@inproceedings{sobhy-etal-2022-word,
title = "Word Representation Models for {A}rabic Dialect Identification",
author = "Sobhy, Mahmoud and
Abu El-Atta, Ahmed H. and
El-Sawy, Ahmed A. and
Nayel, Hamada",
editor = "Bouamor, Houda and
Al-Khalifa, Hend and
Darwish, Kareem and
Rambow, Owen and
Bougares, Fethi and
Abdelali, Ahmed and
Tomeh, Nadi and
Khalifa, Salam and
Zaghouani, Wajdi",
booktitle = "Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.52/",
doi = "10.18653/v1/2022.wanlp-1.52",
pages = "474--478",
abstract = "This paper describes the systems submitted by BFCAI team to Nuanced Arabic Dialect Identification (NADI) shared task 2022. Dialect identification task aims at detecting the source variant of a given text or speech segment automatically. There are two subtasks in NADI 2022, the first subtask for country-level identification and the second subtask for sentiment analysis. Our team participated in the first subtask. The proposed systems use Term Frequency Inverse/Document Frequency and word embeddings as vectorization models. Different machine learning algorithms have been used as classifiers. The proposed systems have been tested on two test sets: Test-A and Test-B. The proposed models achieved Macro-f1 score of 21.25{\%} and 9.71{\%} for Test-A and Test-B set respectively. On other hand, the best-performed submitted system achieved Macro-f1 score of 36.48{\%} and 18.95{\%} for Test-A and Test-B set respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sobhy-etal-2022-word">
<titleInfo>
<title>Word Representation Models for Arabic Dialect Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">Sobhy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Abu El-Atta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="given">A</namePart>
<namePart type="family">El-Sawy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamada</namePart>
<namePart type="family">Nayel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the systems submitted by BFCAI team to Nuanced Arabic Dialect Identification (NADI) shared task 2022. Dialect identification task aims at detecting the source variant of a given text or speech segment automatically. There are two subtasks in NADI 2022, the first subtask for country-level identification and the second subtask for sentiment analysis. Our team participated in the first subtask. The proposed systems use Term Frequency Inverse/Document Frequency and word embeddings as vectorization models. Different machine learning algorithms have been used as classifiers. The proposed systems have been tested on two test sets: Test-A and Test-B. The proposed models achieved Macro-f1 score of 21.25% and 9.71% for Test-A and Test-B set respectively. On other hand, the best-performed submitted system achieved Macro-f1 score of 36.48% and 18.95% for Test-A and Test-B set respectively.</abstract>
<identifier type="citekey">sobhy-etal-2022-word</identifier>
<identifier type="doi">10.18653/v1/2022.wanlp-1.52</identifier>
<location>
<url>https://aclanthology.org/2022.wanlp-1.52/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>474</start>
<end>478</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word Representation Models for Arabic Dialect Identification
%A Sobhy, Mahmoud
%A Abu El-Atta, Ahmed H.
%A El-Sawy, Ahmed A.
%A Nayel, Hamada
%Y Bouamor, Houda
%Y Al-Khalifa, Hend
%Y Darwish, Kareem
%Y Rambow, Owen
%Y Bougares, Fethi
%Y Abdelali, Ahmed
%Y Tomeh, Nadi
%Y Khalifa, Salam
%Y Zaghouani, Wajdi
%S Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F sobhy-etal-2022-word
%X This paper describes the systems submitted by BFCAI team to Nuanced Arabic Dialect Identification (NADI) shared task 2022. Dialect identification task aims at detecting the source variant of a given text or speech segment automatically. There are two subtasks in NADI 2022, the first subtask for country-level identification and the second subtask for sentiment analysis. Our team participated in the first subtask. The proposed systems use Term Frequency Inverse/Document Frequency and word embeddings as vectorization models. Different machine learning algorithms have been used as classifiers. The proposed systems have been tested on two test sets: Test-A and Test-B. The proposed models achieved Macro-f1 score of 21.25% and 9.71% for Test-A and Test-B set respectively. On other hand, the best-performed submitted system achieved Macro-f1 score of 36.48% and 18.95% for Test-A and Test-B set respectively.
%R 10.18653/v1/2022.wanlp-1.52
%U https://aclanthology.org/2022.wanlp-1.52/
%U https://doi.org/10.18653/v1/2022.wanlp-1.52
%P 474-478
Markdown (Informal)
[Word Representation Models for Arabic Dialect Identification](https://aclanthology.org/2022.wanlp-1.52/) (Sobhy et al., WANLP 2022)
- Word Representation Models for Arabic Dialect Identification (Sobhy et al., WANLP 2022)
ACL
- Mahmoud Sobhy, Ahmed H. Abu El-Atta, Ahmed A. El-Sawy, and Hamada Nayel. 2022. Word Representation Models for Arabic Dialect Identification. In Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP), pages 474–478, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.