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Preface

These proceedings include the 13 papers presented at the Ninth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), co-located with the 29th International Conference on Computational
Linguistics (COLING). Both COLING and VarDial were held in Gyeongju, South Korea, in a hybrid
format, allowing all participants to either be present on-site or join virtually.

VarDial has now reached its ninth edition and continues serving the community as the main venue
for researchers interested in the computational processing of diatopic language variation. The papers
accepted this year address a wide range of NLP tasks such as corpus building, part-of-speech tagging
and machine translation, but also address more theoretical questions related to micro-scale variation,
cognate detection, mutual intelligibility and dialectometry. We are happy to see such a diverse set of
research papers advancing the state of the art of NLP for dialects, low-resource languages, and language
varieties.

As in previous years, the evaluation campaign continues to be an essential part of the VarDial
workshop. This year, three shared tasks were proposed: Identification of Languages and Dialects
of Italy (ITDI), French Cross-Domain Dialect Identification (FDI), and Dialectal Extractive Question
Answering (DialQA). All three tasks address important issues in dialect and language identification.
This volume includes five system description papers prepared by the participating teams, as well as a
report summarizing the results and findings of the evaluation campaign.

Finally, we would like to take this opportunity to thank the shared task organizers and the participants of
the evaluation campaign for their hard work. We further thank our amazing VarDial program committee
members for their thorough reviews. They have been a very important part of the workshop’s success in
the past years.

The VarDial workshop organizers:

Yves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, and Marcos
Zampieri

http://sites.google.com/view/vardial-2022/
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Radu Tudor Ionescu 4 · FDI, Yves Scherrer 5 · ITDI

1University of Zurich, 2George Mason University, 3Aix-Marseille Université,
4University of Bucharest, 5University of Helsinki

Abstract

This report presents the results of the shared
tasks organized as part of the VarDial Evalu-
ation Campaign 2022. The campaign is part
of the ninth workshop on Natural Language
Processing (NLP) for Similar Languages, Va-
rieties and Dialects (VarDial), co-located with
COLING 2022. Three separate shared tasks
were included this year: Identification of Lan-
guages and Dialects of Italy (ITDI), French
Cross-Domain Dialect Identification (FDI), and
Dialectal Extractive Question Answering (Di-
alQA). All three tasks were organized for the
first time this year.

1 Introduction

The workshop series on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), tradi-
tionally co-located with international conferences,
has reached its ninth edition. Since the first edi-
tion, VarDial has hosted shared tasks on various
topics such as language and dialect identification,
morphosyntactic tagging, question answering, and
cross-lingual dependency parsing. The shared tasks
have featured many languages and dialects from
different families and data from various sources,
genres, and domains (Chakravarthi et al., 2021;
Gaman et al., 2020; Zampieri et al., 2019, 2018,
2017; Malmasi et al., 2016; Zampieri et al., 2015,
2014).

We offered three shared tasks as part of the Var-
Dial Evaluation Campaign 2022, which we present
in this paper: Identification of Languages and Di-
alects of Italy (ITDI), French Cross-Domain Di-
alect Identification (FDI), and Dialectal Extractive
Question Answering (DialQA).

This overview paper is structured as follows: in
Section 2, we briefly introduce the three shared
tasks. Section 3 presents the teams that submit-
ted systems to the shared tasks. Each task is then
discussed in detail, focusing on the data, the partic-
ipants’ approaches, and the obtained results. Sec-

Figure 1: Rough regions where the eleven consid-
ered languages and dialects of Italy are spoken. ma-
genta: Italo-Dalmatian; turquoise: Gallo-Italian; yellow:
Gallo-Rhaetian; red: Sardinian. The map is vague; the
situation is more complex. However, it gives an idea of
where in Italy to locate the varieties.

tion 4 is dedicated to ITDI, Section 5 to FDI, and
Section 6 to DialQA.

2 Shared Tasks at VarDial 2022

2.1 Identification of Languages and Dialects
of Italy (ITDI)

Italy features a rich linguistic diversity with numer-
ous local and regional language varieties. Many
of the varieties form a continuum, but some others
are very distinct. The ITDI shared task focuses
on eleven language varieties that belong to the Ro-
mance language branch (like Italy’s official lan-
guage, Italian) and have their own Wikipedia.1 Fig-
ure 2 displays the relations of the eleven language
varieties according to the classification by Ethno-
logue (Eberhard et al., 2022), and Figure 1 shows
the approximate regions where they are mainly spo-

1by March 2022, when we created the shared task.
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Figure 2: Relations between the eleven considered languages and dialects of Italy, according to Ethnologue.

ken.2 More fine-grained classifications within di-
alects are possible. We must remember that classifi-
cation into categories is imprecise for a continuum
as we work with distinct rather than continuous
values. Depending on the availability of data, all
the data splits (training, development, test) may
contain one or several sub-varieties of the category
predetermined by the Wikipedia dumps. Further-
more, we rely on the categorization by the authors
of the texts, which might not be the one every na-
tive speaker agrees upon.

To the best of our knowledge, no previous lan-
guage identification research focuses exclusively
on Italy’s languages and dialects. However, some
of the language varieties featured in our shared task
have been part of other research related to language
identification. Jauhiainen et al. (2022) present a de-
tailed overview. More generally, Ramponi (2022)
reviews recent work on NLP for the language vari-
eties of Italy and identifies the most pressing chal-
lenges for their computational processing.

The ITDI task is a cross-domain classification
task in which the model is required to discriminate
between eleven languages and dialects of Italy. The
setting is similar to a real-world problem because
the training data consists only of Wikipedia dumps,
i.e., careful pre-processing is part of the task. Fur-
thermore, the data is not balanced in any of the
data splits. Finally, development and test splits
only contain sentences of distinct subsets of the
eleven languages and dialects and come from dif-

2We created this map according to https://uplo
ad.wikimedia.org/wikipedia/commons/3/3
2/Dialetti_e_lingue_in_Italia.png (Antonio
Ciccolella via Wikimedia Commons, 2015).

ferent sources and domains (see Appendix A.1 for
details). The submission format is closed, mean-
ing that participants cannot use additional data to
train their models – exceptions are off-the-shelf
pre-trained language models, which only one team
made use of.

2.2 French Cross-Domain Dialect
Identification (FDI)

For the 2022 French Cross-Domain Dialect Identi-
fication (FDI) shared task, participants had to train
a model on news samples collected from a set of
publication sources and evaluate it on news sam-
ples collected from a different set of publication
sources. To ensure that dialect identification mod-
els do not rely on features such as author style
or text topic, the publication sources and the top-
ics are different across splits. Therefore, partic-
ipants had to build a model for a cross-domain
four-way classification by dialect task, in which a
classification method is required to discriminate be-
tween the French (FR), Swiss (CH), Belgian (BE),
and Canadian (CA) dialects observed in news sam-
ples. For the shared task, we provided participants
with the French Cross-Domain Dialect dataset (Gă-
man et al., 2022), which contains French, Swiss,
Belgian, and Canadian samples of text collected
from the news domain. The corpus is divided into
training, validation and test, such that the training
set contains 358,787 samples, the development set
18,002 samples, and the test set 36,733 samples.

Participants are evaluated in two separate scenar-
ios: open and closed. In the closed format, partic-
ipants are not allowed to use pre-trained models
or external data to train their models. In the open

2



Team ITDI FDI DialQA System Description Paper

DCT ✓ Gillin (2022)
ETHZ ✓ Camposampiero et al. (2022)
NRC ✓ Bernier-Colborne et al. (2022)
Phlyers ✓ Ceolin (2022)
SUKI ✓ ✓ Jauhiainen et al. (2022)

Table 1: The teams that participated in the VarDial Evaluation Campaign 2022.

format, participants are allowed to use external re-
sources such as unlabeled corpora, lexicons, and
pre-trained embeddings (e.g. CamemBERT (Mar-
tin et al., 2020)), but the use of additional labeled
data is still not allowed.

2.3 Dialectal Extractive Question Answering
(DialQA)

Question Answering (QA) systems are capable of
answering human prompts with or without context.
With the advancement of query-based smartphone
assistants (eg. Google Assistant, Amazon Alexa, or
Apple Siri), the use-case scenarios of such systems
have already reached a global scale. However, in
most cases, the traditional text-based extractive QA
systems still follow the training routine on error-
free written text, whereas the real-world scenario
contains error-prone interfaces.

This year we introduced the DialQA shared task
to build QA systems that are robust to dialectal
variation. To make extractive QA systems more
representative of real-world scenarios, we prepared
an evaluation dataset based on the existing TyDi-
QA (Clark et al., 2020) dataset with two additional
dimensions. First, the augmented question text
contains dialectal and/or geographical language
variations. Second, we provide these questions in
spoken form to match the scenario of users query-
ing virtual assistants for information. The partic-
ipants could either (a) use the baseline automatic
speech recognition outputs for each dialect to make
a robust text-based QA system, or (b) they may
use the provided audio recordings of the questions
to make a dialect-robust ASR system which can
be then evaluated with a baseline QA system, or
(c) both of the above. The shared task was based
on the SD-QA (Faisal et al., 2021) development
and test datasets for English, Arabic, and Kiswahili
varieties, as well as code for training text-based
baseline extractive QA systems based on TyDi-QA.

3 Participating Teams

A total of five teams submitted runs to the ITDI
and FDI shared tasks. Unfortunately, we did not
receive any submissions for DialQA. In Table 1, we
list the teams that participated in the shared tasks,
including references to the system description pa-
pers which are published as parts of the VarDial
workshop proceedings. Detailed information about
the submissions is included in the task-specific sec-
tions below.

4 Identification of Languages and
Dialects of Italy

4.1 Dataset

The training set consists of eleven Wikipedia
dumps:3 Emilian-Romagnol (EML), Friulian
(FUR), Ladin (LLD), Ligurian (LIJ), Lom-
bard (LMO), Neapolitan (NAP), Piedmontese
(PMS), Sardinian (SC), Sicilian (SCN), Tarantino
(ROA_TARA) and Venetian (VEC). We provided
the participants with a script to download and ex-
tract the dumps on the basis of WikiExtractor (At-
tardi, 2015).

The development and test sets come from sev-
eral online sources.4 We only included sentences
with a minimum length of five and a maximum of
35 tokens. Table 2 shows the number of articles
(training set) and sentences (development and test
set) of the data splits. The released test set contains
11,090 lines.5

4.2 Participants and Approaches

ETHZ: The predictions submitted by the ETHZ
team (Camposampiero et al., 2022) were produced
by a logistic regression (using a sag solver and

3pages-articles-multistream.xml.bz2,
from 01.03.2022, now available on GitHub:
https://github.com/noe-eva/ITDI_2022.

4See Appendix A.1 and for more information.
5Including three empty lines, which we deleted for the

evaluation.
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Language Tag Train articles Dev sentences Test sentences

Emilian-Romagnol EML 12,996 – 825
Friulian FUR 3,750 676 1,323
Ladin LLD 11,981 – 2,200
Ligurian LIJ 10,912 617 2,282
Lombard LMO 50,518 1,231 689
Neapolitan NAP 14,789 – 2,026
Piedmontese PMS 66,268 1,191 –
Sardinian SC 7,419 477 –
Sicilian SCN 26,464 1,371 –
Tarantino ROA_TARA 9,322 – 603
Venetian VEC 68,955 1,236 1,139

Total 283,374 6,799 11,087

Table 2: Number of articles (train) and sentences (dev/test) in the ITDI data set.

class weights) and a BERT model built on the
dbmdz-xxl-cased6 model. The logistic regres-
sion model ended up in fifth place. The team
improved the model by a better choice of class
weights but it was not considered in the ranking
because it was a late submission. The BERT model
brought up the rear of the team submissions.

Phlyers: The Phlyers (Ceolin, 2022) submit-
ted three runs based on deep feedforward neural
networks (DNN). The team mainly used the de-
velopment data for training where possible and
Wikipedia data only for the language varieties not
present in the development set. For the first sub-
mission, the team re-trained the DNN, excluding
PMS and ROA_TARA. The second and third sub-
missions were similar but re-trained using the la-
bel/sentences from the test set for which the pre-
dicted label was associated with a high likelihood
(with different thresholds for the two submissions),
following a language model adaptation strategy.

SUKI: The SUKI team (Jauhiainen et al., 2022)
applied the system they used for the FDI shared
task (see Section 5.2), which is also the system they
used in their winning submission of the 2021 edi-
tion of Romanian Dialect Identification (Jauhiainen
et al., 2021). It is a Naïve Bayes-based method us-
ing the observed relative frequencies of multiple
size character n-grams as probabilities. The sys-
tem uses an adaptation technique to learn from the
test data. The three submissions mainly differ in
the training data used. The first submission used

6https://huggingface.co/dbmdz/bert-ba
se-italian-xxl-cased

combined training and development data, and the
second just the training data. The third system com-
bined the training and development data, leaving
out the data for PMS and SC because the number
of instances did not meet their threshold.

For the ITDI shared task, the SUKI team used
their own method to extract the training data from
the dumps and performed extensive filtering and
pre-processing, making use of their extensive expe-
rience with Wikipedia data.

Baselines: We created three baselines. The weak-
est one (Baseline 1) with a weighted F1-score of
0.1322 shows the results of applying an off-the-
shelf tool for language identification: FastText7

(Joulin et al., 2016b,a). Note that this model has
been trained on earlier Wikipedia dumps and only
supports seven of our eleven languages but not Friu-
lian, Ladin, Ligurian, and Tarantino. We created
this baseline by considering the ten best predictions
for each sentence and took the first prediction that
was one of the eight remaining varieties.

For the two other baselines (Baseline 2 and Base-
line 3), we trained Support Vector Machines (SVM)
with TF-IDF features using the scikit-learn
toolkit (Pedregosa et al., 2011). We used the train-
ing data as is, i.e., no pre-processing was done after
extracting the dumps except splitting the text at
the line breaks (\n) produced by the extraction
script. Baseline 2 was trained with character un-
igrams. It was mainly intended to see whether
some individual characters are specific to certain

7https://dl.fbaipublicfiles.com/fastt
ext/supervised-models/lid.176.bin
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Team rank Submission rank Team Run Weighted-F1 Macro-F1

1 1 SUKI 2 0.9007 0.6729
2 SUKI 1 0.8983 0.6714
3 SUKI 3 0.8982 0.7458
– Organizers Baseline 3 0.7726 0.5193
* ETHZ 0.7058 0.4885

2 4 Phlyers 3 0.6943 0.5379
3 5 ETHZ 2 0.6880 0.4828

6 Phlyers 1 0.6631 0.5188
7 Phlyers 2 0.6365 0.5094
8 ETHZ 1 0.5760 0.4224
– Organizers Baseline 2 0.4899 0.3424
– Organizers Baseline 1 0.1322 0.1004

Table 3: Ranking of the teams and submissions according to the weighted average F1-score. The * marks a late
submission by team ETHZ, which is not ranked. The baselines were created by the shared task organizers.

language varieties. It resulted in a weighted F1-
score of 0.4899 and was beaten by all the submis-
sions. The second SVM was trained on character
1-to-4-grams. It reached a weighted F1-score of
0.7726 and was only outperformed by the three
submissions of team SUKI.

4.3 Results
The submissions were ranked according to the
weighted average F1-score. Table 3 presents the
ranking of the submissions and baselines. For
comparison, we also report the macro-averaged
F1-scores. We got one late submission which is
marked by * in the table.

With three top-ranked submissions, team SUKI
is a clear winner with their Naïve Bayes-based
method using an adaptation technique. The team in
the second place is Phlyers with one of their DNN
models, closely followed by the logistic regression
system by the ETHZ team in the third place.

One salient result was a very low recall for Lig-
urian by team Phlyers, which came with the cost of
a few percentage points in the F1-score because
Ligurian was heavily weighted with many sen-
tences in the test set. This underprediction is due
to their strategy to use mainly the development set
for the varieties included in the development data,
which did not work out well for this setting because
apparently, the Wikipedia training data was closer
to the one Wikisource book of the test set than the
other Wikisource books in the development set.

The gap between the first team and the other
submissions is quite big. The reason seems to be
the sum of different optimal choices, like a more

extensive pre-processing and the use of adaptive
language models. The fourth-ranked system by
Phlyers also used adaptive language models but had
a different data strategy, while the third baseline
ranking in between them was created without any
pre-processing of the data.

Figure 3 displays the confusion matrices of the
three baselines. Tarantino is the dialect with which
all the systems struggled. In the best baseline (Fig-
ure 3c) and all the team submissions, it mostly
gets confused with Neapolitan and Sicilian, which
makes sense considering the relations in Figure
2 where Tarantino is a sub-dialect of Neapolitan
further down in the language tree. Furthermore,
looking at the best baseline, Neapolitan was often
classified as Sicilian; Emilian-Romagnol and Vene-
tian as Lombard; and Ladin as Venetian. The first
two pairs are in the same subgroup (Gallo-Italian),
while the latter pair is not so closely related in
the language tree but geographically close, which
might explain overlapping features of some kind
in the used data set. In addition, most of the de-
velopment and test data comes from Wikisource
and websites, both of which have specific features;
older texts for the former and texts most likely writ-
ten by several and younger users for the latter. The
Friulian data comes from a book (dev) and a news-
paper (test) which can be considered as “controlled”
in the aforementioned aspects.

Looking at Figure 3a, we have to keep in mind
that FastText does not include Friulian, Ladin, Lig-
urian, or Tarantino. Lombard, Neapolitan, and
Emilian-Romagnol seem the easiest to classify,
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while Friulian gets mostly misclassified with one
other variety that is linguistically unrelated. The
other varieties have very high entropy and were
often classified as unk, i.e., something other than
the eight included language varieties.

4.4 Summary
We proposed a closed cross-domain classification
task for the Identification of Languages and Di-
alects of Italy shared task. We received a total
of nine submissions8 coming from three differ-
ent teams. The results of the submissions are dis-
tributed over a wide range from 0.5760 to 0.9007
weighted F1-score, with two baselines even worse.

Furthermore, the differences between the results
of the eleven language varieties are enormous, prob-
ably for several reasons. As data used in this shared
task comes from many different sources, there
are several factors to consider: different genres,
domains, writing styles, average sentence length,
number of authors (each with their own style), and
year of publication, to name but a few.

Unsurprisingly, an off-the-shelf system like Fast-
Text performs quite poorly for language varieties,
even those included in its training data. However, a
shallow machine learning system like Naïve Bayes,
support vector machine, or logistic regression can
achieve good performance for most language vari-
eties included in this task.

Along with this shared task, we release a newly
collected and annotated data set for language identi-
fication featuring the previously mentioned eleven
languages and dialects of Italy. The shared task
and data are available on GitHub: https://gi
thub.com/noe-eva/ITDI_2022.

5 French Cross-Domain Dialect
Identification

5.1 Dataset
The French Cross-Domain (FreCDo) corpus (Gă-
man et al., 2022) contains plain text excerpts from
news samples collected from public news websites
in France, Switzerland, Belgium, and Canada. The
corpus is divided into training, validation, and test,
such that the publication sources and topics are
distinct across splits. The corpus evaluates the
models’ ability to solve a cross-domain four-way
dialect classification task. The text samples are
pre-processed to hide named entities, thus elimi-
nating country-specific clues. The named entities

8one of which was a late submission

(a) Baseline 1: FastText

(b) Baseline 2: Unigram SVM

(c) N-Gram SVM

Figure 3: Confusion matrices of the three baselines
(see Section 4.2). The numbers indicate the counts
normalized over the true conditions of the test set (i.e.
no instances of PMS, SC, and SCN in the gold standard).
True labels on the y-axis, predicted on the x-axis.
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Split Country # Samples # Tokens

Train

BE 121,746 11,619,874
CA 34,003 2,505,254
CH 141,261 12,719,203
FR 61,777 6,397,943

Total: 358,787 33,242,274

Dev

BE 7,723 824,871
CA 171 17,061
CH 5,244 476,338
FR 4,864 434,547

Total: 18,002 1,752,817

Test

BE 15,235 1,227,263
CA 944 86,724
CH 9,824 910,700
FR 10,730 848,845

Total: 36,733 3,073,532

Table 4: The FreCDo corpus is composed of about
400K data samples, containing a total of 38M tokens.

were identified using Spacy,9 then replaced with
the special token $NE$. Some statistics about the
FreCDo corpus are presented in Table 4.

5.2 Participants and Approaches

Don’t classify, translate (DCT): Instead of ap-
proaching dialect identification as a classification
task, Gillin (2022) treated French variety identifi-
cation as a translation task where the input text is
the source, and the language labels are the target.
To simplify the vocabulary used in the encoder-
decoder model, the authors set FR, BE, CH, and
CA as reserved symbols and allowed the vocab-
ulary to be shared for both encoder and decoder.
They employed a model inspired by Li et al. (2018),
using slightly modified scripts from Susanto et al.
(2019) to train the model. The DCT team submit-
ted two closed runs with different architectures.
The first run is based on an encoder with 6 lay-
ers, a decoder with 2 layers, and 8 attention heads.
There are three models trained with different ran-
dom seeds, which are combined into an ensemble.
The second run is based on a similar ensemble, but
the architecture is shallower, being formed of an
encoder with 1 layer, a decoder with 1 layer, and 1
attention head. For cases in which the translation
model fails (e.g. when returning blank labels), the

9https://spacy.io

authors fall back to the FR label.

NRC: The NRC team (Bernier-Colborne et al.,
2022) submitted three closed runs and three open
runs. They constructed a majority vote ensemble
for the first closed run based on five multi-class
SVMs trained on the joint training and develop-
ment data, using different data processing and fea-
ture sets. The differences between the models in-
volve the usage of word tokenization, the removal
of redundant $NE$ tokens, the filtering of train-
ing data using a minimum text length threshold,
and the usage of n-grams as features. Three of
the models used only word bigrams as features,
while the other two used word unigrams and bi-
grams, as well as character trigrams and 4-grams.
The authors carried out a greedy search among a
dozen SVM models, looking at the results on the
development set to select the best subset of models.
For the second closed run, the authors employed
a probabilistic classifier similar to Naïve Bayes,
trained on the concatenation of the training and de-
velopment data, as well as the pseudo-labeled test
data, where the test labels are those predicted by
the SVM ensemble used for their first run. The fea-
ture set used by this classifier includes only word
bigrams. The third closed run is based on a single
multi-class SVM classifier, providing the best de-
velopment data results. This model was trained on
the concatenation of the training and development
data, using only word bigrams as features.

The open runs submitted by the NRC team are all
based on variants of CamemBERT (Martin et al.,
2020). The first open run is based on a major-
ity vote ensemble of 3 pre-trained CamemBERT
models, which were fine-tuned on the concatena-
tion of the training and development data, starting
with the pre-trained encoder weights and tokenizer.
The authors performed model selection based on
the scores obtained on the development data. The
differences between the three models involve the
batch size (8 or 16), the learning rate schedule (con-
stant or linear decay), and the number of encoder
layers that were fine-tuned (either just the last layer
or the last two layers). For the second open run, the
NRC team relied on their best single CamemBERT
model according to the results on the development
set, fine-tuned on the joint training and develop-
ment data. This model was fine-tuned with a batch
size of 8 and a constant learning rate for 3 epochs.
Only the last 2 layers of the encoder were fine-
tuned. For the third open run, the team employed
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Rank Team Run Macro-F1 Micro-F1

1 NRC 2 0.3437 0.4936
2 NRC 1 0.3266 0.4642
3 NRC 3 0.3149 0.4530
4 SUKI 3 0.2661 0.3918
5 DCT 1 0.2627 0.3914
6 SUKI 1 0.2603 0.3984
7 DCT 2 0.1905 0.3421
8 SUKI 2 0.1383 0.2339

Table 5: F1-scores attained by the teams participating in the 2022 FDI closed shared task.

Rank Team Run Macro-F1 Micro-F1

1 NRC 1 0.4299 0.5243
2 NRC 3 0.4145 0.4936
3 NRC 2 0.4108 0.5067
– Organizers Baseline 0.3967 0.5584

Table 6: F1-scores attained by the teams participating in the 2022 FDI open shared task.

their second-best single CamemBERT model. The
last 2 layers of this model were fine-tuned using a
batch size of 16 for 5 epochs with linear learning
rate decay.

SUKI: Jauhiainen et al. (2022) employed a
custom-coded language identifier using the product
of relative frequencies of character n-grams. The
model is essentially a Naïve Bayes classifier using
the relative frequencies as probabilities, being in-
spired by Jauhiainen et al. (2019). The authors
only applied pre-processing to replace number-
characters with ‘1’. The length of the character
n-grams is set to 8. Instead of multiplying the
relative frequencies, the authors summed up their
negative logarithms. As a smoothing value, they
used the negative logarithm of an n-gram appearing
only once multiplied by a penalty modifier. The
penalty modifier is set to 1.26. In addition, the
SUKI team used the same language model adap-
tation technique as in their previous work (Jauhi-
ainen et al., 2018). The adaptation to the test data
is performed for 3 epochs, following Jauhiainen
et al. (2019). In the end, the system is identical
to the one used to win the RDI shared task 2021
(Chakravarthi et al., 2021), with some slight dif-
ferences in pre-processing only (Jauhiainen et al.,
2021). The SUKI team submitted three runs. The
first run is based on considering the training data
as training material, the second run uses the devel-

opment data as training material, and the third run
takes both the training and development data as
training material. All runs are closed.

Baseline: Găman et al. (2022) introduced a
CamemBERT model as baseline for the FreCDo
corpus. The text is first tokenized with the Camem-
BERT tokenizer, obtaining 768-dimensional em-
bedding vectors. Each sequence is then represented
as a Continuous Bag-of-Words (CBOW) via ap-
pending a global average pooling layer. The final
predictions are given by a Softmax classification
layer. The whole model is fine-tuned for 30 epochs
on mini-batches of 32 samples, using the AdamW
optimizer (Loshchilov and Hutter, 2019).

5.3 Results

Evaluation measure: With the release of the test
set, the participants were announced that the macro-
averaged F1-score would be used to rank the sub-
mitted runs. For completeness, we also report the
micro-averaged F1-score (which is equivalent to
accuracy).

Closed: Table 5 presents the results for the 2022
FDI closed shared task. The NRC team’s proba-
bilistic model achieves the best score, closely fol-
lowed by the SVM ensemble that was used to con-
vey pseudo-labels for the test set to the top scoring
model. The NCR team’s best single SVM model
ranked third. Interestingly, the SUKI team also pro-
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Language Dialect F1 Exact # Dev # Test
Match Questions Questions

Arabic

Algeria (DZA) 71.72 56.17 324 921
Egypt (EGY) 72.39 56.39 324 921
Jordan (JOR) 73.27 57.41 324 921
Tunisia (TUN) 73.55 57.71 324 921

Avg. 71.72 56.17 Total 1296 3684

English

Australia (AUS) 73.67 59.52 494 440
India-South (IND-S) 72.22 58.10 494 440
Nigeria (NGA) 73.36 58.70 494 440
Philippines (PHI) 73.76 59.11 494 440
USA-Southeast (USA-SE) 74.35 59.31 494 440

Avg. 73.47 58.95 Total 2470 2200

Kiswahili
Kenya (KEN) 72.12 63.1 1000 472
Tanzania (TZN) 70.74 61.7 1000 463

Avg. 72.60 59.71 Total 2000 935

Table 7: DialQA baseline results (development set) on Answer Selection task.

posed a probabilistic model, but their results seem
considerably lower. The main difference between
the two probabilistic models, the one submitted by
NRC and the other submitted by SUKI, seems to
be the use of word n-grams in favor of character
n-grams. Although character n-grams have been
found useful in dialect identification in other lan-
guages, e.g. Arabic (Ionescu and Butnaru, 2017) or
Romanian (Găman and Ionescu, 2022; Jauhiainen
et al., 2021), it appears that word n-grams are more
discriminative for French dialect identification on
FreCDo. Perhaps using an entire range of charac-
ter n-grams would have been a better choice for
the SUKI team than just character 8-grams. The
model employed by DCT stands out due to its un-
usual approach based on translation. Unfortunately,
applying a translation model to the dialect identi-
fication task did not seem to pay off for the DCT
team. Their models landed in ranks five and seven.

Open: NRC was the only team to submit runs for
the 2022 FDI open shared task. The corresponding
results are shown in Table 6. Here, the ensemble of
CamemBERT models yielded the top score, but the
individual CamemBERT models (second and third
runs) also attained very good results. Comparing
the open runs with the closed ones, it becomes
clear that pre-trained language models benefit a
lot from the large-scale corpora used to train the
respective models, even if pre-training is carried

out in a self-supervised manner.

5.4 Summary

For the French Dialect Identification shared task,
we proposed a cross-domain four-way classifica-
tion task. We received a total of eight closed sub-
missions and three open submissions coming from
three different teams. Each team submitted be-
tween two and six runs. Considering the results
of the shared task participants and those attained
by the baseline proposed with the dataset (Găman
et al., 2022), we conclude that the cross-domain
four-way FDI task remains very challenging, leav-
ing sufficient room for future exploration. Basic
machine learning models, e.g., Naïve Bayes or
SVM, attained the strongest results in the closed
setting. In the open scenario, we observed that
using pre-trained language models is beneficial.

6 Dialectal Extractive Question
Answering (DialQA)

6.1 Dataset

The task builds on the existing QA benchmarks
TyDi-QA (Clark et al., 2020) and SD-QA (Faisal
et al., 2021): specifically, it uses portions of the SD-
QA dataset, which recorded dialectal variations of
TyDi-QA questions. The original SD-QA dataset
includes more than 68k audio prompts in 24 di-
alects from 255 annotators. In DialQA, we include
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development and test data for five varieties of En-
glish (Nigeria, USA, South India, Australia, Philip-
pines), four varieties of Arabic (Algeria, Egypt,
Jordan, Tunisia), and two varieties of Kiswahili
(Kenya, Tanzania). The recorded and transcribed
questions are highly parallel across the dialects
within a language.

6.2 Approach and Baselines

Answer Selection Task: In the first part, we pro-
vide a text-based extractive QA baseline. Here,
we fine-tune mBERT (Devlin et al., 2019) on a
modified TyDi-QA training dataset so that, given
the question and a single passage, the system re-
turns the start and end byte indices of the minimal
span that answers the question (Alberti et al., 2019).
The baseline is prepared within the constraints of
SQuAD (Rajpurkar et al., 2016) Question Answer-
ing settings. So all the unanswerable questions are
discarded beforehand while preparing the DialQA
dev and test set.

Automatic Speech Recognition (ASR) Task:
This second part is an open task defined over the ut-
terances of the different language varieties. Given
the audio file of the utterance, the model has to
produce an accurate transcription to be provided as
input to the text-based QA system.

6.3 Discussion

Table 7 presents the baseline scores (development
set) for the Answer Selection part. We calculate
both dialect and language level F1 and exact match
scores. The F1-score varies from 70.7 to 74.4, with
USA-Southeast English being the best performing
variety. The difference in performance can largely
be attributed to the dialect-level differences induced
as transcription noise. For the second task, no base-
line is provided. However, the difference across
dialectal audios and their corresponding transcrip-
tion could be considered to design an ASR module.
Another possibility could be designing an end-to-
end speech-to-text extractive QA system capable
of taking the dialectal audios as input.

6.4 Summary

We propose an extractive Dialectal Question An-
swering task that is open to both text and audio
questions as the system input. Along with the
task, we release the dialectal development and
test datasets. The task is still open for submis-
sion and further development. The data and base-

lines are freely available on GitHub: https:
//github.com/ffaisal93/DialQA.

7 Conclusion

This paper presented an overview of the three
shared tasks organized as part of the VarDial Evalu-
ation Campaign 2022: Identification of Languages
and Dialects of Italy (ITDI), French Cross-Domain
Dialect Identification (FDI), and Dialect Extractive
Question Answering (DialQA).

Participants of these shared tasks were provided
with existing or new data sets made available to the
community, which were discussed in detail in the
respective sections. We furthermore included short
descriptions of each team’s systems, along with ref-
erences to all system description papers published
in the VarDial workshop proceedings (Table 1). We
compared the participants’ contributions with the
organizer-provided baselines and found that partic-
ipants were able to beat the latter both in ITDI and
in the open FDI track.

For the ITDI task, we observed that shallow ma-
chine learning models outperformed deep learn-
ing models – even when using pre-trained lan-
guage models for Italian. In contrast, pre-trained
French language models provided much better per-
formances than shallow models in the FDI task. It
seems therefore that the optimal model choice for
language and dialect identification tasks is largely
task-dependent. This confirms the findings of previ-
ous editions of the VarDial campaign (Chakravarthi
et al., 2021; Zampieri et al., 2020), where similar
diverging trends were observed.
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Mihaela Găman and Radu Tudor Ionescu. 2022. The
Unreasonable Effectiveness of Machine Learning
in Moldavian versus Romanian Dialect Identifica-
tion. International Journal of Intelligent Systems,
37(8):4928–4966.

Radu Tudor Ionescu and Andrei Butnaru. 2017. Learn-
ing to identify arabic and german dialects using mul-
tiple kernels. In Proceedings of the Fourth Workshop
on NLP for Similar Languages, Varieties and Di-
alects (VarDial), pages 200–209, Valencia, Spain.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018. HeLI-based experiments in Swiss
German dialect identification. In Proceedings of the
Fifth Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial 2018), pages 254–262,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2021. Naive Bayes-based experiments in
Romanian dialect identification. In Proceedings of
the Eighth Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 76–83, Kyiv, Ukraine.
Association for Computational Linguistics.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2022. Italian Language and Dialect Identifi-
cation and Regional French Variety Detection using
Adaptive Naive Bayes. In Proceedings of the Ninth
Workshop on NLP for Similar Languages, Varieties
and Dialects, Gyeongju, Republic of Korea. Inter-
national Committee on Computational Linguistics
(ICCL).

11



Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2019. Discriminating between Mandarin Chi-
nese and Swiss-German varieties using adaptive lan-
guage models. In Proceedings of the Sixth Work-
shop on NLP for Similar Languages, Varieties and
Dialects, pages 178–187, Ann Arbor, Michigan. As-
sociation for Computational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016b. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759.

Maggie Yundi Li, Stanley Kok, and Liling Tan. 2018.
Don’t classify, translate: Multi-level e-commerce
product categorization via machine translation. arXiv
preprint arXiv:1812.05774.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization. In Proceedings of
ICLR.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić,
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A Appendix

A.1 ITDI Data Sources
The development and test data come from the websites given below.

EML https://www.bulgnais.com/libri.html

FUR https://wikisource.org/wiki/Main_Page/Furlan

FUR https://arlef.it/it/materiali

FUR https://www.filologicafriulana.it/lenghe-e-culture

LLD https://wikisource.org/wiki/Main_Page/Ladin

LLD https://it.wikisource.org/wiki/Biancognee

LLD https://www.istitutoladino.it

LIJ https://lij.wikisource.org

LMO https://wikisource.org/wiki/Main_Page/Lumbaart

LMO https://www.lingualombarda.it/index.php/milanese.html

NAP https://nap.wikisource.org

NAP https://it.wikisource.org/wiki/Categoria:Testi_in_napoletano

PMS https://pms.wikisource.org

SC https://wikisource.org/wiki/Category:Sardu

SCN https://wikisource.org/wiki/Category:Sicilianu

SCN https://wikisource.org/wiki/Main_Page/Sicilianu

SCN https://it.wikisource.org/wiki/Categoria:Testi_in_siciliano

SCN http://www.linguasiciliana.org

SCN http://www.salviamoilsiciliano.com/raccolte

SCN http://www.museomirabilesicilia.it/folklore-siciliano.html

SCN http://www.salviamoilsiciliano.com/raccolte

SCN http://rapallosalvatore.blogspot.com/p/raccolta-poesie-in-d
ialetto-siciliano.html

ROA-TARA http://www.tarantonostra.com

VEC https://vec.wikisource.org

several https://www.dialettando.com
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Abstract 

This paper presents a new tweet-based 
approach in geolinguistic analysis which 
combines geolocation, user IDs and textual 
features in order to identify patterns of 
linguistic variation on a sub-city scale. Sub-
city variations can be connected to social 
drivers and thus open new opportunities for 
understanding the mechanisms of language 
variation and change. However, measuring 
linguistic variation on these scales is 
challenging due to the lack of highly-
spatially-resolved data as well as to the 
daily movement or users’ “mobility” inside 
cities which can obscure the relation 
between the social context and linguistic 
variation. Here we demonstrate how 
combining geolocation with user IDs and 
textual analysis of tweets can yield 
information about the linguistic profiles of 
the users, the social context associated with 
specific locations and their connection to 
linguistic variation. We apply our 
methodology to analyze dialects in Buenos 
Aires and find evidence of socially-driven 
variation. Our methods will contribute to 
the identification of sociolinguistic patterns 
inside cities, which are valuable in social 
sciences and social services. 

1 Introduction 

Analysis of spatial patterns of linguistic variation is 
an important tool, not only for studying the 
dynamics of language change, but also as a probe 
of social dynamics which can be encoded in 
linguistic variation. The advent of social media and 
the growth of computational linguistic tools has 
created many opportunities for extending analysis 
of linguistic variation in new regimes. One in 

particular is the study of spatial or geographical 
patterns of linguistic varieties. Until now, most 
studies in this field have been limited to large scales 
of geographical analysis, from cities to countries 
(e.g., Eisenstein et al. 2010, Gonçalves & Sánchez 
2016, Nguyen et al. 2016, Grieve et al. 2019, Hovy 
& Purschke 2020). However, urban dynamics, 
where social interaction and mixing occur, play an 
important role in language variation and also 
provide a window into linguistic variation on an 
urban scale (Abitbol-Levy et al. 2018, Kellert & 
Matlis 2022). Urban-scale analyses have been 
previously used to study the relation between urban 
location and language choice in multilingual cities 
(Mocanu et al. 2013, Kim et al. 2014). However, 
these studies focus on different languages and not 
on linguistic varieties of the same language. 

Here we explore the use of Twitter data with 
precise geolocation information to map out 
patterns in the use of two linguistic variants (i.e., 
dialects) within the city of Buenos Aires, in order 
to get deeper insights into the relation between 
language use and urban structure. Our basic 
approach is to combine analysis of tweet metadata 
with analysis of tweet texts to first show that a large 
fraction of users in CABA is bi-dialectal (i.e., 
tweet in both variants) and then to determine how 
social context influences which dialect is used. Bi-
dialectalism is established by exploiting the unique 
user ID metadata to perform linguistic profiling of 
the users, while the relevant geographical setting is 
extracted by using the precise GPS coordinates to 
pinpoint the location. The tweet texts then provide 
information on the associated topics of discussion 
which helps to complete the social-context picture. 

Our work shows that combining social and 
geographical aspects of linguistic analysis, made 
possible by social-media data sources, opens new 
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opportunities to illuminate the mechanisms driving 
linguistic variation, especially on urban scales. Our 
analysis also helps to establish how well dialect-
use patterns in social media conform to those in 
standard linguistic sources and provides 
complementary information about the users not 
easily accessible by other means. 

2 Identification of the Dialects 

We selected two Spanish varieties: Argentinian 
Spanish (ArgSp) and Standard Spanish (PanSp). 
These varieties are marked by the variation in the 
2nd person singular pronoun (i.e., vos ‘you’ in 
informal address in ArgSp and tú ‘you’ in PanSp) 
together with the corresponding verbs that agree 
with the pronoun (e.g., vos podés vs. tú puedes ‘you 
can’) (Fontanella de Weinberg 1999). We use 
geolocated tweets in Spanish limited to Greater 
Buenos Aires (CABA), i.e., the city of Buenos 
Aires and its close surroundings, from October 
2017 to March 2021 (Kellert & Matlis 2022). The 
selection of this city is motivated in §3. 

We use a token-based analysis method to extract 
the two linguistic variants (Gonçalves & Sánchez 
2016, Grieve et al. 2019, Kellert & Matlis 2022). 
This method is a classical method in social 
dialectology (Labov 2006). For clarity, we here 
refer to the Spanish varieties ArgSp and PanSp as 
Spanish dialects. However, since these varieties 
can be used by the same group of people under 
different social circumstances, as we will show in 
§4, one can also refer to them as sociolects. 

A priority was placed on ensuring accuracy of 
the dialect definitions. The token sets were 
designed to be balanced, so that for each token of 
ArgSp, there was a corresponding token with the 
same meaning in the set representing PanSp 
(Kellert & Matlis 2022). Our grammatical token set 
consists of the most frequent tokens used in 
Argentina according to the corpus Corpus del 
Español, which is one of the biggest Spanish 
corpora.1 We excluded all ambiguous tokens (e.g., 
ArgSp seguí ‘follow!’, which corresponds to 
PanSp sigue ‘follow!’, but also to ‘he/she/it 
follows’ in both dialects). Finally, we take special 
measures to account for differences in how people 
use accents in social media and standard language 
(Nguyen et al. 2016). In particular, accents in 
Tweets are frequently omitted (Eisenstein et al. 

                                                           
1 http:// www.corpusdelespanol.org/ 
2 https://scitools.org.uk/cartopy/ 

2010). We therefore included both accented and 
unaccented versions of all verbs but excluded those 
verbs where eliminating the accent results in an 
ambiguity in assigning the dialect (e.g., ArgSp 
sabés vs. PanSp sabes). The remaining verbs were 
distinguishable by the verb stem (e.g., ArgSp tenés 
vs. PanSp tienes). Our final token list contained 
235 tokens for ArgSp and 198 tokens for PanSp 
dialect (Kellert & Matlis 2022).  

3 Background on the Dialects 

A little background on the dialects will help us to 
evaluate the results. The dialects ArgSp and PanSp 
have well-known and distinct historical and socio-
linguistic roles in CABA (Fontanella de Weinberg 
1999). ArgSp is the most prominent and is also the 
standard dialect in Argentina, Paraguay, Uruguay 
and Central America (ibid.). PanSp, on the other 
hand, is a variety that is very prominent elsewhere 
in the Spanish-speaking world. This distinction 
between the two varieties has previously been 
reported on the basis of geolocated tweets collected 
in 2016 (Bland & Morgan 2021), and here we 
confirm it using our tweet corpus by mapping out 
the differential distribution of the two tweet 
varieties on the world scale (see Figure 1). 

 
Figure 1: ArgSp (red) and PanSp (blue) in the 
Twitter corpus collected from 2017-2021. Map 
produced using Cartopy2 on OpenStreetMap3 data. 

Despite the predominance of ArgSp in Argentina 
and CABA on the world scale, a closer inspection 
shows significant presence of both varieties within 
CABA (Kellert & Matlis 2022) which is to be 
expected for several reasons. First, PanSp is the 
Spanish variety that is used by Mass Media in Latin 
America and consequently also in CABA 
(Gonçalves & Sánchez 2016). Second, PanSp is 
used by tourists from PanSp speaking countries. 
And third, PanSp was long the standard variety in 
CABA and Argentina, before ArgSp took over this 

3 http://wiki.openstreetmap.org/wiki
/Open_Database_License 
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role in the late 19th c. (Fontanella de Weinberg 
1999). PanSp still exists in CABA as a substandard 
variety due to the region’s history (ibid). 

4 Detailed Methodology and Results 

Our analysis, which is based on calculation of the 
spatial variations in the use of ArgSp and PanSp 
across the city, is done in three steps. First, the 
prevalence of the two dialects and the degree of bi-
dialectalism are quantified. The presence of bi-
dialectalism in CABA offers the opportunity to 
directly evaluate how social circumstances 
influence linguistic variation, since bi-dialectal 
users can choose when to use each variant. Second, 
regions where each dialect is most prominent are 
evaluated to look for correlations between social 
context and tweet content. And third, locations 
expected to have specific social functions (e.g., 
soccer stadiums) are evaluated to look for 
prominence of one or the other dialect. 

4.1 ArgSp & PanSp vs Bi-Dialectalism 

The observation in §3 that ArgSp is the 
predominant dialect of CABA is confirmed by the 
fact that ArgSp tweets outnumber PanSp tweets 
three to one (i.e., 18,731 vs 5,607 respectively). 
However, by using the unique user-ID metadata to 
associate multiple tweets to individual users, we 
found that a considerable number of CABA users 
(11%) are “bi-dialectal” in that they tweet using 
both dialects. Some users even mix the two dialects 
in a single tweet (e.g., vos puedes or tú podés ‘you 
can’). The existence of bi-dialectal users and the 
existence of mixing dialects in a single tweet 
suggests that PanSp plays an important role in 
communication of CABA citizens and that it is not 
exclusively used by people of foreign background 
such as tourists or immigrants. However, ArgSp is 
a more important variety than PanSp because bi-
dialectal users tweet twice as often in ArgSp as in 
PanSp (6,299 vs 3,040 respectively) and because 
there are more tweets posted by mono-dialectal 
users than by bi-dialectal users (14,999 vs. 9,339, 
respectively). The latter observation indicates that 
tweeting in both linguistic varieties is not the 
standard tweeting behavior of CABA citizens. 

4.2 Analysis 2: Dialects in Geocontext 

In this analysis, we focus on regions with the 
greatest prominence of each of the dialects to look 
for correspondences between dialect use and social 

context. The regions of prominence are determined 
by generating spatial distributions of each variant 
calculated by partitioning the city into small areas 
or “bins”, corresponding roughly to the size of a 
city block, which define the spatial resolution of the 
maps (Schlosser et al. 2021, Kellert & Matlis 
2022). We then selected five bins with the greatest 
prominence of each variant, based on the 
normalized difference in tweet counts (Kellert & 
Matlis 2022), and examined the associated 
geographical setting and tweet content (Figure 2). 

The geographical setting (“geocontext”) was 
determined by using the GPS coordinates to 
identify buildings located within each bin, and the 
tweet-content was evaluated by performing uni-
gram and bi-gram analyses of the tweet texts from 
each bin, using the software package NLTK, to 
determine the most frequent words and word pairs. 
(Bird et al. 2009). The results of the analysis for the 
most prominent bins of each type (bins T1 and R1 
in Figure 2) are shown in Table 1. 

  

 

Bin GPS Coordinates 

T1: 
T2: 
T3: 
T4: 
T5: 
R1: 
R2: 
R3: 
R4: 
R5: 

-58.4130, -34.5570 
-58.4068, -34.6113 
-58.4298, -34.5879 
-58.4598, -34.5428 
-58.3556, -34.6088 
-58.4501, -34.5461 
-58.3918, -34.6113 
-58.4342, -34.6205 
-58.3644, -34.6364 
-58.4474, -34.6657 

 

Figure 2:  Left: Bins with the greatest 
representation of PanSp (blue) and ArgSp (red). 
Right: GPS coordinates of the bins. 

Geocontext Tweet-content features 

PanSP 
Jorge 
Newbery 
International 
Airport 

•  location names mentioning  
CABA 
•  Picture postings in CABA 
•  Weekly horoscope 
•  travel club postings 
• happy birthday wishes 
• good/happy day/night wishes 

ArgSP 
Soccer 
stadium: 
Estadio 
"Monumenta
l" Antonio V. 
Liberti 

• location names mentioning 
the soccer stadium 
• reports about soccer matches 
• sentiments about soccer 
matches and players 

Table 1:  Geographical context and tweet content 
features in most prominent bins for each dialect. 
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The most prominent bin for PanSp covers the 
international airport in the northern part of the city 
(Figure 2, R1), and the associated tweets mention 
CABA in various forms (e.g., “Buenos Aires, 
BsAs”) as well as picture postings and other 
references to travel. By contrast, the most 
prominent bin for ArgSp covers the famous soccer 
stadium River Plate (Figure 2, T1), and the 
associated tweets refer to this stadium and discuss 
the matches and players. 

The remaining eight most-prominent bins show 
a similar pattern. For the PanSp bins, the 
geocontext includes Irish bars, tourist attractions 
and wealthy neighborhoods in the northern part of 
the city which are attractive to tourists, while all of 
the ArgSp bins contain geocontext features relevant 
to locals of CABA such as soccer clubs, soccer 
stadiums such as La Bombonera (Figure 2, T4), 
dance schools, small commercial businesses and 
residential buildings in neighborhoods such as Villa 
Soldati, located in the South-West of the city. 
Similarly, all of the PanSp bins have associated 
tweets with location mentions and photo postings 
as top-ranked topics whereas none of the ArgSp 
bins do. Mentioning the name of the city and 
posting pictures are typical activities of tourists or 
of users addressing tourists (e.g., in advertisements 
of touristic attractions) (Kim et al. 2014). The 
analysis therefore suggests that tourism plays an 
important role in the use of PanSp dialect in CABA 
and that national sports clubs, local commerce and 
residential buildings tend to prioritize ArgSp. 

4.3 Analysis 3: Dialects in Social Contexts 

We have chosen several social contexts defined as 
bins containing buildings of a selected, well-
defined social function. The building types chosen 
were: 1) tourist attractions, 2) Starbucks cafes, 3) 
soccer stadiums, and 4) hospitals. We then counted 
how many bins of each type demonstrated a 
relative prominence of ArgSp vs PanSp.  

In Figure 3, maps for each category are 
presented showing bins with a relative prominence 
of ArgSp and PanSp marked by red and blue 
circles, respectively. Empty bins containing no 
tweets of either type are marked in grey. For the 
tourist attractions, 52% of the non-empty bins 
showed a relative prominence of PanSp, while for 
Starbucks Cafes, 59% of non-empty bins are PanSp 
oriented. While these numbers are far from 
conclusive, due to the sparse statistics, the pattern 
is consistent with the connection, observed in §4.2, 

between PanSp and tourism, if one accepts that 
tourists are likely to visit Starbucks cafés. For the 
soccer-stadium case, 100% of non-empty bins 
demonstrate a relative preponderance of ArgSp, 
which also reinforces the connection between 
ArgSp and soccer found in in §4.2. Finally, hospital 
bins showed no preference for either dialect. 

 

 

Figure 3: Distribution of bins with a relative 
prominence of PanSp (blue) and ArgSp (red) 
tweets for specific social contexts. Top left: 
touristic hotspots, Top right: Starbucks cafés, 
Bottom left: soccer stadiums, Bottom right: 
Hospitals. Black= no data 

5 Discussion 

The three analyses presented show ways in 
which different elements of the tweets can be 
combined to extract valuable information about the 
user’s linguistic behavior and about relevant 
geographical and social contexts that can influence 
this behavior. The ability to connect multiple 
tweets to individual users via the user ID is a 
powerful tool enabling determination of user 
attributes such as bi-dialectalism which are 
unavailable via textual analysis alone. Similarly, 
the presence of precise GPS coordinates allows 
connections to be made between text and local 
geographical features that can be used to 
characterize the associated social contexts. In the 
work presented here, although evidence of a pattern 
is present, some analysis was done manually, 
leading to small data sets and low statistical 
significance. Development of algorithms to detect 
geocontext features and characterize tweet content 
would allow automation of bin analysis, greatly 
increasing the statistics and hence the strength of 
the approach.  
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Several other important issues must also be 
considered in going forward. First, despite the large 
size of our Twitter corpus (1.9M geolocated 
tweets), the quantity of data was a limiting factor 
for analyzing the small scales. Considering a 
binning of 100 x 100, one can expect only 190 
tweets per bin, on average. Of course, due to spatial 
variations in population density, the number of 
tweets in the city center are far higher than those on 
the outskirts. Data scarcity is aggravated by the 
small fraction (~1%) of tweets for which the 
variants could be identified. Methods to improve 
variant identification are thus highly relevant. For 
instance, the number of tokens (and hence the 
number of collected tweets) could likely be 
increased by using a morphological tagger such as 
FreeLin4. However, since precise identification of 
the variants was our top priority, we opted for a 
manually-crafted set of tokens for which the lack 
of ambiguity could be verified.  

Second, the social context within the bins may 
not be uniform. For instance, in Analysis 3, the 
Starbucks cafes represented only one of several 
buildings within the bins and therefore may not 
have been representative of the overall social 
context. By contrast, soccer stadiums, which are 
much larger, are more likely to fill an entire bin, 
thus providing a uniform social context. This 
increased context uniformity may partially account 
for the strong correlation observed between soccer 
stadiums and ArgSp dialect in Figure 3, bottom left. 

Larger bins tend to encompass a greater 
diversity of social contexts lessening the degree of 
correlation between the chosen context and the 
prevalence of specific linguistic features. On the 
other hand, smaller bins tend to suffer from 
insufficient numbers of tweets, requiring 
optimization of the bin size. A similar problem 
arises, due to the lack of altitude information in 
most social-media GPS coordinates, when the bins 
contain multi-story buildings with different 
businesses on each floor.  

The work presented here represents only a first 
step in the application of this methodology. Many 
opportunities exist for future work, including use 
of tweet-selection methods that do not rely on 
specific tokens (Nguyen et al. 2016) and expansion 
of the range of social contexts considered. These 
tools hold great promise to provide insights into the 

                                                           
4 https://nlp.lsi.upc.edu/freeling/ 

relation between language use and social 
dynamics, especially on small spatial scales. 
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Abstract

We present dialectR, an open-source R pack-
age for performing quantitative analyses of di-
alects based on categorical measures of differ-
ence and on variants of edit distance. dialectR
stands as one of the first programmable toolkits
that may freely be combined and extended by
users with further statistical procedures. We de-
scribe implementational details of the package,
and provide two examples of its use: one per-
forming analyses based on multidimensional
scaling and hierarchical clustering on a dataset
of Dutch dialects, and another showing how an
approximation of the acoustic vowel space may
be achieved by performing an MFCC (Mel-
Frequency Cepstral Coefficients)-based acous-
tic distance on audio recordings of vowels.

1 Introduction

The quantitative analysis of dialect relatedness has
yielded respectable results in the field of dialec-
tometry, where sophisticated methods of measur-
ing linguistic distance have been developed which
correlate to a large degree with perceptual measure-
ments of intelligibility (Gooskens and Heeringa,
2004; Beijering et al., 2008). The use of such meth-
ods offers an objective basis to the determination of
dialect distributions, including boundaries at times,
and which overcomes some of the subjective bi-
ases inherent in earlier approaches that utilized the
notion of isogloss for dialect classification.

However, despite the success of these meth-
ods, access to their use has generally relied on
GUI-based software such as Visual DialectoMe-
try (VDM) (Goebl, 2006), DiaTech (Aurrekoetxea
et al., 2013), and Gabmap (Nerbonne et al., 2011;
Leinonen et al., 2016), which are easy to use, but

∗The project began in a course taught by JN, where RS-ES
suggested the idea of an R-package. The authors went back
and forth on design decisions, but RS-ES implemented the
software, and wrote most of the first version of the paper. JN
wrote some subsections and collaborated on the others.

which accept the trade-off of impeding easy modifi-
cation for those who wish to extend existing meth-
ods. Users who wish to perform statistical analyses
outside of what is provided or make changes to
the existing pipeline do not have easy access to the
internals of such software, and consequently have
to start from a higher technical threshold. In fact,
these packages have not been modified by others.
A notable exception is the L04 software,1 which
operates in the UNIX ecosystem and would allow
for some degree of user modification, but few, if
any users have taken advantage of this. In addi-
tion to providing for more flexibility that exists in
current packages, the present effort also facilitates
the work of those who like the provisions of the
older packages, but who wish to try out contempo-
rary approaches, something the existing packages
likewise do not readily support.

In view of this situation, we present dialectR, an
open-source software package that allows the con-
struction of dialectometric pipelines in the statisti-
cal programming language R (R Core Team, 2020).
It is largely inspired by Gabmap, but attempts to
overcome some shortcomings of its monolithic pre-
sentation. Our vision is to facilitate more wide-
ranging dialectological experimentation with the
data analysis possibilities in R. For example, di-
alectologists should be able to experiment more
directly with geostatistical analyses, which, with
honorable exceptions (Grieve, 2018), have largely
been ignored in dialectometry. For a second exam-
ple, we note that, although dialectometry makes
extensive use of multi-dimensional scaling (see
below), other dimension-reducing techniques (for
non-distance matrices), such as factor analysis or
principal component analysis, have received less
attention, again with some honorable exceptions
(Pickl, 2013; Nerbonne, 2015). The present paper
offers a foundation from which much more exten-
sive experimentation may be launched. We offer

1http://www.let.rug.nl/kleiweg/L04/
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further examples below.

2 Software Design

The component of dialectR which most interests
users is probably the edit distance computation
of pronunciation differences based on transcrip-
tions, which is written in C++11 and interfaced to
R through the R package Rcpp (Eddelbuettel and
François, 2011). Once a distance matrix between
data-collection sites has been produced, dialectR
additionally offers a number of ready-made func-
tions for common analyses, such as an RGB-based
multidimensionsal scaling for visualizing dialect
continuua (Nerbonne et al., 1999), or a function for
visualizing discrete dialect groupings based on hi-
erarchical clustering (Nerbonne et al., 2008). More-
over, in the case where the input data is acoustic,
we show how an additional acoustic distance pro-
posed in Bartelds et al. (2020) can be leveraged,
something missing in all alternative packages and
web applications. We describe specifics of these
components in the following subsections.

2.1 Distance Computation

Methods in dialectometry have revolved around
aggregating linguistic differences between data col-
lection sites since the inception of the field, in large
part to overcome the noisy geographic distribu-
tion of sites and sample material (Goebl, 2018). A
pioneering attempt in this direction can be seen
in Séguy (1971), who worked with questionnaire
data, where the number of possible answers are rela-
tively limited (e.g. “what do you call a serving-size,
unsweetened pastry?”). Séguy’s method is essen-
tially to count the number of different responses to
the same survey questions at two dialect sites, and
his paper marked the first important breakthrough
in the establishment of the subfield.

To give a practical example of how such categor-
ical could be used to quantify linguistic differences,
suppose we have lexical data for two related dialect
sites as shown in Table 1. To quantify how different
these two sites are, a difference of 1 can be counted
for every mismatch between vocabulary items, ig-
noring the pairs where data is unavailable. The
total count is then normalized by taking the mean,
resulting in a lexical distance of 0.25, meaning that
there is a 75% lexical similarity between the two
sites (Nerbonne and Kleiweg, 2003).

Such an approach provides a simple notion of
lexical distance that can be used to aggregate over

Site Vocabulary Items
Brownsville dog hat horse bathroom pinkie
White Plain dog cap horse bathroom -

Table 1: Sample data as taken from LAMSAS for the
illustration of lexical distance.

items, but a number of issues remain. For one,
it would be desirable for morphologically related
words to carry a smaller distance than words that
are completely unrelated. Thus if in response to the
question “if the sun comes out after a rain, you say
the weather is doing what?", elicitations such as
fair off, fairs off, and faired off come up, these vari-
ants of the same lexical item should count as less
distant when compared with terms such as clear-
ing up and breaking away (Nerbonne and Kleiweg,
2003). Similarly, it would also be insightful for
there to be a metric that can quantify the degree
of difference between phonetic transcriptions of
related dialects. The solution to both issues may be
found in edit distance, which forms the basis for
methods developed in in the 1990s in Groningen.

Edit distance was first applied to dialect data
in Kessler (1995), where it was applied on pho-
netic transcriptions of Irish Gaelic dialects and
assigned to groups with hierarchical clustering,
which proved to yield sensible results that correlate
well with provincial boundaries. This in turn in-
spired further work at the University of Groningen
that refines upon various aspects of the edit distance
algorithm and the clustering algorithms (Nerbonne
et al., 2008; Wieling et al., 2012), among other pro-
cedures. The original edit distance algorithm is a
measure of distance between two strings, where the
distance is derived from how many insertions, dele-
tions, and substitutions it would take for one string
to transform into the other. As an example, con-
sider how in the table below, the string “koguma",
the word for sweet potato in Korean, may be trans-
formed into “kokoimo", a possible origin of the
Korean term from the Tsushima dialect in Japan,
with one insertion followed by three substitutions:

koguma insert k 1
kokguma replace g/o 1
kokouma replace u/i 1
kokoima replace a/o 1
kokoimo Sum distance 4

However, in comparing two sequences with edit
distance, longer sequences possess a much higher
chance of containing more differences than shorter
sequences. If used directly, this would bias the re-

21



sults by causing varieties with longer sequences to
appear more different. Thus for a fair comparison
of string distance across multiple samples, we fol-
low Heeringa et al. (2006) by providing the option
to normalize the distance by dividing the length of
the alignment between the two strings. We further-
more also provide the option to use a variant of edit
distance that forbids the alignment of vowels and
consonants, which results in more plausible align-
ments, and thus also results in an improvement in
the computed distance.

Moreover, due to the possibility of informants
giving multiple responses in a single site, we pro-
vide the option to normalize for multiple responses
with Bilbao distance (Aurrekoetxea et al., 2020),
which is as follows:

DB(A,B) =
∑|A|

i=1 min
bj∈|B|

d(aibj) +
∑|B|

j=1 min
aj∈|A|

d(aibj)

|A|+ |B|
Where, in plain words, for every element in a given
set A, we compute its minimal distance to all the
elements of set B, using only that in the sum, and
where we proceed the same way with respect to set
B, seeking for each b in B, the closest element in A.
The mean of the distances is then taken for normal-
ization. We illustrate this with an example: suppose
we have elicited responses to the question “what
do you call the place where people are buried?" 2

from two sites, A and B. Site A has obtained the
responses of {graveyard, boneyard}, and Site B
has obtained the responses of {cemetery, kirkyard,
graveyard}. Using a length-normalized edit dis-
tance as metric, the distance for every response in
Site A as compared against the responses in Site B
is shown in Table 2. We choose the combination
for each response that minimizes the distance, add
them up, and divide the sum by the total number of
elements, which yields:

DB(A,B) =
0 + 0.44 + 0.75 + 0.5 + 0

2 + 3
= 0.338

Finally, after the above computations have been
applied to all pairs of words between sites, we
discount the pairs where there is no data and take
the average. This results in a distance matrix of
normalized dialect distances, which is amenable to
further statistical treatment.

2Question and responses sampled from Linguistic Atlas
Project, item number 78.8.

A
B

cemetery kirkyard graveyard

graveyard 0.78 0.56 0
boneyard 0.75 0.5 0.44

Table 2: Example data for illustration of Bilbao dis-
tance, where the cells indicate the length-normalized
edit distance between responses.

2.2 Visualization

dialectR provides two visualization methods com-
mon in dialectometry: one based on multidimen-
sional scaling, and another based on hierarchical
clustering. We discuss their implementation in di-
alectR below.

2.2.1 Multidimensional Scaling
Multidimensional scaling refers to a family of di-
mensionality reduction techniques, where complex
data is reduced to a smaller number of dimensions
that can be more easily interpreted. Multidimen-
sional scaling has been applied to distance tables
extensively in dialectometry for the purpose of
showing dialect continuum phenomena (Nerbonne
et al., 1999; Embleton et al., 2013), and usually
provides more robust results than those of cluster-
ing. The mds_map function in dialectR uses a
refinement of Torgerson’s multidimensional scal-
ing (Torgerson, 1952), where provided a matrix
of dissimilarities, the algorithm projects each data
point into a lower dimensional space with the goal
of preserving the distance between them as best
possible.

The distance matrix of edit distance between
varieties as described in section 2.1 can therefore
in the aforementioned manner be given as input;
reduced to three dimensions, where each dimen-
sion is rescaled to a range of [0, 1] with min-
max scaling, and transformed proportionately to
RGB values respectively. The three colors are then
mixed, and at last projected onto the geographic
locations of each variety. Figure 4 shows the re-
sults of applying this method on Dutch dialect data
provided in the Goeman-Taeldeman-Van Reenen-
project (Taeldeman and Goeman, 1996).

2.2.2 Hierarchical Clustering
Complementing the possibility of showing dialect
continuua, in dialectology it is often also desir-
able to pursue a notion of distinct dialect groups.
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Figure 1: A partial dendrogram of the Goeman-
Taeldeman-Van Reenen-project.

This is achieved in dialectometry through hierar-
chical clustering, which dialectR implements by
building upon the hclust function built natively
in R. This allows for a number of agglomeration
methods to be specified, including the weighted av-
erage method (alternatively known as the WPGMA
method) and Ward’s method, which differ in how
proximity between clusters is defined, and can lead
to somewhat different results. The result of apply-
ing hierarchical clustering on our distance matrix
is a dendrogram, an example of which is shown in
Figure 1, where the cophenetic distance between
nodes can be seen. A cophenetic correlation coeffi-
cient between the original distance matrix and the
results of clustering can also be calculated, which
indicates how well the dendrogram has preserved
the original distances in the data, and comes down
to 0.71 for the Dutch dialect dataset using Ward’s
method.

However, due to the instability of hierarchical
clustering, steps of validation and bootstrapping
may be necessary to confirm the validity of the
clusters. One possible method of validation is to
plot the cluster groupings against the results of the a
multidimensional scaling. This would result in Fig-
ure 2, where the difference in spread of the seven
clusters would point to the possibility that certain
edge cases remain ambiguous between clusters due
to the continuous nature of the dialect data. The
implementation of further bootstrapping and valida-
tion procedures such as described in Nerbonne et al.
(2008) is also possible with the help of numerous
related packages such as Suzuki and Shimodaira

r=0.7

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.2 -0.1 0.0 0.1 0.2

Figure 2: Dutch data from the Goeman-Taeldeman-Van
Reenen-project reduced to two dimensions with multi-
dimensional scaling, where the colors are groupings as
obtained by hierarchical clustering.

(2006) and Hennig (2020), the ready availability
of which is a strength of dialectR over comparable
closed systems.

2.3 Acoustic Distance
As an example of the benefit of the framework pre-
sented here, we turn to an open-source implementa-
tion of recent work that is not yet available in other
comparable closed systems such as Gabmap and
DiaTech. In order to demonstrate the advantage of
an open system, we re-implemented the acoustic
distance in Bartelds et al. (2020) in Python,3 and
include it here in R through the reticulate package
(Ushey et al., 2020).

The method transforms audio samples into
numerical feature representations based on 39-
dimensional Mel-frequency cepstral coefficients
(MFCCs), which include the first 12 cepstral co-
efficients and energy in each frame; the first and
second derivatives from each of the cepstral co-
efficients and energy features; and one first and
one second derivative related to the energy feature.
These coefficients are computed with a window
size of 25 ms and a stride of 10 ms. Cepstral means
and variance normalization are used to reduce the
effect of noise. After obtaining MFCCs for the two
audio samples under consideration, dynamic time
warping is then performed upon them to derive a
measure of their distance. Bartelds et al. apply

3https://github.com/b05102139/
acoustic_distance
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Figure 3: Acoustic vowel space as approximated with
acoustic distance.

this method to audio samples in the Speech Accent
Archive (Weinberger and Kunath, 2011), where a
correlation of r = −0.71(p < 0.0001) was found
between human judgments of native-likeness and
the distance derived from their method. An approx-
imate acoustic vowel space was also derived by
applying their method to vowels, which we repli-
cate in Figure 3 by using the recordings of vowels
in the international phonetic alphabet as recorded
by Peter Ladefoged4 and plotting the two first di-
mensions of a multidimensional scaling.

This method enables the reduction of time and ef-
fort needed for transcription-based methods, where
the human resources needed to transcribe the di-
alect audio into IPA may not be available. The
implementation of this method relies heavily on
speech processing packages in the Python ecosys-
tem, and serves to illustrate the broader potential
of doing dialectometry with open-source software,
where the ability to utilize external resources in
Python through the reticulate package constitutes a
further advantage (Ushey et al., 2020).

3 Example Session

We show in this section an example session,
by analyzing Dutch dialect data in the Goeman-
Taeldeman-Van Reenen-project with dialectR. The
IPA transcription dataset comes installed with the
package, along with a sample Keyhole Markup
Language (KML) file that is required in order to

4http://www.phonetics.ucla.edu/course/
chapter1/vowels.html

Sites
Concepts

aarde adem appels

AalsmeerNH P6rde P6d@m Pap@ls
AalstBeLb E@t os@m Ap@ls
AalstBeOv eErd@ os@m Ap@l@n

Table 3: Excerpt of the transcriptions in the Goeman-
Taeldeman-Van Reenen-project, where the cells are pho-
netic transcriptions of concepts collected at multiple
sites.

provide geographic data of the collection sites.
The Keyhole Markup Language is an XML-based
markup language for geographic data, and is prin-
cipally associated with Google Earth,5 which users
may utilize to create KML files for their own data.
An excerpt of the phonetic transcriptions is shown
in Table 3. An excerpt of the KML file is shown
below:

<Placemark>
<name>Zwolle Ov</name>
<Point>
<extrude>1</extrude>
<coordinates>6.10418,52.5146,0</coordinates>
</Point>

</Placemark>

The transcription data can be called with the
data function built natively in R, and the geo-
graphic data can be loaded with get_points
and get_polygons, which respectively extract
the points and polygon data from the KML file into
dataframes:

library(dialectR)
data(Dutch)
pathToKML <- system.file("extdata",

"DutchKML.kml",
package="dialectR")

dutchPoints <- get_points(pathToKML)
dutchPolygons <- get_polygons(pathToKML)

With the transcription data and geo-
graphic information ready, we can call
distance_matrix and set the option of
alignment_normalization to true, which
computes the edit distance between the pronun-
ciations of all corresponding words in all pairs
and normalizes the score by length; we also
set funname to leven, which uses the plain
edit distance for its computation, as opposed
to vc_leven, which implements the vowel-
consonant constraint. The details of both of these
options are discussed in Section 2.1.

5https://earth.google.com/web/
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Figure 4: Three dimensions of the multidimensional
scaling plotted respectively as RGB values, mixed to-
gether, and projected onto their respective locations.

We call mds_map upon the resulting distance
matrix along with the required geographic informa-
tion, which results in Figure 4:

distDutch <- distance_matrix(Dutch,
funname="leven",
alignment_normalization=TRUE)

mds_map(distDutch, dutchPoints, dutchPolygons)

We briefly remark that Friesland (the area in
blue) clearly stands out as a variety most distinctly
separate from its surroundings, which is consistent
with its status as an independent language. The
low Saxon area (the green area on the top right)
and the west of Flanders (lower left) also show a
notable similarity, which Wieling and Nerbonne
(2011) also noted.

For purposes of illustration, we also show here
how the edit distance and its variants as imple-
mented in distance_matrix can be called in-
dependently of the function:

leven("graveyard/boneyard",
"cemetery/kirkyard/graveyard",

alignment_normalization = T,
delim = "/")

Where the alignment_normalization
parameter normalizes the distance by dividing the
length of the alignment between two strings, and
the delim parameter allows for comparing multi-
ple responses in one or both of the sites with Bilbao
distance.

To gain more specific insights into how one
might classify significant similarities in a given
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Figure 5: The groupings of hierarchical clustering as
projected onto their respective locations.

area, we are now in a place to complement the mul-
tidimensional scaling analysis as performed above
with hierarchical clustering. In dialectR this can be
called via cluster_map, which results in Fig-
ure 5:

cluster_map(distDutch,
kml_points = dutchPoints,
kml_polygon = dutchPolygons,
cluster_num = 7,
method = "ward.D2")

We observe that the projection of our hierarchi-
cal clusters onto the geographic locations of the col-
lection sites results in sensible aggregate isoglosses
that largely correspond with the classification of
dialectologists.

4 Conclusion and Future Work

We presented dialectR, an open-source package
that attempts to facilitate community-based exten-
sions to dialectometric methods by situating itself
in the statistical environment of R. In doing so, we
echo the sentiment in Nerbonne et al. (2011) regard-
ing the future of Gabmap, a web application for
dialectometry that served as the primary reference
for the present package: “[t]here are also opportu-
nities for further development. Probably the most
important of these would involve making it easier
for others to contribute modules, i.e. adopting an
open-source development mode. Once it becomes
easier for others to contribute, then scientific imag-
ination is the limiting factor”.

We suggested several lines of research above
which dialectR might be used to support, includ-
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ing the use of geostatistical analysis or a wider
range of dimension-reducing techniques. We fur-
ther demonstrated how dialectR could be used to
incorporate acoustics-based aggregate analyses in
Sec. 2.3 above. So it is fitting that we close with
yet another suggestion for work that dialectR might
be used to support.

Edit distance measures for phonetic transcrip-
tions have been shown to improve in sensitivity
when used with sensitive segment weights (Wieling
et al., 2012). Work in this direction has sought to
take into account that frequent sound substitutions
should be taken as more similar than infrequent
ones (e.g., a substitution of [E] should count as
more similar to [e] than to [o]). Such a procedure
has been used for the measurement of foreign ac-
cent strength (Wieling et al., 2014) and for the rec-
tification of “field worker isoglosses”, which refers
to a systematic difference in transcription that oc-
curs due to the field workers preferences, as op-
posed to any real linguistic differences between the
dialect sites (Wieling and Nerbonne, 2011). These
applications together point towards its usefulness
as a future module, either to be incorporated into
the current package, or, alternatively, to be made
available alongside it.

As increasingly sophisticated statistical methods
come to be used to examine dialect data (Wieling
and Nerbonne, 2015; Wieling et al., 2018), the
possibility of interfacing with dedicated packages
in R facilitates the community-based effort to keep
the latest methods within the reach of the general
user.
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Abstract
The development of Natural Language Pro-
cessing (NLP) applications for Cantonese, a
language with over 85 million speakers, is
lagging compared to other languages with a
similar number of speakers. In this paper,
we present, to our best knowledge, the first
benchmark of multiple neural machine transla-
tion (NMT) systems from Mandarin Chinese
to Cantonese. Additionally, we performed par-
allel sentence mining (PSM) as data augmen-
tation for the extremely low resource language
pair and increased the number of sentence pairs
from 1,002 to 35,877. Results show that with
PSM, the best performing model – bidirec-
tional LSTM with Byte-Pair Encoding (BPE)
– scored 11.98 BLEU better than the vanilla
baseline and 9.93 BLEU higher than our strong
baseline. Our unsupervised NMT (UNMT) re-
sults also refuted previous assumption (Rubino
et al., 2020) that the poor performance was re-
lated to the lack of linguistic similarities be-
tween the target and source languages, partic-
ularly in the case of Cantonese and Mandarin.
In the process of building the NMT system, we
also created the first large-scale parallel train-
ing and evaluation datasets of the language
pair. Codes and datasets are publicly available
at https://github.com/evelynkyl/yue_nmt.

1 Introduction

There are over 85 million Cantonese speakers
around the globe, and it is the de facto spoken lan-
guage in Hong Kong, Macau, and the Canton re-
gion in China (Wong et al., 2017; Eberhard et al.,
2021). The language is also deemed the most in-
fluential and well-known variety of Chinese lan-
guages after Mandarin (Matthews and Yip, 2013);
nevertheless, Cantonese has rather limited linguis-
tic resources. While there are varying sizes of
Cantonese-English corpora, such as Hong Kong
Hansards (Legislative Council of the Hong Kong
Special Administrative Region, 2022) and Hong
Kong Laws Parallel Text (Ma, 2000), the latter of

which contains nearly 3 million parallel sentences
between the two languages, the same cannot be
said for the pair of Cantonese and Mandarin. En-
glish and Cantonese share very few linguistic fea-
tures, and are considered distant languages. On
the contrary, Cantonese and Mandarin are typolog-
ically similar in that they share more linguistic fea-
tures such as grammatical structures and basic lexi-
cal items than Cantonese does with English (Wong
and Lee, 2018). As such, our work aims to take ad-
vantage of the typological similarities between the
two languages and investigate whether the similari-
ties would enable decent translation quality despite
having a limited amount of training data.
The existing Cantonese (Hong Kong variant) -
Mandarin corpora are quite small and mostly in
the domain of conversational transcripts and social
media (Luke and Wong, 2015; Wong et al., 2017).
This can be further demonstrated by the depen-
dency treebank built by Wong et al. (2017), which
consists of only 13,918 words/tokens, as compared
to 285,000 in Mandarin in Universal Dependen-
cies (UD; Nivre et al., 2020). Most state-of-the-
art (SoTA) deep learning algorithms require a large
amount of data to perform well. It holds true es-
pecially for more complex tasks, such as machine
translation (MT), question answering, and neural
text generation (Koehn and Knowles, 2017; Puri
et al., 2020; Malandrakis et al., 2019). As a conse-
quence, most of these complex tasks are not com-
monly applied to Cantonese.
Language, however, is the core of one’s cultural

identity (Coupland, 2007). In light of that, the
main goal of this paper is to benchmark different
Mandarin to Cantonese NMT approaches to pave
the way for future research on Cantonese NMT sys-
tems. The contributions of the paper include pro-
viding the first baseline of Cantonese NMT and the
first large training and evaluation parallel dataset
of the language pair. Our hypothesis is that creat-
ing an MT system with a high-resource, typolog-
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ically close language might produce decent trans-
lation outputs. If that is the case, the limited re-
sources of Cantonese can be improved by utilizing
the MT system, hence enabling implementations
of NLP systems with better performance for the
low-resource language.

2 Linguistic Considerations of Cantonese
and Mandarin

Most Chinese texts encountered in NLP is in Man-
darin, largely due to its high availability in lin-
guistic resources. Nearly all Cantonese speak-
ers can read and write in written Mandarin, and
it is conventionally preferred in academic and le-
gal settings to write in written Mandarin to con-
vey a sense of formality (Snow, 2004). As a con-
sequence, there is very little Cantonese text data
available, which, in turn, makes Cantonese seldom
included in a majority of the NLP research and sys-
tems (Lee et al., 2022).
Nevertheless, Cantonese and Mandarin are typo-
logically similar languages, where they have a sim-
ilar grammatical system and share basic lexical
items such as times, numbers, and personal pro-
nouns that are identical in orthography (Zhang,
1998). Even though the two languages are closely
related, there are, indeed, a plethora of linguistic
differences. The most notable one is the phonolog-
ical systems, in which their similarities are min-
imal in terms of sound inventory and intonation
(Zhang, 1998; Tang and Van Heuven, 2009). On
the aspects of syntactic structure, the main differ-
ence between the two languages is their word or-
ders, where Cantonese allows amore flexible word
ordering compared to Mandarin (Ding and Féry,
2014). Furthermore, there are distinctive gram-
matical features in Cantonese that do not exist in
Mandarin (Zhang, 1998), including, but not lim-
ited to, post-verbal elements, structural particles,
directional verbs, definiteness, and aspect markers.
In terms of lexical dissimilarity, there are seven
to eight thousand distinct words and expressions
in Cantonese that are written in a different charac-
ter from any Mandarin words, or that carry a dif-
ferent meaning from the Mandarin words of simi-
lar forms (Zhang, 1998). These distinct words at-
tribute almost one third of the total vocabulary in
Cantonese, and half of them are commonly used in
daily conversation among Cantonese speakers.
Take a parallel sentence pair from the UD data as
an example to illustrate the differences and simi-

larities between the two languages. Sentence 1 de-
notes its expression in Cantonese, while Sentence
2 refers to the sentence in Mandarin.

(1) 嗰時啲
That time’s

CD舖
CD shops

仲多過
even more than

而家啲
now’s

七十一。
7-11.

“There were more CD shops at that time than
the 7-11 (convenience stores) we have now.”

(2) 那時候
At that time

唱片店
CD shops

比現在
compared to now

七十一
7-11

還要多。
even more.

“There were more CD shops at that time than
the 7-11 (convenience stores) we have now.”

As can be observed, the lexical tokens between the
two sentences are quite different, with only four
words (in bold) in overlap and three of them being
a numerical item and one being a timing word. On
the contrary, the syntactic structures are roughly
similar, with word order differences such as the
placement of time, subject, and comparison expres-
sion.
The distinctive lexical, syntactic, and phonological
differences result in the language pair being mutu-
ally unintelligible (Zhang, 1998). Consequently,
transforming from Mandarin to Cantonese should
be treated as a translation task.

3 Related Work

3.1 Cantonese Parallel Corpus
Wong et al. (2017) constructed a parallel corpus of
Cantonese and Mandarin in Standard Traditional
Chinese scripts. This corpus is the first, albeit
small (1,002 sentence pairs), Cantonese-Mandarin
parallel corpus. It is created by transcribing tele-
vision programs in Hong Kong as Cantonese data
and using the original subtitles of the programs in
Mandarin (Wong et al., 2017).

3.2 Parallel Sentence Mining (PSM)
PSM, sometimes referred to as bitext mining, iden-
tifies sentence pairs that are, or are close to, trans-
lations of one another (Feng et al., 2020). It makes
use of two comparable corpora, which contain non-
translated bilingual documents that are aligned on
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topics but not at the sentence-level (Rapp et al.,
2016). PSM has been commonly applied to MT
for lower resource languages as a data augmen-
tation to improve the performance of an MT sys-
tem (Stefanescu et al., 2012; Uszkoreit et al., 2010;
Munteanu andMarcu, 2005). It can also be applied
to a larger-scale scenario that contains a multilin-
gual machine translation system with thousands
of language directions (Fan et al., 2021). Hence,
PSM enables one to source high quality paral-
lel sentences effectively and efficiently and is the
most useful in multilingual research, especially in
a low resource setting. Moreover, mining sen-
tences from comparable corpora overcomes some
of the limitations that exists in parallel datasets
(Zweigenbaum et al., 2018). In particular, large
parallel corpora typically cover only a subset of the
variety of language pairs, and they are often in very
specific domains and genres. Furthermore, most of
the parallel sentences are constructed by using hu-
man translations; therefore, these translations are
likely to contain translation biases such as calques
and other phenomena (Zweigenbaum et al., 2018).
Contrarily, comparable corpora often display more
variety and are generally original texts instead of
translations. As such, it holds more promises as a
complement to parallel corpora to aid in terms of
variety and quantity of the data.
The goal of PSM is to find semantically similar sen-
tences by calculating multilingual sentence embed-
dings, followed by finding the K-nearest neighbor
sentences for all sentences in both directions, and
finally, calculating all possible sentence combina-
tions (Feng et al., 2020). The higher score a sen-
tence pair has, the better it could serve as a trans-
lation pair (Reimers and Gurevych, 2020). Gener-
ally, scores higher than 1 indicate that it is of qual-
ity. Reimers and Gurevych (2020) reported that us-
ing LaBSE (Feng et al., 2020) as the mining model
returned the best results in their experiments.

3.3 Low-resource NMT
While NMT has demonstrated its performance in
resource-rich language pairs, research has shown
that the same performance does not apply in lim-
ited data situations (Koehn and Knowles, 2017;
Sennrich and Zhang, 2019). As reported by Gu
et al. (2018), NMT systems cannot achieve reason-
able translation results if the corpus has less than
13K parallel sentences. As such, to improve the
quality of low-resource NMT models, researchers
have proposed a plethora of methods, which can

be categorized into two groups:
1. Monolingual data. Exploiting data from the

target language is low-cost and effective. Ap-
proaches range from back translation which
takes advantage of the target-side monolin-
gual corpus (Sennrich et al., 2016a), bilin-
gual text mining (Feng et al., 2020), joint
training in both translation directions (Zheng
et al., 2019), as well as language models pre-
training (Conneau and Lample, 2019; Lewis
et al., 2019).

2. Auxiliary languages’ data. Leveraging
other language pairs’ corpora for pre-training
or joint representation learning has shown
great success even with extremely low-
resource language pairs (Zoph et al., 2016;
Kocmi and Bojar, 2018). There are several
methods of leveraging multilingual data for
low-resource NMT, including transfer learn-
ing (Conneau et al., 2019; Chronopoulou
et al., 2020), multilingual training (Gu et al.,
2018; Zhang et al., 2020), as well as pivot
translation (Wu and Wang, 2009; Wang et al.,
2021).

3.3.1 Unsupervised NMT
There has been tremendous progress in using unsu-
pervised NMT (UNMT) as opposed to supervised
NMT in recent years (Artetxe et al., 2018). While
a UNMT model performs well when trained on a
large, high quality, and comparable dataset, it does
not perform well for languages with lesser avail-
ability of data (Chronopoulou et al., 2020). To
solve this issue, Chronopoulou et al. (2020) pro-
posed pre-training a monolingual LM (MonoLM)
on a high-resource language, then fine-tuning the
LM on the language pair, followed by an initial-
ization of a UNMT model. They also introduced
a new vocabulary extension approach that enables
fine-tuning a pre-trained LM to any unseen lan-
guage. The results showed that their approaches
outperformed XLM (Conneau and Lample, 2019),
a SoTA cross-lingual language model pre-training
framework, on several language pairs. Further-
more, they added residual adapters (Rebuffi et al.,
2018) to the layer of each of the pre-trained
MonoLM. Residual adapters are feed-forward net-
works that prevent catastrophic forgetting of the
model (Bapna and Firat, 2019). Chronopoulou
et al. (2020) reported that adapters enable fine-
tuning parameters in a more time-saving and cost-
efficient manner with little to no cost on the per-
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formance as compared to the originally proposed
model.

4 Methodology and Experimental Setup

We implemented the following NMT systems on
the direction of Mandarin to Cantonese in the ex-
periment:
1. Word-based bidirectional LSTM model with

general attention mechanism as the baseline
(BiLSTM ),

2. Word-based (1) + fine-tuning as a strong base-
line (BiLSTMt),

3. Word-based (2) + PSM (BiLSTMt + PSM),
4. BPE-based fine-tuned BiLSTM + PSM

(BiLSTMbpe+t + PSM),
5. Word-based Transformer (Transw + PSM),
6. BPE-based Transformer (Transbpe + PSM),
7. Unsupervised NMT via language model pre-

training and transfer learning with adapters
(RELMadap + PSM)

4.1 Data, Bitext mining, and Prepossessing
Original Dataset This paper used the
Cantonese-Mandarin parallel corpus by Wong
et al. (2017) in Universal Dependencies (Nivre
et al., 2020) as the foundation, which we refer to
as UD in this paper. It consists of 1,002 sentence
pairs (see Section 3.1).

Data Augmentation: Bitext Mining Consider-
ing the small size of the corpus, we used a data
augmentation technique by mining sentence pairs.
The Cantonese andMandarinWikipedia sites were
extracted to perform the mining.1 The bitext min-
ing was performed via the SoTA LaBSE (Feng
et al., 2020) to select pairs of semantically similar
sentences following the scripts from Reimers and
Gurevych (2019). Feng et al. (2020) suggested that
sentences with a score of 1 are of quality, and 1.2 of
high quality. However, we performed a qualitative
review on a subset of the results and observed that
sentences that scored 1.1286 are already of high
quality and are semantically similar to each other.
As such, we set the score threshold to 1.1286.
After filtering out sentences below the threshold,
we found 34,873 sentence pairs with equal to or
over 1.1286 score. Having performed bitext min-
ing, our total number of sentence pairs for training
and evaluation has increased from 1,002 to 35,877.
The increase in data size enables us to train a NMT

1https://dumps.wikimedia.org/backup-index.html

system that is possible to performwell, since NMT
systems are not able to achieve decent results when
the training data has less than 13K pairs (Gu et al.,
2018).

Final Datasets The newly complied data served
as a synthetic parallel dataset to augment the UD
dataset and alleviated the lack of sufficient train-
ing data. We refer to the combination of the two
datasets as UD + Bitext, which was used to train
all experimental models except the baselines. UD
and UD + Bitext sets were both used for training
and evaluation. Table 1 shows the distribution of
the datasets used in the experiments.

No. of sentences UD UD + Bitext

Training 801 24,396
Validation 100 5,382
Test 101 6,099

Total 1,002 35,877

Table 1: Ratio of the datasets in the experiment (all ran-
domly divided)

Preprocessing No word segmentation is done
for the UD dataset as it is already tokenized.
The mined parallel sentences were tokenized us-
ing Jieba.2 We removed blank lines but did not
normalize punctuation or non-Chinese characters.
We used Byte Pair Encoding (BPE) preprocessing
for BiLSTMbpe+t + PSM, Transbpe+t + PSM,
and RELMadap + PSM while word-based prepro-
cessing was used for the baselines, BiLSTMt +
PSM, and Transw + PSM. We used fastBPE for
RELMadap + PSM since the pre-trained model
used this technique and subword NMT (Sennrich
et al., 2016b) for the rest of the models with BPE
representation. We trained the BPE tokenizers on
our datasets with a maximum number of 8K BPE
tokens in the vocabulary for models with these
word representations.

4.2 Experiments
We trained (i) a BiLSTM model with attention
and (ii) a Transformer model and compare them
with (iii) an unsupervised NMT (UNMT) model
using the RELM framework. Both (i) and (ii) were
trained using Adam optimizer (Kingma and Ba,
2014) and cross-entropy loss function. We con-
ducted the supervised NMT (SNMT) experiments

2https://github.com/fxsjy/jieba
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using JoeyNMT (Kreutzer et al., 2019), while the
UNMT is trained via PyTorch (Paszke et al., 2019).
More details about the training parameters in the
experiments can be found in Appendix A.

4.2.1 BiLSTM-based NMT
NMT Baselines We trained two word-based
BiLSTM models with a learning rate of 3e-04 as
our baselines. The vanilla baseline was imple-
mented without exhaustive fine-tuning. Consider-
ing the sensitivity of under-resourced NMT to hy-
perparameters tuning (Sennrich and Zhang, 2019),
it is crucial to optimize the model. Hence, a strong
baseline was implemented following the parameter
settings in Sennrich and Zhang (2019). We used 1
layer of encoderwith 64 embedding dimension and
128 hidden units, and a batch size of 64. For regu-
larization, we applied 0.2 drop-out and 0.3 hidden
drop-out. A beam size of 5 was used for decoding.

BiLSTM with augmented data After parallel
sentence mining, we extended our baselines to ex-
amine the effectiveness of data augmentation. We
trained two models of different encoding schemes
with the augmented data (approach 3 and 4) using
the same model architecture (1 layer encoder of
BiLSTM). The training parameters of these mod-
els were adjusted based on the strong baseline in
consideration of the increased size in training data.
Both approaches were trained on 3e-04 learning
rate, an embedding dimension of 128, a hidden size
of 256, 0.25 drop-out and 0.3 hidden drop-out, a
batch size of 64, as well as a beam size of 10.

4.2.2 Transformer-based NMT
With the additional data from parallel sentence
mining, it increases the chance of having a bet-
ter performing Transformer NMT. Thus, we imple-
mented two exhaustively tuned Transformer-based
models on both word-level and BPE-level. The
models were trained with identical parameters, in-
cluding a learning rate of 2e-04, a batch size of
10, 2 layers of encoders with 4 attention heads,
0.1 drop-out rate, and a beam size of 5. The only
differences are the embedding dimension and hid-
den size, where we used 64 each for the BPE-level
model and 128 each for the word-level one.

4.2.3 UNMT via Transfer Learning
Asmentioned in Section 3.3.1, researchers have re-
ported success on transferring a pre-trained mono-
lingual LM to a UNMT model even with some
resource-poor language pairs (Chronopoulou et al.,

2020). In light of that, we trained a UNMT system
using the RELM framework (Chronopoulou et al.,
2020) using the UD + Bitext dataset for monolin-
gual model. For monolingual LM pre-training, we
used 385,486 sentences (Mandarin) as the train-
ing data. Then, we fine-tuned part of the LM on
the target language using only adapters with the
same amount of parallel sentences. Finally, we
trained a Transformer-based UNMT model by ini-
tializing the encoder and decoder with the fine-
tuned model plus the adapters in both translation
directions. We followed the default parameters of
RELM for model training, with a learning rate of
1e-04, a batch size of 32, 512 embedding dimen-
sion and hidden size, 3 layers and 4 heads, a hid-
den and non-hidden drop-out rate of 0.1, A mul-
tilayer perceptron (MLP) attention, along with a
beam size of 5.

4.3 Evaluation
4.3.1 Datasets
We used two datasets for evaluation, including (i)
UD, and (ii) UD + Bitext. They were used as input
to the translation systems for evaluating the qual-
ity of the NMT models aside from the automatic
metric. It allows us to perform a qualitative inves-
tigation on the translation outputs of the proposed
Mandarin-Cantonese NMT systems.

4.3.2 Methods
The automated evaluation metric used in this pa-
per is detokenized SacreBLEU scores (Post, 2018).
We report test set scores on the checkpoints with
the highest BLEU score in the validation set. In ad-
dition, we performed manual evaluation on a sub-
set of the evaluation data to get a better sense of the
translation quality. The SacreBLEU results are re-
ported and discussed below.

5 Results

Table 2 reports the primary results of our exper-
iments. Having such a limited amount (∼1K
sentence pairs) of data, as expected, completely
fails to train a vanilla BiLSTM translation model.
Applying training tricks and exhaustive hyper-
parameter tuning, as suggested by Sennrich and
Zhang (2019), has led to an improved result (+2.05
BLEU). However, the score and quality is too low
for the translation outputs to be comprehensible.
Among all the models in the experiment, the

data-augmented BiLSTM models are the best-
performing, with the word-level model scoring
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Architecture Model SacreBLEU

BiLSTM

Word level vanilla NMT,
baseline 1

1.24

Word level, BiLSTMt,
baseline 2

3.29

Word level, BiLSTMt +
PSM

12.37

BPE level, BiLSTMt+bpe

+ PSM
13.22

Transformer Word level + PSM
(Transword)

3.56

BPE level + PSM
(Transbpe)

11.66

UNMT RELMadap + PSM 1.85

Table 2: Experimental results on the Mandarin-
Cantonese translation direction. PSM refers to the par-
allel sentence mining technique to increase data size.
The highest score is in bold.

12.37 BLEU and the BPE-level one scoring 13.22
points. Word-level MT models are typically
slower to converge, and thus, require more training
to have on-par performance with their BPE-level
counterparts (Sennrich et al., 2016b; Wu et al.,
2016). Given that the two models were trained on
an identical number of epochs, it is reasonable that
the BPE-level one, which converges faster, per-
formed better. The Transformer-based models are
outperformed by the BiLSTMmodels. It is not sur-
prising given the limited data in the experiments.
The UNMT system with pre-trained LM scored
1.85 on SacreBLEU (+0.61 points compared to the
vanilla baseline) and is the second-worst perform-
ing model in the experiment. The strong baseline
(model 2, fine-tuned vanilla NMT) outperforms it
by 1.44 BLEU even with only 1K sentence pairs.

6 Analysis

Effect of corpus size Bitext mining im-
proved the model performance substantially
(+9.08 BLEU, BiLSTMt + PSM compared to
BiLSTMt) with merely some minor changes in
the training parameters in view of the increased
data size. It shows that this technique is successful
in assisting model learning and thus improving its
performance by increasing the size of the training
data.

6.1 Out-of-vocabulary (OOV)
Upon careful examination of the translations, we
observed that OOV is a critical issue for both
BiLSTM and Transformer models. OOV occurs
when the translation output contains unknown to-

kens (UNK), which are unseenwords or rare words
whose occurrences are less frequent than other
words in the vocabulary in the training data. The
issue is a major challenge for any language in a
low-resource scenario (Liu and Kirchhoff, 2018).
In a low-resource setting, the dictionary created
from the selected training data is not able to cover
all the possible words and characters in the lan-
guage. Consequently, when evaluated on an inde-
pendent test set, it is highly likely that many terms
that were not covered in the training data have then
become unknown tokens. Given that our limited
size of training data, OOV is a severe problem that
negatively impacts model performance. Table 3
shows examples of translations generated by BiL-
STM and Transformer models with word and Byte-
Pair Encoding (BPE) representations.

Word-level systems For word-level BiLSTM
and Transformer systems, we observed that the
translation quality of the validation set is better
than the test set, and they did not produce UNK
tokens like the BPE-level models. They still, how-
ever, suffer from OOV. Due to the lack of UNK
tokens, we are unable to measure the severity of
this issue for word-level systems. The reason be-
hind the absence of UNK tokens is word-based
NMT models’ inability to translate unseen words
(Sennrich et al., 2016b); instead, they copy un-
known words to the outputs, resulting in plenty
of words copied directly from the training data of
the source language. The quality of the transla-
tion from word-based models, as a result, is sim-
ilar to the BPE-level one for the BiLSTM models.
In contrast, the performance is significantly worse
for the Transformer model. The result from the
word-level Transformer model contains either sin-
gle, irrelevant words or numerous duplicate words,
making it uninterpretable. Referring to Table 3, the
output sentence from this model is completely dif-
ferent from the reference sentence, either in terms
of topic, sentence structure, or semantics. The out-
put fromword-level BiLSTM bears a closer resem-
blance to the reference text, albeit barely intelli-
gible. It also copied many words from other sen-
tences in the training data, as some words like轉到
“turned” and 都係 “is also” are unrelated and thus
should not be used in the sentence.

BPE-level systems BiLSTMwith BPE represen-
tations has the highest number of UNK tokens
compared to the rest of the experimental models
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Model Sentence from BPE-level model Sentence from word-level model

Gold standard
Original sentence

Translation

沙田區議員曾提出重建西林寺為旅遊地

District Councillors of Sai Tin had proposed to renovate Sai Lam Temple as a tourist attraction.
BiLSTM

Original output:
Translation

沙田<unk>曾經委任做旅遊<unk>
<unk> Sai Tin was assigned as a tourist <unk>.

沙田都係之後轉到西林寺為旅遊地
Sai Tin then turned the Sai Lam Temple to a tourist attraction

Transformer
Original output
Translation

而家都係沙田<unk>西林寺為旅遊地
Sai Lam Temple is still a tourist attraction in Sai Tin <unk>.

問題
Problem

Table 3: Translation examples from the word-level and BPE-level models illustrating Out-of-Vocabulary (OOV)
issue

(UNK to word ratio is 63.3% on the test set). In
spite of that, the SacreBLEU of this model sur-
passed the rest, meaning that the accuracy of the
non-UNK translated tokens is quite decent. For
the BPE-level Transformer model, its occurrence
frequency of UNK tokens is much lower than its
BiLSTM counterpart (UNK to word ratio 38.5%
as compared to 63.3%). Although BiLSTMbpe+t

+ PSM’s BLEU score is higher than Transbpe +
PSM’s, our analysis suggests the opposite in terms
of translation quality. We found the translations
by Transbpe + PSM contains fewer UNK tokens
and a closer semantic meaning to the reference
sentences. These findings corroborate the UNK
to word ratios reported above. Despite having
a less severe OOV issue, the Transformer model
still performs worse in terms of BLEU score, yet
it intriguingly performs better on the aspects of
translation quality. As shown in Table 3, the sen-
tence output by the BPE-level Transformer model
contains fewer UNK tokens, as well as a closer
semantic meaning to the reference sentence. It
is due to the fact that the Transformer model
does not produce the exact words as the reference
text, but a rephrased version; conversely, the BiL-
STM model, as a sequence-to-sequence model, is
more prone to direct-copying from the training text
(Sutskever et al., 2014; Gu et al., 2016). Hence, its
output would theoretically have more exact words.
Since BLEU (Papineni et al., 2002) is concerned
about the exact match in the translated text and the
reference text, one of the plausible explanations
of the above phenomenon is that the metric favors
models that have a copying tendency.

Moreover, consistent with the findings of Artetxe
et al. (2018), we observed that BPE is of scant help
in terms of UNK tokens when the name entities or
phrases are infrequent. Despite subword transla-
tions such as BPE being beneficial to OOV prob-

lems in general, such an advantage is hardly ob-
served in this study. A likely explanation is that
our source and target languages are both character-
rich languages. While they can have over 50,000
characters in their languages, only a fraction of
those are used regularly (Wang et al., 2020). Yet,
many infrequently used characters can take up a
considerable amount of vocabulary slots (Wang
et al., 2020). As such, when two languages do
not have many overlapping character sets, BPE
might not be an optimal choice compared to other
subword tokenization schemes such as Byte level
BPE (BBPE; Wang et al., 2020) or unigram lan-
guage modeling (Kudo, 2018). Future studies can
explore the impacts of different subword tokeniza-
tion techniques on this language pair to further in-
crease the NMT performance.

UNMT The UNMT model performs consider-
ably worse than the supervised MT models. The
gap between the two approaches is very signifi-
cant when we consider the identical data size. The
BLEUs of the supervised approach are at least 9.81
higher than the UNMTmodel, whose score is only
marginally better than the vanilla baseline. As
such, for very low-resource language pairs, train-
ing an MT system with 36K synthetic parallel data
is a better option. The majority of the translation
output by the UNMTmodel are duplicates of some
word, making the result unintelligible. Hence, we
are not able to analyze it in-depth. Despite the suc-
cess of Chronopoulou et al. (2020), our experimen-
tal results are in line with the previous work on
UNMT for low-resource languages (Rubino et al.,
2020). It is worth noting that even though our
language pair (Cantonese and Mandarin) is highly
similar typologically, the model performance is
still similar to that of Rubino et al. (2020) in terms
of BLEU. As such, in the case of Cantonese and
Mandarin, we refuted their assumption that the
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poor performance was related to the lack of lin-
guistic similarities between the target and source
languages. We believe that the poor performance
is largely tied to the amount of monolingual data in
the LM pretraining step. It is also possible that al-
though Cantonese and Mandarin are typologically
close, the differences in word ordering or grammat-
ical features made them linguistically less similar.
However, compared to the language pairs in Ru-
bino et al. (2020), our target and source languages
share many more linguistic similarities. Hence, it
is more likely that the poor performance is due to
the limited data of our language pair. As a conse-
quence, more training data is required to better aid
the model to learn the language representations.
In addition, the language pair in this research dif-
fers greatly from the language pairs that performed
well in the previous studies, such as English-
French and German-English (Artetxe et al., 2018;
Lample et al., 2018). Since both Cantonese and
Mandarin are logographic languages, using a dif-
ferent subword representation method than the de-
fault BPE one might lead to a better-performing
model.

7 Limitations

Translation systems are prone to making gener-
alizations based on the frequency of gender-role,
race, religion, and other stereotypes occurrences in
the datasets. One typical example is “Man is to Pro-
grammer as Woman is to Homemaker” (Bolukbasi
et al., 2016). The Cantonese-Mandarin UD paral-
lel treebank used in this study was sourced from a
television show, which might contain stereotypes
in the dialogues. Besides, the bitext mined sen-
tence pairs were sourced from the Wikipedia sites
of Cantonese and Mandarin. Given that Wikipedia
is an open-source community where everyone can
contribute, its content could be vulnerable to so-
cial injustice and stereotypes as well. Their pres-
ence in the training data, if any, would reinforce
the stereotypes in the translation system. One way
to mitigate such potential issues is by treating it as
a domain adaptation problem, as recommended by
Saunders and Byrne (2020).
In terms of evaluation, the main automated metric
in this study is SacreBLEU. Using only one met-
ric, however, is not able to provide a full picture
of the model performance and its translation qual-
ity. Although we used manual analysis along with
SacreBLEU, having a non-matching based metric

such as BERTScore (Zhang* et al., 2020) or SIM-
ILE (Wieting et al., 2019) would be helpful in eval-
uating the contextual similarity between the input
and the translation.

8 Conclusion and Future Work

In this paper, we presented the first benchmark of
various NMT approaches for Cantonese. Due to
the minimal amount of training data, the baseline
models failed to produce intelligible results. We al-
leviated this issue by using parallel sentence min-
ing as data augmentation and have increased the
training data size from∼1K to∼36K. It resulted in
a tremendous boost in performance (+9.08 BLEU)
and produced higher-quality translations. Addi-
tionally, we provided a large parallel training and
evaluation dataset of Cantonese and Mandarin for
future research.
One of the interesting findings in this paper is that
our Transformer MT systems performed worse
than the BiLSTM systems in terms of SacreBLEU.
This is reasonable given the large amount of data
required by Transformer-basedmodels and the lim-
ited amount of training data. What is more intrigu-
ing is that using varied word representations in an
NMT system leads to very different results. We
found that BPE-level models generally perform
better. The BPE-level Transformer model pro-
duces more comprehensible translations despite
having a lower BLEU score than the two BiLSTM
models. We hypothesize that this is because of
the evaluation metric’s (BLEU) architecture favor-
ing models with a copying tendency. Besides the
supervised models, we also implemented an unsu-
pervised NMT with LM pre-training. It is, how-
ever, among the worst-performing models, in spite
of the large amount of training data in comparison
with the rest of the models.
Future work can be dedicated to different ap-
proaches to improve the performance of Mandarin-
Cantonese NMT systems. While this study has in-
vestigated the direction of Mandarin to Cantonese
as a way to alleviate the lower resource in Can-
tonese, our next step would include both transla-
tion directions as well. In addition, one could
explore various approaches to mitigate the severe
OOV issue, such as applying Jyutping romaniza-
tion of the characters (Du and Way, 2017; Aqlan
et al., 2019) or using BBPE (Wang et al., 2020) or
unigram language modeling (Kudo, 2018) rather
than BPE as the subword tokenization technique.
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Another research direction is to train a multilingual
NMT system (MNMT). With various source lan-
guages, the model is able to learn universal lan-
guage representations from all the languages, thus
enabling the systems to be language agnostic (Lee
et al., 2017; Johnson et al., 2017; Feng et al., 2020).
In our case, it may enable Cantonese to take ad-
vantage of the universal language representations
in terms of linguistics and knowledge, hence al-
lowing the system to perform well regardless the
amount of available data (Gu et al., 2018).
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A Appendix

Table 4 lists the training hyperparameters used for the models in the experiments.

Experiments Hyperparameters

Encoding Learning
rate Batch size Maximum

epoch
Embedding
dimension Hidden size

BiLSTM word 0.0003 256 600 128 128

BiLSTMt word 0.0003 64 800 64 128

BiLSTMt + PSM word 0.0003 64 100 128 256

BiLSTMbpe+t + PSM bpe 0.0003 64 100 128 256

Transword + PSM word 0.0002 10 300 128 128

Transbpe + PSM bpe 0.0002 10 300 64 64

RELMadap + PSM bpe 0.0001 32 5000 512 512

Table 4: Hyperparameters of the experimental models in the study.

Experiments Hyperparameters

Layer(s) Head(s) Drop-out Hidden
drop-out Attention Beam size

BiLSTM 2 0 0.2 0.2 MLP 10

BiLSTMt 1 0 0.3 0.3 MLP 5

BiLSTMt + PSM 1 0 0.25 0.3 MLP 10

BiLSTMbpe+t + PSM 1 0 0.25 0.3 MLP 10

Transword + PS 2 4 0.1 0 MLP 5

Transbpe + PSM 2 4 0.1 0 MLP 5

RELMadap + PSM 3 4 0.1 0.1 MLP 5

Table 4: Hyperparameters of the experimental models in the study, continued.
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Abstract

In this paper, we propose a method to detect
if words in two similar languages, Assamese
and Bengali, are cognates. We mix phonetic,
semantic, and articulatory features and use
the cognate detection task to analyze the rel-
ative informational contribution of each type
of feature to distinguish words in the two sim-
ilar languages. In addition, since support for
low-resourced languages like Assamese can be
weak or nonexistent in some multilingual lan-
guage models, we create a monolingual As-
samese Transformer model and explore aug-
menting multilingual models with monolin-
gual models using affine transformation tech-
niques between vector spaces.

1 Introduction
Lexical cognates are words that are inherited by
direct descent from a common etymological ances-
tor. Due to sound change and semantic shift, cog-
nates may or may not be easy to detect without
rigorous application of the comparative method.
For example, English “two” is cognate with Arme-
nian erku, as both are descended from Proto-Indo-
European *dwóh1, with *dw->>tw- and *dw-
>>erk- being regular, if non-intuitive, parallel
sound changes.

Unlike loanwords, cognates are inherited and
not borrowed, and are therefore necessarily sub-
ject to diachronic sound change. Application of
the comparative method to cognates can be used
to discern the evolutionary paths of related lan-
guages, making them very useful for historical
linguists, but first cognates must be distinguished
from other classes of words like ordinary transla-
tions or words that simply sound similar.

In this paper we focus on cognate detection
between two closely-related languages: Bengali

†This work conducted during an internship with the Col-
orado State University Department of Computer Science.

(ISO code bn) and Assamese (ISO code as). Ben-
gali (262 million speakers) and Assamese (15 mil-
lion speakers) are two languages of eastern In-
dia and Bangladesh. They are both official lan-
guages of India (with most speakers located in the
states of West Bengal and Assam, respectively),
while Bengali is also the national language of
Bangladesh. They share a common descent from
Early Indo-Aryan via Magadhi Prakrit, and are
both typically written using Bengali or Eastern
Nagari script. The Bengali-Assamese languages
(or Gauda-Kamarupa languages) is the subgroup-
ing of Eastern Indo-Aryan that contains both these
languages and related dialects. They share certain
grammatical features like classifying affixes (e.g.,
Asm. -zOn, Beng. -dZOn, referring to persons),
as well as certain common phonetic innovations
(such as the evolution of Sanskrit /@/→/O/).

Despite the similarities, the two languages have
some important differences, particularly in their
sound patterns. Table 1 shows Assamese and Ben-
gali consonants that are pronounced differently
despite being written with the same letter. For
instance, Assamese lenited Sanskrit /s/ to /x/
whereas Bengali palatalized it to /S/. However
both sounds are now written with the same letters
in their respective languages—স, শ, or ষ—usually
transcribed as <s> or <sh>.

Assamese Bengali

s,s,z,z tC,tCh,dý,dýH

t,th,d,dH ú/t”,úh/t”h,ã/d”,ãH/d”H

x,ô S,r

Table 1: Assamese-Bengali sound correspondences.
Therefore between these two languages, pho-

netic features, orthographic features, semantic fea-
tures, or alignment of articulatory sequences may
be more or less useful in determining cognate sta-
tus, depending on the specific words in question.
The word এক (/ek/), meaning “one” in both lan-
guages, is a clear case of common inheritance
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from Sanskrit with the same sound changes ap-
plied; one need only look at the orthographic and
phonetic forms to see this. But for Assamese অকল
(/OkOl/), meaning “only,” the Bengali cognate is
actually একলা (/ekla/). In Bengali, অকল is actu-
ally an Arabic loan meaning “wisdom.”

In this paper we explore the contributions of
phonetic, semantic, orthographic, and articulatory
alignment features to the task of cognate detec-
tion between Assamese and Bengali. We use
heuristic edit distance metrics, embedding vectors
from various large multilingual language models
(MLMs), and neural networks to learn alignments
between phonetic sequences. We also use an
affine transformation technique to augment the em-
bedding spaces of MLMs with Assamese-specific
data. With combinations of features, we are able to
achieve up to ∼94% F1 on cognate detection. Our
results also show that embeddings from a smaller
monolingual BERT variant can be mapped using
affine transformations into the embedding space
of larger multilingual models, which can improve
both precision (up to 30%) and recall (up to 20%)
in detecting Assamese cognates in Bengali.

2 Related Work
Cognate detection has been approached from
many angles in the NLP community. Kondrak
(2001) identifies cognates in Algonquian using
phonetic and semantic similarity. Mulloni and
Pekar (2006) infer orthographic changes between
cognates across languages. Jäger (2018) eval-
uates PMI and SVM-based methods in cognate
detection over the Automated Similarity Judg-
ment Project database (Brown et al., 2008). List
(2014) finds relationships between data size and
genetic relatedness in automated cognate detec-
tion between English, German, Dutch, and French.
Bloodgood and Strauss (2017) explore using
global constraints in this task. Dellert (2018) ex-
plores sequence alignment and sound correspon-
dence features in cognate detection in Northern
European languages; these are two of the feature
types we also explore here. Rama et al. (2018)
and Rama and List (2019) explore the application
of automated cognate detection methods to phylo-
genetic reconstruction and inference, and Kanojia
et al. (2021a) utilize WordNets to perform ortho-
graphic similarity-based cognate detection in vari-
ous Indian languages, but notably not Assamese.

Bharadwaj et al. (2016) and Rijhwani et al.
(2019) suggest that phonologically-aware articu-

latory representations from PanPhon (Mortensen
et al., 2016) can either be used natively as em-
beddings or as features in attention-based neural
models for downstream NLP tasks such as NER
or entity linking for low-resource languages. La-
bat and Lefever (2019) and Lefever et al. (2020)
suggest that adding semantic information to or-
thographic features works well for cognate detec-
tion in resource-rich languages like English and
Dutch (90% F1). Similarly, Kanojia et al. (2021b)
suggests that adding large multilingual model em-
beddings to cognitive features like gaze improves
cognate detection in low-resource languages like
Hindi and Marathi (86% F1). Work in transla-
tion lexicons (e.g., Schafer and Yarowsky (2002))
is also relevant here, for the hybrid approach to
similarity metrics used. We combine multiple ap-
proaches which, to our knowledge, have never be-
fore been used all together. Works such as Gane-
san et al. (2021) and Artetxe et al. (2018a,b) im-
prove bilingual lexical induction using either lin-
ear or non-linear word embedding maps, but they
use non-contextual embeddings like fastText or
word2vec. We extend such research to cognate
detection using contextualized embeddings from
Transformer-based models to leverage additional
monolingual representations in this task.

3 Datasets
Cognates in Bengali and Assamese must share a
common descent from an ancestor language1; the
best-documented of these is Sanskrit. However,
many descendants of Sanskrit make scholarly re-
borrowings from Sanskrit (tatsama) that are fully
reincorporated Sanskrit forms adapted to fit the
modern phonology. These exist alongside tadb-
hava words inherited from Old Indo-Aryan with
concomitant sound changes in the Middle Indo-
Aryan phase.

For this data collection, we turned to Wik-
tionary. Namely, we scraped the categories of the
form [Descendant]_terms_derived_
from_Sanskrit for each of the two descen-
dants.2. We took the union of these two sets and
then took the subset of the union where both the
Assamese and Bengali forms had the same docu-
mented Sanskrit ancestor. Checking against com-

1We do not adopt the definition of cognate that subsumes
loanwords (e.g., Kondrak (2001)); we use the linguistic defi-
nition that treats loanwords and cognates as distinct.

2e.g., https://en.wiktionary.org/wiki/
Category:Assamese_terms_derived_from_
Sanskrit
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mon ancestry filters out loanwords from the cog-
nate datasets. Table 2 shows the number of cog-
nates retrieved for each language. We should note
that despite the union-intersection operations be-
ing symmetrical, this does not result in equally-
sized datasets for the two languages; because Ben-
gali has more overall entries in the English Wik-
tionary, there are more cases where multiple Ben-
gali words have the same ancestor as a single doc-
umented Assamese word.

Descendant Ancestor # Cognates

Assamese Sanskrit 205
Bengali Sanskrit 335

Table 2: Cognate pair counts per language.

We then convert every word in every pair to its
phonetic representation in the International Pho-
netic Alphabet (IPA). This is done using the Epi-
tran package (Mortensen et al., 2018). The avail-
able Epitran distribution does not support certain
low-resourced languages, among them Assamese,
but the format is easily extensible, and so we wrote
an Epitran graph-to-phoneme mapping for As-
samese using resources like Omniglot3 and Wiki-
wand/Assamese4, as well as native speaker guid-
ance for verification.

Having gathered positive examples of cognates,
we complete the datasets with word pairs that
are not examples of cognates. These may be:
i) hard negatives: phonetically similar non-cog-
nates; ii) synonyms: semantically similar words,
like ordinary non-cognate translations; iii) ran-
doms: pairs where the two words have no dis-
cernible phonetic or semantic relationship.

To collect hard negative examples, we use the
PanPhon package (Mortensen et al., 2016) and cal-
culate six different edit distances between the IPA
transcription of every gathered cognate in one lan-
guage, and the IPA transcription for every lemma
in the other language (the list of lemmas was also
scraped from Wiktionary). For each edit distance,
we select the word that has the lowest edit distance
to the cognate in question. This returns up to six
hard negatives per cognate (less if more than one
edit distance metric returns the same nearest neigh-
bor). Example: Asm. কথা (/kOtha/) “word”, Beng.
কটা (/kOúa/) “how many”.

3https://omniglot.com/writing/assamese.
htm

4https://www.wikiwand.com/en/Help:
IPA/Assamese

To collect synonyms, we adapted our Wik-
tionary scraper to exploit the metadata organiza-
tion of Wiktionary pages, and retrieved synonyms
for each word in the collected cognates list where
available. Example: Asm. কুটুম (/kutum/) “fam-
ily”, Beng. িরশতাদার (/riSt”ad”ar/) “relatives.”

Finally we generate the randoms pairings by
pairing each cognate with a random word in the
other language. As a final cleanup step, we remove
any intersections between these three datasets and
between these and the cognates dataset.

We then concatenated these subsets into three
different datasets. 1) Assamese-Bengali,
where the Assamese word is the baseline com-
parand to which the Bengali word is compared.
2) Bengali-Assamese, where the reverse is
true. This is a small and subtle difference. The
order of the words in word pairs between this
dataset and the previous one are simply flipped,
so the edit distances are symmetric, but because
alignment score is calculated using a deep neu-
ral network estimator trained on randomized splits
of the data, alignment scores between two re-
versed word pairs are similar but often not identi-
cal. 3) All-languages. This is a bidirectional
dataset consisting of the concatenation of the pre-
vious two. In training and inference this allows the
final classifier to learn from similarity metrics that
flow in both directions.

The full dataset creation process for data of this
size can be completed within an day, including na-
tive speaker verification. Table 11 in the Appendix
gives the total train and test size of each category.

4 Methodology
Here we discuss the orthographic and phonetic fea-
tures we extract from the data, our methods of
assessing alignment between phonetic sequences,
how we extract semantic similarity features from
various language models, and how these different
features combine in the cognate classification task.

4.1 Orthographic and Phonetic Similarity
Orthographic similarity is simply the Levenshtein
edit distance (Levenshtein et al., 1966) between
two strings. Since Assamese and Bengali use the
same script with small modifications, we want to
explore the importance of a simple string similar-
ity metric as a feature in our classification task.
Because of differences in the sound patterns of
the two languages (see Sec. 1), phonetic distance
is also important. We calculate phonetic similar-
ity using 6 different edit distances from PanPhon
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over the IPA transcriptions of the word pairs in our
dataset. These edit distances are: Fast Levenshtein
Distance, Dolgo Prime Distance, Feature Edit Dis-
tance, Hamming Feature Distance, Weighted Fea-
ture Distance, Partial Hamming Feature Distance,
all normalized by the maximum length of the two
words in the pair. We hypothesize that these dis-
tance metrics collectively capture some important
information about phonetic similarity between As-
samese and Bengali cognate pairs.

4.2 Alignment-Scoring Network
To account for different phonotactics, epenthesis,
elision, and metathesis between Assamese and
Bengali, we build a model to align phonemes in
the pair. This provides a more informative mea-
sure than simple edit distances.

We convert the IPA transcriptions to 21 sub-
segmental articulatory features using PanPhon5.
These features include place and manner of artic-
ulation, voicing, etc., and the feature vectors were
padded to the maximum length of a vector in the
cognate pair. The features for word pairs in our
datasets were then concatenated for input to the
alignment-scoring network.

The alignment network is a two-layer deep feed-
forward neural network with 512 neurons in each
layer, all with ReLU activation and followed by
10% dropout. We trained for 5,000 epochs on
the aforementioned concatenated features of the
All-languages dataset (see Sec. 3), using a
80:20 train/validation split. The network was
trained against the cognate/non-cognate binary la-
bel. This is not to predict cognate status directly,
since we do not include any semantic information
at this step, but the label acts as an rough indica-
tor of “phonetically aligned” or not. A positive
prediction means the model predicts that the two
words in the pair are strongly phonetically-aligned
according to the articulatory features. During in-
ference, we get the pre-sigmoid logit value as a
holistic alignment score between the two words.

4.3 Semantic Similarity
Even though cognates do not need to have simi-
lar meaning, many do preserve semantic similar-
ity. Work such as Turton et al. (2021) suggest
that contextual semantic information at the word
level can be extracted from BERT and variants as
embeddings. As such, we extract semantic infor-

5PanPhon does not contain suprasegmental or tonal in-
formation but both Bengali and Assamese are non-tonal lan-
guages.

mation from both word-level and sentence-level
embeddings from large multilingual Transformer-
based models such as XLM-R (Conneau et al.,
2020) and MBERT (Devlin et al., 2018), as well as
from some smaller, Indian language-focused mod-
els: IndicBERT (Kakwani et al., 2020) and Muril
(Khanuja et al., 2021).

XLM-R (100 languages) and MBERT (104 lan-
guages) are trained on multiple languages from
across the globe. MBERT includes Bengali in
its training data but not Assamese. XLM-R was
trained with data from both languages but the As-
samese training data size is a relatively small 5
million tokens, whereas the Bengali training data
is over 100 times larger (and the training data
of a well-resourced language like English is 100
times larger still). IndicBERT and MuRIL are fo-
cused on Indian languages and so have a larger
relative training data size for languages like As-
samese and Bengali. IndicBERT and MuRIL also
outperform XLM and MBERT against several se-
mantic downstream NLP task benchmarks like In-
dicGLUE (Kakwani et al., 2020), cross-lingual
XTREME (Hu et al., 2020), etc.
4.3.1 Monolingual Assamese Model
In order to provide our cognate classifier with a
potentially stronger representation of Assamese
semantics, and to investigate how much infor-
mation a much smaller monolingual Transformer
model might be able to contribute, we trained a
“light” ALBERT (albert-base-v2) model for
305,700 epochs with a vocabulary size of 32,000
on four publicly-available Assamese datasets: As-
samese Wikidumps6, OSCAR (Suárez et al.,
2019)7, PMIndia (Haddow and Kirefu, 2020)8

and the Common Crawl (CC100) Assamese cor-
pus (Conneau et al., 2020)9 (in total, after prepro-
cessing, around 14 million Assamese tokens) with
the BERT Masked Language Model (Devlin et al.,
2018) loss function. See Table 5 in the Appendix
for model configuration.
4.3.2 Affine Transformations Between

Embedding Spaces
Since embeddings are vectors that preserve sim-
ilarity relations across dimensions, only embed-
dings retrieved from the same model architecture
are guaranteed to be directly comparable. Absent
this condition, differences in training data, training

6https://archive.org/details/aswiki-20220120
7https://oscar-corpus.com
8https://paperswithcode.com/dataset/pmindia
9https://paperswithcode.com/dataset/cc100
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regime, and model architecture mean that embed-
dings retrieved from different models are likely to
be orthogonal in most dimensions.

However, recent work in the vision com-
munity (McNeely-White et al., 2020, 2022)
has demonstrated that by fitting affine matrices
MA→B and MB→A between paired features de-
noting equivalent samples extracted from models
A and B, features from one embedding space can
be transformed to another embedding space with
high fidelity. This entails solving for a mapping
function f(x;W ) where W ∈ RdA × RdB , be-
tween equivalent information samples (i.e., paired
embedding vectors) from two models, using ridge
regression. The aforementioned work has been ap-
plied to CNN architectures, and here we use this
task to explore the application of similar principles
to Transformer architectures.

The paired vectors we use to compute mappings
between embedding spaces come in the form of
word-level and sentence-level embeddings from
the aforementioned large language models: In-
dicBERT, XLM-R, MBERT, MuRIL, and our As-
samese ALBERT variant (Sec. 4.3.1).
Sentence-sensitive embeddings We took our
list of extracted cognates and had a native speaker
of each language manually create simple sen-
tences for each word that were direct translations
of each other. Sentences were of a form that was
appropriate for the part of speech, left the sense of
the word as unambiguous as possible, and were as
simple as possible (e.g., see Table 3).

Language Sentence IPA

Bengali এিট একিট টাং eúi ekúi úaN
Assamese এইেটা এটা Ȳঠং eitU eta thEN
English This is a foot/leg

Table 3: Sample equivalent sentences with cognate
words (and English translations) underlined.

Two additional special tokens (<m> and </m>)
were added to the models’ vocabularies. Be-
fore getting the sentence embeddings, the cognate
words were surrounded by these tokens to account
for subword tokenization potentially breaking up
the cognate words. We then generate binary vec-
tors for the cognates using the indices of the spe-
cial tokens in the sentence. Our model attends
to these binary maps by an element-wise tensor
multiplication in the forward function and outputs
a contextual representation of the word. For in-
stance, when preprocessed, the Bengali sample

sentence “this is a valley” is input to the model
as এিট একিট <m>উপতâকা</m>. Sentence-sensitive
embeddings were generated only from MBERT
and our ALBERT variant, as the other models all
have at least some support for Assamese already.

Word-level embeddings For each of the five
models, we input a “sentence” formatted as
[CLS]<word>[SEP] and use the [CLS] to-
ken’s last_hidden_state to get represen-
tations for each token in each sequence of the
batch from the last layer of the model, which of-
ten encodes more semantic information. Jawahar
et al. (2019) and Tenney et al. (2019) suggest that
BERTs later layers encode comparatively more
high-level semantic information than the middle
layers. The [CLS] token here serves the same pur-
pose as the <m> tokens in the sentence-sensitive
embeddings: to account for potential subword tok-
enization effects.

Having extracted the different embeddings from
each model, we use the native embeddings from
each model to find cosine similarities between the
words in every pair in the data. These cosine simi-
larities are input features into the final evaluation.

Affine mapping procedure Native model em-
beddings are independently useful for downstream
NLP tasks, but their utility may be degraded when
the language model does not robustly support the
language in question. E.g., in the case of MBERT,
which was not trained on Assamese, many As-
samese words may be treated as out of vocabulary
items and broken up into subwords that do not cap-
ture the semantics of the original word. Therefore
in this case, we explore if and how linearly map-
ping one set of embeddings from its native space
to a target model space can still act as an effective
feature in this cognate detection task.

To construct the mapping, we take the word or
sentence embeddings from one model as inputs,
and equivalent word or sentence embeddings from
another model as outputs, and fit them to each
other using scikit-learn’s ridge regressor. The re-
sulting dA×dB transformation matrix10 computed
from a set of paired vectors serves as a bridge
transformation from one embedding space to an-
other by minimizing the distance between paired
points in RdA×RdB feature space that share equiv-
alent semantics. Multiplying a source embedding
by this precomputed bridge matrix should result

10All embeddings used here are 768 dimensions, except
embeddings from XLM-R, which are 1280 dimensions.
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Figure 1: Cross-embedding space mapping pipeline resulting in directly comparable vector representations
(MBERT→ALBERT used as example).

in approximately the same semantics in the target
embedding space, meaning that a transformed em-
bedding and one native to the target embedding
space are now directly comparable using metrics
like cosine similarity. Fig. 1 shows this procedure.
We construct bridge matrices between the four
MLMs mentioned previously, and our Assamese
ALBERT variant. Like the word and sentence-
sensitive embeddings, the cosine similarities be-
tween embeddings of word pairs after the mapping
transformations are added to the dataset as input
features to the final classification task, so we can
examine all semantic similarity computations.

4.4 Evaluation
Having collected a variety of phonetic, seman-
tic, and articulatory alignment metrics for all the
paired words in our datasets, our task is now to
train a classifier model to discriminate cognates
from non-cognates in the data, using these features.
We train two types of classification models: a lo-
gistic regressor (LR) and a neural network (NN).
The NN consists of 3 layers of 512, 256, and 128
hidden units respectively, all with ReLU activation
and followed by 10% dropout, and a final sigmoid
activation, and is trained for 5,000 epochs with
Adam optimization and BCE loss. The LR is more
interpretable but the NN is better performing.

We train three versions of the model: one
trained on the All-languages dataset,
and evaluated on the test splits of that
dataset and of the Assamese-Bengali
and Bengali-Assamese datasets; and
one each trained and evaluated only on the
Assamese-Bengali/Bengali-Assamese
datasets (pair-specific models, which are herein
denoted in tables and charts with an asterisk (*) or
additional label train_ev).

We trained all classifiers multiple times using
different feature combinations to assess the contri-
bution of different types of features. Table 4 shows
the abbreviations we use in the following discus-

sion for the different classes of features.

Abbr. Features

ped Phonetic Edit distances (PED)
dl DNN logits (alignment score)
ed PED with textual Levenstein dist.
b All native MLMs (BERT variants)
m All mappings w/o native MLMs
ab-am All MLMs w/ word-level maps
ab-sm All MLMs with sentence maps
sm Sentence maps

Table 4: Abbreviations for feature combinations.
∗sm - sentence maps from MBERT to ALBERT space.
∗b - native MLM embeddings without cross-embedding
space mappings (word or sentence).
∗ab-am - includes native MLM embeddings along with
word embedding maps without sentence maps

5 Results and Discussion
We achieve 94% F1, 93% recall, and 95% preci-
sion when using all features. The alignment score
feature provides the greatest single boost, and we
find that adding semantic information to phonetic
features provides as much additional performance
as adding orthographic features, though specific
false positives and negatives diverge significantly.

Fig. 5 shows positive precision, recall, and F1
for the neural network classifier using all features.

all bn-as as-bn bn-as* as-bn*

P(+) 95 97 94 90 90

R(+) 93 94 92 88 87

F1(+) 94 95 93 89 88

Table 5: NN classifier results (as %) for the
ed-dl-ab-am feature combination (full feature set).

We can also see that the classifier performs very
slightly better using Bengali as the baseline lan-
guage than using Assamese. Similar results hold
for other feature subsets: using the “bidirectional”
All-languages model, feature sets ed-dl-m,
ped-dl-ab-am, and ed-dl-b all show 94%
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F1(+) for Bengali-Assamese but 93% F1(+) for
Assamese-Bengali.

One possible reason for this is that Bengali
forms are on average somewhat more conservative,
tending to preserve consonant clusters more than
Assamese, and in fact if we look at the false nega-
tives for this result, we find many cases where one
cognate has a consonant cluster and the other does
not (see Table 6). Another possible reason may
be the slightly higher number of Bengali baseline
pairs in the dataset (see Sec. 3).

Bengali Assamese

সাঁঝ (/SãdýH/) সিŅয়া (/xOndHija/)
িশ¶া (/Sikkha/) িশেকাৱা (/xikUwa/)
িমিţ (/miSúi/) িমঠা (/mitha/)

Table 6: Sample false negatives.
We also see that the model trained on the bidi-

rectional data outperforms in each direction mod-
els trained on that direction alone.

The NN classifier outperforms the LR by ∼4%
in all metrics. This suggests that for detecting
bilingual cognates using multiple feature types,
the non-linear decision boundary of a multi-layer
perceptron system is better-suited to this task than
the linear decision boundary of the LR.

5.1 Influence of Features
By comparing the performance of different feature
subsets we can expose what features are most im-
portant to the cognate detection task and when. We
also add a layer of interpretability to the results by
cross-checking against the weights assigned to the
different features by the LR classifier.
5.1.1 Alignment Features
The alignment score (dl) is the singular fea-
ture that most increases performance (Table 7).
Adding alignment scores to just edit distances (ed)
causes performance to rise approximately 17%.
The logistic regressor for the ed-dl feature set
gives the alignment score feature a weight of ∼3.2,
making it strongly correlated with cognate status.
It also performs best using the bidirectional data;
with addition of alignment score, the pair-specific
models perform about 4-6% lower.
5.1.2 Phonetic vs. Orthographic Features
When using only phonetic edit distances (ped),
performance drops to 43% F1 in most evalua-
tions (51% on the Assamese-Bengali pair-specific
model). This is because many times Assamese-
Bengali cognates are pronounced differently even
if spelled similarly. Adding a textual Levenshtein

Feat. all bn-as as-bn bn-as* as-bn*

ed 76 76 76 76 76
ed-dl 93 93 92 86 88
ped 43 43 43 42 51

Table 7: F1(+) as % with and without alignment score
(dl) and Levenshtein distance features.

Figure 2: Influence of different semantic feature sets
compared to phonetic edit distance baseline (ped).

distance metric (ed) can identify correspondence
where phonetic edit distance struggles. The ed
LR classifier gives textual Levenshtein distance a
weight of ∼-2.7, a strong inverse correlation.
5.1.3 Semantic Features
Addition of all the available semantic features to
the ed-dl feature set results in a performance
boost of only a few percentage points (cf. Tables 5
and 7). Nonetheless, by conducting further abla-
tion tests, we can show where the semantic fea-
tures actually provide important information.

Fig. 2 shows the effects of different subsets of
semantic features—cosine similarities between na-
tive MLM embeddings, and between embeddings
mapped from Assamese ALBERT to each MLM
embedding space at the word and sentence level—
compared to the lowest performing feature set,
phonetic edit distances.

Adding any semantic information to phonetic
features alone substantially improves performance
of the neural network classifier on cognate detec-
tion. For instance, adding cosine similarities from
the different pretrained MLMs (ped-b) brings
performance back up to ∼76%, or on par with the
inclusion of textual Levenshtein distance. For this
feature set, XLM cosine similarity has the highest
weight: ∼1.0, while MBERT cosine similarity is
next: ∼0.4 (MuRIL: ∼0.3; IndicBERT: ∼0.06).

In terms of overall performance, adding seman-
tic similarly to phonetic edit distance is as good as
adding textual edit distance, but the specific mis-
classified examples in each case are quite differ-
ent. Table 8 shows the breakdown of false pos-
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itives by negative example type using these two
different feature sets. Feature set ed has a much
higher false positive rate, and also that in most
cases when semantic information is used instead
of textual edit distance, the proportion of false pos-
itives that are synonyms goes down, suggesting
that including semantic information from MLMs
improves cognate detection by mitigating misclas-
sification of synonyms. The exception to this is in
the ped-b feature set for the Assamese-Bengali
pair-specific model, where 60% of false positives
are synonyms, pointing to the relative weakness of
Assamese semantic representations in MLMs.

all bn-as* as-bn*

ed ped-b ed ped-b ed ped-b

HN 18 12 12 11 6 4
Syn. 18 5 8 1 5 6
Rnd. 4 1 2 0 1 0

Table 8: Number of false positives using ed vs. ped-b
feature sets broken down by negative example type
(hard negative, synonym, random). Bidirectional and
pair-specific models shown.

Word-level mappings Adding cosine similar-
ities taken after mapping Assamese ALBERT
word-level embeddings into the embedding spaces
of the MLMs (ped-m) also improves perfor-
mance, but the effect is more nuanced than when
using native cosine similarities. For most data
splits, the performance boost is not as pronounced
(e.g., an appreciable but modest increase from
43% to 54% F1 on the bidirectional model eval-
uated against Bengali-Assamese data), but a dra-
matic increase in performance is seen on the
Assamese-Bengali pair-specific model, where pos-
itive F1 rises to 76%, equaling the performance
of the same model using the native MLM simi-
larities. We see that the LR weight assigned to
cosine similarities between the mapped Assamese
ALBERT embeddings and Bengali XLM embed-
dings is ∼1.0 while the equivalent weight for As-
samese ALBERT-Bengali MBERT mappings is
∼0.4. These weights are nearly the same as
those assigned to the native XLM and MBERT
cosine similarities; this and the similar NN per-
formance indicate that these mappings are con-
tributing the same level of information. However,
weights assigned to mappings into IndicBERT or
MuRIL space are both close to 0. This may be
due to the larger size of the MBERT and XLM
training corpora. The resultant embedding vec-

tors in MBERT/XLM space are more dispersed,
and perhaps closer to isotropic (Ethayarajh, 2019),
whereas IndicBERT and MuRIL vectors appear to
be clustered in a tight high-dimensional cone. This
means there is more “space” in MBERT and XLM
to transfer in useful semantic information through
techniques like affine mapping. This is particu-
larly interesting in the case of MBERT, which did
not train on Assamese data, yet the embedding
space appears able to accommodate meaningful in-
formation from Assamese embeddings.
Sentence-level mappings Adding MBERT-
Assamese ALBERT cosine similarities computed
after mapping the MBERT embeddings into
ALBERT space using the sentence-level trans-
formation matrix (ped-m-sm) gives a further
slight boost to the neural network model. The
Assamese-Bengali pair-specific model reaches
77% F1. Adding sentence-level mappings alone
to phonetic edit distances increases performance
over ped by only ∼6%; the combination of word
and sentence-level mappings is what provides
this final small boost to the Assamese-Bengali
pair-specific models. Adding sentence-level
mapping information also further boosts the other
data splits and models by a small amount.

Examining the effect of adding sentence map-
pings to ped-b (ped-ab-sm), we see that
this time the two pair-specific models see an
appreciable improvement from 76% to 78%
(Assamese-Bengali_train_ev) and 79%
(Bengali-Assamese_train_ev), suggest-
ing that similarities computed after sentence-level
mappings can help language-specific models more
than language-agnostic or multilingual ones.

Table 9 shows the breakdown of false positives
by type of negative example using these two fea-
ture sets. Table 10 shows the breakdown of false
negatives for ped, ped-m and ped-m-sm.

bn-as* as-bn*

ped pm psm ped pm psm

HN 31 48 45 47 10 15
Syn. 0 4 4 6 8 6
Rnd. 0 7 2 0 2 0

Table 9: Number of false positives in pair-specific
model outputs using ped, ped-m (pm), and
ped-m-sm (psm) feature sets broken down by neg-
ative example type (hard negative, synonym, random).

When compared to the phonetic edit distance
baseline, the Assamese-Bengali model sees a dra-
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bn-as* as-bn*

ped pm psm ped pm psm

FN 212 140 138 182 106 100

Table 10: Number of false negatives (undetected
cognates) in pair-specific model outputs using ped,
ped-m (pm) and ped-m-sm (psm) feature sets.

matic reduction in false positives, mostly due
to reduction in misclassified hard negatives (pho-
netic neighbors). Since hard negatives are seman-
tically distant from their phonetic-neighbor cog-
nates, introducing Assamese semantic information
helps semantically disambiguate cognates from
hard negatives. Adding mapped sentence-sensitive
embedding similarities slightly increases the num-
ber of hard negative false positives, while also
slightly reducing synonym false positives, elimi-
nating random false positives, and further reduc-
ing false negatives. The Bengali-Assamese model
actually sees more false positives with mappings
added. This model’s overall performance boost
is due to fewer false negatives, while with sen-
tence mapping the Assamese-Bengali model re-
duces both false positives and negatives.

The trends in Tables 8–10 show that us-
ing semantic similarities from models with rela-
tively strong support for Bengali helps Bengali-
Assamese performance, while adding mapped em-
bedding similarities help Assamese-Bengali per-
formance by bringing in more Assamese-specific
information through affine transformation.

6 Conclusion and Future Work
We have presented here a method for detecting
cognates between Bengali and Assamese that uses
a mixture of phonetic, orthographic, articulatory
alignment, and semantic features. The choice of
these languages was motivated by their related-
ness and the relative dearth of NLP work partic-
ularly on Assamese, but we believe the methods
presented herein are applicable to cognate detec-
tion and other types of heterogeneous similarity-
based tasks on potentially any language pair.

We found that our articulatory alignment score
was by far the most informative feature. We also
introduced a technique to map representations be-
tween embedding spaces and used it to introduce
semantic features from a monolingual Assamese
model into four large multilingual models. Adding
semantic features to phonetic features alone is
interesting on multiple levels—particularly using
mapped instead of native embeddings.

Our ablation tests on different types of semantic
representations suggest that i) linearly transform-
ing vectors from one model’s embedding space
to another’s carries certain semantic information
with high fidelity, and ii) a model trained on a
low-resource setting can be mapped to a richer
model’s space. If these hypotheses hold, trans-
formed embeddings from a low-resourced LM can
not only reduce the computational cost involved
in training large multilingual language models but
also improve downstream NLP tasks.

NLP for minority languages may benefit from
being able to detect cognates in better-resourced
languages, both for computational historical lin-
guistics, and for corpus building. For instance,
other languages of Assam (e.g., Mishing, Bodo)
are not Indo-Aryan, but have loanwords cognate to
Indo-Aryan words, alongside vocabulary cognate
to other families, like Sino-Tibetan. Our phonetic
and alignment techniques may facilitate creating
semantic models for these severely low-resourced
languages unsupported by LLMs.

Collecting putative cognates is an essential step
in most applications of computational historical
linguistics, allowing finding regular sound cor-
respondences (for which our alignment method
could be adapted, e.g., by training individual atten-
tion weights over a sequence), identifying shared
innovations, and reconstructing earlier word forms
that could be used to reconstruct proto-languages
a la Bouchard-Côté et al. (2013) and Jäger (2019).

The affine mapping technique we use warrants
more exploration. Not every affine map is a linear
map, and other techniques like shear and rotation
mapping may expose how simple a transformation
can be used. Other semantic techniques we wish
to explore include pairwise scoring of cognate pair
embeddings using a neural network. This has been
shown to work well for coreference resolution and
may be applicable for cognate detection. Lastly,
we would like to improve our monolingual As-
samese ALBERT model and evaluate it on other
downstream tasks like question answering.
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A Appendices

A.1 Sample Breakdown by Label

Table 11 gives breakdown of the Assamese-
Bengali and Bengali-Assamese train/test splits
based on their labels. Since we distinguish cog-
nates from loanwords but otherwise do not sin-
gle out loanwords in our datasets, loanwords may
exist in the other categories. Given the phonetic
similarity between loanwords and their sources,
where loanwords do exist in our data, they are over-
whelmingly likely to be in the hard negative cate-
gory.

as-bn bn-as

train test train test

Cog. 306 303 306 300
HN 776 769 721 716
Syn. 329 327 317 316
Rnd. 304 301 304 299
Total 1715 1700 1648 1631

Table 11: Number of Hard-Negatives (HN), Synonyms
(Syn.), Cognates (Cog.), and Random pairs (Rnd.)
in Assamese-Bengali and Bengali-Assamese train/test
sets.

A.2 ALBERT (Monolingual Assamese
Configuration)

Table 12 gives configuration details of the mono-
lingual Assamese Transformer model that we
trained for this research.

A.3 Further Details on Effects of Phonetic
Features

Of the 6 phonetic edit distances we used, Ham-
ming Feature Distance (divided by maximum
length) and Partial Hamming Distance (divided by
maximum length) appear to be the most correlated
with cognate status according to the weights as-
signed to them by the logistic regressor. This sug-
gests that Hamming distance’s (Hamming, 1950)
focus on using the minimum number of substitu-
tions to transform one string into another works
well for similar languages like Assamese and Ben-
gali where most individual phonemes are largely
preserved between cognate words.

Interestingly, the Dolgo Prime Distance variant
gets a low (usually negative) weight in almost all
feature combinations. This is interesting and sug-
gests that Dolgo Prime Distance is not useful here

due to it unduly conflating multiple phonemes into
the same class. The Dolgopolsky-inspired stable
phoneme classes used by PanPhon places /S/ in
the “coronal fricatives” class, while /x/ is in the
“velar/postvelar obstruents” class. The unvoiced
velar fricative /x/ is unique to Assamese and rare
among Indian languages (Sarma and Sarma, 2014)
and we know well that Bengali and Assamese have
a regular /S/-/x/ sound correspondence. So, as
Dolgo Prime distance splits these up into differ-
ent classes, when using this metric cognate words
containing these corresponding sounds will have
phonetic distance added to them when in fact they
are regularly corresponding.
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Parameters Config

architecture AlbertForMaskedLM
attention_probs_dropout_prob 0.1
bos_token_id 2
classifier_dropout_prob 0.1
embedding_size 128
eos_token_id 3
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
inner_group_num 1
intermediate_size 3072
layer_norm_eps 1e-05
max_position_embeddings 514
num_attention_heads 12
num_hidden_groups 1
num_hidden_layers 6
position_embedding_type “absolute"
transformers_version “4.18.0"
vocab_size 32001

Table 12: ALBERT Model configuration trained on monolingual Assamese corpus.
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Abstract

Closely related languages are often mutually in-
telligible to various degrees. Therefore, speak-
ers of closely related languages are usually ca-
pable of (partially) comprehending each other’s
speech without explicitly learning the target,
second language. The cross-linguistic intel-
ligibility among closely related languages is
mainly driven by linguistic factors such as lexi-
cal similarities. This paper presents a computa-
tional model of spoken-word recognition and
investigates its ability to recognize word forms
from different languages than its native, train-
ing language. Our model is based on a recur-
rent neural network that learns to map a word’s
phonological sequence onto a semantic repre-
sentation of the word. Furthermore, we present
a case study on the related Slavic languages
and demonstrate that the cross-lingual perfor-
mance of our model not only predicts mutual
intelligibility to a large extent but also reflects
the genetic classification of the languages in
our study.

1 Introduction

Speakers of closely related languages are usually
capable of understanding each other’s speech to
a great degree without having a prior exposure
to the second language (L2) or switching a lin-
gua franca for communication1 (Jan and Zeevaert,
2007; Gooskens, 2019). The ability of the lis-
tener to comprehend spoken utterances in a dif-
ferent language (L2) using their native language
(L1) competence is termed in the sociolinguistics
literature as intercomprehension. Gooskens (2017)
categorized the factors that facilitate intercompre-
hension into linguistic factors (e.g., inherent cross-
linguistic similarity between L1/L2) as well as
extra-linguistic factors (e.g., listener’s attitude to-
wards communicating in a different language than
their own L1).

1A language used for communication between people who
do not share a native language.

Several studies in the sociolinguistics literature
have documented the levels of intercomprehension
between related languages through empirical test-
ing of mutual intelligibility with human subjects of
different language backgrounds (Gooskens, 2007,
2017; Van Heuven, 2008, inter alia). It has been
observed that objective measures of cross-language
distance—such as lexical distance—are strong pre-
dictors of cross-linguistic intelligibility. Therefore,
mutual intelligibility of related languages is largely
driven by the presence of word cognates—words
that encode the same concepts with similar phono-
logical forms across languages.

From the psycholinguistic perspective, the lis-
tener’s ability to recognize word forms in a dif-
ferent language is an example of the remarkable
human ability to cope with the variability of speech
(Pisoni and Levi, 2007). Thus, spoken-word recog-
nition across different, but related languages can be
considered as lexical access problem—processing
the spoken-word form to activate and retrieve the
lexical category that is intended by the speaker.
In the cognitive modeling literature, the task of
spoken-word recognition has been addressed as a
mapping problem between an acoustic-phonetic
representation of the word form onto its semantic
representation in memory (see Weber and Scharen-
borg (2012) for a detailed overview). Recently,
deep neural networks have been explored as mod-
els of spoken-word processing and recognition in
several studies (Magnuson et al., 2020; Mayn et al.,
2021; Matusevych et al., 2021). Our paper adds
another contribution to this line of research by
considering the cross-lingual aspects of spoken-
word recognition and sheds light on its contribution
to cross-linguistic intelligibility using a computa-
tional model. Our contribution is two-fold: (1) we
present a neural model of spoken-word recogni-
tion and investigate the degree to which a monolin-
gual model—i.e., has only been trained on a single
language—is able to recognize the meaning of spo-
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ken words across related languages, and (2) we
present a case study on the Slavic languages which
are remarkably similar and mutually intelligible
to various degrees. Concretely, we investigate the
following research questions:

RQ1 Does the cross-lingual performance of
model predict the mutual intelligibility of the
languages in our study?

RQ2 Do the results of cross-lingual evalu-
ation reflect the genetic relations among the
studied Slavic languages?

RQ3 Which linguistic distance measures
predict the cross-lingual performance of the
monolingual models? and how do they com-
pare to predictors of human performance?

2 Background and Related Work

2.1 Slavic Intercomprehension
Previous sociolinguistic research on intercompre-
hension and mutual intelligibility has focused on
two related questions: (1) how to experimentally
measure the level of mutual intelligibility across re-
lated languages using functional testing and human
listeners? and (2) which measures of linguistic
distance are strong predictors of cross-language
intelligibility? (Golubović and Gooskens, 2015).
One of the earliest sociolinguistic studies has in-
vestigated the intelligibility of Spanish and Brazil-
ian Portuguese (Jensen, 1989). For languages
within the Slavic language family, Golubović and
Gooskens (2015) have tested mutual intelligibil-
ity across two modalities—i.e., text and speech—
using three cross-language tasks: (1) word trans-
lation, (2) cloze test and (3) picture naming task.
Golubović and Gooskens (2015) have observed
that the degree of cross-language intelligibility is
largely dependent on the genetic proximity of the
languages under study. For example, language
pairs within the same Slavic sub-family such as
Czech and Polish (West Slavic group) are more mu-
tually intelligible than language pairs that cross the
group division (Czech and South Slavic languages
such as Croatian or Bulgarian). Furthermore, the
authors demonstrated that lexical and phonetic sim-
ilarities across languages are strong predictors of
their intelligibility.

Other studies on Slavic intercomprehension take
an information-theoretic angle to analyze this phe-
nomenon. For example, Jagrova et al. (2018) inves-

tigated the effect of in-context predictability (or lex-
ical surprisal) on the written intelligibility of Czech
text for Polish readers and vice versa. Moreover,
the information-theoretic metric of word adapta-
tion surprisal has been shown to predict asymmet-
ric intelligibility of Slavic readers of Cyrillic script,
namely Russian and Bulgarian (Mosbach et al.,
2019). In the speech modality, Kudera et al. (2021)
have analyzed the cognate facilitation effect on
cross-language auditory lexical processing using a
cross-lingual priming study. In summary, the stud-
ies we reviewed in this section have demonstrated a
great degree of mutual intelligibility among speak-
ers of Slavic languages, and this intelligibility can
be predicted by linguistic measures of similarity to
a great degree.

2.2 Computational Models of Spoken-word
Processing

Using computational models based on deep neural
networks (DNNs) to simulate spoken-word pro-
cessing have been proposed in several prior studies.
Magnuson et al. (2020) presented a minimal neural
architecture based on an LSTM to map between
acoustic word forms onto their respective sparse
semantic representation. Mayn et al. (2021) ana-
lyzed the effect of speech variability on spoken-
word recognition using a DNN model trained on
German words from read speech corpora. As part
of their experiments, the authors have shown that
the model can fairly recognize word cognates from
related Germanic languages (namely Dutch and
English), and the cross-lingual performance of the
model reflected language proximity. Matusevych
et al. (2021) introduced a phonetic model of spoken-
word processing and demonstrated that the model
predicts perceptual difficulties of non-native speak-
ers. It was also shown that neural models of spoken-
word processing capture cross-linguistic, typolog-
ical similarities in their representational geome-
try (Abdullah et al., 2021b). Macher et al. (2021)
proposed a recurrent model that takes as input a
phonological sequence and projects it onto a se-
mantic space to investigate orthographic effects
on word recognition. These computational studies
have demonstrated the usefulness of neural net-
works to simulate human listeners who have been
exposed to a single language, which enables re-
searchers to test specific hypotheses or isolate the
effect a particular linguistic level on language pro-
cessing.
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Figure 1: Schematic architecture of the model.

3 The Model

Similar to the work of Macher et al. (2021), our
model takes a phonological sequence (spoken word
form) as input, builds up a whole-word phono-
logical representation of the sequence, and then
projects it onto a semantic space (meaning repre-
sentation) of the lexical item encoded by the word
form. Formally, we model the spoken-word recog-
nition task of as a mapping function Fθ : Φ −→ S,
where Φ is the (discrete) space of phonological
word forms, S is the word semantic space, and θ
are the parameters of the mapping function. Since
phonological word forms can have any length, we
model the function F using a recurrent neural net-
work (LSTM) followed by a multi-layer perceptron
(MLP) (see Figure 1). Given the word form of
the lexical category w as a phonological sequence
Φ(w) = φ1:τ = (φ1, φ2, . . . , φτ ), a vector repre-
sentation is computed as

v = F(φ1:τ ;θ) ∈ RD (1)

Here,D is the dimensionality of the semantic space.
Since our goal is to map the phonological input
onto a semantic representation, the learning objec-
tive is based on vector regression loss and it aims
to minimize the term

L = ||v − Λ(w)||2 (2)

where Λ(w) ∈ RD is the ground-truth distributed
representation, or semantic word embedding, of
the lexical category w. We assume that continuous-
space, distributed word representations are avail-
able to the model during training.

3.1 Phoneme Representation
Each phoneme in the input phonological sequence
φ1:τ = (φ1, φ2, . . . , φτ ) is represented as a fea-

Figure 2: t-SNE visualization of phoneme embeddings
vectorized with PHOIBLE feature set. One can notice
two clear clusters of consonants (on the left) and vowels
(on the right), as well as a visible difference in the
positioning of front and back vowels, fricatives, plosives,
etc.

ture vector based on the PHOIBLE feature set
(Moran and McCloy, 2019). That is, we repre-
sent each of the 135 phonemes in our inventory as
a discrete, multi-valued feature vector of 38 pho-
netic features similarly to the method introduced
in Abdullah et al. (2021a). PHOIBLE includes dis-
tinctive feature data for every phoneme in every
language. The feature system used is created by
the PHOIBLE developers to be descriptively ad-
equate cross-linguistically. In other words, using
PHOIBLE feature set allows our model to capture
phoneme similarities across languages even if the
phonemes have distinct symbols. For each of the
38 available features, every phoneme receives a
value, which is +1 if the feature is present, −1 if it
is not, and 0 if the feature is not applicable.

To illustrate the structure of the phoneme feature
representation, we visualize a two-dimensional pro-
jection of phoneme representations using the t-SNE
algorithm (Van der Maaten and Hinton, 2008) in
Figure 2.

3.2 Word Meaning Representation

To represent the word’s meaning which our model
has to build from the word phonological form,
we use distributed word embeddings from fast-
Text (Mikolov et al., 2018). FastText word vectors
are pre-trained using the continuous bag-of-words
(CBOW) algorithm with position-weights, in di-
mension 300, with character n-grams of length 5,
a window of size 5 with contrastive negative sam-
pling.
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Figure 3: Major countries where Slavic languages are
spoken. Red coloring – for West Slavic, yellow – for
Eastern Slavic, and green – for South Slavic.

3.3 Model Hyperparameters and Training

We train six monolingual models for the follow-
ing languages: Russian, Ukrainian, Polish , Czech,
Bulgarian and Croatian. The final model for each
language is trained using a batch size of 128 for 150
epochs. We employ the ADAM optimizer (Kingma
and Ba, 2014) with the Mean Squared Error (MSE)
loss as the vector regression objective function. To
account for the different size of input phonemic
sequences, we used zero padding to make the size
of the input sequence equal to 16. We employ one
layer of LSTM, followed by a one-layer MLP con-
sisting of a linear followed by a tanh layer. Since
every phoneme has 38 features (every phoneme
embedding has the length of 38), and every input
sequence has the length of 16, the dimensions of
the input matrix are 38×16. We use the hidden di-
mension size of 512, which consequently maps the
phonetic sequence to the 300-dimensional target
of fastText embeddings. All the models are built
using PyTorch (Paszke et al., 2019).

4 Experimental data

In our paper, we present a case study on the Slavic
languages which have been shown to exhibit re-
markable similarities and high degrees of mutually
intelligibility at the conversational level (Sussex
and Cubberley, 2006, Golubović and Gooskens,
2015). We use two languages of each of the three
main branches of Slavic languages, that is, Russian
and Ukrainian for East Slavic; Polish and Czech for

West Slavic; and Bulgarian and Croatian for South
Slavic2. One of the factors that drive our choice is
the availability of high quality G2P tools available.

4.1 Phonetic Transcriptions

To obtain an IPA phonetic transcription for each
orthographic form of each word embedding in our
data, we employ eSpeak speech synthesizer3. For
the Ukrainian data, we use Epitran transcription
library (Mortensen et al., 2018), as this language
is not currently supported by eSpeak. For the lan-
guages which we only used for evaluation (Belaru-
sian, Slovak, Slovene, Latvian, Romanian, German,
and Turkish), the original Northeuralex transcrip-
tions were retrieved using Lexibank (List et al.,
2021)4.

4.2 Training Data

For the training data, we sample experimental word
forms from fastText embeddings while excluding
the word forms that appear in the test data. Apart
from that, we exclude word forms that are classi-
fied as parts of speech not present in the test data
to reduce noise during training. Parts of speech
that are included are noun, verb, adverb, adjective,
pronoun, and numeral.

For each lexical concept in the test data, we make
sure that at least three word forms with the same
lemma are within the training data. For example,
if the word form (ноль, nolj) is in the test data,
it cannot be in the training data, but another word
form (ноля, nolja) can. We hypothesize that the
model will be able to capture the semantics of a
word by learning to be invariant to inflections and
derivations.

4.2.1 Evaluation Data
To evaluate the model performance, we employ
parallel lists of word forms from lexicostatistical
database NorthEuraLex (Dellert et al., 2019) which
cover the 1,016 concepts in all languages. Having
a concept for all testing data words in all languages

2Henceforth, we use ISO 639-1 codes for the languages:
Russian – ru, Ukrainian – uk, Polish – pl, Czech – cs, Bulgar-
ian – bg, Croatian – hr.

3http://espeak.sourceforge.net/index.html
4Since our input phoneme embeddings capture the features

of each phoneme (described in §3.1), transcription difference
between the tools should have minimal effect on the model’s
performance. We additionally tested several transcription tools
for the same language, which did not result in a significant
change of performance on our model’s main task of retrieving
meaning of a phonological sequence.
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Table 1: Examples of Northeuralex concepts

Russian Czech Bulgarian
Concept Orth IPA Orth IPA Orth IPA
EAR ухо /u x A/ ucho /u x o/ ухо /u x O/
NOSE нос /n o s/ nos /n o s/ нос /n O s/
FOOD еда /je d a/ strava /s t r a v a/ храна /x r a n a/
BROTHER брат /b r a t/ bratr /b r a t r/ брат /b r a t/

allows us to systematically investigate the cross-
linguistic performance of the models. Overall, we
exclude 514 concepts and use 502 concepts for
each of the 13 parallel test sets. Our reasons to ex-
clude some concepts were: 1) the concept does not
have a corresponding fastText embedding in any
of the 6 training languages; 2) some concepts do
not exist in some of the languages as a single word
and use a descriptive term for some concepts (for
example, the term breast corresponds to женская
грудь /ZEnsk@j@ grutj /) in Russian), which also
makes it impossible to retrieve a fastText embed-
ding; 4) a word in one of the 6 training languages
maps to more than one concept, which could lead
to confusion with its fastText embedding. An ex-
ample of the NorthEuraLex data we use for testing
is represented in Table 1.

5 Evaluation

During testing, the model computes the meaning
representation of the phonemic sequence in the test
language. To evaluate the model retrieval on the
test set, the closest match between the model output
and target vector for the model training language
is retrieved using cosine similarity. Cosine simi-
larity determines whether two vectors are pointing
in roughly the same direction and is measured by
the cosine of the angle between two vectors. Co-
sine similarity, on the abstract level, represents the
proximity of the meaning retrieved by the listener
to the actual meaning of the word. In other words,
it would tell us how semantically similar two given
vectors are. Cosine Similarity is computed between
a model’s output and all the 502 possible ground
truth vector representations in the language of train-
ing. The vectors to be compared include all the
word vectors used for monolingual testing. Given
these competing word embeddings, we also calcu-
late average Recall at 1 (R@1), Recall at 5 (R@5),
Recall at 10 (R@10), as well as Mean Reciprocal
Rank (MRR) for the test data. R@n as the propor-
tion of times that the set of top n word embeddings
which are closest to the model’s output also in-
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Figure 4: Monolingual performance of the models

cludes the ground truth vector representation. If
the ground truth is most similar to the output vector
of a model, R@1 is 1, otherwise it is 0. Likewise,
R@5 is 1, if the corresponding ground truth embed-
ding is within the top 5 most similar words to the
output vector, and R@10 is 1 if the embedding is
within 10 most similar words. Hence, the average
R@n is a number between 0 and 1. The Reciprocal
Rank information retrieval measure calculates the
reciprocal of the rank at which the first relevant
document was retrieved. For evaluation of the test
data, we compute an average of Reciprocal Rank
for all the given word forms.

5.1 Monolingual Evaluation

The procedures that are used for monolingual and
cross-lingual evaluations are comparable, and dif-
fer only in the language of the test lexical concept.
For both monolingual and cross-lingual evaluations,
the retrieved fastTest meaning embeddings for both
training and validation sets come from the same
embedding space. For the monolingual evaluation,
the output embedding for a particular phonemic
sequence is compared to groundtruth embeddings
of the concepts of test set. The monolingual per-
formance of the models is shown in Figure 4. The
monolingual scores for all models are very simi-
lar. Such consistency could of course be due to the
generally good performance of the current model
structure and parameters on any human language.
However, it could also be related to structural simi-
larity of the languages of Slavic group (such as, for
example, all Slavic languages being synthetic and
expressing syntactic relationships via inflection).

5.2 Cross-lingual Evaluation

To make the cross-lingual evaluation comparable
across different languages, we compute the cosine
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similarity of the L2 target concept to all evalua-
tion concepts in the embedding space of the model
training language (L1). For instance, if the model
has observed during training the Russian word лю-
ди /lj u d i/ (eng.trans: people), during testing the
model on Czech concepts we compute the meaning
representation of lidé /l i d @/ (eng.trans: people)
and then estimate its similarity to test sequences in
Russian with the target meaning representation be-
ing that of the Russian word люди /lj u d i/. Such
concept mapping during testing has two goals: (1)
the pre-trained fastText embeddings for different
languages live in different embedding spaces, so
it is not possible to compare them as they are, and
(2) we assume that a human listener also compares
foreign words that they hear to words from their
native language, and attempts to retrieve the mean-
ing based on their L1 mental lexicon. For cross-
lingual performance, we evaluated each model on
all languages under analysis and added three more
languages of the Slavic group (East Slavic – Belaru-
sian, West Slavic – Slovak, South Slavic – Slovene)
three other languages from the Indo-European lan-
guage family, to which the Slavic language also
belong (German, Romanian, and Latvian), and the
Turkish language coming from the Turkic language
family5. If the model produces human-like be-
haviour, we can expect it to be better at recognising
spoken word forms from more related languages.

The recall at 10 (R@10) results for each model
are shown in Figure 5. On the plots, scores for
languages of the same language group as the model
language, are located on the left side. We also
use different color coding for different language
group, i.e. reddish colors for East Slavic languages,
blueish colors for West Slavic languages, and green-
ish for South Slavic. Languages outside the Slavic
language family are colored in the shades of grey.
First, we observe a clear distinction between the
retrieval performance of the Slavic and non-Slavic
test word forms. The retrieval performance on
non-Slavic test word forms (Latvian, Romanian,
German, and Turkish) is generally lower for all
models except for Bulgarian, which recognizes Ro-
manian evaluation set better than Ukrainian. How-
ever, given the geographic proximity between the
speaker communities of Romanian and Bulgarian
and the fact that both are within the Balkan Sprach-
bund, this could indicate an effect of lexical bor-

5the ISO 639-1 codes for the languages: Belarusian – be,
Slovak – sk, Slovene – sl, German – de, Romanian – ro,
Latvian – lv, Turkish – tr.

rowing between the two languages. From these
findings, we conclude that our hypothesis that the
languages which are more genetically related are
also more mutually intelligible within the proposed
model is mostly supported, with notable exceptions
that could related to geographic transfer.

Regarding the evaluation within the Slavic lan-
guage family, the phonemic sequences in the lan-
guage from the same subgroup of Slavic languages
(such as, Ukrainian for Russian and Croatian for
Bulgarian) are recognised significantly better than
others by most models. However, there are a few
exceptions to this trend. One notable exception in
the cross-lingual evaluation is the performance of
the Czech model, which seems to have an expected
high retrieval performance on Slovak word forms,
but unexpectedly does not seem to recognize Polish
word forms with a comparable performance. An-
other surprising result is the fact that the Russian
model seems to recognize Croatian and Bulgarian
word forms better than Belarusian word forms.

To get further insights onto the cross-lingual per-
formance of the model, we apply hierarchical clus-
tering on the R@10 results between the six models
we trained in this study using the Ward algorithm
implemented in the SciPy Python library. The
Ward’s linkage function specifying the distance
between two clusters is computed as the increase
in the error sum of squares after merging two clus-
ters into a single cluster. The dendrogram of the
Ward clustering of R@10 results is shown in Fig-
ure 6. The dendrogram in Figure 6 shows we can
correctly reconstruct the Slavic language tree from
the cross-lingual retrieval performance of the six
languages that we have trained models for.

5.3 Correlation with Linguistic Metrics

To investigate which data-driven, linguistic predic-
tors make the model behave as it does, we use Pear-
son correlation between the cross-lingual model
performance and two measures of phonetic-lexical
distance. The first metric of phonetic-lexical dis-
tance is Levenshtein Distance (LD) where the dif-
ference between two strings is calculated as the
minimum number of single-character edits (inser-
tions, deletions or substitutions) required to change
one word into the other. For the second metric, we
use Phonologically Weighted Levenshtein Distance
(PWLD), which is a measure of phonological sim-
ilarity between different phonemic sequences or
word forms (Fontan et al., 2016). The PWLD met-
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Figure 5: Recall at 10 results. Each plot corresponds to a model trained on one language, while y-axis shows
evaluation languages. ISO 639-1 codes for the languages: Ukrainian – uk, Russian – ru, Belarusian – be, Czech –
cs, Polish – pl, Slovak – sk, Croatian – hr, Bulgarian – bg, Slovene – sl, Latvian – lv, Romanian – ro, German – de,
Turkish – tr.
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Figure 6: Dendrogram of the Ward clustering of R@10
results.

ric is an extension of the string-based Levenshtein
distance that also calculates the cost of each phone
substitution based on phoneme features. We sup-
pose that PWLD is more suitable for cross-lingual
analysis than Levenshtein Distance, since it is more
capable of catching less apparent phonological sim-
ilarities, such as, for example in the pair of Czech
and Bulgarian cognates ucho /u x o/ and ухо /u
x O/, where phonemes /o/ and /O/ are very similar
to each other. We use the same adaption of the
original PWDL proposed in Abdullah et al. (2021a)

Table 2: Pearson correlation coefficient for metrics un-
der analysis. Statistical significance is marked with *
and *** for p < 0.05 and p < 0.001, respectively.

R@10 MRR cos sim LD PWLD
R10 0.98*** 0.5*** -0.74*** -0.57***

MRR 0.5*** -0.75*** -0.56***
cos sim -0.29* -0.44***

LD 0.8***
PWLD

to make it suitable for our analysis.
Table 2 shows the correlation scores of all the

metrics under analysis. We observe that both met-
rics correlate with MRR and R@10, while the cor-
relation with cosine Similarity scores are much
lower. Surprisingly, PWLD has a lower correlation
with the retrieval metrics than LD, even though it
uses the same phoneme vectorization scheme as
the model.

5.4 Qualitative Analysis

Figure 7 shows t-SNE visualization on the output
on the Russian model. For t-SNE computation,
we used output vectors for all the test data. On
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the visualization, only the concepts FOG, WIND,
FISH, and MOSQUITO are shown. For concepts
WIND, FISH, and MOSQUITO one can observe
clear clusters of concepts, as they also appear to
sound similarly in all the 6 languages. This is
not the case with the concept FOG. As shown in
Figure 7, t-SNE clustered the concept in different
languages quite far from each other even for simi-
larly sounding words. It is interesting that concepts
MOSQUITO and WIND that do not sound similar,
but probably have a contextual, distributional sim-
ilarity, appear close to each other. This probably
has to do with the nature of the target fastText em-
beddings, which are trained to predict the word’s
context. Additionally, we provide the top retrieved
words for the model trained on Russian and tested
on Ukrainian. Table 3 demonstrates other candi-
dates in Ukrainian for some phonemic sequences
in Russian. The English translation of the concept
is given in the brackets.

From the lists of cross-lingual nearest neighbors
reported in Table 3, one can notice that the model
learns to push semantically similar words closer
to each other, despite them having a very different
phonetic shape (for instance, soup-porridge-food
or who-why-was). This could again be related to be
the nature of fastText embeddings (Mikolov et al.,
2018) that we used as target embeddings for the
model. As already mentioned, the vector for each
word also contains information about this word’s
context. As a result, the output embeddings pro-
duced by the model for contextually close words
appear to have a lot in common and are recognized
as semantically similar.

Another observation from Table 3 is the clear
advantage of shorter and non-content spoken word
forms over longer ones. Most of the short words in
the list are non-content words, that do not have any
distinctive semantic context, and appear in any type
of text. In this regard, these words can be seen as
items that share fewer features compared to longer
words and content words.

6 Discussion and Conclusion

In this paper, we presented a spoken-word recogni-
tion model based on a recurrent neural architecture
that maps variable-length phonological sequences
of word forms into their respective meaning repre-
sentations. Our goal is to simulate auditory lexi-
cal processing in human listeners where we test
the model on word forms from closely related
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Figure 7: t-SNE on the concept retrieval of the Russian
model.

languages and investigate the cross-lingual perfor-
mance of the model. Furthermore, we presented
a case study on the family of Slavic languages,
which are known to be remarkable similar and ex-
hibit (partial) mutual intelligibility to various de-
grees. We grounded our research on the findings
from the sociolinguistics literature of Slavic mu-
tual intelligibility and intercomprehension. Using
our proposed model, we trained different instances
of our model on six Slavic languages: Bulgarian,
Croatian, Czech, Polish, Russian, and Ukrainian.
Finally, we conducted a cross-lingual evaluation
on our trained models to investigate their perfor-
mance on retrieving and recognizing word forms
from other L2 languages.

Returning to our research questions in §1, the
cross-lingual analysis of our model performance
has shown a trend where the model performance
is better on languages that exhibit higher cross-
linguistic intelligibility as documented in sociolin-
guistics studies (RQ1). However, this effect is
more consistent within South and East Slavic lan-
guages, but less consistent in the case of West
Slavic languages (Czech and Polish). The factors
that drive this inconsistency remain unknown and
would require further future work to identify and
analyze. Despite this inconsistency, the cluster-
ing analysis on the cross-lingual concept retrieval
performance resulted in a dendrogram that reflects
the traditional genetic classification of the six stud-
ied Slavic languages onto West, East, and South
languages (RQ2). Furthermore, we have shown
that cross-linguistic phonetic-lexical similarities
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Table 3: Top scored candidates in Ukrainian for the model trained on Russian

/j a/ (‘I’) /r A n a/ (‘wound’) /k t o/ (‘who’) /k A S a/ (‘porridge’) /s u p/ (‘soup’)

Nearest
neighbors

/j A/ (‘I’)
/d E"/ (‘yes’)
/s i m/ (‘if’)
/x t O/ (‘who’)
/j i A/ (‘life’)

/r A n A/ (‘wound’)
/j A/ (‘I’)
/ A p k A/ (‘hat’)
/j i A/ (‘life’)
/d E"/ (‘yes’)

/x t / (‘who’)
/t u t/ (‘here’)
/v r / (‘whisper’)
/t O m u/ (‘why’)
/b i j/ (‘was’)

k A S A (‘porridge’)
/r A n A/ (‘wound’)
/v O r O / (‘whisper’)
/S A p k A/ (‘hat’)
/k n A/ (‘book’)

s u p/ (‘soup’)
/k S / (‘porridge’)
/d E" n/ (‘day)
/x r t/ (‘food’)
/k rjuk/(‘hook′)

between the languages—operationalized as string
and feature-based phonetic distance on a parallel
word list—correlate with the cross-lingual concept
retrieval performance of the model. This finding
is consistent with the observation in the sociolin-
guistics literature regarding how lexical similarity
between languages facilitates intercomprehension
(e.g., the cognate facilitation effect). Therefore, the
cross-lingual concept retrieval performance of our
model can be predicted using measures of linguistic
distance similar to those that predict cross-language
comprehension performance (RQ3).

The work presented in this paper can be further
extended in different directions. For instance, mu-
tual intelligibility between related languages have
been found in many cases to be asymmetric. For ex-
ample, speakers of Portuguese seem to understand
Spanish better than the other way around. Future
work could analyze and investigate whether or not
and to what extent such an asymmetric behavior is
observed in our model.
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Abstract
Norwegian Twitter data poses an interesting
challenge for Natural Language Processing
(NLP) tasks. These texts are difficult for mod-
els trained on standardized text in one of the
two Norwegian written forms (Bokmål and
Nynorsk), as they contain both the typical vari-
ation of social media text, as well as a large
amount of dialectal variety. In this paper we
present a novel Norwegian Twitter dataset an-
notated with POS-tags. We show that models
trained on Universal Dependency (UD) data
perform worse when evaluated against this
dataset, and that models trained on Bokmål
generally perform better than those trained on
Nynorsk. We also see that performance on
dialectal tweets is comparable to the written
standards for some models. Finally we perform
a detailed analysis of the errors that models
commonly make on this data.

1 Introduction

Norwegian Twitter data poses an interesting chal-
lenge for Natural Language Processing (NLP) tasks.
Not only do these data represent a set of noisy, user-
generated texts with the kinds of orthographic vari-
ation common on social media, but also because
there is a considerable number of tweets written
in dialectal Norwegian. These dialectal variants
are quite common and add another level of diffi-
culty for NLP models trained on clean data in one
of the two Norwegian written forms (Bokmål or
Nynorsk).

Barnes et al. (2021) compiled a dataset of tweets
classified according to whether they are written in
primarily Bokmål, Nynorsk, or a dialect of Nor-
wegian. We build upon this work by annotating
a subset for Part-of-Speech (POS). We investigate
to what extent available Norwegian POS tagging
models, that were trained on Bokmål and Nynorsk
Universal Dependency data (Nivre et al., 2020),
perform on this Twitter dataset.

To this end, we use five POS models: three off-
the-shelf models, and two developed for the pur-
pose of this work. Each of these models was trained
on either a dataset of Bokmål or Nynorsk texts. We
explore the performance of each model in terms
of accuracy, and investigate which standardized
written form can be used as training data and yield
good results for non-standardized dialectal texts.

The main contributions of this work are:

• we annotate a moderately sized Twitter dataset
with POS labels and include metadata related
to which language variety it belongs (Bokmål,
Nynorsk, Dialect, or Mixed),

• we perform a detailed error analysis of com-
mon model errors specific to our Twitter data,

• we include our insights into the annotation
process for POS tagging of non-standardized
written forms,

• we release two spaCy models built on top of
a Norwegian BERT model.

2 Background

Johannessen (1990) outlined a system for au-
tomatic morphosyntactic analysis of Norwegian
nouns in the framework of Koskenniemi (1983).
This was among the first systems, if not even the
very first, that automatically assigned Norwegian
texts any morphological information. The first
widely used tagger, however, was developed within
the Taggerprosjektet1 and came to be known as
the Oslo-Bergen Tagger2 (OBT). Rather than con-
tinuing and expanding the system of Johannessen
(1990), OBT was implemented in the framework
of Karlsson (1990). OBT was initially a rule-based
Constraint Grammar tagger for Norwegian Bokmål.

1The project ran from April 1996 to December 1998.
2https://github.com/noklesta/

The-Oslo-Bergen-Tagger
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Later, both support for Norwegian Nynorsk and a
statistical disambiguation component were added
(Johannessen et al., 2012). But one drawback of
OBT is that it is made for written, edited text, and
therefore might not scale well to sources that are
not standardised.

Extending tagger coverage to spoken Norwegian
dialect transcription, on the other hand, was the
objective of both Nøklestad and Søfteland (2007)
and Kåsen et al. (2019). Both sampled data either
from the Norwegian part of the Nordic Dialect
Corpus (NDC, Johannessen et al. (2009)) or the
Language Infrastructure made Accessible (LIA)
Corpus.3 Annotations are found in the respective
treebanks of the corpora and are accounted for in
Øvrelid et al. (2018) and Kåsen et al. (2022).

Besides Norwegian, there is a large amount of
work on the difficulty of processing noisy data from
social media (Xu et al., 2015), including the diffi-
culty of POS tagging on social media (Albogamy
and Ramasy, 2015), with dialectal variation (Jør-
gensen et al., 2015), or whether lexical normaliza-
tion is helpful (van der Goot et al., 2017). However,
Norwegian currently lacks any of these studies.

3 Data

Resources for evaluating NLP pipeline tasks for
Norwegian are scarce. The only dataset avail-
able for standard NLP tasks such as POS tagging,
lemmatization, and parsing is the Norwegian De-
pendency Treebank (NDT, Solberg (2013), Solberg
et al. (2014)) that has been converted to the Uni-
versal Dependencies standard (Øvrelid and Hohle,
2016). There is, however, a notable exception when
it comes to transcribed spoken dialectal data, where
the LIA and NDC treebanks as mentioned above
are available with annotations for POS tags, mor-
phological features, lemmas, and dependency-style
syntax. Despite this, the transcribed texts in the
LIA and NDC corpora do not share the same char-
acteristics as the Twitter data. Twitter contains
spelling errors and emoji,4 along with mentions
and hashtags. We observe that although our Twit-
ter data contains some characteristics of spoken
Norwegian, such as subjectless sentences as in 1,
which is otherwise within the spelling norms, the
spelling conventions differ from those of LIA and

3https://tekstlab.uio.no/LIA/korpus.
html

4Emoji has recently gained some interest in the linguistic
literature (see https://ling.auf.net/lingbuzz/
005981)

NDC, making it difficult to directly compare the
data.

(1) Kommer
Comes

nok
probably

hjem
home

snart
soon

.

.
‘(Unspecified) probably comes home soon .’

In LIA and NDC, all transcriptions are done ac-
cording to a Norwegian-based semi-phonetic stan-
dard (Hagen et al., 2015), with strict marking of
vowel quantity, palatalization, retroflexion, and
more. We see that writers on Twitter do not con-
form to any specific spelling norm when writing
in their own or another dialect. This means that
although not all dialectal traits from a dialect are
faithfully preserved, this still leads to much dialec-
tal variation in the Twitter data, as things that could
have had a common spelling is spelled according
to the author’s own preference. Especially pho-
netic differences are often not indicated on Twitter.
Because of this, we needed a separate dataset that
could be used to evaluate how various systems for
Norwegian POS-tagging work on dialectal text as it
is found on real data from social media platforms.

We sampled a balanced subset of the dataset in-
troduced by Barnes et al. (2021), who developed to
develop a dialect classifier for Norwegian tweets,
with the aim to be able to further investigate issues
related to dealing with dialectal data on Twitter.
This subset includes a selection of 38 tweets in
Bokmål, 31 tweets in Nynorsk, and 35 in dialects,
which comprises their full test set. We acknowl-
edge that the size of the dataset is small. The POS-
tagged dataset is subject to restrictions due to it
containing personal information, but is available
upon request.

3.1 Norwegian Dialects
Norwegian is considered to have four main dialect
groups based on four different traits. This has
been a controversial matter and the four-way di-
vide essentially follows Christiansen (1954). There
are also recent proponents of a two-way divide
(Skjekkeland, 1997). The four-way distinctions
have a Northern, Middle, Western, and Eastern
group, whereas the two-way divide only operates
with a Western and Eastern group. But these dis-
tinctions are made with traits from the spoken lan-
guage. And, as Mæhlum and Røyneland (2012,
p. 29) point out, there is a discrepancy between
how dialectologists and lay people classify dialects.
What sort of dialectal traits Twitter users choose to

65



Bokmål Nynorsk Dialectal Mixed All

PUNCT 211 15.72% 151 13.92% 123 11.27% 35 13.46% 520 13.76%
NOUN 168 12.52% 150 13.82% 116 10.63% 37 14.23% 471 12.47%
VERB 157 11.7% 130 11.98% 129 11.82% 24 9.23% 440 11.65%
PRON 134 9.99% 97 8.94% 140 12.83% 29 11.15% 400 10.59%
ADP 120 8.94% 89 8.2% 85 7.79% 21 8.08% 315 8.34%
AUX 78 5.81% 84 7.74% 93 8.52% 19 7.31% 274 7.25%
ADJ 103 7.68% 67 6.18% 88 8.07% 13 5.0% 271 7.17%
PROPN 92 6.86% 74 6.82% 50 4.58% 18 6.92% 234 6.19%
ADV 77 5.74% 68 6.27% 74 6.78% 11 4.23% 230 6.09%
SCONJ 46 3.43% 42 3.87% 43 3.94% 5 1.92% 136 3.6%
DET 49 3.65% 38 3.5% 33 3.02% 14 5.38% 134 3.55%
CCONJ 34 2.53% 38 3.5% 44 4.03% 11 4.23% 127 3.36%
PART 36 2.68% 22 2.03% 29 2.66% 9 3.46% 96 2.54%
X 16 1.19% 15 1.38% 9 0.82% 10 3.85% 50 1.32%
NUM 11 0.82% 8 0.74% 14 1.28% 2 0.77% 35 0.93%
INTJ 7 0.52% 6 0.55% 14 1.28% 1 0.38% 28 0.74%
SYM 3 0.22% 6 0.55% 7 0.64% 1 0.38% 17 0.45%

Table 1: Distribution of each POS-tag in the Twitter test set, along with the total number of occurrences for each tag
and their corresponding percent-wise distribution.

include may therefore lead to a different kind of di-
vide than one can find in the dialectology literature.
That being said, Venås (1990) shows that there has
been a long tradition of writing in dialect, where
the oldest text in Venås (1990) dates back to 1525.

3.2 POS Annotations
The texts from the test set were annotated using the
Universal Dependencies POS tagset.5 The tweets
were tokenized with NLTK’s tokenizer (Bird et al.,
2009) and split into sentences manually. The NLTK
tokenizer was chosen over other tokenizers as our
preliminary testing on our Twitter dataset shows
that it performs better on noisy Norwegian data.
The tokenized data was then pre-annotated with
Stanza’s Bokmål tokenizer to alleviate the annota-
tion task. The remaining task was to correct each
POS-tag for these pre-annotated sentences. One
annotator annotated the whole test set, while two
other annotators annotated two separate subsets
of the dataset to give an indication of how robust
the annotations were. All three annotators were
trained in linguistics and language technology, and
are native Norwegian speakers. An overview of
the distribution of each POS-tag for each written
form is reported in table 1. We see that the percent-
wise distribution of POS-tags is similar in Bok-

5https://universaldependencies.org/u/pos/

mål, Nynorsk and All, but that the PRON tag is
somewhat more frequent than the VERB tag in the
Dialect tweets. This could be due to the fact that
some dialectal tweets only appear as dialectal due
to specific dialectal pronouns.

3.3 Inter-Annotator Agreement
The inter-annotator score for the full doubly-
annotated test set, using Cohen’s κ, was 0.87, in-
dicating quite high agreement. Looking at the spe-
cific categories, we see that the agreement was 0.92
for Bokmål, 0.83 for Nynorsk, and 0.88 for dialec-
tal tweets. No specific error patterns are observed
that would account for the difference in scores, but
all annotators have more familiarity with the Bok-
mål variant. One common point of disagreement
across all is the copula verb å være ‘to be’, which
according to the UD guidelines should be tagged
as AUX. This was commonly tagged as VERB by
one of the annotators. There is also some disagree-
ment when it comes to words such as opp ‘up’, and
ned ‘down’, which can be tagged both as adverbs
(ADV), adpositions (ADP), and verbal particles.
Since there is no tag for verbal particles in UD,
the annotators had to chose between the other two.
Cases of disagreement were solved by discussing
tags where one or more annotators disagreed.
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4 Experiments

We test several models trained on available Norwe-
gian UD datasets on our Twitter data. Specifically,
we compare OBT, Stanza, UDPipe 2.0, a simple
BiLSTM model, as well as training our own spaCy
models.

Both Stanza (Qi et al., 2020) and UDPipe 2.0
(Straka, 2018) use a BiLSTM which takes features
from 1) pre-trained word embeddings, 2) a train-
able frequent word embedding that is randomly
initialized before training, and 3) character-level
LSTM features. While UDPipe only uses a soft-
max layer for classification, Stanza instead uses a
biaffine classifier to ensure consistency between
the UPOS and XPOS predictions.

The BiLSTM model we use is a simplified ver-
sion of the models used in UDPipe and Stanza. The
model does not take any pre-trained word embed-
dings as features, but rather uses the vocabulary of
the dataset it is trained on to create the embeddings.
The model uses a linear layer for classification.

The spaCy models are newly trained during the
present work, and will be released publicly in the
near future. Since spaCy is a fully configurable and
trainable pipeline, we used the Norwegian BERT
model described in (Kummervold et al., 2021) with
a shared embedding layer for a tagger, morphol-
ogizer, and trainable lemmatizer in an effort to
optimize the tagger task.

5 Results and Discussion

Table 2 gives an overview of the accuracy on the
Twitter test set using our five models trained on
either Bokmål or Nynorsk data. Note that due to
their small number, we do not include the mixed
category by itself, but these tweets are included
in the ALL column. On our twitter Bokmål test
set, the best model is the UDPipe Bokmål model,
which achieves 89.6 accuracy. Generally, the mod-
els trained on the UD Bokmål data are consistently
better than the Nynorsk versions on this data (an
average of 26.5 percentage points (pp)). Interest-
ingly, the same is not true for the Twitter Nynorsk
data. One may assume that models trained on the
Nynorsk UD data would always perform better, but
in fact, the best performing model is the spaCy
model trained on Bokmål (85.7 acc) and on aver-
age, the models trained on UD Bokmål perform 4.9
pp worse.

Finally, on the dialectal Twitter data, the spaCy
Bokmål model once again performs best (83.3).

Again training on the Bokmål data generally per-
forms 12.8 pp better than training on Nynorsk data.
This may be due to the subset of dialectal tweets,
as a manual inspection showed a large number of
tweets from Central and Northern dialects, which
share more features with Bokmål. A larger number
of tweets from Western and Southern dialects could
potentially change this. At the same time, however,
it seems clear that the spaCy Bokmål model per-
forms quite well on all the Twitter test data (85.8
acc), so it may simply be a stronger model.

5.1 Error Analysis
We note that the models struggle with features that
are typical of the noisy Twitter data containing
several misspellings. One concrete example is å,
which in normative writing most likely refers to the
identically spelled infinitive marker å ‘to’. How-
ever, as dialectal writing is much more relaxed,
alternative spellings create new homographs that
need to be dealt with. We see that some cases
of ‘å’ refer to the conjunction og ‘and’, which in
many dialects is homophonous with å. We also
note that many of the errors come from erroneously
tagging pronouns as other word classes, such as
INTJ, PART, or NOUN. One reason why there are
many errors of this type might simply be because
these are frequent indicators of dialect. Barnes et al.
(2021) show that certain pronouns such as æ and
mæ (both ‘I’) are highly correlated with dialectal
tweets. They are in some cases the only dialectal
indicator in a tweet. Finally, we observe that there
are problems with annotating enclitic elements and
words that should have been written separately, or
conversely, with compound words that have been
split. The two latter problems are not exclusive to
dialects, but are common in informal writing. En-
clitic elements, such as the enclitic negation (’kke,
’kje, ’che, etc.) and enclitic pronouns such as ’n
‘he, him’ and ’a ‘she, her’ are sometimes added
after words, and sometimes without any punctua-
tion, and there are no tokenizers that the authors are
aware of that can correctly separate out these en-
clitic elements. For example, a spelling like ekkje,
‘is not’, which is the copula e with the enclitic nega-
tion adverb kkje ‘not’ written as one word, has this
issue. The same happens with other words that ac-
cording to the norm should be written as two words,
such as i dag ‘today’, being written as idag. This
leads to tokens with multiple possible POS-tags.
In these cases the annotators would consider what
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Bokmål Nynorsk Dialect All

OBT Bokmål 77.8 - 62.3 -
OBT Nynorsk - 73.1 57.3 -
BiLSTM_UD Bokmål 80.5 63.8 63.4 70.2
BiLSTM_UD Nynorsk 62.3 76.2 56.7 64.6
BiLSTM_UD Nynorsk_LIA 47.6 56.2 43.9 48.9
Stanza Bokmål 86.6 67.5 69.5 75.4
Stanza Nynorsk 45.8 82.8 52.0 58.1
UDPipe Bokmål 89.6 76.1 72.9 80.4
UDPipe Nynorsk 74.4 82.9 63.2 73.2
spaCy Bokmål 87.9 85.7 83.3 85.8
spacy Nynorsk 62.5 83.2 65.0 69.6

Table 2: Accuracy on our Twitter test set using five different models trained on either Bokmål or Nynorsk datasets.

would be the best functional fit. For example, the
resulting adverbial phrase idag can be annotated
as an adverb, and verbs negated by enclitics are
tagged as verbs. However, these are the annotators’
judgements, and their proper treatment is not clear
from the UD guidelines.

6 Conclusion

In this paper, we have introduced the first dataset
of Norwegian tweets annotated for Part-of-Speech,
that also include the metadata for the language va-
riety of each tweet (Bokmål, Nynorsk, Dialect, or
Mixed). We tested several POS taggers trained on
UD data and show that, for our Twitter data, it is
generally better to train on the UD Bokmål data,
even if testing on Nynorsk or Dialect. Our detailed
error analysis showed that the models generally
have problems with dialectal pronouns and unfa-
miliar compounds. Finally, we release the newly
trained spaCy models, and make our annotated data
available on request, in order to enable the repro-
duction of our results.
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Abstract

This paper presents OcWikiDisc, a new freely
available corpus in Occitan, as well as language
identification experiments done as part of the
corpus building process. Occitan is a regional
language spoken mainly in the south of France
and in parts of Spain and Italy. It exhibits rich
diatopic variation, it is not standardized, and it
is still low-resourced, especially when it comes
to large downloadable corpora. In an effort to
remedy this lack, we created OcWikiDisc, a
corpus extracted from the talk pages associated
with the Occitan Wikipedia. The version of
the corpus with the most restrictive language
filtering contains 8K user messages for a to-
tal of 618K tokens. The language filtering is
performed based on language identification ex-
periments with four off-the-shelf tools, includ-
ing HeLI (Jauhiainen et al., 2022) and a new
fasttext-based language identification model
from Meta AI’s No Language Left Behind ini-
tiative (Costa-jussà et al., 2022).

1 Introduction

This paper provides two main contributions: we
present OcWikiDisc, a new, freely available corpus
in Occitan, and report results of language identifi-
cation experiments executed as part of the corpus-
building process. Occitan is a Romance language,
mainly spoken in the south of France and in parts of
Spain and Italy. It is considered a regional language
in France but doesn’t have the status of an official
language. Despite recent efforts to endow it with
various NLP tools, it still remains low-resourced,
especially when it comes to large, freely available
corpora. Our OcWikiDisc corpus aims to remedy
this lack by relying on user-generated content avail-
able on the Web: we extract the corpus from the talk
pages associated with the Occitan Wikipedia. Thus,
OcWikDisc contains messages posted by users, typ-
ically in direct user-to-user interactions. As such, it
offers interesting possibilities for research not only
in NLP, but also in corpus-based dialectology and

wider linguistic studies. To the best of our knowl-
edge, it is the first such corpus for Occitan. It can
be downloaded through Zenodo1.

Since the extracted content contains a significant
proportion of messages written in languages other
than Occitan, we perform language identification
(LID) experiments. We test four off-the-shelf tools:
langid (Lui and Baldwin, 2012) and its Python 3
implementation, py3langid 2, developed by A. Bar-
baresi; HeLI (Jauhiainen et al., 2016, 2022); and
the fasttext language identification models, both
the original (Joulin et al., 2017) and the most re-
cent (Costa-jussà et al., 2022), published as part
of Meta AI’s No Language Left Behind Initiative.3

We identify optimal LID strategies based on the de-
sired outcome (optimizing for precision vs recall)
and use them to filter the extracted corpus. These
results also offer useful pointers for LID of Occitan
in general.

The remainder of the paper is organized as fol-
lows. In Section 2, we give a brief description of
the main linguistic properties of Occitan. Section 3
offers more details on available NLP tools and re-
sources for Occitan. In Section 4, we describe
our corpus extraction process and present the ini-
tial corpus. Section 5 is dedicated to language
identification experiments, leading to several fil-
tered versions of the corpus, which are presented
in Section 6. Finally, in Section 7, we give our
conclusions and directions for future work.

2 Occitan: Linguistic Properties and
Dialectological Situation

Occitan is a Romance language spoken in the south
of France, in parts of Piedmont in Italy and in Val
d’Aran in Spain. It does not have the status of an

1https://doi.org/10.5281/zenodo.
7079580

2https://github.com/adbar/py3langid
3https://ai.facebook.com/research/

no-language-left-behind/
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Figure 1: Occitan dialects

(1)

T’ aviái laissat un messatge totara
you.DAT have.1SG.IMPF leave.PST.PTCP a.SG.M message just

’I had just left you a message’

official language in France, and as many such lin-
guistic varieties, it is not standardized. Currently,
two main spelling norms are in use: one close to
medieval troubadours’ spelling (often referred to
as classical) and another one closer to the French
language spelling conventions (often referred to as
mistralian) (Sibille, 2002). Furthermore, Occitan
has a rich system of dialects organized in six main
groups: Auvernhat, Gascon, Lemosin, Lengado-
cian, Provençau and Vivaroaupenc (see Figure 1)
(Bec, 1995). Diatopic variation can be seen on the
lexical, phonological, morphological or syntactic
level. For an illustration of each of these types of
variation, see Miletic et al. (2020b).

Some of the main linguistic properties are shared
by most dialects. For example, Occitan is a null
subject language with tense, person and number
inflection marks on finite verbs for each person.
Many dialects exhibit number and gender inflec-
tion on all components of the noun phrase. Unlike
contemporary French, Occitan maintains the use of
the preterite (passat simple), which contrasts with
the perfect tense (passat compausat), and the use
of the imperfect subjunctive, even in informal lan-
guage. Example 1, extracted from the OcWikiDisc
corpus, illustrates some of these properties.

3 Occitan and NLP

Until recently, Occitan belonged to the group of
under-resourced languages. This situation was due
to a combination of factors. First, the linguistic

situation described above, compounding strong di-
atopic variation, absence of standardization, and
use of multiple spelling norms, contributed to data
sparsity. This was coupled with insufficient recog-
nition on the institutional level, leading to a lack of
human and financial resources available for NLP
of Occitan. This situation is currently evolving for
the better: in France, regional languages have been
recognized as part of the country’s cultural heritage
by the constitutional amendment Article 75-1 pub-
lished in 2008. Since then, they have benefited
from national and European initiatives to revitalize
regional languages and help them enter the digital
era. This has led to the creation of initial resources
and tools for Occitan.

An electronic lexicon in Lengadocian (Bras et al.,
2020; Vergez-Couret, 2016) (850K entries), an on-
line corpus of 3,4M words called BaTelÒc (Bras
and Vergez-Couret, 2016) and a PoS- tagged corpus
of 12K tokens (Bernhard et al., 2018) were created
as part of the RESTAURE project4 (2016-2018).
During the LINGUATEC project,5 a 20K-token
treebank following Universal Dependencies anno-
tation guidelines was created (Miletic et al., 2020a).
The existence of annotated training corpora led to
initial experiments in PoS-tagging and parsing Occ-
itan (Vergez-Couret and Urieli, 2014; Miletic et al.,
2019). A first neural text-to-speech model has also

4https://restaure.unistra.fr/en/
presentation/

5https://linguatec-poctefa.eu/fr/
projet/
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been created (Corral et al., 2020).
All of these resources represent important steps

forward for Occitan. Nonetheless, the language
still remains low-resourced, especially when it
comes to large, freely available corpora. The anno-
tated corpora cited above are downloadable for re-
search purposes, but they are fairly small, whereas
BaTelÒc, the largest currently available corpus in
Occitan, is not downloadable due to copyright limi-
tations. A popular solution in this type of situation
is to turn to the linguistic content available on the
internet. This typically consists in crawling the
top-level domain of the given language and trans-
forming it into a corpus (see, e.g. Ljubešić and Klu-
bička, 2014). However, as pointed out by Barbaresi
(2013), such an approach can be ill-suited for low-
resourced languages and linguistic varieties. Many
of them (including Occitan) do not have a dedicated
top-level domain, which makes the identification
of URL targets for crawling more challenging, and
reliable LID systems more crucial in the process.
Moreover, low-resourced languages can also have a
limited presence on the Internet compared to more
widely used languages. To illustrate, the latest ver-
sion of the OSCAR corpus (Ortiz Suárez et al.,
2019)6, based on the CommonCrawl from Novem-
ber/December 2021, only contains 31K tokens in
Occitan, compared to, e.g. 41G tokens in French.
We therefore turn to a more targeted solution: ex-
tracting content from Wikipedia.

4 Extracting a Corpus from Wikipedia
Talk Pages

Wikipedia content in Occitan has been extracted
and used as a corpus in previous research. For
example, it is mentioned as part of the training
material for the transformer-based multilingual lan-
guage model mBERT (Devlin et al., 2019), but
also for the LID tools fasttext (Joulin et al., 2017),
langid (Lui and Baldwin, 2012) and HeLI (Jauhi-
ainen et al., 2016). To the best of our knowledge,
these training corpora have not been distributed.

Wikipedia content in Occitan is also present in
parallel corpora extracted from Wikipedia such as
WikiMatrix (Schwenk et al., 2021). It would be
possible to derive a monolingual Occitan corpus
from it, but the resulting corpus would contain in-
dividual sentences that would appear without their
linguistic context, and would be accompanied by

6https://oscar-corpus.com/post/
oscar-v22-01/

limited metadata.
Our goal, as stated in Section 1, is to create a

corpus suitable for a wider range of research: NLP
applications, computational and corpus-based di-
alectology, as well as corpus-based linguistics. We
therefore aim to preserve the linguistic integrity of
the content in the corpus and to provide as much
metadata as possible. Also, we choose to focus on
the talk pages rather than the encyclopedia pages
themselves. Wikipedia talk pages are dedicated
to discussions between users, typically about arti-
cle content and editing policies. These are direct
user-to-user interactions on a variety of topics, but
in general they share the same goal: improving
the quality of the Wikipedia content. They often
combine elements of dialogue with elements of ar-
gumentative writing (Ho-Dac et al., 2016). Given
the nature of their content, the talk pages are a
novel source of linguistic material for Occitan.

4.1 Data Extraction Process

As the starting point of the extraction, we use a
Wikimedia data dump containing the current ver-
sion of Wikipedia pages and the associated meta-
content.7 The basic data structure of the archive is
encoded in XML, but the content of each page is
rendered in wikitext, a text-based encoding conven-
tion that can mark some further structure (thread
headings, comments), indicate hyperlinks (user-
name mentions, internal or external page addresses)
or allow for some formatting (headings, bulleting,
emphasis).

Our global workflow is organized into two main
steps: extraction and filtering. The extraction starts
by selecting XML elements in an XML namespace
dedicated to discussions. For each such discus-
sion, the text content is extracted and individual
posts are identified. We also extract some meta-
data encoded in the XML: contributor, timestamp,
namespace and discussion title. However, these
pieces of metadata are available at the discussion
level, and the corresponding discussion can con-
tain multiple messages, or even multiple threads of
messages. Therefore, we also extract the header of
the thread in which a given message was posted,
along with the username and the timestamp present
in the post’s signature. All of these pieces of infor-
mation are preserved as metadata associated with
the message in the output.

In the second step, the text of each identified

7Dump date: 01 May 2022.
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message is cleaned for formatting commands writ-
ten in wikitext and various types of non-linguistic
content, such as snippets of JavaScript or HTML
code.

4.2 Initial Extraction Result
The extracted corpus is formatted as a simple CSV
file, in which each line represents a message ex-
tracted from the corpus. The line contains the mes-
sage itself and all the extracted metadata associated
with it.

Some basic quantitative information about the
resulting corpus is given in Table 1. In order to
provide token counts, we perform tokenization on
whitespace and punctuation marks (including apos-
trophes). This rudimentary solution was chosen
to accommodate the fact that the corpus content is
multilingual (see below).

Messages 11,025
Tokens 1,186,239
Tokens/Message 107.60
Users 522
Messages/User 17.07

Table 1: OcWikiDisc: initial extraction

The building process for Web-based corpora typ-
ically includes a deduplication step, in which iden-
tical (or near-identical) texts are eliminated from
the corpus. Currently, this operation is not done on
the OcWikiDisc corpus. Given the structure of the
data, it should not be possible for the same message
with the same metadata to appear multiple times
in the archive (each discussion being represented
exactly once in the XML file). Some near-identical
system messages were present in the initial extrac-
tion result, but these are systematically in English
and can therefore be eliminated through LID (de-
scribed below). There are also messages in Occitan
that could be classified as near-duplicates, which
typically contain demands for article validation,
birthday and New Year’s wishes. However, these
were not produced by bots, but by the contributors,
and as such, they represent genuine linguistic ma-
terial. Furthermore, they are often part of message
threads, and excluding them automatically could
compromise the integrity of the content.

The Occitan content in the corpus is fairly uni-
form when it comes to the spelling norm: the
community strongly recommends the use of the
classical norm in the articles in order to facilitate

searches, and this seems to be respected almost sys-
tematically in the discussions too. When it comes
to the use of dialects, there is an incentive to pre-
serve the identity of each individual dialect and
especially to avoid writing in "pan-Occitan", an
improvised standard. An initial exploration of the
data shows Lengadocien as the most widely used
dialect in OcWikiDisc, followed by Gascon and
Provençau (see also Section 5.3.1).

However, an important part of the messages con-
tain linguistic material in languages other than Occ-
itan. We therefore perform language identification
experiments in order to identify the optimal ap-
proach to filter the corpus content. In this first set
of experiments on OcWikiDisc, we focus on iden-
tifying messages containing Occitan and leave the
identification of individual dialects for future work.

5 Language Identification Experiments

Language identification is an NLP task which con-
sists in automatically identifying the language of
a given text (Jauhiainen et al., 2019). In order to
perform this task on the extracted corpus, we first
evaluate four off-the-shelf tools that integrate mod-
els for Occitan. Each of them is briefly presented
below.

5.1 Language Identification Tools

langid (Lui and Baldwin, 2012) uses a multinomial
naïve Bayes model with feature selection based on
an information gain measure. The features are not
complete words, but character n-grams (1 to 4 char-
acters). It is specifically designed to control for
genre differences and bias towards better resourced
varieties. In addition to the original tool, we also
test its Python 3 implementation, py3langid, devel-
oped by A. Barbaresi 8. Both tools were trained on
the same set of 97 languages.

HeLI (Jauhiainen et al., 2016, 2022) uses lan-
guage models consisting of single words and char-
acter n-grams of length 1 to 6. During training,
the models are created by attributing each word or
n-gram a score based on its relative frequency in
the given language. During language identification,
for each word of the text to be classified, the tool
first calls upon the word-level models. If the word
is found in none of them, the tool backs off to n-
gram models, going from longest to shortest, until
at least one match for the word is found. The scores
of all languages identified in a given instance are

8https://github.com/adbar/py3langid
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averaged to obtain the final score for each of them.
HeLI integrates models for 200 languages.

fasttext (Joulin et al., 2017) was designed as a
general text classification model, but its LID mod-
els have been widely used. It implements a lan-
guage representation based on bag of words and
bag of n-grams. It uses a linear classifier com-
bined with a rank constraint, supposed to improve
the generalisation for classes with small numbers
of instances. We test both the LID model dis-
tributed with the original version of the tool as
well as a more recent one, released in July 2022 as
part of Meta AI’s No Language Left Behind initia-
tive (Costa-jussà et al., 2022). This initiative being
specifically aimed at low-resourced languages, we
wish to evaluate the tool’s performances on Occitan.
The original model was trained on 176 languages,
while the most recent one integrates 204.

5.2 Baseline Evaluation on Existing Occitan
Data

We perform an initial LID evaluation on a test set
containing only Occitan. The sample is derived
from the four-dialect treebank presented in Miletic
et al. (2020b) by transforming each treebank sen-
tence into a test instance. The sample contains
1,520 instances, 73% of which are in Lengadocian,
17% in Gascon, and 5% in Provençau and Lemosin
each. However, for the purposes of this experiment,
all dialects were merged.

We report accuracy scores for each tool in Ta-
ble 2. The more recent fasttext LID model (fast-
text2) achieves the best result at 93.22%, with an
improvement of almost 30 percentage points over
the previous version of the model (fasttext1). The
only other tool scoring above 90% is HeLI, with
langid at and py3langid at 66.64% and 70.00% re-
spectively.

Given these results, we keep fasttext2 and HeLI
for some further experiments: we test using the
top-2 predictions from each tool (heli_top2 and
fasttext2_top2), and then using the union of the
top prediction from each of them (fasttext2_heli).
We scored the prediction as true if the list of labels
contained Occitan. As shown in the section Strate-
gies of Table 2, relying on two labels from HeLI
achieves the same score as using the top prediction
from fasttext2. Using the top 2 labels from fast-
text2 improves accuracy for almost 2%, but using
HeLI’s top prediction instead brings a small addi-
tional improvement, equivalent to another 3 correct

Individual tools

Tool Accuracy (%)

fasttext1 62.30
langid 66.64
py3langid 70.00
heli 90.70
fasttext2 93.22

Strategies

Strategy Accuracy (%)

heli_top2 93.22
fasttext2_top2 95.00
fasttext2_heli 95.20

Table 2: LID results on all-Occitan dataset

predictions on this dataset. This is the best overall
result in this part of our evaluation.

As mentioned above, a concern when attempting
LID on low-resourced languages is that they will be
confused with better resourced closely related lin-
guistic varieties. We can therefore expect the tools
to encounter difficulties in distinguishing Occitan
from other Romance languages. The confusion
matrices based on the classification produced by
fasttext2 and HeLI seem to confirm this. Table 3
shows the ten most frequent erroneous labels pro-
duced by the two tools.

For both tools, 7 out of 10 most frequently con-
fused languages are from the Romance family. In
the case of HeLI, Interlingua9 and Haitian can also
claim closeness to the Romance languages. On
the other hand, the remaining languages for fast-
text2 are somewhat surprising: there seems to be no
straightforward linguistic argument for confusing
Occitan with Vietnamese or Standard Malay.

This evaluation allowed us to quickly identify
potentially useful strategies for LID on our corpus.
However, since the initial test set only contains
Occitan, it is not possible to evaluate the tools’
precision in a satisfactory manner. We therefore
proceeded to an evaluation on a sample extracted
from OcWikiDisc in order to further test the tools
in a context closer to their intended use. For these
experiments, we select fasttext2 and HeLI as the
most reliable systems.

9Interlingua is a constructed language whose vocabulary
and grammar are largely based on Romance languages. See,
e.g., (Gode and Blair, 1951; Gode et al., 1952)
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fasttext2 heli

Catalan 23 Catalan 38
French 11 Spanish 11
Vietnamese 10 Interlingua 7
Portuguese 8 Lombard 6
Spanish 6 French 6
English 5 Extremaduran 5
Asturian 5 Piemontese 4
Galician 5 Portuguese 4
Standard Malay 4 Haitian 3
Italian 4 Pfälzisch 3

Table 3: Top-10 erroneous labels for fasttext2 and HeLI

5.3 Evaluation on OcWikiDisc

As stated above, the content of OcWikiDisc is not
written exclusively in Occitan. The content in other
languages can appear as a monolingual post, or as
a part of a multilingual message. These multilin-
gual examples can also include Occitan. This has
important implications both for LID itself and for
our evaluation setup.

LID in multilingual and, in particular, code-
switching data is a challenge for LID systems
(Jauhiainen et al., 2019). One of the central issues
is the need to determine how many labels need to
be attributed to each classification instance. This
often implies determining a threshold for the clas-
sification score and accepting all predictions that
score above it to contribute to the prediction.

When it comes to the evaluation, this type of
material raises questions about the manual annota-
tion guidelines. For instance, if a message contains
only a toponym (cf. He lives in Teste de Buche), a
metalinguistic use of a word (cf. the word ‘caval’
means ‘horse’), or a salutation (cf. Bonjorn, I
would like to participate in writing this article)
in a different language, should it be labelled as
multilingual? We address these questions below.

5.3.1 Building a Multilingual Evaluation
Sample

For the purposes of this evaluation, we create a
test set of 100 messages extracted from the corpus.
Roughly a third of the instances contain no Occitan
(but can contain several other languages), a third
contains only Occitan, and a third contains Occitan
and at least one other language. The sample was
manually annotated by a single annotator. For each
post, the annotator indicated all languages appear-

ing in it, even if one of them was only instantiated
in a single word. Out of the 100 test instances,
58 are monolingual, with the average number of
labels per instance at 1.49. The maximum number
of labels per instance is 4.

The sample was also annotated with dialect and
spelling norm information. The Occitan content
in this sample systematically follows the classical
spelling norm. As for the dialects, out of 68 mes-
sages containing Occitan, 36 were in Lengadocian,
6 in Gascon and 5 in Provençau, whereas for the
remaining 21 it was impossible to specify the di-
alect. However, this information was not used in
the experiments described in the following section,
which focus solely on language identification.

Some factors should be borne in mind while
considering the evaluation results presented below.
In the current annotation all labels are presented
equally: there is no means of knowing how the
content of the post is distributed between different
languages. It is also worth mentioning that this
was not a trivial task for the human annotator: she
reported uncertainty about a part of the languages
in the test set and had to rely on help from other
linguists to identify some of them.

5.3.2 Evaluation on a Multilingual Sample
We frame our evaluation as a task in identifying
Occitan content in the corpus. We therefore focus
our attention on the tools’ performance relative to
this language, at the expense of their global results.

In order to determine the number of labels from
each tool to be evaluated, we first considered us-
ing a threshold on the classification scores. How-
ever, this proved problematic with fasttext2. The
tool’s second-best predictions are associated with
an important drop in probability, with 75% of them
scoring at <0.021. A meaningful threshold would
therefore favour outputting only one label from
fasttext2. Yet our initial evaluation suggests that
additional labels would be useful for the task at
hand. We therefore opted for a different approach:
we base our evaluation on top-2 and top-5 labels
from each tool. This, of course, affects the global
precision scores, since it automatically produces
incorrect labels for monolingual posts. However,
as noted above, our aim is to optimize the detection
of Occitan, and not the global LID scores.

The evaluation results are presented in Table 4.
We evaluate tools individually on their top-2 and
top-5 labels, but also on two ensemble strategies,
combining the top prediction and the top-2 pre-
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Occitan Global
Precision Recall F1-score Precision Recall F1-score

fasttext2_top2 84.75 73.53 78.74 56.50 75.84 64.76
heli_top2 93.33 61.76 74.34 51.00 68.46 58.45

fasttext2_top5 79.49 91.18 84.93 26.00 87.25 40.06
heli_top5 88.06 86.76 87.41 25.41 83.22 38.93

fasttext2_heli_top1 100.00 57.35 72.90 89.09 65.77 75.68
fasttext2_heli_top2 85.00 75.00 79.69 42.80 77.85 55.24

Table 4: Evaluation results on OcWikiDisc sample

Messages Tokens Tokens/Message Users Messages/User

ocwikidisc_precision 8149 618,153 75.86 206 33.69
ocwikidisc_balanced 9032 756,922 83.80 323 23.19

ocwikidisc_recall 9394 804,959 85.69 347 22.39
ocwikidisc_unfiltered 11025 1,186,239 107.60 522 17.07

Table 5: OcWikiDisc: filtered corpora

Total languages Top 11

ocwikidisc_precision 54 Occitan, Catalan, French, English, German, Spanish, Por-
tuguese, Lombard, Romanian, Piemontese, Galician

ocwikidisc_balanced 124 Occitan, Catalan, Extremaduran, Lombard, Spanish, Inter-
lingua, French, Galician, Piemontese, Portuguese, Lingala

ocwikidisc_recall 114 Occitan, Catalan, French, Spanish, Galician, Portuguese,
Lombard, Italian, Asturian, Korean, Romanian

ocwikidisc_unfiltered 155 Occitan, Catalan, French, Spanish, Portuguese, Galician,
Italian, Korean, Lombard, English, Asturian

Table 6: Overview of languages detected in different versions of the corpus

dictions from each tool. We report the results on
Occitan, and include global evaluation scores for
the sake of completeness.

In strategies combining output from fasttext2
and HeLI, we use the union of the labels produced
by each tool. This yields an average of 1.1 labels
per instance when using the top prediction from
each, and 2.7 labels per instance on average when
using the top 2 predictions.

In all scenarios, we evaluate the tools in terms
of precision, recall and F1-score. For the global
evaluation results, the scores are micro-averaged.10

First, let us comment briefly the global evalu-
ation results. As expected, the scenarios with a
higher number of labels achieved the best recall,

10For the evaluation on Occitan only, we evaluate recall
based on all manually annotated messages that are labelled as
containing Occitan, whereas the precision takes into account
all predictions that contain the label for Occitan.

but had significantly lower precision scores, lead-
ing to lower F1 scores. The best precision was
obtained with the combination of the top prediction
from fasttext2 and HeLI, which also shows the best
F1 score. This could therefore be considered as a
sound option for optimizing the LID results on all
languages.

When it comes to the identification of Occitan,
the results are more surprising. Unlike what we saw
in the initial evaluation, combining the two tools
does not seem to improve over the best individual
results. The highest F1-scores were achieved by
HeLI using the top-5 predictions (87.41) and fast-
text2 (84.93) in the same setup. HeLI also displays
balanced precision and recall scores in this setup,
which recommends it as a reliable global solution
for our task. Using the combination of the top pre-
dictions from fasttext2 and HeLI achieves perfect
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Users with >1 message Messages from top 10 Tokens from top 10

ocwikidisc_precision 120 (58%) 5,173 (63%) 399,530 (65%)
ocwikidisc_balanced 166 (51%) 5,346 (59%) 435,345 (58%)
ocwikidisc_recall 188 (54%) 5,392 (57%) 456,839 (57%)
ocwikidisc_unfiltered 257 (49%) 5,757 (52%) 552,669 (47%)

Table 7: Distribution of content across users

precision on our sample, but it is coupled with a
significant drop in recall (57.35). Unsurprisingly,
the best recall was achieved when using the highest
number of labels (fasttext_top5 and heli_top5).

Based on these results, we choose the fol-
lowing strategy for our corpus-building process.
We annotate the corpus both with fasttext2 and
with HeLI, outputting the top-5 labels from each.
We create three filtered versions, favouring preci-
sion (using fasttext2_heli_top1), recall (using fast-
text2_top5) and F1-score (using heli_top5), respec-
tively. Each of the filtered versions is presented
below. Through this approach, we hope to produce
resources adapted to different types of applications
and research. An unfiltered version of the corpus
is also made available.

6 Filtered Corpus

In this section, we present the complete LID-
annotated corpus and its three filtered versions. The
basic information about them is available in Table 5,
whereas the detected languages in each version of
the corpus are presented in Table 6. To facilitate
comparison, we repeat the same information for
the unfiltered version of the corpus, initially given
in Section 4.2.

As expected, the version of the corpus favour-
ing precision (ocwikidisc_precision) is the most re-
stricted, with 8K messages and 618K tokens. This
represents roughly half of the unfiltered corpus (in
tokens). The difference between the corpus favour-
ing recall (ocwikidisc_recall) and the one favouring
F1-score (ocwikidisc_balanced) is relatively small
for all reported measures. It remains to be seen if
there is a qualitative difference in their content.

It is important to note that the distribution of
content across users is heavily skewed in all four
versions of the corpus, both in terms of the num-
ber of messages and in terms of the number of
tokens. The full distribution of messages across
users is shown in Figure 2. As illustrated in Ta-
ble 7, more than half of the content in each filtered

version comes from the 10 most active users, and
only 50-60% of users have produced more than one
message. While this affects the representativeness
of the corpus, it offers an interesting possibility for
dialect identification: if the dialect of each of the
most active users can be reliably identified manu-
ally, this information can be propagated onto all of
their messages, thus annotating an important part
of the corpus for dialect information. This direction
will be explored in our future work.

The information on detected languages in Ta-
ble 6 is based on the predictions of the strategy
used to filter a given corpus. Note that the 10 most
frequent languages after Occitan in each corpus
predominantly belong to the Romance family. This
could simply be the result of shared interests or col-
laboration efforts on Wikipedia, but it could also
be an indicator of difficulties with the identification
of closely related languages. We will be looking
into this issue in the future.

7 Conclusions and Future Work

In this paper, we presented OcWikiDisc, a new
corpus in Occitan extracted from Wikipedia Talk
pages. The version of the corpus with the most
restrictive language-based filtering contains 618K
tokens. Along with its extracted content, it also
contains metadata about users, time of posting and
discussion subjects, as well as language annota-
tion produced using LID tools. To the best of our
knowledge, it is the largest downloadable corpus
for Occitan. It can be downloaded from Zenodo.

We also presented LID experiments aimed at
identifying Occitan content in the initial extracted
corpus, which is multilingual. We tested four off-
the-shelf LID tools. In an initial experiment on an
all-Occitan sample, the best results were achieved
by the new LID model from the fasttext tool and by
HeLI. On a test sample extracted from OcWikiDisc,
fasttext’s new model had the highest recall score,
whereas HeLI achieved the most balanced precision
and recall. Combining the two tools optimized the
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Figure 2: Number of messages per user across the four versions of the corpus

precision.
In the future, we will investigate making the LID

on the corpus more fine-grained. Currently, we
perform LID at message level. Given the amount
of multilingual messages observed in our data, it
could be beneficial to do it rather at sentence level,
or even at word level. We will also examine the
annotation of the Romance languages found in the
corpus, since a certain amount of confusion arising
from the closely related languages in the corpus
can be expected.
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Abstract

We present an approach to multi-class classi-
fication using an encoder-decoder transformer
model. We trained a network to identify French
varieties using the same scripts we use to train
an encoder-decoder machine translation model.
With some slight modification to the data prepa-
ration and inference parameters, we showed
that the same tools used for machine translation
can be easily re-used to achieve competitive per-
formance for classification. On the French Di-
alectal Identification (FDI) task, we scored 32.4
on weighted F1, but this is far from a simple
naive Bayes classifier that outperforms a neural
encoder-decoder model at 41.27 weighted F1.

1 Introduction
Sometimes you just kinda wanna
Sometimes one might find more appealing to re-
use the same code, scripts and infrastructure that
already serve an NLP product for another purpose.

In this case, an eco-system of tools is already
available to train machine translation models and
serve the model with a RESTful API, then we
need some language identification tools. Then, one
might think, Then you think,

Technically, an auto-regressive encoder-
decoder model that produces a single to-
ken at inference is sort of like a classifier.

Recent works had validated the thought (Li
et al., 2018; Thant and Nwet, 2020; Hadar and
Shmueli, 2021), most notably the “Don’t Classify,
Translate!" (DCT) idea simply re-used an encoder-
decoder machine translation models as a hierarchi-
cal classifier to categorize e-commerce products.

To test the DCT model for language identifi-
cation, we evaluated the approach on the French
Cross-Domain Dialect Identification (FDI) dataset
(Gaman et al., 2022) while participating in a Var-
dial shared task .1

1https://sites.google.com/view/
vardial-2022/shared-tasks

An example of the input and output of the FDI data
looks as follows:

[IN]: Le $NE$ compte une importante com-
munauté ukrainienne qui s’élève à environ 1,3
million de personnes.

[OUT]: BE

where the input text sometimes contains named-
entities and they are masked with the $NE$ token
and the output is a two-char locale code to roughly
represent the dialect.

2 Motivation

Our initial thought was to use the least effort in
script changes to train a machine translation model
to a multi-class classification one. Being frugal,
the secondary objective is to ensure that we do not
spend more than a day’s worth of GPU hours.

Intuitively, we need the decoder to produce
only one token that marks the class label, so we
shouldn’t be needing heavy machinery (i.e. deep
layers) in the decoder. Previous works (Domhan
et al., 2020; Susanto et al., 2019) have also shown
that offsetting decoder layers with more encoder
layers could improve inference latency. Also, when
training encoder-decoder models on small datasets,
deep decoder layers might be an overkill.

Therefore, we decided to re-use a “mini” trans-
former (Vaswani et al., 2017) with 6 encoder, 2 de-
coder layers trained with the Marian NMT toolkit
(Junczys-Dowmunt et al., 2018).2

3 TL;DR (Experimental Setup)

We trained an encoder-decoder machine translation
model using the Marian NMT framework with the
following hyperparameters:

2Using this script from https://github.com/
alvations/myth/blob/master/train-sarah.
sh
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• Transformer with 6 encoder, 2 decoder,

– 8 attention heads

– vocabulary size of 8,000

– embedding dimension of 1024

– transformer feed-forward dim. of 4096

• Adam optimizer parameters

– learning rate sets warm-up at 8,000

– max learning rate set to 0.0001

– inverse square root learning rate decay

• Sentencepiece options

– character coverage was set to 100%

– class labels were set as user-defined sym-
bols, viz. BE, CA, CH, FR to repre-
sent Belgian, Canadian, Swiss and France
French varieties.

– the same sentencepiece vocabulary is used
for the source input and target output

• Data limit options

– during training, the maximum length of the
text input were cropped to 1,000 sentence-
pieces

– during validation, the maximum length of
the text input was set to 5,000 sentence-
pieces

– at inference, when applying it to the test
set, the max length was set to 500 sentence-
pieces3

• Other notable hyperparameters

– global dropout regularization was set at 0.1

– beam size was set to 3 during inference

– label backoff when decoder produces output
that is not any of the label

The modified script with the above hyper-
parameter used to train the model is available
on https://github.com/alvations/
myth/blob/master/train-esther.sh.
We refer to this model as DCT mini for the rest
of the paper.

3Cos Because we wanted to keep the inference time
tractable in production, i.e. <300ms

3.1 How Low Can We Go?

To push the limits of the ‘Don’t Translate, Classify’
approach, we want to see how the smallest possible
model performs on the FDI dataset. We trained a
model with transformer with 1 encoder, 1 decoder
and 1 attention head. The rest of the hyperparame-
ters are same as the ones described Section 3 above.
We refer to this model as DCT micro for the rest
of the paper.

3.2 Non-neural Baseline

Additionally, to compare our models with a non-
neural baseline, we trained a naive Bayes model
similar to the ones reported in Tan et al. (2014).4.
Sweeping through 1 to 12 character n-grams fea-
tures, the best model based validated on the devel-
opment is based on 6 to 10 character n-grams. We
refer to this model as Naive Bayes for the rest
of the paper.

4 Results

Systems Micro Macro Weighted
Naive Bayes 45.82 31.19 41.27
DCT Mini 39.14 26.27 32.35
DCT Micro 34.21 19.05 24.16
NRC 49.34 34.37 45.81
SUKI 39.18 26.61 34.22

Table 1: F1-scores of the Systems on the FDI Test Set

Table 1 reports the F1-scores of the systems we
mentioned earlier and the best systems’ results of
the other teams (NRC and SUKI) that participated
in the shared task (Aepli et al., 2022).

The Naive Bayes baseline result is unsurpris-
ingly strong and the DCT approaches were com-
petitive but much weaker at around 10 points F1-
score lower. While we expected a drop in qual-
ity, the drastic F1 score drop from DCT Mini
to DCT Micro is startling. A naive probabilis-
tic model outperforming neural models on clas-
sification task is not a novel finding (Bernier-
Colborne et al., 2019) and sometimes neural mod-
els when trained inappropriately with bad hyperpa-
rameter sets do not outperform the old-school sta-
tistical/probabilistic approaches (Nat, 2016; Zhang
and Duh, 2020).

4Using script from https://github.com/
alvations/bayesline-DSL/blob/master/
dsl-2019.py
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4.1 A Naive Bayesline
We note a performance difference of the naive
Bayes models between the validation and test data.
In retrospect, evaluating the naive Bayes models on
the test data labels, the best feature is 4 to 6 char-
acter n-grams, and it achieves the 44.98 weighted
F1 score, 34.33 and 47.15 on macro and micro F1
scores. But note that picking the best model based
on such oracle knowledge is unrealistic.

The difference between the model selected based
on the validation results and the test gold standard
reflects possibly a difference in data distribution
and Ng (2016) would suggest to collect more vali-
dation data so that the difference between the vali-
dation and test set is kept to a minimum.

5 Analysis

Figure 1 and 2 presents the confusion matrices for
the DCT mini and DCT micro models.

Figure 1: Confusion Matrix for DCT mini

Figure 2: Confusion Matrix for DCT micro

For both models, we observe that the:

• FR label was commonly misidentified as BE
or CH

• BE label was commonly misidentified as CH
• true positive rate for the CA label is relatively

low compared to other labels

Specific to the DCT mini model, it has higher
false positive rate when wrongly classifying BE
as FR while the DCT micro did not present this
behavior.

5.1 Label Class Distribution

One possible suspicion for the high false positives
on CH and FR in the test set might be due to the
training/validation label distribution. Ideally, a ro-
bust language identification should not be affected
by the label class distribution of the training and
validation data.

But label distribution is not the culprit here, Ta-
ble 2 gives no evidence of the DCT model bias-
ing label classes that resembles training/validation
distribution. This is unlike classical classification
models that requires imbalanced data.

Training Validation Test Predicted
BE 33.93 42.9 41.47 33.26
CA 9.48 0.95 2.57 0.57
CH 39.37 29.13 26.74 62.33
FR 17.22 27.02 29.21 3.85

Table 2: Label Class Distribution of the Training, Val-
idation, Test Data and the Predicted Labels from the
DCT Mini model.

5.2 The FDI Dataset

If you’ve read till now, you would have realized
that we deliberately avoided in-depth exploratory
data analysis before we trained discussed model
training and the results. That is because we know
that there will be issues with any dataset, whether
it is inherent bias added when collecting or cleaning
the data.

Hence, our first-pass proof of concept to validate
the ‘Don’t Classify, Translate’ approach is to trust
the integrity and the quality of the data and partici-
pate in the closed shared task scenario, where only
the data provided can be used to train the model.

Now that we established a baseline model (DCT
mini), compared it to an optimized version and
a non-neural baseline and explored the obvious
hyperparameter optimization options. We want to
dig deeper into the dataset to understand how and
when our model fail.
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5.3 Uncertain Labels
Unlike a typical classification model where the last
layer decides the most salient class label that the
input should fall into, the DCT approach has an
interesting by-product where it returns an empty
string or a hallucinated string.

The following examples are some of the inputs
on the FDI test set that DCT mini produced an
empty label.

• identifiez-vous
• Pour aller plus loin
• À lire aussi
• Un entretien
• Mais que l’on peut...

There are a total of 744 empty labels produced
by DCT mini on 22 unique text inputs in the test
sets. It is worth noting identifiez-vous was repeated
714 times in the test set and Pour aller plus loin
repeated 9 times.

These are 3 data points in the test set that pro-
duced hallucinating string as a label, the first ? ? ?
? ? ? input appeared 8 times in the test data and
the other are singleton occurrences.

• ? ? ? ? ? ?
• Quel est le seuil minimum d’acceptation pour

que ça fonctionne ? + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + +

• + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +

To handle the above empty and hallucination
situations, we simply fallback to the FR labels for
these instances.

Technically, we could have looked at the n-best
options produced in our beam search and look for
the next best output that fits one of the label. How-
ever, leaving this bug/feature as is, we can use it to
identify oddities in the training and validation data
to improve the data quality.

5.4 Repetition in the Test Data
Academically, it makes sense to deduplicate the test
set and report accuracy or F1-scores. Unless a test
set is plagued with rampant repetitions, e.g. more
than 30% of the test set are made up of repeats;
from a user-experience perspective, deduplicating
do no good to reflect the actual amount of errors
a user experience when using the tool. It is best to
leave the test data as if without deduplication if it

is a random sample from the natural distribution of
the full dataset.

Hypothetically, if the natural distribution of the
input data has certain strings that repeats frequent,
a user is more likely to report the error on the lan-
guage label multiple times than sporadic errors that
occurs once or twice. Thus, we view the repeated
instances in the test set as a valid phenomenon
and provide the following statistics solely to un-
derstand which instances are would cause the most
user-dissatisfaction. Such scenario is evident in
Table 3 where it shows 3 unique test instances re-
peating more than 100 times results in 4.2% of the
test data.

No. of Times No. of Unique % of
Repeated Instances Data

1 34,292 93.35
2 382 2.08
3 20 0.16

4 - 10 11 0.15
22 1 0.06

> 100 3 4.20

Table 3: Test Data Instances with Repeated Occurrences

Table 3 presents some statistics of repeated data
in the test set. Of the 36,733 instances in the test
set, 34,292 of them occurred once and 382 unique
instances occurred twice. There are 3 instances that
repeated >100 times, we have:

• identifiez-vous (714 times)
• ici pour connaître la suite. déjà abonné ?

identifiez-vous (567 times)
• déjà abonné ? identifiez-vous (260 times)

Repeating the same exercise on training and de-
velopment/validation dataset, Table 4 and 5 raises
some alarm with 10-20% of the data repeating >50
times.

No. of Times No. of Unique % of
Repeated Train Instances Data

1 234,518 65.36
2 40,745 22.71
3 1,547 1.29
4 4,97 0.23

5-50 75 0.30
> 50 172 9.83

Table 4: Training Data Instances with Repeated Occur-
rences
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No. of Times No. of Unique % of
Repeated Dev Instances Data

1 12,316 68.41
2 426 2.37
3 246 1.37
4 764 4.24

5-50 3298 18.32
> 50 482 2.67

Table 5: Dev Data Instances with Repeated Occurrences

Given this knowledge of the repeated instances,
the natural experiment to test is to deduplicate
and/or remove the instances that >50 times and
retrain the model to see if these data irregularities
affected the weighted F1 performance of classifica-
tion task. But that is out of scope of this report.

6 Related Work

While generic language identification seemed
solved (McNamee, 2005; Lui et al., 2014; Xia et al.,
2010), distinguishing language varieties which are
often lower resourced remains a challenge (Fert-
mann et al., 2014; Tan et al., 2014; Zampieri et al.,
2014, 2015). Hence, the language varieties iden-
tification task is a staple of the evaluation cam-
paigns hosted by the VarDial workshops (Malmasi
et al., 2016; Zampieri et al., 2017, 2018, 2019;
Gaman et al., 2020; Chakravarthi et al., 2021).
Across the many evaluation campaigns, probabilis-
tic models like naive Bayes have often ranked
top on the leaderboard (Bernier-Colborne et al.,
2019; Bernier-Colborne and Goutte, 2020; Bernier-
Colborne et al., 2021).

7 Conclusion

In this paper, we have described our experiments
to reuse encoder-decoder transformer models as a
classifier based on the “Don’t Classify, Translate"
idea. Evaluating on the French Dialect Identifica-
tion (FDI) dataset, we found that a simple naive
Bayes model works better than the 6 layers encoder-
decoder models and a really small neural model
worked even worse. And now, some concluding
remarks:

The encoder-decoder transformer is a
shiny hammer that works fairly well for
many NLP/MT tasks. But note, the ‘your
miles may vary’ (YMMV) caution. Also,
as a sanity check, a simple non-neural
approach is a good baseline.
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mann, and Preslav Nakov. 2015. Overview of the DSL
shared task 2015. In Proceedings of the Joint Workshop on
Language Technology for Closely Related Languages, Vari-
eties and Dialects, pages 1–9, Hissar, Bulgaria. Association
for Computational Linguistics.

Xuan Zhang and Kevin Duh. 2020. Reproducible and efficient
benchmarks for hyperparameter optimization of neural ma-
chine translation systems. Transactions of the Association
for Computational Linguistics, 8:393–408.

85



Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 86–98
October 16, 2022. ©2022 Association for Computational Linguistics

The Curious Case of Logistic Regression for Italian
Languages and Dialects Identification

Giacomo Camposampiero , Quynh Anh Nguyen , , , and Francesco Di Stefano ,

ETH Zürich University of Milan
{gcamposampie, fdistefano, quynguyen}@student.ethz.ch

Abstract

Automatic Language Identification represents
an important task for improving many real-
world applications such as opinion mining and
machine translation. In the case of closely-
related languages such as regional dialects, this
task is often challenging. In this paper, we
propose an extensive evaluation of different
approaches for the identification of Italian di-
alects and languages, spanning from classical
machine learning models to more complex neu-
ral architectures and state-of-the-art pre-trained
language models. Surprisingly, shallow ma-
chine learning models managed to outperform
huge pre-trained language models in this spe-
cific task. This work was developed in the con-
text of the Identification of Languages and Di-
alects of Italy (ITDI) task organized at VarDial
2022 Evaluation Campaign. Our best submis-
sion managed to achieve a weighted F1-score of
0.6880, ranking 5th out of 9 final submissions.

1 Introduction

Dialect classification represents a key task in the im-
provement of many other downstream tasks such as
opinion mining and machine translation, where the
enrichment of text with geographical information
can potentially result in improved performances for
real-world applications (Zampieri et al., 2020).

As a result, the interest in the study of language
variation has been steadily growing in the last
few years, as highlighted by the increasing num-
ber of publications and events related to the topic
(Zampieri et al., 2014, 2015; Malmasi et al., 2016;
Zampieri et al., 2017, 2018, 2019; Gaman et al.,
2020; Chakravarthi et al., 2021). However, little
has been done so far by researchers in the context
of automatic dialect and language recognition for
the Italian language.

In this context, the Identification of Languages
and Dialects of Italy (ITDI) task of VarDial 2022

Equal contribution.

Figure 1: Geographical origin of the Italian dialects and
languages studied in the shared task.1

Evaluation Campaign (Aepli et al., 2022) aims to
bridge this gap, facilitating the development of
models capable of properly classifying 11 regional
languages and dialects from Italy’s mainland and
islands. Figure 1 shows the geographical origin of
these different dialects and languages.

In this paper, we present the results of an exten-
sive evaluation of three different approaches for
the automatic identification of the given dialects.
After an introductory literature review (§2), we
proceed with a more in-depth discussion on the
details of the ITDI task and the dataset provided
by the organizers (§3). Then, we introduce the
proposed architectures (§4) and the experimental
results for each one of them (§5). We also provide
some additional analysis of the models on classifi-
cation errors and feature space visualization (§6).
Finally, we include some concluding remarks on
the shared tasks and possible limitations and routes
for improvement of our work (§7).

1For a more complete and accurate map, refer to
https://en.wikipedia.org/wiki/Languages_of_Italy.
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2 Related Works

Dialect identification represents a well-known task
in the literature, for which the first contributions
can be traced back to more than fifty years ago
(Mustonen, 1965). An extensive and complete re-
view of the field can be found in (Jauhiainen et al.,
2019). However, language identification still repre-
sents a non-trivial task in the case of closely-related
languages and dialects.

Although deep neural models nowadays yield
state of the art performances in many NLP tasks,
shallow machine learning models have shown to be
still highly competitive in discriminating between
similar languages. Some examples are Linear SVM
and Naïve Bayes classifiers (Ceolin, 2021; Çöl-
tekin, 2020) and Logistic Regression (Bhargava
et al., 2015; Ács et al., 2015).

Also the use of Convolutional Neural Networks
is still popular in this type of task. In particular,
CNN-based approaches achieved competitive re-
sults in both VarDial 2019 Evaluation Campaign
(Tudoreanu, 2019) and VarDial 2020 Evaluation
Campaign (Rebeja and Cristea, 2020).

The introduction of transformers (Vaswani et al.,
2017) has represented a breakthrough in many NLP
tasks, and language identification is no exception.
Models based on this architecture achieved state-of-
the-art performance in many practical applications.
A recent example is again VarDial 2020 Evalua-
tion Campaign, where the use of a fine-tuned ver-
sion of BERT previously trained on three publicly
available Romanian corpora (Zaharia et al., 2020)
reached a weighted F1 score of 96.25% on the MO-
ROCO dataset (Butnaru and Ionescu, 2019) in the
Romanian vs Moldavian identification task.

However, the literature regarding automatic Ital-
ian languages and dialects identification is still rel-
atively underdeveloped. Some recent work has
been done to encourage the study of the diachronic
evolution of Italian language and the differences
between its dialects (Zugarini et al., 2020), but no
prior work has focused specifically on contempo-
rary Italian dialects identification.

3 Task and Data Description

3.1 ITDI

ITDI is one of the three tasks proposed as part of
the VarDial 2022 Evaluation Campaign.

The language varieties evaluated in this task
are 11, both from Northern Italy (Piedmontese,

Venetian, Emilian-Romagnol, Ligurian, Friulian,
Ladin, and Lombard), Southern Italy (Neapolitan
and Tarantino) and Islands (Sardinian and Sicilian).
In the following chapters, varieties’ names will be
abbreviated coherently with (Aepli et al., 2022).

This is the first edition of the task.The task is
closed, therefore, participants are not allowed to
use external data to train their models (except for
off-the-shelf pre-trained language models).

The training dataset is provided by the organiz-
ers and consists of 265 016 selected Wikipedia arti-
cles from March 1st 2022 dumps, comprehensive
of all the 11 varieties evaluated in the task. The
development set consists of 6799 annotated sen-
tences that cover only 7 out of the 11 varieties
evaluated in the shared tasks (there are no develop-
ment samples for Emilian, Neapolitan, Ladin, and
Tarantino). The test set, on the other hand, consists
of 11 090 samples, and covers only 8 out of the 11
varieties (Piedmontese, Sicilian and Sardinian are
not represented). The composition of the test set
was disclosed only after the end of the competition.

3.2 Data Exploration

Since the training data don’t come from a well-
known documented dataset, a preliminary explo-
ration has been initially conducted to gain useful
insight about them. This investigation highlighted
a huge imbalance between classes as shown in Fig-
ure 2, since the 3 most represented dialects (Vene-
tian, Piedmontese and Lombard) account for al-
most three quarters of the articles in the training
data. On the other hand, other dialects (such as Friu-
lian, Emilian-Romagnol, and Ligurian) are heavily
under-represented.

Hence, imbalanced data seems to represent a
major challenge and should be addressed during
the development and evaluation of the model.

2.0%

4.8%

25.0%1.4%
4.5%

2.9%

18.7%

3.4%

8.9% 25.8%

2.7%

Emilian
Neapolitan
Piedmontese
Friulan
Ladin
Ligurian
Lombard
Tarantino
Sicilian
Venetian
Sardinian

Figure 2: Percentages of Wikipedia articles per variety.
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3.3 Pre-Processing of the Wikipedia Dumps

The training data is provided in the form of raw
Wikipedia dumps and, as highlighted by the or-
ganizers, a careful pre-processing is an important
part of the task. In this section, we describe how
we extracted and cleaned samples from the raw
Wikipedia dumps.

Document extraction The extraction of
Wikipedia documents and an initial pre-processing
step is performed using WikiExtractor (Attardi,
2015), a Python script that extracts and cleans
text from Wikipedia database dumps. The use of
this particular tool for extraction was suggested
by the organizers of the shared task. However, a
careful qualitative analysis of the resulting text
samples pointed out the need for more fine-grained
processing of training samples.

Document cleaning Firstly, we remove all the
HTML tags (e.g. <br>, &amp;, etc.) and
Wikipedia meta information (e.g. contributors,
timestamps and comments) that were not success-
fully filtered out by WikiExtractor. Then, we ob-
serve that most of the documents of length < 50
characters are not valuable samples, as they come
from documents for which WikiExtractor failed to
extract any text at all or from pages that contain
simple and repetitive name entity definitions (e.g.
small towns or years articles). Hence, we trim them
from the training dataset. Moreover, we observe
that the training set contains duplicate documents
(e.g. Web domain pages in Venetian Wikipedia).
Therefore, we remove all the duplicate documents
from the dataset.

Sentence splitting Finally, since the task evalu-
ates dialect classification at sentence level, we split
all the documents into sentences using the Italian
spaCy tokenizer (Honnibal and Montani, 2017).
After the splitting, a further filtering is applied to
the sentences to trim a huge set of almost-identical

Pre-processing step # samples
Original documents 265 016

remove length < 50 244 688
remove duplicates 218 670

sentence split 698 837
sentence cleaning 382 859

Table 1: Number of training samples after each
pre-processing step.

sentences from the training data (e.g. sentences
about municipalities, cities or years that occur thou-
sand of times and differ only in the entity name).
Moreover, we fix some transcription mismatches
between training and validation samples (e.g. Vene-
tian Wikipedia articles use the letter "ł" to tran-
scribe particular phonemes, which is, on the other
hand, transcribed as a standard "l" in the validation
samples).

Pre-processing results The exact number of sam-
ples after each pre-processing step is shown in Ta-
ble 1, while a representation of the distribution of
the input sentences over all the 11 dialects can be
found in Figure 3. It can be observed from the latter
that the distribution of training samples is slightly
more uniform compared to the initial Wikipedia
document distribution. Nonetheless, the substantial
class imbalance between different languages and
dialects persists.
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Figure 3: Number of sentences in the training set for
each of the eleven dialects included in the task.

4 Methods

4.1 Linear Models
Linear models are still a widely used tool in the
context of automatic language identification. We
experiment with three different models, namely
Linear Support Vector Machines (SVM), Naïve
Bayes classifiers (NB) and Logistic Regression
(LR). The models are trained on scaled word-level
TF-IDF feature vectors. We also experiment with
models trained on character-level n-grams TF-IDF,
word-level n-grams TF-IDF, or other type of text
embedding (e.g. hashing vectorizers) and scaling
techniques. Dimensionality-reduction techniques
to reduce the initial embedding dimensions are also
investigated. All the models that we use in these ex-
periments are off-the-shelf models from the Python
library scikit-learn (Pedregosa et al., 2011).
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4.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a pow-
erful modular approach for text classification
(Zhang et al., 2015). We implemented both word-
based and character-based networks. In this section,
we introduce the design of the character-level net-
work. Besides replacing an alphabet of characters
with a vocabulary of words, the word-level CNN
approach is identical. The encoding is performed
extracting an alphabet of size m from the train-
ing data. Each input sentence is transformed into
a sequence of m-sized vectors with fixed length
l0. Any character exceeding length l0 is ignored,
and any character that is not in the alphabet, in-
cluding blank characters, is encoded as an all-zero
vector. In our particular dataset, the alphabet ex-
tracted from the training set consists of m = 989
characters. We set l0 = 60 and add 0 padding if
the sequence is shorter than 60 characters.

Table 7 describes in detail the CNN architec-
ture. Both character-level and word-level networks
are 3 layers deep, with 2 convolutional layers and
1 fully-connected layer. ReLU function is then
used as an additional step on top of convolution.
We choose max-pooling to represent features map
to Pooled Feature Map, which helps reducing the
number of parameters and prevent overfitting. In
the fully-connected step, we combine all input fea-
tures resulting from the last hidden layer to predict
the classes using a softmax function.

4.3 Transformers
The use of transformer-based models has been
proved effective even in the context of language
identification. In particular, the fine-tuning of large
pre-trained language models such as BERT (Devlin
et al., 2019) yielded competitive performances in
the previous iteration of VarDial Evaluation Cam-
paign (Zaharia et al., 2020). Following this line
of work, we experiment with the fine-tuning of six
HuggingFace BERT models:

• AlBERTo (Polignano et al., 2019), an Italian
uncased BERTBASE model pre-trained on Ital-
ian tweets.

• dbmdz-cased/uncased (Schweter, 2020), an
Italian BERTBASE model pre-trained on Ital-
ian Wikipedia dump and various texts from
the OPUS corpora.

• dbmdz-xxl-cased (Schweter, 2020), an Ital-
ian BERTLARGE model pre-trained on Italian

Wikipedia dump and various texts from the
OPUS corpora and OSCAR corpus.

• mrm8488-bert (Romero, 2020), a dbmdz-
cased with an additional fine-tuning on Italian
SQuAD for Q&A, to measure the impact of
additional tuning on downstream tasks.

• multilingual BERTBASE (Devlin et al., 2019),
pre-trained on a corpora of 102 languages.

For all the encoders, a linear classifier is added on
top of the CLS token, and the resulting model is
then fine-tuned for two epochs on the identification
task. A non-extensive hyper-parameter tuning is
performed on the best-scoring model, re-training it
with both frozen and non-frozen embeddings and
with variable maximum sequence length. The use
of class weights to counter class imbalance, as well
as different classifier layers, are also investigated.

5 Results and Discussion

5.1 Linear Models
Initially designed and implemented as baseline
references, linear models ended up achieving the
greatest performances among all the investigated
methods. Table 2 shows the results for this category
of approaches.

For conciseness, we only report validation scores
for models trained on word-level TF-IDF embed-
dings scaled to zero mean and unit variance. Other
embedding (hashing vectorization) and scaling (no
scaling, robust scaling) techniques don’t show any
performance improvement. Projecting the original
embeddings to a lower-dimensional features space
with Principal Component Analysis also results in
an overall performance decay.

Among the implemented models (SVM, NB and
LR), LR is the one that achieves the best perfor-
mance, with a F1-micro score of 0.8957. Thus, we
proceed with an extensive hyper-parameter search
for this specific method.

Model Embedding F1-micro
Linear SVM tf-idf 0.8308
Naïve Bayes tf-idf 0.8467
Logistic Regression tf-idf 0.8957

+ SAG solver 0.9295
+ class weights 0.9445

LR ensemble tf-idf 0.9424

Table 2: Linear model evaluation on the validation set.
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We find that the use of SAG solver (Schmidt
et al., 2017) and class weights (to counter the
training set class imbalance, defined using cross-
validation) further increases the validation score,
reaching a final F1-micro of 0.9445. Table 3 shows
a more detailed evaluation of the model on single
dialects. Finally, we implement an ensemble of
LR models trained with different class weights (in-
versely proportional to class frequency and cross-
validated) and random seeds. However, the ensem-
ble doesn’t improve the validation score.

Dialect Precision Recall F1 Support
PMS 0.95 0.99 0.97 1191
FUR 0.99 0.99 0.99 676
LIJ 0.96 0.99 0.98 617

LMO 0.92 0.93 0.92 1231
SCN 0.96 0.96 0.96 1371
VEC 0.95 0.89 0.92 1236
SC 0.93 0.85 0.89 477
acc. 0.94 6799

w. avg 0.95 0.94 0.95 6799

Table 3: Best LR model evaluation on single validation
dialects. The last two rows report the overall model
accuracy and weighted average of each metric.

We speculate that the great performances
achieved by this method depend on the consistent
linguistic variety between the evaluated Italian di-
alects and languages, which allows for a neat sepa-
ration of the different classes in the feature space
induced by TF-IDF. Moreover, an important ad-
vantage of LR model might be, surprisingly, its
simplicity. The number of parameters learned by
the model is relatively small (∼5 million) com-
pared to other investigated models (BERT has 110
million parameters). This might prevent the model
from overfitting the training data and improve its
ability to generalize to out-domain sentences.

On the other hand, the LR approach shows
some intrinsic limitations that are difficult to over-
come, namely the impossibility of handling out-of-
vocabulary words (OOV) and the missing dialects
in the validation set, which might lead to an overfit
of the validation dialects.

5.2 CNN

The details of implemented models are provided
in Appendix A section with the table 7. By im-
plementing different sets of hyper-parameter, we
aim to find a better model architecture and train-

ing regime for classifier tasks. Several hyper-
parameters, including learning rate, dropout, kernel
sizes, batch sizes, embedding size, are taken into
consideration in our experiment.

Table 4 shows the classification results of two
CNN models over a different number of epochs.
The best performance is achieved from the CNN
model tokenized at character-level trained over 20
epochs. In general, there is no significant differ-
ence between CNN char-level and word-level im-
plementation. On the other hand, the training for
the word-level implementation is remarkably more
time-expensive compared to the same setting run-
ning on the CNN char-level. The computational
cost difference between the two approaches might
be explained by their different vocabulary size. The
vocabulary size of CNN word-level models and
CNN character-level models are shown in the table
7 and are respectively 989 and 788, 197 tokens.

The best CNN model achieves a F1-micro score
of 0.8605 on the validation data, showing a signifi-
cant performance gap compared to linear models
results mentioned in §5.1.

We identify two main reasons why Convolu-
tional Neural Network could not perform better
than other linear classifiers. Firstly, the noncompet-
itive result of CNN might be the consequences of
how text is embedded. We encode text in character-
level/word-level with different embedding sizes.
However, a single character, i.e., 1-gram, is the
only way to encode the text. Meanwhile, in lin-
ear models we encoded texts with different con-
figurations, including word levels, character levels
and characters within the boundary of word level.
Secondly, CNN might be more complicated than
classifier methods to handle our dataset. In general,
a powerful model tends to treat simple problems
with complicated architecture. This leads to the
over-fitting issue, which indicates that our model is
too complex for the problem that it is solving. Con-
sequently, the model resulting from CNN performs
poorly on the unseen data.

Encoding Epochs F1-micro
char-level 5 0.8421
char-level 10 0.8555
char-level 20 0.8605
word-level 5 0.8299
word-level 10 0.8513

Table 4: CNN models evaluation on the validation set.
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5.3 Transformers

Table 5 shows the evaluation for the 6 different
pre-trained BERT (Devlin et al., 2019) investigated.
In general, all models yield similar performances,
fluctuating from approximately 0.87 to 0.89 of F1-
micro score, while there is a significant difference
in the training time between dbmdz-xxl-cased and
the others. However, dbmdz-xxl-cased achieves the
best identification performance, with an F1-micro
score of 89.07%.

In the second phase, we perform a more de-
tailed investigation on the best-scoring model built
on dbmdz-xxl-cased. Table 8 in Appendix B
shows models evaluation with several set of hyper-
parameters. Class weights, sequence max lengths,
and freezing embeddings are investigated.

Concerning class weights, both validation
weights used in LR and proportionally-inverse
weight are investigated to reduce the class imbal-
ance issue. Yet, both weights slightly decrease
model performances. In particular, class weights
result in a score decrease of 0.43%.

Then, we observe that freezing the CLS embed-
dings for the model, i.e. training only the linear
classifier and not the stacked encoding layers dur-
ing the fine-tuning, leads to a significant decrease
in the validation score. We hypothesize that, due to
the significant difference between Italian language
and its dialects, BERT model cannot be used as
feature extractor without an additional fine-tuning.

Finally, we observe that increasing the max
length of each sentence from 50 to 70 improved
the identification score. Setting a sequence’s max-
imum length is important because it decides how
much information the model can extract. However,
an increased training cost is the direct drawback of
this approach. Table 8 shows that the training time
increased more than 35%, from 56 minutes to 76
minutes, with the same setup.

Model name F1-micro Train time
AlBERTo 0.8850 0:58:01

dbmdz-cased 0.8813 0:57:33
dbmdz-xxl-cased 0.8907 1:45:51
dbmdz-uncased 0.8784 0:57:55
mrm8488-bert 0.8829 0:57:22

multilingual-BERT 0.8711 0:57:23

Table 5: Different pre-trained BERTs evaluation.
Training times refer to a 2-epochs training on GPU, in

the same settings described in Appendix C.

The visualization of CLS embeddings (described
in §6.2) pushed us to further experiment with dif-
ferent classifiers trained on top of them. However,
none of the investigated methods (MLPs, bagging
and boosting) achieved noticeable improvements
on the default linear classifier.

Team Model Accuracy F1-micro
SUKI - 0.9053 0.9007

Phlyers - 0.6817 0.6943

ETHZ
LR 0.6718 0.6880

BERT 0.5759 0.5760
LR** 0.6952 0.7058

Table 6: Final ITDI shared leaderboard.

5.4 Shared Task Results
The final results of ITDI task are shown in Table
6. In our case, the best submission ranked 5th out
of 9 total submissions with an F1-micro score of
0.6880. This submission was produced using the
best LR model from §5.1, trained on both train-
ing and validation data together. However, this
solution could have been further improved with a
better choice of class weights. Inspired by (King
and Zeng, 2001), we defined alternative weights as
wc = τ/ȳ, where τ is the fraction of class c in the
population (here supposed uniform across all the di-
alects), and ȳ is the fraction in the training sample.
With this choice of weights, our late submission
(**, not ranked) achieved an F1-micro of 0.7058.
Predictions from the best-performing BERT model
(described in §5.3) achieved an F1-micro of 0.5760.
The submission produced with the CNN was with-
draw from the competition because of a minor bug
in the prediction shuffling. Detailed identification
scores for every class are included in Appendix D.

For all the models, a huge gap between valida-
tion and test score can be clearly observed. This
discrepancy can be mainly attributed to two dialects
that were not included in the validation set but were
evaluated in the test, namely Tarantino and Ladin.

We speculate that Ladin, in particular, caused
the greatest decay in our final score. Its low re-
call, together with the low accuracy registered for
Venetian and Lombard, points out a degenerate be-
haviour of the classifier, which seems to classify
most of Ladin samples as one of the other two di-
alects, hence lowering all the respective F1 scores.
On the other hand, Tarantino was probably intrin-
sically difficult to discriminate, as all the teams
achieved poor performances on its identification.
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6 Analysis

6.1 Error Analysis

In this section, we present a more fine-grained
analysis of the incorrect predictions for our best-
performing model, Logistic Regression.

Firstly, we investigate the most confounded di-
alects and languages on the development set. The
resulting confusion matrix is reported in Figure 4.
It is possible to observe how the greatest source
of confusion for the models is represented by two
pairs of dialect, Lombard-Venetian and Sardinian-
Sicilian. In fact, 6.5% of Venetian sentences (81
sentences) are classified as Lombard, and 7.9%
of Sardinian sentences (38 sentences) are labeled
as Sicilian. This, together with the trade-off be-
tween the performances on the exact same two
pairs of dialects (observed during the fine-tuning
of the model), corroborates the hypothesis of an
intrinsic difficulty in the discrimination between
the two pairs of dialects. We speculate that this phe-
nomenon might origin in a consistent number of
shared lexical features, mainly due to geographical
and cultural factors. Furthermore, this behaviour
is observed also for CNN and BERT models (as
shown in the confusion matrices included in Ap-
pendix E), confirming its model-agnostic nature.

Figure 4: Confusion matrix on the development set
predictions for Logistic Regression.

Finally, we leverage the simple and explainable
nature of Logistic Regression to investigate which
features contribute the most to wrong classifica-
tions (which will be referred to as confounding
features).

(a) el (b) ghe

(c) lu (d) perché

Figure 5: Distribution of some selected confounding
features across dialects, both in the training (blue) and
validation (orange) sets.

In Multinomial Logistic Regression, for each
class yk the model computes a log-odds ratio
log p/(1− p) (also known as logit(p)) of the prob-
ability p that sample X belongs to class yk as

logit yk(p) = βk,0 +
N∑

i=1

βk,iXi (1)

where X is the input vector and β is the learned
coefficients vector. Hence, the contribution ψk of
each feature Xi to the odds that the sample X is
classified as yk equals to

ψk(Xi) = eβiXi (2)

In our analysis, we extract for each wrongly classi-
fied sample all the the confounding features with
a contribution to the wrong class ψwrong > 1.2,
that is all the features that increased the odds of the
wrong class by more than 20%.

As expected, most of these features are either
Italian words (for example no, perché, non, con,
chi) or words shared between the confounded di-
alects (for example cossa, lu, me, vegnir). In partic-
ular, we further investigate the distribution of these
words in the training and validation dataset. The
result of this analysis shows a considerable discrep-
ancy in the distributions for most of the studied
features, reported for some of them in Figure 5.

We therefore speculate that the difference across
in-domain and out-domain vocabulary distribution
is one of the main issues that cause misclassifica-
tion of the model.

92



6.2 Visualization

To gain additional insights on the different em-
bedding techniques used by the investigated meth-
ods, we try to visualize their respective high-
dimensional feature spaces. In particular, we
exploit two well-known dimensionality-reduction
techniques, Principal Component Analysis (Pear-
son, 1901) and t-distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten and Hinton,
2008), to obtain 2-dimensional projections of the
validation embeddings.

Technique PCA is initially used to project the
TF-IDF embeddings to a 1000-dimensional space
(preserving 68.71% of the information). Then, t-
SNE is applied to these projection to obtain a final
two-dimensional visualization. The combination
of PCA and t-SNE obtained slightly better visual
results compared to their independent application.
In the case of CNN and BERT the PCA step is
omitted, as the original embeddings (linear layer
input for CNN and CLS token for BERT, both ex-
tracted from fine-tuned instances of the respective
best models) have already a limited number of di-
mensions 7728 and 768 respectively. The results
of these visualizations are presented in Figure 6.

Results In TF-IDF visualization, it’s possible to
identify one cluster for each dialect (with the ex-
ception of Sardinian). The clusters are not well-
separated when compared to BERT visualization,
but this might be due to the loss of information in-
troduced in the projection from an extremely high-
dimensional space (3 orders of magnitude higher
than BERT) to the 2-dimensional space.

CNN embeddings are on the other hand chaotic.
It is possible to identify some clusters in the pro-
jected space, but they are not as clear as for the
other two models.

The visualization for BERT embeddings is, on
the other hand, particularly meaningful. The clus-
ters for different dialects are clearly outlined. More-
over, it’s interesting to observe how the most con-
fused dialects from §6.1 (Lombard-Venetian and
Sardinian-Sicilian) effectively show overlapping
embeddings in the hyperspace.

7 Conclusion

This paper presented the findings of our team at
the Vardial 2022 ITDI shared tasks. The Logistic
Regression model achieved the best results, outper-
forming the other two models and ranking within
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(a) TF-IDF embeddings.
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(b) CNN embeddings.
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(c) BERT embeddings.

Figure 6: Visualization of the feature space for the dif-
ferent embedding techniques.

the top 5 submissions. Although CNN and BERT
approaches have not yielded remarkable results,
the experiments produced valuable insights. In par-
ticular, we observed no notable difference in the
model performance of character-based and word-
based CNN, of which the vast vocabulary size is
more costly in terms of training time. On the
other hand, BERT models performed weakly in
this cross-domain language identification task, gen-
eralising less than linear models.

In the future, models’ performances could be
increased by calibrating different class weights on
a validation set comprehensive of all the dialects
and languages, and also a more extensive hyper-
parameters fine-tuning for the neural models could
be carried out. This could, eventually, increase the
cross-domain adaptability of our models.
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mann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Dirk Speelman, Antal van den
Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank
Jain. 2018. Language identification and morphosyn-
tactic tagging: The second VarDial evaluation cam-
paign. In Proceedings of the Fifth Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial 2018), pages 1–17, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
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Appendix A CNN Model Summary

In this Appendix section, we provide a more detailed insight on the CNN model structure. Table 7 reports
the summary of both character-level and word-level networks.

Tokenization CNN Model Summary

Character
level

(embeddings): Embedding(989, 512)

(conv2d): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 1), padding=(1, 0))

(max_pool2d): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(conv2d_2): Conv2d(16, 16, kernel_size=(6, 6), stride=(2, 1), padding=(1, 0))

(max_pool2d_2): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(linear): Linear(in_features=7728, out_features=12, bias=True)

Word
level

(embeddings): Embedding(788197, 512)

(conv2d): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 1), padding=(1, 0))

(max_pool2d): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(conv2d_2): Conv2d(16, 16, kernel_size=(6, 6), stride=(2, 1), padding=(1, 0))

(max_pool2d_2): MaxPool2d(kernel_size=(6, 12), stride=(2, 1), padding=(1, 0),
dilation=1, ceil_mode=False)

(linear): Linear(in_features=7728, out_features=12, bias=True)

Table 7: CNN Model Summary

Appendix B Evaluation of BERT dbmdz-xxl-cased

In this Appendix section, we provide the evaluation results for the best-scoring BERT model, dbmdz-xxl-
case, with several set of hyper-parameters. Results are shown in Table 8.

Weights Embedding Max length F1-micro Training time
No weights trainable 50 0.8907 1:45:51

LogReg cross-validated weights frozen 50 0.2023 0:17:00
LogReg cross-validated weights trainable 50 0.8866 0:56:00
LogReg cross-validated weights trainable 70 0.8931 1:16:47

Inverse weights trainable 50 0.8907 0:55:59

Table 8: Experiments with dbmdz-xxl-cased BERT
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Appendix C Run-time Efficiency

In this Appendix section, we present a simple evaluation on the profiled run-time efficiency of the proposed
models. The Logistic Regression model is trained locally on CPU (with 8 concurrent workers), with an
Apple M1 @ 3.2 GHz and 16GB memory. On the other hand, the neural models (CNN and BERT) were
trained on Google Colab Nvidia K80 @ 0.82GHz and 12GB memory. The training for LR required 73s,
extremely less than to 2-epochs BERT (6351s) and 20-epochs CNN (6480s).

The inference times were elapsed from models loaded in Google Colab, with a Intel(R) Xeon(R) CPU
@ 2.20GHz and 13GB of memory. Inference on the test set (11087 samples) took 0.45s for LR, 1.37s for
CNN and 11.87s for BERT.

Appendix D Shared Task Submission Results in Detail

In this Appendix section, we report the detail test evaluation results for Logistic Regression (Table 9),
improved Logistic Regression (Table 10) and BERT (Table 11) submissions.

Dialect Precision Recall F1-micro Support
EML 0.9721 0.7176 0.8257 825
FUR 0.942 0.969 0.9553 1323
LIJ 0.9226 0.8203 0.8685 2282

LLD 0.9362 0.26 0.407 2200
LMO 0.5365 0.9608 0.6885 689
NAP 0.8758 0.7034 0.7802 2026
TAR 0.6047 0.1725 0.2684 603
VEC 0.377 0.8244 0.5174 1139

weighted average 0.8254 0.6718 0.6880 11087

Table 9: LR test results for single languages and dialects.

Dial. Prec. Rec. F1-micro Supp.
EML 0.9455 0.7782 0.8537 825
FUR 0.8945 0.9743 0.9327 1323
LIJ 0.8569 0.8554 0.8561 2282

LLD 0.9312 0.3568 0.5159 2200
LMO 0.4687 0.9681 0.6316 689
NAP 0.8364 0.7621 0.7975 2026
TAR 0.4833 0.1924 0.2752 603
VEC 0.4313 0.6260 0.5107 1139

w. avg 0.7908 0.6952 0.7058 11087

Table 10: Improved LR test results for single languages
and dialects.

Dial. Prec. Rec. F1-micro Supp.
EML 0.9489 0.7661 0.8478 825
FUR 0.9542 0.9448 0.9495 1323
LIJ 0.9081 0.7533 0.8235 2282

LLD 0.9727 0.0486 0.0926 2200
LMO 0.5833 0.9753 0.7300 689
NAP 0.8830 0.4654 0.6096 2026
TAR 0.7455 0.0680 0.1246 603
VEC 0.3176 0.8964 0.4690 1139

w. avg 0.8352 0.5759 0.576 11087

Table 11: Improved LR test results for single languages
and dialects (late submission, not ranked).

97



Appendix E Confusion Matrices for CNN and BERT Models.

In this Appendix section, we include the confusion matrices for CNN and BERT predictions on the
development set (Figure 7).
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Figure 7: CNN (left) and BERT (right) confusion matrices.
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Abstract

We present our contribution to the Identifica-
tion of Languages and Dialects of Italy shared
task (ITDI) proposed in the VarDial Evalua-
tion Campaign 2022 (Aepli et al., 2022), which
asked participants to automatically identify the
language of a text associated to one of the
language varieties of Italy. The method that
yielded the best results in our experiments was
a Deep Feedforward Neural Network (DNN)
trained on character ngram counts, which pro-
vided a better performance compared to Naïve
Bayes methods and Convolutional Neural Net-
works (CNN). The system was among the best
methods proposed for the ITDI shared task.
The analysis of the results suggests that simple
DNNs could be more efficient than CNNs to
perform language identification of close vari-
eties.

1 Introduction

In this paper, we present the submissions of Team
Phlyers to the Identification of Languages and Di-
alects of Italy (ITDI) shared task of the VarDial
Evaluation Campaign 2022 (Aepli et al., 2022).
The campaign is part of a conference series, the
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial), which has reached its ninth
edition, six of which have included several shared
tasks (Zampieri et al., 2017, 2018, 2019; Găman
et al., 2020; Chakravarthi et al., 2021; Aepli et al.,
2022). The shared tasks involve the categorization
of text documents according to their language vari-
ety, typically across different domains. Language
identification has received attention in the literature
because it is important in the context of machine
translation and categorization of social media posts,
and several approaches to perform it have been pro-
posed (House and Neuburg, 1977; Dunning, 1994;
Bergsma et al., 2012; Lui and Baldwin, 2014; Zu-
biaga et al., 2016; Jauhiainen et al., 2019c). Most
of the VarDial shared tasks invite participants to

Figure 1: A map of the language varieties of Italy, from
Pellegrini (1977).

.

develop language identification systems in contexts
characterized by minimal diversification of the lan-
guages involved and low-resource settings, often
with lack of data for the domain of interest.

In the next sections, we briefly describe our sub-
missions for the ITDI shared task.1

2 ITDI

The ITDI task involves the classification of sen-
tences from eleven different language varieties
from Italy. Five of these varieties - Piedmontese
(pms), Lombard (lmo), Ligurian (lij), Emilian-
Romagnol (eml), Venetian (vec) - are part of
a Northern group composed of Gallo-Italic and
Venetan varieties; they are represented in yellow
in the Carta dei Dialetti Italiani, the reference
map drawn by Pellegrini (1977) using a set of
isoglosses that define the boundaries of certain
morpho-phonological properties. Two of the vari-
eties, Neapolitan (nap) and Tarantino (roa-tara), are
part of the Southern group, in pink. Sicilian (scn)

1The material developed for this work is available at
https://github.com/AndreaCeolin/VarDial2022.
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is the only representative of the Extreme Southern
group, in purple. Friulian (fur) and Ladin (lld) are
part of the Northeastern Rhaeto-Romance group,
although Pellegrini keeps them separate (in orange
and dark green). Finally, Sardinian (sc) is repre-
sented in brown.

Training data is provided in the form of
Wikipedia dumps containing a total of 233K sen-
tences, while evaluation data is provided in the
form of approximately 7K short sentences for seven
out of the eleven languages. The test set contains
sentences from a subset of the given language va-
rieties, and the classifier is evaluated on sentence
level.

An inspection of the development data clearly
shows that the sentences are not taken from
Wikipedia articles, but from other sources, like
literary texts or folktales (see Table 1 for some
examples). The sentences in the test dataset also
appear to be clearly different from the kind of sen-
tences one expects to find in Wikipedia articles,
and we assume that they were taken from domains
similar to those used to collect the development
sentences.

The fact that the training and validation/testing
data come from different domains implies that the
task is essentially a cross-domain classification
task.

3 Methods

The state-of-the-art methods for language identifi-
cation are typically inspired by Support Vector Ma-
chines (SVM) models (Goutte et al., 2014; Çöltekin
and Rama, 2017; Medvedeva et al., 2017; Kreutz
and Daelemans, 2018; Benites de Azevedo e Souza
et al., 2018; Wu et al., 2019; Çöltekin, 2020) and
multinomial Naïve Bayes (NB) models (Barbaresi,
2016; Clematide and Makarov, 2017; Jauhiainen
et al., 2019a, 2020; Ceolin and Zhang, 2020; Jauhi-
ainen et al., 2021b), that are trained on features
derived from word and character ngrams.

Deep learning methods have also been success-
fully applied to language identification tasks (Cian-
flone and Kosseim, 2016; Jaech et al., 2016; But-
naru and Ionescu, 2019; Hu et al., 2019; Tudoreanu,
2019), and in particular several of the most recent
VarDial shared tasks have been addressed using
transformer models (Bernier-Colborne et al., 2019;
Popa and Stefănescu, 2020; Scherrer and Ljubešić,
2020; Zaharia et al., 2020; Jauhiainen et al., 2021b;
Zaharia et al., 2021).

While last year we decided to use Convolutional
Neural Networks (CNNs) to address the shared
tasks (Ceolin, 2021), this year we decided to focus
on Deep Feedforward Neural Networks (DNNs),
since they represent an alternative approach to lan-
guage identification.

The reason for this shift of focus is that while
CNNs have been the most popular neural architec-
ture used for language identification (Zhang et al.,
2015; Conneau et al., 2016; Kim et al., 2016; Jaech
et al., 2016), following their success in tasks like
image classification and sequence processing, lan-
guage identification is quite different from such
tasks.

While in domains like image classification and
sequence processing hard-coding features is not
straightforward, in language identification the cues
for discriminating among classes are usually words
or orthographic/morpheme sequences, which can
be directly extracted and used as input features for
a simple DNN in the form of word and character
ngrams of different size. A CNN instead performs
feature extraction indirectly, using fixed-size filters
applied to input sequences that have to be of the
same length (which is rarely the case for texts), and
therefore is less flexible.2

For these reasons, comparing these two different
approaches can be informative to decide whether
CNNs provide any advantage over regular DNNs
for language identification.

3.1 DNN

The DNN we used has two hidden layers of size
50, and is trained on a term-frequency matrix of
20K character ngrams in the window [1-5] derived
from the training sentences.3 The DNN is trained
with a learning rate of 0.0001 and a batch size of 4
for 20 epochs. The number of parameters is ≈1M.
The hyper-parameters and the size of the network
were manually selected based on the performance
on the evaluation set across different runs. The
architecture is visualized in Figure 2.

3.2 CNN

The CNN has two 1-D convolutional layers, one
with 256 filters and one with 128 filters, both of size
3 with stride 1, each followed by a max pool layer

2Google’s LID system, CLD3
(https://github.com/google/cld3), also uses a DNN trained on
character ngrams rather than a CNN.

3The term-frequency matrix has been extracted using the
CountVectorizer method in sklearn.
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Dataset Label Text Source
train vec El Yucatán el ze uno dei 31 Stati del Mèsego, situà inte

el sud-est del teritòrio, inte ła parte nord de l’omònema
penìzoła. El confina verso nord col Golfo del Mèsego,
verso est col Stato de Quintana Roo e verso sud-òvest
col Stato de Campeche.

vec.wikipedia.org, “Yucatán"

train scn Heaven For Everyone è na canzuni scritta ra Roger Tay-
lor e pubbricatu nto 1988 da li The Cross comu singulu
trattu ra l’album Shove It, ru stissu annu.

scn.wikipedia.org, “Heaven For Everyone"

dev vec Da seno a mi me par
Che no ghe sia rason de barufar

Iliad (version by Luigi de Giorgi)

dev scn e Mirimì chi aiutava nnâ mandria na picuredda a fig-
ghiari, lassau l’opira a mezzu e si misi a curriri chî manu
ntê capiddi, non sapennu chi fari

Storia di Pietracucca (Francesco Lanza)

Table 1: Example sentences from the training and evaluation data. We can see that while the training data contains
Wikipedia articles which look like direct translations from other languages, the evaluation data contains sentences
from other sources, like poetry or short stories.

(with a window of size 3). Then, it is followed by a
fully connected layer of size 50, and is trained with
a learning rate of 0.0001 and a batch size of 4 for
20 epochs. The number of parameters is ≈250K.
The hyper-parameters and the size of the network
were manually selected based on the performance
on the evaluation set across different runs. The
architecture is visualized in Figure 3. Each input
sentences was truncated at 160 characters.

3.3 NB

We also decided to use a NB system as a baseline.
The system is trained on the same term-frequency
matrix of character ngrams that was used to train
the DNN, with alpha=1.

All models were run on Google Colab, with
1 GPU, using the sklearn and tensorflow libraries.

4 Evaluation

This section summarizes our contributions to the
ITDI shared task and the evaluation of our models.

4.1 In-domain Classification

One of the main challenges of the ITDI shared task
was to find a proper way to evaluate the perfor-
mance of the classifiers given that the evaluation
set and the test set were not expected to contain
the same languages. In a first experiment, we tried
a simple in-domain classification task, using only
the ≈7K sentences in the evaluation dataset for
the seven languages represented in it (henceforth,
‘gold’ languages) divided in training/test sets using
a 80:20 split. We applied minimum normalization:
the text was converted to lowercase and numbers
and punctuation were removed, with the exception

Figure 2: This is the architecture of the DNN model
trained for the task. Learning rate: 0.0001, Batch: 4,
Epochs: 20. Each hidden layer has size=50.

Figure 3: This is the architecture of the CNN model
trained for the task. Learning rate: 0.0001, Batch: 4,
Epochs: 20. The first convolutional layer has 256 filters
of size 3x1, while the second one has 128 of them.
Stride: 1. Each layer is followed by a max pool layer,
with a window of size 3x1. The fully connected layer
has size=50.
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Model Micro F1 score Macro F1 score
DNN 0.994 0.994
Naïve Bayes 0.983 0.984
CNN + data aug. (10ep.) 0.982 0.983
CNN 0.977 0.978

Table 2: Performance of the models on the evaluation
set, in-domain classification. The DNN is the model that
yields the best performance when using the evaluation
set for both training and testing.

of "’", that in these varieties can represent elision
of vowels or syllables, and thus is informative. As
we can see from Table 2, all models yielded very
good results, with the DNN performing best.

We also tried to improve the performance of the
CNN by augmenting the training data. Two copies
of each sentence were added to the training set
with their words shuffled, following the strategy
described in Ceolin (2021). Indeed, the strategy
allows the network to reach convergence in just 10
epochs and slightly increase its accuracy.4 Inter-
estingly, increasing the number of parameters of
the CNN or the number of epochs did not have the
same effect.

These results suggest that the ‘gold’ languages
are well distinguished, and that the amount of sen-
tences in the evaluation set is sufficient to train a
robust classifier, assuming that the sentences in the
evaluation and test sets belong to the same domain.

4.2 Cross-domain Classification

The second experiment we attempted was a cross-
domain classification task. For training, we used a
balanced sample of 20K sentences from the 233K
training sentences extracted from the Wikipedia
dumps using the script recommended by the orga-
nizers (Attardi, 2015), while for testing we used
the 7K evaluation sentences.5 In this case, a heav-
ier normalization was required, since the texts
contained roman numerals, several proper names
of cities/regions, and many different hyperlinks,
which had to be removed. From Table 3, we can see
that the performance dropped significantly, espe-
cially for the neural networks. In particular, many
of the predictions (up to 10%, depending on the

4We explained this behavior with the fact that this pre-
vents the network from focusing on character sequences at
word boundaries, i.e. involving space characters in the mid-
dle (Ceolin, 2021), which are not informative and can lead to
overfitting.

5The only reason why we used a subset of the data was
to avoid RAM issues. However, we noticed that using more
training data did not have any noticeable effect on the results.

Model Micro F1 score Macro F1 score
Naïve Bayes 0.861 0.554
DNN 0.791 0.520
CNN 0.718 0.471

Table 3: Performance of the models on the evaluation
set, cross-domain classification. The Naïve Bayes sys-
tem is the model that yields the best performance when
using the training set for training, and the evaluation set
for testing.

model and the run) contain one of the four lan-
guages which are not represented in the evalua-
tion set (henceforth, ‘silver’ languages), and so the
macro F1 score is quite low.6

4.3 Combining Cross-domain and In-domain
Classification

Since the cross-domain classification task turned
out to be much harder than the in-domain task, we
decided to run a third experiment that was similar to
the first one, which relied on the evaluation set for
both training and testing. However, after dividing
the evaluation set into training/testing sets using a
80:20 split, we augmented the training set using the
sentences from the Wikipedia dumps for the four
‘silver’ languages, in order to cover all languages
in the training phase, and we retrained the models.
The results are in Table 4.

In this setting, the performance is much better,
which means that using the in-domain sentences
from the evaluation set instead of the Wikipedia
sentences (whenever possible) has a positive effect
on the systems. In particular, the improvement in
the macro F1 score is caused by the fact that these
systems are more conservative when it comes to
the four ‘silver’ languages: only 1% of the test
sentences are assigned to a label that is not part of
the evaluation set in all models.

In particular, the DNN and NB systems turned
out to be more reliable than the CNNs, both the
regular one and the one trained with data augmen-
tation. Interestingly, data augmentation had a clear
positive effect on the CNN model (2% for the mi-
cro and 9% for the macro F1 score), but it was still
not sufficient to make the CNN reach the accuracy
of the other systems.7

6In this case we did not try to augment the data for the
CNN because the operation was not legitimate, given our
access to more training data.

7We note that these effects could have been overestimated
because, contrary to the in-domain experiment, variation in
text length was higher with Wikipedia articles, and so shuffling
sentences had the effect of exposing the network to words that
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Figure 4: Evaluation of the DNN model on a training set
composed of sentences from both the evaluation set (for
the seven ‘gold’ languages) and the Wikipedia dumps
(for the four ‘silver’ languages). Training and validation
loss converge after 10 epochs and then decrease together.
Accuracy improves up to the 13th/14th epoch, and then
stays constant.

For these reasons, we decided to select the DNN
as the model of choice for this task. In particular,
its high precision, that was highlighted from the
results of the in-domain experiment, gives us the
option of using some of the sentences from the
test set for which the network makes a confident
prediction to augment the training data, a form
of language model adaptation (Jauhiainen et al.,
2018a,b, 2019b), as is explained in the next sec-
tion. See Figure 4 for the loss and accuracy plots
obtained during the evaluation of the DNN.

4.4 Predictions

Table 5 contains the predictions for the 11K sen-
tences in the test set, made by the DNN model
which was trained on the evaluation set for the
seven ‘gold’ languages and on the Wikipedia sen-
tences for the four ‘silver’ languages (in bold).

The most represented among the ‘silver’ lan-
guages is Neapolitan (nap), which is the second

would have otherwise been truncated. Truncation could thus
be the main reason why CNNs underperform in this setting.

Model Micro F1 score Macro F1 score
DNN 0.978 0.761
Naïve Bayes 0.974 0.757
CNN + data aug. (10ep.) 0.951 0.740
CNN 0.929 0.651

Table 4: Performance of the models on the evaluation
set, final model.

Label Labels
vec 3127
nap 1519
scn 1365
fur 1325
lmo 1014
lld 751
eml 700
lij 585
sc 562
roa-tara 79
pms 63

Table 5: Predictions of the DNN for the test dataset.
‘Silver’ languages in bold.

most common predicted label. This suggests that
the language is present in the test set.

Ladin (lld) and Emilian-Romagnol (eml) are pre-
dicted to each represent about 6-7% of the sen-
tences, a number which is not far from the number
of sentences we expect to find a priori, especially
given that we might expect ‘silver’ languages to be
underpredicted.

The situation with the last ‘silver’ language,
Tarantino (roa-tara) is tricky: the language appears
to be quite rare in the test set (0.7%), and an exam-
ination of the logit scores associated with the pre-
dictions (Figure 5) revealed that Tarantino was the
language whose average confidence was the lowest.
All the other languages were associated with many
more predictions and higher logit scores.

On the other end, Piedmontese (pms), a ‘gold’
language for which we have several sentences in
the evaluation set, is also rare as a prediction, with
an occurrence of 0.6%, which is compatible with
the ratio of out-of-sample predictions detected in
the evaluation experiments.

For these reasons, we decided to remove both
Tarantino and Piedmontese, and re-train the classi-
fier to predict only the remaining nine languages.

5 Results

For our first submission, we simply re-trained the
DNN excluding Piedmontese and Tarantino, and
submitted the predictions on the test set obtained
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Figure 5: Logit scores associated to each prediction
made by our DNN, divided per class.

Team Model Weighted F1 score
SUKI NB + language adaptation 0.901
Baseline SVM Char-ngram TFIDF 0.773
Phlyers DNN 0.694
ETHZ Logistic Regression 0.688
Baseline SVM Unigram TFIDF 0.490
ETHZ BERT 0.576
Baseline FastText 0.132

Table 6: Performance of the models on the evaluation
of the ITDI task.

in this way. The second and third submission were
similar, but we re-trained the network changing
the way in which the ‘silver’ languages were rep-
resented: instead of the Wikipedia sentences, we
used the label/sentences from the test set for which
the predicted label was associated with a high likeli-
hood, following a language model adaptation strat-
egy similar to the one proposed by Jauhiainen et al.
(2019b). The main difference is that instead of
adding the new predictions, we used them to di-
rectly replace the training data for the ‘silver’ lan-
guages, with the aim of obtaining a better repre-
sentation. We used different likelihood threshold
to filter the predictions (>0.90 and >0.95, after
transforming the logits into probabilities). On aver-
age, the number of predictions per class that were
included was quite high, between 75-80%, which
seemed a good balance in the trade-off between
number of sentences and confidence associated
with them.

The overall results of the ITDI shared task are
summarized in Table 6.

The best system by far was the SUKI system
(Jauhiainen et al., 2021a), a Naïve Bayes-like clas-
sifier which performs language adaptation. One of
the baselines provided by the organizers, a SVM
trained on character ngrams, provided the second

Label Real Predicted F1 score
vec 1139 1642 0.64
nap 2026 2296 0.78
scn 0 1003 0
fur 1323 1283 0.96
lmo 689 921 0.84
lld 2200 1937 0.85
eml 825 746 0.91
lij 2282 626 0.40
sc 0 636 0
roa-tara 603 0 0

Table 7: Predictions of the third submission, a DNN
model trained on the evaluation set augmented with the
test sentences that, according to the basic DNN model,
belonged to the classes not represented in the evaluation
set with probability >0.95.

Label Sub-1 Sub-2 Sub-3
vec 1646 (0.63) 1205 (0.60) 1642 (0.64)
nap 2787 (0.73) 3229 (0.71) 2296 (0.78)
scn 638 (0) 654 (0) 1003 (0)
fur 1248 (0.96) 1299 (0.94) 1283 (0.96)
lmo 816 (0.89) 711 (0.93) 921 (0.84)
lld 2060 (0.86) 2513 (0.86) 1937 (0.85)
eml 1083 (0.80) 964 (0.86) 746 (0.91)
lij 459 (0.32) 268 (0.20) 626 (0.40)
sc 353 (0) 247 (0) 636 (0)
all 0.66 0.64 0.69

Table 8: Output of the models on the evaluation of our
ITDI task submissions.

best result, with an F1 score of 0.773. Our best
submission, the third one, completes the podium
with an F1 score of 0.694.

The organizers provided us with the results per
class, in Table 7. It is apparent that our system
overpredicted texts written in Sicilian (scn) and
Sardinian (sc), which were actually absent from the
data, and underpredicted texts written in Ligurian
(lij) and in Tarantino (roa-tara), which was actually
present in the test set, contrary to what we were
expecting.

A comparison of the predictions of our three
submissions, in Table 8, shows that the last submis-
sion led to improvements across the board, with
one clear exception (Lombard, ‘lmo’) and a mi-
nor one (Ladin, ‘lld’). This suggests that language
adaptation had a positive impact on the system.
However, it also led to the increase of sentences
associated with the two languages absent from the
test set, which had the effect of countering any
substantial improvement, since their presence nec-
essarily ended up hurting the performance of the
other classes.
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Figure 6: Confusion matrix with the predicted and the
gold labels for our third submission.

6 Discussion

Comparing our class results with those of the other
teams, the main weakness of our approach turned
out not to be the underprediction of Tarantino (roa-
tara), with which all the systems struggled, but that
of Ligurian (‘lij’), which was heavily weighted in
the evaluation of the systems, since it was the most
common language. An inspection of our evalua-
tion results showed that Ligurian was not among
the languages for which we were expecting un-
derprediction. Moreover, Ligurian is a Gallo-Italic
language like Lombard and Emilian-Romagnol, but
both languages were associated with high F1 scores
in testing, and therefore cannot be responsible for
this misclassification.

Since the organizers provided us with the gold
labels, we were able to further investigate the be-
havior of our model by examining the confusion
matrix (Figure 6). Some of the patterns were ex-
pected: most of the Tarantino (roa-tara) sentences
were classified as Neapolitan (nap) or Sicilian (scn),
the other two Southern varieties of the sample, and
many of the predictions involving Venetian (vec)
were instead sentences from Ladin (lld), which is
spoken in the same region.

One pattern is instead very peculiar. Sicilian
(scn) and Sardinian (sc) were the main responsi-
ble for the underprediction of Ligurian (lij), a re-
sult which was unexpected, given that the three
languages belong to distinct groups, they were all
represented in the evaluation set, and were well
discriminated in the evaluation phase.

From a linguistic viewpoint, this outcome has
an explanation: while Ligurian is a Gallo-Italic
language, even classical works like the Carta dei
Dialetti Italiani by Pellegrini (1977) noticed that

there are at least two broad phenomena that the
language shares with varieties spoken far from the
Gallo-Italic area: the preservation of many word-
final vowels, including -u, and the palatalization of
[pl] and [bl] clusters. This means that even though
Ligurian is clearly a Northern Italy language, an
analysis limited to some of its phonological se-
quences or its morphology could well mistake it
for languages spoken outside of the area.

In particular, the first phenomenon was the main
responsible for the mistakes in this specific case.
Table 9 shows some sentences that were misclassi-
fied, from the Ligurian version of Carlo Collodi’s
The adventures of Pinocchio, and in each of them
we see morphemes which are typically associated
with Southern varieties like Neapolitan and Sicilian
and with Sardinian.

It is worth mentioning that the author of the trans-
lation published a second version of the text in
which the orthographic conventions are different,
and u is replaced by o, which is the case also in
the sentences of the evaluation dataset. This varia-
tion in orthographic conventions explains why this
ambiguity did not emerge in our evaluation phase.
There are two reasons why the ambiguity could
have affected our results more than those of the
other teams. First, in our preprocessing we did
not remove proper names from the test sentences
because in the evaluation phase they did not seem
to affect the results, but clearly having a name like
Pinocchiu being strongly associated with Southern
varieties (the only varieties in which the sequence
cchiu was present in the training data) heavily af-
fected the performance of our classifier. Second,
our classifier was not able to learn that the letter æ
was unambiguously associated with Northern vari-
eties (only Ligurian and Emilian-Romagnol had it),
a cue that should have corrected the mistake.

7 Conclusion

While in some of the previous VarDial evaluation
campaigns neural networks yielded the best perfor-
mance in language identification tasks, (Tudoreanu,
2019; Bernier-Colborne et al., 2019), it was not the
case with this shared task, where traditional shal-
low models like Naïve Bayes and Support Vector
Machines performed better, and the DNN model
we devised failed to capture important cues like the
presence of æ in the text.

Even though we were not able to present neural
models that reach state-of-the-art performance, we
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Target Prediction Text Source
lij nap dumandò u Pinocchiu cun anscêtæ e affannu Pinocchio (version by Cino Peripateta)
lij sc E ti rendime a mæ, e femmu paxe Pinocchio (version by Cino Peripateta)
lij scn Mi suin mariunettu Pinocchio (version by Cino Peripateta)

Table 9: Sample of sentences written in Ligurian that were misclassified. The phonological sequences/morphemes
that are strongly associated with other language varieties (Neapolitan, Sicilian, and Sardinian) are in bold.

still argue that this work makes two contributions.
First, data augmentation has proven to be an ef-

fective way to improve the performance of neural
networks when the data is limited, a point that we
also made last year (Ceolin, 2021) and which has
been confirmed throughout the experiments con-
ducted here. Data augmentation has had limited
application in NLP (Coulombe, 2018; Kobayashi,
2018; Wei and Zou, 2019), but our experiments sug-
gest that it can play an important role in adapting
neural models to the task of language identification
in low-resource settings.

Second, DNNs turned out to be more efficient
than CNNs to handle language identification. They
do not suffer from overfitting in the same way that
CNNs do (Ceolin, 2021), they are more flexible,
and they yield a better performance.

We hope that our results will encourage the ex-
ploration of neural architectures for low-resource
language identification and more research in the
automatic classification of languages varieties in
Italy.
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ing multilingual and monolingual transformer-based
models for dialect identification. In Proceedings of
the Seventh Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 193–201, Barcelona,
Spain.

Yves Scherrer and Nikola Ljubešić. 2020. HeLju@
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Tiedemann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Antal van den Bosch, Ritesh Ku-
mar, Bornini Lahiri, and Mayank Jain. 2018. Lan-
guage Identification and Morphosyntactic Tagging:
The Second VarDial Evaluation Campaign. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects, pages 1–17, Santa
Fe, USA.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
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Abstract

We describe the systems developed by the Na-
tional Research Council Canada for the French
Cross-Domain Dialect Identification shared
task at the 2022 VarDial evaluation campaign.
We evaluated two different approaches to this
task: SVM and probabilistic classifiers ex-
ploiting n-grams as features, and trained from
scratch on the data provided; and a pre-trained
French language model, CamemBERT, that
we fine-tuned on the dialect identification task.
The latter method turned out to improve the
macro-F1 score on the test set from 0.344
to 0.430 (25% increase), which indicates that
transfer learning can be helpful for dialect iden-
tification.

1 Introduction

This paper describes the NRC team’s submissions
to the French Cross-Domain Dialect Identification
(FDI) task that was organized as part of the evalua-
tion campaign at VarDial 2022.

For this task, participants had to “train a model
on news samples collected from a set of publication
sources and evaluate it on news samples collected
from a different set of publication sources. Not
only the sources are different, but also the topics.
Therefore, participants have to build a model for a
cross-domain 4-way classification by dialect task,
in which a classification model is required to dis-
criminate between the French (FR), Swiss (CH),
Belgian (BE) and Canadian (CA) dialects across
different news samples.”1

Our main motivation to participate in this shared
task was that it would allow us to compare fine-
tuning of a pre-trained neural language model to
n-gram based methods trained from scratch, which
have been successful at discriminating between
similar languages (DSL) in the past. This was
not possible in many shared tasks on DSL in the

1https://sites.google.com/view/
vardial-2022/shared-tasks

past, at least not since transfer learning became
a common approach to various NLP tasks, with
the advent of models such as BERT (Devlin et al.,
2019), GPT (Radford et al., 2018), etc. So we
took this opportunity to investigate whether DSL
is also an area where transfer learning can improve
accuracy.

We submitted three runs each to the closed and
open tracks of the FDI shared task. Our closed
submissions ended up achieving the highest scores
in that track, and we were the only team to submit
to the open track. Our open submissions outper-
formed the baselines computed by Gaman et al.
(2022) as well as our closed submissions, which
indicates that transfer learning can be helpful for
discriminating between similar languages, at least
when a domain shift is present.

2 Related Work

Thorough surveys of research on language identi-
fication are provided by Jauhiainen et al. (2019)
and Zampieri et al. (2020).

Language identification is one of the few tasks
in natural language processing where deep learning
methods have yet to provide convincing gains in ac-
curacy, at least in the context of shared tasks. Jauhi-
ainen et al. (2019) pointed out that linear SVMs
exploiting character n-grams as features have been
highly successful in shared tasks on language iden-
tification.

The winning submission by the NRC team
to the Cuneiform Language Identification task
at VarDial 2019 (Bernier-Colborne et al., 2019),
which involved seven language varieties written in
Cuneiform script, was the first time a neural system
was ranked first on a language identification shared
task (Zampieri et al., 2019). This system was a
character-based BERT model trained from scratch.

However, we also submitted both n-gram mod-
els and deep learning models to the Uralic Lan-
guage Identification (ULI) shared task at VarDial
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2021 (Bernier-Colborne et al., 2021; Chakravarthi
et al., 2021), and in that case, our best n-gram mod-
els outperformed our best BERT models.

These results cast doubt on whether a deep neu-
ral network can reliably produce the best results
in settings more representative of real-world appli-
cations of language identification, as the ULI task
involved a total of 179 languages, including pairs
of very similar languages. They suggested that the
simpler, n-gram based approach was still a very
strong baseline.

Note that all our previous shared task participa-
tions that involved deep learning were in a closed
setting, so no pre-trained models were allowed.
This has usually been the case for shared tasks on
language identification in our experience. However,
transfer learning has been used for language iden-
tification outside of shared tasks (Caswell et al.,
2020, inter alia).

3 Data and Task Definition

The FDI task (Aepli et al., 2022) requires participat-
ing systems to predict the French language variety
used in a sample of text. The set of four language
varieties that the systems must learn to discriminate
are the national varieties used in France, Belgium,
Switzerland, and Canada.

The evaluation metrics for this shared task were
not specified, so we chose to focus on macro-
averaged F1-score, which is commonly used for
language identification and DSL tasks.

This shared task featured both open and closed
tracks. For the closed track, participants were not
allowed to use pre-trained language models or any
external data to train their models. This is the usual
setting for DSL shared tasks in our experience. For
the open track, external resources such as unla-
belled corpora, lexicons, and pre-trained language
models were allowed, but no additional labelled
data could be used. Thus, this shared task pro-
vided us a unique opportunity to evaluate transfer
learning on a DSL shared task.

Gaman et al. (2022) describe the corpus they de-
veloped for this task, which they named FreCDo
(for French Cross-Domain [dialect identification]).
This corpus contains 413,522 text samples col-
lected from public news websites. The CA class
is under-represented in the dataset, as fewer open
sources were available. As we will show below, the
presence of duplicates makes this class imbalance
even greater.

Efforts were carried out to eliminate potential
biases related to factors such as topic and writing
style. This was done by using separate sets of
publication sources and search keywords to com-
pile the training, validation (aka development), and
test sets. The keywords represent general topics
that are not specific to any of the four countries in-
volved. The keywords were: “guerre” (“war”) and
“Ukraine” for the training set; “Russie” (“Russia”)
and “États-Unis” (“United States”) for the develop-
ment set; and “réchauffement climatique” (“global
warming”) and “Covid” for the test set. Note that
there is likely more topical similarity between the
training and development set, than between either
and the test set, so the development set may not be a
good estimator of test accuracy, which is confirmed
by our experiments below.

Furthermore, named entities were identified us-
ing spaCy2 and replaced with the special token
“$NE$”, again in order to remove biases related to
topic or country.

The training, development and test sets contain
358,787, 18,002, and 36,733 samples respectively.
Each text sample is a paragraph containing up to
three sentences.

Gaman et al. (2022) also evaluated three baseline
systems on this corpus and concluded that it is a
difficult task. Their baseline models were able to
outperform a naive baseline that always selects the
most frequent class, but macro-averaged F1 scores
did not exceed 0.4.

It turns out that one of those baselines was a fine-
tuned CamemBERT model, which is the model
that we used for the open track, although we were
not aware of this before submitting our runs. That
baseline produced the best results, and the runs
we submitted outperformed this baseline by a few
points (in terms of macro-F1). This may be due
to differences in hyperparameter settings, or to the
fact that we used the development set along with
the training set to fine-tune the model. Whether this
was done by Gaman et al. (2022) is not specified,
so we would tend to assume it was not.

They also evaluated SVM and XGBoost models
based on the text encodings produced by a fine-
tuned CamemBERT model, but the best results
were achieved by CamemBERT itself. Their results
were much better on Belgian and Swiss French than
on the other two varieties.

2https://spacy.io
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3.1 Data Analysis
Gaman et al. (2022) analyzed the most discrimina-
tive features of the CamemBERT model, by man-
ually inspecting “a few correctly classified sam-
ples [and analysing] the features for which Camem-
BERT has given high scores.” They concluded
that “there are quite a few noticeable dialectal pat-
terns learned by the model,” such as numerals only
used in Belgian French and a currency only used
in Switzerland.

We carried out some analysis on this dataset be-
fore starting to develop our systems. Looking at
text lengths showed that the training set contains
both very short texts, containing a single charac-
ter, and very long texts, containing up to 18,218
characters, although the text samples are supposed
to contain only up to three sentences. Here is a
small part of the longest training text: “<NE> Gar-
diens : <NE> <NE> (<NE> <NE>), <NE> <NE>
(<NE>), <NE> <NE> (<NE>) Défenseurs : <NE>
<NE> (<NE> <NE>), <NE> <NE> (<NE>), <NE>
<NE> (<NE> <NE>), <NE> <NE> (<NE>), <NE>
<NE> (<NE> <NE>), <NE> <NE> (<NE> <NE>),
<NE> <NE> (<NE> <NE>), <NE> <NE> (Leeds),
<NE> <NE> (<NE> <NE>) <NE> : Ilkay Gündo-
gan (<NE> <NE>) [...]” Such training texts may
inflate the importance of the NE word feature.

An example of the shortest texts contains only
the character “»” (closing quote in French), which
appears 372 times in the training set, in three dif-
ferent classes.

These two examples show several potential
sources of noise, besides the presence of very long
or short texts.

• Large number of NE tokens. Indeed, “$NE$”
is the most frequent word in the training, de-
velopment, and test sets.

• Duplicates within classes.

• Duplicates across classes (i.e. ambiguous ex-
amples).

We looked into the issue of duplicates, and found
a large number of them. In the training data, 43,007
unique texts appear more than once in the same
class, and 70 belong to more than one class. In
the development data, those counts are 897 and 2
respectively.

Applying deduplication (within classes, not
across) reduces the number of examples in the train-
ing set from 358,787 to 277,565 (and from 18,002

Class # before dedup # after dedup
BE 121,746 113,487
CA 34,003 169
CH 141,261 107,982
FR 61,777 55,927

Table 1: Number of training samples before and after
deduplication.

to 13,216 for the dev set). The class that suffers
most from this is CA, for which the training set
size shrinks from 34,003 to only 169 unique texts
after applying simple deduplication (see Table 1 for
full stats). This creates a huge imbalance between
CA and the other classes in terms of the training
set size. And even within these 169 remaining
texts, we found 36 that contained either of these
two boilerplate patterns:

• “Nous utilisons les témoins de navigation
(cookies) afin d’opérer et d’améliorer nos ser-
vices ainsi qu’à des fins publicitaires. Le re-
spect de votre vie privée est important pour
nous.” This appears in 6631 training exam-
ples for CA (as well as 1-3 times in the other
classes)

• “Si vous n’êtes pas à l’aise avec l’utilisation
de ces informations, $NE$ $NE$ vos
paramètres avant de poursuivre votre visite.”
This also appears in 6631 CA training ex-
amples. Also note that the two words that
were detected as NE here are “veuillez” and
“revoir”, which are not named entity mentions.
So noisy NER may be another source of er-
rors.

Because of all the duplicates we observed, we de-
cided to try applying deduplication (within classes)
to the training data. Also, since we observed boiler-
plate even after deduplication, we decided to apply
it after splitting the training data into sentences,
using the sentence splitter in Portage Text Process-
ing (Larkin et al., 2022). We also optionally applied
word tokenization (again using Portage Text Pro-
cessing) and removal of redundant NE tokens (see
Section 4.1) – these preprocessing steps were also
applied to the development and test data, but sen-
tence splitting and deduplication were only applied
to the training data. Applying this preprocessing
to the training data reduces the average text length
by more than half, and increases the number of
training samples from 358,787 to around 700,000,
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depending on the version. In the original training
set, there were 43,007 unique texts that had dupli-
cates within a single class, and 70 unique texts that
had duplicates in multiple classes. In the prepro-
cessed versions, no unique texts have duplicates
within a single class, but around 1700 unique texts
have more than one label. Note that we did not try
removing these ambiguous training examples from
the training data, but this might be worth investi-
gating.

We also checked for duplicates between the train-
ing, development, and test sets (i.e. data leakage).
146 of 18,002 development texts are also in the
training set, as well as 29 of 36,733 test texts, and
6 test texts are also in the development set. Given
these small numbers, using a heuristic to ensure
that these texts have the same label as in training
did not seem worthwhile.

Another potential source of noise is the presence
of many non-Latin characters, including right-to-
left scripts and many emoji. We might want to
discard such characters to avoid overfitting, but we
did not explore this.

4 Methodology

In this section we will explain how we processed
the data and trained the models that we used for
our submissions to the FDI task.

4.1 Data Processing

We produced four different pre-processed versions
of the data by optionally applying word tokeniza-
tion or removal of redundant NE tokens. In the
case of the training set, before applying these pre-
processing steps, we applied sentence splitting fol-
lowed by deduplication within classes. We did not
apply this to development or test data (and we did
not check the impact of this mismatch between
the training and evaluation data, e.g. by sentence-
splitting the evaluation data and aggregating the
predictions over the sentences of each example).

To remove redundant NEs, we simply replace
consecutive NE tokens with a single token. Note
that we converted the “$NE$” token to “<NE>”, so
that it would not be split into multiple tokens by our
word tokenizer. Also note that CamemBERT’s sub-
word tokenizer split the “<NE>” into three tokens:
“<”, “NE”, and “>”.

We chose not to fold the data for cross-validation,
because this is a cross-domain task, so simply us-
ing the training and development sets as is should

provide a better estimator of test accuracy.

4.2 Models Tested

We tested various models for the open and closed
tracks of this shared task, which we describe below.

4.2.1 Closed Track
For the closed track, we tested multi-class support
vector machine (SVM) classifiers, as well as a prob-
abilistic classifier (Gaussier et al., 2002), that we
call ProbCat. This classifier is similar to multino-
mial Naive Bayes except that it does not assume
that all features in a given text are generated from
a single class. It has been used in the past to obtain
state-of-the-art results on language identification
tasks (Goutte and Léger, 2016). For more details
on this classification algorithm, refer to Goutte et al.
(2014, Sec. 2.2).

To train these models, we tested a variety of
character n-gram and word n-gram features. Fea-
tures were weighted with a variant of tf-idf, and
texts were always converted to lower-case before
extracting the features.

Note that training a multi-class SVM classifier
involves calibrating the predicted probabilities of
single-class classifiers, which are trained to distin-
guish a specific class from all other classes com-
bined (i.e. one-vs-all training). Part of the training
data must be held out for this calibration step. We
chose to hold out 10% of the training set (using
stratified sampling to ensure the classes are sam-
pled proportionally) for calibration purposes. We
did this for both model selection (on the develop-
ment set) and our final submissions (on the test set),
as we wanted to use the whole dev set for held-out
evaluation during model selection and for training
our final models. As for ProbCat, it does not re-
quire calibration, so no training data was held out
in that case.

We tested two additional methods to improve
accuracy: pseudo-labelling of test cases and ensem-
bling. In the first case, we used a model’s predic-
tions on the development set (or test set, once we
had selected the models we wanted to submit) as
pseudo-labels, added these examples to the train-
ing data, and trained a model on this augmented
training set before evaluating the model on the de-
velopment (or test) set. We ended up training a
ProbCat model on the pseudo-labels produced by
SVM models, as model selection experiments indi-
cated this worked better than training an SVM on
its own pseudo-labels (which is commonly known
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as “self-training”).
As for ensembling, we use a plurality vote ap-

proach, so we simply take the most frequently pre-
dicted class for each text sample. To select the
models included in the ensemble, we conducted a
brute force search among a set of candidate models
and greedily added the model that improved the en-
semble’s score the most at each step, then selected
one of the ensembles that achieved the best scores
overall.

Note that pseudo-labelling was only used in the
closed track. We experimented with ensembling in
the open track as well as in the closed track, but we
selected the models included in the open ensemble
arbitrarily, not based on a systematic search.

4.2.2 Open Track

For the open track, we fine-tuned a pre-trained
CamemBERT model (Martin et al., 2020), which
uses the RoBERTa architecture and training pro-
cedure (Liu et al., 2019). More, specifically, we
downloaded the camembert-base checkpoint
from HuggingFace’s repository of pre-trained mod-
els.3 This model has 110 million parameters, and
was pre-trained on the French portion of the OS-
CAR corpus (Ortiz Suárez et al., 2019; Ortiz Suárez
et al., 2020; Abadji et al., 2021), which contains
138 GB of unlabelled French text. We fine-tuned
this model on the FreCDo training data using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 5× 10−5.

These settings are similar to those used by
Gaman et al. (2022) for their CamemBERT base-
line, except that we used smaller batch sizes (8 or
16 rather than 32), fewer epochs (3 or 5 instead
of 30), and we only fine-tuned the last one or two
layers of the encoder, along with the classification
head, which is randomly initialized. This requires
less compute and the results we observed on the
development set were better, possibly due to less
forgetting or easier optimisation. Also, Gaman et al.
(2022) used average pooling of the token encod-
ings as input to the classification head, whereas we
used the encoding of the “<s>” token (equivalent
to “[CLS]” in BERT) that is prepended to the token
sequence, which is the default used by RoBERTa’s
classification head.4

3https://huggingface.co/camembert-base
4https://github.com/huggingface/

transformers/blob/v4.20.1/src/
transformers/models/roberta/modeling_
roberta.py#L1435

CamemBERT comes with a subword tokenizer
based on the Byte Pair Encoding (BPE) algo-
rithm (Sennrich et al., 2016) implemented in Sen-
tencePiece.5 The tokenizer produces a maximum
of 512 tokens, as this is the maximum input length
of the model. Longer sequences are truncated to the
maximum length. This is a rare occurrence in the
FDI dataset: if we tokenize the raw (untokenized)
data provided, we obtain the maximum number of
tokens for 107 training texts, 1 development text,
and 22 test texts. Note that if we apply word tok-
enization or removal of redundant NE tokens to the
texts, these numbers are slightly different.

When processing each mini-batch, the sequences
are padded to the maximum sequence length in that
batch – this reduces the amount of computation
compared to padding everything to the maximum
input length of 512 tokens. The vocabulary of
the pre-trained tokenizer contains 32K sub-word
tokens, plus 5 special tokens (beginning and end of
text, padding, out-of-vocabulary, and mask).

Note that we also tested FastText (Joulin et al.,
2017) with pre-trained word embeddings,6 but this
was not used for our final submissions in the open
track. Our best development scores with FastText
were slightly lower than those achieved with an
SVM trained from scratch, and quite a bit lower
than a fine-tuned CamemBERT, so we decided to
focus on the latter for the open track.

Finally, it is worth mentioning that we did not
test any methods specifically designed to deal with
domain/topic shift, as we decided to focus on com-
paring transfer learning to vanilla supervised learn-
ing.

4.3 Model Selection Experiments

To select models for the closed track, we tested
different feature sets on different pre-processed
versions of the datasets, and computed the macro-
F1 score on the development set. We also tested
pseudo-labelling the development set. The main
findings of our model selection experiments can be
summarized as follows:

• SVM generally produced higher scores than
ProbCat (even though 10% of the training data
was held out for calibration in the case of
SVM models).

5https://github.com/google/
sentencepiece

6https://fasttext.cc/docs/en/
crawl-vectors.html
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• We tried various combinations of character
n-grams (with n ∈ {3, 4}) and word n-grams
(with n ∈ {1, 2}), and the highest scores were
achieved by using only word bi-grams. Note
that this is somewhat unusual for a language
identification task, where it has often been
observed that character n-grams produce the
best results.

• We tried filtering out very short texts from the
training data, but scores did not improve.

• Pseudo-labelling did not improve the SVM’s
scores. However, we accidentally trained a
ProbCat model on data that had been pseudo-
labelled by an SVM, and observed that the
ProbCat model did better than the SVM
trained only on the training set.

• The SVM models never predicted the CA
class. ProbCat sometimes predicted it, but
was generally wrong.

We inspected the most discriminative (positive)
features of ProbCat and SVM models using only
word bigrams as features. For ProbCat they were:

• BE: “à jour”, “jour le”, “- mis”, “mis à”,
“"", a”, “"" <ne>”, “<ne> le”, “: ""”, “<ne>
(<ne>)”, “<ne>. ""”

• CA: “— une”, “vos paramètres”, “paramètres
avant”, “poursuivre votre”, “votre visite.”, “la
hausse”, “citation de”, “une citation”, “avec
l’utilisation”, “l’aise avec”

• CH: “: «”, “<ne> est”, “premier ministre”, “la
«”, “<ne> –”, “[ . . . ”, “la guerre”, “. . . ]”, “«
la”, “de <ne>.”

• FR: “<ne> -”, “», a”, “<ne> /”, “/ <ne>”, “par
<ne>”, “[ <ne>”, “— <ne>”, “« <ne>”, “<ne>
]”, “- le”

And for SVM, the top 10 features with the high-
est weights were:

• BE: “"", a”, “<ne>. ""”, “<ne>. ""”, “juin
2013”, “son appréciation”, “"", a-t-il”, “rev-
enues sur”, “horrible "",”, “53 voix,”, “pou-
voir, ni,”

• CA: “journalistes en”, “à lire”, “sentiment dé-
vastateur.”, “source :”, “du widget.”, “photo
:”, “incendie fait”, “<ne> tremblay”, “la cor-
rection.”, “collaboration d’<ne>.”

• CH: “seraient vus”, “suspects des”, “rayon-
nement de”, “droits que”, “activement à”,
“métier est”, “<ne> tira”, “armé pourrait”,
“grandes foules”, “outre, le”

• FR: “a lire”, “"a lire”, “les fesses”, “charges
nucléaires.”, “angleterre -”, “mémoires à”,
“— <ne>”, “« défendrait”, “mécanisation de”,
“signalés par”

This (admittedly limited) exploration of discrimi-
native features does not reveal many obvious dialec-
tal markers, but we can observe some boilerplate
patterns, such as “mis à jour le...” for BE when us-
ing ProbCat, or “à lire aussi :” for FR when using
the SVM.

As for CamemBERT, we did an ad hoc search
for the best settings of a few hyperparameters. Our
main findings can be summarized as follows:

• Fine-tuning only the last 1 or 2 layers of the
12-layer encoder provided better results than
full fine-tuning. It also reduced the computa-
tion required, and the runtime of our experi-
ments.

• Results on the four different pre-processed
versions of the dataset were similar. Word
tokenization had little impact. Removing re-
dundant NEs tended to improve scores slightly.
Lower-casing was not beneficial.

• The best scores were generally achieved
within five epochs (we tested up to 10). Our
three best models, which we used for our fi-
nal submissions, were trained for either 3 or 5
epochs.

• Batch size had little impact, but 8 worked
slightly better than 16 in general.

• Various learning rate schedules were tested,
and provided similar results.

• Weighting the loss to penalize the CA class
more heavily did not improve results.

• Filtering out very short texts from the training
data had very little impact.

Based on these model selection experiments, we
decided to submit the following 6 runs:

• Closed 1: Majority vote ensemble of five
multi-class SVMs trained on the concatena-
tion of the training and development data, us-
ing different data processing and feature sets.
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The differences between the models involve:
whether word tokenization was applied to the
input; whether we removed redundant NE to-
kens from the input; whether training data was
filtered using a minimum text length thresh-
old; and the n-grams used as features. Three
of the models used only word bigrams as fea-
tures, and the two others used word unigrams
and bigrams, as well as character trigrams and
4-grams. To select the models, we carried out
a greedy search among a dozen SVM mod-
els, and used results on the development set
to select the best subset of models.

• Closed 2: ProbCat trained on the concatena-
tion of the training and development data, as
well as the pseudo-labelled test data, where
the test labels are those predicted by the SVM
ensemble used for our first run. The feature
set used by this classifier includes only word
bigrams.

• Closed 3: Our best multi-class SVM classi-
fier according to results on the development
data. It was trained on the concatenation of
the training and development data, using only
word bi-grams as features.

• Open 1: Majority vote ensemble of three pre-
trained CamemBERT models, which were
fine-tuned on the concatenation of the train-
ing and development data. Model selection
was based on their scores on the development
data, but the number of models included in the
ensemble was arbitrary. The differences be-
tween the three models involve the batch size
(8 or 16), the learning rate schedule (linear
decay or constant) and the number of encoder
layers that were fine-tuned (either just the last
layer, or the last two layers).

• Open 2: Our best single CamemBERT model
according to results on the development data,
fine-tuned on the concatenation of the training
and development data. This model was fine-
tuned using a batch size of 8 and a constant
learning rate for 3 epochs. Only the last two
layers of the encoder were fine-tuned.

• Open 3: Our second-best single CamemBERT
model according to results on the development
data, fine-tuned on the concatenation of the
training and development data. This model

was fine-tuned using a batch size of 16 for 5
epochs with linear decay of the learning rate.
Only the last two layers of the encoder were
fine-tuned.

The development scores of the 6 models we de-
cided to submit are shown in Table 2.

Run MacroF1
Closed 1 0.4816
Closed 2 0.4858
Closed 3 0.4747
Open 1 0.5556
Open 2 0.5506
Open 3 0.5497

Table 2: Scores of our 6 runs on the development set.

After producing our runs on the test set, we com-
puted the pairwise overlap between the 6 lists of
predicted labels, and observed the following:

• The maximum agreement between open and
closed models was only 65%.

• Even our two single CamemBERT models
(open runs 2 and 3) had pretty low agreement,
at 78%.

• The highest overlap, at 96%, was between the
SVM ensemble and the ProbCat model trained
using the pseudo-labels of the SVM ensemble
(i.e. closed runs 1 and 2 respectively).

5 Results on Test Set

The official scores of our 6 runs on the test set are
shown in Table 3. The scores that ended up being
computed by the organizers were: macro-averaged
F1 score, weighted F1 score, and micro-averaged
F1 score (i.e. accuracy).

Run MacroF1 WeightedF1 MicroF1
Closed 1 0.3266 0.4333 0.4642
Closed 2 0.3437 0.4581 0.4936
Closed 3 0.3149 0.4188 0.4530
Open 1 0.4299 0.5121 0.5243
Open 2 0.4108 0.4977 0.5067
Open 3 0.4145 0.4910 0.4936

Table 3: Scores of our 6 runs on the test set.

These results show that, in the closed track, the
SVM ensemble did better than a single SVM, and
ProbCat with pseudo-labelling did best overall.
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Figure 1: Confusion matrix of our best run on the test
set.

This corroborated our findings on the development
set, although the scores are lower, perhaps because
of a larger domain shift. In the open track, the
ensemble (run 1) did better than our best two in-
dividual models as expected, but our second-best
model (run 3) ended up doing slightly better than
our best model (run 2).

Three teams ended up submitting runs in the
closed track (two or three runs each), and our three
runs achieved the highest scores on the test set. We
were the only team who participated in the open
track, so we can only compare our results to the
baselines computed by the organizers (Gaman et al.,
2022). Our best open run, i.e. the ensemble of 3
fine-tuned CamemBERT models, achieved a higher
macro-F1 score than the highest baseline score,
which was 0.3967. This was also achieved by fine-
tuning a CamemBERT model, but with different
hyperparameter settings and data processing (and
probably not including the development data for
training). That model scored 0.4784 on the devel-
opment set, whereas our run 1 model (but trained
only on the training set, during model selection)
scored 0.5556.

Looking at the confusion matrices of each of our
runs, we observed that our open runs did quite a bit
better on the CA class, getting up to 157 cases right
(run 3), whereas the closed runs all got a single CA
case right. The confusion matrix of our best run on
the test set is shown in Fig. 1.

To get a fuller picture of the results, we investi-
gated various potential sources of errors.

First, we looked at the class-wise F1 scores of
open run 1 and how they relate to the class fre-

quency distribution of the training data, and ob-
served an obvious correlation between the two. Ta-
ble 4 shows that the two most frequent classes in
the (deduplicated) training data are also the two
classes for which F1 is highest, i.e. BE and CH,
and the least frequent class by far, CA, has the
lowest score. Imbalanced training data is often
challenging for machine learning models, and our
only attempt at addressing this, by weighting the
loss function when fine-tuning CamemBERT, was
unsuccessful.

Class TrainFreq F1
BE 0.4008 0.555
CA 0.0005 0.156
CH 0.4002 0.674
FR 0.1985 0.335

Table 4: Class-wise relative frequencies in the dedupli-
cated training set and F1 scores on the test set

Another factor that can impact the accuracy of
language identification systems is the length of
texts. To investigate this, we binned the test ex-
amples by length (after removing redundant NE
tokens) into 10 bins of approximately equal sizes,
and computed the macro-F1 and accuracy for each
bin, using the predictions of our best model (open
run 1). The results, shown in Table 5, indicate that
macro-F1 tends to increase as texts get longer. The
trend for overall accuracy (regardless of class) is
less clear.

# Chars N Macro-F1 Accuracy
4-110 3758 0.344 0.554
111-189 3624 0.369 0.487
190-235 3656 0.389 0.508
236-275 3693 0.419 0.534
276-314 3698 0.411 0.511
315-356 3690 0.411 0.513
357-406 3627 0.445 0.522
407-471 3675 0.446 0.528
472-571 3653 0.422 0.516
572-4946 3659 0.463 0.569

Table 5: Scores with respect to text length

We also checked whether test cases that were
also present in the training data had the same label,
and whether our best model (open run 1) got them
right. The examples we inspected included the
following:

• The example “? ? ? ? ? ?” appears 8 times
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in the test set, always labelled BE. Yet, in
training, it was labelled FR. For some reason,
our model predicts CH.

• The example “$NE$” appears 4 times in the
test set, 3 times as BE, and once as FR. Our
model predicted BE, so it was right 3 times.
In the training data, it appeared in 3 classes:
BE, CH, and FR.

• The example “Pour aller plus loin” was la-
belled CH in the training data, and predicted
as such, but labelled CA in the test data.

We also inspected the examples where our 6
submissions disagreed the most, and found several
examples containing boilerplate such as “Vous avez
lu 29 des 432 mots de cet article”, on which all 4
possible classes were among the predictions of our
6 systems. This boilerplate pattern is also present
in a lot of the most likely CA examples in the
test set according to our best CamemBERT model,
although it generally does not belong to the CA
class in the training or test data. We can not provide
an explanation for this, but perhaps the lack of
diversity of CA examples in the training data is the
cause, as well as the frequency of such boilerplate
in all classes.

One possible reason for the superior perfor-
mance of CamemBERT is its subword tokenizer.
We tokenized the dataset, then trained SVM and
ProbCat models on the CamemBERT tokens, us-
ing token n-grams (with n between 1 and an upper
bound that we raised up to 5) as features. None of
the model fared better using CamemBERT tokens,
so the superior performance of CamemBERT must
be attributable to its pre-trained token embeddings
and encoder weights.

To explore how CamemBERT’s performance
might be improved, we checked how many out-
of-vocabulary tokens, which are represented by
“<unk>”, are produced by CamemBERT’s tokenizer
on the test set. Less than 1% of test examples (342)
contain any “<unk>” tokens, so this is probably
not an important source of errors, and expanding
the vocabulary of the CamemBERT tokenizer and
model seems unlikely to lead to significant gains.

On the whole, the analysis presented in this sec-
tion seems to say more about the properties of the
data than it does about the behaviour of our mod-
els, and does not point to any obvious means to
improve predictive accuracy, as far as we can tell.

6 Conclusion

For the French Cross-Domain Dialect Identifica-
tion shared task at the 2022 VarDial evaluation
campaign, the NRC team evaluated two different
approaches: SVM and probabilistic classifiers us-
ing n-gram features and trained from scratch on
the data provided; and a pre-trained CamemBERT
model fine-tuned on that data. The latter increased
the macro-averaged F1 score on the test set from
0.344 to 0.430 (25% increase). This indicates that
transfer learning can be helpful for dialect identi-
fication, and provides clear evidence that neural
models can be effective at such tasks, at least when
they are pre-trained on large amounts of unlabelled
text.
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Abstract

This article describes the language identifica-
tion approach used by the SUKI team in the
Identification of Languages and Dialects of
Italy and the French Cross-Domain Dialect
Identification shared tasks organized as part
of the VarDial workshop 2022. We describe
some experiments and the preprocessing tech-
niques we used for the training data in prepara-
tion for the shared task submissions, which are
also discussed. Our Naive Bayes-based adap-
tive system reached the first position in Italian
language identification and came second in the
French variety identification task.

1 Introduction

Language identification (LI) of digital text still
poses difficulties for text classification methods
when performed in more complex situations (Jauhi-
ainen et al., 2019d). One of the problematic con-
texts is the closeness of the languages to be iden-
tified. In this article, we tackle the problem of
close language identification for languages or di-
alects traditionally used in Italy and distinguish-
ing between regional French varieties used in Eu-
rope and Canada. The research and experiments
were conducted while participating in the language
identification shared tasks organized in connec-
tion with the ninth edition of the VarDial work-
shop for NLP for similar languages, varieties, and
dialects (Aepli et al., 2022). The French Cross-
Domain Dialect Identification (FDI) and the Identi-
fication of Languages and Dialects of Italy (ITDI)
shared tasks were organized for the first time. How-
ever, they were following a long line of VarDial-
related LI shared tasks from the Discriminating
Between Similar languages (DSL) tasks in 2014–
2017 (Zampieri et al., 2014, 2015; Malmasi et al.,
2016; Zampieri et al., 2017) to newer, more special-
ized ones such as Romanian Dialect Identification
(RDI) and Uralic Language Identification (ULI) in

2020 and 2021 (Gaman et al., 2020; Chakravarthi
et al., 2021).

The ITDI shared task focused on 11 living Ro-
mance languages or dialects: Emiliano-Romagnolo
(eml), Friulian (fur), Ladin (lld), Ligurian (lij),
Lombard (lmo), Neapolitan (nap), Piemontese
(pms), Sardinian (srd), Sicilian (scn), Tarantino
(considered a dialect of Neapolitan by ISO 639-3),
and Venetian (vec). The shared task was a closed
one; hence, no other data besides that indicated
and provided by the organizers were to be used.
The organizers also stated that the test set would
contain only a subset of the 11 languages.

The FDI shared task featured four regional vari-
eties of written French from news sites in France,
Belgium, Switzerland, and Canada. The organizers
of the task provided all the data.

In Section 2, we present previous work on lan-
guage identification of the languages that are the
targets of these two shared tasks. In Section 3,
we describe the data provided and allowed in the
tasks, and, in Section 4, we present our method.
Our experiments and the preprocessing done to the
training data are explained in Section 5. In Sec-
tion 6, we present and discuss the results of the
submitted runs.

2 Previous Work

To our knowledge, there is no previous LI re-
search focusing specifically on the languages of
Italy. However, previous language identification-
related research has featured the rare Romance lan-
guages that make up the ITDI repertoire. Emiliano-
Romagnolo, Friulian, and Sardinian were part of
the 372 languages featured in the research by Ro-
drigues (2012). Benedetto et al. (2002) automati-
cally created a phylogenetic-like tree for languages
based on more than 50 versions of the Universal
Declaration of Human Rights, including the Friu-
lian and the Sardinian editions. Lombard, Piemon-
tese, Sicilian, and Venetian were featured in the ex-
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periments leading to the development of the HeLI-
method (Jauhiainen, 2010; Jauhiainen et al., 2016).
Lombard, Neapolitan, Piemontese, Sicilian, and
Venetian were included in the LI experiments con-
ducted by Majliš (2011). King and Abney (2013)
and King (2015) investigated word-level language
identification in multilingual documents, including
mixed Lombard - English, among other combina-
tions. Bernier-Colborne et al. (2021) mention the
Lombard - Italian pair as one of the top 10 most
frequently confused pairs in the ULI-178 track of
the Uralic Language Identification shared task. The
ULI-178 track was a general language identifica-
tion task between 178 languages, among them Lom-
bard, Piemontese, Sardinian, Sicilian, and Venetian
(Jauhiainen et al., 2020b). Neapolitan, Piemontese,
and Sicilian were part of the ALTW 2010 multi-
lingual language identification shared task dataset
(Baldwin and Lui, 2010). Caswell et al. (2020)
investigated language identification in the context
of web crawling and mention Neapolitan, Sicilian,
and Venetian as part of the lowest-resource lan-
guages in their research. All the languages of the
task except Lombard were included in the language
identifier featuring more than 900 languages devel-
oped by Brown (2012, 2013). Also, Lombard was
added to his version with more than 1300 languages
(Brown, 2014).1 Emiliano-Romagnolo, Lombard,
Neapolitan, Piemontese, Sicilian, and Venetian are
part of the repertoire of the FastText off-the-shelf
language identifier2 and Lombard, Piemontese, Sar-
dinian, and Sicilian are included in the HeLI-OTS
off-the-shelf language identifier (Jauhiainen et al.,
2022).3

Distinguishing between French regional vari-
eties from France and Canada was part of the
overall aims in the 2016 and 2017 editions of the
Discriminating between Similar Languages (DSL)
shared tasks (Malmasi et al., 2016; Zampieri et al.,
2017).4 The 2016 edition of the DSL was won by
the tubasfs team using SVM and character n-grams
from one to seven (Çöltekin and Rama, 2016).
They managed to achieve 95.8% recall for the Cana-
dian variety and 94.0% recall for the French variety.
In 2016, we came second with a HeLI method-

1https://sourceforge.net/projects/
la-strings/files/

2https://fasttext.cc/docs/en/
language-identification.html

3https://doi.org/10.5281/zenodo.
4780897

4http://ttg.uni-saarland.de/resources/
DSLCC/

based identifier using words and character n-grams
from one to six (Jauhiainen et al., 2016). The DSL
2017, the last one of its kind, was won by the CECL
team using SVM with character n-grams from one
to four in the first stage to detect the language group
and another SVM with a variety of features in addi-
tion to character n-grams such as POS tag n-grams,
the proportion of capitalized letters and punctua-
tion marks to detect the language within the group
(Bestgen, 2017).

3 Data

3.1 ITDI

In the ITDI, the participants were allowed to train
their systems using the Wikipedia dumps for the
11 languages or dialects featured in the shared
task. Additionally, it was possible to use the dump
of the Italian language Wikipedia. All featured
languages or dialects have their version of the
Wikipedia online encyclopedia written in their re-
spective language or dialect. The ISO 639-3 identi-
fier eml for Emilian-Romagnol is considered dep-
recated as the language has been split into separate
Emilian (egl) and Romagnol (rgn) languages, but
Wikipedia is still shared between both languages.5

The Sardinian, srd, is considered a macrolanguage
in ISO 639-3, containing four separate Sardinian
languages. It is possible that the Wikipedias for the
eml and srd contain articles written in those sep-
arate languages. However, we did not investigate
this possibility further. We did not utilize the Italian
Wikipedia in any way in the experiments. The list
of languages and dialects, their ISO 639-3 codes,
tags used in the shared task, and the identities of
their Wikipedia dumps can be seen in Table 1.

In contrast to the training data, the material for
system development was provided directly by the
shared task organizers. It came in one text file
containing 6,799 lines which seemed to be single
sentences preceded by the shared task tags. The
development set included only a subset of seven of
the 11 languages. The shared task participants had
been informed that the test set would also be a sub-
set of the 11 languages, but the number and identity
of the missing languages were not indicated. The
languages and the amount of development data for
each of them can be seen in Table 2. The test set
contained 11,090 lines in unknown languages or
dialects.

5https://eml.wikipedia.org/wiki/
Längua_emiglièna-rumagnôla
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Language/Dialect ISO 639-3 ST tag Dump name with date .bz2 size
Emiliano-Romagnolo eml EML emlwiki-20220301 9.3 MB
Friulian fur FUR furwiki-20220301 2.5 MB
Ladin lld LLD lldwiki-20220301 2.8 MB
Ligurian lij LIJ lijwiki-20220301 6.6 MB
Lombard lmo LMO lmowiki-20220301 25 MB
Neapolitan nap NAP napwiki-20220301 5.4 MB
Piemontese pms PMS pmswiki-20220301 14 MB
Sardinian srd SC scwiki-20220301 7.2 MB
Sicilian scn SCN scnwiki-20220301 12 MB
Tarantino nap ROA_TARA roa_tarawiki-20220301 6.4 MB
Venetian vec VEC vecwiki-20220301 27 MB

Table 1: The Wikipedia dumps used in the ITDI shared task.

ST tag lines
EML 0
FUR 676
LLD 0
LIJ 617
LMO 1,231
NAP 0
PMS 1,191
SC 477
SCN 1,371
ROA_TARA 0
VEC 1,236

Table 2: The number of lines of each language in the
development set of the ITDI shared task.

3.2 FDI

In the FDI, the participants were provided with
training and development data for four regional
varieties of French from France, Belgium, Switzer-
land, and Canada (Gaman et al., 2022). The data
had been extracted from news websites in these
countries using country-independent query words.
A named entity recognizer (NER) Spacy had been
run on the data, and all the detected entities had
been changed to $NE$ in order to remove country-
specific bias. The data is divided into paragraphs
of three sentences or less. The amount of data for
the different varieties is not balanced, as seen in
Table 3. According to the data compilers, it was not
easy to get Canadian material as most news sites in
the country are subscription-based (Gaman et al.,
2022).

In both the training and the development sets, the
lines seem not to have been randomized. When we
tested combining consecutive lines, they seemed

to make up complete news articles or web pages.
However, we expected the test set not to repeat this
pattern.

4 Method

We used the same system we had developed for
and used in the winning submission of the 2021
edition of Romanian Dialect Identification (Jauhi-
ainen et al., 2021).6 The system uses a Naive
Bayes-based method using the observed relative
frequencies of multiple-size character n-grams as
probabilities. We first used the method as a baseline
for the Cuneiform Language Identification (CLI)
shared task (Jauhiainen et al., 2019a) and later with
adaptive language models (Jauhiainen et al., 2019c)
to win the Discriminating between the Mainland
and Taiwan variation of Mandarin Chinese (DMT)
(Jauhiainen et al., 2019b) and the RDI 2021 (Jauhi-
ainen et al., 2021) shared tasks. The Naive Bayes
type method adds together logarithms of the rela-
tive frequencies of character n-gram combinations
fi in the training data Cg as defined in Equation 1:

R(g,M) = −lg10

ℓ
MF∏

i=1

vCg (fi) =

ℓ
MF∑

i=1

−lg10(vCg (fi))

(1)

where ℓMF is the number of individual features
in the mystery text M to be identified and fi is
M ’s ith feature. The relative frequency, vCg(f), is
calculated as in Equation 2:

vCg (f) =





c(Cg,f)

ℓ
CF
g

, if c(Cg, f) > 0

1
ℓ
CF
g

pm, otherwise
(2)

6The implementation of the language identifier used to pro-
duce the best results for the ITDI shared task is available from
GitHub at https://github.com/tosaja/TunPRF.
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Variety Code #lines #tokens Tokens per line #NE
France FR 61,777 4,224,301 68 587,138
Belgium BE 121,746 7,241,609 59 1,104,562
Switzerland CH 141,261 8,494,657 60 1,112,525
Canada CA 34,003 1,694,760 50 184,083

Table 3: The training and development datasets sizes for the FDI shared task.

where c(Cg, f) is the count of feature f in the train-
ing corpus Cg of the language g. ℓCF

g
is the length

of the corpus Cg when it has been transformed into
a collection of features F , e.g., features of the same
type as f . The pm is the penalty modifier, which
is optimized using the development data.

The system uses an adaptation technique to learn
from the test data (Jauhiainen et al., 2019c). There
is also a possibility to perform iterative adaptation,
in which the test data is processed several times
from the beginning of the adaptation process.

The exact range of the used character n-grams
is optimized using the development data. After
optimizing the basic method, the parameters for the
adaptive version are determined. In the adaptation
technique, the test data is first identified with the
basic method, and a confidence score is calculated
for each identified instance. The confidence score
is the difference between the scores of the best and
the second-best language. The test instances are
sorted according to the confidence scores and then
divided into a certain number of splits. The number
of splits is determined using the development data.
The character n-gram frequency information from
the most confident split is added to the respective
language models, and the rest of the material is re-
identified with the adapted models. Then the rest of
the material is again sorted and divided into equally
sized splits, and the information from the most
confident split is added to the models and the rest
re-identified. The previous process is repeated until
all the material is added to the language models.

In the iterative version, the adaptation process
is restarted from the beginning. The number of
possible iterations is also determined using the de-
velopment set.

5 Experiments

This section presents the details of the experi-
ments and various preprocessing techniques we
used when participating in the shared tasks.

5.1 ITDI
The organizers of the Identification of Languages
and Dialects of Italy shared task provided a script
that could be used to generate a .json file from the
.bz2 files downloaded from Wikipedia. Instead of
using the script, we created plain text versions of
the dumps using the command:
-m wikiextractor.WikiExtractor
xxxwiki-20220301- ... .bz2 -o xxx_texts

The training data extracted this way contained
1.91 million lines, some extended text passages,
and some just short headings, names, or even empty
lines. The first thing we did was to remove dupli-
cate lines within each language or dialect. This
deduplication procedure reduced the size of the
training data to 0.93 million lines.

As the next step, we removed the lines contain-
ing wiki markup, which we found by using the
following regular expressions:
&lt;comment&gt;.*&lt;/comment&gt;
&lt;contributor&gt;
&lt;/contributor&gt;
&lt;format&gt;.*&lt;/format&gt;
&lt;ip&gt;.*&lt;/ip&gt;
&lt;minor /&gt;
&lt;model&gt;.*&lt;/model&gt;
&lt;ns.*/ns&gt;
&lt;parentid&gt;.*&lt;/parentid&gt;
&lt;revision&gt;
&lt;timestamp&gt;.*&lt;/timestamp&gt;
&lt;username&gt;.*&lt;/username&gt;

We also removed all lines with a tab character
followed by a lowercase letter and unified the num-
bers so that all number characters were changed to
“1”. Then, we again removed duplicate lines which
left us with 880,000 lines. At this point, we took an
inventory of the number of lines for each language
and dialect (Table 4).

At each stage, we had tested the performance of
our Naive Bayes-based system on the development
data. At this stage, the Lombard language had the
worst precision with 83.2%, and we decided to try
and clean its training data to improve its precision.
As it seemed that, in general, shorter lines were
of lower quality than longer ones, we removed all
Lombard lines with less than 14 characters from
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ST tag # lines
EML 16,425
FUR 18,040
LLD 31,524
LIJ 38,645
LMO 185,116
NAP 34,327
PMS 208,485
SC 41,169
SCN 95,693
ROA_TARA 36,818
VEC 173,452

Table 4: The number of lines for each language or di-
alect in the ITDI training data after unifying the number
characters.

the training corpus. We also did further cleaning
of the wiki markup for all languages by removing
lines using the following regular expressions:
&lt;/math&gt;
&lt;/[pP]oem&gt;
&lt;/small&gt;
&lt;references&gt;
&lt;/html&gt;
&lt;/includeonly&gt;&lt;/onlyinclude&gt;
&lt;/table&gt;
&lt;?php
&lt;BR C.* &gt;
#redirect

We removed all lines that did not include low-
ercase ASCII characters and the remaining “&lt;”
and “br&gt;” tags. Once more, we removed any
possible duplicate lines. Our efforts to improve the
precision of LMO were in vain, as it dropped from
83.2% to 83.0%. However, the micro F1 over all
the languages remained the same, 92.7, so we kept
the changes.

At this stage, the Venetian language had the
worst recall of all the languages, 75.6%. While
taking a look at the erroneously identified sen-
tences, we noticed that, in fact, part of the Vene-
tian Wikipedia used a slightly different orthography
than the development data. The Wikipedia dumps
contained the “ł” and “Ł” characters, whereas only
“l” and “L” were present in the development data.
We used a simple regular expression to change the
training data to correspond with the development
data. This unification of orthographies improved
the recall of Venetian from 75.6% to 79.1% and the
precision of Lombard from 83.0% to 85.6%. The
overall micro F1 also increased slightly from 92.7
to 93.3.

One phenomenon we were aware of due to our

previous experiences using Wikipedia dumps as
training material was that some of the smaller
Wikipedias might contain relatively large parts au-
tomatically generated from a database. In partic-
ular, the pages describing the French municipali-
ties are usually generated using templates. These
template-based articles were also found as part of
the Venetian Wikipedia: out of the 173,091 Vene-
tian lines, 33,701 were automatically generated
information about French communes. We removed
the lines using the following regular expression to
detect them:

egrep -v ’el xe on comun de.*abitanti del
departemento.*in Fransa\.’

The recall of Venetian increased from 79,1%
to 84,0%, and at the same time, the precision of
Lombard rose from 85.6% to 88.2%.

Venetian still had the lowest individual F1 score,
89.9. We aimed to increase further the quality of
the training set by first removing all lines which
did not have a word beginning with a lowercase
ASCII letter and then removing all the 2,983 lines
explaining roman numbers such as:

El 11 (LXIII en numeri romani) el xe ...
El 11 (LXIV en numeri romani) el xe ...
El 11 (LXIX in numeri romani) el xe ...
El 11 (LXV en numeri romani) el xe ...

Additionally, in a similar manner to the French
towns, we removed the municipalities of Italy listed
in the Venetian Wikipedia. These cleaning opera-
tions resulted in a slight increase of the F1 to 90.3.
The overall micro F1 had by now risen from 93.3
to 94.2.

Further cleaning, e.g., removing lines describing
the Spanish towns in the Venetian Wikipedia and
removing all lines containing specific additional
wiki markup, did not improve the overall F1 score.
As further preprocessing seemed less fruitful, we
started experimenting with the adaptive version of
the Naive Bayes identifier, with which evaluating
new versions of the training corpora would take
much longer.

We tested the adaptive version with 128, 256,
and 512 splits. Additionally, we tested with 128
splits and two iterations. They all returned the same
micro F1 of 96.2, which was higher than the score
of 94.2, which was attained without adaptation.7

7If time allowed, one would begin finding the optimal
number of splits from two and then double the number of
splits every iteration as we did with FDI (see Table 6). Due to
time constraints, for ITDI, we skipped the first ones. If 128
splits had produced better results than 256 splits, we would
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In the end, we opted to continue using 512 splits
with only one adaptation round.

Afterward, we still decided to continue training
corpora cleaning and removed additional template-
generated text from Lombard training data. Ad-
ditionally, we removed from all languages those
lines that did not include a space character followed
by a lowercase ASCII alphabetical character, e.g.,
those that did not have a word starting with a low-
ercase letter. These modifications did not improve
the results, but we still decided to use them as we
considered the training data to be in better shape.

As stated by the organizers and indicated by the
languages missing from the development set, the
test data would not include all the languages in
the training data. Furthermore, we were unsure
what measure would be used to evaluate the sub-
missions. These facts led us to prepare one submis-
sion in preparation for the measure being macro
F1. Also, we hoped that leaving out unnecessary
languages might help to boost the performance of
the remaining languages. We have previously de-
veloped a method for language set identification
(Jauhiainen et al., 2015) and used it while collect-
ing rare Uralic languages from the internet (Jauhi-
ainen et al., 2020a). However, instead of using our
language set identification method, we devised a
simple thresholding method to leave out the most
probable unnecessary languages using the develop-
ment set as a guideline. Based on the development
set, we surmised that it would be safe to remove
from the repertoire those languages that, after all
lines had been identified once, had been assigned
fewer lines than 10% of the average number of
lines for each language.

5.2 FDI
In the French Cross-Domain Dialect Identification
shared task, the training data seemed to be of better
quality than in the ITDI, and when perusing it, we
did not notice any need for extensive preprocessing.
We started with optimizing the parameters for the
Naive Bayes identifier. Our first optimization run
gave the best result, a micro F1 of 0.646, with just
character six-grams, which were the maximum size
for n-grams on that run.

We noticed that the training data for some lan-
guage varieties contained a large amount of repe-
tition, as seen in Table 5. Especially the Canadian
variety training corpus consisted of identical lines

have experimented with 64 splits and continued reducing the
number of splits as long as the results improved.

Code #lines #unique lines
FR 61,777 55,927
BE 121,746 113,487
CH 141,261 107,982
CA 34,003 169

Table 5: The number of lines in the FDI training data
before and after removing duplicates.

repeated hundreds of times. Even the rarest lines
in that corpus are repeated 55 times.

We did the same initial optimization run with
the deduplicated training data and ended up with a
micro F1 of 0.634. The score was slightly worse
than before deduplication, so we continued exper-
imenting with the original training set. We also
tested lowercasing the training data and the mys-
tery texts, which gave lower micro F1 scores with
both original and deduplicated datasets. Further op-
timization with higher order n-grams led us to use
only character eight-grams and the penalty modi-
fier of 1.26, which gave a micro F1 score of 0.675
on the development data. We then optimized with
the deduplicated training data, which resulted in
eight grams and a penalty modifier of 1.73, giving
a micro F1 of 0.659, which was again lower than
without deduplication. Next, we experimented with
removing the named entity tags from the training
and the development data, which again resulted in
a slightly lower micro F1 of 0.659.

So far, we had used the micro F1 as our guideline
when optimizing the system even though we were
aware that the macro F1 would be used to rank the
official submissions. The reason for using micro F1
was that our optimization system did not produce
correct macro F1 scores, which we fixed at this
stage. The macro F1 corresponding to micro F1 of
0.675 was 0.495. We then proceeded to experiment
with the adaptive version of the identifier.

We evaluated several combinations of the num-
ber of splits and iteration rounds as seen in Table 6.
In the end, we used the character eight-grams, the
penalty modifier of 1.26, 128 splits, and three itera-
tions, giving us a macro F1 of 0.553 and a micro
F1 of 0.745 on the development set.

As a last experiment, we decided to try to unify
the numbers in a similar way we did with the ITDI
data using the non-adaptive version of the system.
Unifying the numbers increased the macro F1 from
0.495 to 0.498 and the micro F1 from 0.675 to
0.681. Due to limited time, we could not run the
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# splits # iterations Macro F1 Micro F1
2 4 0.510 0.698
4 4 0.523 0.713
8 4 0.537 0.729
16 4 0.550 0.742
32 3 0.552 0.744
64 3-4 0.5526 0.7450
128 3-4 0.5529 0.7454
256 3-4 0.5527 0.7451
512 3-4 0.5525 0.7449
1024 3-4 0.5524 0.7447

Table 6: Optimizing adaptation parameters with the
FDI training and development data. The best scores are
bolded.

adaptive version on development data. As unify-
ing improved the results, we decided to unify the
numbers with the adaptive version for the actual
submissions.

6 Results

In this section, we describe the results of the sub-
mitted runs and the conclusions we can derive from
them.

6.1 ITDI

We submitted three sets of predictions for the ITDI
task. The main difference between the submissions
was the data used to train the identifier. All the
submissions used character n-grams from three to
eight with a penalty modifier of 2.1. The number
of splits in adaptation was set to 512, and iterative
adaptation was not used. We added a space char-
acter to the beginning and the end of the text to be
identified so that our identifier would recognize the
beginning of the first word and the end of the last
word.

The first submission used combined training and
development data, and the second just the train-
ing data. The third system combined the train-
ing and development data but without the data for
Piemontese and Sardinian, which were discarded in
the language set identification phase due to having
less than the threshold amount of instances. The
weighted average F1 score for all of our three sub-
missions was quite similar and on a completely
different level from the results of the best submis-
sions of the two other participating teams, as seen
in Table 7. The best baseline provided by the or-
ganizers was closer to our results than those of the

Team Submission Wgt. F1 Mac. F1
SUKI 2 0.9007 0.6729
SUKI 1 0.8983 0.6714
SUKI 3 0.8982 0.7458
Org. Baseline 0.7726 0.5193
Phlyers 3 0.6943 0.5379
ETHZ 3 0.6880 0.4828

Table 7: The results of the ITDI shared task with the
best baseline.

other teams but still substantially behind them.
Without further experiments, it is difficult to say

whether the distance to the other teams is due to
differences in preprocessing Wikipedia or to us-
ing adaptive language models. The results on the
language/dialect level can be seen in Table 8. The
worst performing language of the languages present
in the test set was the Neapolitan dialect Tarantino.

6.2 FDI

All our submissions to the FDI shared task used
character eight grams with a penalty modifier of
1.26. The number of splits in adaptation was set to
128, and three iterations of adaptation to the test
data were used. As in the ITDI task, the difference
between the submissions comes from the data used
for training. The first submission uses the training
data, the second uses the development data, and the
third uses a combination of both.

In contrast to the ITDI, the FDI shared task was
ranked using the macro F1 score. The macro F1
score of our best submission, 0.266, was far be-
hind the 0.344 of the winning NRC team. How-
ever, the results of the NRC team were still clearly
lower than that of the best baseline, CamemBERT
(Gaman et al., 2022), as seen in Table 9.

Table 10 is a confusion matrix for our third and
best run. The contrast to our second run in Table 11
is dramatic. In the third run, only 28 lines were
identified as the Canadian variety as opposed to
the 15,518 lines identified as the Swiss variety. In
the second run, 6,188 lines were identified as the
Canadian variety and only 28 as the Swiss variety.
It seems that the choice of training data is mostly
responsible for these great differences.

The difference between our results on the devel-
opment data vs. the test data is quite significant
compared to similar results reported by the orga-
nizers (Gaman et al., 2022). Table 12 shows how
our Macro F1 drops over 50% from development
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Language Precision Recall F1 score Lines in test
EML 0.8916 0.9273 0.9091 825
FUR 0.9969 0.9781 0.9874 1,323
LIJ 0.9831 0.9947 0.9889 2,282
LLD 0.9971 0.9268 0.9607 2,200
LMO 0.8991 0.9826 0.9390 689
NAP 0.8927 0.887 0.8898 2,026
ROA_TARA 0.7532 0.0962 0.1706 603
SC 0 0 0 0
SCN 0 0 0 0
VEC 0.7929 0.9982 0.8838 1,139

Table 8: Per language results for our best submission on the ITDI shared task.

Team Submission Macro F1 Weighted F1 Micro F1
CamemBERT baseline 0.3967 - 0.5584
NRC 2 0.3437 0.4581 0.4936
SUKI 3 0.2661 0.3422 0.3918
DontClassify 1 0.2627 0.3236 0.3914
SUKI 1 0.2603 0.3439 0.3984
SUKI 2 0.1383 0.1958 0.2339

Table 9: The results of the FDI shared task.

BE CA CH FR Recall Precision F1 score
BE 7,252 1 7,119 863 47.6% 39.4% 43.1
CA 97 16 574 257 1.7% 57.1% 3.3
CH 2,148 1 6,570 1,105 66.9% 42.3% 51.9
FR 8,912 10 1,255 553 5.2% 19.9% 8.2

Table 10: The confusion matrix for our third and best submission at the FDI shared task, with the recall, precision,
and the F1 score for each variety.

BE CA CH FR Recall Precision F1 score
BE 7,262 5,220 5 2,748 47.7% 31.3% 37.8
CA 717 162 2 63 17.2% 2.6% 4.5
CH 5,940 568 7 3,309 0.1% 25.0% 0.1
FR 9,317 238 14 1,161 10.8% 15.9% 12.9

Table 11: The confusion matrix for our second submission at the FDI shared task, with the recall, precision, and the
F1 score for each variety.
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to testing, whereas the drop for the best baseline is
less than 20%. After the shared tasks, we created
a version of our Naive Bayes system, which auto-
matically determines the best parameters using the
development set. Using the new implementation,
we conducted some further experiments with the
language annotated test data, and now it is clear that
the optimal character n-gram range for the test data
differs significantly from that of the development
data. The optimal character range for the test data
seems to be from four to seven characters, whereas
it is from eight to eight for the development data.
With the optimal character n-gram range, the NB
identifier gets a macro F1 score of 0.3539 without
language model adaptation. This score would be
more comparable with the scores of the winning
NRC submission. However, the real issue was the
language model adaptation which lowered the re-
sults considerably. On the one hand, even using just
the character eight-grams without adaptation gives
the macro F1 score of 0.3306 on the test data, and
on the other hand, using character n-grams from
four to seven, the optimal range, with adaptation
results in macro F1 score of 0.2628.
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