@inproceedings{chi-rudnicky-2022-structured,
title = "Structured Dialogue Discourse Parsing",
author = "Chi, Ta-Chung and
Rudnicky, Alexander",
editor = "Lemon, Oliver and
Hakkani-Tur, Dilek and
Li, Junyi Jessy and
Ashrafzadeh, Arash and
Garcia, Daniel Hern{\'a}ndez and
Alikhani, Malihe and
Vandyke, David and
Du{\v{s}}ek, Ond{\v{r}}ej",
booktitle = "Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2022",
address = "Edinburgh, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigdial-1.32/",
doi = "10.18653/v1/2022.sigdial-1.32",
pages = "325--335",
abstract = "Dialogue discourse parsing aims to uncover the internal structure of a multi-participant conversation by finding all the discourse \textit{links} and corresponding \textit{relations}. Previous work either treats this task as a series of independent multiple-choice problems, in which the link existence and relations are decoded separately, or the encoding is restricted to only local interaction, ignoring the holistic structural information. In contrast, we propose a principled method that improves upon previous work from two perspectives: encoding and decoding. From the encoding side, we perform structured encoding on the adjacency matrix followed by the matrix-tree learning algorithm, where all discourse links and relations in the dialogue are jointly optimized based on latent tree-level distribution. From the decoding side, we perform structured inference using the modified Chiu-Liu-Edmonds algorithm, which explicitly generates the labeled multi-root non-projective spanning tree that best captures the discourse structure. In addition, unlike in previous work, we do not rely on hand-crafted features; this improves the model`s robustness. Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni (F1 scores)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chi-rudnicky-2022-structured">
<titleInfo>
<title>Structured Dialogue Discourse Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ta-Chung</namePart>
<namePart type="family">Chi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Rudnicky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Lemon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arash</namePart>
<namePart type="family">Ashrafzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="given">Hernández</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vandyke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Dušek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Edinburgh, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue discourse parsing aims to uncover the internal structure of a multi-participant conversation by finding all the discourse links and corresponding relations. Previous work either treats this task as a series of independent multiple-choice problems, in which the link existence and relations are decoded separately, or the encoding is restricted to only local interaction, ignoring the holistic structural information. In contrast, we propose a principled method that improves upon previous work from two perspectives: encoding and decoding. From the encoding side, we perform structured encoding on the adjacency matrix followed by the matrix-tree learning algorithm, where all discourse links and relations in the dialogue are jointly optimized based on latent tree-level distribution. From the decoding side, we perform structured inference using the modified Chiu-Liu-Edmonds algorithm, which explicitly generates the labeled multi-root non-projective spanning tree that best captures the discourse structure. In addition, unlike in previous work, we do not rely on hand-crafted features; this improves the model‘s robustness. Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni (F1 scores).</abstract>
<identifier type="citekey">chi-rudnicky-2022-structured</identifier>
<identifier type="doi">10.18653/v1/2022.sigdial-1.32</identifier>
<location>
<url>https://aclanthology.org/2022.sigdial-1.32/</url>
</location>
<part>
<date>2022-09</date>
<extent unit="page">
<start>325</start>
<end>335</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Structured Dialogue Discourse Parsing
%A Chi, Ta-Chung
%A Rudnicky, Alexander
%Y Lemon, Oliver
%Y Hakkani-Tur, Dilek
%Y Li, Junyi Jessy
%Y Ashrafzadeh, Arash
%Y Garcia, Daniel Hernández
%Y Alikhani, Malihe
%Y Vandyke, David
%Y Dušek, Ondřej
%S Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2022
%8 September
%I Association for Computational Linguistics
%C Edinburgh, UK
%F chi-rudnicky-2022-structured
%X Dialogue discourse parsing aims to uncover the internal structure of a multi-participant conversation by finding all the discourse links and corresponding relations. Previous work either treats this task as a series of independent multiple-choice problems, in which the link existence and relations are decoded separately, or the encoding is restricted to only local interaction, ignoring the holistic structural information. In contrast, we propose a principled method that improves upon previous work from two perspectives: encoding and decoding. From the encoding side, we perform structured encoding on the adjacency matrix followed by the matrix-tree learning algorithm, where all discourse links and relations in the dialogue are jointly optimized based on latent tree-level distribution. From the decoding side, we perform structured inference using the modified Chiu-Liu-Edmonds algorithm, which explicitly generates the labeled multi-root non-projective spanning tree that best captures the discourse structure. In addition, unlike in previous work, we do not rely on hand-crafted features; this improves the model‘s robustness. Experiments show that our method achieves new state-of-the-art, surpassing the previous model by 2.3 on STAC and 1.5 on Molweni (F1 scores).
%R 10.18653/v1/2022.sigdial-1.32
%U https://aclanthology.org/2022.sigdial-1.32/
%U https://doi.org/10.18653/v1/2022.sigdial-1.32
%P 325-335
Markdown (Informal)
[Structured Dialogue Discourse Parsing](https://aclanthology.org/2022.sigdial-1.32/) (Chi & Rudnicky, SIGDIAL 2022)
ACL
- Ta-Chung Chi and Alexander Rudnicky. 2022. Structured Dialogue Discourse Parsing. In Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 325–335, Edinburgh, UK. Association for Computational Linguistics.