T5/GS 9.47 14.07 15.75 16.85 13.03

110 457 de 1999
BM25* 9.09 14.64 15.50 15.92 14.02
Sparse* 8.03 10.37 10.77 11.49 10.30
Dense* 11.74 18.41 19.16 19.96 15.68

21279

S-T5/GS 6.65 11.87 14.47 16.08 15.94

51 477 de 1993
BM25* 4.92 6.96 7.04 7.24 7.93
Sparse* 0.00 1.16 1.63 2.01 1.91
Dense* 14.12 18.17 19.88 21.09 18.06

21357

S-T5/GS 1.28 3.85 4.13 4.95 2.56

39 239 de 2002
BM25* 0.00 0.00 0.00 0.00 0.00
Sparse* 0.00 0.00 0.26 0.26 0.00
Dense* 7.69 15.15 16.71 17.12 7.69

21622

S-T5/GS 3.69 7.05 9.00 10.15 7.80

49 142 de 1991
BM25* 0.34 3.67 4.01 4.01 6.07
Sparse* 1.31 3.49 3.82 4.21 4.23
Dense* 6.63 13.01 14.67 15.83 11.18

56983

S-T5/GS 1.02 6.19 6.88 7.19 6.23

38 367 de 2018
BM25* 5.95 7.48 8.72 10.11 10.57
Sparse* 1.32 3.33 4.13 4.75 4.37
Dense* 18.79 24.06 24.54 25.11 23.44

49163

S-T5/GS 4.33 8.84 10.28 11.46 9.16

97 211 en 2005
BM25* 1.96 4.32 5.52 6.05 3.49
Sparse* 3.89 7.87 8.92 9.73 6.61
Dense* 8.12 13.96 15.46 16.49 11.55

49734

S-T5/GS 9.03 12.71 15.47 16.80 12.88

66 148 en 1998
BM25* 19.41 21.49 23.80 24.99 23.50
Sparse* 23.57 29.06 33.57 36.03 30.49
Dense* 17.14 22.71 24.08 25.18 21.69

57204

S-T5/GS 7.48 22.12 31.73 34.41 31.10

119 134 en 2017
BM25* 1.21 5.11 8.51 13.06 8.80
Sparse* 8.93 28.77 36.32 39.48 38.26
Dense* 7.09 16.73 24.90 30.11 23.82

57561

S-T5/GS 6.96 12.06 14.61 16.47 10.60

110 134 en 2017
BM25* 0.76 1.04 1.30 1.60 1.12
Sparse* 9.33 13.04 14.82 16.58 15.70
Dense* 7.47 16.80 19.20 20.93 16.14

61603

S-T5/GS 14.82 21.32 22.57 23.19 20.68

71 336 en 2016
BM25* 10.62 14.45 14.87 15.30 12.51
Sparse* 12.81 16.96 17.98 18.61 19.34
Dense* 12.16 15.47 16.69 17.19 16.92

66324

S-T5/GS 0.58 1.95 2.95 3.81 4.55

105 775 en 2020
BM25* 8.17 16.22 20.34 22.01 23.18
Sparse* 0.25 1.92 2.51 3.15 2.81
Dense* 0.12 0.58 1.44 2.21 1.95

Table 12: Fine-grained results across documents for Task 2. Sys = system, M = MAP, R-Prec = R-Precision, # =
number of (positive) sentences, Vars = total number of variables, Lang = language of the document..
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Type System M@1 M@5 M@10 M@20 R-Prec #

A1+2exp

S-T5/GS 14.38 21.62 22.99 24.18 19.77

242
BM25* 13.49 16.00 16.78 17.17 16.34
Sparse* 11.56 14.57 15.57 16.23 14.82
Dense* 24.90 32.43 34.31 35.11 30.29

A1+2imp

S-T5/GS 0.00 5.85 9.62 14.21 11.70

13
BM25* 0.00 4.72 7.79 9.82 8.46
Sparse* 5.13 18.07 25.97 27.73 24.90
Dense* 1.54 6.22 11.85 15.15 9.42

A1+2mix

S-T5/GS 6.07 11.10 13.74 15.55 16.13

18
BM25* 0.00 1.73 1.94 2.72 4.48
Sparse* 4.03 11.63 15.14 18.51 18.31
Dense* 8.05 14.60 15.84 18.66 20.09

Average

S-T5/GS 6.81 12.85 15.45 17.98 15.87
BM25* 4.50 7.48 8.84 9.91 9.76
Sparse* 6.90 14.75 18.89 20.82 19.34
Dense* 11.50 17.75 20.67 22.97 19.93

A1+2

S-T5/GS 12.92 19.91 21.52 22.95 19.03

273
BM25* 11.68 14.25 15.12 15.63 14.97
Sparse* 10.61 14.53 16.12 17.05 15.66
Dense* 22.27 29.57 31.60 32.70 28.32

Table 13: Fine-grained results across types of variable mentions for Task 2. Sys = system, M = MAP, R-Prec =
R-Precision, # = number of (positive) sentences.

Type System M@1 M@5 M@10 M@20 R-Prec #

A1exp

S-T5/GS 14.14 20.47 21.87 22.77 16.97

271
BM25* 13.91 15.98 16.76 17.22 15.27
Sparse* 11.77 14.84 15.61 16.25 13.92
Dense* 25.28 31.48 32.60 33.30 28.05

A1imp

S-T5/GS 3.44 7.65 10.83 12.33 9.23

370
BM25* 2.23 4.73 5.98 7.27 4.93
Sparse* 4.79 10.63 13.06 14.15 12.55
Dense* 3.89 8.97 11.82 13.78 10.20

A1mix

S-T5/GS 2.41 5.20 7.24 8.59 7.69

153
BM25* 3.63 6.10 6.98 7.87 6.80
Sparse* 3.16 6.64 7.45 8.68 8.32
Dense* 4.85 10.12 11.88 13.60 11.89

Average

S-T5/GS 6.66 11.10 13.32 14.57 11.30
BM25* 6.59 8.94 9.91 10.79 9.00
Sparse* 6.57 10.70 12.04 13.03 11.60
Dense* 11.34 16.86 18.77 20.23 16.71

A1

S-T5/GS 6.89 11.55 13.91 15.18 11.58

794
BM25* 6.49 8.83 9.85 10.78 8.82
Sparse* 6.86 11.30 12.85 13.81 12.20
Dense* 11.37 16.87 18.93 20.41 16.62

Table 14: Fine-grained results across types of variable mentions for annotator 1 for Task 2. Sys = system, M = MAP,
R-Prec = R-Precision, # = number of (positive) sentences.
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Type System M@1 M@5 M@10 M@20 R-Prec #

A2exp

S-T5/GS 10.38 16.74 19.48 20.89 16.57

637
BM25* 7.73 11.14 12.74 13.81 11.12
Sparse* 7.29 12.55 14.17 15.02 12.24
Dense* 15.90 23.47 26.25 27.66 21.65

A2imp

S-T5/GS 0.00 3.22 5.41 6.38 4.30

48
BM25* 1.04 3.39 4.50 5.89 4.09
Sparse* 3.24 7.61 9.20 10.47 6.91
Dense* 7.52 12.87 14.43 14.98 10.14

A2mix

S-T5/GS 3.99 9.58 13.96 15.11 13.90

74
BM25* 2.44 4.65 5.26 6.62 6.42
Sparse* 5.24 13.03 15.93 17.54 16.35
Dense* 7.94 13.35 15.91 18.28 18.00

Average

S-T5/GS 4.79 9.85 12.95 14.13 11.59
BM25* 3.74 6.39 7.50 8.77 7.21
Sparse* 5.26 11.06 13.10 14.34 11.83
Dense* 10.45 16.56 18.86 20.31 16.59

A2

S-T5/GS 9.14 15.23 18.09 19.44 15.55

753
BM25* 6.82 10.06 11.54 12.65 10.25
Sparse* 6.85 12.28 14.01 14.96 12.27
Dense* 14.65 21.88 24.56 26.01 20.58

Table 15: Fine-grained results across types of variable mentions for annotator 2 for Task 2. Sys = system, M = MAP,
R-Prec = R-Precision, # = number of (positive) sentences.
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Abstract

This paper describes an approach to the SV-
Ident Shared Task which requires the detection
and disambiguation of survey variables in sen-
tences taken from social science publications.
It deals with both subtasks as problems of se-
mantic textual similarity (STS) and relies on
the use of sentence transformers. Sentences and
variables are examined for semantic similarity
for both detecting sentences containing vari-
ables and disambiguating the respective vari-
ables. The focus is placed on analyzing the
effects of including different parts of the vari-
ables and observing the differences between
English and German instances. Additionally,
for the variable detection task a bag of words
model is used to filter out sentences which are
likely to contain a variable mention as a pres-
election of sentences to perform the semantic
similarity comparison on.

1 Introduction

One important way of improving reproducibility
and reusability of research is to make its results ac-
cessible and comparable. Besides the interlinking
of scientific papers, researchers of different dis-
ciplines can also benefit from the interlinking of
publications and primary data (Boland et al., 2012).

Social scientists often refer to the same survey
datasets. Unfortunately, these are seldom properly
linked in the publications and if they are, the dif-
ferent surveys and studies often contain a large
amount of single questions, called variables which
need to be found in the respective corpus (Zielinski
and Mutschke, 2017). It would be really helpful
to have an automized way of detecting and dis-
ambiguating survey variables in scientific papers.
For this reason, the very first shared task for sur-
vey variable identification is organized as SV-Ident

∗As an organizer of SV-Ident, this author contributed
to the model discussion and the preparation of the system
description under the terms and conditions of this task.

(Tsereteli et al., 2022) at the 3rd Scholarly Doc-
ument Processing (SDP) workshop at COLING
2022.

We mainly approached the task as a problem
of semantic textual similarity (STS) and used
language-dependent sentence embedding models to
detect and disambiguate variables. For variable de-
tection we additionally used a Bag of Words (BoW)
model. Although the results did not exceed the
baselines, our approach gives insights into which
parts of the variables provide the most useful infor-
mation for semantic similarity based disambigua-
tion.

This paper is structured as follows. In section
2, we present the task and the related data. In
section 3, we describe our approach to both tasks.
This section starts with an introduction on how the
semantic similarity comparison is done, which is
the same for both subtasks. Section 4 contains a
presentation of experiments performed to find the
best parameters for our system. In section 5 and
6 we present our results and we discuss lessons
learned, respectively. The paper is concluded in
section 7.

2 Task Description and Data

The shared task consists of two subtasks: vari-
able detection (Task 1) and variable disambiguation
(Task 2). Both subtasks relate to the same dataset
consisting of examples of sentences taken from
social science publications1.

The provided training set consists of 3,823 sen-
tences with labels that indicate whether they con-
tain a variable or not. Each sentence has a docu-
ment id referring to its source document and an
unique id. If the sentence contains one or more
variables, ids of these variables are also given, to-
gether with a research id which refers to the specific
corpus or corpora the variables were taken from.

1https://vadis-project.github.io/
sv-ident-sdp2022/
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Moreover, the sentences have a language label (see
Table 1). There are 1,882 English and 1,941 Ger-
man sentences in the training set. Additionally, a
validation set containing 425 sentences (209 En-
glish and 216 German) was released. The test set
consists of 1,724 sentences (944 English and 780
German). The test set was in the same format as
the training set and it is expected to predict the
value of the label indicating whether a sentence
contains a variable or not for Task 1 and the re-
spective variables to the corresponding sentence
for Task 2.

Attribute Value
sentence The probability of ‘never-

membership’ is substantially
lower if there is a union at the
workplace.

is
variable 1
variable exploredata-ZA3700_VarV519
research
data

ZA3700

document
id

35933

uuid e2428b76-28de-4b78-aa3f-
6055c7d71a1e

lang en

Table 1: Example of an instance from SV-Ident dataset.

For Task 2, a corpus of variables is also provided.
It is divided into 329 sub-corpora labeled with dif-
ferent research ids. They contain variables with
their unique ids. Each variable consists of the re-
spective study title, a variable name, the question
text in its original language, the question text in
English, sub-questions, item categories, answer cat-
egories, the variable’s topic in its original language
and the variable’s topic in English (see Table 2).
Not every item is available for every variable. For
108,374 variables in total, the study titles, variable
labels, variable names, topics in the original lan-
guage and topics in English are missing 25 times.
Question texts in the original language are miss-
ing 27,705 times, question texts in English 50,319
times, sub-questions 58,294 times, item categories
58,079 times and answer categories 8,783 times.

3 Approach and System Description

The task dataset features several difficulties. One
of them is that it is multi-lingual containing both

Attribute Value
research
id

ZA3950

variable
id

exploredata-ZA3950_VarV31

study title International Social Survey Programme: Citi-
zenship - ISSP 2004

variable
label

Q7b Rights in democr: Gov respect minorities

variable
name

V31

question
text

There are different opinions about people’s
rights in a democracy. On a scale of 1 to 7,
where 1 is not at all important and 7 is very
important, how important is it:

question
text en

There are different opinions about people’s
rights in a democracy. On a scale of 1 to 7,
where 1 is not at all important and 7 is very
important, how important is it:

sub ques-
tion

Q.7b - ... that government authorities respect
and protect the rights of minorities

item cate-
gory

... that all citizens have an adequate standard of
living;... that government authorities treat ev-
erybody equally regardless of their position in
society;... that politicians take into account the
views of citizens before making decisions;...
that people be given more opportunities to par-
ticipate in public decision-making

answer
category

Not at all important;2;3;4;5;6;Very impor-
tant;Can’t choose, don’t know;No answer, re-
fused

topic [’Soziales Verhalten und soziale Einstellun-
gen’, ’Internationale Politik und Institutionen’,
’Politische Verhaltensweisen und Einstellun-
gen/Meinungen’, ’Regierung, politische Sys-
teme, Parteien und Verbände’]

topic en [’Social behaviour and attitudes’, ’Interna-
tional politics and organisation’, ’Mass po-
litical behaviour, attitudes/opinion’, ’Govern-
ment, political systems and organisation’]

Table 2: Example of a survey variable.

German and English sentences. The fact that the
variables consist of different parts with different se-
mantic structures which are not available for all of
the variables is another one. Our approach focuses
on the analysis of how the diverse information avail-
able can be beneficial for semantic similarity com-
parison.

3.1 Semantic Textual Similarity
We treated Task 1 partly and Task 2 fully as a
problem of semantic textual similarity (Agirre
et al., 2013). We used language-dependent sen-
tence encoders (Conneau et al., 2017; Reimers and
Gurevych, 2019) to create fixed-sized vector repre-
sentations of the input sentences and some parts of
the variables. For this purpose, we experimented
with different sentence embedding models.

For the English data, we used Sentence T5 (Ni
et al., 2021) as a sentence embedding model. The
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variable parts that led to the best results for the
English variables were the label, the question text,
the question text in English and the topic in En-
glish. For the German data, we used the sentence
embedding model "Sahajtomar/German-semantic"
2. It is one of the few available German sentence
embedding models hosted by HuggingFace to be
used out of the box and the one we achieved the
best results with3. We applied it on all variable
parts, except the English translation ones.

We then computed the cosine similarity of all
possible pairs of sentences and variables with the
same research id. Afterwards the sentence-variable
pairs were ranked by their similarity scores. This
procedure was the same for both Task 1 and Task
2.

3.2 Task 1 – Variable Detection

The Variable Detection Task basically is a binary
classification task. Since this task aims to detect
only sentences containing any survey variable, the
vocabulary of variables is not essential to use. We
tried out two different approaches: one that is inde-
pendent of the vocabulary and focuses on lexical
features of the input sentences only (BOW Model)
and one that is dependent on the vocabulary and
focuses on semantic similarity (STS Model). A
variation of the first one is used as a preparation for
the latter.

3.2.1 BOW Model

For the vocabulary-independent approach, we
trained a BoW model similar to (Zielinski and
Mutschke, 2017). The input sentences were
cleaned of special characters, converted to lower-
case, tokenized and stop words were removed using
Natural Language Toolkit (Bird et al., 2009). Then
they were lemmatized.4

We used Logistic Regression for the English
sentences and Multinomial Naive Bayes for the
German sentences to predict whether a sentence
contains a variable or not.

2https://huggingface.co/Sahajtomar/
German-semantic

3The model is based on German BERT large (https://
huggingface.co/deepset/gbert-large), but un-
fortunately we could not contact the author to find out which
dataset it was further trained on.

4This approach is strongly aligned with the BOW Jupyter
Notebook, which has been made available in the GitHub
repository of the Shared Task as a starting point. https:
//github.com/vadis-project/sv-ident/
tree/main/notebooks/variable_detection

3.2.2 STS Model
The variable-independent approach relies partly on
a variation of the vocabulary-dependent approach.
We tried to increase the recall to ensure to classify
all true positives. This way we got a candidate list
to further exclude false positives from (similar to
(Zielinski and Mutschke, 2017)).

In order to increase the number of true positives
in the training data we used random undersampling
and balanced the distribution of positive and nega-
tive instances as explained in section 4.1.1.

We used the STS settings described above to get
the similarity scores for the positively labeled sen-
tences and all possible variables. We discarded all
sentences that did not exceed a certain threshold.
This threshold was computed taking the mean of
all true sentence-variable pairs of the training data
which showed to be more successful than consider-
ing the mean subtracted by the standard deviation
of the pairs.

3.3 Task 2 – Variable Disambiguation

Task 2 aims to provide the id of the variable which
is referenced in a given sentence. So for this task
we directly computed the most similar variables for
each input sentence. We used the setup described in
3.1 using language-dependent sentence embedding
models to encode the input sentences and specified
parts of the variables and then ranked the most
similar pairs based on cosine similarity.

4 Experiments

Most of the settings described above were chosen
because they proved to be successful in experi-
ments on the validation data. This section pro-
vides the results of different experimental setups
for BOW and STS models, respectively.

4.1 BOW Model

4.1.1 Random Undersampling
For the preselection of sentences likely to contain
a variable, the aim was to exclude false negatives
from the prediction by decreasing the number of
negative instances in the training data. This was
achieved by undersampling negative samples such
that the ratio of negative ones to positives decreased
from 3.865 to 1 (see Table 3).

4.1.2 Classifier Selection
We treated the languages separately since the lex-
ical distribution of the English and the German
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Class Balance F. Negatives F. Positives
0: 400, 1: 773 7 63
0: 300, 1: 773 4 75
0: 200, 1: 773 0 81

Table 3: False negatives and false positives for different
ratios of positive (1) and negative samples (0) in the
training set using Multinomial Naive Bayes.

language differ significantly. The best predictions
for variable detection were made using Logistic
Regression for the English data and Multionomial
Naive Bayes for the German data (see Table 4).

Classifier English German
Logistic Regression 0.780 0.703
Multinomial Naive Bayes 0.749 0.745
KNN 0.520 0.501
Linear SVM 0.757 0.701

Table 4: F1 Scores for Different Classifiers

4.2 STS Model
4.2.1 Variable Parts
Some parts of the variables, like the variable label
and name, at first glance do not seem to contain a
lot of useful semantic information. Thus, we exper-
imented with using different parts of the variables.
Tables 5 and 6 show the impact of these experi-
ments. While using only some parts is effective for
the English data, using all parts without English
ones yields the best results for the German data.

4.3 Pre-Processing
Different methods of pre-processing were used for
both subtasks (see Table 7 and 8, 9). For Task 2,
we differentiated between pre-processsing all vari-
able parts and pre-processing only those that do
not consist of natural language sentences. Sentence
transformers are designed to encode the meaning

Variable Parts Map@10
All 0.127
variable label + question text + ques-
tion text en + topic en

0.167

variable label + question text + topic
en

0.143

Table 5: Impact of including different parts of the vari-
ables for the English data. The variable parts ‘question
text’ and ‘question text en’ are the same in this setting.

Variable Parts Map@10
All (except from English) 0.091
variable label + question text + ques-
tion text en + topic en

0.050

variable label + question text 0.077

Table 6: Impact of including different parts of the vari-
ables for the German data.

of whole sentences and pre-processing destroys
their syntactical structure. Interestingly, the best re-
sult was achieved pre-processing all variable parts,
including full sentences.

Pre-Processing Method F1
No Pre-Processing 0.756
Pre-Processing without Lemmatization 0.761
Pre-Processing with Lemmatization 0.765

Table 7: Impact of pre-processing the English sentences
for Task 1. The pre-processing with lemmatization is
described in section 3.2.1

Pre-Processing Method MAP@10
No Removal 0.163
Stop Words ∗ 0.169
Duplicates ∗ 0.114
Stop Words and Duplicates ∗ 0.108
Stop Words † 0.164
Duplicates † 0.146
Stop Words and Duplicates † 0.136

Table 8: Impact of removing stop words and duplicates
from every part of the variable ∗ and from every part
except those including full sentences † for the English
instances of Task 2.

Pre-Processing Method MAP@10
No removal 0.092
Stop Words ∗ 0.081
Duplicates ∗ 0.095
Stop Words and Duplicates ∗ 0.140
Stop Words and Duplicates † 0.116

Table 9: Impact of removing stop words and duplicates
from every part of the variable ∗ and from every part
except those including full sentences † for the German
instances of Task 2.
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4.4 Trial Data

Additional to the training and validation data, some
trial data was released by the organizers 5. This
data set contains a smaller vocabulary of variables.
Results on this data were overall better for both
subtasks and significantly better for Task 2. Using
a similar setup as described above, we achieved an
F1 score of 0.823 for the English data on Task 1
and a MAP@10 score above 0.674 for Task 2.

5 Results

While the official evaluation metric for Task 1 is F1-
macro, or averaged F1 (averaged harmonic mean of
precision and recall), it is MAP@10 (mean average
precision of the ten top ranked items) for Task 2.

We achieved the best results using the STS
model for Task 1. It scored 0.6016 on the test
data (compared to 0.58 for the BOW model) which
is still beneath the baseline6 of 0.6609, but the best
result provided by participants.

In Task 2, our model achieved a result of 0.1359,
which is also beneath the baseline7 of 0.1893 and
it was the only submission made by participants.

6 Lessons Learned

The task proved to be challenging. This can partly
be explained by the challenging nature of the data
in general. Variable mentions in social science
publications typically vary a lot on the linguistic
level (Zielinski and Mutschke, 2018). Additionally,
dealing with a very large corpus of variables might
explain why the results on the test data were so
much worse than the results on the trial data..

Since the pre-processing and evaluation of tak-
ing into account different variable parts were the
main factors improving the results, it would be ben-
eficial to further concentrate on these approaches
for future work.

One step into this direction could be the use of
data augmentation. This already showed to be suc-
cessful implicitly, since for the English data better
results were achieved including the question text
and question text en, which are the same sentences
(see Table 2 and Table 5).

5https://github.com/vadis-project/
sv-ident/tree/main/data/trial

6The baseline model is the fine-tuned SciBERT model
SSCI-SciBERT that was further trained on English Social Sci-
ence abstracts.

7The baseline model is a pre-trained multilingual sentence
representation model in a zero-shot setting.

The sentence embedding models used in our
approach have the advantage of being suitable
for general STS tasks and perform competitively
for a variety of such tasks without further fine-
tuning (Hövelmeyer et al., 2022). Nevertheless,
the baseline models of which one is fine-tuned on
social science literature and the other is multilin-
gual achieved better results for this task. For future
work, it therefore would be interesting to experi-
ment with models fine-tuned on data similar to the
data at hand and multilingual models.

7 Conclusion

We presented a solution to the SV-Ident Shared Task
relying on semantic similarity and basically treat-
ing the subtasks of variable detection and variable
disambiguation as the same problem. We encoded
the input sentences and parts of the variables using
sentence transformer models and treating English
and German sentences separately. For Task 1, we
used a BOW model with random undersampling in
order to create a preselection of likely candidates to
contain a variable and then looked for sufficiently
similar variables to decide whether a sentence con-
tains a variable or not. For Task 2, we ranked
the most similar variables to every input sentence.
Throughout, we experimented with different pre-
processing methods and different variable parts
which proved to be beneficial. It showed that a
promising approach for future work could be the
consideration of data augmentation techniques.
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Abstract
We present a new gold-standard dataset and a
benchmark for the Research Theme Identifica-
tion task, a sub-task of the Scholarly Knowl-
edge Graph Generation shared task, at the 3rd
Workshop on Scholarly Document Processing.
The objective of the shared task was to label
given research papers with research themes
from a total of 36 themes. The benchmark
was compiled using data drawn from the largest
overall assessment of university research output
ever undertaken globally (the Research Excel-
lence Framework - 2014).

We provide a performance comparison of a
transformer-based ensemble, which obtains
multiple predictions for a research paper, given
its multiple textual fields (e.g. title, abstract,
reference), with traditional machine learning
models. The ensemble involves enriching the
initial data with additional information from
open-access digital libraries and Argumenta-
tive Zoning techniques (Teufel et al., 1999b). It
uses a weighted sum aggregation for the mul-
tiple predictions to obtain a final single predic-
tion for the given research paper.

Both data and the ensemble are publicly
available on https://www.kaggle.com/ and
https://github.com/ProjectDoSSIER/sdp2022,
respectively.

1 Introduction

With the recent demise of the widely used Mi-
crosoft Academic Graph (MAG) (Sinha et al.,
2015), the scholarly document processing commu-
nity is facing a pressing need to replace MAG with
an open-source community-supported service. In
order to create a comprehensive scholarly graph,
it is challenging to correctly represent each paper
as a node on the graph. This requires condens-
ing meta-information, such as authorship, research

organizations, research themes etc., of research pa-
pers to one node.

So far, the task of identifying research themes
for a given scholarly document has been challeng-
ing due to the lack of large high-quality labelled
data. This made it difficult both to train high-
performance classification models as well as to
compare models’ performance across studies.

This paper provides a benchmark for research
theme classification based on a large human-
annotated corpus of scholarly papers across 36
themes defined by the UK Research Excellence
Framework, the largest overall assessment of uni-
versity research outputs ever undertaken globally
(the Research Excellence Framework - 2014)1

(Cressey and Gibney, 2014). The outcome of this
paper is the product of the Scholarly Knowledge
Graph Generation shared task which was part of the
Scholarly Document Processing (SDP) workshop
at COLING2022.

We started with a labelled dataset containing pub-
lications and subjects to which they belong (Sec-
tion 3), which contains descriptions or abstracts,
the first author, DOI, year of publication, and iden-
tifier to link the publication to the CORE (Knoth
and Zdrahal, 2012) aggregator. We later enriched
this dataset with further information including the
full text, where available. This represents a new
gold-standard dataset for theme classification of
scholarly documents.

To establish a benchmark for research theme
classification, we present experiments and eval-
uation results with traditional machine learning
models and compare them to a more sophisticated
transformer-based ensemble model.

Our transformer-based ensemble model exploits

1https://ref.ac.uk/2014/
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all textual fields for each scholarly document and
maps these documents to CORE and Semantic
Scholar (Fricke, 2018) to gather further external
information. Thus, the ensemble consists of a
transformer-based classifier used to produce mul-
tiple predictions for individual publications (split
into multiple textual fields) that are aggregated to
produce a single final prediction. We aggregate
predictions from titles, abstracts, references, cita-
tions, and related titles for every publication, when
available. Furthermore, we use abstracts, PDFs and
full texts available to identify argumentative zones
(Teufel et al., 1999b) to use them as additional
fields. We report on the results of using aggrega-
tion for different combinations of these predictions.

The rest of the paper is organized as follows:
Section 2 presents a discussion of the related work,
focusing mainly on scientific document classifica-
tion approaches and their evaluation. Section 3
describes details of building the new benchmark
for theme classification. Section 4 discusses the
ensemble we propose as a baseline and the sys-
tem components in more detail. In Section 5, we
describe the experimental settings. In Section 6,
we discuss the evaluation results from a diverse
set of experiments. Finally, we discuss the conclu-
sion and the potential direction of future work in
Sections 7 and 8.

2 Related Work

Classifying scholarly documents is an important
task, whether for understanding the dynamics of
scientific fields or simply for organizing scientific
literature more effectively. In previous literature,
it typically relies on textual features such as titles,
author keywords, and abstracts, as well as the inter-
relationships between the documents (i.e., citations
and co-authorship). Full texts are frequently not
available and processing a large amount of text can
be computationally expensive.

A wide variety of classification features have
been proposed at different levels of granularity, e.g.,
themes, topics, and subjects. A large proportion of
classification methods rely on semantic similarity
(Wang and Koopman, 2017; Semberecki and Ma-
ciejewski, 2017; Salatino et al., 2022; Hande et al.,
2021; Boyack and Klavans, 2018). Others include
approaches for clustering documents based on key-
word co-occurrence (Van Eck and Waltman, 2017;
Kim and Gil, 2019). Further approaches leverage
the relationship graph representation built from ci-

tations and co-authorship (Taheriyan, 2011; Shen
et al., 2018; Hoppe et al., 2021).

One promising but unexplored approach to
theme classification is using information about ar-
gumentative zoning (AZ) (Teufel et al., 1999b).
AZ refers to the examination of the argumentative
status of sentences in scientific articles and their
assignment to specific argumentative zones. Its
main goal is to collect sentences that belong to
predefined zones, such as “claim” or “method”.
Annotated AZ corpora has been created by (Teufel
et al., 1999a,b; Teufel and Moens, 2002; Teufel
et al., 2009) with approaches to AZ identification
reported in (Liu, 2017). In this work, we aim to test
to what extent can the AZ signal support classifica-
tion of scholarly documents into research themes.

Classification models previously appplied to this
task include traditional machine learning mod-
els, such as k-Nearest Neighbours (Waltman and
Van Eck, 2012; Łukasik et al., 2013), K-means
(Kim and Gil, 2019) and Naïve Bayes (Eykens
et al., 2021). It has been reported that these models
encounter performance challenges related to overly
coarse classifications and low accuracy (Darad-
keh et al., 2022). There are applications of deep
neural networks (NN) models as well, such as
convolutional NN (Rivest et al., 2021; Daradkeh
et al., 2022) and recurrent NN (Semberecki and Ma-
ciejewski, 2017; Hoppe et al., 2021). More recent
deep learning approaches take advantage of pre-
trained language models (Kandimalla et al., 2021;
Hande et al., 2021).

One of the common practices to evaluate ap-
proaches for classifying scientific text is to use
classification systems from digital libraries (Kandi-
malla et al., 2021; Gialitsis et al., 2022; Taheriyan,
2011; Gündoğan and Kaya, 2020), such as the
ACM Computing Classification System2, the Web
of Science Categories3 and Science-Metrix4. Other
practices involve generating automatic annotations
for scientific collections that can be completely syn-
thetic (Waltman and Van Eck, 2012) or curated by
experts (Salatino et al., 2022; Eykens et al., 2021;
Daradkeh et al., 2022; Hande et al., 2021; Pech
et al., 2022). However, to date, there has been no es-
tablished benchmark to evaluate these approaches.

We present a new high-quality benchmark for
evaluating research theme classification, used for

2ACM Computing Classification System
3Web of Science Categories
4Science-Metrix
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the first time in the Scholarly Knowledge Graph
Generation Shared Task.

3 Inital Dataset Creation

As previously discussed, one of the significant chal-
lenges faced in the domain is the lack of large-
scale labelled data for research theme classifica-
tion. For the shared task, a completely new gold-
standard dataset was compiled using data drawn
from the U.K.’s Research Excellence Framework
(REF) 2014 exercise (Cressey and Gibney, 2014).
In total, 191,000 research outputs were submitted
by 154 higher education and research institutions,
and these were then peer-reviewed by experts from
each domain. The REF divided research outputs
into 36 ‘Units of Assessment’ (UoA) or domain ar-
eas. The institutions themselves selected to which
Unit of Assessment each output was submitted.
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Figure 1: Breakdown of the dataset by theme.

The data from the REF exercise, therefore, pro-
vides a near-perfect starting point for the task of
automatically identifying research themes as the
UoA labels were manually assigned to each output
by the expert academics responsible for its produc-
tion.

For each output, the following were available
from the REF data; publication title, publication
year, publication venue, name of institution, and
Unit of Assessment. These fields were fully popu-
lated for 190,628 out of 190,963 submissions to the
outputs category of the REF process. We further
enriched each record with the DOI, CORE id, and
abstract (where available). The CORE id is used
to identify the actual research article held by the
CORE service5. Not all papers in the dataset are
open access, therefore the full-text content of all
papers is not available. For non-open access pa-
pers, CORE often still has the metadata for these
articles.

For the data used in this shared task, separate
test and train datasets were generated. From the
full REF dataset, 51,560 randomly selected records
were used for the train set, and a separate 10,000
were selected for the test set. The datasets were
then verified to ensure that there was no overlap
between the two sets. Figure 1 shows the cross-
domain (theme) breakdown of all records used for
this task.

4 Classification Ensemble

This section depicts the approach we used to esti-
mate probabilities of academic publications belong-
ing to specific theme and the heuristics we follow
for classification. In general, we want to exploit
all the information available for the scholarly doc-
uments that need to be classified. Academic pub-
lications are typically well-structured documents
with multiple textual fields and metadata. We rely
on open-access platforms to enrich the data with
additional information (Section 4.2).

Currently, Transformer-based contextual lan-
guage models like ELMo (Peters et al., 2018)
or BERT (Devlin et al., 2019) outperform most
feature-based representation methods. We use a
classifier based on contextual word embeddings to
evaluate the utility of individual textual fields in
the classification of Academic publications.

4.1 Transformer-based Classifier

We rely on the pre-trained general language model
BERT (Devlin et al., 2019), which achieves out-
standing performance on different NLP tasks
through fine-tuning for the downstream tasks
(Acheampong et al., 2021), in this case, multiclass
classification.

5https://core.ac.uk
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We allow all layers of BERT to be updated as we
are learning the relevant context from the training
data. A custom operation is added on top of the
model, which takes the last hidden state tensor from
the encoder and then passes it to a linear layer. At
the end of the linear layer, we have a vector with
a size equal to the number of classes, and each
element corresponds to a category of the provided
labels. Specifically, we use the following setting to
build the model base:

Input layer. It builds the model’s input sequence.
The input sequence is segmented according to the
WordPiece embeddings and the token vocabulary.
The final input representations are then produced
by adding the position embeddings, word em-
beddings, and segmentation embeddings for each
token.

BERT encoder. It consists of multiple Trans-
former blocks and multiple self-attention heads
that take an input of a sequence of a limited num-
ber of tokens and output the representations of
the sequence. The representation can be a spe-
cific hidden state vector or a time-step sequence
of hidden state vectors.

Output layer. It consists of a simple linear layer
with a Softmax classifier on top of the encoder
for computing the conditional probability distri-
butions over predefined categorical labels.

The cross-entropy loss is used to optimize the
model with the Adam optimizer.

4.2 Data Enrichment
Taking advantage of the open access libraries avail-
able for scientific publications, we search for com-
plementary data for each example provided for the
task. Specifically, we use the CORE (Knoth and
Zdrahal, 2012) and the Semantic Scholar (Ammar
et al., 2018) APIs to map publication titles to the
various fields available for each publication.

The original task dataset includes mainly titles
with metadata. Our goal with the enrichment is
to collect more information related to the publica-
tion to better match the themes. After mapping the
papers to results from the search using the APIs,
we add a list of references and citations, full pa-
pers, abstracts, and PDFs, for the cases when they
are available. Moreover, we search for five recom-
mended papers using the title for every publication
using the CORE API.

We believe that regardless of the performance of
the classification model, if there is enough evidence
for a publication to belong to a specific theme, we
should be able to classify it with enough certainty.
For instance, given a publication title, which can
be ambiguous, we hypothesize that considering
the multiple references or citations leads to disam-
biguation and deciding effectively to which topic
this publication should belong. The list of refer-
ences or citations can be classified the same way
as single inputs, and the classification result can
consider the multiple corresponding outputs for the
final decision.

Since there is no guarantee that this data is avail-
able for all the original samples, we exploit all
available sections, including the full text and PDFs.
However, since processing such an amount of text
is expensive, we use AZ (Teufel et al., 1999b).
Here, we define four zones that cover the main
components of scientific articles, namely: Claim,
Method, Result and Conclusion.

In order to extract sentences that cover the four
zones from the available PDF scientific articles,
we follow an approach similar to a previously pro-
posed approach by El-Ebshihy et al. (2020), which
generates an article summary by expanding the arti-
cle abstract. To sum up, the sentence selection and
labeling with zones process goes as follows: (1)
we convert the PDF papers to an XML format us-
ing the GROBID PDF parser (Lopez, 2009), which
identifies the paragraphs of the article, (2) the para-
graphs are fed into a Solr6 index, (3) the sentences
in the article’s abstract are passed as queries to the
Solr index in order to find the top most similar para-
graphs to the abstract sentences, (4) sentences of
the retrieved paragraphs, as well as the sentences of
the abstract, are labeled to zones using a pre-trained
BERT model based on the approach proposed by
Accuosto et al. (2021), and (5) we use the labeled
sentences to extend our training data with four ex-
tra text fields that represent the Claim, the Method,
the Result and the Conclusion — we refer to these
extra fields as Argumentative Zones. In case we
cannot find the PDF source of the article, we use the
article abstract, if found, to generate these fields.

4.3 Extending Labels to Enriched Data

During training, the model takes text examples to-
gether with the labels associated with them. Since
examples for this task are academic publications,

6https://lucene.apache.org/solr/
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Figure 2: Ensemble for research theme classification. CLS stands for classifier.

and we want to use different sections independently,
we rebuild the dataset considering each section as
a single sample but associated with the same publi-
cation, and we use the same label for all samples
of the same publication.

In this way, we end up with an extended version
of the initial dataset, in which new samples are
created for titles, abstracts, citations, references,
and recommendations.

4.4 Aggregating Predictions from Enriched
Data

During inference time, we compute multiple predic-
tions associated with the same publication. These
predictions can either agree or disagree, so we for-
mulate the final prediction as the aggregation of
the different predictions. Figure 2 illustrates the
prediction procedure used to obtain the final theme
prediction for a publication in which various sec-
tions are evaluated as independent samples with the
classifier. Section 5 describes how this aggregation
is parameterized for the experiments.

5 Experimental setup

5.1 Dataset
Statistics for the initial dataset are provided in Ta-
ble 1. Most of this dataset’s publications do not
contain abstracts, additional metadata, or PDFs.
Theme identification algorithms should be robust
to these missing features and work well when only
titles are available.

5.2 Training Settings
Given the labelled training samples, we train the
model using two different sets. The first training
set consists of the list of titles, while the second
takes both titles and available abstracts. We argue
that although more information can be available per

Train Test

Size 51,560 10,000

% of Publications
– available via CORE API 91.6% 92.4%
– with abstract 31.8% 31.7%
– with PDF 24.6% 25.6%
– with full text 6.3% 6.4%
– with references 8.4% 7.6%

Table 1: Dataset statistics.

publication, the labels provided match only titles
and abstracts, and further assumptions can hurt
the model’s performance. However, we define an
additional training set under our data enrichment
procedure. We refer to the first model as BERTT

and to the second one as BERTT+A.
We train the model for 10 epochs, with early

stopping based on the performance measured using
the evaluation metric (see Section 6.1) and patience
of 3 epochs. The training samples are picked ran-
domly, searching for a uniform distribution over
the classes per batch. To prevent overfitting in case
of unbalanced batches, we use the weighted cross-
entropy loss, and assign the weights dynamically,
according to the result of the random selection of
samples in the batch. We use 16384 samples from
the training set per epoch divided into batches of 64
samples, and train the models on an Nvidia Quadro
RTX 8000 GPU.

5.3 Prediction Settings

As well as the training strategy, we evaluate the util-
ity of having multiple predictions per publication in
the test set compared to a single prediction. To do
so, we prepare different evaluation sets, following
the same training set schema. Thus, we evaluate
the model using only titles, then using titles and
abstracts, and finally, using the set created under
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our data enrichment procedure.
Since we have to produce a single prediction per

publication, and the sets are not uniform, in the
sense that certain publications may not have extra
fields (see Table 1, for instance, abstracts are avail-
able for only 32% of publications), we parameterise
the prediction aggregation based on the different
sets of fields. We consider the aggregation to be
a weighted sum. The motivation for selecting a
weighted sum, instead of just summing up the out-
puts is that we can introduce offsetting through the
weights. Thus, we give an advantage to the labelled
fields in the original dataset over the extended data.

For our experiments, in the case of the set with
titles and abstracts, we use uniform weighting. In
the case of the extended set, we assign weights
such that: 0.5 is distributed uniformly between ti-
tle and abstract, and 0.5 is uniformly distributed
between all the additional fields available per pub-
lication. This setting is compared experimentally
to a uniform weighting across all the fields.

6 Results

6.1 Evaluation metrics
The evaluation metric used for evaluating classi-
fication results is micro F1-Score. The F1 score,
commonly used in machine learning, measures ac-
curacy using the statistics precision and recall.

The F1 metric weighs recall and precision
equally, and a good classification algorithm will
maximize both precision and recall simultaneously.
Thus, moderately good performance on both will
be favored over extremely good performance on
one and poor performance on the other.

6.2 Baseline Models
We implement several baseline models for compar-
ison to the ensemble described in Section 4:

K-nearest neighbours classifier with Tf-idf repre-
sentation

Logistic Regression classifier with Tf-idf repre-
sentation

Naïve Bayes classifier with Tf-idf representation

Support Vector Machine classifier with Tf-idf
representation

fastText classifier (Joulin et al., 2016) with word
vectors pretrained on wikipedia7

7https://dl.fbaipublicfiles.com/fasttext

We also present scores using two dummy clas-
sifiers: selecting the most frequent category and
sampling from a multinomial distribution parame-
terised by prior probabilities. All classifiers except
for fastText are implemented using scikit-learn (Pe-
dregosa et al., 2011).

6.3 Validation Results

Given the provided training data, we create bal-
anced splits such that 60% is used for train, 10%
for early stopping and 30% for validation. All the
sets are enriched following the process described
earlier. Table 2 shows some preliminary results
for experiments we perform to select the model
and the training setup. We compare the two dif-
ferent BERT models with traditional models. The
performance of the model trained using titles and
abstracts is slightly better, and we use it for further
experiments.

Model name Titles Titles and
abstracts

Dummy: most frequent — 0.095 —
Dummy: stratified random — 0.048 —

K-nearest Neighbours 0.132 0.468
Logistic Regression 0.457 0.498

Naïve Bayes 0.460 0.493
Support Vector Machine 0.474 0.506

fastText 0.454 0.473

BERTT 0.498 –
BERTT+A 0.500 0.512

Table 2: Micro F1-score results comparison using dif-
ferent input features for prediction. BERTT stands for
BERT model trained on titles only, BERTT+A means
model trained on both titles and abstracts.

Furthermore, we evaluated the utility of enrich-
ing the dataset by comparing predictions from titles
only with aggregated predictions using titles and ad-
ditional available fields. Table 3 shows that adding
information improves the classification for all three
experiments. Notice that the experiments are not
comparable to each other because the dataset sam-
ples are different. Subsamples are selected such
that corresponding sections are available for all
documents.

Table 4 shows the results obtained for the vali-
dation set using different variants of ensemble. In
general, we are able to improve the performance of
the classification while adding more data, although
the difference between the experiments is small.
The best score reached is 0.526, using titles, ab-
stracts, citations, references and the argumentative
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Sections Sample
size

F1-score
(title)

F1-score
(all sections)

Title + Abs. 31.3% 0.503 0.539
Title + Cit. + Refs 25.4% 0.492 0.541

Title + AZ 1.6% 0.548 0.552

Table 3: Three experiments testing the utility of indi-
vidual sections on BERTT+A. The augmentation is
evaluated by independent sections combined with titles.
Samples are selected such that corresponding sections
are available for all documents.

Title Abs. Cit. Refs AZ Recs. F1

× – – – – – 0.500
× × – – – – 0.512
× × × × – – 0.523
× × × × × – 0.526
× × × × × × 0.525

Table 4: Validation results using different fields for
BERTT+A. The experiments vary in the prediction and
aggregation settings. The aggregations we use are sim-
ply weighted sums with uniform weights and assigned
arbitrarily according to Section 5.3.

zones.
For the best configuration, we also show the

confusion matrix (see Figure 3). For convenience,
we show the results for only the 25 most frequent
classes and we group the rest of them in a single
class. It should be noted that for Clinical Medicine,
most of the examples where the model’s predic-
tion is incorrect are classified as Allied Health Pro-
fessions, Dentistry, Nursing and Pharmacy, and
Biological Sciences. Similar behaviour can be ob-
served with related fields of study. Further analysis
must be done to evaluate overlapping between dis-
ciplines.

6.4 Test Results
In this section, we show the results for the test set
(see Table 5). In general, we see a positive impact
with our approach considering that we could not
get additional information for all the items in the
original dataset.

In this set of experiments, we evaluate a different
aggregation setting, uniform weighting through all
the fields (run 4), and the result is the best score for
the set of runs. Furthermore, we also evaluate an
additional model trained with all the fields available
(run 5), and we see no improvements.

7 Discussion

In this work, we first released a new gold-standard
human-annotated dataset of over 60k papers com-

Run Title Abs. Cit. Refs AZ Recs. Agg. F1

1 T+P T+P – – – – U 0.569
2 T+P T+P P P P – C 0.575
3 T+P T+P P P P P C 0.571
4 T+P T+P P P P P U 0.577
5 T+P T+P T+P T+P – T+P C 0.556

Table 5: Test results with different experimental (Run)
settings. The experiments vary in the training (T), pre-
diction (P) and aggregation (Agg.) settings. The aggre-
gations we use are simply weighted sum with uniform
weights (U) and compensation weights (C) assigned ac-
cording to section 5.3.

plete with paper metadata, research themes and
additional textual information including the papers’
abstract and full-text where available. In future, it
would be possible to further extend the size of the
presented dataset to include all REF2014 and now
the recently finalised REF2021 papers, which both
used the same research themes classifications. This
would result in an annotated dataset of over quarter
of a million papers. To our knowledge, our work
was the first to utilise REF research evaluation for
the purposes of building machine learning mod-
els for themes classification and highlighted the
significant potential of this dataset for developing
state-of-the-art models.

Second, we use this dataset to establish a new
benchmark for research theme classification, test-
ing a range of classic machine learning models
under the same laboratory conditions. Unsurpris-
ingly, our results confirm that models trained with
both titles and abstracts as input features consis-
tently achieve higher results than when using titles
alone. These results hold both for baseline models
and our newly introduced ensemble BERT model.
While the results confirm that the BERT-based en-
semble model outperforms traditional models, the
performance of SVMs is only marginally worse.

It is interesting to note that using all available
features for training (run 5) decreases the score
compared to the model trained on titles and ab-
stracts only. We hypothesise that a large proportion
of false negatives can be attributed to noise intro-
duced by reference sections within the full texts,
especially for closely aligned domains. The con-
fusion matrix (Figure 3) shows that many of the
incorrect classifications happened in closely related
domains (Clinical Medicine / Biological Science
for example).

This is indicative of the difficulty of this task,
particularly when presented with closely matched
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Figure 3: Confusion Matrix for validation results for 25 most frequent classes. The remaining 11 classes are grouped
in the ‘others’ category.

or overlapping domains. Indeed, one limitation
of our approach may be the classification of each
paper into a single research field. In real-world
examples, a paper could often be classified into
multiple domains. Another limitation is that our
ensemble model requires the availability of both
title and abstract, which are necessary for the AZ
approach, which we have seen contributes to the
performance.

Assigning research themes to scholarly docu-
ments has wide-ranging applications. These in-
clude enhanced domain-specific search, for in-

stance search in Chemistry is a complex task due to
the need to index chemical compounds, and identi-
fying emerging research trends. Further, a signifi-
cant problem with current bibliometric methodolo-
gies is accounting for cross-disciplinary differences
in both publishing and citation practices. Identi-
fying the research theme enables accounting for
disciplinary differences by, for instance, calculat-
ing normalised citation counts.

In future work, we would like to measure the
importance of weight assignments for augmented
predictions and consider the overlap between disci-
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plines to evaluate ways of disambiguating predic-
tions falling into related themes.

8 Conclusion

We have introduced a new large human annotated
gold-standard dataset and a benchmark for research
theme classification of scholarly documents. The
work was conducted in the context of the Extracting
Research Themes task from the 2022 edition of
the Scholarly Knowledge Graph Generation shared
task. The task was to identify the main research
theme from a taxonomy of 36 classes, introduced
by the UK Research Excellence Framework.

Our experiments addressed the effect of using
a variety of textual fields on the prediction perfor-
mance. Enriching the supplied training and testing
data with external textual information (e.g., PDF
source, full-text article, references) using open-
access sources improved the results of our models.
However, we have demonstrated that this enrich-
ment might also introduce additional noise.

We presented a new transformer-based classifier
model based on BERT and used it to obtain multi-
ple predictions for a given research article for each
textual field. We experimented with a variety of
aggregation functions to produce the final predic-
tion. Despite incomplete and noisy data, the results
show that our ensemble model has a small positive
impact on the classification performance.
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Abstract

We present the main findings of MuP 2022
shared task, the first shared task on multi-
perspective scientific document summarization.
The task provides a testbed representing chal-
lenges for summarization of scientific docu-
ments, and facilitates development of better
models to leverage summaries generated from
multiple perspectives. We received 139 to-
tal submissions from 9 teams. We evaluated
submissions both by automated metrics (i.e.,
ROUGE) and human judgments on faithfulness,
coverage, and readability which provided a
more nuanced view of the differences between
the systems. While we observe encouraging
results from the participating teams, we con-
clude that there is still significant room left for
improving summarization leveraging multiple
references.1

1 Introduction

Generating summaries of scientific documents is
known to be a challenging task as such documents
are typically long and require domain expertise to
fully comprehend them (Cohan et al., 2018; Ca-
chola et al., 2020; Liu et al., 2022). The stan-
dard automated evaluation means in summariza-
tion compare system generated summaries with
gold human written ones. At the same time, ma-
jority of existing work assumes only one single
best gold summary for each given document. How-
ever, different readers of the same document can
have different perspectives; therefore, there is of-
ten variability in human written summaries for a
given document (Harman and Over, 2004). Hav-
ing only one gold summary negatively impacts our
ability to evaluate the quality of summarization
systems through automated metrics (Harman and
Over, 2004; Zechner, 1996). Also at training time
this potentially prevents the model from capturing

∗All authors contributed equally. Order is alphabetical.
1Our dataset is available at https://github.com/

allenai/mup

salient points with respect to different facets in the
document (Hirsch et al., 2021). This is specially
the case for longer documents where the summary
compression ratio (ratio of length of the input doc-
ument to the length of summary) is high (Cachola
et al., 2020). While having multiple reference sum-
maries for each document is desirable, human data
collection can be expensive especially for long sci-
entific documents.

To address this challenge, we introduce a new
dataset and a new shared task to explore meth-
ods for generating multi-perspective summaries.
We introduce a novel summarization corpus, MUP,
leveraging data from scientific peer reviews to cap-
ture diverse perspectives from the reader’s point
of view. Our shared task similarly encourages de-
velopment of methods to leverage multiple refer-
ences. The dataset is collected from OpenReview,2

an open publishing platform where peer reviews for
some machine learning venues are publicly avail-
able. Peer reviews in various scientific fields often
include an introductory paragraph that summarizes
the main points and key contributions of a paper
from the reviewer standpoint. For example, the first
guideline to the reviewers in ACL review form3

is to provide a “summary of the paper”. In addi-
tion, each paper usually receives multiple reviews.
Based on peer reviews, we collect a corpus of pa-
pers and their reviews from AI related venues such
as ICLR, NeurIPS, and AKBC. We use carefully
designed heuristics to only include first paragraphs
of reviews that are summary-like. We manually
check the summaries obtained from this approach
on a subset of the data and ensure the high qual-
ity of the summaries. The corpus contains a total
of 12K papers, and 27K summaries (with average
number of 2.57 summaries per paper).

We next introduce MuP 2022, the first shared

2openreview.net
3https://aclrollingreview.org/

reviewform
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task on multi-reference summarization with the
goal of encouraging the community to develop bet-
ter summarization methods for leveraging multiple
references. Nine teams participated in the task
with the top scoring models leveraging a range of
transformer-based and graph-based models. Au-
tomated evaluation results show that while we ob-
serve notable progress in the task, there is ample
room left for future improvements. We also con-
duct human evaluation on submitted systems and
found out that while most system outputs are read-
able, they often struggle with the coverage aspect
of summarization and they tend to miss some im-
portant information in the document.

2 Task

This section describes the MuP 2022 shared task.

2.1 Definition

The MuP task is basically an standard document
summarization task where the goal is to generate a
summary Sgen given a document D, capturing its
salient points. Teams were instructed to generate
a summary for each of the papers in the MUP test
set. The input is the full text content of papers
along with section information. For each paper, the
generated summary Sgen is evaluated against the
set of m gold references ⟨Sg1 , ...,Sgm⟩.

2.2 Evaluation and System Submissions

Following standard practice in summarization eval-
uation, we use ROUGE (Lin, 2004) as the primary
evaluation metric. The average of the ROUGE-F
scores obtained against the multiple summaries and
averaged over ROUGE-1, ROUGE-2, and ROUGE-L
was used for final ranking for the leaderboard. We
used the unlimited length ROUGE version. In addi-
tion, we conducted human evaluation on a sample
of summaries submitted by systems to get better
insights about faithfulness, readability and cover-
age. The training set was released 50 days prior
to the release of the hidden test set (papers con-
tent). Codalab framework4 was used for the evalu-
ation against the hidden test set. Participants were
allowed to submit up to 25 submissions and the
evaluation period lasted a month.

4https://codalab.lisn.upsaclay.fr/
competitions/5676

3 Dataset Description

The MuP summarization dataset is collected using
the publicly available peer review data, sidestep-
ping the significant costs associated with manually
creating multiple summaries for each scientific doc-
ument.

3.1 Dataset Collection and Creation
We use the OpenReview API5, to extract reviews
from publicly open AI related venues such as ICLR,
NeurIPS and AKBC. We extract fields including
the paper title, summary (if exists, under the field
“Summary”) and the main review (under “Review”
field). In addition, we use Science-Parse6 to extract
full text of the paper from the PDF. Science-Parse
outputs a JSON record for each PDF, which among
other fields, contains the title, abstract text, meta-
data (such as authors and year), and a list of the
sections of the paper. Participants could leverage
any type of additional metadata to improve their
models.

After collecting the reviews we use parts of the
review as a candidate summary for the paper as
follows. Some conferences provide a review form
that explicitly ask for a summary section (“Sum-
mary”). For example, starting from 2020 NeurIPS7

asks the reviewers to “Summarize the paper mo-
tivation, key contributions and achievements in a
paragraph”. Similarly, in the ACL rolling review8

reviewers are asked for a separate summary of the
paper “Summary of the paper - Describe what this
paper is about.”. For those, we simply extract the
summary section. When a summary field does
not exist, we assume a common methodology that
asks to describe what is the paper about, and what
contributions does it make, followed by the main
strengths and weaknesses. For example in ICLR
20219 reviewers were asked to “Summarize what
the paper claims to contribute. List strong and
weak points of the paper.”. Here, we need to extract
only the part that discusses the main contributions.
We assume that the reviewers followed the review
guidelines, and started with summarizing the main
contributions, followed by a detailed description on

5https://openreview-py.readthedocs.io/
6https://github.com/allenai/

science-parse
7https://nips.cc/Conferences/2020/

PaperInformation/ReviewerGuidelines
8https://aclrollingreview.org/

reviewform
9https://iclr.cc/Conferences/2021/

ReviewerGuide#step-by-step
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#Summaries 1 2 3 4 5 >5

#Papers 2276 3039 2867 1827 225 257

Table 1: Statistics of the MUP dataset.

the strengths and weaknesses. Thus, we extracted
the first paragraph of the review section. To en-
sure that those paragraphs are indeed summaries
and not opinions nor criticism (i.e., strengths and
weaknesses), we followed Keith Norambuena et al.
(2019), and used a lexicon-based approach to deter-
mine whether the paragraph carries a sentiment or
not, in addition, we also removed paragraphs that
contained individual pronouns (I, me, mine, my-
self). After these filtering process, two organizers
of this task went through a random sample of 300
paragraphs, and annotated whether they are quali-
fied as summaries. In total, 95% of the paragraphs
were annotated as summaries. Table 1 summarizes
the characteristics of the MUP dataset, which in-
cludes 10,491 summaries with an average length
of 100.1 words long (space tokenized).

4 Systems

In this section, we overview the systems participat-
ing in the MuP shared task.

4.1 Baseline

As a simple baseline we use the BART-Large model
(Lewis et al., 2020) further trained on CNN-DM
summarization dataset (Hermann et al., 2015).10

This baseline was made available to participants
prior to the evaluation period.

4.2 Participant System Description

Although 18 teams registered, 9 teams participated
(submitted their system runs). Here we briefly de-
scribe the approaches of the participating systems
that provided us with a system description paper.11

Graph Attention Networks (GATS) (Akkasi,
2022) This work employs a Graph Attention
Network-based extractive summarization approach
for the task in hand. The approach is based on rank-
ing the sentences in each of the discourse facets
of the paper. Using Graph Attention Networks
(GATs), the authors create a graph for each article

10We also tried training BART on scientific summarization
datasets such as arxiv but did not achieve better results.

11Unfortunately, for system submissions without any report
there is no way for us to know the details of the method and
thus we exclude them from this overview paper.

after choosing three sentences that are closest to
the ground truth summary. They define the rank of
the sentences as the normalized average cosine sim-
ilarity score between each sentence and the ground
truth summaries. Since the ground truth summaries
were not available for the test data, the authors
use the sentences in the abstract as ground truth
in the graph sentence selection and graph creation
process.

GUIR (Sotudeh and Goharian, 2022) ex-
plored two different approaches to generate multi-
perspective summaries. Their first approach learns
a latent topic distribution using neural topic model-
ing (NTM) in the fine-tuning stage of a state-of-the-
art abstractive summarizer (Longformer-Encoder-
Decoder (Beltagy et al., 2020)), and the knowl-
edge is shared between the topic modeling and
text summarization task for summary generation.
Their second approach involves adding a two-step
summarizer that first extracts the salient sentences
from the document and then writes abstractive sum-
maries from those sentences. The second approach
performs better on the official test set.

LTRC (Urlana et al., 2022) Their best-
performing model is a fine-tuned BART-Large-
CNN model which is same as the official base-
line. They also experiment with several pre-trained
sequence-to-sequence models (T5, ProphetNet, Sc-
iTLDR, DANCER) that first divides the document
into multiple sections to obtain section-wise sum-
maries, and then aggregates all partial summaries to
form the complete summary. They experiment with
different combination of paper-sections and found
that only introduction section for the training and
abstract + introduction for test data outperforms all
the rest for the MuP task.

AINLPML (Kumar et al., 2022) This system
adopts a two-stage approach for the task. In the first
step, an extractive summarization step is used to
identify the essential part of the paper. Their extrac-
tion step includes utilizing a contributing sentence
identification model. In the next step, the authors
finetune a BART model on the extracted summary
generated from the previous step.

5 Results and Analysis

We only report the results of the teams who sub-
mitted their system papers in this section. Table 2
shows the comparative performance of the systems
in MuP. The performance of the systems which
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Team R-1 R-2 R-L Avg

BART (baseline) 40.8 12.3 24.5 25.9
GATS Akkasi (2022) 33.7 7.4 17.7 19.6
LTRC (Urlana et al., 2022) 40.7 12.5 25.0 26.0
GUIR (Sotudeh and Goharian, 2022) 41.4 12.5 24.8 26.2
AINLPML (Kumar et al., 2022) 41.1 13.3 25.4 26.6

Table 2: Main results from the MuP 2022 shared task. R represents the ROUGE F1 metric.

used abstractive methods are generally better. In
terms of average F1 scores, team AINLPML (Ku-
mar et al., 2022) produced the best performance,
although GUIR and LTRC were pretty close. Ex-
cept one, other teams were able to surpass the MuP
baseline, although with small margins. Since the
results of all systems were pretty close, in the next
section we conduct human evaluation to gain better
insights.

5.1 Human Evaluation

We asked domain experts in NLP (researchers with
10+ years experience in the field) to annotated a
set of 20 randomly selected papers along with all
system submissions for those papers. We asked the
experts to rate the systems on a Likert scale (1-5),
w.r.t three main qualities: faithfulness, readability,
coverage, and Boolean rating for style (“review” vs.
“summary”12). The experts could access the paper
PDF and the ground-truth reviews. To evaluate
faithfulness we asked them to first find important
terms or phrases in the generated summary (e.g.,
datasets names, algorithms, etc), and then to look
for them in the original paper and evaluate them
in context. For readability, we asked annotators to
take into account fluency, coherence and grammat-
ical correctness. Finally, to understand coverage,
annotators analyzed ground-truth summaries, and
noticed that they tend to follow some structure, of-
ten a sentence or two for introduction, followed
by methodology, and results. Hence, we expect to
see such content covered in the generated summary.
Similarly, if one important point is covered in one
of the summaries but the generated summary fails
to mention it, it gets penalized. Overall, the annota-
tion task was time consuming with each annotator
spending about 40 minutes on average per paper.
Table 3 summarizes the average scores for the sys-
tems. Consistent with the automated evaluation
results, AINLPML outperforms the rest of the sys-

12To indicate that the generated output looks more like a
peer review or like an actual summary.

Team Faithfulness Readability Coverage

BART (baseline) 4.1 3.6 3.9
LTRC 4.4 4.6 3.6
GATS 5.0 2.7 2.4
GUIR 4.1 4.2 3.9
AINLPML 4.4 4.7 3.9

Table 3: Human evaluation (on a Likert scale 1-5).

tems in readability and coverage (and very close to
leading also in faithfulness). From readability per-
spective, GATS received the lowest score, mainly
due to low coherence. This is somewhat expected
as their approach is extractive, and seems like no
order was enforced (e.g., sometimes the introduc-
tion section appears last). Also since this approach
is extractive, it achieves the highest faithfulness
score. From the abstractive approaches, The BART
baseline mainly suffered from the last sentence
being trimmed in the middle. Further postprocess-
ing/decoding methods could address these issues.
LTRC summaries were much shorter than the other
systems (on average 89 tokens vs. an average of
105 tokens of the rest of the systems), leading to
generally lower coverage, but higher faithfulness.
It is worth noting that the style in all the systems
was annotated as “summary” - showing that the
generated output looks like an actually summary
than a peer review. Overall, while systems are able
to get high performance in terms of faithfulness
and readability, coverage remains a challenge and
systems often tend to miss some important aspect
of the paper.

6 Findings of MuP

Overall, our findings are summarized below:

• A general summarization baseline such as
BART pretrained on news summarization dataset
achieves decent results on the task.

• Combination of extractive and abstractive meth-
ods seem to work well for the task. This is inline
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with how human summarize longer documents
by first identifying salient pieces of information
and then aggregating this information.

• While we saw high scores in terms of faithfulness
and readability, coverage remained a challenge.

• None of the participating systems focused on the
multi-perspective aspect of the dataset. Submis-
sions instead focused on general aspects of scien-
tific document summarization such as length and
specialized domain. This was somewhat unfortu-
nate because our goal was to provide a testbed for
developing methods for utilizing multiple sum-
maries per document. We hope to see more of
such models in future iterations of this task.

7 Conclusion and Future Directions

We present MuP, a new shared task and dataset of
27K summaries, which attracted attention from the
community with 18 registered teams and 9 active
submitting teams. Automated and human evalu-
ation results suggest promising progress towards
the task but we conclude that additional research is
required, especially around utilization of multi ref-
erences per document in the training process. For
future iterations, we plan to extend the dataset by
collecting reviews from additional venues. In addi-
tion, we plan to incorporate automatic measures of
faithfulness as part of the leaderboard metrics.
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Abstract

It is well recognized that creating summaries
of scientific texts can be difficult. For each
given document, the majority of summarizing
research believes there is only one best gold
summary. Having just one gold summary lim-
its our capacity to assess the effectiveness of
summarizing algorithms because creating sum-
maries is an art. Likewise, because it takes
subject-matter experts a lot of time to read and
comprehend lengthy scientific publications, an-
notating several gold summaries for scientific
documents can be very expensive. The shared
task known as the Multi perspective Scientific
Document Summarization (Mup) is an explo-
ration of various methods to produce multi per-
spective scientific summaries. Utilizing Graph
Attention Networks (GATs), we take an extrac-
tive text summarization approach to the issue as
a kind of sentence ranking task. Although the
results produced by the suggested model are not
particularly impressive, comparing them with
the state-of-the-arts demonstrates the model’s
potential for improvement.

1 Introduction

A summary is a clear and accurate representation
of the input text that distills the main ideas from the
source. It is important to maintain the text’s inter-
word and inter-sentence reliance. A novel method
for ascertaining an article’s main objective is text
summarization. The article summary assists users
in rapidly determining whether a paper is pertinent
to their study areas and focusing on them. Regard-
less of the type of documents that need to be sum-
marized, there are two methods for automatic text
summarization: extractive and abstractive. While
abstractive summarization attempts to recreate the
key content in a fresh way after interpreting and an-
alyzing the text with more sophisticated techniques,
extractive summarization is based on identifying
important sections of the text and producing a sub-
set of the sentences from the original text (Kadriu

and Obradovic, 2021; El-Kassas et al., 2021; Syed
et al., 2021; Magdum and Rathi, 2021).

For news articles, automatic summary has re-
cently produced impressive results; nevertheless,
summarizing scholarly publications has gotten less
attention (Yasunaga et al., 2019; Cohan and Gohar-
ian, 2018; Patil et al., 2022; Huang et al., 2021).
Published papers differ from other sorts of material,
including news, in a few key respects. They are
typically longer and feature more complex subjects
and technical jargon. Scientific publications are
also citeable and contain citations. Additionally,
these documents usually contain tables, charts, and
figures, which complicates the summary process.
Last but not least, another characteristic of scien-
tific publications is that they may have unintended
effects after being published.

The majority of the current research on scientific
document summarization assumes only one opti-
mal gold summary. Because creating summaries is
a subjective process, having only one perfect sum-
mary makes it difficult to assess how well summa-
rization systems are working. On the other hand,
annotating several gold summaries for scientific
publications can be quite expensive because it calls
for specific topic experts to read and comprehend
lengthy scientific documents.

As the first collaborative activity, Multi Per-
spective Scientific Document Summarization aims
to investigate techniques for producing multi-
perspective summaries. In this attempt, we pro-
posed a model using Graph Attention Networks
(GATs) with data preparation based on transform-
ers to deal with the issue.

The remainder of this paper is organized as fol-
lows. Recent related work is presented in the next
section. Sections 3 and 4 are dedicated to the model
explanation and the experiments’ results, respec-
tively, and finally, the paper is ended by Section 5
as a conclusion.

268



2 Related Work

Although scientific document summarization has
been studied for a long time, there are still many
outstanding questions about how to do it effec-
tively Paice (1980); Elkiss et al. (2008); Lloret et al.
(2013). Liu and Lapata (2019) has reported on
the state-of-the-arts’ results in abstractive and ex-
tractive summarization in the general text domain
(news). The authors used pretrained encoders to
build their summarizers and provided a two-stage
technique in which the encoder is fine-tuned twice,
once for extractive summarizing and once for ab-
stractive summarizing. No official model that can
provide a reasonable level of data independence
has been mentioned (Kadriu and Obradovic, 2021).

By choosing important passages from a text and
replicating them word for word, extractive sum-
marization creates a subset of the original text’s
phrases. On the other hand, an abstractive summa-
rizer recreates crucial content in a new way after
reading and analyzing the text using sophisticated
natural language algorithms to create a new shorter
text that offers the most important information from
the original one El-Kassas et al. (2021); Patil et al.
(2022); Syed et al. (2021).

From another perspective, scientific paper sum-
marization may be classified into two types: Sum-
marization based on Content or Citation Sefid and
Giles (2022); Khurana and Bhatnagar (2022). The
summarizer just accepts the content of a document
as input in content-based summarizing. In citation-
based summarization, along with the original pa-
per’s content, external knowledge in the form of
citations is also leveraged. The community has
given those citations for the paper at hand. The
majority of current studies in this domain are of
the second category. Nevertheless, being cited by
other research works is required here, which means
that newly published papers may not be accurately
summarized in their initial days of publication.
Qazvinian and Radev (2008) proposed one of the
first models for the scientific text summarization
task. They suggest a clustering method where com-
munities are generated in the lexical network of the
citation summary and sentences are retrieved from
various clusters. They claimed that , for this partic-
ular issue, their method outperforms LexRank, one
of the most widely used multi-document summa-
rizing algorithms. ScisummNet,(Yasunaga et al.,
2019), is a large annotated corpus for scientific
paper summarization considering the papers’ ci-

tations. This dataset is suitable for data-driven
approaches due to its size. Besides the corpus, the
author presented a graph convolutional network for
the paper summarization. An et al. (2021) used
the citation graph to improve the work of summa-
rizing scientific papers. In order to produce the fi-
nal abstract, summarization algorithms specifically
can find relevant data from the relevant research
community from the citation graph, in addition to
using the document information from the original
publication. Additionally, they created a novel ci-
tation graph-based model that takes into account
both the features of an article and its references.
SciSummpip (Ju et al., 2020), is another unsuper-
vised paper summarization pipeline which uses a
transformer-based language model for contextual
text representation and PageRank for sentence se-
lection. Cachola et al. (2020), proposed a model
to generate summaries for long papers. They used
high source compression in their system for creat-
ing summaries, which entails complicated domain-
specific language that needs to be understood by
experts. SciBERTSUM (Sefid and Giles, 2022),is
another model designed for summarizing lengthy
texts, such as scientific publications with more than
500 sentences. By 1) incorporating a section em-
bedding layer to include section information in the
sentence vector and 2) employing a sparse atten-
tion mechanism, which allows each sentence to pay
attention to nearby sentences locally while only a
small number of sentences pay attention to all other
sentences globally, SciBERTSUM extends BERT-
SUM to long documents. Another scientific docu-
ment summarization system is proposed by Mishra
et al. (2022). They introduced a new approach for
summarizing scientific documents that makes use
of multi-objective differential evolution. Making
use of citation contextualization, different impor-
tant sentences are first retrieved. The idea of multi-
objective clustering is used to further group these
sentences. Ibrahim Altmami and El Bachir Menai
(2022), summarized almost all the recent works
in the domain of scientific article summarization.
They categorized the work based on different fac-
tors and reported the achieved results in terms of
popular evaluation metrics.

3 Proposed Model

We adopted an extractive summary technique for
the MuP shared task. For this, we generate a graph
for each article after selecting the three sentences
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Figure 1: Suggested model for the Mup.

that are closest to the each summary sentences
based on the cosine similarity between the their
sentence embeddings. The oracle rank is defined as
the normalized average cosine similarity score be-
tween each sentence and the provided summaries’
embeddings. Figure 1 demonstrates the suggested
model.

3.1 Graph Attention Networks

A particular kind of convolutional neural network
called a "graph convolutional network" (GCN) may
operate directly on graphs and benefit from their
structural data. The fundamental tenet of GCN
is that we gather feature information about each
node from all of its neighbors as well as the feature
itself. It resolves the issue of categorizing nodes
in graphs (like citation networks) where labels are
only accessible for a small portion of nodes (such
as documents) (semi-supervised learning) (Zhang
et al., 2019). The normalized sum of the node
features of neighbors is what is produced for GCN
by a graph convolution process as Formula 1.

h
(l+1)
i = σ(

∑

j∈N(i)

1

cij
W (l)h

(l)
j ) (1)

Where N(i) is the set of its one-hop neighbors
, cij =

√
|N(i)|

√
|N(j)|is a normalization con-

stant based on graph structure, σ is an activation
function (e.g. ReLU), and W (l) is a shared weight
matrix for node-wise feature transformation.

The attention mechanism is a replacement for
the statically normalized convolution operation in
Graph Attention Networks (GATs) (Figure 2).

The equations to calculate the node embedding
of layer l+1, h(l+1), from its layer l embeddings

Figure 2: Graph Attention Networks, after (Veličković
et al., 2018)

are listed below (Veličković et al., 2018).
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The main concept behind using GAT was to choose
the most essential phrases based on inter-sentence
relationships within the articles, using the atten-
tion mechanism to concentrate on more effective
sentences.

3.2 Evaluation
ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) was presented as an automated eval-
uation approach in 2003. It is a series of metrics
based on the similarity of n-grams1. Other ROUGE
scores include ROUGE-L, which is a longest com-
mon sub-sequence measure , and ROUGE-SU4,
which is a bigram measure that allows at most four
unigrams inside bigram components to be skipped
(ROUGE, 2004). In this task, the intrinsic evalua-
tion using the ROUGE-1, -2, and -L metrics is ap-
plied. The final ranking also takes into account the
average of the ROUGE-F scores achieved against
the various summaries.

4 Experiments

The datasets made available by the task organizers
were used for all of the experiments. We made use
of two-layers GATs implemented with the Pytorch-
Geometrics library with 10 epochs and a learning

1A sub-sequence of n words from a particular text is re-
ferred to as an n-gram.
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rate of 0.0001 to train the suggested model. Ap-
plying the trained model on new data, the highly
ranked sentences are selected as

4.1 Data preparation

In the first step, we prepared data to be used for
graph generation. For this purpose, for each sen-
tence of available summaries, the most similar 3
sentences to each summary sentence from the input
article are taken as the graph nodes. The cosine
similarity between the embeddings of body sen-
tences and provided summary sentences is used
as similarity metrics. Two pretrained transformer-
based language models, SPECTER (Cohan et al.,
2020) and all_mpnet_v22, are utilized to generate
the sentence embeddings. The duplicate sentences
are also ignored. The sentence embedding, which
has a length of 768, is regarded as a node feature
for each node. In addition, the dot product between
the relevant pairs of nodes is used as a feature for
the edges.

4.2 Results

Tables 1 and 2 demonstrate the obtained results by
applying the trained model on development and
test datasets respectively.

The tables show that the results on development
data are marginally superior to the test data. Since
for test data, there was no available summaries, we
made use of the abstract’s sentences as provided
summaries in graph sentence selection and graph
creation processes. Lower test data findings could
be attributed to this. We experimented with SAGE,
GCN, and other forms of graph neural networks
in addition to GATs, but the results were not any
better than those that had already been reported.

5 Conclusion

In this study, we used Graph Attention Networks
to perform the Multi-Perspective Scientific Doc-
uments summary problem while adhering to the
extractive summarization methodology. We first
chose the three sentences from the input article that
most closely resembled each summary sentence to
produce the graphs for our node ranking task. Then,
using each selected sentence as a node, the sentence
embedding produced by the pretrained transformer-
based language model is taken as the node features,
and the dot product between the pairs of nodes is
taken as the corresponding edge feature. Because

2https://www.sbert.net/docs/pretrained_models.html

of the discrepancy between the results published
by other teams and the ones obtained by the sug-
gested model , it can be inferred that preprocessing
techniques and the use of external knowledge may
improve the results.
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Abstract

This paper presents our approach for the MuP
2022 shared task—Multi-Perspective Scientific
Document Summarization, where the objective
is to enable summarization models to explore
methods for generating multi-perspective sum-
maries for scientific papers. We explore two
orthogonal ways to cope with this task. The
first approach involves incorporating a neural
topic model (i.e., NTM) into the state-of-the-art
abstractive summarizer (LED); the second ap-
proach involves adding a two-step summarizer
that extracts the salient sentences from the doc-
ument and then writes abstractive summaries
from those sentences. Our latter model outper-
formed our other submissions on the official
test set. Specifically, among 10 participants (in-
cluding organizers’ baseline) who made their
results public with 163 total runs. Our best
system ranks first in ROUGE-1 (F), and second
in ROUGE-1 (R), ROUGE-2 (F) and Average
ROUGE (F) scores.

1 Introduction

Scientific text summarization has received growing
interest over the recent years (Cohan et al., 2018;
Xiao and Carenini, 2019; Zerva et al., 2020; Ca-
chola et al., 2020; Sotudeh et al., 2021; Cui and
Hu, 2021; Pang et al., 2022; Sotudeh and Gohar-
ian, 2022), although it has been studied from years
before (Teufel and Moens, 2002; Qazvinian and
Radev, 2008; Nenkova et al., 2011; Qazvinian et al.,
2013; Cohan and Goharian, 2015). Generating sci-
entific summaries is deemed to be a challenging
task, given the specific characteristics of scientific
documents such as extreme document length, pres-
ence of complex domain-specific concepts, and
specific structure, where the information is framed
within sections. These characteristics of scientific
papers, coupled with the aim of generating shorter
or longer form summaries, call for special model
considerations to deal with the challenging task
of summarization. Researchers have looked into

various approaches of unsupervised, supervised,
neural, utilizing citations, knowledge, context, etc
in generating the summaries in an extractive or
abstractive way.

The existing evaluation systems in scientific sum-
marization assume one signle gold summary for
each scientific paper, based on which the summary
generator optimizes the generation. The motivation
of the MuP shared task (Cohan et al., 2022) is to
provide multiple gold summaries per document so
that the generated systems can be evaluated based
on how well they captured various aspects of the
paper into their summary. The assumption is that
a single gold summary may not include multiple
aspects expressed in the paper, as the writing of a
summary is subjective. Specifically, the MuP or-
ganizers introduce a novel English summarization
dataset collected from scientific peer reviews to
reflect multiple perspectives from reviewers’ stand-
points. The participating teams are then asked to
produce a scientific summary that can express di-
verse viewpoints on a given document.

In this study, we extend the Longformer
Encoder-Decoder (LED) abstractive summariza-
tion model (Beltagy et al., 2020). In our exper-
iments, we specifically explore two distinct ap-
proaches: (1) incorporating a neural topic mod-
eling approach (Srivastava and Sutton, 2017) to
the LED summarizer; and (2) proposing a two-step
LED-based summarizer that first extracts the salient
sentences and then performs abstraction over the
extracted sentences to produce a multi-perspective
summary. Our intuition of these extensions is that
each perspective of a paper may focus on specific
sets of topics which are discussed within specific
sets of sentences, that should be taken into account
by the summarizer. To benefit from the advantages
of each of these approaches, we further combine
them and propose a topic-aware two-step summa-
rizer. Our combined model achieves the best results
amongst the other settings on the validation and
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Figure 1: The overview of our proposed model. The LED encoder and decoder modules are expressed in blue
boxes, the neural topic model takes in the contextualized representation of the document xdoc (average pooled
from sentence representations), as well as the bow representation xbow to generate topic representations xtopic. The
gating layer influences topic channels into the encoder outputs. The extractor picks the top sentences (in respect to
the gold summaries) and passes their associated word representation to the decoder. The decoder attends to the
top sentence representations for generating the summaries. In inference, we make the decoder generate only one
summary.

official blind test sets. Specifically, it attains the
first rank in ROUGE-1 (F), and second in ROUGE-1
(R), ROUGE-2 (F), and average ROUGE (F) scores,
with 1.4% relative improvement over the baseline
in terms of average ROUGE (F) scores.

2 Model

The general overview of our model is demonstrated
in Figure 1. Our summarizer is composed of mul-
tiple components, including an LED encoder, a
neural topic modeling layer, an information gating
layer, and an extractor layer, followed by an LED

decoder. In what follows, we explain the details of
our proposed model.

2.1 Neural topic modeling for summarization
Topic modeling and text summarization can pro-
vide complementary features since both aim to dis-
till salient information from a massive collection of
textual data. With this intuition, we incorporate a
neural topic model (NTM) (Miao et al., 2017; Sri-
vastava and Sutton, 2017) into the summarization
model (i.e., LED) to enrich the encoded word repre-
sentations with topical information. We utilize the
Combined Topic Model (Bianchi et al., 2021) as
our topic modeling approach. This model is built
around ProdLDA (Srivastava and Sutton, 2017),
a neural topic modeling approach based on the
Variational Autoencoders (VAE). VAE-based topic
networks first infer a continuous latent represen-
tation z ∈ RK (latent distribution over K topics)
given the bag-of-words (bow) document represen-
tation xbow ∈ NV (bow distribution over V distinct

vocabulary). An NTM model assumes that z is
generated from a prior distribution p(z|x), which
is estimated by the conditional distribution qϕ(z|x)
modelled by a decoder ϕ. The NTM model aims to
calculate the posterior p(z|x), which is estimated
by the variational distribution qθ(z|x), modelled
by an encoder θ. The NTM model optimizes the
topic modeling network by defining the following
loss criterion,

Ltopic = max(Eqθ(z|x)[log pθ(x|z)] (1)

−KL[qθ(z|x)||p(z)]).

The first term is the reconstruction error, and the
second one is Kullback-Leibler (KL) divergence
that regularizes qθ(z|x). We refer the readers to
(Srivastava and Sutton, 2017) for more details.

2.2 Information gating layer

After obtaining the topic representations, we in-
fluence the topic channels into the encoder repre-
sentations that are the outputs from LED encoder
layer. To this end, we design an information gating
layer in which multiple linear layers are used to
transform and combine topic and encoder repre-
sentations and pass them along to the next stage.
Formally written, let xtopic be the topic represen-
tation from the NTM model, and xencoder be the
contextualized word representations from the LED

encoder. Our gating layer combines xtopic with
xencoder to implement a filtering gate, and then
produces a fused word representation that has the
information of both NTM and LED encoder,
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x′
topic = Wjxtopic + bj

g = σ(Wi[xtopic;xencoder] + bi)

xfused = (1− g)x′
topic + (g)xencoder

(2)

where Wi, Wj , bi, and bj are trainable parameters,
g is the filtering gate (g ∈ [0−1]), and xfused is the
topic-aware contextualized word representations.

2.3 Two-step summarization
After obtaining the topic-aware word representa-
tion, we aim to implement a two-step summarizer
to drop the unimportant sentences and retain the
salient content of the scientific document. In this
sense, we ensure that the LED decoder only attends
to the salient content of source information. To
consider the sentential importance, we take the
representations associated with the BOS token as
the sentence representations and define a classifica-
tion task over the document’s sentences to predict
summary-worthy sentences using a Sigmoid clas-
sifier. We then minimize the cross-entropy loss
function as follows,

Lsent(y, ŷ) = −
N∑

n=1

|S|∑

i=1

yi log ŷi (3)

in which y is the probability output from the Sig-
moid classifier, ŷ is the gold label, |S|d is the set
of sentences within the scientific document, and
N is the number of gold summaries for the given
document. Upon obtaining sentential probabilities,
we sample the representations associated with top
sentences until a fixed length (e.g., 3072 tokens)
is reached and then pass the resulting word repre-
sentations to the decoder for summary generation.
Then the model minimizes the following generation
loss for a θ-parameterized model.

Lgen = −
N∑

n=1

T∑

t=1

logPθ(ŷt)|ŷ<t, x) (4)

where N is the number of ground-truth summaries
for a given document, and T is the length of sum-
mary in tokens. We then optimize the whole net-
work using multi-tasking heuristics as follows,

Lmulti = Lgen + (α)Ltopic + (β)Lsent (5)

where Lgen is the cross-entropy generation loss
computed from the decoder’s outputs and gold
summaries, and α and β are regularizing hyper-
parameters for topic modeling and sentence extrac-
tion tasks, respectively.

3 Experiments

Dataset. We use the dataset introduced by the
organizers and fine-tune it on our model. The MuP
dataset (Cohan et al., 2022) is composed of scien-
tific documents, each with one or more summaries
that are the submitted peer reviews hosted by Open-
Review platform 1. There are 8,734 (train) and
1,060 (validation) distinct documents with a total
of 26.5K summaries (with an average number of
2.57 summaries per paper), with summaries being
100.1 words long on average. The official blind test
set includes 1,052 documents.
Experimental setup. We use the Hug-
gingface Transformers library (Wolf et al.,
2020) to implement our model. Specifically,
we fine-tune allenai/led-large-16384-arxiv
(an LED large model fine-tuned on arXiv scientific
dataset (Cohan et al., 2018)) on the MuP dataset.
The learning rate of our summarization system is
set to be 1e− 3 for parameters that we train from
scratch (i.e., Sigmoid classifier and topic model-
ing), and 3e − 5 for the rest of the parameters. α
and β hyper-parameters are tuned to be 0.1, and 0.2.
We train the models for 5 epochs 2, and perform
evaluation in each 0.5 epoch. The checkpoint that
achieves the best validation scores is further used
for inference on the official test set.
Automatic results. Table 1 reports the system
performances in terms of ROUGE (Recall and F)
metrics, as well as the average ROUGE (F) on vali-
dation and official test sets. Our best system (i.e.,
LED (topic-aware ⊕ two-step)) achieves the first
rank on ROUGE-1 (F), and second in ROUGE-1
(R), ROUGE-2 (F) and average ROUGE. We also
see a similar trend of model performance on the
validation set. It is also clear that the addition of
two-step summarizer results in a promising per-
formance boost, indicating that the extractor can
efficiently ease the information flow from the en-
coder to decoder for generating improved sum-
maries grounded on the most important sentences
of the document. Considering the performance of
the BART baseline, it appears that feeding first 1024
tokens of the document to the summarizer leads to
a promising performance in ROUGE Recall metrics,
but degrades the performance in terms of ROUGE

precision metrics as we see a large decrease in
ROUGE (F) scores. Our best model improves upon
the baseline by 1.4% relative improvement.

1https://openreview.net/
2Empirically determined.
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Recall F-measure
R-1(%) R-2(%) R-L(%) R-1(%) R-2(%) R-L(%) Avg. RG-F (%)

Other systems
guneetAI 42.96 13.98 26.62 41.08 13.29 25.36 26.58
ashokurlana 40.13 12.33 24.74 40.68 12.47 24.99 26.04
MuP baseline 44.20 13.50 26.81 40.80 12.33 24.48 25.87
sandeep.kumar82945 42.02 11.98 24.26 40.37 11.98 24.26 25.54
prachuryanath 35.83 10.88 22.43 38.74 11.73 24.21 24.89

This work
LED (topic-aware) 42.15 12.46 25.21 40.62 11.96 24.18 25.59
LED (topic-aware ⊕ two-step) 43.29 13.20 26.21 41.36 12.52 24.83 26.24

(a) Top 5 Participating teams’ (on Avg. ROUGE (F)) system performance on official blind test set.

Recall F-measure
R-1(%) R-2(%) R-L(%) R-1(%) R-2(%) R-L(%) Avg. RG-F (%)

LED 40.17 11.97 24.61 39.97 11.79 23.76 25.38
LED (topic-aware) 42.19 12.70 24.39 40.70 12.15 24.07 26.03
LED (topic-aware ⊕ two-step) 42.82 12.80 25.86 41.05 12.18 24.61 26.55

(b) Our systems’ and LED baseline’s (Beltagy et al., 2020) performance on validation set.

Table 1: ROUGE (F1) results of (a) our submissions compared to the other top 5 participating teams on the official
blind test set of MuP challenge, and (b) our system’s results on validation set. Bold scores show the top scores (in
(a) and (b)), and underlined scores are the second top (in (a)). The table is sorted by the average RG-F score (last
column). The MuP baseline is the BART (Lewis et al., 2020) summarizer, submitted by the challenge organizers.

Analysis. To explore the qualities and limitations
of each system, we further perform a qualitative
analysis over a random set of 15 test papers, com-
paring LED baseline with our submitted models.
The percentage rate of our observations is also pre-
sented in parentheses. We found that: (1) in outper-
formed cases, detected topics by the NTM compo-
nent fairly align with those discussed in gold sum-
maries (i.e., gold topics); hence, the summarizer is
guided to pick up on the paper information around
the gold topics (47%), (2) addition of two-step sum-
marizer has the most effect on refining the paper
in terms of dropping unimportant/irrelevant infor-
mation (66%), (3) in underperformed cases, our
topic-guided summarizers focus more on the topics
that are frequently mentioned in the paper; missing
those topics that are less mentioned despite their
saliency in gold summaries (72%). This might be
addressed in future work by some heuristics such as
saliency-aware (Zou et al., 2021), and hierarchical
(Jin et al., 2021) topic-modeling.

4 Related work

While scientific document summarization has a
long history, it has recently gained increasing atten-
tion from research communities. Previous works
have approached this problem by either generat-
ing regular-length summaries, such as (Qazvinian
et al., 2013; Cohan et al., 2018) among many, or
very recently so-called extended summaries (Chan-
drasekaran et al., 2020; Sotudeh et al., 2020;
Ghosh Roy et al., 2020; Gidiotis et al., 2020).

These attempts include hierarchical sequence mod-
eling (Xiao and Carenini, 2019; Rohde et al.,
2021; Pang et al., 2022; Ruan et al., 2022),
citation-context based approaches (Qazvinian and
Radev, 2008; Cohan and Goharian, 2015; Zerva
et al., 2020; An et al., 2021), using documents’
structural information as saliency signals (Cohan
et al., 2018; Sotudeh et al., 2020, 2021; Sotudeh
and Goharian, 2022), two-phase summarization
models (Ghosh Roy et al., 2020; Gidiotis and
Tsoumakas, 2020). Up to recently, majority of ex-
isting work in scientific domain has evaluated the
systems assuming that there is only one gold sum-
mary per paper. MuP challenge is the first attempt
toward evaluation of summarization systems given
multiple gold summaries, each of which captures a
specific aspect of the paper.

5 Conclusion

In this study, we explore two summarization ap-
proaches to tackle the multi-perspective summary
generation task, organized by the MuP challenge.
Our first model learns a latent topic distribution us-
ing neural topic modeling (NTM) in the fine-tuning
stage, and the knowledge is shared between the
topic modeling and text summarization task for
summary generation. Next, as our second model,
we further incorporate a two-step summarization
framework into the summarization model for yield-
ing even more improvements. Our best submission
ranks first in ROUGE-1 (F); and second in ROUGE-1
(R), ROUGE-2 (F), and average ROUGE (F) scores.
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Abstract
The MuP-2022 shared task focuses on multi-
perspective scientific document summarization.
Given a scientific document, with multiple ref-
erence summaries, our goal was to develop a
model that can produce a generic summary cov-
ering as many aspects of the document as cov-
ered by all of its reference summaries. This
paper describes our best official model, a fine-
tuned BARTlarge, along with a discussion on
the challenges of this task and some of our
unofficial models including SOTA generation
models. Our submitted model out performed
the given, MuP 2022 shared task baselines on
ROUGE-2, ROUGE-L and average ROUGE
F1-scores. Code of our submission can be ac-
cessed here.

1 Introduction

With the rapidly growing research community, the
volume of scientific papers being published every
year is also going up. Which makes it nearly im-
possible for researchers to stay on top of the latest
research. Scientific document summarization plays
a crucial role in mitigating this problem. However,
generating generic summaries for scientific doc-
uments is a non-trivial task due to their specific
structure, varied content and inclusion of citation
sentences. Scientific articles often represent salient
information through tables, figures, and pseudo-
codes (Altmami and Menai, 2020) and mathemati-
cal equations. And, generic text does not usually
contain such elements.

The two widely used approaches for scien-
tific document summarization are content-based
(Collins et al., 2017; Nikolov et al., 2018) and
citation-based (Nakov et al.; Abu-Jbara and Radev,
2011; Yasunaga et al., 2019). The former relies
on traditional extractive and abstractive methods
whereas, the latter locates the target paper by match-
ing a portion of text with the citation sentences.

Almost all traditional summarization models,
whether extractive or abstractive, follow supervised

learning approach. That means, given a document
the model learns to generate its summary based on
its given gold (target) summary. However, in real
world, summary writing is very subjective. For a
given document, there could be multiple different
yet valid summaries where each summary writer
has written a summary of the same document from
their perspective of the document. This subjec-
tivity raises concerns about the evaluation ability
of the model that is presented with only one gold
summary. The MuP-2022 shared task is a novel
attempt to address this concern. The goal of multi-
perspective summarization task is to develop mod-
els that are capable of leveraging multiple gold
summaries to generate one generic summary.

MuP-2022 shared task data contains a collection
of scientific documents with multiple summaries.
These summaries were collected by first taking
(one or) multiple scientific peer reviews for each
document and then extracting the introductory para-
graph that summarizes the key contributions of the
paper from the reviewer’s perspective.

For this task, we explored several pretrained
sequence-to-sequence models such as BART
(Lewis et al., 2020), T5 (Raffel et al., 2020), and
ProphetNet (Qi et al., 2020). We also experimented
with: a two-stage fine-tuning approach using the
SciTLDR dataset (Cachola et al., 2020) and the
divide and conquer approach, by (Gidiotis and
Tsoumakas, 2020), that first divides the document
into multiple sections to obtain section-wise sum-
maries, and then aggregates all partial summaries
to form the complete summary.

For the MuP 2022 shared task dataset, our fine-
tuned BARTlarge model remained the best among
all our experiments by achieving 40.68 ROUGE-1
F1-score and 26.04 average ROUGE F1-score.

2 Related Work

Research on summarizing scientific documents has
been widely explored in recent years. It is perti-
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Train Validation
#Pairs 18934 3604

#Unique Pairs 8382 1060
Text Summary Text Summary

#Avg Words 2671.41 113.57 2671 115.13
#Avg Sentences 122.35 4.78 121.14 4.82

Table 1: MuP Data Statistics

nent to note that there is a great deal of variation
in the density of information covered (Over and
Yen, 2004), the level of details, and the organiza-
tion of the content within the scientific document
summaries. Recent work by (Fabbri et al., 2021)
uses question threads from the Yahoo forum to
build the multi-perspective answer summarization
corpus. Meng et al., (2021) present FactSum that
contains four summaries for each paper covers dif-
ferent aspects, they can provide summaries based
on user requests.

A number of scholarly document summariza-
tion datasets, including PubMed and arXiv (Cohan
et al., 2018), were used for training neural models
ScisummNet (Yasunaga et al., 2019) and SciTLDR
for extreme summarization (Cachola et al., 2020).
Unlike these datasets, MuP2022 shared task orga-
nizers released a multi-perspective summarization
dataset for scientific documents.

Various generation models, including BART, T5,
ProphetNet, and PEGASUS, have shown great per-
formance in summarization tasks. In particular,
models like Big Bird (Zaheer et al., 2021) and
Longformer (Beltagy et al., 2020) were released to
handle long documents.

3 Corpus Description

The multi-perspective scientific document summa-
rization task aims to generate a summary that cov-
ers various aspects of the document. Evaluating
such a system with just one gold (or reference) sum-
mary negatively impacts the goal, as summaries are
usually very subjective. Considering the fact that
multiple summaries would help cover more differ-
ent perspectives of the scientific document, which
a single summary might have missed.

MuP2022 (Cohan et al., 2022) shared task data1

contains multiple reference summaries for major-
ity of the training set documents, and all of the
development set documents also had a minimum
of 3 reference summaries. The corpus consists of
around 10K papers and 26.5K summaries. The

1https://github.com/allenai/mup

average length of the summaries is 114.3 words
long.

4 Methodology

Self-supervised pretrained models like BART
(Lewis et al., 2020), T5 (Raffel et al., 2020), XLNet
(Yang et al., 2019), ProphetNet (Qi et al., 2020),
PEGASUS (Zhang et al., 2020) have been effective
for many generative tasks. We experiment with
these pre-trained models and fine-tune them on
MuP dataset for this task.

BART is a transformer-based (Vaswani et al.,
2017) standard sequence-to-sequence model modi-
fied to work as an auto-encoder (Lewis et al., 2020).
A self-supervised autoencoder is trained on the cor-
rupted text (addition of noise) and uses a language
model to reconstruct the original text with the true
replacement of corrupted tokens. BART uses five
“noising” methods: token masking, token deletion,
text infilling, sentence permutation, and document
rotation.

T5 or Text to Text Transfer Transformer (Raf-
fel et al., 2020) is a transformer-based approach
that converts all the text-based language problems
into the text-to-text format. This strategy allows
the use of the same model architecture across a di-
verse set of tasks. T5 is pretrained on a multi-task
mixture of supervised and unsupervised tasks using
the common crawled corpus. We fine tune T5 base
model on MuP corpus.

ProphetNet (Qi et al., 2020) is a sequence-to-
sequence pretraining model. The unique objective
of this model is to predict the future n-grams as the
self-supervised training strategy. Unlike the tradi-
tional sequence-to-sequence models, ProphetNet
is optimized by n-step ahead prediction instead of
one-step-ahead prediction. We experimented with
ProphetNet models with and without fine-tuned on
the CNN/DailyMail dataset.

Utilizing SciTLDR The TLDR (Cachola et al.,
2020) approach aims at creating extremely short
summaries (TLDRs) for scientific documents. For
this task, the authors introduced a SciTLDR dataset
of 5400 TLDRs over 3200 papers.

DANCER (Gidiotis and Tsoumakas, 2020)
Most of the extractive and abstractive methods for
scientific document summarization typically con-
sider the input as abstract and/or full text of the
article to generate the abstract-like summary. In
contrast, DANCER divides the source text into mul-
tiple sections, generates an individual summary for
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Model R-1 R-2 R-L Avg R-f
Baseline 40.8 12.3 24.5 25.8

BARTlarge cnn 40.68 12.47 24.99 26.05
DistilBART cnn 39.36 11.79 24.47 25.21
BARTbase cnn 39.12 11.42 23.8 24.78

T5base 38.35 11.26 24.64 24.75
ProphetNet 38.15 11.45 24.25 24.62
BARTbase 38.53 11.39 23.92 24.61

ProphetNet cnn 37.59 10.91 24.09 24.2
DANCER + BART 33.07 9.06 18.2 20.11
BART + Two-stage 32.51 6.82 20.64 19.99

Table 2: ROUGE scores for models fine-tuned on
MuP2022 dataset

Parameters BART T5 ProphetNet
Max source length 1024 1024 512
Max target length 150 128 128
Min target length 56 30 56

Batch Size 1 1 1
Epochs 2 10 1

Vocab Size 50265 32128 30522
Beam Size 4 4 5

Learning Rate 5e-5 1e-4 5e-5

Table 3: Experimental Setup and Parameters Settings

each section, and aggregates the partial summaries
to form the target summary.

5 Experiments

All of our experiments were performed on the same
splits of train, validation and test sets as provided
by the organizers. Table 1 shows the data statistics.
We used NLTK tokenizer and the simplified version
data released by the task organizers to report all the
counts mentioned in Table 1.

The following subsections detail various cate-
gories of experiments. We hypothesise that various
sections of the source document may contribute in
multi-perspective reviews of the document reviews.
The subsection 5.3 and 5.4 detail the experiments
conducted, specifically, to capture various sections
of the document.

5.1 Existing Pre-trained Generation models

We experimented with existing SOTA generation
models like BART (Lewis et al., 2020), T5 (Raffel
et al., 2020) and ProphetNet (Qi et al., 2020). Table
3 details the general experimental setup for each.

Experiments were conducted with different ver-
sions of these models, such as DistilBART-cnn,
BARTbase, BARTbase-cnn (base model of BART
fine-tuned on CNN dataset), and ProphetNet-cnn.

Among all these, BARTlarge achieved better per-
formance for the MuP task. We use the BARTlarge

model fine-tuned on the CNN/DailyMail dataset
(Hermann et al., 2015) to initialize our model.

5.2 Two Stage Fine-tuning
In order to follow TLDR (Cachola et al., 2020)
approach, we attempted two stage fine tuning. Us-
ing the available checkpoints in the Hugging Face
Transformers Library (Wolf et al., 2020), first we
fine-tune the BART model on the SciTLDR dataset
for 10 epochs with the max source and target token
lengths of 1024 and 150 respectively. In the second
stage, we fine-tune this model on the MuP dataset,
with the same settings. However, as the bottom line
of the Table 2 shows, this approach did not help
with this MuP task.

5.3 Data Variation
The entire MuP dataset was released in two for-
mats: one that consisted of the full-text of the sci-
entific document along with meta-data and second,
a simplified version of the source document. This
simplified content is basically the pre-processed
initial 2000 tokens of the documents’ introduction
sections.

We conducted a few experiments, with our sub-
mitted model, to investigate the contribution of
various sections of these documents in the target
summaries. For this, we created four categories
of training, validation and test sets such that each
category’s source content consisted of one of the
following combinations of sections of the source
document:

1. Introduction: Only the introduction section
of the document was used as the input to the
BART model.

2. Abstract + Introduction: Both abstract and
introduction sections, in concatenation, were
utilized as the input for the BART model.

3. Abstract + Introduction + Conclusion: The
BART model was fed with a combination of
abstract, introduction and conclusion sections
(if available) of the document.

4. Abstract + Conclusion: A combination of
abstract and conclusion section was used as
the input to the BART model.

First, we separately fine-tuned our BARTlarge

model using the training and validation data of
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Train & Val Data Test Data
R-1 R-2 R-L Avg R-f 1 2 3 4 1 2 3 4

40.68 12.47 24.99 26.05
40.67 12.5 24.93 26.03
40.47 12.29 24.76 25.84
40.34 12.28 24.79 25.8
40.33 12.28 24.75 25.79
40.39 12.25 24.73 25.79
40.23 12.32 24.77 25.77
40.23 12.17 24.6 25.67
40.1 12.25 24.63 25.66
40.22 12.13 24.54 25.63

Table 4: Impact of Data Variations

each of these categories. Next, in each of these
experiments all 4 models were tested with all 4
categories of test data. Table 4 shows the respective
ROUGE f1-scores. Where, the checkmarks ( )
indicate the selected combination of training and
test data category.

As shown in Table 4, the combination of ‘1’ & ‘2’
(i.e. only-introduction section for the training data
and abstract + introduction for test data) outper-
forms all the rest. All these models were fine-tuned
for two epochs and with the max source and target
lengths of 1024 and 150, respectively.

5.4 Divide and Conquer Approach

Following the DANCER approach, we prepare the
training, validation and test inputs by dividing each
corresponding source documents into four sections:
Abstract, Introduction, Results and Discussion,
and Conclusion. We fine-tuned the BART model
on each section of information separately and com-
bined all the summaries at the end to get the final
generated summary.

5.5 Impact of Hyperparameters

In order to find the optimal architecture for our
BARTlarge model, we experimented with number-
of-epochs (1, 2, 3, 5) with default max-target-
length of 128, where fine-tuning with 2 epochs
showed better performance. We then tested for
max-target-lengths (128, 150, 200) with 2 epochs.
Where max-target-length 150 gave slightly better
performance than the remaining. Tables 5 and 6
detail the corresponding ROUGE f1-scores.

6 Results & Discussion

For the MuP task, we experimented with various
pre-trained generation models, a couple of scien-

Epochs R-1 R-2 R-L Avg R-f
1 40.5 12.48 24.88 25.95
2 40.57 12.49 24.98 26.01
3 40.31 12.23 24.8 25.78
5 40.35 12.02 24.59 25.65

Table 5: Impact of number-of-Epochs Variation

Epochs Max Target
Length R-1 R-2 R-L Avg R-f

128 40.57 12.49 24.98 26.01
150 40.68 12.47 24.99 26.052
200 40.67 12.47 24.99 26.04
128 40.35 12.02 24.59 25.65

5
150 40.31 12.1 24.66 25.69

Table 6: Impact of Max-Target-Length Variation

tific document summarization approaches, methods
to cover different sections of the document and pa-
rameter settings. As shown in Table 2, among all
of these the BARTlargecnn (our submitted) model
performed the best. This model was fine-tuned for
2 epochs with max-target-length 150 and data com-
bination 1-2 (as mentioned in section 5.3). With
this model, we secured 3rd rank in the MuP-2022
shared task.

While the MuP task considers summaries from
multiple reviewers as different “perspectives”, most
of these summaries cover only the major contri-
butions of the paper. These summaries, though
diverse in their construction, do not look at the re-
search paper from different points-of-view. We see
a validation of this claim from the results in table
4, where model trained on “introduction” section
alone outperforms all other combinations.
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Abstract

This paper introduces the proposed summa-
rization system of the AINLPML team for the
First Shared Task on Multi-Perspective Scien-
tific Document Summarization at SDP 2022.
We present a method to produce abstractive
summaries of scientific documents. First, we
perform an extractive summarization step to
identify the essential part of the paper. The
extraction step includes utilizing a contribut-
ing sentence identification model to determine
the contributing sentences in selected sections
and portions of the text. In the next step, the
extracted relevant information is used to condi-
tion the transformer language model to gener-
ate an abstractive summary. In particular, we
fine-tuned the pre-trained BART model on the
extracted summary from the previous step. Our
proposed model successfully outperformed the
baseline provided by the organizers by a signif-
icant margin. Our approach achieves the best
average Rouge F1 Score, Rouge-2 F1 Score,
and Rouge-L F1 Score among all submissions.

1 Introduction

Automatic summarization involves distilling a doc-
ument down to its essentials. There are two types
of summarization techniques: abstractive summa-
rization and extractive summarization. Abstractive
summarization examines a document and creates
a summary from it that may contain phrases that
do not present in the original text. The more chal-
lenging goal is abstractive summarization, which
is beneficial in fields like novels where phrases
taken out of context are not a good foundation for
producing a grammatical and cohesive summary.
We are interested in summarizing scientific litera-
ture in this instance. Summarization of research
papers can help in obtaining core ideas instantly
and would help researchers all around the world in
fastening the process of literature surveys.
It is well recognized that creating summaries of
scientific papers is a difficult endeavour. The main

question is why the article’s abstract doesn’t suffice
since it summarizes the scientific article. Although
an abstract has been written, there are many rea-
sons for generating article summaries. First, one
of the main problems with abstracts is that they
do not include relevant information from the full
text. Second, it presents the author’s viewpoint on
the unique characteristic in an incomplete and bi-
ased manner (Yang et al., 2016). Thirdly, no single
summary meets all the user’s needs (Reeve et al.,
2007). In addition, the abstract does not cover all
the impacts and contributions of the article (Elkiss
et al., 2008) but rather what the author wishes to
emphasize. As a result, the summary generated
by such a system should be informative enough,
cover all the critical sections of the input article,
and provide the reader with essential information.
Furthermore, (Yasunaga et al., 2019) discuss the
impact factor of a scientific article. Summariza-
tion systems should accommodate the viewpoints
of other researchers (i.e., citations) and the signifi-
cant aspects highlighted by the article’s authors in
the abstract since the significance of papers may
change over time.

Most existing summarizing research assumes
only one best gold summary for each given ma-
terial. Having just one gold summary limits our
capacity to assess the effectiveness of summarizing
algorithms because creating summaries is impor-
tant to derive the significant aspects of any long
document. Furthermore, because it takes subject
matter experts a lot of time to read and compre-
hend lengthy scientific publications, annotating
several gold summaries for scientific documents
can be very expensive. The workshops aimed to
promote the exploration of strategies for producing
multi-perspective summaries. A novel summariz-
ing corpus was provided that used information from
peer-reviewed scientific articles to capture various
viewpoints from the reader’s perspective. In many
different branches of science, peer reviews typi-
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cally begin with a paragraph that summarizes the
most important contributions made by a work from
the perspective of the reviewer, and each paper
typically undergoes a number of different reviews.

This paper presents our approach to the MuP
shared task(Cohan et al., 2022). We present an end-
to-end approach to generate summaries of long
scientific documents that uses the advantages of
both extractive and abstractive approaches. Before
producing a summary in an abstractive manner, we
perform the extractive step, which is then used for
conditioning the abstractor module. We first deter-
mined the section of a research paper. We took the
Abstract, and the last few sentences of the intro-
duction section as mostly authors summarize a few
critical questions about the paper in these, such as,
‘What is the contribution in the paper?’, ‘What is
the novelty?’, ‘How is it different from previous
works?’. From the rest of the portion of the docu-
ment, we extracted the contributing sentences using
a Large Language Model named ContriSci(Gupta
et al., 2021). ContriSci is a BERT fine-tuned over
sectional data from a research paper, capable of
generating binary labels for a given sentence in
that section which tells us if the sentence is con-
tributing to the understanding of the section or not.
After performing these extractive steps, we trained
an abstractive model to form a final summary. Our
experiments showed that jointly using extractive
and abstractive models improves the summariza-
tion results.

2 Methodology

We propose an end-to-end pipeline approach to
generate summaries automatically from scientific
documents. Figure 1 shows an overview of our
approach. We describe each component briefly as
follows:

2.1 Extractive Model
The input to this model is the full text of the pa-
per. Extractive Summarization deals with extract-
ing pieces of text directly from the input document.
Extractive Summarization can also be seen as a text
classification task where we try to predict whether
a given sentence will be part of the summary or
not(Liu, 2019).

2.1.1 Section Identification
Section information is essential as the reviewer
often focuses on a few sections, such as the ab-
stract and conclusion, more than other sections

(Ghosh Roy et al., 2020). Section identification
for any full scientific paper is not straightforward
as there is no fixed pattern through which a tem-
plate of a research paper is generalized. On close
observation of the training data, We found that in
training, only 60% of the data had a section named
’Conclusion’ explicitly. Similarly, for ’Conclusion’
similar problem was seen for generic sections such
as ‘Methodology’ and ‘Results’. Moreover, the
section ’Conclusion’ is not necessary the last sec-
tion or the second last section of the paper. So,
we found that the only sections uniformly avail-
able in each research paper were ‘Introduction’ and
‘Abstract.’

2.1.2 Contributing Sentence Identification

Apart from the ’Abstract’ and last n1 sentences of
the introduction section, we also extract the con-
tributing sentences using an attention-based deep
neural model named ContriSci. ContriSci is a deep
neural architecture that leverages Multi-task Learn-
ing to identify statements from a given research
article that mention a contribution of the study. The
model makes use of two auxiliary tasks: 1) Sec-
tion Classification - classifying a given statement
as belonging to a specific section of the paper, 2)
Citation Classification - classifying whether a given
statement consists of a citation within itself.

The authors generalize the specific sections of
a conventional research paper into six categories
- ‘Title’, ‘Abstract’, ‘Introduction’, ‘Background’,
‘Method’, and ‘Result’. The study makes use of the
NLPContributionGraph (NCG) data set (D’Souza
et al., 2021) from Sem-Eval 2021 Task A 2. The
authors use set of predefined rules to annotate the
dataset for the task of Section Classification. A spe-
cific research statement is fed into model together
with the name of the section to which it belongs
and the statements that surround it. Intuitively, this
means that the model trains on more knowledge
about the context in which a given research state-
ment has been written. Given the peculiarities of
the model and it’s relevance to SDP, we choose
to leverage it to enrich the extraction of textually
salient statements.

1n=5. It was set empirically. We analyzed various values
of n between 1 to 10 and chose the one that resulted in the
best Rouge-1 F1 score

2https://ncg-task.github.io
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Figure 1: Architecture diagram of our proposed methodology.

System Rouge1 F Rouge1 R Rouge2 F Rouge2 F RougeL R RougeL R Avg Rouge F
Baseline 40.80 44.20 12.33 13.50 24.48 26.81 25.87
Other System 41.36 43.29 12.52 13.20 24.83 26.21 26.24
Our System 41.08 42.96 13.29 13.98 25.36 26.62 26.58

Table 1: Experimental results of our model.(R:Recall, F:1 Score, Other System: Refers to the system with highest
Rouge F1 in the leaderboard)

.

2.2 Abstractive Model

We use the BART autoencoder for pretraining
sequence-to-sequence models. The structure of
BART consists of two parts: an encoder and a
decoder. The encoder part is a bidirectional en-
coder that corresponds to the structure of BERT
(Vaswani et al., 2017), and the decoder part is an
auto-regressive decoder following the settings of
GPT. During the pretraining process, BART re-
ceives the corrupted document as input and per-
forms the task of predicting the original uncor-
rupted document. In this way, BART can effec-
tively learn contextual representations. When fine-
tuned for the summarization task, the bidirectional
encoder part encodes the original document, and
the decoder part predicts the reference summary.
BART obtains excellent performance on the sum-
marization task. We gave the input to BART as
follows:
Input text: Abstract [SEP ] INTRO_LAST [SEP ]
Contributing sentences

Here the input to the BART model is Ab-
stract, the last n sentences of the introduc-
tion(INTRO_LAST) and the contributing sentences

separated by a token [SEP ]. We use the BART
fine-tuned on CNN/DailyMail dataset (Hermann
et al., 2015) to initialize our model.

3 Experiments

In this section we discuss our results and analy-
sis. The data set description (A) and experimental
settings (B) can be found in the Appendix section.

3.1 Results and Discussion

In Table 1 the comparison of our best-submitted
system has been made with the organizer’s baseline
model as well as the best performing system (based
on Rouge1_f score (Lin, 2004)). Our methodology
outperforms the baseline by a significant margin of
0.28 Rouge1_f score and 0.71 Avg Rouge F scores.
Comparing our submission with the ’best leader
board submission’ shows that the submitted system
performs well in Rouge2, RougeL, and overall avg
Rouge F scores.

3.1.1 Different inputs to the model
The submitted system had varied inputs passed
through BART for summary generation. We report
the result on the following combinations:
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Submitted Systems
[Input to the BART while fine tuning] Rouge1_F Rouge2_F RougeL_F Avg

Rouge F
Abstract + Full Paper 40.53 12.02 24.32 25.62
Abstract + Rule based selection from Intro 40.62 12.22 24.22 25.74
Abstract + Rule based selection from Full Paper 40.78 12.19 24.27 25.79
Abstract + Full Intro + ContriSci 40.73 12.25 26.01 26.33
Abstract + Intro Last + ContriSci 41.08 13.29 25.36 26.58

Table 2: Ablation Study of our model.(F in the Rouge metrics refer to Rouge F1 Score)
.

• We performed the first set of experiments by
tuning BART on Abstract + Full paper con-
tents.

• Then we performed experiments by select-
ing contributing sentences from Abstract +
Introductions of the paper and Abstract + Full
paper. These contributing sentences were se-
lected by defining rules to select sentences that
contained words like ‘propose,’ ‘demonstrate,’
‘formulate,’ ‘contributes,’ etc.

• The final set was formulating the approach
of selecting contributing sentences using a
ContriSciBERT(a pre-trained model used to
identify whether a given sentence was a con-
tributing sentence or not).

3.1.2 Performance Analysis
We show the result of the experiments in Table
2. One of our significant experiments focused on
exploiting sectional knowledge and selecting only
sentences that concentrated on the substantial un-
derstanding of the paper. In particular, selecting
contributing sentences helped to comprehend the
paper’s contribution. It assisted the subsequent
model in generating a better-focused summary than
other systems. Due to this we surpassed the base-
line scores the organizers provided. In particular,
we achieved an average Rouge F score of 26.58
when the Abstract + Intro Last + ContriSciBERT
which is best among all the submissions made to
the task. We also tested our result by passing the
whole text of the introduction section as input. We
achieved an avg Rouge F score of 26.33, which
shows that it is better to give only the last por-
tion of the introduction as it generally summarises
the paper’s contribution rather than proving the en-
tire introduction to the subsequent summarization
model. We also reported the result from extract-
ing contributing sentences using generated rules.
The result indicates that extracting contributing sen-
tences from full papers is better than extracting
them from only introduction section. We also re-
port our system’s scores on the Abstract + Full

paper. The organizer used the same model as the
baseline. The model produced a lower score than
the baseline, perhaps because the organizers used
better hyperparameters.

These analyses show the importance of the two-
step approach to our proposed system. The first
extractive summarization step ie: extracting the
contributing sentences, the last part of the introduc-
tion section and the abstract written by the author
assist the next abstractive step. It finally creates a
focused summary highlighting the paper’s contri-
bution, motivation, etc of the paper. We perform a
human evaluation of our summaries by hiring four
human experts pursuing their masters in engineer-
ing and technology. They are well versed in NLP
and machine learning. The ten summaries appear
in entirely random order. We asked the responders
to evaluate the summaries by rating them between 1
to 9 on the Likert Scale. The summaries generated
by our model achieve the 7.5 Informativeness and
7 Coverage scores (described in Appendix Section
C) compared to the golden summaries.

4 Conclusions

In this paper, we studied the Multi-Perspective Sci-
entific Document Summarization task. We exper-
imented with a joint model using extractive and
abstractive approaches. The extractive approach
supports the modelling of the document structure
with a strong focus on which parts/sentences of a
research paper to attend to while composing a sum-
mary, which significantly boosts the quality of the
resultant output. On blind test corpora, our system
ranks first wrt. to average Rouge F1 score. The
results motivate towards experimenting with better
extractive approaches in future which can improve
the generation of abstractive summaries by feeding
them ideal input data.
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A Data

The information from OpenReview3, a platform for
open and public publication of scientific research
was provided. The corpus is composed of pub-
lications from venues including ICLR, NeurIPS,
and AKBC. There are around 10,000 publications
and 26.5 thousand summaries in the corpus (with
an average number of 2.57 summaries per paper).
Average word count for the summaries is 100.1.
(space tokenized).

B Experimental Settings

To train the ContriSci, we use an 80:10:10 split.
We use the default hyperparameters with which
ContriSci is trained. We use a learning rate of 1e-5
and an LR scheduler with Polynomial Decay and
train the model for 5 epochs.

There are multiple summaries for a paper, so
we have taken each paper’s content and each sum-
mary as one instance to train the model4. We use
a dynamic learning rate for the BART-based sum-
marization, warm up 1000 iterations, and decay
afterward. We set the batch size to 4. The gradient
will accumulate every ten iterations, and we train
all models for 6000 iterations on 1 GPU (NVIDIA
A100 16GB). We save the best model with the high-
est Rouge1-F1 score based on the validation set.
For the BART model, we use the implementation
from the huggingface 5. We use the BART large
model pre-trained on CNN/DailyMail dataset.

C Human Evaluation

We used the human evaluation as specified below
:-

• Q1 (Readability): determines which of the
summaries are most readable?

• Q2 (Informativeness): determines how much
useful information about the reviews does the

3https://openreview.net/
4For example, if there are k summary of a paper, then we

will create k instances of the paper.
5https://huggingface.co/
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summary provide? You need to skim through
the original reviews to answer this.
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