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Introduction

Welcome to the proceedings of the system demonstration track of the 17th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2023) on May 2nd – May 4th, 2023.
For the EACL 2022 system demonstration track, we received 56 submissions, of which 33 were selected
for inclusion in the program (acceptance rate of 59%) after being reviewed by at least three members of
the program committee. We would like to thank the members of the program committee for their timely
help in reviewing the submissions. Lastly, we thank the many authors that submitted their work to the
demonstrations track. As this year’s EACL conference is a hybrid event, the demonstration papers will
be presented through virtual presentations and also in person during the poster sessions. We appreciate
the efforts made by all authors to showcase their work and contribute to the success of the conference.

Danlo Croce, Luca Soldaini
EACL 2023 System Demonstration Chairs
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Addressing Issues of Cross-Linguality in Open-Retrieval Question
Answering Systems For Emergent Domains

Alon Albalak, Sharon Levy, William Yang Wang
University of California, Santa Barbara

{alon_albalak,sharonlevy,william}@cs.ucsb.edu

Abstract

Open-retrieval question answering systems are
generally trained and tested on large datasets
in well-established domains. However, low-
resource settings such as new and emerging
domains would especially benefit from reliable
question answering systems. Furthermore, mul-
tilingual and cross-lingual resources in emer-
gent domains are scarce, leading to few or no
such systems. In this paper, we demonstrate a
cross-lingual open-retrieval question answering
system for the emergent domain of COVID-19.
Our system adopts a corpus of scientific articles
to ensure that retrieved documents are reliable.
To address the scarcity of cross-lingual training
data in emergent domains, we present a method
utilizing automatic translation, alignment, and
filtering to produce English-to-all datasets. We
show that a deep semantic retriever greatly ben-
efits from training on our English-to-all data
and significantly outperforms a BM25 baseline
in the cross-lingual setting. We illustrate the
capabilities of our system with examples and
release all code necessary to train and deploy
such a system1.

1 Introduction

One challenge of emergent domains is that the orig-
inating locality is unknown, leading to the need
for reliable information to cross language barri-
ers. However, it is unlikely that domain-specific
information will be available across multiple lan-
guages for a new domain. Furthermore, informa-
tion rapidly changes in emerging domains, com-
pounding the challenge of accessing credible data.

An example of a prominent emergent domain
is COVID-19, which has quickly spread across
the globe. To combat the spread of misinfor-
mation about COVID-19, researchers have devel-
oped open-retrieval question answering (Chen and
Yih, 2020) systems which use large collections of

1Code is open-sourced on github (link). Short video
demonstration provided on youtube (link).

trusted documents. For example, Lee et al. (2020),
Levy et al. (2021), and Esteva et al. (2021) all
develop open-retrieval QA systems using large cor-
puses of scientific journal articles. However, be-
cause these systems focus on English, they leave a
gap for implementation on emergent domains that
do not originate in English-speaking locations.

To address the limitations of prior systems, we
implement a cross-lingual open-retrieval question
answering system that retrieves answers from a
large collection of multilingual documents, where
answers may be in a language different from the
question (Asai et al., 2021).

In this work we take COVID-19 as an exemplar
of an emergent domain and present our system,
which addresses two main areas of importance:

• Cross-linguality: The locality of an emergent
domain is unknown ahead of time, making
cross-lingual QA essential. Additionally, be-
cause data can rapidly change in emerging
domains, new information may develop in
multiple languages, motivating the need for
systems that work across many languages.

• Scarcity of training data: Data scarcity is an
expected concern for emergent domains, but
multilingual and cross-lingual data are even
more limited. We demonstrate that by em-
ploying automatic translation, alignment, and
filtering methods, this challenge can be over-
come in low-resource open-retrieval QA.

This system demonstration provides in-depth
technical descriptions of the individual compo-
nents of our cross-lingual open-retrieval question
answering system: cross-lingual retrieval and cross-
lingual reading comprehension modules. Then, we
describe how to combine the components along
with document re-ranking into the complete system,
shown in Figure 1, and present several examples
taken from our system.

1
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Figure 1: An overview of our cross-lingual COVID-19 open-retrieval question-answering system.

2 Cross-Lingual Dense Retrieval

Training a dense retriever is challenging in low-
resource settings, such as emergent domains, due
to the data-hungry nature of large language models.
This challenge is compounded in the cross-lingual
setting, where we aim to train a model to encode
concepts from multiple languages into a similar
location in the embedding space. In this section,
we discuss how we overcome these challenges.

2.1 Data

Cross-lingual retrieval requires two datasets; a
large-scale multilingual corpus of scientific arti-
cles from which to retrieve documents and a cross-
lingual dataset for training the retriever. However,
a very limited number of COVID-19 datasets have
been released, few of which are multilingual and
none of which are cross-lingual.

CORD-19 (Lu Wang et al., 2020) is a large-scale
corpus of scientific papers on COVID-19, however
a known limitation is that it contains only English
articles. We draw inspiration from this work to
address the lack of a large scale corpus of multilin-
gual COVID-19 scientific articles. For our system,
we use a manually collected corpus of English ab-
stracts from PubMed, some of which have parallel
abstracts in additional languages. The corpus is

Figure 2: Multilingual vs. cross-lingual question an-
swering: In the multilingual setting, QA pairs exist for
multiple languages in a one-to-one mapping. On the
other hand, in cross-lingual QA questions may have an-
swers in any language, creating a one-to-many mapping.

collected using the same query as described by
Lu Wang et al. (2020) . We call this corpus multi-
lingual CORD-19 (mCORD-19), and the language
distribution can be found in Table 1.

To train our retriever we utilize the COUGH
(Zhang et al., 2021) dataset, which is a multilingual
FAQ retrieval dataset and consists of COVID-19
QA pairs. Although COUGH is multilingual, con-
taining samples in 9 different languages, COUGH
does not contain any cross-lingual QA pairs. The
language distribution is shown in Table 1.
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COUGH 9151 (en) 1077 (es) 778 (zh) 697 (fr) 573 (ja) 531 (ar)
mCORD-19 172977 (en) 1109 (es) 951 (zh) 711 (de) 614 (fr) 328 (pt)

Table 1: Top 6 languages by count for COUGH and the multilingual CORD-19 datasets. Language codes are the
following: en-English, es-Spanish, zh-Chinese, fr-French, de-German, ja-Japanese, ar-Arabic, pt-Portuguese.

Answer
Language Spanish Mandarin French Arabic German Russian Vietnamese Italian

En2All 8695 8441 8372 8231 8226 8156 8072 8003
Filtered
En2All 6620 5869 5635 5808 5867 4137 531 6568

Table 2: QA pairs in our En2All and Filtered En2All variants of the COUGH dataset, where each question is in
English, and the context and answer are in the language specified above.

2.2 Cross-lingual Data Generation

To address the lack of cross-lingual data in
COUGH we introduce a modification of the dataset
which we call English-to-all (En2All), where we
convert the dataset from the multilingual to cross-
lingual setting, as demonstrated in Figure 2. Be-
cause we are interested in a system which will
find non-English answers to English questions, we
create En2All through two translation processes.
First, we translate the answer portion of every QA
pair from COUGH into eight languages: Arabic,
French, German, Italian, Mandarin, Russian, Span-
ish, and Vietnamese. Secondly, we translate the
question portion of all QA pairs from any of the
above languages into English2.

As machine translation models do not perform
perfectly, there may be instances within En2All
that contain poor translations. To resolve this prob-
lem, we utilize LaBSE (Feng et al., 2020), an ex-
isting BERT-based sentence embedding model that
encodes 109 languages into a shared embedding
space. The model is utilized to compare the align-
ment of translations across different languages. We
take the following steps to filter out any poor trans-
lations in the data:

1. We step through the current En2All and cal-
culate similarity scores between translated an-
swers and their original English answers. To
do this, we have eight different comparisons
for each translated English QA pair.

2. Once the similarity scores have been calcu-
lated, we remove translations that do not meet
a threshold and are classified as poor transla-
tions.

2All translations are generated by the MarianNMT system
(Junczys-Dowmunt et al., 2018) through the Huggingface
Transformers (Wolf et al., 2020) library.

After going through these steps, roughly one-third
of the data samples from En2All are removed for
poor translations.

2.3 Methodology: Deep Semantic Retriever
Our retrieval model is based on the dense passage
retriever from Karpukhin et al. (2020). In contrast
to their work, we train a unified encoder that
encodes both query and corpus into a shared
space. For the encoder, we train the multilin-
gual BERT (mBERT) (Devlin et al., 2019) and
XLM-RoBERTa (XLM-R) (Conneau et al., 2020)
models. Both models have been pre-trained
using a tokenizer which shares a vocabulary
for over 100 languages, allowing the models to
encode all languages into a shared space. We
train these models on the FAQ retrieval task by
maximizing the inner product of correct QA pairs
and minimizing the inner product of within-batch
incorrect pairs.

2.4 Cross-Lingual Retrieval Evaluation
To evaluate our models in the large-scale open-
retrieval setting we utilize the questions from
COUGH and En2All as our queries and the
mCORD-19 dataset for our retrieval corpus. Be-
cause we have no ground truth labels for correct
documents, and indeed there may be some unan-
swerable questions given this corpus, we measure
model quality through a fuzzy matching metric,
Fuzzy Match at top k documents (FM@k). FM@k
utilizes the multilingual Sentence-BERT model
from (Reimers and Gurevych, 2019)3. Each of the
top k retrieved documents is split into it’s compo-
nent sentences and embedded using the sentence-
BERT model. Next, each sentence is compared

3We use the ’paraphrase-multilingual-mpnet-base-v2’ vari-
ant
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Model COUGH
(FM@5/100)

COUGH
+En2All

(FM@5/100)
BM254 18.6/41.4
mBERTbase 22.8/49.5 26.4/50.7

+ En2All 28.0/54.9 27.7/51.7
XLM-Rbase 25.0/51.3 28.1/51.6

+ En2All 30.1/55.4 28.4/52.2
+ Filtered-

En2All 32.9/56.7 30.9/53.4

XLM-Rlarge 30.5/56.6 29.8/53.2
+ En2All 32.1/56.4 29.6/52.9

Table 3: Retrieval evaluation results. All models are
trained on COUGH and additional training data is de-
noted by "+". The middle column takes queries from
COUGH, the right column from COUGH and En2All.
For both columns, the retrieval corpus is mCORD.
FM@5 and FM@100 are the fuzzy matching techniques
proposed to determine open-retrieval accuracy described
in section 2.4. Because BM25 is not cross-lingual, we
translate it’s queries into all languages in order to fairly
compare against our cross-lingual models.

with the ground truth answer by calculating the
cosine similarity with the reference answer embed-
ding from COUGH. If any of the cosine similarities
for that documents sentences are above a threshold,
the document is evaluated as a positive retrieval.

The results for our models and a BM25 baseline4

are found in Table 3. Since a multilingual BM25
cannot perform cross-lingual retrieval, in order to
fairly compare against cross-lingual models, we
translate all queries into every other language in the
mCORD corpus and then perform BM25 retrieval.

BM25 drastically underperforms compared to
encoder models and demonstrates the need for a
dense retrieval model. Although encoder models
outperform BM25 when trained on multilingual
data (COUGH), they are further improved by train-
ing on cross-lingual data (En2All). Additionally,
after filtering low quality translations from En2All,
we see further improvement in performance.

3 Cross-Lingual Reading Comprehension

3.1 Data

To train our cross-lingual reading comprehension
model, we would ideally use a cross-lingual covid-
specific question answering dataset. However, simi-
larly to cross-lingual retrieval no such dataset exists
so we augment existing datasets.

4BM25 Implementation details found
at https://github.com/alon-albalak/XOR-
COVID/tree/master/bm25

Model MCQA
(EM/F1)

MCQA+En2All
(EM/F1)

mBERTbase 20.0/57.5 19.6/55.4
+ XQuAD 21.2/57.7 20.5/55.6
+ En2All 19.3/56.1 19.2/55.8

XLM-Rbase 25.1/60.0 24.4/58.9
+ XQuAD 26.7/61.6 26.1/61.3
+ En2All 24.0/58.8 23.9/58.3

XLM-Rlarge 26.5/62.7 26.4/62.2
+ XQuAD 29.1/62.1 29.0/61.7
+ En2All 26.3/61.1 26.6/60.8

Table 4: Reading comprehension evaluation results.
All models are trained on MCQA, and additional train-
ing data is denoted by "+". The left column shows evalu-
ation on a multilingual dataset where questions/contexts
are always in the same language. The right column
additionally evaluates on a cross-lingual dataset where
questions are in english and context paragraphs may be
in any language.

Artetxe et al. (2020) introduced XQuAD, a mul-
tilingual QA dataset composed of 240 paragraphs
and 1190 QA pairs from SQuAD v1.1 which have
been professionally translated into 10 languages.
We utilize XQuAD as a pretraining dataset before
performing any training on covid-specific datasets5.
Möller et al. (2020) introduce Covid-QA, a covid-
specific QA dataset consisting of 2019 question-
answer pairs, however, it contains english-only
data. We modify Covid-QA with translations from
MarianMT (Junczys-Dowmunt et al., 2018) to gen-
erate two dataset variants based on the multilin-
gual and cross-lingual settings shown in Figure 2:
Multilingual Covid-QA (MCQA) and English-to-
all (En2All). MCQA is a multilingual version of
Covid-QA, created by translating all QA pairs into
9 languages to match those from XQuAD: Arabic,
German, Greek, Spanish, Hindi, Mandarin, Roma-
nian, Russian, and Vietnamese. En2All is our cross-
lingual variation of Covid-QA, in a similar spirit
to the cross-lingual variant of COUGH. Because
Covid-QA is english-only, to generate En2All we
translate all contexts/answers into the same 9 lan-
guages as MCQA.

3.2 Methodology: Span Extraction

Similar to our dense semantic retriever, we train
mBERT and XLM-RoBERTa models for our read-
ing comprehension task. We formulate reading
comprehension as a span extraction task, where
each model learns to find start and end tokens
which represent the answer span in a document.

5We open-source our models pretrained on XQuAD at
https://huggingface.co/alon-albalak
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Figure 3: The main interface of our system. At the top is the search bar, where the current query is "What are the
symptoms of covid in children?" Below the search bar are the three retrieved articles, ranked by relevance. In this
example, the first retrieved document has been expanded to show the title and original text in Turkish, on the left.
And on the right is the translation of the answer and the full document into English.

3.3 Cross-Lingual Reading Comprehension
Evaluation

To evaluate our models in the reading comprehen-
sion task, we utilize the QA datasets described in
Section 3.1. We evaluate our models based on ex-
act match (EM) and F1 metrics by comparing the
predicted answer spans with ground-truth answers.

The results for our models are found in Table 4.
We train each of our models on MCQA and sup-
plement it with data from XQuAD or En2All. In-
terestingly, we find that although En2All improved
models in the retrieval setting, it only hurt model
performance in QA. We also see that pretraining
on XQuAD improves performance in all metrics
for both base models, but leads to a slight decrease
in F1 score for XLM-Rlarge. In our demo, we uti-
lize XLM-Rlarge which was pretrained on XQuAD
because it has only slightly worse F1 score, but
significantly higher exact match compared to the
next best model.

4 Cross-Lingual Open-Retrieval Question
Answering

Our system is composed of the retrieval and read-
ing comprehension modules described in sections
2 and 3. The full end-to-end system is shown in
Figure 1. After the retriever has been trained, the
mCORD-19 corpus is encoded and stored in the
dense multilingual corpus index. When a ques-

tion is posed to the system, the query is encoded,
and a maximum inner product search is performed
over the index to find documents most similar to
the query. Answers are then extracted from the re-
trieved documents and the documents are re-ranked
based on answer confidence from the span extrac-
tion model. Finally, the answer spans and full doc-
uments are translated into English and presented to
the user with highlighted answers.

5 Demo

The demonstration retrieves documents from our
mCORD-19 corpus, which has been encoded by
the deep semantic retriever from section 2.3. We
provide examples from the demo in Figures 4, 5,
and 6.

5.1 Sidebar Interface

Our system has an options sidebar, shown in Figure
7, which gives the user several choices before en-
tering a query. The user can determine how many
documents they would like to see results from, they
can select which languages the retrieved documents
should be in, and they can specify a date range for
the publications to search over. If there are no rel-
evant documents in the desired date range, then
the system will retrieve from any date range and
displays a message to inform the user.
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Figure 4: The top 3 non-English results for the query "What are the symptoms of covid in children?"

Figure 5: The top 3 non-english results for the query "What are the concerns of having covid and diabetes?"
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Figure 6: A retrieved document for the query "What is the death rate of COVID", which shows multiple correct
answers corresponding to different provinces of South Korea.

Figure 7: The options sidebar for our demonstration sys-
tem. The options include: number of articles to return,
article languages to retrieve from, and publication date
range. For visualization purposes we show all language
options.

5.2 Main Interface

To query the system, a user simply selects the de-
sired options from the sidebar and enters their ques-
tion into the search bar, as seen in Figure 3. Af-
ter the user enters their question, the system will
encode the question using the trained deep seman-
tic retriever and find the most relevant documents
within the given language and date range con-
straints. Then, the reading comprehension model
will extract the answer (or answers) most rele-

vant to the query from each retrieved document.
Additionally, for any non-English documents, the
system translates both the retrieved article and ex-
tracted answers into English6. Finally, the retrieved
documents will be re-ranked based on the confi-
dence scores for the extracted answers.

The desired number of documents will be dis-
played to the user as a list of publication dates.
Each item can be expanded to show the article title,
original document with highlighted answers, trans-
lated answers, and the full article translation. If
an article contains a single answer, it will be high-
lighted in red. If there are multiple answers, each
answer will be highlighted with a different color to
allow for easy alignment between original answers
and their translations, demonstrated in Figure 6.

6 Conclusion

In this work, we tackled two challenging areas
in open-retrieval QA: cross-linguality and data
scarcity. We presented methods for generating
cross-lingual data in an emergent domain, COVID-
19. Then, we demonstrated that an open-retrieval
QA system trained on our data significantly outper-
forms a BM25 baseline. We hope that the methods
presented here allow for increased access to reliable
information in future emergent domains.

6All translations are generated by MarianNMT (Junczys-
Dowmunt et al., 2018) from the Huggingface Transformers
library (Wolf et al., 2020).
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7 Broader Impact and Limitations

Crucial to any open-retrieval question-answering
system, the credibility and truthfulness of the
documents is paramount, in particular when
trying to prevent and combat misinformation
that arises in emergent domains. Any question-
answering system is limited by the corpus used.
To this end, we do our best to ensure that any in-
formation included in our corpus is truthful by in-
cluding only peer-reviewed scientific articles from
PubMed7.

Furthermore, there may be emergent domains
without peer-reviewed scientific articles from
which to draw answers. In these cases (and in
fact in cases where peer-review does exist) it is
imperative to include sources along with answers.
This allows for users to judge the quality of infor-
mation. In our system we present the title and date
of publication for each returned article so that users
can find the source content if desired.

Finally, a known limitation of dense-indexed
open-retrieval systems is the static nature of the un-
derlying database. This is a particularly important
point for emerging domains, where current knowl-
edge is quickly being updated. One disadvantage
to the dense-index approach is that as new docu-
ments become available, the index may need to
be recalculated if the new documents come from
a significantly different distribution than the exist-
ing documents in the index. See here for further
discussion and how to overcome these limitations.

References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2020. On the cross-lingual transferability of mono-
lingual representations. In ACL.

Akari Asai, Jungo Kasai, Jonathan H. Clark, Kenton
Lee, Eunsol Choi, and Hannaneh Hajishirzi. 2021.
XOR QA: Cross-lingual open-retrieval question an-
swering. In NAACL-HLT.

Danqi Chen and Wen-tau Yih. 2020. Open-domain
question answering. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 34–37, Online.
Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

7https://pubmed.ncbi.nlm.nih.gov/

cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma
Hashimoto, Wenpeng Yin, Dragomir Radev, and
Richard Socher. 2021. Covid-19 information re-
trieval with deep-learning based semantic search,
question answering, and abstractive summarization.
npj Digital Medicine, 4(1):68.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2020. Language-
agnostic bert sentence embedding. arXiv preprint
arXiv:2007.01852.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Jinhyuk Lee, Sean S. Yi, Minbyul Jeong, Mujeen Sung,
WonJin Yoon, Yonghwa Choi, Miyoung Ko, and Jae-
woo Kang. 2020. Answering questions on COVID-
19 in real-time. In Proceedings of the 1st Workshop
on NLP for COVID-19 (Part 2) at EMNLP 2020,
Online. Association for Computational Linguistics.

Sharon Levy, Kevin Mo, Wenhan Xiong, and
William Yang Wang. 2021. Open-Domain question-
Answering for COVID-19 and other emergent do-
mains. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 259–266, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Kinney, Ziyang Liu, William Mer-
rill, Paul Mooney, Dewey Murdick, Devvret Rishi,

8

https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1038/s41746-021-00437-0
https://doi.org/10.1038/s41746-021-00437-0
https://doi.org/10.1038/s41746-021-00437-0
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.nlpcovid19-2.1
https://doi.org/10.18653/v1/2020.nlpcovid19-2.1
https://doi.org/10.18653/v1/2021.emnlp-demo.30
https://doi.org/10.18653/v1/2021.emnlp-demo.30
https://doi.org/10.18653/v1/2021.emnlp-demo.30


Jerry Sheehan, Zhihong Shen, Brandon Stilson,
Alex D. Wade, Kuansan Wang, Chris Wilhelm, Boya
Xie, Douglas Raymond, Daniel S. Weld, Oren Et-
zioni, and Sebastian Kohlmeier. 2020. Cord-19:
The covid-19 open research dataset. ArXiv, page
arXiv:2004.10706v2. 32510522[pmid].

Timo Möller, Anthony Reina, Raghavan Jayakumar,
and Malte Pietsch. 2020. COVID-QA: A question
answering dataset for COVID-19. In Proceedings of
the 1st Workshop on NLP for COVID-19 at ACL 2020,
Online. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Xinliang Frederick Zhang, Heming Sun, Xiang Yue, Si-
mon Lin, and Huan Sun. 2021. COUGH: A challenge
dataset and models for COVID-19 FAQ retrieval. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, pages 3759–3769.

A Additional Examples

9

https://pubmed.ncbi.nlm.nih.gov/32510522
https://pubmed.ncbi.nlm.nih.gov/32510522
https://aclanthology.org/2020.nlpcovid19-acl.18
https://aclanthology.org/2020.nlpcovid19-acl.18
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Figure 8: The top-3 non-english results for the query "Who is most vulnerable to covid?"
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Abstract

WebAnno is one of the most popular annota-
tion tools that supports generic annotation types
and distributive annotation with multiple user
roles. However, WebAnno focuses on annotat-
ing span-level mentions and relations among
them, making document-level annotation com-
plicated. When it comes to the annotation and
analysis of social science materials, it usually
involves the creation of codes to categorize a
given document. The codes, which are known
as codebooks, are typically hierarchical, which
enables to code the document either with a
general category or more fine-grained subcat-
egories. CodeAnno is forked from WebAnno
and designed to solve the coding problems
faced by many social science researchers with
the following main functionalities. 1) Creation
of hierarchical codebooks, with functionality to
move and sort categories in the hierarchy 2) an
interactive UI for codebook annotation 3) im-
port and export of annotations in CSV format,
hence being compatible with existing annota-
tions conducted using spreadsheet applications
4) integration of an external automation compo-
nent to facilitate coding using machine learning
5) project templating that allows duplicating
a project structure without copying the actual
documents. We present different use-cases to
demonstrate the capability of CodeAnno.

1 Introduction

When WebAnno was initiated, the main purpose
was to address the missing functionalities from the
annotation tools, particularly adding the distribu-
tive, web-based, generic, and customizable annota-
tion layers behaviors (Yimam et al., 2013). Since
then, WebAnno has been improved a lot, includ-
ing the support for semantic annotation (Eckart de
Castilho et al., 2016), support for automation func-
tionality (Yimam et al., 2014), and adapted to the
integrating knowledge-supported search ’INCEp-
TION’ platform (Boullosa et al., 2018). The Span
annotation type, which allows annotating tokens,

sub-tokens, and phrases as well as the Relation
type that connects two-span annotation types with
relation value in WebAnno covers most of the
linguistic and machine learning annotation tasks.
The Document level annotation type is one of the
most sought annotation types needed in WebAnno,
which is also missed functionality from several an-
notation tools (Neves and Ševa, 2019). One of
the workarounds in WebAnno was the Zero-width
spans, which is not attached to any span but only
to a specific sentence in a document. However,
this still could not fully support document-level
annotation, where the task is to label or classify
a document based on a predefined category. The
document-level annotation is particularly impor-
tant for annotations in social science and digital
humanities research. A typical example is docu-
ment coding, where a researcher in communication
science prepares a list of codes or tags known as
codebooks. Journalists and media analysts prepare
the codes for a given codebook but the annotation
of content involves a lot of distraction, such as 1)
preparing the code in a spreadsheet, 2) coding or
annotating an article or media which is not linked
with the codebook in the spreadsheet, 3) analyzing
and interpreting the results from the coding.

CodeAnno is a fork and an extension to We-
bAnno, which enables coding based on hierarchical
and fully customizable document-level annotations
within WebAnno. CodeAnno facilitates the cre-
ation of codebooks and coding using the existing
functionality from WebAnno such as curation, cod-
ing agreement, distributed annotation (annotating a
single document by multiple coders or users), web-
based annotation, and so on. As CodeAnno sup-
ports all existing functionalities of WebAnno, for
example, span and relation annotation, one can eas-
ily connect the coding with the built-in WebAnno
annotation support that can help to draw some con-
clusions.

The following are the main contributions of this
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work: 1) Support codebook creation and annota-
tion (hierarchical and document-level annotation),
2) Importing and exporting annotations in comma-
separated format, hence compatible with existing
annotations conducted using spreadsheet applica-
tions, 3) Integration of an external automation com-
ponent to facilitate media coding using machine
learning models, 4) Project templating that allows
duplicating a project structure without copying the
actual documents.

In the remainder of this paper, we will first dis-
cuss the related works of document-level annota-
tion in Section 2. In Section 3 and 4, the main
components of CodeAnno and the automation func-
tionalities are presented. Some use-cases showing
the codebook annotation and automation compo-
nents are presented in Section 5 while Section 6
highlighted the main contribution of this work.

2 Related Work
Most of the annotation tools support linguistic an-
notations such as POS tagging, dependency rela-
tion, named entity recognition and so on (Yimam
et al., 2013; Neves and Ševa, 2019). Brat (Stene-
torp et al., 2012), WebAnno (Yimam et al., 2013),
Docanno (Nakayama et al., 2018), and LightTag
(Perry, 2021) are some popular annotation tools.
The survey by Neves and Ševa (2019) indicated
that only 5 annotation tools out 78 have some
kind of document level annotation supports. Ac-
tiveAnno (Wiechmann et al., 2021) is one of the
latest annotation tools that support annotation and
automation for document-level annotation tasks.
ActiveAnno focuses on five central design goals,
namely, efficiently creating annotations of high
quality, supporting a broad range of use cases, re-
sponsive web application, open-source and APIs
integration. While ActiveAnno has great support
for document-level annotation, it does not natively
support hierarchical annotation using codebooks. It
also lacks the extensive generic annotation support
from WebAnno, which can be used to link the doc-
ument level annotation to span level annotations.

INCEpTION is another annotation platform,
which integrates all the functionalities of We-
bAnno and focuses on corpus creation, annota-
tion, and knowledge management. While INCEp-
TION extends the functionality of WebAnno to
more advanced functionality, including the exter-
nal recommender system and knowledge supported
search, CodeAnno particularly focuses on the cre-
ation of document-level annotation with the hi-

erarchical codebooks. Furthermore, CodeAnno
uniquely supports importing/exporting documents
in a spreadsheet format, which is the de facto an-
notation format in social science document coding.
Project templating, external automation service,
and document-level codebook agreements are addi-
tional specific functionalities in CodeAnno.

In social science, coding refers to the process of
assigning descriptive or inferential labels to docu-
ments or parts of the document, that could help in
developing a new concept or theory (Chen et al.,
2018). Researchers usually take a sample of the
data and apply manual coding. As the size of data
increases, manually coding the entire dataset in de-
tail is not feasible for social science researchers.
Building a representative machine learning model
is also becoming challenging (Chen et al., 2018).
To address this issue, we have integrated an exter-
nal automation component that could provide an
initial suggestion of codes. The process is iterative
and adaptive, where small portions of the document
are labeled to train the external predictive model.

3 CodeAnno Features

CodeAnno extends WebAnno by introducing new
functionalities in WebAnno. In WebAnno, “layers”
are used for span, chain, or relation annotations on
token, sentence, or paragraph level. CodeAnno
introduces document-level annotations, referred
to as Codebooks. The new functionality is seam-
lessly integrated into WebAnno, i.e., the backend
is also based on Apache UIMA1 while the fron-
tend is based on Apache Wicket2. Besides the
support for Codebooks, another main contribu-
tion of CodeAnno is the integration of an external
machine-learning-based service to automate Code-
book annotations.

Codebooks are hierarchical document-level an-
notations consisting of a name, optional parent and
child Codebooks, and a list of Codebook Tags. The
resulting Codebook structure is therefore best rep-
resented as a tree. Codebook Tags are the value of
the respective Codebook annotation and can be pre-
defined by the project organization or, if allowed,
created ad-hoc by the annotator. Further, Code-
books and Codebook Tags can have a textual de-
scription so that the annotators know what they
stand for and when or how to use them to ensure
high coding quality.

1https://uima.apache.org/
2https://wicket.apache.org/
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Figure 1: The Codebook settings UI in project settings to create and manage Codebooks and Codebook Tags.

Before the actual coding process starts, the
project manager has to set up the Codebook struc-
ture that the coders will use to annotate the docu-
ments. This is done in the project settings with an
intuitive and easy-to-use Codebook Editor shown
in Figure 1. In the left part of the figure, a Code-
book structure is displayed as a directory tree. The
“Expand all” and “Collapse all” buttons are used to
show or hide nodes in the Codebook tree. Code-
books can be moved up or down on the same level
with the arrow buttons on the right. During creating
a new Codebook, the project manager enters the
Codebook properties in the middle part of Figure 1.
To create a Codebook hierarchy, the parent Code-
book can be selected from the drop-down list. If
the Codebook is a root, none is selected. It is also
possible to change the parent Codebook afterwards
to update the tree structure. Further, if annotators
should be allowed to enter custom Codebook Tags,
the respective checkbox must be selected. Other-
wise, only predefined Codebook Tags shown on
the right side of Figure 1 can be chosen during the
coding process.

In the “Tag Details” panel, that appears when
a new Codebook Tag is created, its name, its de-
scription, and its parent tag will be recorded. The
sort, move-up, and move-down buttons can be used
to sort the list of Codebook Tags alphabetically or
manually. When deleting a Codebook that is not
a leaf node in the structure, all Codebooks in the
subtree with their Codebook Tags also get deleted.
Moreover, it is possible to import or export Code-
book structures in human-readable JSON format.
This is especially helpful when multiple coding
projects with CodeAnno are planned.

3.1 Codebook Annotation
The WebAnno annotation interface is extended by a
Codebook Editor panel that can be opened from the

left sidebar to annotate documents with Codebooks.
As shown in Figure 2, the classical WebAnno Layer
Annotation editor can also be shown or hidden to
enable span-level annotation at the same time. An
example that shows the Codebook Editor with the
configured Codebook structure from Figure 1 is
shown in the left side of Figure 2. Each node in
the tree represents a Codebook with its name in
bold. The input for a Codebook combines a text
input field and a dropdown selection. If enabled,
annotators can enter any value to create a custom
Codebook Tag or select a predefined tags from the
dropdown list.

3.2 Codebook Curation and Agreement

Often, to ensure high-quality annotations, it is nec-
essary that multiple users annotate the same docu-
ment. However, since it can be subjective to decide
which Codebook Tag fits best for the document, it
can easily result in different Codebook annotations.
This gives rise to the Codebook Curation feature,
where project managers or curators can see how
each user annotated the selected document in a sep-
arate UI. Based on this information, the curator
chooses the “final” or correct Codebook Tag for
each Codebook in the structure. An example of
this UI is shown in Figure 3 – for space reasons,
we cropped the image so that the document viewer,
which would be on the right, is not shown. The
Codebook structure is shown in a tree view similar
to the annotation UI. The Codebook Tags of each
user are shown in a list per Codebook. If all users
agree on the same tag, the name of the respective
Codebook is highlighted in green. Otherwise, it
is highlighted in red. Below the list, the curation
user can choose the correct Codebook Tag from a
dropdown selection, where every tag is contained.
If all users agree, the respective tag is preselected
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Figure 2: The CodaAnno annotation UI with the Codebook Editor for document-level annotations on the left, the
document viewer in the middle, and the Layer Editor for span annotations on the right.

Figure 3: The CodaAnno Curation UI showing the Code-
book annotations of different users. The curation user
can select the “correct” Codebook from the dropdown
menu at the bottom of each Codebook node.

to speed up the curation process.
With the Codebook Agreement feature, it is pos-

sible to calculate common inter-rater and intra-rater
agreement measures per Codebook and project. For
this purpose, the project manager first selects the
respective project and Codebook. With a dropdown
to select the measure, she can choose between Co-
hen’s Kappa, Fleiss’ Kappa, Krippendrof’s Alpha,
and Krippendorfs’s Kappa. When the calculation
has finished, the results are presented in a table like
with layer annotation agreement in WebAnno.

3.3 Codebook Import and Export
CodeAnno features multiple new import and ex-
port functionalities. They are separated into im-
port/export of the Codebook structure and the
coded data belonging to each document. This sepa-
ration allows reusing the Codebook structure by
easily transferring it to a blank project without

copying any document data. Since the Codebook is
structured hierarchically, CodeBook uses the JSON
format for import/export due to its convenient nest-
ing of objects. As such, in the Codebook settings,
it allows to import/export the whole CodeBook or
only subtrees of it, thereby providing great flexibil-
ity to reuse only parts of CodeBook. The separated
import/export in JSON of the Codebook (subtree)
structure further has the advantage of being both
human-readable and easy to manipulate in any text
editor or even programmatically. Thus, changing
many entries at once during construction of the
Codebook, e.g. mass renaming, becomes very ef-
ficient. The import/export of Codebook data be-
longing to a document is possible in multiple ways.
A document can be opened in CodeAnno and its
Codebook annotations can be exported. In addition,
the whole project can be exported, containing all
documents and the Codebook structure. Import-
ing documents previously exported is also possible
through the Codebook settings. Thus, documents
with Codebook annotations can be exported and
later imported to move the documents to another
project or make a backup.

4 CodeBook Automation (CBA)

Another major component of CodeAnno is the
Codebook Automation (CBA) extension. As the
name suggests, this functionality enables automatic
annotation of Codebooks leveraging state-of-the-
art machine learning technology to train and eval-
uate generic, user-specific classification models.
The component consists of three parts: The CBA
backend, the CBA WebApp, and the CBA integra-
tion in CodeAnno. An overview of the different
parts is shown in Figure 4. The backend, which
contains all logic and manages data and models, is
accessible via a REST API. The CBA WebApp is a
web-based user interface that consumes this API so
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Figure 4: Overview of the Codebook Automation com-
ponents. The communication between the components
indicated by the arrows happens via HTTP.

that users can conveniently manage datasets, and
create, train and test user-specific Codebook classi-
fiers. Both parts are separated from CodeAnno and
run independently. The third part is the CBA inte-
gration in CodeAnno to apply trained classifiers to
annotate, i.e., predict documents with Codebooks
automatically.

4.1 Backend Architecture of CBA
The CBA backend holds all logic to manage
datasets and classifiers and exposes its function-
ality via a REST API. It is implemented using mod-
ern Python libraries and frameworks like FastAPI3,
pandas4, Redis5, and TensorFlow6.

The process to train a classifier is schematically
depicted in Figure 5. The dataset, uploaded by a

Figure 5: Schematic overview of the process to train a
classifier in the Codebook Automation backend.

user, is a ZIP archive containing two CSV files for
the training set and the evaluation set. Both files
have to consist of two columns: The “text” column
contains arbitrarily long text representing the docu-
ment, and the “label” column contains the class or
label for the sample. Further, the user must provide
configurations defining the model architecture and
training process. A model’s architecture configu-
ration contains the number of hidden layers and
their respective hidden units, the activation func-
tion, the drop-out percentage, and the optimizer

3https://fastapi.tiangolo.com/
4https://pandas.pydata.org/
5https://redis.io
6https://www.tensorflow.org

used for training. Further, the specification con-
tains an URL pointing to a text-embedding model
available on TensorFlow Hub7. A typical choice
for this is, e.g., a Universal Sentence Encoder (Cer
et al., 2018). The training process configuration
specifies the batch size, the number of maximum
training and evaluation steps, the optimizer, and if
early stopping is activated or not. Once the model
training is completed, it is persisted in the Ten-
sorFlow SavedModel format, supporting efficient
model serving.

4.2 CBA WebApp and CodeAnno Integration
The CBA WebApp is the user interface for upload-
ing or managing datasets and training or managing
classifiers. The application consumes the REST
API of the CBA backend and is implemented using
NuxtJS8.

Codebook Automation is also neatly integrated
into CodeAnno so that human coders can leverage
CBA classifiers to accelerate the Codebook anno-
tation process. To use this functionality, a project
administrator can start a bulk prediction process, in
which all project documents are sent to the CBA
backend and classified by the specified model. An-
other way is that annotators can send their currently
processing document to the backend and let the de-
fault model set by an administrator classify the
document.

The predictions are available in the Codebook
Annotation UI when the process has been com-
pleted. Users can then easily accept or reject the
suggestions from the CBA classifiers.

Details about the CBA WebApp and the CBA
CodeAnno integration can be found on our
GitHub910 pages.

5 Case Studies

5.1 The NEPOCS Codebook
NEPOCS stands for Network of European Political
Communication Scholars11 established by a group
of social science researchers who are working on
political communication research. Each member
is an expert on a particular European country, and
the mission is to further internationally compara-
tive political communication research. The work

7https://tfhub.dev
8https://nuxtjs.org/
9https://github.com/uhh-lt/codebook_

automation
10https://github.com/uhh-lt/codeanno
11https://nepocs.eu/about-nepocs/

15

https://fastapi.tiangolo.com/
https://pandas.pydata.org/
https://redis.io
https://www.tensorflow.org
https://tfhub.dev
https://nuxtjs.org/
https://github.com/uhh-lt/codebook_automation
https://github.com/uhh-lt/codebook_automation
https://github.com/uhh-lt/codeanno
https://nepocs.eu/about-nepocs/


by Hopmann et al. (2017) discussed the methods
and approaches they have used in coding around
7,500 news items gathered from 16 different Eu-
ropean countries. The news items were collected
considering different criteria such as consisting of
comparable countries (established Western democ-
racies) and media and political system level. As
a source of the news item, televised news, news-
papers, and online news outlets were considered.
As part of the goal to the "2012 Journalism special
issue", Hopmann et al. (2017) build a codebook as
a contribution to increasing standardization of how
key concepts are conceptualized. In collaboration
with political communication science experts at
Universität Hamburg, we have built standard code-
book of NEPOCS, as shown in Figure 6 that can
be released as part of CodeAnno for further use.

Figure 6: Parts of NEPOCS codebook designed with
social science researchers.

5.2 CLICCS project
The Cluster of Excellence “Climate, Climatic
Change, and Society” (CLICCS12) is following

12https://www.cliccs.uni-hamburg.de/

the overarching question: “Which climate futures
are possible and which are plausible?” In the B1
sub-project researchers from journalism, media,
and communication studies work on the question:
“how do journalists frame climate futures?” For a
quantitative study of climate future frames across
countries, they have manually annotated hundreds
of news articles in CodeAnno. Texts have been
sampled from four countries (Germany, the United
States, South Afrika and India) in German for Ger-
many and English for the other three countries.

The researcher developed a sophisticated, hier-
archical Codebook for the task based on a selected
sample of documents. Coded are formal aspects
like the type of text, author type and topic with a
fixed number of categories. For the classification of
future scenarios, they use hierarchically structured
Codebooks for e.g. type of scenario, timeframe, ge-
ographic scope, plausibility, actors etc. In another
sub-tree of the Codebook, the causes including at-
tribution of blame and measures are structured into
seven nested Codebooks.

In total, the whole Codebook comprises 26 as-
pects, each either coded as a Boolean or selection
from multiple classes. To perform the annotation
on the large sample, three coders have been trained
on the developed Codebook. The CSV export of
all coded documents has been used frequently to
perform custom analysis on the annotations.

6 Conclusion
In this paper, we discussed main functionalities of
CodeAnno, an extension of WebAnno that supports
coding of social science documents using hierarchi-
cal Codebooks. Social science researchers usually
employ traditional annotation tools, for example
spreadsheet applications to code and analyze a text.
This annotation process is cumbersome and hin-
ders the development of predictive machine learn-
ing models. CodeAnno supports the creation of
Codebooks, coding or annotating documents, and
integration of custom machine learning models.
Further, it eases the analysis of annotated docu-
ments and enables to import and export documents
in different formats. Since CodeAnno intrinsically
supports the annotation of entities and relations
from WebAnno, we plan to integrate a functionality
that provides automatic coding recommendations
using the span-level entity and relation annotations.
This facilitates the explainability of Codebook An-
notations by linking back to the rationale in the
document.
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Abstract

NLP Workbench is a web-based platform for
text mining that allows non-expert users to ob-
tain semantic understanding of large-scale cor-
pora using state-of-the-art text mining mod-
els. The platform is built upon latest pre-
trained models and open source systems from
academia that provide semantic analysis func-
tionalities, including but not limited to entity
linking, sentiment analysis, semantic parsing,
and relation extraction. Its extensible design
enables researchers and developers to smoothly
replace an existing model or integrate a new
one. To improve efficiency, we employ a mi-
croservice architecture that facilitates alloca-
tion of acceleration hardware and paralleliza-
tion of computation. This paper presents the
architecture of NLP Workbench and discusses
the challenges we faced in designing it. We
also discuss diverse use cases of NLP Work-
bench and the benefits of using it over other
approaches. The platform is under active devel-
opment, with its source code released under the
MIT license1. A website2 and a short video3

demonstrating our platform are also available.

1 Introduction

Text mining, also known as text analytics or text
analysis, is the process where a user interacts with
machine-supported analysis tools that transform
natural language text into structured data, to gain
insights and new knowledge from the text (Feldman
and Sanger, 2006a). For more than two decades,
text mining systems have been built for applications
in various domains, such as business intelligence,
analytical sociology, and medical sciences (Hearst,
1999), demonstrating irreplaceable value. Analy-
sis tools in text mining usually take the form of
machine learning (ML) and natural language pro-
cessing (NLP) models and span a large spectrum of

1https://github.com/U-Alberta/NLPWorkbench/
2https://newskg.wdmuofa.ca
3https://vimeo.com/801006908

ML and NLP subfields, such as entity linking, sen-
timent analysis, relation extraction, and text sum-
marization.

Nearly every subfield of NLP involved in text
mining has been rapidly evolving in recent years,
with records on benchmarks being continuously
broken4. A positive practice of releasing the code
and models to the public has been adopted by a
growing number of researchers5 to address repro-
ducibility and accessibility issues in the field6. De-
spite efforts to make new models more accessible,
non-expert users such as digital humanists and busi-
ness analysts still face entry barriers when trying
to apply the latest models. Some salient issues in-
clude: (1) heterogenous software stacks required
to run the models; (2) non-standardized, incon-
sistent input and output formats; (3) the lack of
user-friendly interfaces to apply the models and
visualize the results; and (4) the constraints on
computation and networking resources. We build
NLP Workbench with the goal of addressing these
issues and further bridging the gap between state-
of-the-art open NLP research and the use of these
models and tools in text mining applications by
non-experts.

NLP Workbench is designed with two fundamen-
tal principals in mind: for developers and NLP re-
searchers, fast and easy adaptation of off-the-shelf
models and tools; and for non-expert users such
as sociologists, a user-friendly interface for both
document-level and corpus-level analysis. Follow-
ing these principles, NLP Workbench offers the
following key features:

Platform NLP Workbench unifies corpus man-
agement, text mining tools, and visualization in
a single platform. It provides a growing list of
models and tools that are based on state-of-the-

4http://nlpprogress.com
5https://paperswithcode.com
6https://aclrollingreview.org/

responsibleNLPresearch/
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art research, currently offering functionalities like
named entity recognition, entity linking, relation
extraction, semantic parsing, summarization, senti-
ment analysis, and social network analysis.

Interaction A web interface is included for user
interactions with the ability to visualize the model
results at document and corpus levels. Users could
choose to interactively apply a model on a given
document and have the results saved for future
queries, or to apply models in batches on selected
documents in a corpus.

Architecture For development, NLP Workbench
adopts containerization, allowing new models to
be added independent of the software stack of ex-
isting models. For deployment, its microservice
architecture allows models to be deployed in a dis-
tributed way on machines that meet the computing
and networking requirements of individual models,
enabling horizontal scaling.

Interface Tools in NLP Workbench can be ac-
cessed in versatile ways. Besides the web interface,
non-expert users could import new documents into
the platform via a browser extension. For devel-
opers and researchers, NLP Workbench provides
RESTful API and remote procedure call (RPC) in-
terfaces for easy integration with other applications
and pipelines.

2 Related Work

Hearst (1999) and Cunningham et al. (2002) iden-
tified three key aspects of an effective text min-
ing system: management of text document col-
lections (corpora), application of text processing
algorithms on the collection, and visualization of
results. LINDI (Hearst, 1999) is an early prototype
of such a system used for gene function discovery.
GATE (Cunningham et al., 2002), a framework
that is still currently maintained, provides a unified
architecture for all three aspects. Similarly, NLP
Workbench tries to accommodate all three aspects
in a single platform. Our platform uses container-
ized microservices instead of Java classes for each
processing module, which avoids the restrictions
of underlying programming frameworks for imple-
menting NLP algorithms. Voyant Tools (Rockwell
and Sinclair, 2016) is another web-based platform
that provides tools for corpus analysis and the func-
tion to write user-defined scripts. Their built-in
tools are mostly limited to count-based statistics
and visualization, while we are integrating large

deep learning models. UIMA (Ferrucci and Lally,
2004) attempts to define a standard protocol for
managing corpora and NLP algorithms. It is more
developer-oriented, unlike our application which
provides a complete system that can be used for
analysis directly by users.

A plethora of NLP toolkits focusing on building
NLP pipelines have been developed in the past few
decades, including Stanford CoreNLP (Manning
et al., 2014), OpenNLP7, NLTK (Bird et al., 2009),
spaCy (Honnibal et al., 2020) and Transformers
(Wolf et al., 2020). These toolkits could be used
to address the text processing algorithm aspect of
text mining systems, but they do not provide a full
solution. The typical strategy to incorporate new
models into these toolkits is to re-implement the
model in the framework of the toolkit, while we try
to re-use, as much as possible, the code and models
released by researchers.

Some tools specialize in only the visualization
aspect. To name a few, Blloshmi et al. (2021) and
Cohen et al. (2021) built tools for visualizing the
results of semantic parsers – a function that is also
provided by our system.

Several libraries and tools are able to manage
corpora or models from multiple sources. For ex-
ample, Datasets library (Lhoest et al., 2021) pro-
vides an interface to access common NLP datasets,
and DataLab (Xiao et al., 2022) is a platform to
examine and analyze datasets. Transformers (Wolf
et al., 2020) can access models and datasets from
the Hugging Face Hub8. Beyond corpora and mod-
els, NLP Workbench also incorporates code from
multiple sources.

3 Architecture

NLP Workbench is built on top of various open
source software and incorporates the code and mod-
els from many research projects. We design our
architecture to leverage off-the-shelf functionali-
ties provided by these software and projects, and to
minimize the effort of integrating new code from a
research project.

3.1 Workflow

Figure 1 provides a high-level overview of how
users interact with NLP Workbench and how the
system handles the requests.

7https://opennlp.apache.org
8https://huggingface.co/docs/hub/index
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Figure 1: Workflow of NLP Workbench from the perspectives of the user and the system, as described in §3.1. For
document-level visualization, we showcase the user interface for named entity recognition, coreference resolution,
entity linking, and semantic parsing. For corpus-level visualization, this figure includes plots of a social network
constructed from a tweet of the official Nobel Prize account, and the distribution of sentiment polarity scores of a
sample of the built-in news corpus. Icons created by Freepik - Flaticon.

User Perspective From the perspective of a user,
one could choose to apply text mining tools on a
single document specified by its URL or ID, or ap-
ply them in batches on a set of documents specified
by a query. Queries are written in the Kibana Query
Language (KQL)9, which is a simple and intuitive
text-based query language. The outputs of the tools
on a single document can be visualized in the web
interface, with each tool having a separate panel.
Using Kibana Lens10, a user can visualize statistics
calculated over the output of multiple documents,
such as the distribution of sentiment polarity scores.
The connected Neo4j Browser11 provides an inter-
active web interface for exploring social networks
constructed from a corpus.

System Perspective From the perspective of the
system, both the corpus and the outputs of text min-
ing tools are stored and indexed in Elasticsearch12,
a document indexing, search, and analytics engine.
By storing and indexing tool outputs, we re-use
previous results and avoid re-computation to im-

9https://www.elastic.co/guide/en/kibana/
current/kuery-query.html

10https://www.elastic.co/kibana/kibana-lens
11https://neo4j.com/developer/neo4j-browser/
12https://www.elastic.co/what-is/elasticsearch

prove efficiency. In addition to that, Elasticsearch
provides convenient tools to filter documents based
on the outputs of text mining tools and visualizing
statistics, which are very useful for downstream
analytics.

If running a tool is indeed necessary, the task is
added to a priority queue. Ad hoc and interactive
requests, issued when a user is examining a single
document and applying tools on it, are prioritized
over batched requests that run in the background.
Each tool or model has workers processing the
tasks in the queue. This ensures that users perform-
ing interactive analysis experience little latency
even when the number of workers is limited, which
is usually the case in practice as deep learning mod-
els are often resource-intensive and it is infeasible
to have multiple instances running in parallel.

3.2 Pipelining and Scheduling

Text mining tools often rely on the outputs of other
tools or NLP models and are built as pipelines. For
example, both entity linking and relation extraction
require named entity recognition and coreference
resolution. To ensure efficiency, re-computing the
outputs of tools that are already available should be
avoided, and tools should be run in parallel if pos-
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Figure 2: Microservice architecture of NLP Workbench. Each rectangle represents a physical machine, with its
capability indicated by the icon at the bottom right corner. Each rounded rectangle represents a container, with the
tool and function it provides indicated by the text inside. Container to physical machine allocation is for illustration
purposes only and is adjusted to fit the need when the system is deployed in production.
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Figure 3: Example of a batched task with the directed
acyclic graphs of dependencies. Shaded nodes represent
tools that the user requests to run on the document,
and unshaded nodes represent tools that are needed to
provide the inputs to the shaded nodes.

sible. In addition to persisting and re-using outputs
as discussed in Section 3.1, we design a pipelining
and scheduling system that automatically detects
the dependencies between tools and schedules the
tasks in a way that eliminates re-computation and
encourages parallelism.

The dependencies of a tool can naturally be rep-
resented as a directed acyclic graph (DAG), where
inbound edges represent the dependencies. When
multiple tools are requested to be run on a sin-
gle document, we gather the direct and transitive
dependencies of these tools in a single graph, as
shown in Figure 3. The connected components of
the graph are DAGs. Within each DAG, the tools
are run in topological order; and disjoint DAGs are
executed in parallel.

In the example illustrated in Figure 3, the user
requests to run tool E, D, H, I, and K on a doc-
ument. The scheduler will automatically find all

dependencies (A to K) and run two chains in parallel:
A-B-E-G-F-C-D and H-J-I-K13.

3.3 Containerized Microservices

A major obstacle to integrating third party code is
the dependency hell problem: it is an NP-complete
problem to find a set of compatible versions of
all software library dependencies (Burrows, 2005;
Cox, 2016), and in reality a compatible set may
not exist. This is especially true for deep learn-
ing models (Han et al., 2020; Huang et al., 2022),
which often require specific versions of software
libraries. In the case of popular deep learning
frameworks, TensorFlow (Abadi et al., 2016) 2.0
introduces breaking API changes that are not back-
compatible. Both TensorFlow and PyTorch (Paszke
et al., 2019) are compiled with specific versions of
CUDA (Nickolls et al., 2008) and cuDNN (Chetlur
et al., 2014), and that makes different framework
versions hard to coexist. Manually fixing the code
to make it compatible with a specific version of a
library is often tedious and error-prone (Han et al.,
2020).

For deployment, a practical problem is that it is
often difficult or costly to find a single physical ma-
chine that satisfies the computing and networking
requirements of all the components: deep learn-
ing models require GPU for inference, database
management systems consume large amounts of
memory and disk space, and web servers need ac-

13There is more than one valid topological sorting for a
DAG.
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cess to the Internet. One solution to this problem
is the ability to deploy components of NLP Work-
bench on multiple machines, which is achieved by
our design.

We solve both problems discussed above at once
by deploying both text mining tools and infrastruc-
ture components as containerized microservices.
Each component is deployed as a Docker container
(Merkel, 2014) that encapsulates the software and
its dependencies. The containers communicate
with each other via the RPC and message queue
functions provided by Celery14. Figure 2 illus-
trates how the containerized microservices are de-
ployed on separate machines with different capabil-
ities. Such a microservice architecture allows us to
overcome the problem of heterogeneous technolo-
gies and simplifies horizontal scaling when needed
(Newman, 2015).

4 Components

NLP Workbench already includes a variety of tools
and models for text mining. Most of the compo-
nents come from state-of-the-art research in the
respective subfields. Others are baseline imple-
mentations to demonstrate NLP Workbench’s ex-
tensibility, showing that developers can straightfor-
wardly incorporate new tools and build pipelines
from existing ones. One benefit of the flexible
and modular design as described in §3 is that all
built-in tools and models can easily be replaced
or upgraded. Existing tools and models in NLP
Workbench include:

Named Entity Recognition The task, known as
NER, is to identify mentions to entities such as
people, organizations, and locations. We incor-
porated the NER model from PURE (Zhong and
Chen, 2021), which achieved good performance by
simply fine-tuning BERT (Devlin et al., 2019).

Coreference Resolution To determine which en-
tity a pronoun refers to, we adopted the heuristic
algorithm by Cunningham et al. (2002) that is based
on recency and type agreement.

Entity Linking Mentions to entities in the text
are disambiguated and linked to Wikidata (Vran-
dečić and Krötzsch, 2014) entities. Candidate enti-
ties are generated by a fuzzy match on name. In ad-
dition to name similarity, the ranking of candidates
utilizes the cosine similarity between the sentence

14https://docs.celeryq.dev

embeddings (Reimers and Gurevych, 2019) of the
context and the descriptions of the candidate entity
from Wikipedia and Wikidata.

Relation Extraction The user can extract struc-
tured facts in the form of knowledge triples like
(Annie Ernaux, Country, France) from a text. The
underlying model (Mesquita et al., 2019) combines
syntax and semantic features as well as BERT em-
beddings to predict the relation between entities.

Semantic Parsing Semantic parsing provides a
structured representation of the meaning of a sen-
tence, allowing users to obtain information like
who did what to whom, when, and where without
caring about the form. NLP Workbench uses AM-
RBART (Bai et al., 2022), a sequence-to-sequence
model based on BART (Lewis et al., 2020) and pre-
trained on a large graph corpus, to parse sentences
into AMR graphs (Banarescu et al., 2013).

Summarization We build an application on top
of semantic parsing to create natural language sum-
maries of events related to people in the document,
partly to demonstrate the simplicity of building
pipelines in NLP Workbench. For each sentence in
the document, we prune its AMR graph to only
contain the nodes and edges of pattern subject-
predicate-object, where the subject or object is a
person. The pruned AMR graphs are then con-
verted to natural language using AMRBART.

Sentiment Analysis The sentiment of a docu-
ment is predicted by VADER (Hutto and Gilbert,
2014), a fast and accurate rule-based algorithm opti-
mized for social media posts. A sentiment polarity
score is produced and can be used to classify the
sentiment as positive, neutral, or negative.

Social Network Analysis For corpora consisting
of social media posts, NLP Workbench is equipped
with a tool that builds graphs of social network
interactions from posts. Powered by the graph
database Neo4j15, the tool can be used to visualize
the network and perform analyses, such as running
centrality algorithms like PageRank (Page et al.,
1999) to identify influential users.

5 Use Cases

Text mining has been proven useful in a variety
of domains, such as corporate finance, patent re-
search, life sciences, and many others (Feldman

15https://neo4j.com/
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and Sanger, 2006b). NLP Workbench, as a full-
fledged text mining platform, has been or has the
potential to be applied in many of these domains.
Some of the use cases are described in this section.

Digital Humanities Accessible and reliable NLP
tools are useful in digital humanities projects such
as Linked Infrastructure for Networked Cultural
Scholarship (LINCS)16. A major component of the
LINCS project is to generate linked data from nat-
ural language cultural heritage texts. The key steps
are NER, coreference resolution, entity linking, and
relation extraction, all of which are made available
in NLP Workbench. Through the simple user in-
terface, digital humanists and their students can
choose the available models that suit their data, and
easily connect these steps into a custom workflow.

The Centre for Artificial Intelligence, Data, and
Conflict (CAIDAC)17 houses human right scholars
interested in how armed groups and extremists use
social media to promote their agendas. NLP Work-
bench offers such researchers convenient tools for
collecting tweets18 for analysis. Posts can be sub-
jected to the NLP tools of interest, and the social
network underlying the corpus can be visualized,
explored, and analyzed. All of these tasks are done
through an accessible interface, requiring no pro-
gramming from the users, enabling them to perform
more and larger studies in a fraction of the time
otherwise required.

Business Analytics Business analysts ask ques-
tions like “are recent news reports about Apple Inc.
positive or negative?”. These type of questions
can easily be answered by NLP Workbench. After
performing NER and entity linking on the news ar-
ticles, the analyst can conduct a semantic search to
find the articles that are related to Apple Inc. rather
than apple the fruit. Then, the analyst can use the
sentiment analysis tool and visualize the distribu-
tion of sentiment polarity scores with Kibana Lens,
as shown in the bottom right screenshot in Figure 1.

NLP Research All NLP models in NLP Work-
bench can be accessed via RESTful API and RPC,
or used directly as containers. For researchers who
wish to perform inferences with the models on their
own data, they could use the interfaces provided
by NLP Workbench, without needing to set up the
environment to run the models.

16https://lincsproject.ca
17https://www.tracesofconflict.com/
18Support for Telegram and other platforms is in progress.

6 Roadmap

NLP Workbench is still in its early stages of devel-
opment, and we are actively working on improving
the system. Besides usability, stability, and security
updates, we plan to work on the following major
features in the near future:

Human-in-the-loop NLP Adding annotation
support to the web interface will allow users to pro-
vide feedback to the outputs of models. This will
help researchers to collect domain-specific labelled
data and improve the performance of the models in
a human-in-the-loop fashion (Wang et al., 2021).

Improved Corpus Management Managing doc-
ument collections is a crucial aspect of text mining
(Hearst, 1999; Cunningham et al., 2002). Currently,
corpora are manually imported into Elasticsearch
or created by crawling social media. We hope to
improve the way users access document collections.
This can be done by connecting NLP Workbench
to Datasets (Lhoest et al., 2021) and DataLab (Xiao
et al., 2022) where popular text datasets are already
available. In addition to crawling from social me-
dia, we also plan to support creating a new corpus
by doing web search on a search engine.

More Text Mining Tools The extensible design
of NLP Workbench allows us to keep existing tools
and models up to date by replacing them when
better models are released, and integrate emerging
text mining tools to the system. For example, we
hope to add claim extraction models to facilitate
fact checking tasks (Hassan et al., 2017).

Multi-modal Analysis Social media posts often
refer to or contain information in other modalities
(images, video, audio) of interest. At the same
time, there is growing interest in grounding NLP
models and analysis on knowledge extracted from
videos and other sources. While adding support for
processing different media in NLP Workbench is as
easy as adding more NLP tools, we are interested
in integrating these models so that co-training or
grounding can be automated to the extent possible.

7 Conclusion

We introduced NLP Workbench, a platform that
caters to all three major aspects of text mining sys-
tems: corpus management, text mining tools, and
user interface. We explained what design features
make NLP Workbench efficient and extensible, and
how it can be used in a variety of applications.
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Limitations

We have already identified several important fea-
tures that are not yet implemented in NLP Work-
bench, as discussed in §6: the platform needs an
annotation feature for human-in-the-loop AI; it
should have access to commonly used public cor-
pora; and it should include text mining tools such
as one for claim extraction. There are some intrin-
sic limitations that even the state-of-the-art models
in NLP Workbench do not solve. For example, long
tail entities may not be covered by the knowledge
graph, and current entity linking models do not
have a notion for out-of-knowledge-graph entities
(Shen et al., 2023). This will result in long tail enti-
ties always being incorrectly linked. Beyond social
network analysis, our current design does not have
the user interface or models for other corpus-level
analyses, such as topic modeling (Blei et al., 2003).
And finally, all NLP models and algorithms in NLP
Workbench are targeted at English text. Although
we have been able to deal with corpora in other lan-
guages by translating them to English using Marian
MT (Junczys-Dowmunt et al., 2018), it is not yet
clear whether performance can be improved by di-
rectly using models trained on other languages.

Ethics Statement

By encapsulating the models, NLP Workbench low-
ers the entry barrier for non-experts to use state-of-
the-art AI models. The microservice architecture,
which allows models to be deployed on multiple
servers with different capabilities rather than a sin-
gle omnipotent server, also makes this text mining
platform more accessible. Containerizing third-
party models also helps with reproducibility and
transparency. There have been attempts of using
NLP Workbench to analyze datasets to help under-
stand propaganda, misinformation, and disinforma-
tion related to war and terrorism. However, users
must be warned that, as NLP Workbench uses third-
party data and models without modification, out-
puts obtained from NLP Workbench are inevitably
affected by the bias inherent in the datasets and
models.
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Abstract

jTLEX is a programming library that provides
a Java implementation of the TimeLine EX-
traction algorithm (TLEX; Finlayson et al.,
2021), along with utilities for programmatic
manipulation of TimeML graphs. Timelines
are useful for a number of natural language
understanding tasks, such as question answer-
ing, cross-document event coreference, and
summarization & visualization. jTLEX pro-
vides functionality for (1) parsing TimeML
annotations into Java objects, (2) construc-
tion of TimeML graphs from scratch, (3) par-
titioning of TimeML graphs into temporally
connected subgraphs, (4) transforming tempo-
rally connected subgraphs into point algebra
(PA) graphs, (5) extracting exact timeline of
TimeML graphs, (6) detecting inconsistent sub-
graphs, and (7) calculating indeterminate sec-
tions of the timeline. The library has been
tested on the entire TimeBank corpus, and
comes with a suite of unit tests. We release
the software as open source with a free license
for non-commercial use.

1 Introduction

TimeML is a standardized temporal annotation
scheme for annotating temporal information in
texts (Pustejovsky et al., 2003a). TimeML annota-
tions can be used to build temporal graphs, where
nodes are events and temporal expressions (i.e.,
times), and edges are temporal relations. TimeML
annotations can be generated using automatic ana-
lyzers (Chambers et al., 2014), manual annotation
(Minard et al., 2016), or some combination of the
two.

While temporal graphs derived from texts can
be deeply informative, they usually only encode
partial orderings of events and times. For many
NLP tasks such as text summarization and visual-
ization (Liu et al., 2012), question-answering (Sa-
quete et al., 2004), and knowledge representation
(Galton, 2009), a total order of all events and times

(i.e., a timeline) is often more useful. Unfortu-
nately, timelines are rarely explicit in texts and usu-
ally cannot be read off from texts directly. There
have been a few prior attempts to extract timelines
from temporal graphs, however, these works have
certain limitations: they do not handle all TimeML
relations, they do not separate “real-life” events
and subordinated events, and they do not deal with
multiple possible temporal orders.

These problems were addressed by an approach
called TLEX (TimeLine EXtraction; Finlayson
et al., 2021). TLEX presented a CSP-based so-
lution that extracts exact timelines from a TimeML
graph. TLEX also detects inconsistent TimeML
subgraphs as well as temporal indeterminacy.
TLEX is a formally correct method and the ex-
perimental evaluation on four different TimeML
corpora showed that it has 100% accuracy for ex-
tracting timelines (Finlayson et al., 2021). TLEX
has been used for several NLP tasks such as corpus
validation, evaluating temporal dependency parsers,
and narrative representation (Ocal et al., 2022a,b;
Ocal and Finlayson, 2020). To enable better ac-
cess to this approach for the community, we have
implemented jTLEX, an open-source Java imple-
mentation of TLEX for other researchers in the
field to use. We present jTLEX in this paper.

jTLEX provides several types of functionality.
In its canonical usage, jTLEX takes a TimeML an-
notated file as input, then (1) parses the annotations
into TimeML objects, (2) builds a TimeML graph,
(3) partitions the TimeML graph into temporally
connected graphs to separate real-life events and
subordinated events, (4) transforms the temporally
connected graphs into point algebra (PA) graphs,
and (5) solves the PA graphs to extract a timeline. If
a timeline cannot be extracted, meaning the graph
is temporally inconsistent, (6) it detects the min-
imum inconsistent subgraph and returns it to the
annotator to fix it. Finally, if the order of events and
times are indeterminant (multiple possible order-
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ing), (7) it calculates the temporal indeterminacy.
These steps correspond to steps of the TLEX algo-
rithm as described in Finlayson et al. (2021).

We have tested jTLEX on the entire TimeBank
corpus (Pustejovsky et al., 2003b) which is a
reference corpus for TimeML that contains 183
TimeML annotated news articles. For each file,
jTLEX took no longer than 1 second to extract all
timelines on a currently available, standard con-
sumer laptop (3.0 GHz Intel Core i7-1185G7 with
32GB of RAM) Our demonstration system as well
as a screencast video demonstrating our system is
available1.

2 Library Overview

2.1 User Input
jTLEX processes and allows the manipulation of
all the information available in a TimeML anno-
tation. jTLEX can read in preexisting TimeML
annotations from a .tml file, accept TimeML anno-
tations directly via a JSON-style TimeML encod-
ing, or accept the raw text of TimeML annotations
as a Java String object. TimeML annotations can
be generated via manual annotation by following
the TimeML annotation guide (Sauri et al., 2006)
or by using state-of-the-art TimeML annotators
such as TARSQI (Verhagen et al., 2005), ClearTK
(Bethard, 2013), CAEVO (Chambers et al., 2014),
or CATENA (Mirza and Tonelli, 2016). Note that
there are certain limitations when using automatic
TimeML annotators such as information loss and
temporal inconsistency (Ocal et al., 2022a). Fortu-
nately, jTLEX can detect inconsistencies and help
users to fix them as explained in Section 2.7.

2.2 TimeML Parser
TimeML is an SGML-based annotation scheme to
annotate temporal information in texts. TimeML
defines tags for events (<EVENT>), temporal ex-
pressions (<TIMEX>), temporal signals (<SIG-
NAL>), event instances (<MAKEINSTANCE>), and
links between events and times, namely temporal
link (<TLINK>), subordinated link (<SLINK>), and
aspectual link (<ALINK>). Each tag has attributes
that contain information about a TimeML object.
For example, the "polarity" attribute of <MAKE-
INSTANCE> indicates whether an event is negated
and it contains either POS or NEG values.

jTLEX provides a TimeML parser that can parse
TimeML annotations into a set of TimeML Java

1https://cognac.cs.fiu.edu/jtlex/

objects, including events, times, and links. Addi-
tionally, it can strip the TimeML tags and return
the raw text. The TimeML annotation guide iden-
tifies optional and non-optional attributes for each
TimeML tag. If the input to jTLEX is missing a
non-optional attribute, the parser returns an error
message to the user about which attribute is miss-
ing for which object. Therefore, jTLEX’s TimeML
parser can be used to check compliance of annota-
tions to the TimeML standard.

2.3 Graph Constructor

A TimeML graph is a graph where nodes are events
and times, and edges are TimeML links (as shown
in Figure 1). After jTLEX parses a TimeML an-
notations into the TimeML objects (events, times,
links, etc.), it builds a TimeML graph. Any infor-
mation about the graph can be then programmat-
ically queried, such as the set of links, the set of
nodes, a link by ID, a node by ID, a list of incoming
or outgoing links, and much else.

jTLEX allows users to directly modify the
TimeML graph if they wish. Users can add or
remove links or nodes to the graph, and can also
build their own custom graph by creating an empty
graph and adding events, times, and links. The
graph implementation has a method that returns
a JSON output of the graph. This allows users to
take advantage of existing graph visualization sys-
tem such as React Flow (So, 2018) to inspect the
TimeML annotations.

2.4 Partitioner

As mentioned in Section 2.2, there are three
types of TimeML links. While <TLINK> and
<ALINK> provide information about the temporal
order of events and times, <SLINK> is used for
contexts introducing possible (modal), counterfac-
tual, or conditional relations between two events.
An example is shown below.

(1) Amanda forgot to buy coffee.

The example indicates a counterfactual relationship
between forgot and buy. The event of buy never
happened in the world described in the text, i.e., the
“real world”, and therefore, it needs to be separated.
As described in the TLEX paper, jTLEX imple-
ments this by partitioning a TimeML graph into
temporally connected subgraphs. The partitioner
has two steps: jTLEX walks the graph to partition
the TimeML graph into connected subgraphs. Then
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Figure 1: Visualization of partitioning the TimeML
graph for wsj_0006.tml from the TimeBank corpus.
TLINKs and ALINKs are given in bold, and SLINKs
are in italic. jTLEX partitions the TimeML graph into
five temporally and aspectually connected subgraphs, as
shown by dashed lines.

it further partitions these connected subgraphs into
subgraphs connected only with temporal and aspec-
tual links. We name the subgraph(s) that contains
“real world” events as main subgraph(s), and sub-
graphs that connect to main subgraphs via subordi-
nation links as subordinated subgraphs. A visual
example of this process is shown in Figure 1.

2.5 Transformer
A point algebra (PA) graph is a graph where nodes
are time points and edges are primitive tempo-
ral constraints such as {<, =}. As prescribed
by the TLEX algorithm, jTLEX transforms each
temporally connected subgraph into a PA graph.
Each node and link in the subgraph can be ex-
pressed in time points and constraints. Assume
we have two events (A and B) and A is BEFORE
B. This can be represented in a PA graph as fol-
lows: A− < A+ < B− < B+, where − and +
indicate the start and end time points of a node,
respectively. An example of the transformation of
the TimeML graph in Figure 1 into a PA graph is
shown in Figure 2.

This transformation is necessary because the
timeline is generated by solving the temporal con-
straint satisfaction problem (TCSP) represented by
the PA graph, as discussed in Section 2.6.

2.6 Solver
After the transformer transforms each temporally
connected subgraph into a PA graph, jTLEX as-
signs integers to each time point in the graph us-
ing Java Constraint Programming (JaCoP) library
(Kuchcinski and Szymanek, 2013). The library
then obtains a timeline after sorting the assigned
integers. JaCoP is an open-source java library that
offers a rich set of primitive, logical, conditional,
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Figure 2: Visualization of the output of the transforming
temporally connected subgraphs in Figure 1 into the PA
graph.
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11- 11+
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Figure 3: Visualization of the timeline of the TimeML
graph in Figure 1. Grey regions indicate subordinating
links between timelines.

and global constraints as well as configurable solu-
tion search methods. jTLEX by default produces
the smallest solution, which starts at 1 and which
represents each time point difference as a differ-
ence of 1. Users can also use jTLEX to produce a
random solution.

When run over all the PA graphs, jTLEX pro-
duces an exact trunk-and-branch timeline where
the trunk is the main timeline corresponding to the
main subgraph and branches are subordinated time-
lines corresponding to the subordinated subgraphs
as shown in Figure 3. Therefore, the main timeline
consists the global order of “real world” events and
times, while subordinated branches consist subor-
dinated events. Users can retrieve the length of
the timeline, the first and last time points, the main
timeline, subordinated branches, the number of sub-
ordinated branches, the number of time points, and
the list of attachment time points where subordi-
nated branches are connected to the main timeline.
Users can also retrieve the JSON output of the time-
line, and therefore they can visualize the timeline
using a third-party graph visualizer application.

2.7 Inconsistency Detector
As described in the TLEX work, the solver can
only extract a timeline of the TimeML annotation
if the annotation is temporally consistent. If the in-
teger assignment is not possible, then it means the
TimeML graph has temporal inconsistency (Barták
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Figure 4: An example graph that has temporal indeter-
minacy.

et al., 2014). jTLEX provides an inconsistency de-
tector to detect inconsistent cycles in the TimeML
graph.

The inconsistency detection algorithm detects
self-loops, where the start and end node of an edge
is the same such as A-AFTER->A. This can be
removed automatically as users request. For other
non-self-loop cycles, it detects the minimum incon-
sistent subgraph in the TimeML graph. Further,
in the case of two or more inconsistent subgraph
overlaps (have a shared edge), it can distinguish
the subgraphs and return each inconsistent cycle to
the users. A jTLEX output of an inconsistent cycle
is shown in Section 3.

Users can use jTLEX to check if their annota-
tion is temporally consistent. If the annotation is
not consistent, jTLEX returns the links that cause
inconsistency, therefore, users can fix the incon-
sistent annotation. This could be used as a corpus
validation after NLP researchers create a corpus.

2.8 Indeterminacy Calculator

In most cases, natural language texts lack enough
information to specify a full ordering, meaning
there could be multiple different global orderings
of the same events and times. Figure 4 shows a
TimeML graph with just such a temporal inde-
terminacy. The graph indicates a global order of
1− < 1+ < 2 and 3 < 4− < 4+ < 5− < 5+, but
does not specify the relative order of 2 and 3.

jTLEX uses its own algorithm to measure tem-
poral indeterminacy in a timeline. The algorithm
extracts all possible timelines of the graph and com-
pares the shortest timeline with all other possible
timelines. More precisely, it checks whether every
neighboring time point pair in the shortest timeline
is a neighboring time point in other timelines. If
they are not always adjacent, the order of that pair
is indeterminate. With this result, we can actually
represent indeterminate sections on the timeline as
shown in Figure 5. This allows jTLEX to represent
multiple different orderings in a single timeline.

Using jTLEX, users can retrieve the indetermi-
nant sections of a timeline. jTLEX also provides a

1- 1+ 2- 2+ 4- 5- 5+4+3- 3+
<(1)  < < < < < < <<

1- 1+ 3- 3+ 4- 5- 5+4+2- 2+
<(2)  < < < < < < <<

1- 1+ 2- 2+ 4- 5- 5+4+3- 3+
<(3)  < < = < < < <<

1- 1+ 3- 3+ 4- 5- 5+4+2- 2+
<(4)  < < = < < < <<

1- 1+ 2- 3- 4- 5- 5+4+2+ 3+
<(5)  < = < < < < <<

1- 1+ 2- 3- 4- 5- 5+4+3+ 2+
<(6)  < = < < < < <<

1- 1+ 3- 2- 4- 5- 5+4+2+ 3+
<(7)  < < < = < < <<

1- 1+ 2- 3- 4- 5- 5+4+2+ 3+
<(8)  < < < = < < <<

1- 1+ 2- 3- 4- 5- 5+4+3+ 2+
<(9)  < < < < < < <<

1- 1+ 2- 3- 4- 5- 5+4+2+ 3+
<(11)  < = < = < < <<

1- 1+ 3- 2- 4- 5- 5+4+2+ 3+
<(10)  < < < < < < <<

1- 1+ 2- 2+ 4- 5- 5+ 4+
3- 3+

Figure 5: Illustration of the indeterminacy calculation
process. The algorithm extracts all possible timelines.
For the graph in Figure 4, between 2 and 3, there are
11 possible ordering. This temporal indeterminacy is
shown in the grey area in the timeline. Therefore, mul-
tiple possible ordering can be represented in a single
timeline.

standard way of scoring the amount of indetermi-
nacy present in particular timeline.

3 Use Cases

A user guide and license information can be found
on the jTLEX website2. Here we illustrate an ap-
proach for one of the TimeML annotations of the
TimeBank corpus, called wsj_0006.tml. This file
and the rest of the corpus can be obtained from
LDC website3. The following text shown in Ex-
ample (2), is a snippet of the TimeML-annotated
text of wsj_0006.tml. The TimeML graph corre-
sponding to the snippet text is shown in Figure 1,
where we can see that the nodes of the graph are
either events or times, and the edges are TimeML
relations. Event instance IDs and timeIDs are given
in square brackets (DCT = DOCUMENT CREATION

TIME).

(2) [DCT:11/02/891[t9]]: Pacific First Fi-
nancial Corp. said2[ei73] shareholders
approved3[ei74] its acquisition4[ei75] by
Royal Trustco Ltd. of Toronto for $27 a
share, or $212 million. The thrift hold-
ing company said5[ei76] it expects6[ei77] to
obtain7[ei78] regulatory approval8[ei79] and
complete[9[ei80] the transaction10[ei81] by
year-end11[t10].

Users can read the file and create the TimeML
graph as follows:

2https://cognac.cs.fiu.edu/jtlex/
3https://catalog.ldc.upenn.edu/LDC2006T08

30

https://cognac.cs.fiu.edu/jtlex/
https://catalog.ldc.upenn.edu/LDC2006T08


1 Link: {ID = 1, LinkTag = TLINK , Syntax
= "", Temporal Relation = BEFORE ,

Origin = null
2 Signal: {Id = sid12 , String = "by"

}
3 Related to event - Timex: {tID =

t10 , Type = DATE , Value =
1989 -12 -31 , Mod = null ,
Temporal Function = true ,
AnchorID = t9, Begin Point = t0
, End Point = t0, Quantity =
null , Frequency = null}

4 Event Instance - Event Instance:
5 {ID = eiid80 , Tense = PRESENT ,

Aspect = NONE , Part of Speech =
VERB , Polarity = POS , Modality
= "null", Cardinality = "null"

, Signal = null
6 EVENT: eid = e7, class =

ASPECTUAL , stem = complete}
7 }

Listing 1: jTLEX parser output for printing the
information about the first link of the graph.

File tmlFile = new File(fName);
ITimeMLGraph graph = GraphReader.

TimeMLGraph(tmlFile);

Here, fName is the path to the file. Users can
retrieve any information about the graph such as
links (all or one by ID), nodes (all or one by ID),
incoming links, outgoing links, JSON output, num-
ber of nodes, number of links, number of link types,
etc. Using the following code, users can retrieve
the information of the first link:

System.out.print(graph.getLinkById (1));

The output will be as shown in Listing 1. As can
be seen, jTLEX provides all the available informa-
tion in the TimeML annotation about the link and
its components using the TimeML parser.

After the TimeML graph is created, users can
create a TLEX object to perform the timeline extrac-
tion including partitioning, transforming, solving,
inconsistency detection (if the graph is inconsis-
tent), and temporal indeterminacy. Creating the
tlex object is as follows:

TLEX tlex = new TLEX(graph);

Users, can retrieve the exact trunk-and-branch
timeline structure using:

tlex.getTimeline ();

The output will be as shown in Listing 2. As can
be seen, jTLEX returns the main timeline, subordi-
nated timelines, and the attachment points for each
subordinated timeline.

1Main Timeline: {
2eiid75 - = 1
3eiid75+ = 2
4eiid74 - = 3
5eiid74+ = 4
6eiid73 - = 5
7eiid76 - = 5
8eiid73+ = 6
9eiid76+ = 6
10t9 - = 7
11t9+ = 8
12}
13Attachment Points: {eiid77 ->eiid78 ,

eiid77 ->eiid80 , eiid76 ->eiid77 ,
eiid78 ->eiid79}

14Subordinated Timelines: {
15[eiid81 - = 1, eiid80 - = 2, eiid81+ =

3, eiid80+ = 3, t10 - = 4, t10+ =
5],

16[eiid79 - = 1, eiid79+ = 2],
17[eiid78 - = 1, eiid78+ = 2],
18[eiid77 - = 1, eiid77+ = 2]}

Listing 2: jTLEX timeline output for the wsj_0006.tml
file.

1[Graph Type: Main Graph
2Nodes Count = 2
3Links count = 2
4TLinkType: 2
5ALinkType: 0
6SLinkType: 0
7Nodes:
8eiid2048 , t57
9Links: (From -> To)
10(t57 BEFORE eiid2048)
11(eiid2048 BEFORE t57)
12]

Listing 3: jTLEX inconsistent subgraph output for the
wsj_1011.tml file.

Since the graph of wsj_0006.tml is consistent,
jTLEX’s inconsistency detection method returns an
empty set. We illustrate the inconsistency detection
algorithm using a temporally inconsistent file from
the TimeBank corpus, called wsj_1011.tml.

After running the method for graph construction
and creating the tlex object, users can simply call
the method tlex.getInconsistentSubGraphs()
and retrieve the inconsistent cycle. For this file,
jTLEX returns the output show in Listing 3. As
can be seen from the output, jTLEX returns the
inconsistent subgraph along with the information
about the subgraph.

4 Related Work

As we discussed in Section 1, TimeML is a stan-
dardized temporal markup language in the NLP
community. Therefore, many tools have been de-
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veloped for TimeML-related tasks. We can classify
existing TimeML tools into two categories: produc-
ing TimeML annotations and analyzing TimeML
annotations. NLP researchers have concentrated
tools of the first type, in particular for both full
automatic TimeML annotation—such as TARSQI
(Verhagen et al., 2005), ClearTK (Bethard, 2013),
and CAEVO (Chambers et al., 2014)—and tools of
the automatic annotation of sub-parts of TimeML—
such as Evita (Saurí et al., 2005) and NavyTime
(Chambers, 2013) for event detection, GATE-Time
(Derczynski et al., 2016) and SUTime (Chang and
Manning, 2012) for temporal expression recogni-
tion, and CATENA (Mirza and Tonelli, 2016) and
LCC-TE (Min et al., 2007) for temporal relation
extraction.

There are only a small number of tools that evalu-
ate TimeML annotations. Tango is a Java TimeML
parser tool to parse the TimeML annotated docu-
ments and create a TimeML graph (Verhagen et al.,
2006). Tango allows users to modify the graph
and it checks the temporal consistency of the graph
using temporal closure. Tango was used to evalu-
ate the TimeBank corpus, however, Tango did not
report any inconsistency on the TimeBank files.
Using the <TIMEX> values, Tango displays the
graph in a timeline form, where each section con-
tains a <TIMEX> and the events connected to the
<TIMEX>, however, it doesn’t provide the global
order of events. Similarly, TBOX (Verhagen, 2007)
also generates a TimeML graph from a TimeML
annotation, but it further removes the temporal clo-
sure links to display a simplified TimeML graph.
TBOX displays each event in a box shape and
places each box based on the temporal relation
to present the timeline (e.g., if event A is before
event B, then box-A would be on the left of box-B).
However, this representation could be problematic
considering temporal indeterminacy is already high
in TimeML annotations.

TimeML-strict is a Java validation tool that
parses TimeML annotations and validates them
whether they follow strict TimeML annotation
guide rules (Derczynski et al., 2013). It also
fixes missing document creation time (DCT) and
<TEXT> tags in the annotations. CAVaT is a Python
tool that parses TimeML annotations and prints
out the quantitative results such as distributions of
the TimeML objects (Derczynski and Gaizauskas,
2012). Further, it detects self-loops as well as dis-
connectivity in the TimeML graphs. CAVaT detects

the temporal inconsistency of the graph using in-
consistent disclosure. If the graph is inconsistent, it
returns the last added constraint to the inconsistent
cycle. Determining the entire inconsistent cycle
based on one edge is very difficult for the annota-
tors considering the graph size. CAVaT detects 30
inconsistent files in the TimeBank corpus. How-
ever, CAVaT’s inconsistency detection algorithm
only deals with TLINKs and ignores ALINKs and
SLINKs. Later, (Ocal et al., 2022b) showed that by
taking ALINKs into consideration, the TimeBank
corpus actually has 65 inconsistent files.

In addition to these TimeML tools, NLP re-
searchers have also developed ML-based ap-
proaches to extract timelines from TimeML an-
notations (Mani et al., 2006; Do et al., 2012;
Kolomiyets et al., 2012; Leeuwenberg and Moens,
2020). However, these approaches have certain lim-
itations such as they do not deal with all temporal
links (at most 6 out of 13), they do not distinguish
the real-life events and subordinated events, and
they do not handle temporal indeterminacy.

Unlike other tools and approaches, in this
work we provide an open-source implementation
of TLEX, a method for extracting exact time-
lines from a TimeML annotation. Like prior
approaches, TLEX—and by extension, jTLEX—
offers a TimeML parser and a graph constructor.
However, it goes further by separating subordinated
events from real-life events, presenting the global
order of events and times in a novel trunk-and-
branch timeline structure, detecting inconsisten-
cies automatically and helping users to fix them,
representing multiple different orders in a single
timeline, and measuring the indeterminacy score.

5 Discussion

We perform an extensive evaluation of the TLEX
algorithm using the jTLEX output in our forthcom-
ing paper (Ocal and Finlayson, 2023). We perform
sampling evaluation using Simple Random Sam-
pling (Saunders et al., 2009, p. 222), which allows
us to check the correctness of a specific feature
of a set of n members randomly selected from a
population with size N to obtain an estimate of the
correctness of that feature over all the data. Sam-
pling evaluation shows that jTLEX achieved 100%
accuracy on time point ordering and indeterminacy
identification with 95% confidence (Ocal and Fin-
layson, 2023).

Because jTLEX can detect temporal errors in the
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annotations and measure temporal indeterminacy,
it can be used to evaluate automatic TimeML tools
and manual TimeML annotations. An example of
using jTLEX to evaluate automatic TimeML anno-
tators can be found in Ocal et al. (2022a), and for
using it to evaluate gold-standard TimeML annota-
tions, see Ocal et al. (2022b).

6 Conclusion

We presented jTLEX, an open-source Java library
that, for the first time, allows the programmatic ex-
traction of exact timelines from TimeML annotated
texts using a standard Java API. jTLEX provides
many useful methods for the TimeML community
such as TimeML parsing, graph extraction, timeline
extraction, inconsistency detection, and temporal
indeterminacy calculation. jTLEX can for used on
any TimeML annotations in any domain of natural
language. We release jTLEX as an open source
library that is free for non-commercial use4.
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Abstract

In recent years, COVID-19 has impacted all
aspects of human life. As a result, numer-
ous publications relating to this disease have
been issued. Due to the massive volume
of publications, some retrieval systems have
been developed to provide researchers with
useful information. In these systems, lexi-
cal searching methods are widely used, which
raises many issues related to acronyms, syn-
onyms, and rare keywords. In this paper,
we present a hybrid relation retrieval system,
CovRelex-SE, based on embeddings to pro-
vide high-quality search results. Our sys-
tem can be accessed through the following
URL: https://www.jaist.ac.jp/is/labs/
nguyen-lab/systems/covrelex-se/.

Keywords: COVID-19, relation search,
biomedical domain, relation extraction, entity
recognition, semantic search.

1 Introduction

Scientific information related to the coronavirus dis-
ease has received a lot of attention in recent years.
The number of COVID-19-relevant publications is
increasing daily. In the record of CORD-19 dataset
(Wang et al., 2020a), there are more than 900K
papers introduced by March 31st, 2022. The huge
number of documents demonstrates the importance
of retrieval systems for providing researchers with
informative knowledge.

A relation is an object that consists of three com-
ponents (arg1, rel, arg2), where arg1, and arg2
are noun phrases that may contain biomedical en-
tities and rel is an expression describing the re-

lation between arg1 and arg2. A query is made
up of partial information on a relation, which in-
cludes keywords regarding these components. Ide-
ally, a relation retrieval system should return all
relevant relations with the corresponding papers,
which can be used to answer two different types
of questions: single-hop and multi-hop. Regarding
single-hop questions, such as "COVID-19 disables
which things?", we can input the query ("COVID-
19", "disable", any-arg2), and then extract the an-
swer by using the returned results of arg2. On the
other hand, we can combine two queries: ("COVID-
19", "cause", DISEASE), and (CHEMICAL, "treat",
DISEASE) to answer the multi-hop question "What
are CHEMICAL that can treat some DISEASES
caused by COVID-19?". By that, the answer can
be extracted by using the returned results at the
position of CHEMICAL.

In this paper, we propose CovRelex-SE, a hy-
brid retrieval system to search the relations that
effectively tackles the issues raised by the lexi-
cal approach in the CovRelex system (Tran et al.,
2021). Instead of searching relations using lexi-
cal methods, CovRelex-SE ranks their scores by
utilizing the combination of lexical scores (based
on the Elasticsearch1 engine) and semantic scores
(based on CORD19-BERT embeddings). In sum-
mary, our contributions in this paper are as fol-
lows: (I) A novel approach to ranking COVID-19-
relevant relations, which combines the effective-
ness of lexical approach and vector representation
approach; (II) A new pre-trained language model,

1https://www.elastic.co/
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CORD19-BERT, which is pre-trained from scratch
using the CORD-19 dataset; (III) A web-based
relation search system, CovRelex-SE, which pro-
vides two search functions: Single-Relation Search
and Graph Search; that aims to answer two type
of questions: single-hop and multi-hop; (IV) An
experimental evaluation, which shows the supe-
rior performance of CovRelex-SE system using the
CORD-19 dataset by March 31st, 2022.

2 Related Work

Due to the COVID-19 outbreak, it is vital to collect
crucial information from a huge number of COVID-
19-related publications. Zhang et al. (2020) created
Covidex, a search engine that allows users to query
the COVID-19 Open Research Dataset and access
inside information. Esteva et al. (2020) introduced
Co-Search, a semantic search engine composed of
a retriever and a ranker that was built to handle
complex queries throughout the COVID-19 papers.
Additionally, Wang et al. (2020b) created the Ev-
idenceMiner web-based solution. Given a query
as a natural language statement, EvidenceMiner re-
trieves textual evidence at the sentence level from
the CORD-19 corpus for life sciences. More re-
cently, Raza et al. (2022) present an Information
Retrieval System that uses latent information to
select relevant works related to specific concepts.
Otegi et al. (2022) develop a Question Answering
system that receives a set of questions asked by ex-
perts about the disease COVID-19 and SARS-CoV-
2 virus, and provides a ranked list of expert-level
answers to each question.

Conceptually, the most similar to our work, Cov-
Relex (Tran et al., 2021), is a retrieval system for
scientific publications that target entities and rela-
tions via relation extraction from COVID-19 sci-
entific papers. However, there is still a lack of
systems that automatically extract the diverse rela-
tions through papers and obtain the results using
semantic information, especially given the rapid
publication of COVID-19 papers. This issue moti-
vates us to create the CovRelex-SE system.

3 Method

3.1 Overview
Figure 1 illustrates our proposed system, CovRelex-
SE. From the raw text of document abstracts, we
extract relations and recognize biomedical entities
inside the extracted relations. For each relation,
arg1, arg2, and rel are converted into vectors by

using CORD19-BERT. Three Faiss (Johnson et al.,
2019) indices are then trained using all of the em-
bedding vectors. At the query time, the user input
a query, which will be converted to embedding
vectors. Following that, the Faiss indices will be
looked up for the most similar relations according
to the query and return semantic scores. The Elas-
ticsearch engine will also look up the query and
utilize the BM25 algorithm (Robertson et al., 1995)
to calculate lexical scores. The system then com-
bines the lexical scores and semantic scores as final
scores for relations. Finally, CovRelex-SE returns
the top-ranked triplets after filtering query entities
using the Elasticsearch engine.

3.2 Relation Extraction & Entity Recognition

In this paper, to extract the relations in the doc-
uments as many as possible, we use a variety of
relation extraction methods. As each method has its
own characteristics, we can obtain more unique re-
lations when combining all of them. The following
are brief descriptions of the methods.

• ReVerb (Fader et al., 2011) tackles the issues
of incoherent and uninformative relation ex-
tractions by introducing syntactic and lexical
constraints on binary verb-based relations.

• OLLIE (Schmitz et al., 2012) overcomes the
limitation of prior methods, which extract only
relations mediated via verbs. OLLIE broadens
the syntactic scope by identifying relations
mediated by nouns, adjectives, etc.

• ClausIE (Del Corro and Gemulla, 2013) is a
clause-based approach to open information ex-
traction. It separates the detection of clauses
and clause types from the actual generation of
propositions.

• Relink (Tran and Nguyen, 2021) is a method
inherited partly from ReVerb. It extracts rela-
tions from connected phrases, unlike ClauseIE
which extracts clause types.

• OpenIE (Angeli et al., 2015) breaks a long
sentence into short, coherent clauses, and then
finds the maximally simple relations.

After extracting relations, we use the SpaCy2

models provided by the SciSpacy (Neumann et al.,
2019) library to recognize the biomedical entities.

2https://spacy.io/
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Figure 1: Overview of the CovRelex-SE system.

Since each model is trained on a different annotated
corpus (Li et al., 2016; Bada et al., 2012; Kim
et al., 2004; Pyysalo et al., 2015), it can recognize
a different set of biomedical entities. Table 1 shows
SciSpacy models that were utilized.

Table 1: SciSpacy models used in our system.

Models Training corpus

en_ner_craft_md

CRAFT corpus (for cell types,
chemicals, proteins, genes)

(Bada et al., 2012)

en_ner_jnlpba_md

JNLPBA corpus (for cell lines,
cell types, DNAs, RNAs, proteins)

(Collier and Kim, 2004)

en_ner_bc5cdr_md
BC5CDR corpus (for chemicals and

diseases) (Li et al., 2016)

en_ner_bionlp13cg_md
BioNLP13CG (for cancer genetics)

(Pyysalo et al., 2015)

3.3 Embedding Extraction & Faiss Index
In recent years, domain-specific pre-trained mod-
els have led to effective results on many natural
language processing tasks (Chalkidis et al., 2020;
Lee et al., 2020). Generally, there are two com-
mon ways to pre-train a domain-specific language
model: from scratch or continual over a general lan-
guage model such as BERT (Devlin et al., 2018).
However, Gu et al. (2020) show that if we have
a large enough training data, pre-training from
scratch would be better. The particular reasons for
this circumstance are as follows: (I) The ability to
develop a new vocabulary for the specific domain,
(II) The fact that general documents basically differ
from documents of this domain, increasing the like-
lihood of negative transfers that reduce the overall
performance.

Based on the above points, we pre-train a new
language model, CORD19-BERT, from scratch us-
ing the data of CORD-19 corpus. Figure 2 illus-
trates the relative coverages of the vocabularies of
three models CORD19-BERT, PubMedBERT (Gu
et al., 2020) and BERT-base (Devlin et al., 2018).

There is a considerable variation in the three vo-
cabularies. Especially, there are some common
COVID-19 related words that do not exist in the vo-
cabularies of BERT-base and PubMedBERT, such
as covid, unvaccinated, etc. In this step, we use the
masked language model task to pre-train CORD19-
BERT. Following BERT, we mask 15% of tokens,
and the model needs to predict the masked tokens
in the sentence. We share our pre-trained CORD19-
BERT model via Huggingface3.

Figure 2: The relative coverages of three vocabularies
of BERT, PubMedBERT, and CORD19-BERT. When
the vocabulary size of each model is 30,522 tokens.

After pre-training the model, we use CORD19-
BERT to extract the embeddings of relations. One
issue with data processing is the excessive number
of embedding vectors. Therefore, we used the Faiss
index (Johnson et al., 2019) to resolve this problem.
Faiss is a method for searching and grouping dense
vectors in an efficient manner. More details about
the Faiss settings used in this paper are shown in
the experimental section.

3.4 Relation Scoring
The score of a relation (arg1, rel, arg2) is calcu-
lated based on semantic and lexical scores. The
semantic score is determined using the embeddings
from CORD19-BERT, whereas the lexical score is
computed using the Elasticsearch engine. Specif-
ically, let (s_arg1, s_rel, s_arg2) be the semantic

3https://huggingface.co/CovRelex-SE/
CORD19-BERT

37

https://huggingface.co/CovRelex-SE/CORD19-BERT
https://huggingface.co/CovRelex-SE/CORD19-BERT


Figure 3: Examples of Single-Relation Search and Graph Search.

scores of (ar1, rel, arg2) calculated by Faiss in-
dices based on squared Euclidean (L2) distance.
Following that, the semantic score of a relation is
calculated based on formula 1 with hyperparame-
ters α, β, and γ. These parameters’ values can be
controlled by the users.

scorese = α∗s_arg1+β∗s_rel+γ∗s_arg2 (1)

The Elasticsearch engine, which is based on the
BM25 scoring algorithm, is used to compute the
lexical score. After obtaining the semantic and
lexical scores, the final score is calculated by com-
bining these two scores using the formula 2. Ad-
ditionally, there is a user-specified hyperparameter
with θ, depending on whether the user wants to
search exact match or by semantic similarity.

scorefinal = θ ∗scorese+(1−θ)∗scorelex (2)

3.5 Retrieval System

The retrieval system provides two different types of
searching scenarios: Single-Relation Search and
Graph Search. While Single-Relation Search
provides a simple way to discover a specific rela-
tion, Graph Search aims to answer complex ques-
tions from users.

3.5.1 Single-Relation Search
In Single-relation Search, a query consists of par-
tial information of a relation which can contain key-
words about arg1, arg2, and rel, and the sliders
which determine the values of the hyperparame-
ters in formulas 1 and 2. The retrieved results are
relevant relations along with their corresponding
papers. An example of a single-relation query is

illustrated in Fig. 3a. The query relation is ("Covid-
19", "cause", ""). The results are highest score re-
lations, for instance, ("COVID-19", "cause", "cere-
bral hemorrhage").

3.5.2 Graph Search
In addition to single relation searching, we provide
a multi-relation search tool called Graph Search.
The input graph is a directed graph where each edge
indicates a relation, and the label of the edge is de-
termined by the value of rel. Each edge contains
arg1 and arg2 as its source and target. The retrieved
result is a graph that matches the query graph. The
main purpose of Graph Search is to find out the
answer for complex questions that are challenging
to answer with single search searching. For ex-
ample, the question "What CHEMICAL can treat
some DISEASE caused by COVID-19?" can be rep-
resented as a graph with three nodes and two edges
defining two relations ("COVID-19", "cause", DIS-
EASE), and (CHEMICAL, "treat", DISEASE). This
allows us to perform the question on the system
as a graph query, which will be answered by the
retrieved results. Additionally, Graph Search is
also a visualization of retrieved relations that makes
users easier to understand the results. Figure 3b
shows the outcome of the above query. One of the
results is the graph with two relations ("COVID-
19", "cause", "onset of autoimmune diseases"), and
("hydroxychloroquine", "treat", "autoimmune dis-
eases").

4 Experimental Results

4.1 Corpus
The CovRelex-SE system makes use of a snapshot
of CORD-19 at March 31st, 2022. The dataset is
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a resource of over 900,000 scholarly articles about
COVID-19 and related coronaviruses. Relation ex-
traction and embedding extraction were performed
on the abstracts of the papers.

4.2 Relation Extraction & Entity Recognition
As illustrated in Table 2, we extracted 107.4 million
relations, 82.2 million of which were unique. On
average, there are 160 unique relations extracted
from a single document abstract. Among the meth-
ods, OpenIE generates the most results.

Table 2: Statistics of extracted relations.

Method Non-uniq/corpus Uniq/corpus Uniq/abstract

ReVerb 5.5M 4.5M 8

OLLIE 11.0M 8.9M 17

ClausIE 20.9M 16.9M 32

Relink 12.7M 10.0M 20

OpenIE 57.3M 45.8M 90

Overall 107.4M 82.2M 160

As shown in Table 3, four entity recognition
models have identified 15.1 million distinct entities
from the corpus. An average of 24 recognized
entities are present for each abstract of CORD-19.
Among the models, en_ner_jnlpba_md generates
the most results. The top 3 common recognized
entities are AMINO_ACID, CANCER, and CELL.

Table 3: Statistics of recognized entities.

Model /corpus /abstract

en_ner_craft_md 3.1M 5

en_ner_jnlpba_md 6.6M 11

en_ner_bc5cdr_md 3.4M 5

en_ner_bionlp13cg_md 2.0M 3

Total 15.1M 24

4.3 Embedding Extraction & Faiss Index
To pre-train CORD19-BERT, we extract 52.8 mil-
lion sentences from the CORD-19 corpus using
both abstract and full-text of documents. We then
pre-train the model following the BERT-base set-
tings (110M parameters) (Devlin et al., 2018). In
the initialization step, we use a peak learning rate
5e-05 and train for 4.7 million steps, Adam op-
timizer with epsilon 1e-08, and batch size of 32
sequences with 512 tokens. Training took 99 hours
on one NVIDIA A100 GPU. After that, we use the
pre-trained model to perform embedding extrac-
tions. Each component of a relation is converted to
a 768-dim vector using this model.

Using the Faiss package, we divide the search-
ing space of embedding vectors into 100 clusters.
When searching a query, the users can easily alter
the value of parameter nprobe, which affects how
many adjacent clusters are used to search. Table 4
shows the required time to search a query ("covid",
"cause", DISEASE) based on different values of
nprobe. The increase of the nprobe implies longer
search time. In general, there are three main factors
that affected the search time of a query including
the number of non-empty components in the query,
the number of components with entity types, and
the value of nprobe.

Table 4: Statistics of search time for different hyperpa-
rameter values of nprobe.

Hyperameter Search time

Nprobe=1 5.92 s

Nprobe=10 6.86 s

Nprobe=50 19.46 s

Nprobe=100 23.19 s

4.4 Evaluation Settings and Results
To demonstrate the effectiveness of two search
functions of our system, we conduct an evalua-
tion task. The queries are created by using the
content of sample articles in the corpus. There
are 50 single-relation search queries and 30 graph
search queries were created. Two evaluators work
together to evaluate the returned results. Specifi-
cally, the evaluation process contains three phrases
as follows:

• Phase 1: How to use system. Two evaluators
carefully read the manual4 of our system.

• Phase 2: Evaluating. Two evaluators sepa-
rately determine whether the returned result
of systems are correct or not. A correct result
contains at least one relation that can be en-
tailed from its corresponding paragraph and
answer the query. After that, if any answers
weren’t identical, they adjudicated with each
other.

• Phase 3: Combining answers. We collect
the answers from two evaluators. Only an-
swers that are accepted by both evaluators are
counted as correct ones. In addition, we used
Cohen’s kappa coefficient (McHugh, 2012)

4https://www.jaist.ac.jp/is/labs/nguyen-lab/
systems/covrelex-se/docs/
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Table 5: Evaluation results on systems. Correct I&II:
evaluated as correct results (can be entailed the expected
answer from top-5 returned relations) by both the evalu-
ators. Kappa: Cohen’s kappa coefficient.

Function Method Correct I & II Kappa

Single Relation

Search

CovRelex 28 (56%) 0.78

CovRelex

with semantic
41 (82%) 0.85

CovRelex-SE 42 (84%) 0.83

Graph Search
CovRelex 15 (50%) 0.72

CovRelex-SE 22 (73.3%) 0.70

to estimate the agreement between the two
evaluators.

As a baseline, we perform the queries on Cov-
Relex using the system’s default settings. More-
over, we add the semantic search component to
the baseline and refer to this setting as CovRelex
with semantic. For CovRelex with semantic and
CovRelex-SE, we set the values of (α, β, γ, θ) in
section 3.4 to (1.0, 0.1, 1.0, 0.5).

Table 5 shows the evaluation results. For single-
relation search, we can see that using the semantic
improves the system by 26% over using simply
the lexical method. In addition, after employing
the latest data corpus, the accuracy of our system
enhances to 84%. For graph search, our system
performs better than CovRelex by 23.3%. More-
over, Cohen’s kappa coefficients of the methods are
greater than or equal to 0.7, which is considered a
good agreement (Fleiss et al., 2013).

4.5 Result Discussion
We observe that the proposed system is able to
make more effective use of semantic information
than the baseline CovRelex system. Specifically,
instead of lexical matching only, the CovRelex-SE
system also searches with the meaning of keywords.
For example, there is a query ("", "shield", "lung")
that describes the question "What thing shields the
lungs?". Figure. 4 presents top-1 retrieved relations
based on each system for this query. We can see
that the CovRelex system can not return any results.
On the other hand, the CovRelex-SE system knows
the close meaning between "shield" and "protect"
in this context and returns the relation ("ARBs",
"protect", "lung").

There are some cases that the CovRelex-SE sys-
tem with default settings fails to retrieve the correct
relations in top-5 results, for example ("lung ra-
diological image", "screen", "covid"). In general,

Figure 4: An example results of systems.

we can further improve the accuracy of the system
by changing the values of hyperparameters such
as nprobe. However, there is a trade-off between
computation time and accuracy.

5 Threats to Validity

There are two main threats to validity in this study,
which are described as follows.

5.1 Threat of Evaluation Settings

In this study, we evaluate the performance of the
systems in Table 5 using the default settings. As
a result, their configuration values might not be
optimal for the systems. To reduce the threat, we
run several queries through the systems, manually
changing the value of each setting and selecting
the one with the most relevant and consistent re-
sults. Also, we intend to use an evaluation task to
determine the best settings for each system.

5.2 Threat of Extracting Relations

This threat mainly lies in the extracted relations that
are used for ranking. The threat may come from
the relation extraction methods that do not capture
all available relations or extract the incorrect ones.
To minimize the threat of extracting false positive
relations, we carefully investigate the relation ex-
traction methods. Also, we plan to use additional
relation extraction methods to capture all possible
relations in the documents.

6 Conclusions

In this paper, we present CovRelex-SE, a novel
COVID-19 retrieval system for ranking relations in
the CORD-19 corpus. The score of a relation is cal-
culated based on semantic and lexical scores. The
semantic score is determined using the embeddings
from CORD19-BERT, whereas the lexical score
is computed using the Elasticsearch engine. In or-
der to evaluate the effectiveness of CovRelex-SE,
we conducted an evaluation task. The experimen-
tal results show that our system outperforms the
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CovRelex system in both single-relation search and
graph search.
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A Appendix

A.1 Detailed settings of Faiss

One issue with data processing is the excessive
number of embedding vectors; 82 million relations
correspond to 246 million 758-dim vectors. Then
calculating the query’s embedding and iterating
over all corpus relations’ embeddings is impracti-
cal. Therefore, we used Faiss to resolve this issue.
The detailed settings of Faiss5 are shown in Ta-
ble. 6.

Table 6: Detailed settings of Faiss.

Setting Value

Version 1.7.2

Faiss Index IndexIVFFlat

Faiss Quantizer IndexFlatL2

Faiss nlist 100

Faiss nprobe 10 (default)

5See Faiss wiki page for the meaning of each setting:
https://github.com/facebookresearch/faiss/wiki/

A.2 Examples appearing in CORD19-BERT
Vocabulary

Table 7 shows some examples of subwords that
exist in the CORD19-BERT vocabulary but not in
BERT and PubMedBERT. From these examples,
it can be seen that the embedding spaces of BERT
and PubMedBERT are not capable of describing
the important concepts of COVID-19-related docu-
ments directly. This can affect the model’s perfor-
mance on representing the semantic information of
phrases. We provide subwords with explanations
of them from Oxford Online Learner’s Dictionary6.
Most of these terms are related to the coronavirus.

Table 7: Examples appearing in CORD19-BERT vocab-
ulary, not in BERT and PubMedBERT vocabularies.

Token Explanation

covid
A disease caused by a coronavirus, especi-

ally Covid-19.

coronavirus
A type of virus that can cause pneumonia

and other diseases in humans and animals.

respirator

A piece of equipment that makes it possib-

le for somebody to breathe over a long pe-

riod when they are unable to do so natura-

lly.

quarantine

A period of time when an animal or a per-

son that has or may have a disease is kept

away from others in order to prevent the

disease from spreading.

vaccinate

To give a person or an animal a vaccine,

especially by injecting it, in order to prot-

ect them against a disease.

disinformation
False information that is given deliberat-

ely.

distancing
To become less involved or connected wi-

th somebody/something.

facemask

Something that you wear over part or all

of your face, in order to protect it or to

prevent the spread of disease.

lockdown

An official order to control the movement

of people or vehicles because of a dange-

rous situation.

##infection
Wordpiece in words containing “infecti-

on" (e.g. reinfection, coinfection)

6https://www.oxfordlearnersdictionaries.com/
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Abstract
Topic Modeling is a commonly used technique
for analyzing unstructured data in various fields,
but achieving accurate results and useful mod-
els can be challenging, especially for domain
experts who lack the knowledge needed to op-
timize the parameters required by this natu-
ral language processing technique. From this
perspective, we introduce an Interactive Topic
Model Trainer (ITMT) developed within the
EU-funded project IntelComp. ITMT is a user-
in-the-loop topic modeling tool presented with
a graphical user interface that allows the train-
ing and curation of different state-of-the-art
topic extraction libraries, including some re-
cent neural-based methods, oriented toward the
usage by domain experts. This paper reviews
ITMT’s functionalities and key implementation
aspects in this paper, including a comparison
with other tools for topic modeling analysis.

1 Introduction
In the growing information age, today mostly dom-
inated by an unprecedented interest in artificial
intelligence (AI), as well as its deployment in a
multitude of applications, topic modeling is still
mostly preferred over other AI techniques for the
automatic extraction of the main themes concurring
in a collection of documents.

Nonetheless, the blind application of these topic
extraction tools entails some difficulties, from which
we can cite the presence of garbage topics (i.e., top-
ics that describe the corpus under analysis as a
whole, but not the relevant topics it consists of);
the complicated adjustment of flat topic models
when the corpus is characterized by topics with
very different sizes, as they do not support hier-
archical modeling; or challenges associated with
finding a suitable tuning for each algorithm, which
requires expertise and a good knowledge of their
hyperparameters, just to mention some.

Moreover, when the knowledge of domain ex-
perts is available, it is worthwhile to offer tools

that enable the incorporation of such understanding
into the building of topic models, providing both
appliances for visualization and guided adjustment
of the model, specially designed for the usage of
non-AI practitioners that are experts in their area.
Nevertheless, it is essential that the models created
for this purpose are easily interpretable by end users,
i.e., avoid garbage or too broad topics, etc.

Hence, we present in this paper IntelComp’s
Interactive Topic Model Trainer (ITMT), a tool
developed within the H2020 European project In-
telComp1 for this purpose. IntelComp seeks the
development of a platform that makes use of the
latest generation of Artificial Intelligence and Nat-
ural Language Processing (NLP) tools to provide
relevant information to assist public policies in
Science, Technology, and Innovation (STI), geared
toward aiding decision-making over the policy cycle.
This requires a thorough analysis of documentary
sources, which can entail up to hundreds of mil-
lions of documents (e.g., scientific articles, patents,
etc.); therefore, here becomes fundamental the use
of topic modeling to extract information with a
level of detail greater than attainable through the
inspection of these sources’ metadata.

ITMT consists of a Python-based toolbox inte-
grated within a PyQT6-based graphical user inter-
face2 for the training of topic models following
an expert-in-the-loop approach that ultimately con-
tributes to models that are more aligned with the
prior experience and needs of IntelComp end users.
The software package includes several state-of-the-
art topic modeling solutions, seeking adequacy to
the needs of each possible scenario, due to both the
characteristics of the data sets and the scalability of
the algorithms, but also the infrastructure available
for training. Besides, the software contains a series
of proprietary algorithmic improvements that allow

1http://intelcomp.eu
2The project will also make the tool accessible via a web

service.
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Features ITMT Gensim Mallet StandfordTMT STTM Familia TopicNet ToModAPI OCTIS BigML
Pre-processing tools � � � � � � �
Bayesian based models � � � � � � � � � �
Neural topic models � � �
Level-2 HTMs for granularity inspection �
Topic visualization tools � � � �
Topic curation tools �
Topic annotation tools �
Hyper-parameters tuning � � � � �
Global topic statistics � �
Coherence metrics � � � � � � �
Entropy metrics �
Diversity metrics �
Significance metrics �
Classification metrics � � � �
Domain-experts oriented � � �

Table 1: Comparison of ITMT with other existing frameworks for topic modeling.

topic models to be evaluated and curated by experts.
Compared to other current topic modeling frame-

works (McCallum, 2002; Rehurek and Sojka, 2010;
Lisena et al., 2020; Silvia Terragni, et al., 2021),
which typically focus on putting out topic modeling
algorithms but ignore their interpretability and ade-
quateness for the needs of end users, ITMT stands
out as a tool for training topic models while includ-
ing the knowledge of experts in the creation and
curation of such models. A comparison summary
between ITMT and other available frameworks is
available in Table 1, while a detailed analysis is
provided in Section 4.

The main contributions of our framework’s cur-
rent release are:

• Integration of several topic extraction libraries
enabling users to easily train models under a
common interface.

• Incorporation of a novel implementation of
Hierarchical Topic Models (HTMs). In par-
ticular, we provide a level-2 HTM comprising
tools that allow the user to pick which topics
should be further split.

• Inclusion of topic evaluation, annotation, vi-
sualization, and curation tools aiming for the
usage of domain experts, which are common
and independent of the training algorithm.

ITMT has been published under a permissive
MIT license in the GitHub Project https://
github.com/IntelCompH2020/topicmodeler.

2 System overview
ITMT consists both of a PyQT6-based graphical
user interface (GUI) as the front-end and a back-end
service supporting all the operations that need to
be carried out as a response to user interactions.

The visualization itself and the actual training and
optimization of the models are completely decou-
pled. The state management is performed on the
back-end side, and it is sustained by the use of
external folders given as input to the application, as
described in Section 2.1. This provides the ITMT
with both persistence and portability capabilities,
as all structures (training datasets, models, etc.)
created during the application’s execution can be
accessed and modified at a later time.

2.1 Input requirements
For the system to work, three input folders must
be provided, namely 1) a project folder in which
the application’s output will be saved; 2) a source
folder containing the datasets; 3) a wordlists folder
to harbor the wordlists (i.e., lists created by the user
outside the ITMT and the ones generated during
the application’s execution). For the time being,
the datasets available in the source folder must be
given in parquet format, and contain at least the raw
version of the texts to be used for training, and, for
some models, their contextualized embeddings.

Provided the three inputs, the project folder is
set up with a fixed structure composed of 1) a
configuration file with all the specifications and
descriptions of variables implied in the ITMT; 2) a
folder for the training datasets, and 3) a folder for
the trained topic models.

2.2 The graphical user interface
So as to offer the distinct ITMT utilities in a user-
friendly manner, the GUI is composed of four main
subwindows, each of them relating to one of the
functionalities offered by the application, leading
the user through the different steps that must be
followed for the creation of topic models; and one
additional subwindow serving as a welcome page.
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Figure 1: Wordlist management and Model management ITMT’s subwindows. Left: Available wordlists and their
information are listed, and the user can access their content by clicking on a wordlist’s associated row; also, the
user can access the menus for editing and creating a new wordlist, or delete any of them. Right: Available models
(level-1 and level-2) are hierarchically listed; by clicking on any, the model’s information, topical description, and
metrics are displayed; windows for curation and training of submodels can be accessed from here.

In the following, we offer a summarized descrip-
tion of each of these subwindows, and for more
details, the demo video available here3 can be con-
sulted.

Welcome page. It allows the selection of the
project/source/wordlists folders through either the
user’s file system or a list of recently used fold-
ers and provides a shortcut and description to all
functionalities.

Corpus management. It is composed of two views,
each of them serving a different purpose: 1) visual-
izing and operating with the available local datasets
(obtained from the source folder) and 2) visualizing
and operating with the user-created training datasets.
From 1) a training dataset can be created through a
new window and from 2) the preprocessing + topic
modeling training windows can be accessed.

Wordlist management. It supports the listing, cre-
ation, edition and deletion of ad-hoc word lists to in-
corporate information collected by domain experts
(e.g., stopwords, equivalent terms or acronyms,
etc.).

Model management. It assists the models’ man-
agement functionalities (listing, copying, renaming,
and deletion), as well as the visualization of the
models’ information and statistics. Also, a thematic
analysis with different levels of resolution through
the construction of second-level topic models can be
pursued from here, and the curation, visualization
and evaluation tools can be accessed.

Settings. It permits the user to configure all the
settings available in the configuration file.

3https://youtu.be/e0YDsnnNHto

2.3 ITMT users’ workflows
With the ITMT’s subwindow division, we aim at
guiding the user through the steps that are necessary
for the procurement of high-quality models with
interpretable topics, and as aligned as possible to
the needs of the expert orchestrating the creation.
To do so, we recommend following the succeeding
five-stage process, summarized in Figure 2. Note
that the tool itself does not impose the execution
of this workflow, but it is the user who should be
conscious of it.

Figure 2: ITMT recommended workflow.

1. Generation of a training dataset. By utiliz-
ing the documents of one of the local datasets
provided in the source folder, or the concatena-
tion of several of them, the user can construct
a training corpus through the Corpus manage-
ment subwindow.

2. Procurement of a representative vocabulary
for the training corpus. After the selection
of the just created training dataset, its prepro-
cessing and the creation of an initial auxiliary
model with a moderate number of topics (e.g.,
30-40 topics) through the preprocessing and
training windows should be approached. Hav-
ing the model constructed, the user benefits
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from some topic evaluation and curation tools
to clean the vocabulary as follows:

• Through the visual and manual inspec-
tion of the model, garbage topics can
be identified. This allows the detection
of uninformative terms for the corpus,
which should be marked as stopwords.

• Terms that appear in several topics of
varied nature should also be marked as
stopwords.

• Equivalent terms coming from lemmati-
zation errors, acronyms, and synonyms
should be marked to be mapped to a com-
mon structure.

Based on the stopwords and equivalences de-
tected, corresponding wordlists for filtering
each of the latter can be created through the
Wordlist management subwindow, which can
be used for performing a new preprocessing
of the training corpus. This process can be re-
peated any number of times until an adequate
vocabulary for the dataset is obtained.

3. Topic modeling training. Having a repre-
sentative vocabulary, the final training should
be pursued. To obtain an easily interpretable
model, slightly overestimating the number of
training topics is a good practice.

4. Topic modeling evaluation. It could be ad-
vantageous for the user to train several models
and then pick the one with the best perfor-
mance metrics.

5. Models curation. Finally, the usage of cu-
ration tools is recommended for the final ad-
justment of the selected model. E.g., similar
topics could be fused into a unique one or
garbage topics removed; alternatively, the user
can observe the presence of too broad topics,
for which a level-2 exploration through the
HTM techniques may be of use, etc.

3 Software components

As we have covered in the former section, the
construction of a topic model is a procedure that
requires the sequential execution of various tasks,
each of them managed by a different component of
the topic modeling service underlying the GUI. We
present in this section each of these components.

3.1 Preprocessing pipeline
This section describes the tasks carried out by the
ITMT’s preprocessing pipeline. It is important to
highlight it is not a complete NLP pipeline but only
provides additional cleaning tasks usually recom-
mended to obtain higher-quality topic models.

The transformations to which the documents
inputted into the pipeline are subjected are based
on a set of settings selected ad-hoc by the user,
which includes the wordlists to be used for the
vocabulary cleaning (i.e., steps 1 and 2 described
below) and the parameters implied in steps 3 and 4
(e.g., vocabulary size, etc.).

1. Removal of additional stopwords which,
while having meaning to a sentence, lack se-
mantic interest for the dataset under analysis.

2. Word replacements by other equivalent ones
so that they are treated as a single term during
topic modeling.

3. Filtering of short documents, as they lack
enough information for a robust estimation of
their thematic composition.

4. Vocabulary construction by removing terms
with a too high or too low probability of ap-
pearance in the corpus, and restricting the
maximum vocabulary size.

Figure 3: Illustration of the operation of the components
in the ITMT preprocessing pipeline.

The output of the processing pipeline is there-
fore a subset of the input documents (those with
sufficient length) in BoW format (besides its em-
beddings, in case the topic modeling algorithm in
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use requires them). The complete procedure has
been illustrated in Figure 3 for a concrete example.

The tool includes two different implementations
that allow high parallelization of the processes just
described. The first one is based on Spark, so the
execution can be easily distributed among the nodes
of a Spark cluster if such a cluster is available. If the
latter condition cannot be met, the parallelization
is achieved through Dask.

3.2 Topic modeling technologies
This section describes the topic modeling tech-
nologies included in the toolbox so far. All the
algorithms are provided with default parameters
as presented in their original works, but can be
customized by the user for each specific training.

Mallet (McCallum, 2002) is a popular Java library
with a highly efficient parallelizable implementation
of LDA (Blei et al., 2003) based on collapsed Gibbs
sampling known for providing good performance
in terms of topic coherence and scalability. It puts
the available resources to good use leading to fast
training due to its multi-threading capabilities.

Spark-LDA Spark incorporates a machine learn-
ing library, MLLIB (Xiangrui Meng, et al., 2016)
with two LDA implementations, both of them inte-
grated into the ITMT: a fast online method based
on Variational Bayes and another based on an
expectation-maximization algorithm. Spark-LDA
is suitable for fast training using horizontal scaling,
but requires the use of a Spark cluster.

Neural Topic Models Bayesian-based topic mod-
els (BTMs) have been useful for text analysis
for almost two decades, but neural topic models
(NTMs) have gained research interest in the last
years for their performance and flexibility. ITMT
evaluates three representative NTM techniques, Au-
toencoded Variational Inference for Topic Mod-
els (AVITM)-based implementation of LDA and
ProdLDA (Product-of-Experts LDA), both pro-
posed in Srivastava and Sutton (2017); and Con-
textualized Topic Models (Bianchi et al., 2021a,b),
against classical approaches for performance com-
parison.

Second-level hierarchical topic models Flat topic
models like the ones presented above do not permit
a topical analysis with the degree of granularity
sometimes required by domain experts. In this line,
we have included in the ITMT two novel implemen-
tations of hierarchical topic models (HTMs) that

lack complicated implementations like most state-
of-the-art HTMs, thus making it straightforward to
integrate the knowledge of domain experts in the
model building. Concretely, the integrated models
are HTM with word selection (HTM-WS) and HTM
with document selection (HTM-DS), which follow
a three-step process: 1) level-1 topic modeling
and expansion topic selection; 2) level-2 model’s
synthetic training corpus construction by either
keeping the words each level-1 corpus’s document
assigned to the topic selected for expansion (HTM-
WS) or those documents with a proportion of the
expansion topic larger than a customized threshold
(HTM-DS); 3) training of this corpus to generated
the level-2 model.

3.3 User-oriented tools
We present in this section the topic modeling user-
oriented tools integrated into the ITMT.

Evaluation tools. The tools currently available
are a set of global topics statistics and metrics:

• Topics’ relative size in the corpus.

• Topics’ chemical description with a penalty
for the most common terms, instead of the
traditional way of presenting the words in
descending order of appearance frequency.

• Number of active documents (i.e., number
of documents in which each topic is present),
which helps distinguish between “vertical” and
“horizontal” topics, i.e., topics that are specific
to a limited number of documents vs topics
that are shared among most documents.

• Entropy of the model, which gives an idea of
whether a topic is characterized by a reduced
number of terms or by a broad set (each of
them in a smaller proportion).

• Coherence metrics, to provide insight into the
degree of cohesion of the high probability
terms for a given topic. It can be used as an
indicator to help the user decide which topics
are good candidates to be further split.

Visualization and annotation tools. pyLDAvis
graphs (Sievert and Shirley, 2014) are generated
for each trained model and embedded into the
ITMT to ease the interpretation of the topics. To
improve identification, the ITMT also supports the
automatic labeling of topics and their posterior
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modification through the user’s manual labeling.
For the automatic topic labeling system itself, i.e.,
the scheme that assigns to each collection of words
characterizing one of the topics in the model a
specific label from a customizable list of feasible
terms, a zero-shot-classifier is used.

Curation tools. Aiming to improve the quality of
the final model, the ITMT offers:

• Suggestions of similar topics, in the sense they
co-occur with relative frequency, or the words
characterizing them are the same.

• Fusion of topics (e.g., too similar topics) se-
lected by the user, guaranteeing the probabilis-
tic feasibility of the model.

• Sorting the topics of the model according to
size, by placing the largest topics first.

• Topic deletion, which is useful to eliminate
topics of little interest from the model.

• Topic model reset, allowing the user to discard
all changes applied after training.

4 Existing frameworks
Probably the most widely used topic modeling
frameworks are Gensim (Rehurek and Sojka, 2010)
and Java-based package Mallet (McCallum, 2002),
which include implementations of a handful of
popular BTMs. They also provide pre-processing
pipelines, hyper-parameters optimization, and the
calculation of some coherence metrics. In the same
direction, the Stanford TMT (Daniel Ramage, et al.,
2009) is a set of topic modeling tools, including,
inter alia, features such as the training of BTMs,
the selection of parameters via a data-driven pro-
cess, and the manipulation of texts from different
spreadsheets.

Also released as a Java framework, STTM (Qiang
et al., 2018) focuses on the integration of short text
topic modeling algorithms, but it includes as well
some long-text implementations and evaluation met-
rics. In Di Jiang, et al. (2021) the authors proposed
a configurable framework named Familia that per-
forms automatic parameter inference for a variety
of topic models and supports the design of new
topic models to best suit specific problems at hand.
Aiming to bring additive regularization for topic
modeling (ARTM) Vorontsov (2014); Kochedykov
et al. (2017) accessible for the general public, Vic-
tor Bulatov, et al. (2020) proposed TopicNet, a

Python module including a modular approach to
topic model training and several visualization tech-
niques, as well as semi-automated model selection
and support for user-defined goal metrics.

Other state-of-the-art frameworks include To-
ModAPI (Lisena et al., 2020), a python-based API
for the training, inference, and evaluation of differ-
ent topic models; and OCTIS (Silvia Terragni, et
al., 2021), also a Python-based framework + dash-
board for the training of topic models, which addi-
tionally supports its analysis and comparison over
several datasets and evaluation metrics, besides a
bayesian-based hyperparameters optimization strat-
egy. Lastly, BigML is a general tool for Machine
Learning, that incorporates some Topic Modeling
functionalities4, including an optimized implemen-
tation of LDA for any text in seven languages, with
preprocessing, training, inference, and visualization
of models in a user-friendly dashboard, as well as
the possibility of creating, configuring, and updat-
ing topic models programmatically via the BigML
API and bindings.

Nonetheless, from the latter, only ToModAPI
and OCTIS support the training of NTMs. More-
over, none of them allow the actual incorporation
of knowledge expertise into the model building,
nor allow for a thematic analysis with different
levels of resolution. Hence, ITMT excels as an
expert-in-the-loop oriented tool for the training at
different resolution levels, curation, evaluation, and
visualization of both BTMs and NTMs.

5 Conclusions
In this paper, we have presented IntelComp’s Inter-
active Topic Model Trainer (ITMT), a Python-based
tool that includes implementations of several state-
of-the-art topic modeling algorithms orientated
towards the usage of domain experts and a novelty
implementation of second-level hierarchical topic
models for granularity exploration. Moreover, the
framework is provided with a set of tools for the
evaluation, visualization, annotation, and curation
of topic models, and a preprocessing pipeline.

For future work, we are active in offering each
of the ITMT’s components as a Docker container
to transform the GUI into a web service.
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Abstract

In this system demonstration, we seek to
streamline the process of reviewing financial
statements and provide insightful information
for practitioners. We develop FISH, an inter-
active system that extracts and highlights cru-
cial textual signals from financial statements
efficiently and precisely. To achieve our goal,
we integrate pre-trained BERT representations
and a fine-tuned BERT highlighting model
with a newly-proposed two-stage classify-then-
highlight pipeline. We also conduct the human
evaluation, showing FISH can provide accurate
financial signals. FISH overcomes the limita-
tions of existing research and more importantly
benefits both academics and practitioners in fi-
nance as they can leverage state-of-the-art con-
textualized language models with their newly
gained insights. The system is available online
at https://fish-web-fish.de.r.appspot.
com/, and a short video for introduction is at
https://youtu.be/ZbvZQ09i6aw.

1 Introduction

Financial statements document the business activi-
ties and financial performance of a company. For
example, the 10-K fillings required by SEC1 are
regulatory documents required of all public compa-
nies and are typically composed of several sections
each. Considerable time and human resources are
needed to digest such long and complicated texts.
Accordingly, efficient analysis of complex and con-
densed documents is critical for financial practition-
ers. In this work, we introduce FISH—a Financial
Interactive System for Signal Highlighting—as an
effective and efficient system to review financial
reports.

One common scenario in practice is when a com-
pany’s report has just been released: financial pro-
fessionals such as financial analysts and accoun-
tants must skim through the report and quickly pre-

*These authors contributed equally to this work.
1Securities and Exchange Commission

2016
(Target)

Our most critical accounting policies relate to rev-
enue recognition, inventory, pension and other post-
retirement benefit costs, goodwill, other intangible
assets and long-lived assets and income taxes.

2015
(Reference)

Our most critical accounting policies relate to rev-
enue recognition, inventory, pension and other post-
retirement benefit costs, goodwill, other intangible
assets and long-lived assets and income taxes.

Table 1: A pair of highly similar segments from ITEM 7
in the financial 10-K reports of the Estée Lauder Com-
panies Inc. in 2016.

pare a preliminary summary. However, some parts
of the report are minor or even trivial due to the
established structure formulated by regulators or
similar writing patterns from the same accounting
firms. That is, there are often only a few sentences
in the report that need to be carefully reviewed and
analyzed. Although many studies leverage textual
data in financial reports to provide soft evidence
to support financial analysis (Liu et al., 2018; Du
et al., 2019; Juan et al., 2021), most existing sys-
tems or studies still lack interactivity and do not
directly provide off-the-shelf signals; such solu-
tions are thereby considered impractical for many
real-world usage scenarios.

We first recognize two challenges in the liter-
ature concerning textual information in long and
complicated financial reports: (1) Many parts of
a financial report are minor or even trivial; (2) It
is difficult to utilize coarse information in empiri-
cal applications. To address these challenges, we
propose a multi-stage financial analysis pipeline
composed of two modules: a segment classifier
and a segment highlighter.

To tackle the first one, we leverage the year-to-
year structure of the annually released financial
statements of a company. For example, as shown
in Table 1, we observe that the target and refer-
ence segments appear identical, showing that these
texts provide rather minor information and can be
ignored for further analyses. For this part, we inte-
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grate a segment classifier that calculates the simi-
larities for text pairs between years (i.e., the target
year and the year previous to it). Given such a
year-to-year similarity comparison, all segments in
the report for a target year are classified as one of
three types: (1) new segments, (2) highly similar
segments, and (3) revised segments.

For the second challenge, the segment high-
lighter module provides straightforward and fine-
grained signals in segments identified as the third
type—revised segments—which are considered
those revised from segments in the reports of the
reference year. Specifically, this module highlights
words in such segments by predicting the word
importance based on the semantic context of the fi-
nancial report and the differences between the two
segments in a year-to-year pair. To accomplish this,
we adopt contextualized representations from the
pre-trained language model (Devlin et al., 2019)
and further fine-tune the proposed module with a
supervised token classification task.

In this demonstration, we showcase FISH, an
interactive system to help financial professionals
effectively and efficiently skim through financial
reports in a straightforward manner. FISH is tech-
nically supported by the proposed two-module
pipeline. In particular, we use financial 10-K re-
ports collected by Loughran and McDonald (2011)
to demonstrate our idea. FISH better visualizes
the segment classifications in a target-year report
and provides fine-grained information highlighting
the essential information for the revised segments
for financial professionals to review and analyze
carefully.

2 Background and Related Work

Traditionally, research on financial statements fo-
cuses on quantitative data such as stock prices or
other financial metrics. Textual information such
as operation calls and forward-looking statements
in reports are rarely carefully considered in con-
ventional finance literature. Pioneering studies in
both finance and computer science literature first
adopted statistical or machine learning methods
to identify crucial information in text data in fi-
nancial reports. For example, Loughran and Mc-
Donald (2011) compile a large amount of 10-K
reports and construct a finance-specific sentiment
lexicon. Moreover, Jegadeesh and Wu (2013); Tsai
and Wang (2017) leverage the sentiment signals in
textual data to investigate relations between quan-

titative and textual information. More recently,
distributed representation techniques have been in-
troduced to analyze financial reports (Tsai et al.,
2016; Rekabsaz et al., 2017; Lin et al., 2021).

Recent advancements in natural language pro-
cessing (NLP) techniques have made it possible to
develop useful information systems that can ana-
lyze textual information in financial reports. For
example, Liu et al. (2018) leverage variants of pre-
trained word embedding models to identify finan-
cial risks and cues to support financial analysis.
Du et al. (2019) integrate multiple representations
of 10-K reports and further infuse financial senti-
ment aspects into word and sentence representa-
tions. HIVE (Juan et al., 2021) is an interactive
system utilizing an attention mechanism to explore
insights from financial reports. However, existing
systems do not effectively address the two chal-
lenges mentioned earlier, nor do they utilize state-
of-the-art and dominant deep contextualized lan-
guage models such as BERT (Devlin et al., 2019)
and its variants as their back-end engine.

3 Financial Data and Pre-processing

The Form 10-K Financial Statements. we used
the Form 10-K filings collected from the Software
Repository for Accounting and Finance,2 where
a Form 10-K is an annual report required by the
U.S. SEC. Specifically, we used the 10-K filings
ranging from 2011 to 2018, which comprise 63,336
filings from 12,960 public companies. To make the
best use of the year-to-year information, we dis-
carded companies for which the reports in some
years are missing during the period; 3,849 compa-
nies (3,849×8 = 30,792 reports in total) remained
after this filtering. Note that in this study, we ran-
domly sample 200 companies from the 3,849 com-
panies with their annual reports for demonstration
purpose.

Coherent Text Segments. Every 10-K annual
report contains 15 schedules (e.g., Items 1, 1A,
1B, 2, 3, . . . , 7, 7A, . . . , 15).3 Each item sec-
tion in a report is typically composed of multiple
paragraphs, to which we first applied the SpaCy
API4 to divide each paragraph into sentences as
our smallest unit of text. Moreover, as coherent
text segments have been claimed to be beneficial
to some downstream tasks such as information re-

2https://sraf.nd.edu/sec-edgar-data/
3https://en.wikipedia.org/wiki/Form_10-K
4Sentencizer: https://spacy.io/api/sentencizer
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#Segments/Report #Tokens/Segment

Sentence 1,743 36
Segment* 677 94
Paragraph 474 134

Table 2: Statistics of pre-processed reports of 200 sam-
pled companies. The two columns report the average
numbers of segments in a report and the average num-
bers of tokens in a sentence/segment*/paragraph, respec-
tively, where * indicates the documents are segmented
by the cross-segment BERT.

trieval and other NLP applications (Koshorek et al.,
2018; Shtekh et al., 2018), we further integrated
the cross-segment BERT (Lukasik et al., 2020), a
state-of-the-art text segmentation model, for the
final pre-processing. Note that a segment may con-
tain more than one sentence and usually reflects the
proper length for the BERT-based models; thus, in
our system, we take “segments” to be a basic unit
as the input of the two proposed modules for classi-
fication and fine-grained highlighting. Table 2 is an
overview of pre-processed segments with different
levels of granularity and other data statistics.

4 The Multi-stage Pipeline

The proposed multi-stage pipeline is composed of
the segment classifier and the segment highlighter
modules, both of which leverage contextualized
text representations from BERT-based models (De-
vlin et al., 2019; Reimers and Gurevych, 2019).
With this pipeline we seek to examine year-to-year
signals from the 10-K filings of each given com-
pany. Specifically, our interactive system targets
each company’s 10-K filings for a certain year;
the company’s report from the previous year is re-
garded as the reference document (see Table 1).

4.1 Segment Classifier

To leverage the year-to-year structure of a com-
pany’s 10-K filing, we first denote the set of text
segments from a company’s year-t report as St =
{s1t , s2t , . . . , snt }, where n denotes the number of
segments in the reports. As St is a target-year
report, St−1 is treated as a reference document. Ac-
cordingly, we perform year-to-year text ranking by
treating segments in the target report sit ∈ St as
our queries and segments in the reference report
sjt−1 ∈ St−1 as our references. In particular, the
segment classifier calculates the similarity of each

pair of target-reference text segments as

ϕ(sit, s
j
t−1),

where ϕ is a proximity function. In this study,
we adopt two approaches for similarity calcula-
tion to account for both syntactic and semantic
similarities. First, we use ROUGE-2 to measure
the syntactic similarity, capturing bi-gram patterns
in financial sentences (Lin, 2004). For semantic
similarity, we utilize the fine-tuned SentenceBERT
model (Reimers and Gurevych, 2019) to calculate
the cosine similarity of each target-reference pair.

In this demonstration, each target text segment
sit ∈ St is classified into different groups by adopt-
ing the following heuristic rules with pre-defined
thresholds τ and ϵ:5

sit type =




1 if max({ϕRouge(s
i
t, s

j
t−1)|sjt−1 ∈ St−1}) < τ

2 if max({ϕRouge(s
i
t, s

j
t−1)|sjt−1 ∈ St−1}) ≥ τ

AND ϕBERT(s
i
t, s

j∗
t−1) ≥ ϵ,

3 if max({ϕRouge(s
i
t, s

j
t−1)|sjt−1 ∈ St−1}) ≥ τ

AND ϕBERT(s
i
t, s

j∗
t−1) < ϵ,

(1)

where j∗ = argmaxj({ϕRouge(s
i
t, s

j
t−1)|sjt−1 ∈

St−1}) denotes the segment in the reference doc-
ument with the maximum ϕRouge(s

i
t, ·) similarity.

Thus, a segment in the target report can be catego-
rized according to the above three types:

1. New segments are new text segments which
are syntactically distant from all of their cor-
responding relevant reference text segments
(as shown in Table 3).

2. Highly similar segments are text segments
possessing syntactic structures and semantic
meanings that closely resemble those of the
reference segments (as shown in Table 1).

3. Revised segments include segments that are
syntactically similar to the reference segments
but differ semantically in meaning. In practice,
as financial professionals shall pay greater at-
tention to these segments, we here adopt fur-
ther fine-grained highlighting for these seg-
ments in our second-stage module (as shown
in Table 3).

Note that we here use a simple yet intuitive pro-
cedure to classify segments in target reports for

5We set threshold τ as 0.1, resulting in approximately 10%
of new segments in a report; the threshold ϵ is set to 0.99,
resulting in discarding approximately 50% of highly similar
segments in a report.
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Figure 1: The main system interface of FISH. The left and right panels indicate the 10-K filings of a company in the
target and reference years, respectively.

demonstration purposes; nevertheless, the classifi-
cation can be much more complicated or involve
professional adjustments of practitioners.

4.2 Segment Highlighter

The first-stage module narrows the considerations
of what constitutes a (potentially) important seg-
ment. In the second module, we further focus on
the third type of segments—the revised segments—
and provide fine-grained information on these to
enhance the readability of the documents. In par-
ticular, we seek to provide fine-grained (i.e., word-
level) signals on such segments for practitioners,
which in our demonstration of the interactive sys-
tem is the basis for the highlighted words.

To build the highlighting model, we formulate
the underlying word importance prediction prob-
lem as a token-level binary classification task by
adding a classification linear layer on top of BERT.
We further fine-tune the model using the e-SNLI
dataset (Camburu et al., 2018), which was com-
piled for a natural language inference classification
task that determines the entailment or contradiction
relation for a given pair of sentences with human-
annotated highlighted words. Fine-tuning takes
around two hours on a V100 GPU, with less than
20GB of GPU memory usage.

At the inference stage, for each syntactically
similar but semantically dissimilar pair (srt , s

j∗
t−1),

where srt is a revised segment, we construct the
contextualized representation with BERT (Devlin

et al., 2019) with the two special tokens (i.e., [CLS]
and [SEP]) as:

hrj∗ = BERT
(
[CLS]sj

∗
t−1[SEP]s

r
t

)
. (2)

Recall that in Eq. (2), sj
∗
t−1 denotes the most syntac-

tically similar segment in the reference year against
srt , but the cosine similarity between sj

∗
t−1 and srt is

rather low (see Eq. (1)). In this demonstration, we
consider that word-level signals for such revised
segments (syntactically similar but semantic dis-
similar to the reference segments) can help users ex-
amining these segments easily and deeply. The im-
portance probability of each word w in each revised
segment srt is then P (w|srt ; sj

∗
t−1) = F (hrj∗ , w),

where F (·, ·) denotes the fine-tuned model using
the e-SNLI dataset; these probabilities are later
used to indicate the word importance in our system
using highlighting.

5 Demonstration

Figure 1 shows the main interactive interface of
the proposed FISH, a web-based interactive anal-
ysis system for financial reports. For a better user
experience, we lay out a concise system interface
with user-friendly shortcuts to meet the needs of
financial practitioners. In addition, we use both
coarse-grained (segment-level) and fine-grained
(word-level) signal highlighting features and in-
teractive functions based on the proposed pipeline.
FISH thereby facilitates more effective and efficient
reviewing of financial reports.
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Figure 2: Highlighting has been disabled for highly
similar segments; only new or revised segments remain
highlighted.

5.1 User-friendly System Interface

The system includes the content of all available
sections in the 10-K reports of the sampled 200
companies. As shown in (1) of Fig. 1, users can
also scroll through drop-down menus at the top
of the page to select the company and target year.
Additionally, the ITEM navigation buttons on the
left sidebar help users quickly locate the first line
of the target ITEM, illustrated in (4) of the Fig. 1.

For year-to-year analysis, we adopt a two-panel
interface (see (3) in Fig. 1) to make it easy for users
to compare reports between consecutive years on
the same screen. The left panel in the figure shows
the contents of a financial report for the target year,
and the right panel is regarded as the reference
document and thus features a lower opacity. We
also provide arrows on both sides of the screen
by which to switch back and forth between target
years, as shown in (6) of the Fig. 1.

5.2 Interactive Signal Highlighting

As described in Section 4, the proposed classify-
then-highlight pipeline first classifies each segment
in the target report as one of three types according
to Eq. (1): new, highly similar, or revised. Each
segment is highlighted in a color reflecting its type,
as illustrated in the content panel of the figure. The
three color indicator buttons on the right top of the
page (shown in (2) of Fig. 1) allow users to en-
able/disable highlighting for each type of segment,
as demonstrated in Fig. 2.

In addition to segment-level highlighting, we
provide fine-grained information for revised seg-
ments. Recall that each revised segment srt in the
report of interest (displayed in the left panel) is fur-

Figure 3: Segment- and word-level highlighting

ther passed to the segment highlighter along with
the most syntactical similar segment sj

∗
t−1 in the

reference document (see the condition of the third
type in Eq. (1) and the description in Section 4.2).
The embedding of the (srt , s

j∗
t−1) segment pair in

Eq. (2) is then fed to the fine-tuned model F (·, ·)
to estimate the word importance of each word in srt .
This importance is indicated with different color
shades when users hover over the revised segments.
As illustrated in Fig. 3, the words decreased and
65.1% are darker than others, implying that these
two words are judged to be more crucial than other
words in the same segment.

Note that we additionally provide a segment
alignment feature as shown in (5) of Fig. 1. This
horizontally aligns the target segment sit with the
most syntactical similar segment sj

∗
t−1 from the

reference report document for the highly similar
and revised segments, where the right panel au-
tomatically redirects to the corresponding aligned
segment in the reference document when the user
clicks on such segments in the left panel.

6 Empirical Evaluation

In this section, we report real-world cases that FISH
captured and evaluate FISH’s highlighting results
with human judgement.

Case studies We take the financial report of Es-
tée Lauder Companies Inc in 2016 for example.
Table 3 provides an example of new segments and
revised segments along with their reference seg-
ments. Recall that the new segments capture con-
tent that is not syntactically similar to—or is less
syntactically similar to—content from the previ-
ous year’s document. As shown in the upper block
in Table 3, the target segment (left) is identified
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Estee Lauder Cos. (2016) – target segment Estee Lauder Cos. (2015) – reference segment

New

On May 3, 2016, we announced a multi-year initiative ( Leading
Beauty Forward ) to build on our strengths and better leverage
our cost structure to free resources for investment to continue our
growth momentum.

We also plan to continue to build upon and leverage our history
of outstanding creativity, innovation and entrepreneurship in high
quality products and services and engaging communications.

Revised
Based on this material weakness, the Company s management
has concluded that, as of June 30, 2016, the Company s internal
control over financial reporting was not effective...

Based on this assessment, the Company s management has con-
cluded that, as of June 30, 2015, the Company s internal control
over financial reporting was effective...

Table 3: The cases of new and revised segment (left) with their corresponding reference segments sj∗t−1 (right).
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Figure 4: The histogram of the Pearson correlation co-
efficients r between human annotations and the outputs
of our system. The red line is the average of all scores.

as a new segment by FISH as its corresponding
most syntactically similar segment in the previous
reference report is completely different. Indeed,
with this example, we observe that the company
is disclosing a new operational strategy in 2016,
which is brand-new information compared to the
previous year’s report. As for the revised segments,
which sometimes conceal important information
such as changed income, expenses or management
decisions such as new partnerships. In the lower
block in Table 3, we observe what seems at first
glance to be minor differences between reports in
two consecutive years; however, the meanings be-
hind these changes carry important financial signals
(e.g. the highlighted words weakness, was not ef-
fective). With the highlighted words, we can then
further attest the empirical effectiveness of these
highlighted words.

Human Evaluation on Revised segments To
verify the effectiveness of FISH’s word-level high-
lighting on revised segments, we hire three asses-
sors as potential users to select important words
from the given segments. Specifically, the anno-
tators should first identify the importance of each
words-in-context of the revised segments and then
label them as 1 or 0. As a result, for each sequence

of words [w1, w2, ...] in srt , we calculate the Pear-
son correlation coefficient (denoted as Pearson’s r,
hereafter) between the human annotations6 and the
probabilities of word importance predicted by our
system.

Our empirical evaluation data is composed
of 200 revised segments randomly sampled from
all revised segments classified by our system. As
shown in Figure 4, most cases are with high values
of Pearson’s r, and only a few cases are with val-
ues lower than 0.5. Overall, FISH achieves a high
average of 0.744 Pearson’s r (the red vertical line
in Figure 4).

7 Conclusion

We propose FISH, a financial statement signal-
highlighting system integrated with a two-stage
pipeline architecture, including a segment classifier
and a segment highlighter. Both utilize BERT con-
textualized representations to strengthen the seman-
tic comprehension of texts. Notably, our pipeline
leverages the relationship of text segments between
the target year and the previous year for automatic
and interactive signal highlighting for financial pro-
fessionals. The segment classifier first narrows
the focus to new or revised segments instead of
the entire report. As for the revised segments, we
integrate a word-level highlighter to provide fine-
grained financial signals via transfer learning on
an external dataset. In addition, our human evalua-
tion also suggests that FISH can provide effective
highlighting results for empirical applications. To
the best of our knowledge, FISH is the first inter-
active system not only made for practical financial
applications but also leverages state-of-the-art con-
textualized language models, which shall greatly
benefit both academics and finance practitioners to
yield new insights.

6We take the average of three annotations as the final word
importance (i.e., the ground truth) to avoid the personal sub-
jective opinions.
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Abstract

The development of poetry generation system
mainly focuses on enhancing the capacity of
generation model. However, the demands of
customization and polishing are generally ig-
nored, which highly reduces the scope of ap-
plication. In this work, we present Yu Sheng,
a web-based poetry generation system that is
featured a human-in-loop generation frame-
work, providing various customization options
for users with different backgrounds to engage
in the process of poetry composition. To this
end, we propose two methods and train the
models that can perform constrained gener-
ation and fine-grained polishing. The auto-
matic and human evaluation results show that
our system has a strong ability to generate
and polish poetry compared to other vanilla
models. Our system is publicly accessible at:
https://yusheng.cis.um.edu.mo.1

1 Introduction

Classical Chinese poetry is written with specific
rules such as historical period, phonology, etc., at-
tracting researchers from different fields to study
its writing mechanism. Apart from the in-depth
analysis of poetry writing process, the automatic
generation of classical Chinese poetry is an emerg-
ing research task of open-ended text generation.

Several research lines of poetry generation has
been investigated in the past few years such as com-
binatory process (Queneau, 1961), template-based
method (Gervás, 2001), machine learning (Levy,
2001), and deep learning (Yi et al., 2018). Recently,
the pre-trained language model is utilized to cap-
ture poetry prior knowledge (Tian et al., 2021) and
build the downstream generation models. Previous
research focuses on building the generation model
with an end-to-end pipeline, polishing (Yan, 2016)
is an essential part of poetry generation that can

∗Corresponding author
1Our demonstration video is available at:

https://vimeo.com/776525586.

be helpful to reduce linguistic errors and enhance
the aesthetic. Although there are numerous online
systems that can generate classical Chinese poetry
based on the keywords,234 few works integrate the
polishing function into the generation system. Ji-
uge5 allows the user to make the adjustment by pro-
viding candidate words but is limited to word-level
replacements, which is not flexible in adjusting the
poetry-level polishing. Moreover, the design of
polishing services should be user-oriented. The
current system (Zhipeng et al., 2019) allows users
to select the candidate words, but it is not friendly
for non-professional users due to their insufficient
background in poetry composition, which is also
limited for professional users to polish the results.

To alleviate the aforementioned problems, we
design and implement a human-in-loop classical
Chinese poetry generation system, Yu Sheng. Yu
Sheng not only supports the poetry generation with
diverse genres and constraints, but also provides
fine-grained polishing functions where the unsat-
isfactory parts can be refined with automatic ad-
justment. In order to build models that are capa-
ble to handle the above functions, we propose two
methods for constraint integration and poetry pol-
ishing. Specifically, the global attention mecha-
nism is proposed to integrate different kinds of
constraints. For building the polishing model, we
utilize the multi-task learning approach to train the
model with mask prediction and sentence recon-
struction tasks. Moreover, the data augmentation
techniques are also used to alleviate the scarcity of
task-specific data. Both automatic and human eval-
uation results have shown the effectiveness of our
proposed polishing-based generation model. By
deploying the model trained with the above meth-
ods, Yu Sheng is characterized by customizable

2https://www.aichpoem.net/#/shisanbai/ctcouplet
3http://moonbrewer.com/poem/
4https://tssc.sinaapp.com/
5http://jiuge.thunlp.org
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Keyword: 夏天

Modern Chinese: 夏天阳光很热烈

Imageries: 夏日 | 霞 | 烟

Word Amount: 3, 4, 5, 6, 7 ...

Sentence Amount: 2, 4, 6, 8, 10 ...

Level And Oblique Tones:平起偏格

Rhymes: 一东, 二冬, 三江, 四支

Masked Prediction

Sentence Reconstruction
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Constraint Verification
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Sentence Amount: 4
Level And Oblique Tones: 仄起偏格

Rhyme: 二冬
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Final Poem

Constrained Poetry

Generation Model

Draft Generation

Poetry Generation FrameworkIntention Processor

Topic

Constraint

Poem Lines:
炎天一夜风，万里碧云浓。
月出东山表，清光满太峰

Poetry Verification
Format Analysis

Constraint Alignment
User Import Poem OR

Figure 1: The overall architecture of system Yu Sheng. User input will be handled with an intention processor
before sending into the essential poetry generation framework. Note that not all the modules in the generation
framework are necessarily used before completing a composition.

generation and human-in-loop polishing, aiming to
further improve the generation quality and flexibil-
ity of classical Chinese poetry.

2 Methodology

The generation pipeline of Yu Sheng includes two
stages: poetry generation and poetry polishing. It
not only supports automatic poetry generation from
given information, but also accepts any existing
poems as input for polishing. In this section, we
first describe the proposed methods for building the
generation and polishing models and introduce the
data augmentation methods for compensating the
data used in supervised training.

2.1 Constrained Poetry Generation

Global Attention As a typical literacy genre with
predetermined features, poetry is designed, drafted,
and polished under the subtle influence of different
rigid features. These indispensable features not
only affect the structures and multi-level morphol-
ogy, but also the sentence semantics, and phonol-
ogy beauty. Hence, the algorithm of extracting and
integrating these features in different dimensions is
crucial to the whole process of poetry generation.
Global features of poetry include “Word Amount”,
“Sentence Amount”, “Level and Oblique Tones”,
and “Rhyme”. Apart from some features that can
be directly measured, we specifically build a rule-
based tool to extract other abstract features, such
as “Level and Oblique Tones” and “Rhyme”, by
using an ancient rhyming dictionary called Ping-
ShuiYun (Branner, 2006). Specifically, we leverage
the dictionary to annotate the tone of each word
in poetry dataset and then automatically predict

the rhyming condition determined by tone of end
word in each poem sentence. In this section, we
use Transformer-based architecture (Vaswani et al.,
2017) to illustrate the proposed method for gen-
eration and polishing task. To introduce all the
global features into the generation process as the
constraints, they are formulated as text input D and
encoded into the vectorized representation S with
the model embedding. Finally, the self-attention
mechanism is used to integrate these constraints,
which can be formally expressed as:

S = Dy ⊕Dj ⊕Dp ⊕Dr ⊕Di (1)

G = EMBED (S) (2)

C = SELF-ATT
(
GWQ,GWK ,GWV

)
(3)

where Dy,Dj ,Dp,Dr, and Di denote “Word
Amount”, “Sentence Amount”, “Level and Oblique
Tones”, “Rhyme”, and user input, respectively. The
constraints are interacted with the inputs by self-
attention calculation C = SELF-ATT(·), acting as
the global information to steer the generation of
each time step t. The generation model is opti-
mized by cross-entropy loss with constraints C as
follows:

Lgen = −
|ŷ|∑

t=1

log p (ŷt | C; θgen) (4)

where ŷ is the draft produced by the generation
model θgen.

2.2 Poem Polishing

The polishing model θpol iteratively optimizes the
generation draft y following the constraints C.

58



Mask Prediction Strategy Previous works use
the independent polishing model under practical
scenarios. Deng et al. (2020) propose a BERT-
based polishing scheme that highly relies on the
mask-prediction pre-training task. However, this
method generates the candidate words without con-
sidering original input and constraints. Li et al.
(2020) successfully introduce the input into the
polishing process through additional embedding
modules. But it is not efficient to design an ad-
ditional embedding module for newly introduced
constraints due to computational cost, nor to ig-
nore user input from the prior generation and only
conduct masked prediction tasks. To this end, we
design a polishing model that is capable to update
the specific word and reconstruct the entire po-
etry. Within decoding process of polishing task, the
model should provide word candidates predictions
w for mask position m and generate polished sen-
tence according to previous obtained poetry draft
ŷ and feature constraints C. For training the pol-
ishing model, a multi-task learning approach is
applied to jointly optimize the loss of mask pre-
diction and sentence reconstruction, which can be
formulated as:

Lmask = −
|m|∑

t=1

log p (wt | mt,C; θpol) (5)

Lrec = −
|y|∑

t=1

log p (yt | ŷt,C; θpol) (6)

where y is the ground truth. Lmask and Lrec are
the cross-entropy loss of mask-prediction task and
sentence reconstruction task, respectively. Finally,
the model is optimized by two kinds of loss:

L = Lmask + Lrec (7)

2.3 Data Augmentation
Generation Augmentation For constrained gen-
eration task, combining poetry data with all the
pre-determined constraints could limit the scope of
application. In this case, hard constraints would
restrict the diversity of model input, leading to lim-
ited customization choices in the deployment stage,
let alone the generation case without constraint.
Hence we propose a constraint-level masked-style
data augmentation method. It masks the constraints
with equal probabilities so that it can increase
the diversity of data with different sets of pre-
determined constraints. The model is forced to

learn to generate diverse candidates based on aug-
mented types of constraints, meanwhile, it also
supports more flexible customization of poetry gen-
eration.

Polishing Augmentation Since there is no la-
beled data for training the polishing model, a
pseudo dataset is built by masking the random to-
kens of ground truth text. To construct the masked
sentences, we set up the mask ratio as 0.5, resulting
in an equal probability for masked and unmasked
tokens. Due to the randomness of the masking op-
eration, the masked sentences will not cover all
polishing scenarios. Hence, we further quadruple
the polishing data for each poetry by masking the
tokens that are different from the original pseudo
data, covering a wider range of polishing requests.

2.4 Setup

We exploit GPT-2 (Radford et al., 2019) as our fun-
damental model and follow the pretrain-finetuning
paradigm to build the downstream generation and
polishing models. Our training corpus consists of
1,004,039 poems which are built based on open-
source data67. The amount of training data reaches
4,016,159 instances after data augmentation tech-
niques. For decoding settings, we employ Top-p
sampling method with p = 1, and the temperature
parameter t = 1.0 is applied to the softmax layer.

User

Constraint Setup

Substitutes 
Selection

Target Setup

User Input Automatic 
Refinement

Manual 
Replacement

Poem 
Generation

Static 
Polishing

Dynamic 
Polishing

Figure 2: Overview of system functionality.

3 Functionality Design

As shown in Figure 2, we specially design three
main functions for Yu Sheng system, meeting the

6https://github.com/Werneror/Poetry
7https://github.com/chinese-poetry/chinese-poetry
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Model Diversity (Distinct) ↑ F-Score ↑
Distinct-1 Distinct-2 Word Amount Sentence Amount Tones Rhyme

Transformer 1.10 14.39 13.84 2.10 3.38 33.25
+ Polish 1.39 23.10 45.20 30.60 99.96 25.67

GPT-2 2.42 44.62 76.18 86.96 99.76 68.53
+ Polish 2.45 44.67 75.98 86.00 99.56 67.51

+ Gen. Aug. 2.42 44.97 80.56 87.24 99.72 70.02
+ Polish Aug. 2.44 44.61 74.51 87.67 99.72 69.11
+ Both 2.44 45.02 79.76 86.52 99.64 69.42

Table 1: Automatic evaluation results of generated poems with same input and constraints. Overall, the polishing
model enhances the generation quality. “Gen.” and “Aug.” denote “generation” and “augmentation”, respectively.

user’s demand at different levels. As the fundamen-
tal function, the user can easily obtain poetry by
indicating expected features. As for people who
have advanced requirements of aesthetics, they can
pay more effort into poetry generation by using
two polishing modes for optimizing the generation
draft. The dynamic polishing provides the func-
tionality of poetry-level refinement. The user can
simply select the unsatisfactory words or sentences
as the target, and then the system will perform auto-
matic polishing for updating the chosen parts. If the
user wants to dive deeper and make subtle changes,
static polishing can recommend substitutes for the
unsatisfactory text, where the user can choose the
proper candidate and manually replace the corre-
sponding parts. Moreover, professional user can
import their own poetry work and obtain inspiration
from polishing candidates provided by Yu Sheng.
To facilitate polishing process, the system will pro-
vide explanatory information of each feature to user
for understanding the candidates. For improving
the inference speed in a practical environment, we
enable a inherit-based decoding trick for polishing
task, which significantly reduces response time by
preserving the unchanged tokens at each decoding
step. The whole generation pipeline makes up of
the aforementioned functions, and the specific use
cases of each function are introduced in Appendix.

4 Evaluation

4.1 Automatic Evaluation

4.1.1 Data and Metrics

Data 2,522 constraint-poem pairs are filtered out
from the original data as the test data, which is
independent of the training corpus. This test set is
passed to original vanilla Transformer and GPT-2

generation model to obtain initial poetry drafts and
then used as the input of the polishing model. To
simulate the users’ operation, we randomly choose
the polishing part of each poem.

Distinct is used to evaluate the diversity of gener-
ated poetry. It is calculated by dividing the number
of words by the number of unique words in a sen-
tence, which can be formulated as:

Distinct(n) =
Count(unique N -gram)

Count(word)
(8)

F-score Since our system focuses on generating
the poetry according to poetry-related constraints,
F-score is utilized to evaluate the model accuracy
and recall of constraint integration. We calculate
micro-F1 score to evaluate the integration of differ-
ent constraints due to large inter-class gap.

4.1.2 Results
The evaluation results are as shown in Table 1. In
general, GPT-2 is a stronger generation model com-
pared to vanilla Transformer. Hence, we choose
GPT-2 as a testbed to further verify the effective-
ness of different polishing strategies. Although all
metrics show that basic polishing model improves
the generation performance of vanilla Transformer,
original GPT-2 model cannot benefit from the basic
polishing model. The reason may be that the diffi-
culty of polishing increases with the improvement
of generation quality. Encouragingly, the polishing
model trained with augmentation data improves the
performance of most metrics, demonstrating the ef-
fectiveness of proposed augmentation methods.

Although the polishing model learns the diver-
sified polishing cases from the augmentation data,
both sentence reconstruction and mask prediction
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tasks cannot improve the generation diversity due
to their objective functions. Hence, the scores of
Distinct-1 and Distinct-2 are fluctuating for aug-
mentation models. But the proposed methods gain
stable improvement from the perspective of mor-
phology, phonology, and lexical-related factors.

Overall, our proposed polishing model can fur-
ther improve the quality of GPT-2 generation re-
sults by mending constraint errors with the afore-
mentioned augmentation strategies, which demon-
strates the effectiveness of proposed methodology.
Therefore, we can realize that the system is capable
to generate high-quality poetry together with flex-
ible customization. To prove the competitiveness
of our system, we also compare it with the existing
system in Section 4.2.

4.2 Human Evaluation
4.2.1 Data and Metrics
The goal of poetry generation and polishing is con-
forming to human preference. To better understand
the model’s behavior from human points of view
and evaluate the effectiveness of polishing, we con-
duct a human evaluation of the polished poetry.
Besides model evaluation, we provide system com-
parison regarding generated poems based on poetry
customization options that all systems support.

For each model and system, we randomly sam-
ple 60 poems from the generation results as evalua-
tion data. Then we invite native Chinese speakers
with poetry knowledge as evaluators to conduct
evaluation using four metrics: Poeticness, Fluency,
Meaning, and Coherency. Three evaluators are as-
signed to evaluate poems generated under different
models and another four evaluators are assigned to
conduct system comparison.

The rating criteria for each metric are listed be-
low:

• Poeticness (Poe.): Score the current poem
based on the sense of beauty: 0 (tedious), 1
(sense of beauty exists in partial sentence), 2
(all poem sentences contain a sense of beauty).

• Fluency (Flu.): Score the current poem based
on the phonology and fluency: 0 (phonology
crash), 1 (partial sentence is unreadable), 2
(all the sentences can be read fluently with
smooth phonology).

• Meaning (Mea.): Score the current poem
based on its relevance to the user intention:
0 (digress from the main subject), 1 (partial

Model Poe. Flu. Mea. Coh.

Transformer 0.88 0.87 0.43 0.63
+ Polish 0.62 0.52 0.55 0.50

GPT-2 1.27 0.82 0.55 0.50
+ Polish 1.12 0.82 1.13 0.77

+ Gen. Aug. 1.18 0.93 1.10 0.88
+ Polish Aug. 1.10 0.85 0.98 0.82
+ Both 1.30 1.02 1.20 1.08

Table 2: Human evaluation results of the poems gener-
ated by different models. By training the models with
augmentation data, the poems generated/polished by our
model are better than GPT-2 baseline. “Gen.” and “Aug.”
denote “generation” and “augmentation”, respectively.

System Poe. Flu. Mea. Coh.

Jiuge 1.40 1.25 1.15 1.17
Yu Sheng 1.62 1.53 1.55 1.62

Table 3: Human evaluation results of the poems gener-
ated by our system Yu Sheng and another system Jiuge.
The poems were generated by each system based on
poetry constraints that both systems are capable to cus-
tomize. Overall quality of the poems generated by Yu
Sheng is competitive with the other systems in terms of
each metric.

sentences are irrelevant), 2 (relevant to the
subject).

• Coherency (Coh.): Score the current poem
based on its coherency: 0 (all sentences are
independent), 1 (partial sentence does not fol-
low surrounding context), 2 (all the sentences
are coherent with the other context).

4.2.2 Results
The human evaluation results are as shown in Table
2. It shows that polished poems achieve the highest
score on poeticness, which supports the rationality
of high F-score in the automatic evaluation. In our
system, the model can generate poetry with accu-
rate morphology by following the constraints given
by the user, such as “Word Amount” and “Sen-
tence Amount”, and other high-level rhythmic op-
tions like “Rhyme” and “Level and Oblique Tones”
could enhance the sense of beauty. Regarding flu-
ency and coherency, the augmentation data highly
improve their scores since the polishing model is
trained by diversified constraints. System compari-
son in Table 3 shows high competitiveness of our
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(a) Constrained generation. (b) Poetry polishing.

Figure 3: Use cases of constrained poetry generation and polishing. Constraints customized in filter bar and
topic words entered in input bar steer the constrained poetry generation. Refinement results are reflected on the
demonstration panel, replacing the previous draft.

system regarding the same constraints supported
by both systems.

5 Discussion

Figure 3 presents a case of using Yu Sheng to cus-
tomize poetry generation with constraints.

Constrained Poem Generation As shown in
Figure 3a, the user may first use the feature selector
to customize all generation constraints. Then the
user enters the topic words according to the type of
keywords and click generate button, Yu Sheng will
return the results in the demonstration panel.

Poem Polishing We also showcase the poetry
polishing procedure on the automatic generation
results or user-imported poem as illustrated in Fig-
ure 3b. The users can import their own poem into
workspace by entering keywords and poem sen-
tences into the import module. When the user
switches to Dynamic Polishing mode and chooses
“自”, “有” as the unsatisfactory tokens, the system
would perform polishing action and return the re-
sult with poetry-level adjustment. The user also can
switch to static polishing mode, and then select spe-
cific word or sentence. The system would recom-
mend different substitutes for words and sentences
for replacement. Preliminary analysis of the poem
would be automatically generated in the workspace
for users to understand current features and struc-
tural information before performing next operation.
At the end of poetry generation, Yu Sheng also
allows users to evaluate the current composition
and propose a beautiful share poster for sharing the

poem work. More details can be founded in the
Appendix due to page limitations.

More Backbone Models In this work, we focus
on exploring the generation and polishing capabil-
ity of general casual language model. Since other
pre-trained models also inherit the Transformer ar-
chitecture, we provide the results of vanilla Trans-
former to prove the generality of proposed method.
The polishing model can greatly enhance the qual-
ity of model outputs in the first stage. However, the
polishing model becomes less effective for high-
quality poems. We are also passionate to explore
in the future work.

6 Conclusion and Future Work

We propose Yu Sheng, a comprehensive, human-
in-loop classical Chinese poetry generation system.
Yu Sheng establishes a generation pipeline that
covers multi-dimensional demands of generation
and polishing, enabling amateurs to engage in the
process of poetry generation, and provide inspi-
rations for composition work of human poets. It
provides the functionalities for users with different
backgrounds to conduct poetry composition con-
veniently and flexibly. With the global attention
mechanism and the human-in-loop poetry genera-
tion paradigm, Yu Sheng could be easily updated
with diverse constraints and further extended to
different languages. In the future, we will also col-
lect the data and construct an annotated polishing
corpus for training a more robust polishing model.
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Limitations

The limitations of our system are three-folded.
First, there is no public polishing dataset in the
open-source community. To address this problem,
we mask the tokens of human-written poetry to
build the pseudo data. Since the polishing model
aims to refine the machine-generated poetry, the
pseudo data used to train our model is still far away
from the realistic scenario compared to the anno-
tated data. Secondly, polishing quality is hard to
control due to knowledge background of users. Al-
though poetry features can be easily checked and
evaluated, aesthetics highly relies on the users’ pref-
erences. Non-professional users may hardly notice
the subtle problem of the generated poetry and
make the right decision on whether to polish it or
not. Thirdly, polyphonic disambiguation is hard to
solve due to the lack of phonology data, resulting
mild corruption of sentence semantic.
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A Appendix

A.1 Detailed Use Case

Constrained Generation Figure 1 presents a
case study of using Yu Sheng to customize po-
etry generation task with constraints. As shown in
Figure 1a, the user first uses the feature selector
to customize all correlated features (“Poem Type”
as “Metrical Poem”, “Input Type” as “Keyword”,
“Word Amount” as 5, “Sentence Amount” as 4,
“Level and Oblique Tones” as “平起黏格” and
“Rhymes” as “九青”). Then the user enters the key-
word “夏天”(Summer) as the topic word according
to the chosen type of keywords and starts the gen-
eration by clicking the “Write” button on the right
side of input bar.

Within a short time after receiving the generation
request, Yu Sheng returns and presents the expected
generated poem in the demonstration panel, which
is shown in Figure 1b. The user can easily ob-
tain diversified poems under the same constraints
and topic setup by repeatedly clicking the “Write”
button without limitation.

Poetry Polishing We also showcase the polishing
functionalities as illustrated in Figure 2. With the
upholding poem draft, a user stays in the static
polishing mode and clicks on unsatisfactory word
“無” and sentence “曾無耳目星”. The system will
provide different substitutes as shown in Figure
2a. The user can replace sentence “無風自有星”
in the original draft with substitute “曾無耳目
星” by clicking the preferred substitute block in
the sentence recommendation panel. The updated
poem is shown in 2b.

Then, the user switches to the dynamic polish-
ing mode for automatic polishing. The words “自”
and “有” are marked as targets as shown in Figure
2c. Then the user clicks “Update Selected Text”
button to label the text with a low-quality tag. Yu
Sheng will automatically polish these unsatisfac-
tory words and returns the result with dynamic
adjustment as shown in Figure 2d. Finally, the
result meets the user’s requirement after iterative
polishing.

When the user decides to complete the current
work, Yu Sheng allows the user to evaluate the
presented composition by rating stars after clicking
“Finish” button. The user can also click the “Share”
button to generate a poster. The poster will pop up
in the middle of the interface (Figure 2e, 2f) for
downloading and sharing.

A.2 Examples
As shown in Table 1, we also present two examples
obtained from our pipeline system.

B Revisions

To address the reviewers’ concerns, we revised our
paper as follows:

• We fixed the typos and added a link of system.
Furthermore, a multilingual user interface has
been added in Yu Sheng for serving the user
comes from different language background.

• We offered more detailed explanations in
terms of training loss and modelling ap-
proaches. Sentence reconstruction loss is for-
mulated as the posterior probability of predict-
ing words in the original poem sentence based
on the draft and constraints.

• We described the rule-based method to extract
tone and rhyme in Section 2.
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(a) Constraint Setup (b) Poem Generation Result

(c) Import Poem (d) Poem Analysis

Figure 1: Use Case: Constrained Poetry Generation

Constrained

Generation

Setup
Topic Word: 夏天; Word Amount: 5; Sentence Amount 7; Rhyme: 九青;

Tone: 平平仄仄平 仄仄仄平平 仄仄平平仄 平平仄仄平

Result 池蓮夏日清，獨坐水邊亭。莫怪蟬多語，曾無耳目星。

Static Polishing Result 池蓮夏日清，獨坐水邊亭。莫怪蟬多語，無風自有星。

Dynamic Polishing Result 池蓮夏日清，獨坐水邊亭。莫怪蟬多語，無風亦有星。

Constrained

Generation

Setup
Topic Word: 月下獨飲; Word Amount: 5; Sentence Amount 7; Rhyme: 十一尤;

Tone: 仄仄仄平平 平平仄仄平 平平平仄仄 仄仄仄平平

Result 月下弄鳴弦，秋聲滿樹頭。今來何處去，日夜憶南州。

Dynamic Polishing Result 月下弄鳴弦，秋聲滿樹頭。今來何處去，此夜憶南州。

Static Polishing Result 月下弄鳴弦，秋聲滿樹頭。何因逢老病，此夜憶南州。

Dynamic Polishing Result 月下弄鳴弦，秋聲滿樹頭。何因驚老病，此夜憶南州。

Table 1: Examples of pipeline generation.
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(a) Static Polishing: Substitutes Recommendation (b) Static Polishing: Result

(c) Dynamic Polishing: Text Indication (d) Dynamic Polishing: Result

(e) Share Page (f) Poster

Figure 2: Use Case: Poem Polishing
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Abstract
In this demo, we introduce a web-based mis-
information detection system PANACEA on
COVID-19 related claims, which has two mod-
ules, fact-checking and rumour detection. Our
fact-checking module, which is supported by
novel natural language inference methods with
a self-attention network, outperforms state-of-
the-art approaches. It is also able to give auto-
mated veracity assessment and ranked support-
ing evidence with the stance towards the claim
to be checked. In addition, PANACEA adapts
the bi-directional graph convolutional networks
model, which is able to detect rumours based
on comment networks of related tweets, instead
of relying on the knowledge base. This rumour
detection module assists by warning the users
in the early stages when a knowledge base may
not be available.

1 Introduction

The dangers of misinformation have become even
more apparent to the general public during the
COVID-19 pandemic. Following false treatment
information has led to a high number of deaths
and hospitalisations (Islam et al., 2020). Manual
verification can not scale to the amount of misin-
formation being spread, therefore there is a need to
develop automated tools to assist in this process.

In this work, we focus on automating misinfor-
mation detection using information from credible
sources as well as social media. We produce a web-
based tool that can be used by the general public
to inspect relevant information about the claims
that they want to check, see supporting or refuting
evidence, and social media propagation patterns.

For false information, the commonly used and
relatively reliable method for automated veracity
assessment is to check the claim against a verified
knowledge base, which we call fact-checking. Pre-
vious works such as EVIDENCEMINER (Wang
et al., 2020b), PubMed1 and COVID-19 fact-

1https://www.ncbi.nlm.nih.gov/pmc/

checking sites recommended by the NHS2 are all
designed to retrieve related documents/sentences
from a reliable knowledge base. However, this ap-
proach leaves users to summarise a large amount
of potentially conflicting evidence themselves.
PANACEA, which is supported by novel natural
language inference methods (Arana-Catania et al.,
2022), is instead able to provide automated veracity
assessment and supporting evidence for the input
claim. In addition, previous works retrieve results
using entities in the input claim, and thus often
include results related to a keyword in the input
claim instead of the whole query, while PANACEA
considers the whole query for better result. The
supporting pieces of evidence are also ranked by
their relevance score and classified according to
their stance towards the input claim.

In addition to false information, truthful infor-
mation can also be misused to harm competitors or
gain attention on social media (Pennycook et al.,
2020; Tsfati et al., 2020). However, the latter is
harder to be found by checking reliable knowledge
bases as those are focused on false information.
Regarding this issue, previous work has analysed
the spread of misinformation using features such
as stance (Zhu et al., 2021), sentiment, topics, ge-
ographical spread, the reliability of external links
included in the tweet (Sharma et al., 2020), origin
and propagation networks (Finn et al., 2014). How-
ever, it is still hard for users to identify rumours
by directly looking at those features. Previous re-
search shows that the propagation pattern is dif-
ferent between fake and real news, which would
offer additional features for early detection of mis-
information on social media (Zhao et al., 2020).
PANACEA extends this by using tweets’ propaga-
tion patterns to identify rumours. Rumour detection
is not as reliable as fact-checking, but it generalises
the system to various situations that fact-checking

2https://library.hee.nhs.uk/covid-19/
coronavirus-%28covid-19%29-misinformation
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cannot cover: First, true or unverified information
with intent to harm; Second, scenarios where no
verified knowledge database is available. Rumour
detection cannot prove the truth of a claim but may
alert the user about claims with a high risk of being
misinformation.

Previous work have either retrieved tweets from
a short fixed time period (Sharma et al., 2020) or
search recent tweets (Finn et al., 2014), which is
limited by Twitter to only the last 7 days. We
instead maintain an updated database which is con-
stituted of an annotated tweets dataset with popular
claims and an unlabelled streaming of COVID-19
related tweets that are crawled and selected peri-
odically to update the dataset. Besides building
on the various analytic functionalities used in pre-
vious work, PANACEA improves the architecture
of these elements and adds extra features to the
updated dataset for more efficient results.

A screencast video introducing the system3, il-
lustrating its use in the checking of a COVID-19
claim, and the demo4 are also available online. The
system can be easily adapted to other claim topics.

PANACEA covers various types of misinforma-
tion detection related to COVID-19 with the fol-
lowing contributions:

• We built a new web-based system, PANACEA,
which is able to perform both fact-checking
and rumour detection with natural language
claims submitted by users. The system in-
cludes visualisations of various statistical anal-
yses of the results for a better user understand-
ing.

• PANACEA performs automated veracity as-
sessment and provides supporting evidence
that can be ranked by various criteria, sup-
ported by novel natural language inference
methods. The system is able to manage mul-
tiple user requests with low latency thanks to
our development of a queuing system.

• PANACEA is able to perform automated ru-
mour detection by exploiting state-of-the-art
research on propagation patterns. The sys-
tem uses an annotated dataset and streams of
COVID-19 tweets are collected to maintain
an updated database.

3https://www.youtube.com/watch?v=D1PN8_9oYso
4https://panacea2020.github.io/

2 Datasets

The following datasets are used in the project:

Knowledge Database This is used for fact-
checking, and includes COVID-19 related docu-
ments from selected reliable sources 5. The docu-
ments were cleaned and split into 300 token para-
graphs to construct a reliable knowledge database,
whose supporting documents are retrieved and vi-
sualised in our system.

PANACEA Dataset (Arana-Catania et al., 2022),
constructed from COVID-19 related data sources6

and using BM25 and MonoT5 (Nogueira et al.,
2020) to remove duplicate claims. This dataset
includes 5,143 labelled claims (1,810 False and
3,333 True), and their respective text, source and
claim sub-type.

COVID-RV dataset In order to fine-tune our
model, we constructed a new COVID-19 related
propagation tree dataset for rumour detection. Sim-
ilar previous datasets are Twitter15 and Twitter16
(Ma et al., 2018), which are widespread tweets’
propagation trees with rumour labels, however, they
are not COVID-19 related. Our dataset has been
constructed by extending COVID-RV (Kochkina
et al., 2023), including the number of retweets, user
id, post time, text, location and tweet reply ids as
metadata for each tweet. Each tree is annotated
with a related claim chosen from our claim dataset
and a stance label (chosen from Support or Re-
fute) towards its related claim. Such a stance la-
bel for each tree is purely based on the content
of the source tweet. In COVID-RV the conversa-
tions are annotated as either True or False based
on the veracity of the claim and the stance of the
source tweet towards it. Tweets supporting a false
claim or challenging a true claim are annotated as
False, tweets supporting true claims or challenging
a false claim are annotated as True. Twitter15 and
Twitter16 datasets also contain Unverified conver-
sations, which are discussing claim that are neither
confirmed or denied.

COVID Twitter Propagation Tree (Live) Be-
sides the last dataset constructed for fine-tuning,

5Centers for Disease Control and Prevention (CDC), Eu-
ropean Centre for Disease Prevention and Control (ECDC),
WebMD and World Health Organisation (WHO)

6Corona VirusFacts Database, CoAID dataset (Cui and
Lee, 2020), MM-COVID (Li et al., 2020), CovidLies (Hossain
et al., 2020), TREC Health Misinformation track and TREC
COVID challenge (Voorhees et al., 2021)
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PANACEA also runs a crawler to collect a stream
of COVID-19 tweets that are used to maintain an
updated database. This live dataset is not anno-
tated, instead, it is labelled by the pre-trained ru-
mour detection model. As the Twitter’s search API
does not allow retrieval of tweets beyond a week
window, we retrieve COVID-19 related historical
tweets based on the widely used dataset of COVID-
19-TweetIDs (Chen et al., 2020), which contains
more than 1 billion tweet IDs. Considering the
size of the dataset, and for the storage and retrieval
efficiency, we filtered out the less popular tweets
with limited impact. To date, more than 12k prop-
agation trees have been collected, starting from
January 2020. For each tweet, its pseudo rumour
label is generated by the trained model.

3 Architecture of PANACEA

Figure 1 shows an overview of PANACEA, includ-
ing two functions: fact-checking and rumour de-
tection for COVID-19. For fact-checking, there
are three modules: (1) resource allocation system;
(2) veracity assessment; and (3) supporting evi-
dence retrieval. PANACEA also supports a unique
function, rumour detection by propagation patterns,
which has the following modules: (1) tweet re-
trieval; (2) rumour detection; and (3) tweet meta-
information analysis.

User

GPU Resource 
Allocation

Knowledge 
Base

Tweet Database

Rumour Detection
Data Analysis

Veracity Assessment
NLI-SAN

Tweet 
Crawler

Veracity Assessment

Ranked Supporting Evidence

Stance/Relevance Analysis

Rumour Assessment

Stance/Sentiment Analysis

Propagation visualisation

Queuing 
Claims

Input Claim

Tweets 
Retrieval

Update 
Tweets

FACT CHECKING RUMOUR DETECTION

Figure 1: Architecture of PANACEA

3.1 Fact-Checking
Resource Allocation System Users can input
natural language claims into our system, and
PANACEA provides autocompleted input guesses
based on the current input and the claims dataset.
Claim autocompletion can help users to input the
claim faster and the results included within the
claims dataset can be pre-computed for faster re-
trieval. However, if the user cannot find what they
would like to check through the claims dataset, the
new claim would be passed to our model for real-
time evaluation. Veracity assessment and evidence

retrieval are based on our natural language infer-
ence model NLI-SAN (Arana-Catania et al., 2022),
which needs GPU resources to run. Therefore we
built a queuing system that manages the resources
and queues the claims while the GPUs are being
used. The results are sent to the user. To avoid
duplicate searches, a temporary copy of this result
is saved in our database based on the user’s IP ad-
dress until the user searches for a new claim or the
saved period expires.

Veracity Assessment PANACEA is supported
by NLI-SAN (Arana-Catania et al., 2022), which
incorporates natural language inference results of
claim-evidence pairs into a self-attention network.
The input claim c is paired with each retrieved
relevant evidence ei to form claim-evidence pairs,
where the relevant evidences are the retrieved sen-
tences as described in the following paragraph.
Each claim-evidence pair (c, ei) is fed into both
a RoBERTa-large7 model to get a representation Si

and into a RoBERTa-large-MNLI7 model to get a
probability triplet Ii of stance (contradiction, neu-
trality, or entailment) between the pair. Next, Si

is mapped to a Key K and a Value V , while Ii
is mapped onto a Query Q. (Q,K, V )i forms the
input of the self-attention layer and the outputs Oi

for all the claim-evidence pairs are concatenated
together. The output is then passed to a MLP layer
to get the veracity assessment result (True or False)
as shown in Figure 2.

Supporting Evidence Retrieval This module in-
cludes three parts: document retrieval, sentence
retrieval and corresponding meta-data generation.
Multi-stage retrieval is applied, retrieving first the
top 100 relevant documents with BM25, that then
are re-ranked by MonoT5 (Nogueira et al., 2020)
and the top 10 documents are selected. For each
of those documents, the top 3 sentences are se-
lected. Both documents and sentences are ranked
by their relevance score, which is the cosine sim-
ilarity between the documents/sentences and the
input claim embeddings. Each of those texts are
represented through embeddings obtained using
Sentence-Transformers with the pre-trained model
MiniLM-L12-v2 (Wang et al., 2020a). The corre-
sponding metadata of the supporting documents,
including type, source, relevance score, and stance
towards the claim are also shown, together with
the ranked documents/sentences. Users can also

7 https://huggingface.co/
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Figure 2: Fact checking result with input claim: coronavirus is genetically engineered.

Figure 3: The detail page of user selected supporting document

filter or re-rank the result using the metadata. An
example of documents retrieved is shown in Fig-
ure 2 and the corresponding detailed information
visualisation is shown in Figure 3. On the details
page, the whole document text is shown with the
top 3 relevant sentences highlighted by their stance
towards the input claim. The stance distribution,
described in the veracity assessment module is also
visualised.

3.2 Rumour Detection

Another approach to detecting rumours that has
been found to be effective (Ma et al., 2018; Tian
et al., 2022) is modelling user comments and prop-
agation networks. Next we describe the relevant
rumour detection modules of our system.

Claim-related tweets retrieval Similar to the
fact-checking module, this module includes an au-
tocomplete function for the user’s natural language
input claim that guesses the input from our claims
dataset. The results for existing claims are also
pre-computed to retrieve tweets faster. For a claim
that is not in our claim dataset, we use BM25 to
retrieve the related propagation trees from the large
Twitter propagation tree database maintained by
the active Twitter crawler.

Rumour Assessment and Data Analysis
PANACEA adapts a bi-directional graph convolu-
tional networks model (BiGCN) (Bian et al., 2020)
to perform rumour detection, which is trained
on Twitter16 and fine-tuned on our annotated
propagation trees. The reason we chose BiGCN
is that it behaves relatively better compared with
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Figure 4: Rumour detection result with input claim: vitamin c cures coronavirus.

other models in cross-dataset evaluation (Kochkina
et al., 2023). For an input claim, the system
gives the rumour detection result generated by the
weighted average of propagation trees’ rumour
assessment label,

∑
i∈T niri∑
j∈T nj

, where T is the set
of retrieved propagation trees. We generate the
sentiment labels of each tweet by VADER8 and
stance of tweet towards the input claims by natural
language inference (Nie et al., 2020).

8https://www.nltk.org/api/nltk.sentiment.
vader.html

Twitter propagation visualisation As shown in
Figure 4, PANACEA has six modules, which use
the metadata we crawled from the tweet and gener-
ated from data analysis to visualise the propagation
pattern:

1. Tweet Count, showing the total number of
tweets related to the input claim against the
posting date, and aiming to reflect the total
influence and scale of discussion of the claim.

2. Word Cloud, showing the top 30 words in
tweets refuting the input claim and the top
30 words in tweets supporting the input claim.
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Stopwords, punctuation, and numbers are re-
moved to reduce non-informative words.

3. Discussion Topics, building on Latent Dirich-
let Allocation (LDA), where each topic is en-
coded by COVID-Twitter-BERT 9 and the rep-
resentative tweet is selected by its embedding
similarity with respect to the topic. Princi-
pal component analysis (PCA) is applied to
visualise each topic. Top 10 words and cor-
responding weights of the chosen topic are
shown in a bar chart.

4. Tweet Spread, showing the influence of each
original tweet in the scatter plot, where the
radius denotes the number of tweets that are
direct comments or retweets from the original
tweet. The y-axis “Total Spread” also includes
the number of indirect comments/retweets of
the original tweet, such as the retweets of
retweets, etc.

5. Propagation Graph, showing the propagation
graph between the source tweet and its com-
ments, showing the information spread path.
5 other claims are randomly chosen from pop-
ular claims for users to compare propagation
patterns. This module aims to visualise prop-
agation graphs in a straightforward way and
help users see the difference between trees of
different types.

6. Tweet Map. Related tweets to the input claim
are plotted on the world map and coloured
by their stances, where red/yellow/blue repre-
sents refute/neutral/support. The difference
in stance and popularity towards the input
claim in the different regions can be easily
seen, which shows the local context and geo-
location bias.

4 Evaluation Results

Fact-Checking We investigate the performance
of our system in document retrieval and veracity
assessment in (Arana-Catania et al., 2022). Table 1
shows that combining BM25 and MonoT5 is the
most effective approach for document retrieval of
the selected techniques. In addition, Figure 5 shows
that NLI-SAN achieves similar performance with
KGAT (Liu et al., 2020), while having a simpler
architecture for the application, and outperforms
GEAR (Zhou et al., 2019).

9https://huggingface.co/
digitalepidemiologylab/covid-twitter-bert-v2

AP@5 AP@10 AP@20 AP@100

BM25 0.54 0.56 0.58 0.62
BM25+MonoBERT 0.52 0.55 0.58 0.62
BM25+MonoBERT 0.55 0.58 0.60 0.62

BM25+RM3+MonoT5 0.51 0.53 0.55 0.57

Table 1: Document retrieval on the PANACEA dataset.

Figure 5: Veracity classification on the PANACEA
dataset.

Rumour Detection As shown in Figure 6, our
comparison (Kochkina et al., 2023) among various
models, including branchLSTM (Kochkina and Li-
akata, 2020), TD-RvNN (Ma et al., 2018), BiGCN
(Bian et al., 2020), SAVED (Dougrez-Lewis et al.,
2021) and BERT (Devlin et al., 2019) for rumour
detection evaluated on Twitter15, Twitter16 and
PHEME (Kochkina et al., 2018), reveals there is
no model that always performs the best. Although
state-of-the-art models can achieve high accuracy
on their training datasets, such performance drops
quickly while evaluating on a different dataset
(Kochkina et al., 2023). Due to the limitation of
existing models in generalisation, users should in-
terpret this result with caution as the system cannot
guarantee output correctness.

Figure 6: Cross-dataset evaluation of models train and
test on different datasets, such as training on PHEME,
testing on Twitter15/Twitter16 and vice versa.
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5 Conclusion

This paper introduces a web-based system on fact-
checking and rumour detection based on novel nat-
ural language processing models for COVID-19
misinformation detection. Going forward, we will
keep updating the data and explore other methods
for misinformation identification to improve the
current system and introduce more functions to the
system as part of our continuing efforts to support
the general public to identify misinformation.
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Abstract

The proliferation of deep neural networks in
various domains has seen an increased need for
the interpretability of these models, especially
in scenarios where fairness and trust are as im-
portant as model performance. A lot of inde-
pendent work is being carried out to: i) analyze
what linguistic and non-linguistic knowledge
is learned within these models, and ii) high-
light the salient parts of the input. We present
NxPlain, a web application that provides an ex-
planation of a model’s prediction using latent
concepts. NxPlain discovers latent concepts
learned in a deep NLP model, provides an in-
terpretation of the knowledge learned in the
model, and explains its predictions based on
the used concepts. The application allows users
to browse through the latent concepts in an intu-
itive order, letting them efficiently scan through
the most salient concepts with a global corpus-
level view and a local sentence-level view. Our
tool is useful for debugging, unraveling model
bias, and for highlighting spurious correlations
in a model. A hosted demo is available here:
https://nxplain.qcri.org1

1 Introduction

Interpretation of deep neural networks (DNNs) has
gained a lot of attention in recent years, especially
in NLP, where state-of-the-art models are being
widely deployed and used in practice. Work done
in interpretation can be broadly classified into two
branches: i) representation analysis and ii) attribu-
tion analysis. The former attempts to understand
what knowledge is learned within the representa-
tion (Belinkov et al., 2017a; Tenney et al., 2019)
and the latter is focused on how the model predicts
the output (Linzen et al., 2016; Gulordava et al.,
2018; Marvin and Linzen, 2018).2

A drawback of the methods in representation
analysis is that it does not gauge whether the model

∗ This work was carried out while the author was at QCRI.
1A short video demo of the system is also available here:

uses what it has learned in making a prediction. On
the other hand, the drawback of attribution analy-
sis is that their explanations are limited to discrete
units (e.g. words, some specific piece of the net-
work), and the abstract nuances behind these dis-
crete units are lost in the explanation, resulting in
an inadequate or implausible explanation. Some
efforts have been made in trying to connect rep-
resentation and attribution analysis (Feder et al.,
2021; Elazar et al., 2021).

In this work, we present NxPlain, a web-app
that provides a holistic view by combining
representation and attribution analysis. More
specifically, we discover latent concepts in the
model using the Latent Concept Analysis (Dalvi
et al., 2022) and connect these concepts to specific
predictions using Integrated Gradients (Sundarara-
jan et al., 2017), a model and input saliency
method.

NxPlain allows the users to:

• Discover latent concepts in transform-
ers (Wolf et al., 2020) models via an inter-
active GUI

• Align the concepts using human-defined on-
tologies and task specific concepts

• Explain predictions using saliency-based attri-
butions and extracted latent concepts

The analysis presented by NxPlain can enable
a practitioner to understand a trained model better
and be aware of the kinds of concepts a model is
using to perform its tasks. For example, the word
immigrant can appear as part of a neutral concept
(if the model clusters it with other "roles" related to
a person’s status like "non-immigrant", "resident",

https://www.youtube.com/watch?v=C2PiO4fI5dk
2The following survey papers summarize the work done on

Representations Analysis (Belinkov et al., 2020; Sajjad et al.,
2021) and Attribution Analysis (Danilevsky et al., 2020)
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(a) Terms used in hate-speech against
immigration policies

(b) Syntactic concept of hyphenated
words

(c) Concept made up of numbers

(d) Lexical concept (hyphenation) rep-
resenting ages

(e) Morphological concept (adjectives
with common suffix est signifying su-
perlative adjectives

(f) Named entities in Germany

Figure 1: Examples of Latent Concepts.

etc), or it can appear as part of a negative concept
(if the model clusters it with other hate-speech re-
lated terms like "alien", "illegal" etc.) as in Figure
1. Understanding which of these categorizations a
model is learning and relying on can be a strong
signal of the underlying biases of the model. A
more benign example of debugging would also be
able to see a purely lexical concept being used
for prediction (say words ending in "y"), when
the lexical property should not have any bearing
on the task at hand. The target users for our sys-
tem can be broadly divided into two categories: i)
researchers/practitioners who want to understand
their model better, and ii) other systems that want
to use the concepts extracted by NxPlain to better
explain predictions to their customers.

2 System Design

The overall system behind the NxPlain application
is split into three distinct components. See Figure
2 for a pictorial representation.

• Backend: This part of the app integrates the
pipeline, which handles i) extraction of la-
tent concepts, ii) computation of various order-
ings, and iii) computation of the concepts rel-
evant to particular sentences etc. A database
is used to store all of the computed results so
that the other two components can then use
these results.

• Rest API: This piece displays the results from
the Backend in an organized and machine-
readable fashion. Users can use this to access
the latent concepts and their relevant metadata
for their applications.

• Frontend: This is the primary user-facing
module of the app, and runs in a Web browser.
The frontend provides an easy to use the
graphical interface to add models to the com-
putation queue and retrieve the extracted con-
cepts once they are ready. Figure 4 shows
the Model Explanations page, where one can
browse all the extracted concepts, sort them
according to various criteria and analyze the
knowledge learned in the selected model.

Technical Details For extracting the concepts,
we use the code provided by Dalvi et al. (2022).
We then tag the input corpus with various human-
defined tagsets such as Parts-of-Speech and Seman-
tic tags, and align the latent concepts with these,
as done by Sajjad et al. (2022). The results are
then stored in a database, and retrieved later via a
Python server implemented using Flask. The back-
end exposes a Rest API which can be used as-is
by users in their own applications. We also pro-
vide an Angular frontend app that uses the Rest
API to present the concepts in a GUI. For sentence-
level explanations, we use the (Kokhlikyan et al.,
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Figure 2: The architecture of NxPlain: The backend uses a pipeline to extract latent concepts and align them with
various human ontologies and task-specific concepts. The frontend then uses the computed data to provide both
global (model-level) and local (prediction-level) explanations. A RestAPI is also provided so a user can build upon
the backend without having to use the provided frontend.

2020) tookit’s Integrated Gradients implementation
to perform attribution analysis.

3 Pipeline Components

The NxPlain application provides an easy interface
to analyze the latent knowledge learned within a
deep NLP model, as well as connect these latent
concepts to specific predictions. In order to do
this, the pipeline in the Backend relies on three
key components proposed by recent literature: i)
concept discovery, ii) concept alignment, and iii)
attribution analysis.

3.1 Concept Discovery

The first component, responsible for extracting the
latent concepts learned by a model is based on
work done by Dalvi et al. (2022), called Latent
Concept Analysis. At a high level, feature vectors
(contextualized representations) are first generated
by performing a forward pass on the model. These
representations are then clustered using agglomer-
ative hierarchical clustering (Gowda and Krishna,
1978) to discover the encoded concepts. The hy-
pothesis is that contextualized word representations
learned within pretrained language models capture
meaningful groupings based on a coherent concept

such as lexical, syntactic and semantic similarity,
or any task or data specific pattern that groups the
words together (Dalvi et al., 2022). Figure 1 shows
example concepts discovered in the model space
of a base and finetuned BERT model. The con-
cepts discovered are a mix of linguistic, lexical and
semantic concepts.

3.2 Concept Alignment

The second component uses an alignment frame-
work proposed by Sajjad et al. (2022) to align each
of the latent concepts to some pre-existing ontol-
ogy like part-of-speech, semantic tags, WordNet
etc. This enables richer explanations for the latent
concepts, and also allows for the application to sort
all of the concepts based on criteria relevant to the
user. For instance, if the user is only interested
in morphological latent concepts, the application
can easily filter and sort all of the latent concepts
based on this property after the alignment has been
performed.

The alignment of a concept to a specific
property (e.g. Noun) is done by check-
ing if most of the words (above a certain
threshold) in the concept are labeled with
that property. For example, Cpos(JJR) =
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Figure 3: Sample overview page, providing high level statistics at a glance.

{greener, taller, happier, . . .} would be aligned
to the property of "comparative adjectives"
in the POS tagging task, Csem(MOY ) =
{January, February, . . . , December} defines
a concept containing months of the year in the
semantic tagging task, and Cmuslim(names) =
{Ahmed,Muhammad,Karim,Hamdy, . . .}
represents a concept of Muslim names. Explana-
tions based on human-defined concepts are not
always applicable or available as these models
learn very fine-grained hierarchies of knowledge
and concepts that are very task-specific, hence not
every latent concept is aligned to some pre-existing
tag/ontology.

3.3 Attribution Analysis

Our first two components are geared towards un-
derstanding what the model has learned, however,
it does not necessarily imply that this knowledge
is utilized during prediction and provides no in-
sight into how these concepts are being used. To
bridge this gap, our third component uses Inte-
grated Gradients (IG) (Sundararajan et al., 2017),
which is a powerful axiomatic attribution method
for deep neural networks that computes the im-
portance of input features and model components
based on their contribution to model’s prediction.
More concretely, IG is used to extract the salient
input features (words) used to make a certain pre-
diction, and these salient features are then mapped
to latent concepts to expand on the explanation. For
example in Figure 5 highlights “captures" to be the
most salient input feature used in predicting the
sentiment of the sentence.

4 Frontend Views

The goal of NxPlain is to provide an easy method
for users to extract and analyze latent knowledge
learned within a deep NLP model and connect them
to the prediction. The Frontend helps achieve this
goal by providing a intuitive yet powerful GUI that
can be used to interact with a model’s latent con-
cepts and predictions. The user can upload a model
and a corpus that they want to analyze. The com-
putational queue of the application discovers latent
concepts and aligns them using the components
mentioned in Section 3. The user can then use the
Frontend, where they can switch between three
major views:

Overall view: This view presents a high-level
overview of the concepts learned by the model.
Specifically, we can see i) the number of concepts
learned, ii) statistics on the concepts aligned with
the human-fined concepts, iii) a summary of the
size distribution of these concepts, iv) and salient
concepts in the data and model. Figure 3 shows
a sample overview page for a Sentiment analysis
model.

Model Explanations view: This view presents
the latent concepts in a paginated view, along with
controls to sort the concepts. Users can sort the con-
cepts i) by size, ii) by their affinity to the linguis-
tic phenomenon (using the alignments computed
earlier), iii) by their relation to the various output
classes (in classification models) and iv) by their
overall relevance. Each concept is accompanied by
a unique label to keep track of important concepts.
See Figure 4 for a sample model explanation view.
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Figure 4: The model-explanation page showing latent concepts for the selected model and domain. Sorting and
pagination controls allow a user to effectively browse and analyze concepts learned by the model.

Prediction Explanations view: This view al-
lows the user to look at concepts used in making
a prediction and facilitates a deeper view of the
behavior of the model on specific sentences. The
attribution analysis component is used to get a
salience map of the input tokens, as well as the
matching concepts that contain these tokens in sim-
ilar contexts. Figure 5 displays the prediction view,
where the user can select the sentences that they
want to analyze. Here NxPlain shows that “cap-
tures" was the most influential word used by the
model to make the prediction. The model used a
latent concept representing positive verbs to make
the prediction.

5 Related Work

5.1 Toolkits

A number of toolkits have been made available
to carry out analysis of neural network models.
Google’s What-If tool (Wexler et al., 2019) inspects
machine learning models and provides users an in-
sight into the trained model based on the predic-
tions. Seq2Seq-Vis (Strobelt et al., 2018) enables
the user to trace back the prediction decisions to
the input in NMT models. Captum (Kokhlikyan
et al., 2020) provides generic implementations of a
number of gradient and perturbation-based attribu-
tion algorithms. NeuroX (Dalvi et al., 2019b) and
Ecco (Alammar, 2021) use probing classifiers to
examine the representations pre-trained language
models. ConceptX (Alam et al., 2023) provides

a framework for analyzing and annotating latent
concepts in pre-trained language models. Tenney
et al. (2020) facilitates debugging of pLMs through
interactive visualizations. Our work is different
from these toolkits. Our toolkit bridges the gap
between representation analysis and causation by
using attribution-based method. NxPlain provides
enriched explanations using traditional linguistic
knowledge and human-defined ontologies.

5.2 Research Works
A large number of studies primarily focus on un-
derstanding the knowledge learned within a trained
model. Researchers have proposed numerous anal-
ysis frameworks such as diagnostic classifiers (Be-
linkov et al., 2017a; Hupkes et al., 2018), cor-
pus analysis (Kádár et al., 2017; Poerner et al.,
2018; Na et al., 2019), linguistic correlation anal-
ysis (Dalvi et al., 2019a; Lakretz et al., 2019). A
plethora of work has been carried out using these
analyses frameworks to analyze what concepts are
learned within the representations through relevant
extrinsic phenomenon varying from word morphol-
ogy (Vylomova et al., 2017; Belinkov et al., 2017a;
Dalvi et al., 2017) to high level concepts such as
structure (Shi et al., 2016; Linzen et al., 2016) and
semantics (Qian et al., 2016; Belinkov et al., 2017b)
or more generic properties such as sentence length
(Adi et al., 2016; Bau et al., 2019).

While the work done on representation analysis
unwraps interesting insights about the knowledge
learned within the network and how it is preserved,
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Figure 5: The prediction-explanation page showing latent concepts used during the prediction. The Integrated
Gradients method highlights that capture is the most salient word used in the prediction. NxPlain connects it to the
concept used along with its label. We observe here that the model used a concept representing positive verbs.

it’s only limited to human-defined concepts. More
recent work has discovered that these models cap-
ture novel ontologies (Michael et al., 2020; Dalvi
et al., 2022; Fu and Lapata, 2022) learning linguis-
tic concepts (Sajjad et al., 2022), as well as the
task-specific concepts (Durrani et al., 2022) that
emerge as the pre-trained language models are fine-
tuned towards a task.

Another line of work in interpretability focuses
on attribution analysis that characterizes the role
of model components and input features towards a
specific prediction (Linzen et al., 2016; Gulordava
et al., 2018; Marvin and Linzen, 2018). The expla-
nations are categorized based on two aspects: local
or global (Guidotti et al., 2018). The former gives a
view of explanation at a level of individual instance
(Ribeiro et al., 2016; Alvarez-Melis and Jaakkola,
2017), whereas the latter explains the general be-
havior of the model at corpus level (Pryzant et al.,
2018; Pröllochs et al., 2019).

6 Conclusion

We presented NxPlain, a web-app for connecting
concept analysis with model prediction. The appli-
cation bridges representation analysis and attribu-
tion analysis to better explain the models’ predic-
tions, and provides a intuitive, yet powerful graphi-
cal interface to explore the knowledge learned by a
model, and also to pinpoint the knowledge used in
specific predictions. In the future, we plan to enable

human-in-the-loop to enhance concept alignment,
as well as incorporate feedback into the explana-
tion system. A hosted version of the application
can be accessed at https://nxplain.qcri.org.
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Abstract

We introduce small-text, an easy-to-use ac-
tive learning library, which offers pool-based
active learning for single- and multi-label text
classification in Python. It features numerous
pre-implemented state-of-the-art query strate-
gies, including some that leverage the GPU.
Standardized interfaces allow the combination
of a variety of classifiers, query strategies, and
stopping criteria, facilitating a quick mix and
match, and enabling a rapid and convenient de-
velopment of both active learning experiments
and applications. With the objective of mak-
ing various classifiers and query strategies ac-
cessible for active learning, small-text inte-
grates several well-known machine learning li-
braries, namely scikit-learn, PyTorch, and
Hugging Face transformers. The latter inte-
grations are optionally installable extensions,
so GPUs can be used but are not required. Us-
ing this new library, we investigate the perfor-
mance of the recently published SetFit train-
ing paradigm, which we compare to vanilla
transformer fine-tuning, finding that it matches
the latter in classification accuracy while out-
performing it in area under the curve. The
library is available under the MIT License at
https://github.com/webis-de/small-text, in ver-
sion 1.3.0 at the time of writing.

1 Introduction

Text classification, like most modern machine learn-
ing applications, requires large amounts of training
data to achieve state-of-the-art effectiveness. How-
ever, in many real-world use cases, labeled data
does not exist and is expensive to obtain, especially
when domain expertise is required. Active Learn-
ing (Lewis and Gale, 1994) solves this problem by
repeatedly selecting unlabeled data instances that
are deemed informative according to a so-called
query strategy, and then having them labeled by an
expert (see Figure 1a). A new model is then trained
on all previously labeled data, and this process is
repeated until a specified stopping criterion is met.

�

�

Querying
Start / end

Annotation
Training

Single iteration

...

(a) Active learning process

(b) Active learning loop

�

Active learner
components

Unlabeled instances

Labels

1. Classifier
2. Query strategy
3. Stopping criterion

1

2

3 1

2

3
1
2
3

�

Figure 1: Illustrations of (a) the active learning process,
and (b) the active learning setup with the components
of the active learner.

Active learning aims to minimize the amount of
labeled data required while maximizing the effec-
tiveness (increase per iteration) of the model, e.g.,
in terms of classification accuracy.

An active learning setup, as shown in Figure 1b,
generally consists of up to three components on the
system side: a classifier, a query strategy, and an
optional stopping criterion. Meanwhile, many ap-
proaches for each of these components have been
proposed and studied. Determining appropriate
combinations of these approaches is only possi-
ble experimentally, and efficient implementations
are often nontrivial. In addition, the components
often depend on each other, for example, when a
query strategy relies on parts specific to certain
model classes, such as gradients (Ash et al., 2020)
or embeddings (Margatina et al., 2021). The more
such non-trivial combinations are used together,
the more the reproduction effort increases, making
a modular library essential.

An obvious solution to the above problems is the
use of open source libraries, which, among other
benefits, accelerate research and facilitate technol-
ogy transfer between researchers as well as into
practice (Sonnenburg et al., 2007). While solu-
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Figure 2: Module architecture of small-text. The core module can optionally be extended with a PyTorch
and transformers integration, which enable to use GPU-based models and state-of-the-art transformer-based
text classifiers of the Hugging Face transformers library, respectively. The dependencies between the module’s
packages have been omitted.

tions for active learning in general already exist,
few address text classification, which requires fea-
tures specific to natural language processing, such
as word embeddings (Mikolov et al., 2013) or lan-
guage models (Devlin et al., 2019). To fill this
gap, we introduce small-text, an active learning
library that provides tried and tested components
for both experiments and applications.

2 Overview of Small-Text

The main goal of small-text is to offer state-of-
the-art active learning for text classification in a
convenient and robust way for both researchers and
practitioners. For this purpose, we implemented
a modular pool-based active learning mechanism,
illustrated in Figure 2, which exposes interfaces
for classifiers, query strategies, and stopping cri-
teria. The core of small-text integrates scikit-
learn (Pedregosa et al., 2011), enabling direct use
of its classifiers. Overall, the library provides thir-
teen query strategies, including some that are only
usable on text data, five stopping criteria, and two
integrations of well-known machine learning li-
braries, namely PyTorch (Paszke et al., 2019) and
transformers (Wolf et al., 2020). The integra-
tions ease the use of CUDA-based GPU computing
and transformer models, respectively. The modular
architecture renders both integrations completely
optional, resulting in a slim core that can also be
used in a CPU-only scenario without unnecessary
dependencies. Given the ability to combine a con-
siderable variety of classifiers and query strategies,
we can easily build a vast number of combinations
of active learning setups.

The library provides relevant text classification
baselines such as SVM (Joachims, 1998) and Kim-
CNN (Kim, 2014), and many more can be used
through scikit-learn. Recent transformer mod-

els such as BERT (Devlin et al., 2019) are available
through the transformers integration. This inte-
gration also includes a wrapper that enables the use
of the recently published SetFit training paradigm
(Tunstall et al., 2022), which uses contrastive learn-
ing to fine-tune SBERT embeddings (Reimers and
Gurevych, 2019) in a sample efficient manner.

As the query strategy, which selects the instances
to be labeled, is the most salient component of an
active learning setup, the range of alternative query
strategies provided covers four paradigms at the
time of writing: (i) confidence-based strategies:
least confidence (Lewis and Gale, 1994; Culotta
and McCallum, 2005), prediction entropy (Roy and
McCallum, 2001), breaking ties (Luo et al., 2005),
BALD (Houlsby et al., 2011), CVIRS (Reyes
et al., 2018), and contrastive active learning (Mar-
gatina et al., 2021); (ii) embedding-based strategies:
BADGE (Ash et al., 2020), BERT k-means (Yuan
et al., 2020), discriminative active learning (Gissin
and Shalev-Shwartz, 2019), and SEALS (Cole-
man et al., 2022); (iii) gradient-based strategies:
expected gradient length (EGL; Settles et al.,
2007), EGL-word (Zhang et al., 2017), and EGL-
sm (Zhang et al., 2017); and (iv) coreset strategies:
greedy coreset (Sener and Savarese, 2018) and
lightweight coreset (Bachem et al., 2018). Since
there is an abundance of query strategies, this list
will likely never be exhaustive—also because strate-
gies from other domains, such as computer vision,
are not always applicable to the text domain, e.g.,
when using the geometry of images (Konyushkova
et al., 2015), and thus will be disregarded here.

Furthermore, small-text includes a consider-
able amount of different stopping criteria: (i) stabi-
lizing predictions (Bloodgood and Vijay-Shanker,
2009), (iv) overall-uncertainty (Zhu et al., 2008),
(iii) classification-change (Zhu et al., 2008),
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(ii) predicted change of F-measure (Altschuler and
Bloodgood, 2019), and (v) a criterion that stops
after a fixed number of iterations. Stopping criteria
are often neglected in active learning although they
exert a strong influence on labeling efficiency.

The library is available via the python packaging
index and can be installed with just a single com-
mand: pip install small-text. Similarly, the
integrations can be enabled using the extra require-
ments argument of Python’s setuptools, e.g., the
transformers integration is installed using pip
install small-text[transformers]. The ro-
bustness of the implementation rests on extensive
unit and integration tests. Detailed examples, an
API documentation, and common usage patterns
are available in the online documentation.1

3 Library versus Annotation Tool

We designed small-text for two types of set-
tings: (i) experiments, which usually consist of ei-
ther automated active learning evaluations or short-
lived setups with one or more human annotators,
and (ii) real-world applications, in which the final
model is subsequently applied on unlabeled or un-
seen data. Both cases benefit from a library which
offers a wide range of well-tested functionality.

To clarify on the distinction between a library
and an annotation tool, small-text is a library,
by which we mean a reusable set of functions and
classes that can be used and combined within more
complex programs. In contrast, annotation tools
provide a graphical user interface and focus on the
interaction between the user and the system. Ob-
viously, small-text is still intended to be used
by annotation tools but remains a standalone li-
brary. In this way it can be used (i) in combination
with an annotation tool, (ii) within an experiment
setting, or (iii) as part of a backend application,
e.g. a web API. As a library it remains compatible
to all of these use cases. This flexibility is sup-
ported by the library’s modular architecture which
is also in concordance with software engineering
best practices, where high cohesion and low cou-
pling (Myers, 1975) are known to contribute to-
wards highly reusable software (Müller et al., 1993;
Tonella, 2001). As a result, small-text should be
compatible with most annotations tools that are
extensible and support text classification.

1https://small-text.readthedocs.io

4 Code Example

In this section we show a code example to perform
active learning with transformers models.

Dataset First, we create (for the sake of a sim-
ple example) a synthetic two-class spam dataset
of 100 instances. The data is given by a list of
texts and a list of integer labels. To define the to-
kenization strategy, we provide a transformers
tokenizer. From these individual parts we construct
a TransformersDataset object which is a dataset
abstraction that can be used by the interfaces in
small-text. This yields a binary text classifica-
tion dataset containing 50 examples of the positive
class (spam) and the negative class (ham) each:

import numpy as np
from small_text import TransformersDataset, \

TransformerModelArguments
from transformers import AutoTokenizer

# Fake data example:
# 50 spam and 50 non-spam examples
text = np.array(['this is ham'] * 50 +

['this is spam'] * 50)
labels = np.array([0] * 50 + [1] * 50)

transformer_model = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(

transformer_model)

train = TransformersDataset.from_arrays(
text, labels, tokenizer,
target_labels=np.array([0, 1]),
max_length=10

)

1

Active Learning Configuration Next, we con-
figure the classifier and query strategy. Although
the active learner, query strategies, and stopping
criteria components are dataset- and classifier-
agnostic, classifier and dataset have to match
(i.e. TransformerBasedClassification must be
used with TransformersDataset) owing to the
different underlying data structures:

from small_text import LeastConfidence, \
TransformerBasedClassificationFactory \
as TransformerFactory

num_classes = 2
model_args = TransformerModelArguments(

transformer_model)

clf_factory = TransformerFactory(model_args,
num_classes, kwargs={'device': 'cuda'})

query_strategy = LeastConfidence()

1
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Since the active learner may need to instantiate a
new classifier before the training step, a factory
(Gamma et al., 1995) is responsible for creating
new classifiers. Finally, we set the query strategy
to least confidence (Culotta and McCallum, 2005).

Initialization There is a chicken-and-egg prob-
lem for active learning because most query strate-
gies rely on the model, and a model in turn is
trained on labeled instances which are selected by
the query strategy. This problem can be solved
by either providing an initial model (e.g. through
manual labeling), or by using cold start approaches
(Yuan et al., 2020). In this example we simulate
a user-provided initialization by looking up the re-
spective true labels and providing an initial model:

from small_text import \
PoolBasedActiveLearner, \
random_initialization_balanced as init

active_learner = PoolBasedActiveLearner(
clf_factory, query_strategy, train)

# Provide initial data.
indices_initial = init(train.y, n_samples=10)

active_learner.initialize_data(
indices_initial,
train.y[indices_initial]

)

1

To provide an initial model in the experimental
scenario (where true labels are accessible), small-
text provides sampling methods, from which we
use the balanced sampling to obtain a subset whose
class distribution is balanced (or close thereto). In
a real-world application, initialization would be ac-
complished through a starting set of labels supplied
by the user. Alternatively, a cold start classifier or
query strategy can be used instead.

Active Learning Loop After the previous code
examples prepared the setting by loading a dataset,
configuring the active learning setup, and providing
an initial model, the following code block shows
the actual active learning loop. In this example, we
perform five queries during each of which ten in-
stances are queried. During a query step the query
strategy samples instances to be labeled. Subse-
quently, new labels for each instance are provided
and passed to the update method, and then a new
model is trained. In this example, it is a simulated
response relying on true labels, but in a real-world
application this part is the user’s response.

from sklearn.metrics import accuracy_score

num_queries = 5
for i in range(num_queries):

# Query 10 samples per iteration.
indices_queried = active_learner.query(

num_samples=10
)

# Simulate user interaction here.
# Replace this for real-world usage.
y = train.y[indices_queried]

# Provide labels for the queried indices.
active_learner.update(y)

# Evaluate accuracy on the train set
print(f'Iteration {i+1}')
y_pred = active_learner.classifier\

.predict(train)
print('Train accuracy: {:.2f}'.format(

accuracy_score(y_pred, train.y)))

1

In summary, we built a full active learning setup
in only very few lines of code. The actual active
learning loop consists of just the previous code
block and changing hyperparameters, e.g., using a
different query strategy, is as easy as adapting the
query_strategy variable.

5 Comparison to Previous Software

Unsurprisingly, after decades of research and de-
velopment on active learning, numerous other li-
braries are available that focus on active learning
as well. In the following we present a selection of
the most relevant open-source projects for which
either a related publication is available or a larger
user base exists: JCLAL (Reyes et al., 2016) is a
generic framework for active learning which is im-
plemented in Java and can be used either through
XML configurations or directly from the code. It
offers an experimental setting which includes 18
query strategies. The aim of libact (Yang et al.,
2017) is to provide active learning for real-world
applications. Among 19 other strategies, it includes
a well-known meta-learning strategy (Hsu and
Lin, 2015). BaaL (Atighehchian et al., 2020) pro-
vides bayesian active learning including methods
to obtain uncertainty estimates. The modAL library
(Danka and Horvath, 2018) offers single- and multi-
label active learning, provides 12 query strategies,
also builds on scikit-learn by default, and offers
instructions how to include GPU-based models us-
ing Keras and PyTorch. ALiPy (Tang et al., 2019)
provides an active learning framework targeted at
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Name Active Learning Code

QS SC Text GPU Unit Language License Last Reposi-
Focus support Tests Update tory

JCLAL1 18 2 é é é Java GPL 2017 �
libact2 19 - é é Ë Python BSD-2-Clause 2021 �
modAL3 12 - é Ë Ë Python MIT 2022 �
ALiPy4 22 4 é é Ë Python BSD-3-Clause 2022 �
BaaL5 9 - é Ë Ë Python Apache 2.0 2023 �
lrtc6 7 - Ë Ë é Python Apache 2.0 2021 �
scikit-activeml7 29 - é Ë Ë Python BSD-3-Clause 2023 �
ALToolbox8 19 - Ë Ë Ë Python MIT 2023 �

small-text 14 5 Ë Ë Ë Python MIT 2023 �

Table 1: Comparison between small-text and relevant previous active learning libraries. We ab-
breviated the number of query strategies by “QS”, the number of stopping criteria by “SC”, and the
low-resource-text-classification framework by lrtc. All information except “Publication Year” and “Code
Repository” has been extracted from the linked GitHub repository of the respective library on February 24th, 2023.
Random baselines were not counted towards the number of query strategies. Publications: 1Reyes et al. (2016),
2Yang et al. (2017), 3Danka and Horvath (2018), 4Tang et al. (2019), 5Atighehchian et al. (2020), 6Ein-Dor et al.
(2020), 7Kottke et al. (2021), 8Tsvigun et al. (2022).

the experimental active learning setting. Apart
from providing 22 query strategies, it supports al-
ternative active learning settings, e.g., active learn-
ing with noisy annotators. The low-resource-
text-classification-framework (lrtc; (Ein-
Dor et al., 2020)) is an experimentation framework
for the low resource scenario and supports which
can be easily extended. It also focuses on text
classification and has a number of built-in mod-
els, datasets, and query strategies to perform ac-
tive learning experiments. Another recent library
is scikit-activeml which offers general active
learning built around scikit-learn. It comes
with 29 query strategies but provides no stopping
criteria. GPU-based functionality can be used via
skorch,2 a PyTorch wrapper, which is a ready-to-
use adapter as opposed to our implemented clas-
sifier structures but is on the other hand restricted
to the scikit-learn interfaces. ALToolbox (Tsvi-
gun et al., 2022) is an active learning framework
that provides an annotation interface and a bench-
marking mechanism to develop new query strate-
gies. While it has some overlap with small-text,
it is not a library, but also focuses on text data,
namely on text classification and sequence tagging.

In Table 1, we compare small-text to the pre-
viously mentioned libraries, and compare them
based on several criteria related to active learning
or to the respective code base: While all libraries
provide a selection of query strategies, not all li-

2We also evaluated the use of skorch but transformer mod-
els were not supported at that time.

braries offer stopping criteria, which are crucial
to reducing the total annotation effort and thus di-
rectly influence the efficiency of the active learning
process (Vlachos, 2008; Laws and Schütze, 2008;
Olsson and Tomanek, 2009). We can also see a
difference in the number of provided query strate-
gies. While a higher number of query strategies
is certainly not a disadvantage, it is more impor-
tant to provide the most relevant strategies (either
due to recency, domain-specificity, strong general
performance, or because it is a baseline). Based
on these criteria, small-text provides numerous
recent strategies such as BADGE (Ash et al., 2020),
BERT K-Means (Yuan et al., 2020), and contrastive
active learning (Margatina et al., 2021), as well
as the gradient-based strategies by Zhang et al.
(2017), where the latter are unique to active learn-
ing for text classification. Selecting a subset of
query strategies is especially important since active
learning experiments are computationally expen-
sive (Margatina et al., 2021; Schröder et al., 2022),
and therefore not every strategy can be tested in the
context of an experiment or application. Finally,
only small-text, lrtc, and ALToolbox focus on
text, and only about half of the libraries offer access
to GPU-based deep learning, which has become
indispensable for text classification due to the re-
cent advances and ubiquity of transformer-based
models (Vaswani et al., 2017; Devlin et al., 2019).

The distinguishing characteristic of small-text
is the focus on text classification, paired with a
multitude of interchangeable components. It of-
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Dataset Name (ID) Type Classes Training Test

AG’s News1 (AGN) N 4 120,000 ?7,600
Customer Reviews2 (CR) S 2 3,397 378
Movie Reviews3 (MR) S 2 9,596 1,066
Subjectivity4 (SUBJ) S 2 9,000 1,000
TREC-65 (TREC-6) Q 6 5,500 ?500

Table 2: Key characteristics about the examined
datasets: 1Zhang et al. (2015), 2Hu and Liu (2004),
3Pang and Lee (2005), 4Pang and Lee (2004), 5Li and
Roth (2002). The dataset type was abbreviated by N
(News), S (Sentiment), Q (Questions). ?: Predefined
test sets were available and adopted.

fers the most comprehensive set of features (as
shown in Table 1) and through the integrations
these components can be mixed and matched to
easily build numerous different active learning se-
tups, with or without leveraging the GPU. Finally,
it allows to use concepts from natural language pro-
cessing (such as transformer models) and provides
query strategies unique to text classification.

6 Experiment

We perform an active learning experiment com-
paring an SBERT model trained with the recent
sentence transformers fine-tuning paradigm (Set-
Fit; (Tunstall et al., 2022)) over a BERT model
trained with standard fine-tuning. SetFit is a con-
trastive learning approach that trains on pairs of
(dis)similar instances. Given a fixed amount of dif-
ferently labeled instances, the number of possible
pairs is considerably higher than the size of the
original set, making this approach highly sample
efficient (Chuang et al., 2020; Hénaff, 2020) and
therefore interesting for active learning.

Setup We reproduce the setup of our previous
work (Schröder et al., 2022) and evaluate on the
datasets shown in Table 2 with an extended set of
query strategies. Starting with a pool-based ac-
tive learning setup with 25 initial samples, we per-
form 20 queries during each of which 25 instances
are queried and labeled. Since SetFit has only
been evaluated for single-label classification (Tun-
stall et al., 2022), we focus on single-label clas-
sification as well. The goal is to compare the
following two models: (i) BERT (bert-large-
uncased; (Devlin et al., 2019)) with 336M param-
eters and (ii) SBERT (paraphrase-mpnet-base-
v2; (Reimers and Gurevych, 2019)) with 110M pa-
rameters. The first model is trained via vanilla fine-
tuning and the second using SetFit. For the sake of

Model Strategy Rank Result

Acc. AUC Acc. AUC

BERT PE 2.20 2.80 0.917 0.858
BT 1.40 1.60 0.919 0.868
LC 3.80 3.20 0.916 0.863
CA 4.20 5.00 0.915 0.857
BA 3.00 5.20 0.917 0.855
BD 6.20 4.60 0.909 0.862
CS 6.60 7.60 0.910 0.843
RS 7.80 5.40 0.901 0.856

SetFit PE 2.80 3.20 0.927 0.906
BT 2.80 1.60 0.926 0.912
LC 2.20 2.60 0.927 0.908
CA 4.80 3.80 0.924 0.907
BA 5.20 6.20 0.923 0.902
BD 6.60 5.60 0.915 0.904
CS 2.80 4.40 0.927 0.909
RS 6.60 6.80 0.907 0.899

Table 3: The “Rank” columns show the mean rank
when ordered by mean accuracy (Acc.) and by area un-
der curve (AUC). The “Result” columns show the mean
accuracy and AUC. All values used in this table refer
to state after the final iteration. Query strategies are
abbreviated as follows: prediction entropy (PE), break-
ing ties (BT), least confidence (LC), contrastive ac-
tive learning (CA), BALD (BA), BADGE (BD), greedy
coreset (CS), and random sampling (RS).

brevity, we refer to the first as “BERT” and to the
second as “SetFit”. To compare their performance
during active learning, we provide an extensive
benchmark over multiple computationally inexpen-
sive uncertainty-based query strategies, which were
selected due to encouraging results in our previous
work. Moreover, we include BALD, BADGE, and
greedy coreset—all of which are computationally
more expensive, but have been increasingly used in
recent work (Ein-Dor et al., 2020; Yu et al., 2022).

Results In Table 3, the results show the summa-
rized classification performance in terms of (i) fi-
nal accuracy after the last iteration, and (ii) area
under curve (AUC). We also compare strategies
by ranking them from 1 (best) to 8 (worst) per
model and dataset by accuracy and AUC. First,
we can also confirm for SetFit the earlier finding
that uncertainty-based strategies perform strong for
BERT (Schröder et al., 2022). Second, SetFit con-
figurations result in between 0.06 and 1.7 percent-
age points higher mean accuracy, and also in be-
twen 4.2 and 6.6 higher AUC when averaged over
model and query strategy. Interestingly, the greedy
coreset strategy (CS) is remarkably more success-
ful for the SetFit runs compared to the BERT runs.
Detailed results per configuration can be found
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Figure 3: An exemplary learning curve showing the dif-
ference in test accuracy for breaking ties strategy on the
TREC dataset, comparing BERT and SetFit. The tubes
represent the standard deviation across five runs.

in the appendix, where it can be seen that SetFit
reaches higher accuracy scores in most configura-
tions, and better AUC scores in all configurations.

Discussion When trained with the new SetFit
paradigm, models having only a third of the param-
eters compared to the large BERT model achieve
results that are not only competitive, but slightly
better regarding final accuracy and considerably
better in terms of AUC. Since the final accuracy
values are often within one percentage point or less
to each other, it is obvious that the improvement in
AUC stems from improvements in earlier queries,
i.e. steeper learning curves. We suspect that this
is at least partly owed to sample efficiency from
SetFit’s training that uses pairs of instances. More-
over, this has the additional benefit of reducing
instability of transformer models (Mosbach et al.,
2021) as can be exemplarily seen in Figure 3. This
increasingly occurs when the training set is small
(Mosbach et al., 2021), which is likely alleviated
with the additional instance pairs. On the other
hand, training cost increase linearly with the num-
ber of pairs per instance. In the low-data regime,
however, this is a manageable additional cost that
is worth the benefits.

7 Library Adoption

As recent publications have already adopted small-
text, we present four examples which have already
successfully utilized it for their experiments.

Abusive Language Detection Kirk et al. (2022)
investigated the detection of abusive language
using transformer-based active learning on six
datasets of which two exhibited a balanced and
four an imbalanced class distribution. They evalu-

ated a pool-based binary active learning setup, and
their main finding is that, when using active learn-
ing, a model for abusive language detection can be
efficiently trained using only a fraction of the data.

Classification of Citizens’ Contributions In or-
der to support the automated classification of Ger-
man texts from online citizen participation pro-
cesses, Romberg and Escher (2022) used active
learning to classify texts collected by three cities
into eight different topics. They evaluated this real-
world dataset both as a single- and multi-label ac-
tive learning setup, finding that active learning can
considerably reduce the annotation efforts.

Softmax Confidence Estimates Gonsior et al.
(2022) examined several alternatives to the soft-
max function to obtain better confidence estimates
for active learning. Their setup extended small-text
to incorporate additional softmax alternatives and
found that confidence-based methods mostly se-
lected outliers. As a remedy to this they proposed
and evaluated uncertainty clipping.

Revisiting Uncertainty-Based Strategies In a
previous publication, we reevaluated traditional
uncertainty-based query strategies with recent
transformer models (Schröder et al., 2022). We
found that uncertainty-based methods can still be
highly effective and that the breaking ties strategy
is a drop-in replacement for prediction entropy.

Not only have all of these works successfully ap-
plied small-text to a variety of different problems,
but each work is also accompanied by a GitHub
repository containing the experiment code, which
is the outcome we had hoped for. We expect that
small-text will continue to gain adoption within
the active learning and text classification commu-
nities, so that future experiments will increasingly
rely on it by both reusing existing components and
by creating their own extensions, thereby support-
ing the field through open reproducible research.

8 Conclusion

We introduced small-text, a modular Python li-
brary, which offers state-of-the-art active learning
for text classification. It integrates scikit-learn,
PyTorch, and transformers, and provides robust
components that can be mixed and matched to
quickly apply active learning in both experiments
and applications, thereby making active learning
easily accessible to the Python ecosystem.
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Limitations

Although a library can, among other things, lower
the barrier of entry, save time, and speed up re-
search, this can only be leveraged with basic knowl-
edge of the Python programming language. All in-
cluded algorithmic components are subject to their
own limitations, e.g., the greedy coreset strategy
quickly becomes computationally expensive as the
amount labeled data increases. Moreover, some
components have hyperparameters which require
an understanding of the algorithm to achieve the
best classification performance. In the end, we pro-
vide a powerful set of tools which still has to be
properly used to achieve the best results.

As small-text covers numerous text classifica-
tion models, query strategies, and stopping criteria,
some limitations from natural language processing,
text classification and active learning apply as well.
For example, all included classification models rely
on tokenization, which is inherently more difficult
for languages which have no clear word boundaries
such as Chinese, Japanese, Korean, or Thai.

Ethics Statement

In this paper, we presented small-text, a library
which can—like any other software—be used for
good or bad. It can be used to bootstrap classifi-
cation models in scenarios where no labeled data
is available. This could be used for good, e.g. for
spam detection, hatespeech detection, or targeted
news filtering, but also for bad, e.g., for creating
models that detect certain topics that are to be cen-
sored in authoritarian regimes. While such sys-
tems already exist and are of sophisticated quality,
small-text is unlikely to change anything at this
point. On the contrary, being open-source soft-
ware, these methods can now be used by a larger
audience, which contributes towards the democrati-
zation of classification algorithms.
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Supplementary Material

A Technical Environment

All experiments were conducted within a Python
3.8 environment. The system had CUDA 11.1 in-
stalled and was equipped with an NVIDIA GeForce
RTX 2080 Ti (11GB VRAM).

B Experiments

Each experiment configuration represents a com-
bination of model, dataset and query strategy, and
has been run for five times.

B.1 Datasets
We used datasets that are well-known benchmarks
in text classification and active learning. All
datasets are accessible to the Python ecosystem via
Python libraries that provide fast access to those
datasets. We obtained CR and SUBJ using glu-
onnlp, and AGN, MR, and TREC using hugging-
face datasets.

B.2 Pre-Trained Models
In the experiments, we fine-tuned (i) a large
BERT model (bert-large-uncased) and (ii) an
SBERT paraphrase-mpnet-base model (sentence-
transformers/paraphrase-mpnet-base-v2). Both are
available via the huggingface model repository.

B.3 Hyperparameters
Maximum Sequence Length We set the maxi-
mum sequence length to the minimum multiple of
ten, so that 95% of the given dataset’s sentences
contain at most that many tokens.

Transformer Models For BERT, we adopt the
hyperparameters from Schröder et al. (2022). For
SetFit, we use the same learning rate and optimizer
parameters but we train for only one epoch.

C Evaluation

In Table 4 and Table 5 we report final accuracy and
AUC scores including standard deviations, mea-
sured after the last iteration. Note that results ob-
tained through PE, BT, and LC are equivalent for
binary datasets.

C.1 Evaluation Metrics
Active learning was evaluated using standard met-
rics, namely accuracy und area under the learning
curve. For both metrics, the respective scikit-learn
implementation was used.
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Dataset Model Query Strategy

PE BT LC CA BA BD CS RS

AGN BERT 0.898 0.003 0.901 0.004 0.900 0.001 0.889 0.010 0.889 0.008 0.894 0.003 0.881 0.006 0.886 0.004
SetFit 0.900 0.002 0.902 0.004 0.902 0.002 0.892 0.006 0.887 0.010 0.896 0.003 0.896 0.003 0.877 0.005

CR BERT 0.920 0.009 0.920 0.009 0.916 0.006 0.917 0.010 0.919 0.010 0.911 0.010 0.915 0.012 0.902 0.014
SetFit 0.937 0.014 0.937 0.014 0.937 0.014 0.938 0.009 0.934 0.004 0.913 0.011 0.939 0.011 0.912 0.010

MR BERT 0.850 0.005 0.850 0.005 0.846 0.008 0.844 0.008 0.859 0.003 0.835 0.017 0.843 0.006 0.831 0.020
SetFit 0.871 0.009 0.871 0.009 0.871 0.009 0.869 0.004 0.867 0.005 0.864 0.008 0.870 0.008 0.871 0.003

SUBJ BERT 0.959 0.005 0.959 0.005 0.958 0.003 0.958 0.008 0.959 0.003 0.948 0.006 0.957 0.004 0.937 0.006
SetFit 0.962 0.004 0.962 0.004 0.962 0.004 0.960 0.002 0.966 0.002 0.942 0.002 0.963 0.003 0.932 0.005

TREC-6 BERT 0.960 0.002 0.966 0.003 0.960 0.008 0.965 0.006 0.958 0.007 0.958 0.009 0.952 0.015 0.947 0.009
SetFit 0.966 0.005 0.961 0.005 0.966 0.005 0.963 0.008 0.961 0.005 0.958 0.005 0.967 0.004 0.946 0.009

Table 4: Final accuracy per dataset, model, and query strategy. We report the mean and standard deviation over
five runs. The best result per dataset is printed in bold. Query strategies are abbreviated as follows: prediction
entropy (PE), breaking ties (BT), least confidence (LC), contrastive active learning (CA), BALD (BA), BADGE
(BD), greedy coreset (CS), and random sampling (RS). The best result per dataset is printed in bold.

Dataset Model Query Strategy

PE BT LC CA BA BD CS RS

AGN BERT 0.827 0.009 0.839 0.014 0.836 0.009 0.821 0.015 0.819 0.012 0.840 0.003 0.804 0.012 0.825 0.011
SetFit 0.881 0.002 0.889 0.003 0.885 0.005 0.879 0.004 0.869 0.006 0.881 0.002 0.881 0.003 0.867 0.004

CR BERT 0.885 0.007 0.885 0.007 0.881 0.007 0.881 0.011 0.882 0.006 0.876 0.005 0.874 0.011 0.877 0.011
SetFit 0.925 0.001 0.925 0.001 0.925 0.001 0.927 0.003 0.924 0.005 0.910 0.005 0.930 0.002 0.908 0.008

MR BERT 0.819 0.010 0.819 0.010 0.820 0.007 0.813 0.009 0.817 0.013 0.808 0.011 0.804 0.010 0.813 0.004
SetFit 0.859 0.004 0.859 0.004 0.859 0.004 0.859 0.003 0.858 0.004 0.855 0.002 0.858 0.004 0.857 0.002

SUBJ BERT 0.944 0.008 0.944 0.008 0.943 0.007 0.940 0.009 0.939 0.009 0.929 0.005 0.934 0.006 0.924 0.007
SetFit 0.953 0.002 0.953 0.002 0.953 0.002 0.952 0.003 0.950 0.002 0.940 0.003 0.949 0.001 0.935 0.002

TREC-6 BERT 0.818 0.033 0.855 0.023 0.837 0.034 0.829 0.030 0.816 0.029 0.856 0.024 0.799 0.037 0.843 0.008
SetFit 0.910 0.008 0.934 0.005 0.919 0.008 0.917 0.013 0.907 0.017 0.934 0.010 0.927 0.008 0.927 0.004

Table 5: Final area under curve (AUC) per dataset, model, and query strategy. We report the mean and standard
deviation over five runs. The best result per dataset is printed in bold. Query strategies are abbreviated as follows:
prediction entropy (PE), breaking ties (BT), least confidence (LC), contrastive active learning (CA), BALD (BA),
BADGE (BD), greedy coreset (CS), and random sampling (RS). The best result per dataset is printed in bold.

D Library Adoption

As mentioned in Section 7, the experiment code of
previous works documents how small-text was
used and can be found at the following locations:

• Abusive Language Detection:
https://github.com/HannahKirk/ActiveTran
sformers-for-AbusiveLanguage

• Classification of Citizens’ Contributions:
https://github.com/juliaromberg/egov-2022

• Softmax Confidence Estimates:
https://github.com/jgonsior/btw-softmax-cl
ipping

• Revisiting Uncertainty-Based Strategies:
https://github.com/webis-de/ACL-22
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Abstract

In this paper, we present kogito, an open-
source tool for generating commonsense in-
ferences about situations described in text.
kogito provides an intuitive and extensible
interface to interact with natural language gen-
eration models that can be used for hypothesiz-
ing commonsense knowledge inference from
a textual input. In particular, kogito offers
several features for targeted, multi-granularity
knowledge generation. These include a stan-
dardized API for training and evaluating knowl-
edge models, and generating and filtering in-
ferences from them. We also include helper
functions for converting natural language texts
into a format ingestible by knowledge models
— intermediate pipeline stages such as knowl-
edge head extraction from text, heuristic and
model-based knowledge head-relation match-
ing, and an ability to define and use custom
knowledge relations. We make the code for
kogito available at https://github.com/epfl-
nlp/kogito along with thorough documentation
at https://kogito.readthedocs.io.

1 Introduction

In recent years, large-scale language models (Rad-
ford and Narasimhan, 2018; Devlin et al., 2019;
Brown et al., 2020) trained on massive amounts of
text have been conceptualized as implicit knowl-
edge bases that encode knowledge about the world
(Petroni et al., 2019; Roberts et al., 2020). As they
are trained to receive natural language inputs, these
models can be prompted to generate text that ex-
presses a fact. Leveraging this property, knowlege
models train on knowledge graph tuples (triplets
of head entity, relation, tail entity) and learn to
express knowledge encoded in the parameters of
language models when provided with a head entity
and relation (Bosselut et al., 2019; Hwang et al.,
2021; Da et al., 2021; West et al., 2022).

The success of these knowledge models has in-
spired the field to deploy them in various down-

stream use-cases such as generating figurative lan-
guage (Chakrabarty et al., 2020b), producing sar-
castic responses (Chakrabarty et al., 2020a), design-
ing plots for stories (Ammanabrolu et al., 2021) and
text-based games (Dambekodi et al., 2020), and
developing persona-grounded dialogue agents (Ma-
jumder et al., 2020). Given the prevalence of appli-
cations that benefit from augmenting NLP systems
with commonsense inferences, we present a novel
commonsense KnOwledGe Inference TOolkit,
kogito, that standardizes commonsense infer-
ence generation from knowledge models. To the
best of our knowledge, kogito is the first library
that facilitates access to knowledge models through
an easy-to-use, customizable interface. In particu-
lar, we make the following contributions:

1. A Python package1 for knowledge inference
with a customizable and extensible API.

2. A module to perform commonsense infer-
ence with a library of pretrained models, in-
cluding GPT-2 (Radford et al., 2019), GPT-3
(Brown et al., 2020) and COMET (Hwang
et al., 2021).

3. A standardized interface to train, evaluate and
predict with knowledge models.

4. Modules to extract relevant candidates for
commonsense inference (i.e., head extraction)
with support for customization and extension.

5. Modules to match relevant relations to ex-
tracted head entities (i.e., relation matching)
with support for customization and extension.

6. A module to filter commonsense inferences
based on their contextual relevance using com-
monsense fact linkers (Gao et al., 2022)

7. Functionality to define novel knowledge re-
lations on top of the built-in ATOMIC2020

1https://pypi.org/project/kogito/
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(Hwang et al., 2021) and ConceptNet (Speer
and Havasi, 2013) relation sets.

8. Extensive documentation with User Guides
and API Reference.2

The library is released under the Apache 2.0 Li-
cense. We provide a demo video3 for our library
along with a live demo app.4 Below, we outline
the commonsense inference challenges addressed
by this tool, its core design, and walk through its
major components in more detail.

2 Challenges of Commonsense Inference

While many works use knowledge models as com-
monsense inference engines to augment natural lan-
guage inputs, no work has formalized the pipeline
for producing such inferences. Here, we outline the
challenges of effectively setting up this pipeline.

Head Extraction Head extraction (i.e., finding
relevant concepts to produce commonsense infer-
ences about) is a consistent challenge when us-
ing knowledge models. Typically, these inferences
must be produced for more fine-grained textual
units than full contexts (Bosselut et al., 2021).
For instance, to understand figurative language,
Chakrabarty et al. (2020b) extract concepts from
similes such as "Love is like a unicorn". Com-
monsense inferences are generated about entities
such as "unicorn" (e.g., unicorns are rare, beautiful,
etc.), allowing them to produce literal interpreta-
tions of this figurative language: "Love is rare".
This use case motivates a need for fine-grained text
extraction functionality in our tool. In Section 5,
we outline our approach to address this challenge.

Relation Matching To generate commonsense
inferences, knowledge models typically take as in-
put a (head, relation) pair and produce a tail (i.e.,
the commonsense inference about the head entity).
Following this convention, once we have extracted
candidate heads from a given text, they must be
paired with relevant relations to produce valid com-
monsense inferences. For example, a head entity
such as “go to mall” should not be paired with an
ObjectUse relation as it is unlikely to produce a
valid (and practical) commonsense inference. Con-
sequently, a brute-force approach of matching all

2https://kogito.readthedocs.io/
3https://www.youtube.com/watch?v=

rFGzDrLCx00
4https://kogito.live

relations to presented head entities would be in-
adequate for most use cases. Current works often
circumvent this challenge by manually selecting
only a subset of available knowledge relations. As
part of kogito, we implement various heuristic
and model-based matching schemes to address this
challenge, while also providing users with the abil-
ity to define their own matching mechanisms. We
discuss these implementations in Section 6.

Inference Generation & Filtering Once a list
of relevant (head, relation) pairs is produced, we
run these examples through a knowledge model to
generate tail entities about these examples. How-
ever, many of these generated inferences may
not be relevant to the original context, particu-
larly for extracted head entities that have been de-
contextualized. kogito leverages a model-based
approach (Gao et al., 2022) to filter out irrelevant
commonsense generations. While other works re-
implement pipelines for performing these steps,
kogito offers an all-in-one solution.

3 kogito: A Pipeline for Commonsense
Inference

kogito is a pipeline for commonsense inference
from text and supports various steps to specialize
and customize inference behaviour. At full func-
tionality, given a text input, kogito extracts rel-
evant knowledge heads from textual inputs, and
matches these heads to plausible knowledge rela-
tions, thereby constructing an incomplete knowl-
edge graph of (head, relation) prompts. Then, this
partial graph is input to a knowledge model to gen-
erate tails to complete the graph. Finally, these
commonsense inferences (comprised of the head,
relation, and tail) are filtered based on their rele-
vance to the initial context. Below we provide a
simple example of how this module can be used to
generate commonsense inferences for the example
"PersonX becomes a great basketball player":

from kogito.models.bart.comet import COMETBART
from kogito.inference import CommonsenseInference

# Load pre-trained model from HuggingFace
model = COMETBART

.from_pretrained("mismayil/comet-bart-ai2")

# Initialize inference module
csi = CommonsenseInference()

# Run inference
text = "PersonX becomes a great basketball player"
kgraph = csi.infer(text, model)

# Save output knowledge graph to JSON file
kgraph.to_jsonl("kgraph.json")
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The resulting knowledge graph from the code
above contains inferences such as "PersonX needs
to practice a lot" and "PersonX is athletic". Various
parts of this pipeline can be customized and mod-
ified, allowing users to define their own modules.
In the following sections, we discuss kogito’s
core design, as well as the head extraction, relation
matching, and inference filtering components of
the pipeline. More details on these configuration
options can be found in the kogito documentation.

4 Data Representation

To allow for standardization and ease of mainte-
nance, kogito defines an interface to represent
core concepts such as a knowledge tuple, a common-
sense knowledge graph, and a knowledge model.

Commonsense Knowledge Tuple Common-
sense knowledge graphs (Speer and Havasi, 2013;
Hwang et al., 2021) and knowledge models (Bosse-
lut et al., 2019) typically represent instances of
knowledge as tuples of 3 elements: (head, relation,
tail). The head entity refers to the subject of a
piece of knowledge (e.g., objects such as hammer;
events such as "PersonX becomes a great basket-
ball player"). A relation provides an implicit ques-
tion about the head (e.g., CapableOf→ what is
this head entity capable of?; xNeed→ What does
PersonX need before this event occurs?). Finally,
tail entities provide an answer option (among po-
tentially many) to the relation with respect to the
head (e.g., put nail in wood; to practice hard). We
often refer to the tail as the commonsense inference
about the head.

Following this convention, we define a class with
these elements and an additional two classes for
knowledge head and relation representation. While
knowledge heads and tails can be arbitrary text, we
use predefined relations from the ATOMIC2020
(Hwang et al., 2021) and ConceptNet (Speer and
Havasi, 2013) knowledge graphs.5 Below is an
example of defining a knowledge tuple in kogito:

from kogito.core.head import KnowledgeHead
from kogito.core.knowledge import Knowledge
from kogito.core.relation import X_NEED

head = KnowledgeHead("PersonX becomes a great
"basketball player")

kg = Knowledge(head=head, relation=X_NEED,
tails=["practice hard"])

Knowledge Graph In addition to individual
knowledge tuples, we also define a knowledge

5kogito also supports defining new custom relations and
using them to generate commonsense inferences (§8)

graph as a collection of knowledge tuples. In
kogito, a knowledge graph serves as the stan-
dardized input object to (and output from) knowl-
edge models, and has a simple API to manipulate
knowledge instances collectively. In particular, a
knowledge graph can be used to easily iterate over,
read, and write a collection of knowledge instances
to and from various files, and perform set-like oper-
ations on multiple knowledge graphs. These opera-
tions require a notion of equality, so we define two
knowledge instances to be equal if they have the
same head, relation and tail. Below is an example
of defining and manipulating knowledge graphs:

from kogito.core.knowledge import KnowledgeGraph

# Read from csv
kgraph1 = KnowledgeGraph

.from_csv("sample_graph1.csv",
sep="|", header=None)

# Read from jsonl (list of json objects)
kgraph2 = KnowledgeGraph

.from_jsonl("sample_graph2.jsonl",
head_attr="source",
relation_attr="rel",
tails_attr="targets")

# Union
# kgraph1.union(kgraph2)
kgraph3 = kgraph1 + kgraph2

# Intersection
# kgraph1.intersection(kgraph2)
kgraph3 = kgraph1 & kgraph2

# Difference
# kgraph1.difference(kgraph2)
kgraph3 = kgraph1 - kgraph2

# Write to jsonl
kgraph3.to_jsonl("sample_graph3.jsonl")

Knowledge Model Knowledge models concep-
tually accept as input a (head, relation) pair and
output an inferred knowledge tail. However, these
models can sometimes expect a subtly different for-
mats for these inputs and outputs. To increase the
extensibility and interoperability of our tool, so that
users can easily substitute one knowledge model
for another, we define a model-agnostic abstraction
over possible types of knowledge models. Conse-
quently, knowledge models inherit from an abstract
interface that defines core abstract methods, which
users can implement to port new knowledge mod-
els into kogito. The knowledge model interface
provides methods to train, generate from, evaluate
these models, as well as save and load them. The
input dataset for training, generating, or evaluat-
ing is given as a knowledge graph and the output
dataset (in the case of generation) is returned as a
knowledge graph.
kogito currently offers the following knowl-

edge models: COMET-BART and COMET-GPT2
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from Hwang et al. (2021), GPT2-zeroshot (Rad-
ford et al., 2019), and GPT3-zeroshot (Brown et al.,
2020). Pre-trained COMET models can be loaded
either from HuggingFace6 by name or from local
disk by model path. The GPT-3 model requires
an API key. Each model method supports cus-
tomization of various model-specific hyperparame-
ters. kogito currently evaluates models using the
following metrics: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Lavie and Agar-
wal, 2007), CIDEr (Vedantam et al., 2015) and
BERTScore (Zhang et al., 2019).

Pipeline Design In the following sections, we
discuss the head extraction, relation matching, and
inference filtering components of this pipeline. We
note that we provide a “dry-run” mode which al-
lows for faster iteration on head extraction and
relation matching by skipping the inference gener-
ation portion of kogito’s pipeline. More details
on these configuration options can be found in the
kogito docs.

5 Head Extraction

Head extraction refers to finding relevant chunks
of a text in a sequence that can serve as knowledge
heads (i.e., the concepts commonsense inferences
should be generated about). For example, given
a text input "PersonX becomes a great basketball
player", we might be interested in generating infer-
ences for the full sentence, but also about entities
such as "basketball player", "basketball", or poten-
tially "become player". For different applications,
different sets of head entities might be appropriate
for generating inferences. Consequently, kogito
allows the user to customize this behaviour and
define arbitrary head extraction methods.7

At the same time, by default, kogito comes
with a few standard head extraction methods. These
built-in methods segment sentences, and then ex-
tract noun phrases (NP) and verb phrases (VP) us-
ing dependency parses produced from spaCy.8 Ex-
tracted heads are deduplicated using string match-
ing and passed onto the next stage of the pipeline,
relation matching. We note that the head extraction
stage itself is optional and the user can also provide
a dedicated list of heads to kogito, which would
replace the pre-processing of head entities.

6https://huggingface.co/models
7https://tinyurl.com/head-extraction
8https://spacy.io/

6 Relation Matching

Not all relations that a knowledge model is trained
with will be relevant to each extracted head. For ex-
ample, a head entity, "hammer", would ideally be
match to a relation such as AtLocation, while
a relation such as xWants (i.e., what does this
head entity want) would not be matched. Similarly,
"PersonX becomes a basketball player" might be
matched to a relation such as xIntent (i.e., what
is the intent of the main persona in the head entity),
while a relation such as UsedFor (i.e., what is
the head entity used for) would yield an incoher-
ent inference. In this next stage, kogito matches
relations to the given head input so that the result-
ing (head, relation) pair constitutes a sensible and
plausible prompt for the knowledge model.
kogito supports relation matching as a pre-

processing step before generating inferences. Suit-
able relation matches may be subjective depending
on the use case, so kogito supports specifying
subsets of relations and creation of custom relation
matching modules developed by the user.9

In addition, kogito also provides native rela-
tion matching algorithms. These relation matchers
follow the categorization of relations set out by
Hwang et al. (2021), where relations were mapped
into three categories: Physical, Social and Event
types. Following this standard, we design relation
matchers that identify a given head with whether
it should be connected to the Physical, Social or
Event categories, and match all relations in these
categories to the head entity. Below, we describe
three relation matching methods provided as part
of kogito’s core library:

Base Matcher Every relation defined for a
knowledge graph is matched to the head entities.
This matcher is particularly useful if the user pre-
defines a set of acceptable known relations or if
they define new relations for their use case (§8).

Heuristic matcher The heuristic relation
matcher matches extracted head entities that are
noun phrases to ATOMIC2020 Physical relations
and extracted head entities that are sentences or
verb phrases to Social and Event relations. In our
example, "PersonX becomes a great basketball
player", an extracted verb phrase such as "become
player" would be matched to the Social and
Event relations, while the extracted noun phrase

9https://tinyurl.com/relation-matching
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Dataset ntrain ntest Overlap
Original 36,940 6,559 0.80 / 0.81

D4 40,395 1,192 0.30 / 0.36
D2 40,516 1,071 0.20 / 0.27
D0 40,777 810 0.00 / 0.11

Table 1: Summary of Relation Matching datasets. The
overlap column reports the degree of overlap with /
without stopwords included.

"basketball player" would be matched to the
Physical relations.

6.1 Model-based relation matching

The above matchers do not consider the semantic
meaning of the head entities when matching them
to relations. We also define model-based matchers
that learn which heads and relations would be good
matches. Relation matching is modeled as a clas-
sification problem. A head entity is given as input,
and the model must determine the relation groups
that match: Physical, Social and Event.

Dataset We use the ATOMIC2020 knowledge
graph to train and evaluate the model-based rela-
tion matchers. First, we construct a dataset where
the inputs are head entities and the label space cor-
responds to the three relation groups. If a head
entity in the knowledge graph is connected to a
relation from a particular group, we treat that re-
lation group as a positive label for the head entity.
As relations from multiple relation groups may be
connected to a head entity, this labeling yields a
multi-label prediction problem.

To evaluate the performance of our relation
matchers (and test their generalization so they may
be applicable to a broad scope of use cases), we
split our dataset into both an in-distribution (ID)
and an out-of-distribution (OOD) evaluation sam-
ple set. For the ID test set, we use the original
ATOMIC2020 development set. For the OOD
test set, we combine the train and test set of
ATOMIC2020 and resplit this joint dataset while
minimizing the word overlap between the train and
test set. More specifically, we prepare 3 sets of
(train, test) splits called D0, D2 and D4 where n
in Dn is defined as the maximum number of times
a word in a particular test set example can occur
in the training dataset (excluding stopwords). A
bigger n indicates more overlap between these two
sets. In D0, the test set does not have any overlap-

Split Head Entity Labels
Train PersonX acts funny event, social
Train accordion physical
Train big investment event
Test agenda physical
Test PersonX wreaks havoc event, social
Test PersonX motivates PersonY social

Table 2: Samples from resplit train and test set D0

ping non-stopwords with the training set. Finally,
we ensure that the resulting test set is balanced over
each relation group. Table 1 provides the summary
of the constructed datasets and Table 2 lists some
examples from the D0 dataset.

Models We report results for fine-tuned models
using different pretrained embeddings: GloVe (Pen-
nington et al., 2014), BERT (Devlin et al., 2019)
and DistilBERT (Sanh et al., 2019). The GloVe
model uses the technique of Shen et al. (2018) with
average pooling over 100 dimensional GloVe em-
beddings and a projection layer on top. The BERT
and DistilBERT models are finetuned on the task
with a projection layer to predict the label.10 These
models are provided with kogito, and can be
selected to match relations to head inputs.

In Table 3, we report the train, ID test and OOD
test F1 scores for these models using different train-
ing datasets Dn, allowing users to understand their
relative benefits and trade-offs.

7 Inference Filtering

By default, the commonsense inference module
returns all generated tails without any filtering
applied. However, many of these resulting in-
ferences may be irrelevant to the initial context,
particularly for extracted heads that have been de-
contextualized. Given most users may only be in-
terested in relevant subsets of these commonsense
inferences, kogito provides a separate module
to determine the relevance of the given knowledge
tuples with respect to the initial context from which
it was extracted. In our running example, "Per-
sonX becomes a great basketball player", an ex-
tracted head entity "player" may yield contextually-
irrelevant inferences such as "player plays video
games" and "player is at a soccer match", which

10All models are trained using binary cross-entropy loss
and the Adam optimizer (Kingma and Ba, 2015) for 20 (for
SWEM models) and 3 (for BERT and DistilBERT models)
epochs with a batch size of 64.
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Data Model Train F1 ID F1 OOD F1

D4

Base 0.68 0.82 0.62
Heuristic 0.84 0.80 0.69
GloVe 0.90 0.91 0.82
DistilBERT 0.97 0.91 0.85
BERT 0.97 0.91 0.86

D2

Base 0.68 0.82 0.61
Heuristic 0.84 0.80 0.69
GloVe 0.89 0.90 0.81
DistilBERT 0.97 0.93 0.85
BERT 0.97 0.94 0.86

D0

Base 0.68 0.82 0.63
Heuristic 0.84 0.80 0.73
GloVe 0.89 0.90 0.76
DistilBERT 0.97 0.93 0.84
BERT 0.97 0.91 0.85

Table 3: Relation matcher performance on datasets Dn

would be filtered.
To filter inferences, kogito comes with the off-

the-shelf DeBERTa-based commonsense fact link-
ing model from Gao et al. (2022), which achieved
a state-of-the-art average 72.5% F1 across multiple
benchmarks. However, our setting is different from
the one evaluated in Gao et al. (2022) as we evalu-
ate generated commonsense inferences (rather than
ones from an existing KB) for contextual relevance.
To evaluate how well our method transfers to this
new setting, we perform an expert study on the
performance of the inference filtering model with
respect to the knowledge generated from a knowl-
edge model such as COMET. We randomly select
50 instances from the test split of ROC-ATOMIC
dataset Gao et al. (2022) where each instance is
composed of a context and a fact as a knowledge
tuple (head, relation, tail). We then run the de-
fault kogito inference pipeline (with full head
extraction and heuristic relation matching) on the
heads which produces several inferences per head
instance. We select 100 results randomly from the
output of the previous step and apply our inference
filtering model. Finally, we ask a human expert to
annotate each instance with the true relevance label
of the fact and find that our model achieves a 75%
F1 on the knowledge model generated inferences.
We also offer a modular interface to define and plug
in new filtering models in the future.

8 Defining New Relations

In previous knowledge modeling papers (Bosselut
et al., 2019; Hwang et al., 2021), the set of rela-

tions that can be used in prompts is limited by the
knowledge graph used to to train the knowledge
model (e.g., ATOMIC2020). However, a user may
want to generate inferences for new dimensions of
knowledge, define their own custom relations for
them, and produce commonsense inferences based
on these new properties. However, if there are no
large KGs that use this schema, training a suitable
knowledge model would pose a challenge.

kogito provides this functionality by imple-
menting the approach of West et al. (2022), which
allows a user to prompt large language models for
knowledge using custom relations and has been
shown to generate high-quality knowledge. Specif-
ically, a user defines an instance of a knowledge
relation class, a verbalizer function that describes
how to convert the new relation into a natural lan-
guage prompt (with a head and tail), and an instruc-
tion prompt to GPT-3. At inference time, the user
provides a list of sample knowledge tuples that use
the new relation. These tuples are verbalized using
the verbalizer function and provided to the GPT-3
model along with the instruction prompt. Below,
we illustrate this process with an example where a
new relation, xWishes, which describes person’s
wishes, is defined using the sample code:

from kogito.core.relation import (KnowledgeRelation,
register_relation)

def x_wishes_verbalizer(head, **kwargs):
# index will be passed from the model
# so that we can enumerate samples
# which helps with inference
index = kwargs.get("index")
index_txt = f"{index}" if index is not None \

else ""
return f"Situation {index_txt}: {head}."

"As a result, PersonX wishes"

X_WISHES = KnowledgeRelation("xWishes",
verbalizer=x_wishes_verbalizer,
prompt="How does this situation affect"

" each character's wishes?")
register_relation(X_WISHES)

Then, to use this new relation for inference, the
user can provide a sample knowledge graph (i.e.,
a prompt filled with example tuples using this
relation), and a head such as "PersonX makes a
huge mistake" to generate inferences about. Below,
we show how such a sample knowledge graph
could be verbalized into a prompt for GPT-3:
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How does the situation affect the character’s
wishes?
Situation 1: John is at a party. As a result, John
wishes to drink beer and dance
Situation 2: Terry bleeds a lot. As a result, Terry
wishes to see a doctor
Situation 3: Eileen works as a cashier. As a result,
Eileen wishes to be a store manager
Situation 4: James gets dirty. As a result, James
wishes to clean up
Situation 5: Janice stays up all night studying. As
a result, Janice wishes to sleep all day
Situation 6: Isaac makes a huge mistake. As a
result, Isaac wishes...

The result of prompting GPT-3 with the above text
is returned as the generated tail inference for the
given head. Using this approach, users can instanti-
ate a prompt defining a new relation, and use large
language models to produce inferences for it.

9 Conclusion & Future Work

In this system description, we presented kogito,
a toolkit for generating commonsense inferences
for open-world text using knowledge models.
kogito provides a foundational, customizable,
and extensible interface for inference generation
from knowledge models, and supports preprocess-
ing and manipulation utilities such as head extrac-
tion, relation matching, and relation definition.

Future work may include improved head extrac-
tion, such as semantic head extraction (e.g., para-
phrased noun phrase extraction, etc.), new relation
matching methods that more rigorously trade off
performance and latency, support for new knowl-
edge models trained on other knowledge graphs
(e.g., ANION; Jiang et al., 2021), and multimodal
inputs such as images.
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Ethical Considerations

kogito is a library that uses knowledge models
such as COMET (Bosselut et al., 2019) to generate
commonsense inferences from text. These knowl-
edge models are seeded with pretrained language
models and subsequently finetuned on knowledge
graphs so that they may generate knowledge in
the structure of the finetuning KG. Consequently,
kogito could reflect harmful behaviors exhibited
by language models and knowledge graphs that
are used to train the knowledge models in its li-
brary. For example, language models have been
shown to encode biases about race, gender, and
many other demographic attributes (Sheng et al.,
2020; Weidinger et al., 2021). They can also gen-
erate toxic outputs when prompted in overt (Wal-
lace et al., 2019), but also seemingly innocuous
(Gehman et al., 2020), ways. We encourage users
of this library to consider the same precautions they
would apply to other language models and methods
that use noisy knowledge sources.
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Abstract
While conditional generation models can now
generate natural language well enough to cre-
ate fluent text, it is still difficult to control
the generation process, leading to irrelevant,
repetitive, and hallucinated content. Recent
work shows that planning can be a useful in-
termediate step to render conditional gener-
ation less opaque and more grounded. We
present a web browser-based demonstration
for query-focused summarization that uses
a sequence of question-answer pairs, as a
blueprint plan for guiding text generation
(i.e., what to say and in what order). We illus-
trate how users may interact with the generated
text and associated plan visualizations, e.g., by
editing and modifying the blueprint in order to
improve or control the generated output.

A short video demonstrating our sys-
tem is available at https://goo.gle/
text-blueprint-demo

1 Introduction

With the advent of encoder-decoder models (Bah-
danau et al., 2014; Sutskever et al., 2014),
Transformer-based architectures (Vaswani et al.,
2017), and large-scale pretraining (Zhang et al.,
2020; Lewis et al., 2020), deep learning models
have achieved great performance on conditional
generation tasks such as summarization (Rush et al.,
2015; Nallapati et al., 2016; See et al., 2017; Liu
and Lapata, 2019) or task-oriented dialogue mod-
eling (Wen et al., 2018). However, it remains
challenging to control the text generation, as these
neural models tend to generate hallucinated (Song
et al., 2018; Maynez et al., 2020; Kryscinski et al.,
2020; Gabriel et al., 2021) or repetitive content
(Suzuki and Nagata, 2017; Li et al., 2018), and
struggle to identify which information is most rele-
vant to include in the output text (Tan et al., 2017).

Recent work shows that planning can be a useful
intermediate step to address some of these chal-
lenges (Puduppully et al., 2019; Moryossef et al.,

2019; Narayan et al., 2021, 2022). In this work,
we present Text-Blueprint, a demonstration for
showcasing the approach described in Narayan
et al. (2022), that uses a text plan, formulated
as a sequence of question-answer pairs called the
blueprint, to serve as an intermediate representa-
tion for content selection and organization of the
generated text. It draws inspiration from the “Ques-
tions Under Discussion” theory of discourse which
posits that the structure of a text can be derived by
identifying the questions that are answered by each
subsequent span of text (Carlson, 1983; Ginzburg,
1994; Van Kuppevelt, 1995; Larson, 2002; Roberts,
2012; Riester, 2019).

We implement this blueprint approach as an in-
teractive web application for query-focused sum-
marization. An example snapshot of our interface
is shown in Figure 1. As can be seen, for a given
generated summary, users can examine its corre-
sponding blueprint, modify it to make it more faith-
ful or relevant, and control its length by chang-
ing the number of question-answer pairs. Given a
query and relevant documents, there can be multi-
ple semantically-diverse summaries that meet the
communicative goal of synthesizing the most im-
portant points. Traditional generation systems do
well at single-best summaries, while our interac-
tive demonstration allows users to explore different
summaries for a given input, while directly ob-
serving the impact of changes to the plan on the
generated text. The formulation of the blueprint
plan as question-answer pairs makes it intuitive
and user-friendly (e.g., users can inspect and ask
questions without any instructions).

Our demonstration is an example of what can
be achieved with human-in-the-loop conditional
generation (Cheng et al., 2022). It allows users to
revise the output text (i.e., by editing the blueprint)
subject to their information needs. Additionally,
it allows researchers to analyze what constitutes a
good blueprint for various summarization tasks.
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Figure 1: User interface of the web browser-based Text-Blueprint demonstration showcasing the iterative model.

2 Related Work

There are several libraries for broad NLP tasks,
such as AllenNLP1 or GluonNLP2. The Language
Interpretability Tool (Tenney et al., 2020) is an
interactive platform for examining model behav-
ior, meant for rapid exploration and error analy-
sis. A variety of toolkits have been developed re-
cently that support generation tasks. For instance,
Texar (Hu et al., 2019) is an open-source platform
that unifies the development of diverse yet closely-
related applications, such as machine translation,
summarization, and dialog. TextBox (Li et al.,
2021) is a modular framework that offers inter-
faces for various common functions in text genera-
tion models, allowing researchers and practitioners
to reproduce baseline models and compare new
models. The Giant Language Model Test Room,
also known as GLTR (Gehrmann et al., 2019b),
helps users differentiate automatically-generated
text from human-written text.

For conditional generation, many demonstra-
tions are summarization systems. For instance,
Nyzam and Bossard (2019) present a modular tool
for automatic summarization. Syed et al. (2021)
showcase a visualization tool for summaries ob-
tained by different summarization methods. The
SummVis platform (Vig et al., 2021) serves a simi-

1allennlp.org
2gluon-nlp.mxnet.io

lar goal to the demonstration presented in this paper.
It enables users to visually analyze the models, data,
and evaluation metrics associated with abtractive
summarization, e.g., by highlighting hallucinated
entities in the generated text. While previous tools
and frameworks are versatile and modular, their
focus is not on empowering users with control over
the generated text in an interactive environment.

In particular, studies on human-AI interaction
for text summarization (Cheng et al., 2022; Lai
et al., 2022) show that users’ overall experience is
better when they can control the generation process.
Users preferred systems that allowed them to adjust
and see the impact of their changes on the output
directly, and the controllability improved their trust
in the system when summarizing unfamiliar topics.

Systems more geared toward interactive text
generation include chatbots such as Meena (Adi-
wardana et al., 2020) or other specialized dia-
logue systems such as ParlAI (Miller et al., 2017).
Gehrmann et al. (2019a) present an approach called
collaborative semantic inference that exposes latent
variables to the user for interactive generation. Still,
these tasks differ from conditional generation using
planning for which our demonstration is designed.

3 Summarization Using Planning

This demonstration showcases query-focused sum-
marization using planning as described in Narayan
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Figure 2: a) End-to-end and b) iterative Blueprint models. The end-to-end model generates the entire blueprint
plan before generating the output text, while the iterative model plans and generates one proposition at a time,
conditioning on the input and the sentences generated so far. Each portion of the output is color-coded with its
corresponding question-answer pair.

et al. (2022).3 In their approach, question-answer
text plans, called blueprints, serve as intermediate
representations for content selection and structur-
ing of the generated text. We implement three
Blueprint models in our demonstration, which we
briefly describe below; they are all encoder-decoder
variants instantiated from a Transformer (Vaswani
et al., 2017) architecture.

Let d denote the input to our models, which
is a user query concatenated with a document
or a set of documents relevant to this query.
From this input d, the model generates b; s, the
blueprint b and its corresponding summary s. The
blueprint itself is a sequence of question-answer
pairs {(q1, a1), (q2, a2), . . . , (qm, am)}. Existing
datasets do not contain such blueprints, they are
typically designed as (d, s) pairs. Narayan et al.
(2022) describe a suite of data enhancement meth-
ods for obtaining blueprint annotations (we refer
the interested reader to their paper for details).

3Code and checkpoints to be released at github.com/
google-research

End-to-End Model The end-to-end Blueprint
model uses an encoder-decoder model to encode
the input documents d and generate b; s, the con-
catenation of the blueprint and output text, in one
go (Figure 2a). The decoder first predicts the
blueprint b autoregressively and continues to gen-
erate the output s, conditioned on both b and d.
In particular, it predicts b as q1; a1; . . . ; qm; am, a
concatenated sequence of question-answer pairs.
In contrast to systems that use prompted encoders,
such as CTRLSum (He et al., 2020), the Blueprint
models use decoder prompting. As a consequence,
the blueprint plan is entirely generated by the
model, without human intervention or relying on
external systems. After the generation, users can in-
spect the question-answer pairs and corresponding
summary. If desired, they can then select question-
answer pairs to remove from the plan. The system
is fed the updated blueprint b′ which prompts the
decoder to generate the corresponding output s′.

Iterative Model It is generally challenging for
encoder-decoder models to generate long output
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sequences (Ko and Li, 2020; Tan et al., 2021). The
end-to-end model ultimately suffers from this prob-
lem as it aims to generate sequence b; s instead
of just s. The iterative Blueprint model mitigates
this by adopting an incremental approach that in-
terleaves planning with text generation rather than
predicting a global plan before generating the out-
put s (Figure 2b).

If we denote the output s as consisting of n sen-
tences {s1, s2, . . . , sn}, then the corresponding
blueprint b can be expressed as {b1, b2, . . . , bn},
where bi : {(qi1, ai1), (qi2, ai2), . . . , (qik, aik)} con-
sists of k question-answer pairs for sentence si.
This model iteratively plans and generates one sen-
tence at a time, conditioning on the input and the
output sentences generated so far. In particular, it
is trained such that the encoder first encodes the in-
put d, while the decoder takes the output generated
so far {s1, . . . , si} as a forced prompt and gener-
ates the blueprint bi+1 for the following sentence
si+1, followed by sentence si+1 itself.

The iterative approach naturally addresses some
of the issues the end-to-end model faces. In particu-
lar, it does not run into sequence length limitations
as it predicts one sentence at a time.

Interactive Model The third model is an interac-
tive Blueprint model that allows the user to modify
the blueprint and directly change the generated out-
put. It operates similarly to the end-to-end model
previously described but in addition to letting the
user select which elements of the plan to keep or
remove, we design the system to allow the user to
provide their own plan.

We do not expect users to be able to provide an-
swers to all the questions they come up with when
creating their own plans. Therefore, we modify the
original paradigm set by Narayan et al. (2022) and
develop a new model specifically for the interactive
mode that uses a question-only blueprint instead
of a question-answer blueprint. From the input
documents d, we fine-tune this model to generate
b; s, where b is a concatenated sequence of ques-
tions q1; q2; . . . ; qm. For this new model, we use
the same blueprint training data as the iterative and
end-to-end models, but only use the question anno-
tations during fine-tuning, ignoring the answers. In
the interactive mode, the user can edit the plan by
typing in questions they come up with. This pro-
cess creates an updated blueprint b′ which prompts
the decoder to generate an updated summary s′.

Model Training The models made available in
this demonstration are based on the LongT5 model
(Guo et al., 2021), an extension of T5 (Raffel et al.,
2020) designed to handle long inputs. Specifically,
we fine-tune the XL 3B-parameter model4 with
maximum input and output sequence lengths of
4,096 and 512 tokens, respectively, on the AQua-
MuSe dataset (Kulkarni et al., 2020). This is
a query-focused multi-document summarization
dataset which leverages the Google Natural Ques-
tions dataset (Kwiatkowski et al., 2019). The lat-
ter contains real user queries from Google search
logs paired with crowd-sourced answer spans from
Wikipedia, and matched with passages from web
documents from Common Crawl. AQuaMuse uses
the answer passages as summaries with the pas-
sages extracted from Common Crawl as the input
documents. This dataset is query-focused, with
long inputs and multi-sentence outputs, making it
well-suited to a user-centric summarization system.

4 System Description

Our web browser-based demonstration is designed
so that researchers and practitioners can inspect
and interact with the different Blueprint models.
We frame the summarization task around a user
query, since in a real world scenario we would ex-
pect users to have a question or intent in mind. The
system retrieves documents relevant to the query
and displays their summary and its correspond-
ing blueprint. Figure 1 provides a snapshot of the
user interface (UI) and its components, namely the
model selection, document retrieval, and Blueprint
output views.

Model Selection View Using the left-side menu,
the user selects which of the models to use: end-to-
end, iterative, or interactive Blueprint. The UI then
adapts to the selected model.

Retrieval View In the search bar at the top of the
middle panel, the user can enter an information-
seeking query. For instance, in the example from
Figure 1: “What is the Titanic known for?”. The
system automatically retrieves documents relevant
to the query and displays them underneath in dif-
ferent tabs, allowing the user to navigate between
them and examine individual documents. The URL
for each document is shown at the top. For longer
documents, scrolling is also enabled.

4Using the checkpoints from github.com/
google-research/longt5

108

github.com/google-research/longt5
github.com/google-research/longt5


 
user query

query

Information 
retrieval

Blueprint 
model

Model selection

outputs

Backend

document
retrieval

Blueprint
model

prediction

blueprint plan summary

User interface

Back-end services

Figure 3: Schematic representation of the different
components of the web browser-based demonstration.

The document retrieval component is query-
focused in a similar style to the AQuaMuSe dataset
(Kulkarni et al., 2020). It retrieves candidate URLs
and ranks relevant passages for a query using an
off-the-shelf retrieval system.5 It extracts a text
document from each of the best-ranking web pages,
resulting in multi-document input for the Blueprint
models. Documents are formatted similarly to
AQuaMuse to closely match the data on which
the models were trained.

Blueprint Output View The retrieved docu-
ments serve as inputs for the summarization. The
outputs of the selected model are displayed on the
right. The top-right box displays the blueprint b and
the bottom-right box shows the corresponding gen-
erated output s. The question-answer blueprint (or
question-only, in the case of the interactive model)
highlights what the model deemed important, such
as, in the example from Figure 1, "What kind of
ship is the Titanic?" or "What did the Titanic hit
that caused it to sink?". We see that the generated
output closely follows the blueprint.

In the end-to-end and interactive models, the user
can click on elements of the blueprint to include
or exclude them from the plan to re-generate the
summary. Furthermore, when using the interactive
model, an additional text box allows the user to
input and edit a custom question plan.

System Design Figure 3 shows the different com-
ponents of the web application. The web inter-
face is made interactive with LitElement6 compo-
nents and is implemented in HTML and TypeScript.

5github.com/google-research/t5x_retrieval
6See lit.dev for details.

The back-end services are implemented in Python
and C++. Requests for document retrieval and
blueprint model inference are sent to back-end ser-
vices to be processed asynchronously. Outputs are
then sent back to the front-end web interface.

5 Use Cases

In the following we explore some of the possibili-
ties of human-in-the-loop summarization and illus-
trate different use cases for our demonstration.

Informative Blueprints While the inner work-
ings of deep learning models might be opaque to
a human user, the formulation of the blueprint as
a sequence of questions makes the control of the
system’s output user-friendly. Users do not have
to be machine learning experts to interact with the
system through questions and answers. Moreover,
the ability to change the blueprint and observe the
result on the summary, provides the user with im-
mediate feedback.

The planning step also brings some insight into
the often black-box nature of conditional genera-
tion. This property is especially valuable when the
user summarizes complex or difficult information,
since it breaks down the generation process into a
sequence of questions. The blueprint plan offers
context for the information in the generated output,
which has been shown to be a desirable property
in human-AI interaction for text summarization
(Cheng et al., 2022). Plan agnostic models do not
provide details as to why certain pieces of informa-
tion were included. In contrast, as seen in Figure 4,
the blueprint plan anchors conditional generation,
providing the user with a question-answer explana-
tion for each proposition.

Improved Faithfulness Narayan et al. (2021)
evaluate the Blueprint models across several
datasets and show improvements in faithfulness
over models that do not use planning. More-
over, they also evaluate the impact of automated
blueprint edits on the output summary. For each
generated blueprint, they automatically remove
question-answer pairs for which the answer is not
contained in the input, thus eliminating questions
that cannot be answered based on the input doc-
uments. They then prompt the decoder with the
modified blueprint to generate the summary, fol-
lowing a similar setting as in our system demon-
stration. Their results confirm that this automatic
filtering of the generated blueprint further improves
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Plan

The blue color of the sky is caused by light 
being scattered more by molecules in the air 
than by what?

the Sun

Violet and blue light have what kind of 
wavelengths?

Which light has the longest wavelength?

What appears blue during the day because blue 
light is scattered more than red light?

Along with dawn, at what time does the sun 
appear low in the sky?

What has to travel a longer distance through 
the Earth’s atmosphere for it to appear red?

What is absorbed by the Earth’s atmosphere?

Violet and blue light have the shortest wavelengths. Therefore, 
blue light is scattered more than red light and the sky appears 
blue during the day.

Violet and blue light have the shortest wavelengths, while red 
light has the longest. Therefore, blue light is scattered more 
than red light and the sky appears blue during the day. During 
the sunrise and sunset, when the Sun is low in the sky, the light 
has to travel a longer distance through the Earth’s atmosphere, 
and so the shorter wavelengths of light are absorbed by the 
atmosphere, leaving only the red and orange light to reach our 
eyes. 

What adds color to the sky?

the shortest 
wavelengths

red light

the sky

dusk

the light

the shorter 
wavelengths

clouds

Summary

Summary

Figure 4: Example snapshot of the results obtained with the end-to-end Blueprint model for the user query "Why is
the sky blue?". Depending on which question-answer pairs the user selects, different summaries can be generated.

faithfulness. Their experiment further underscores
the importance of letting users interactively modify
the plan, since we expect manual editing of the
blueprint to have greater potential than automated
filtering alone. In addition to unanswerable ques-
tions, users can remove questions with incorrect
answers and irrelevant questions. A quantitative
evaluation of the full scope of various human edits
(e.g., remove an element of the blueprint, reorder
the blueprint, add human-written questions) is left
for future work.

Controllable Blueprints In the example in Fig-
ure 4, we examine the blueprint results obtained
with the end-to-end model for the user query “Why
is the sky blue?”. The first question-answer pair of
the blueprint is actually incorrect, but likely would
not have been caught by simple heuristics since it
seems fluent and its answer is present in the input
documents. The user selects the subset of question-
answers that are deemed most relevant, leading to
higher-quality output than would have been gener-
ated without the blueprint control step. In partic-
ular, we see that the output does not contain the
inaccuracies from the first question-answer pair.

This example also shows how the user can con-
trol the length of the generated summary by in-
cluding more or less question-answer pairs in the
blueprint. For instance, the user can restrict the
summary to contain only the explanation for blue
skies as shown at the top in Figure 4, or decide to
include information about orange skies at sunset,
as shown at the bottom. For a given query and

source documents, the system can lead to diverse
summaries by selecting different blueprints. More-
over, while it would be difficult for a user to come
up with a plan from scratch if they are unfamiliar
with the topic of their query, the provided blueprint
can serve as a starting point from which the user
can select what they would like to keep. As we
discuss next, the user could also elaborate on their
initial query by adding questions in the blueprint.

Personalized Generation Going beyond select-
ing and removing questions, in Figure 5, we illus-
trate results obtained with the interactive model
and a user-provided blueprint. The user can edit
the blueprint with their own follow-on questions,
leading to an updated summary with information it
did not contain originally. When summarizing un-
familiar topics, it might be difficult for the user to
come up with many new questions, and such cases
might be better served by the end-to-end model. In
Appendix A, we provide additional examples of
manually-edited blueprints and their corresponding
summary. We observe that editing the plan allows
the user to guide the generation to include certain
elements in the output summary.

6 Conclusions

This demonstration showcases a novel approach to
query-focused summarization that uses a blueprint
to plan the generated text. By implementing it
within an interactive framework, we transform it
into an example of human-in-the-loop conditional
generation. Our demonstration is designed in a
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What kind of ship was RMS Titanic?

What line operated the RMS Titanic?

In what body of water did the RMS Titanic sink?

On what date did the RMS Titanic sink?

What did the Titanic hit that caused it to sink?

During what voyage did the Titanic hit an iceberg?

What was the largest passenger liner afloat at the time it entered 
service?

When did the Titanic movie with DiCaprio come out?

Who played the female lead in the Titanic movie?

Figure 5: Snapshot of the results obtained with the interactive Blueprint model for the query “What is the Titanic
known for?”. Questions highlighted in red were manually added by the user, leading to a different output.

query-focused summarization setting; it retrieves
multiple documents for a given query and uses
them as input for the summarization. The system
offers three different model variations, namely an
end-to-end, iterative, and interactive Blueprint ap-
proach. The interactive model, in particular, allows
users to examine and edit the blueprint plans, of-
fering a more personalized experience. Since the
blueprint is formulated as a sequence of questions,
it provides a natural way for the user to interact
with the generated output, e.g., by selecting rel-
evant question-answer pairs, which in turn helps
reduce inaccuracies and hallucinations.

We hope this demonstration will spur further
exploration into controllable and interpretable con-
ditional generation systems and how human inter-
action can be an integral component in generating
personalized outputs. We further expect interactive
tools like the one presented here to assist in sum-
mary creation and editing, e.g., for data augmen-
tation in low-resource settings or for more robust
system evaluation by generating multiple outputs
for a given document.

7 Ethics statement

An ethical consideration with generative language
models is the problem of misinformation. While
the work we present here makes a step towards im-
proving the faithfulness and factual consistency of
text generation systems, it is important to note that
current systems are still far from being perfect in
this respect, and thus should be used with caution.

While we did not observe harmful speech with typ-
ical queries, such a system can still be abused and
additional controls and filters on both the queries
and the system’s output could help mitigate this.
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Why did France give the US the Statue of Liberty?
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Q1: Who proposed that a statue be built as a gift from France to the United
States to commemorate the friendship between France and the United States?
Q2: In what year was the Statue of Liberty designed?
Q3: Who designed the Statue of Liberty?
Q4: Along with freedom and democracy, what did Laboulaye want the Statue
of Liberty to represent?
Q5: To whom was the Statue of Liberty presented?
Q6: In what city was the Statue of Liberty presented to the U.S. ambassador?
Q7: Gustave Eiffel helped build what for the Statue of Liberty?

In 1865, French political thinker and abolitionist Édouard de Laboulaye pro-
posed that a statue be built as a gift from France to the United States to commem-
orate the friendship between France and the United States and to commemorate
the 100th anniversary of U.S. independence. Designed by sculptor Auguste
Bartholdi, the statue was meant to symbolize the American welcome of im-
migrants and refugee seekers. It was presented to the U.S. ambassador Levi
Morton in Paris on July 4, 1881, by French Marshal Nicolas Luckner as a com-
memoration of the friendship between France and the United States. Gustave
Eiffel helped build the pedestal for the Statue of Liberty.
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A
N Q1: Who proposed that a statue be built as a gift from France to the United

States to commemorate the friendship between France and the United States?
Q2: In what year was the Statue of Liberty designed?
Q3: Who designed the Statue of Liberty?
Q4: Along with freedom and democracy, what did Laboulaye want the Statue
of Liberty to represent?
Q5: To whom was the Statue of Liberty presented?
Q6: In what city was the Statue of Liberty presented to the U.S. ambassador?
Q7: How was the Statue of Liberty transported to New York City?

In 1865, French political thinker and abolitionist Édouard de Laboulaye pro-
posed that a statue be built as a gift from France to the United States to commem-
orate the friendship between France and the United States and to commemorate
the 100th anniversary of the United States’ independence. Designed by sculptor
Auguste Bartholdi, the statue was meant to symbolize the American welcome
of immigrants and refugee seekers. It was presented to the U.S. ambassador
Levi Morton in Paris on July 4, 1881, and later transported to New York
City where it was reconstructed.

Who plays Queen Lannister in Game of Thrones?
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Q1: Who is the actress who played Cersei Lannister?
Q2: What is Cersei Lannister’s role in Game of Thrones?
Q3: What is the name of the book series in which Cersei Lannister appears?
Q4: Who wrote ’A Song of Ice and Fire’?
Q5: What is Game of Thrones based on?
Q6: When did Game of Thrones first air?
Q7: What is one of the wealthiest and most powerful families in Westeros?
Q8: In what year did Cersei Lannister first appear in the books?

Cersei Lannister is a fictional character in the A Song of Ice and Fire series of
epic fantasy novels by American author George R.R. Martin, and its television
adaptation Game of Thrones, where she is portrayed by Bermudian-English
actress Lena Headey. Introduced in 1996’s A Game of Thrones, Cersei is a
member of House Lannister, one of the wealthiest and most powerful families
on the continent of Westeros. She subsequently appears in A Clash of Kings
(1998) and A Storm of Swords (2000), and becomes a prominent point of view
character beginning with A Feast for Crows (2005).
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Q1: Who is the actress who played Cersei Lannister?
Q2: What is Cersei Lannister’s role in Game of Thrones?
Q3: Has the actress received any awards?
Q4: Is the actress famous?

Cersei Lannister is a fictional character in the A Song of Ice and Fire series of
epic fantasy novels by American author George R.R. Martin, and its television
adaptation Game of Thrones, where she is portrayed by Bermudian-English
actress Lena Headey. Headey has received widespread critical acclaim for
her portrayal of the character, making her one of the most popular and
longest-running actors on television.

Who said my enemy’s enemy is my friend?
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Q1: What did the Latin phrase "Amicus meus, inimicus inimici mei" mean?
Q2: During what time period did the Latin phrase "Amicus meus, inimicus
inimici mei" become common?
Q3: When did the English version of the phrase "the enemy of my enemy is my
friend" first appear?
Q4: Who was the first person to use the modern English version of the phrase
"the enemy of my enemy is my friend"?
Q5: When did the English version of the phrase "the enemy of my enemy is my
friend" first appear?

The exact meaning of the modern phrase was first expressed in the Latin phrase
"Amicus meus, inimicus inimici mei" ("my friend, the enemy of my enemy"),
which had become common throughout Europe by the early 1700s, while
the first recorded use of the current English version came in 1884. The first
recorded instance for this phrasing comes from Gabriel Manigault, who in his
1884 Political Creed described the sense that "the enemy of my enemy is my
friend" as a "natural feeling".
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Q1: Who was the first person to use the modern English version of the
phrase "the enemy of my enemy is my friend"?
Q2: What did Gabriel Manigault describe as a natural feeling?

The first recorded instance for this phrasing comes from Gabriel Mani-
gault, who in his 1884 Political Creed described the sense that "the enemy
of my enemy is my friend" as a "natural feeling".

Table 1: Examples of machine-generated and manually-edited plans and their corresponding summaries. We
highlight in bold changes made by the user and the resulting changes to the summary.
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Is it illegal to have a bald eagle?
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Q1: What is the section number of the Bald and Golden Eagle Protection Act
in the United States Code?
Q2: What is the Bald and Golden Eagle Protection Act?
Q3: What does the Bald and Golden Eagle Protection Act prohibit the taking
of?
Q4: Along with golden eagles, what bald eagle is protected by the Bald and
Golden Eagle Protection Act?
Q5: The Bald and Golden Eagle Protection Act prohibits the taking of bald
eagles, their parts, nests, and what else?
Q6: Who is required to obtain a permit from the Secretary of the Interior to take
bald eagles?
Q7: What can result in a fine of up to $100,000?
Q8: How much is the fine for a first offense of taking a bald eagle?

The Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d), enacted in
1940, and amended several times since, prohibits anyone, without a permit
issued by the Secretary of the Interior, from "taking" bald or golden eagles,
including their parts (including feathers), nests, or eggs. The Act provides
criminal penalties for persons who take, possess, sell, purchase, barter, offer to
sell, purchase or barter, transport, export or import, at any time or any manner,
any bald eagle (or any golden eagle), alive or dead, or any part (including
feathers), nest, or egg thereof. A violation of the Act can result in a fine of up
to $100,000 ($200,000 for organizations), imprisonment for one year, or both,
for a first offense.
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Q1: What is the Bald and Golden Eagle Protection Act?
Q2: Can Native Americans ask for an eagle permit?

The Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d), enacted in
1940, and amended several times since, prohibits anyone, without a permit
issued by the Secretary of the Interior, from "taking" bald or golden eagles,
including their parts (including feathers), nests, or eggs. Native Americans
may ask for an eagle permit.

Is software engineer a good job?
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Q1: What is projected to grow 22% from 2020 to 2030?
Q2: What is the average salary for a software engineer?
Q3: What is the average salary for a software engineer?
Q4: Along with management, in what area do software engineers earn more
than most other workers?

Employment of software developers is projected to grow 22% from 2020 to
2030, which is much higher than the national average for other occupations.
The average salary for a software engineer is $99,400 with an average yearly
growth rate of 7%. In addition, software engineers earn more than most other
workers in the more traditional business aspects such as management and sales.
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Q1: What is the average salary for a software engineer?
Q2: What degree should you get to become a software engineer?

The average salary for a software engineer is $99,400 according to the BLS.
Having a bachelor’s degree in computer science or software engineering
is recommended, though a master’s degree may be more beneficial.

Table 2: Examples of machine-generated and manually-edited plans and their corresponding summaries (Contin-
ued). We highlight in bold changes made by the user and the resulting changes to the summary.
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Abstract
In this paper, we present ALAMBIC, an open-
source dockerized web-based platform for an-
notating text data through active learning for
classification tasks. Active learning is known to
reduce the need of labelling, a time-consuming
task, by selecting the most informative in-
stances among the unlabelled instances, reach-
ing an optimal accuracy faster than by just ran-
domly labelling data. ALAMBIC integrates
all the steps from data import to customization
of the (active) learning process and annotation
of the data, with indications of the progress
of the trained model that can be downloaded
and used in downstream tasks. Its architec-
ture also allows the easy integration of other
types of models, features and active learning
strategies. The code is available on https:
//trusted-ai-labs.github/ALAMBIC/ and
a video demonstration is available on https:
//youtu.be/4oh8UADfEmY.

1 Introduction

Data annotation is crucial for any machine learning
task. Datasets of high-quality are obtained through
manual labelling which requires both considerable
time and sometimes also expertise. Active learning
aims to reduce the need for labelled data by start-
ing from a partially labelled dataset and gradually
selecting the most informative instances among the
unlabelled instances (Settles, 2009; Baldridge and
Palmer, 2009). This incremental training of a ma-
chine learning model can thus actively select the
instances it finds to be the most informative, asking
the person involved to provide a true label for the
selected data. Several strategies exist to define in-
formativeness, such as those based on uncertainty
of the predictions obtained for unlabelled instances
(Settles, 2009) or based on the difference of their

features with respect to the training set (Sener and
Savarese, 2018). The model is then trained with
the newly obtained labelled set and can again select
instances to be labeled. This process is repeated up
until a specific criterion is reached, such as a de-
sired accuracy or a maximum number of instances
labelled.

We present in this work ALAMBIC (Active
Learning Automation with Methods to Battle
Inefficient Curation), an open-source dockerized
web-based platform for active-learning-based text
classification, allowing for a full customisation of
the active learning process, from the choice of the
model, its features and parameters, and the active
learning strategy1. It allows the study of the useful-
ness of active learning on a given labelled dataset
and model, as well as the annotation of text in-
stances with active learning.

2 Related works

Several active learning libraries have been devel-
oped, such as ALiPy (Tang et al., 2019), modAL
(Danka and Horvath), scikit-activeml (Kottke et al.,
2021), for traditional machine learning meth-
ods and DISTIL (Beck et al., 2021), SmallText
(Schröder et al., 2021), the low-resource Text clas-
sification framework (Ein-Dor et al., 2020) or the
ALToolbox (Tsvigun et al., 2022) which also con-
tains active learning methods for deep learning.
However, these libraries do not provide user in-
terface or if they do, they require the user to be
reasonably skilled in coding. Tools such as Prodigy
2, APLenty (Nghiem and Ananiadou, 2018), Al-
pacaTag (Lin et al., 2019), Paladin (Nghiem et al.,

1Code source available on https://github.com/
Trusted-AI-Labs/ALAMBIC

2https://prodi.gy/
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Figure 1: Diagram of the orchestrated deployment for ALAMBIC. Each box with a full line corresponds to a
container. The blue box inside the container is the main service of the container. The name of the docker image for
each container is indicated below the blue box.

2021), or Label Sleuth (Shnarch et al., 2022) tried
to fill the gap by offering a user interface for the
annotation process combined with an active learn-
ing setting. While these tools offer a friendly
user-interface to annotate text classification or se-
quence labelling tasks, they either require a high-
to-expert knowledge in programming languages,
are not open source or are limited in the choice of
the parameters in the active learning process, such
as the model or the selection strategy.

At the time of writing, and to the best of our
knowledge, ALAMBIC is the first free annota-
tion tool for text classification with a user-friendly
interface allowing a complete control of the user
on the parameters of the features, model and ac-
tive learning strategy, with no coding skills needed.
Moreover, in addition to support the annotation
task, it also allows the study of different active
learning strategies with chosen features and mod-
els to evaluate the best strategy within that specific
context. Its dockerized form also allows for an easy
deployment and usage on diverse platforms.

3 Design and implementation

ALAMBIC is a web-based platform built in Python
using Django framework 3, combined with Celery

3https://www.djangoproject.com/

4, Redis 5 and PostgreSQL 6 in a Docker Com-
pose setting (Fig. 1). The installation requires only
few command lines and is quite easy, even for peo-
ple not familiar with Docker or GitHub (see Ap-
pendix A). The framework is divided in five main
interfaces : (i) the import data interface, (ii) the
setup and customisation of the (active) learning
process, (iii) the progress of the active learning
process, (iv) annotation interface and (v) the result
interface. Each of these interfaces will be described
below in detail7.

3.1 Data import and task choice
ALAMBIC supports the import of the data in raw
text with a reference file containing the path of
the files and their labels if already available. The
supported format is a TSV file with the path of the
text files and their optional labels.

The user can also choose the annotation task.
At the moment only multi-class classification is
implemented.

Future developments will include annotation for
relation extraction, as well as additional formats,
such as JSON and XML, for import.

4https://github.com/celery/celery
5https://redis.io/
6https://www.postgresql.org/
7Full documentation is available at https:

//trusted-ai-labs.github.io/ALAMBIC/
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If several files are provided, the user can choose
among them through the dedicated user interface.
Once imported, the data is accessible through the
Django admin interface.

3.2 Setup of the learning process
Once the data has been added to the database, the
user can setup each part of the learning process,
from the model, its parameters and the features
used as inputs.

The user can then choose to either analyse the im-
pact of different active learning strategies in order
to evaluate which one would be the most suitable
with their data and choice of learning process, or
use a specific active learning strategy to annotate
the unlabeled part of the dataset. In the first case,
the user is invited to choose the number of cross-
validation folds, number of repetitions and size of
the initial training seed, as well as which strategies
they want to evaluate, ensuring a robust analysis
of the process. In the second case, the user can
choose the portion of the dataset to use as test set to
evaluate the performance of the model at each iter-
ation of the active learning process, the size of the
training seed, the active learning strategy and the
stop criterion, which will stop the active process
once a specific criteria is met, such as a minimum
accuracy, or a number of annotations done.

Model and feature implementations are based on
scikit-learn (Pedregosa et al., 2011). While only
a fraction of these are currently implemented, the
architecture allows for an easy extension to func-
tionalities already implemented in scikit-learn or
having a similar programming interface. Our doc-
umentation offers a dedicated section for people
more at ease in coding with Python to guide them
through the integration of new models or features.

Active learning strategies are implemented from
the ALiPy library (Tang et al., 2019). We choose
to use only the strategies using the trained model
in a pool-based scenario, i.e. all the unlabelled in-
stances are considered for labelling at each iteration
step.

3.3 Analysis and annotation interface
Once either type of processes, i.e. study of different
active learning strategies or annotation, is launched,
the process can be followed on an interface, dis-
playing a plot of the performance of the model up
until the current iteration.

All the plots are interactive, meaning that the
user can zoom to observe a specific range of data,

highlight and make disappear specific observations
as to not crowd the graphic.

3.3.1 Study of different active learning
strategies

In this case, the interface shows the performance in
terms of accuracy of each of the strategies while the
model goes through the different cross-validation
folds and repetitions. The entire process is auto-
mated and can be followed in real-time.

Once the process is finished, the user can down-
load the performances of the model generated dur-
ing the whole analysis. Performances measures cur-
rently include accuracy, precision, recall, F-score
and Matthews correlation coefficient.

3.3.2 Annotation using active learning
During the training of the model and the selection
of the instances to label, the user can also observe
in real time the accuracy of the model with the
currently labelled data used as a training set.

Once instances have been selected to be labelled,
the user is brought to a page where the text to
label is displayed (Fig 2). They can either select an
existing label or create a new one in the below drop-
down menu. Above the text, a interactive plot with
all the performance measures across the iterations
is shown. This should have a positive impact on the
motivation of the annotator by showing the effect
of their work directly during the learning process.

3.4 Results interface

Once the process finished, the user can download
for both types of processes the performances vi-
sualized in the plots. If ALAMBIC is used for
annotating a dataset, the annotated dataset and the
trained model during the last iteration can also be
downloaded.

The performances are available in a CSV format
with the different performance measures for each it-
eration, and optionally the repetitions, of the active
learning process.

The annotated dataset format is a CSV file with
the path of the text file, the ground-truth label if
available, the manual label given during the an-
ntation process, the label predicted by the model
trained with ALAMBIC, as well as if the instance
was part of the training set, the test set or none of
them.

The model is exported in a compressed joblib
format, compatible with most of the machine learn-
ing libraries for downstream import and usage.
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Figure 2: Annotation interface for text classification in ALAMBIC. The text to label is displayed below an interactive
plot showing the performances of the model trained on the labelled data across the active learning iterations. The
dropdown menu below the text to annotate allows the selection of an existing label or the creation of a new one by
typing the new label in the text box.

4 Use Cases

The platform supposes that the user has a partially
labelled dataset, a preferred model and features to
use, and wants to label a portion of the remaining
unlabelled dataset in a way that this portion will be
the most informative to obtain a high-performance
model. ALAMBIC can be used for two main use
cases :

• Comparison of active learning strategies:
ALAMBIC can be used to compare the perfor-
mance of different active learning strategies,
to determine which strategy to choose under
given parameters/conditions.

• Annotation of datasets: ALAMBIC allows
to choose one of the implemented active learn-
ing strategies and proceed with the annotation.
The resulting annotations, performances mea-
sures and trained model can be exported and
used for downstream analysis or automatic
annotation.

5 Experiments and Results

We used the training set of the Large Movie Review
Dataset (Maas et al., 2011), consisting in 25,000

highly polarized movie reviews, 12,500 positive
and 12,500 negative.

For the analysis, we selected randomly 500 in-
stances from each class.

Using ALAMBIC, we tested several active learn-
ing methods, including an uncertainty-based strat-
egy (Settles, 2009), i.e. strategy based on different
measures of uncertainty computed with the pre-
diction output of the model; Core-set (Sener and
Savarese, 2018), a selection method which tries
to select the most different from the current train-
ing set and representative subset of unlabelled in-
stances; and of course the random sampling as a
baseline.

Each active learning method was tested for five
folds of cross-validation, with three repetitions of
the active learning process for the same test set
with different initial training seeds (of a size of
10% of the remaining dataset). This means that
15 experiments were conducted for each strategy.
Resulting performances are averaged for each iter-
ation step. For each step, 50 instances are selected
to be added.

The experiment was conducted with a Support
Vector Machine (SVM) and a Random Forest (RF),
with the default parameters proposed in their im-
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Figure 3: F-score obtained during the analysis of several active learning strategies with the SVM for a subset of
1000 samples of the Large Movie Reviews Dataset. Each panel highlights the results obtained for one specific
strategy, with the other strategies greyed out.

Figure 4: F-score obtained during the analysis of several active learning strategies with the RF for a subset of 1000
samples of the Large Movie Reviews Dataset. Each panel highlights the results obtained for one specific strategy,
with the other strategies greyed out.

plementation in scikit-learn. The text was first
pre-processed by ignoring the stop words, then
the Term Frequency -Inverse Document Frequency
(TF-IDF) was computed for each term, with a min-
imum document frequency of 0.1 and a maximum
of 0.9. Only the top 3000 features were kept to
build the vocabulary, ordered by term frequency
across the corpus.

Figure 3 and 4 display the F-scores obtained for
the subset of 1000 samples. We could observe that
it would be preferable to use the uncertainty sam-
pling method coupled with the SVM, as we see that
while it performs less efficiently in the first few it-
erations, it clearly performs better and reached an

optimal performance earlier than the random sam-
pling or core-set method. However, if one wanted
to use a RF, then it would be better to use the core-
set method, as while it does not perform well in the
first iterations, it outperforms the outer two selec-
tion methods. Moreover, for the RF, the uncertainty
method has a similar performance as the random
sampling.

Those observations highlight the importance of
such analysis before using active learning in a real
setting in order to choose the most optimal strategy.
More advanced cases will be explored outside this
paper.
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6 Conclusion and Future Work

We presented ALAMBIC, an open-source web-
based platform for the study and use of active learn-
ing in text classification. It can help people with
low-to-no coding skills to use in the most efficient
way active learning methods to build high-quality
NLP datasets at a faster pace. First, they can com-
pare with their choice of parameters and models
different active learning strategies and then anno-
tate their data with the strategy obtaining the best
performance.

Further developments of the tools include the
addition of other NLP annotation tasks, the inte-
gration of deep learning models and their related
active learning methods. While the later devel-
opment would reduce the ease of deployment for
non-experts in coding, this would offer more state-
of-the-art models for further automatic annotation.

Limitations

At the moment, only traditional machine learning
methods can be used with our framework. The
expansion to deep learning methods would bring
models with better accuracy and make disappear
the need to study also different features.

Using active learning in practice is also subject
to several limitations. First, finding the right initial
pool for an active learning setting will have an
important impact on the overall performance of
the active learning process. Moreover, the choice
of the evaluation set is difficult as 1) it has to be
representative of a dataset whom distribution could
be unknown and 2) large enough to evaluate the
performances of the model (such as recall, notably
sensitive to class distribution). The latter aspect
in particular would be in conflict with the spirit of
active learning which tries to limit the annotation as
much as possible. Finally, one has to keep in mind
that the oracle/annotator is not always right and
could in consequence introduce noise in the active
learning process. While some strategies could be
implemented to fight those practical issues (Yang
and Loog, 2022; Paul et al., 2020), they were not
implemented or taken into account in our work.

While it only supports few models and features
at the moment, it can be easily extended to any
models and features developed by scikit-learn.

ALAMBIC has only been tested and imple-
mented for the English language. Spacy (Honnibal
et al., 2020), which is used for some pre-processing

steps, can be however adapted for many other lan-
guages.

The platform has also not been developed for
a multi-annotators or crowd annotator contexts,
which means that only one annotator can work at a
time on the annotation task.
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Ethics Statement

We have considered eventual ethical impacts of
our developed tool and evaluated the following
questions :

• Does the paper describe how the technol-
ogy would be deployed in actual use cases?
Yes, our tool is dockerized, thusly easily de-
ployable. We give further details on the de-
ployment in our documentation9. Our aim is
to offer a tool which is easy to use for non-
coding experts.

• Does the task carried out by the computer
match how it would be deployed? Yes, it
is exactly as described in the paper, as we
created a tool directly destined for users for
annotation purposes.

• Does the paper address possible harms
when the technology is being used as in-
tended and functioning correctly? The tool
can only be used in a local setting for an op-
timised, faster annotation. No harm can be
directly induced by the tool itself. However,
the users could use the tool to annotate in an
harmful way data and maliciously spread the
dataset, with biases and false information.

9https://trusted-ai-labs.github.io/ALAMBIC/
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• Does the paper address possible harms
when the technology is being used as in-
tended but giving incorrect results? As
the task concerns annotation, the only harm
brought by the tool would come from the in-
efficient selection of instances to be labelled,
which would only impact the performance of
the labelling, but not bring harm directly to
the human user.

• Does the paper address possible harms fol-
lowing from potential misuse of the tech-
nology? It highly depends on which type of
data the user wants to annotate. The misuse
would come from the data content and what
will do the user with this data, such as spread-
ing wrongly annotated datasets.

• If the system learns from user input once
deployed, does the paper describe checks
and limitations to the learning? The trained
model learns from the labelled dataset, which
is expanded by the user during the annotation
process. However, the learning process is lim-
ited to the annotation process or the analysis
process.
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A Installation commands

Docker, Docker compose and git needs to be in-
stalled. The commands to install the tool and
launch everything can be resumed in :

• Clone the repository

• Build the docker

Listing 1: Commands to install ALAMBIC

git clone https :// github.com/Trusted -AI-Labs/ALAMBIC.git
cd ALAMBIC/
docker -compose up

B Interfaces examples
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Figure 5: Choice of the model inputs/features.

Figure 6: Parameters choice for an analysis of the use of different active learning strategies. Specific parameters
include which strategies to evaluated, the number of cross-validations, number of repeats with different training
seed and the ratio of the labelled set to be used as training seed.

126



Figure 7: Parameters choice for the annotation using active learning. Specific parameters include the strategy to use,
the ratio of the dataset to use as a test set, the size of the training seed and the stop criterion of the active learning
process.

Figure 8: Example of result for the analysis of different active learning strategies.
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Abstract
This paper describes SPINDLE1 – an open
source Python module implementing an effi-
cient and accurate parser for written Dutch
that transforms raw text input to programs for
meaning composition, expressed as λ terms.
The parser integrates a number of breakthrough
advances made in recent years. Its output
consists of hi-res derivations of a multimodal
type-logical grammar, capturing two orthog-
onal axes of syntax, namely deep function-
argument structures and dependency relations.
These are produced by three interdependent sys-
tems: a static type-checker asserting the well-
formedness of grammatical analyses, a state-of-
the-art, structurally-aware supertagger based on
heterogeneous graph convolutions, and a mas-
sively parallel proof search component based
on Sinkhorn iterations. Packed in the software
are also handy utilities and extras for proof vi-
sualization and inference, intended to facilitate
end-user utilization.

1 Introduction

The transparency and formal well-behavedness of
lambda calculi make them the ideal format for ex-
pressing compositional structures, a fact that has
been duly emphasized by parsers and tools with a
predominant focus on semantics. Lambda calculi
form a key ingredient of type-logical grammars,
where they find use as the computational coun-
terpart of a so-called grammar logic, a substruc-
tural logic of the intuitionistic linear variety that is
designed to capture (aspects of) natural language
syntax and semantics (Moortgat, 1997). For type-
logical grammars, the Curry-Howard isomorphism
guarantees a straightforward passage between logi-
cal rules, type constructors and term-forming opera-
tors; put simply, Parse ≡ Proof ≡ Program, and Cat-
egory ≡ Proposition ≡ Type. The modus operandi

1Stylized spind2λe and standing for spindle parses into
dependency-decorated λ expressions. Source code and
user instructions can be found at https://github.com/
konstantinosKokos/spindle.

is straightforward: a lexicon associates words with
logical formulas, and the logic’s rules of inference
decide how formulas may interact with one another.

By extension, words may only combine in a
strict, well-typed manner, forming larger phrases
in the process. Parsing becomes a process of log-
ical deduction, at the end of which the result (a
proof) gives rise to a recipe for meaning assem-
bly (a program). This program is turned into exe-
cutable code as soon as one plugs in appropriate
interpretations for the lexical constants (words) and
for the term operations (composition instructions).
The set-up is general-purpose in that it readily ac-
commodates different choices for these interpre-
tations; valid targets can for instance be found in
(truth-conditional) formal semantics, distributional-
compositional models (Sadrzadeh and Muskens,
2018), or tableau-based theorem provers (Abzian-
idze, 2017).

In this work, we are interested in what happens
prior to semantic execution; that is, we abstract
away from lexical semantics and seek to reveal the
compositional recipe underlying a natural language
utterance. To that end, we employ a type gram-
mar aimed at capturing two different syntactic axes,
only rarely observed together in the wild: function-
argument structures and dependency relations. To
procure a derivation from an input phrase, we de-
sign and implement a system combining three dis-
tinct but communicating components. Component
number one is the implementation of the grammar’s
type system — it comes packed with a number of
useful facilities, most important being a static type
checker that verifies the syntactic well-formedness
of the analyses construed. Component number two
is a supertagger responsible for assigning a type to
each input word — the tagger is formulated on the
basis of a hyper-efficient heterogeneous graph con-
volution kernel that boasts state-of-the-art accuracy
among categorial grammar datasets. The third and
last component is a neural permutation module that
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exploits the linearity constraint of the target logic
to simplify proof search as optimal transport learn-
ing (Peyré et al., 2019) — this reformulation al-
lows for a massively parallel and easily optimizable
implementation. The three components alternate
roles through the processing pipeline, switching
between phases of low level linear algebra routines
and high level logical reasoning (GPU and CPU
intensive, respectively). Their integration yields a
lightspeed-fast and highly accurate neurosymbolic
parser, neatly packaged and made publicly avail-
able.

2 System Decomposition

2.1 Type Grammar

The system’s theoretical backbone is its type logic
– a uniquely flavoured, semantics-first type-logical
grammar that strays from the categorial norm in
two major ways. First, it focuses on deep syntactic
structure (or tectogrammar, in Curry’s terms) rather
than surface form; its functional types are therefore
oblivious to directional or positional constraints,
abiding only to the linearity condition: every occur-
rence of an atomic proposition must be used once
and exactly once. Second, it dresses functional
types up, so as to have them encode grammatical
functions, making a three-way distinction between
complements, heads and adjuncts.

A full exposition of the grammar is beyond the
scope of this paper, but a superficial and simplified
rundown should help shed light on what is to follow.
Its first aspect, function-argument structures, is
modeled using linear logic’s implication arrow, ⊸,
which gives us access to resource-conscious ver-
sions of function application and variable abstrac-
tion (Girard, 1987; Abramsky, 1993). In their lin-
guistic usecase, functional types of the form A⊸B

denote predicates that consume a single occurrence
of some object of type A, the result being a compos-
ite phrase of type B. Reasoning about gaps, ellipses
and the like is accomplished with the aid of higher-
order types, i.e. instances of the previous scheme
where A is itself a function — these higher-order
types launch a process of hypothetical reasoning,
whereby we may temporarily assume the existence
of a resource to produce a derivation locally, only
to later withdraw the hypothesis, creating a new
function in the process. The second aspect, de-
pendency relations, are modeled using a labeled
assortment of residuated pairs of unary operators
lent from temporal logic. Atomic types without any

x : A ⊢ x : A
id

(c 7→ A) ∈ L
c : A ⊢ c : A

lex

Γ ⊢ s : A⊸B ∆ ⊢ t : A
Γ,∆ ⊢ s t : B

⊸E
Γ, x : A ⊢ s : B

Γ ⊢ λx.s : A⊸B
⊸I

Γ ⊢ s : 2δA

⟨Γ⟩δ ⊢ ▼δs : A
2δE

Γ ⊢ s : A

⟨Γ⟩δ ⊢ △δs : ♢δA
♢δI

Figure 1: Logical rules of inference used by the type
grammar (subset). The id rule instantiates a fresh vari-
able of arbitrary type A. The lex rule provides declares
a constant c as being of type A, given type assignment
c 7→ A pulled from the lexicon L (or, in the post-neural
era, the supertagger). Introduction rules are complex
types constructors, elimination rules are destructors.
The ⊸E rule says a term s of type A⊸B derived from
premises Γ can apply to a term t of type A derived from
premises ∆, producing a complex term s t of type B
derived from the merger of Γ and ∆. The ⊸I rule says
that if the premises of some term s of type B include
a variable x of type A, we can abstract over the latter,
producing a term λx.s of type A⊸B. The 2δE rule re-
moves the box from a term s of type 2δA, producing
term ▼δs of type A and enclosing the premises under
brackets ⟨_⟩δ . Dually, the ♢δI rule puts a term s of type
A under the scope of a diamond, producing term △δs
of type ♢δA and again enclosing the premises under
brackets ⟨_⟩δ .

dependency decorations are assigned to linguisti-
cally autonomous units and phrases, e.g. NP for
a noun phrase. Functional types denoting heads
impose a diamond ♢c on the complements they
select for, label c being the dependency slot the
complement is to occupy, e.g. ♢suNP⊸Smain for
an intransitive verb looking for a subject-marked
noun phrase to produce a matrix clause. Dually,
functional types denoting adjuncts are themselves
decorated with a box 2a, label a now being the
dependency role projected by the adjunct prior to
application, e.g. 2mod(NP⊸NP) for an adjective,
promising to provide a function over noun phrases
if one is to remove its box. Introducing a diamond
or eliminating a box leaves a structural imprint that
encloses complete phrases under brackets, and a
computational imprint that calls for a special treat-
ment of the wrapped term – both labeled by the
grammatical function of the diamond (resp. box)
that was introduced (resp. eliminated). The key log-
ical rules of the type grammar and their isomorphic
term operations are presented in Figure 1.
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Wat
c0 ⊢ ♢whbody(♢predcPRON⊸SVI)⊸WHQ

lex

is
c1 ⊢ ♢predcPRON⊸♢suNP⊸SVI

lex
x ⊢ ♢predcPRON

id

c1, x ⊢ ♢suNP⊸SVI
⊸E

die
c2 ⊢ 2det(N⊸NP)

lex

⟨c2⟩det ⊢ N⊸NP
2detE

rare
c3 ⊢ 2mod(N⊸N)

lex

⟨c3⟩mod ⊢ N⊸N
2modE

tekening
c4 ⊢ N

lex

⟨c3⟩mod, c4 ⊢ N
⊸E

⟨c2⟩det, ⟨c3⟩mod, c4 ⊢ NP
⊸E

⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ ♢suNP
♢suI

c1, x, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ SVI
⊸E

c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su ⊢ ♢predcPRON⊸SVI
⊸I

⟨c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su⟩whbody ⊢ ♢whbody(♢predcPRON⊸SVI)
♢whbodyI

c0, ⟨c1, ⟨⟨c2⟩det, ⟨c3⟩mod, c4⟩su⟩whbody ⊢ c0 △whbody(λx.c1 x △su(▼det(c2) (▼mod(c3) c4)) : WHQ
⊸E

Wat is die rare tekening

whbody

su

mod

det

Figure 2: Natural deduction proof for the sentence Wat is die rare tekening? ‘What is that strange drawing?’. For
space economy, compositional λ term is only explicitly written in the endsequent (bottom of the proof). From the
antecedent structure of the endsequent, we may also recover a dependency tree. Color coding serves to informally
differentiate between complement (red) vs. adjunct (green) structural brackets/dependency arcs.

2.1.1 Proof Representation

Proofs in the type logic are traditionally served in
the tree-like natural deduction format. Proofs in
natural deduction benefit from an easy translation
to (i) λ expressions, by following the rules of Fig-
ure 1, and (ii) dependency trees, by simply casting
structural brackets to dependency arcs, going from
the head of each phrase to (the heads of) its de-
pendents. Figure 2 presents a visual example. An
alternative representation is in the far less verbose
format of a proof net, a geometric construction that
abstracts away from the bureaucratic book-keeping
of hypothetical reasoning and tree-structured rule
ordering. Figure 3 presents the proof net equiva-
lent of the running example. Proof nets are easier
to reason about in a neural setup by allowing us
to treat parsing as the vastly simplified problem
of matching each occurrence of an atomic propo-
sition in negative position, i.e. a prerequisite of
a conditional implication, with an occurrence in
positive position, i.e. a (conditionally) proven state-
ment. The parallel nature of proof nets allows the
matching to occur simultaneously across the entire
proof; that is, all decisions are done in a single
instant, without the bottleneck of having to wait for
conditionals to be satisfied in a bottom-up fashion.
On the other hand, proof nets are slightly under-
specified compared to natural deduction proofs, be-
ing explicit only with respect to function-argument
structures – translating from one format to another
requires establishing some conventions on what
constitutes a canonical proof.

2.1.2 Implementation

The syntax of the type system is implemented as
a tiny DSL written in Python.2 It is used as the
representation format of Æthel (Kogkalidis et al.,
2020a), a dataset of some 70 000 analyses of writ-
ten Dutch, which also constitutes the system’s train-
ing data. The implementation was originally de-
signed to assert the type-safety of the dataset, to
facilitate the conversion between natural deduction
trees, λ terms and proof nets, and to ease third-
party corpus analysis by providing niceties such as
search and pretty printing utilities, cross compila-
tion to LATEX for visualization purposes, interfaces
for proof transformations, etc. All these function-
alities are imported unchanged. The conversion
routines allow us to conduct neural proof search
in the favorable regime of proof nets, and convert
the result to natural deduction format only at the
very end, just for the sake of presentation and/or
sanity testing. Importantly, the type-checker is re-
purposed as a tool for verifying the correctness of
analyses constructed – an analysis that does not
amount to a valid proof will fail to pass the checker,
throwing a type error and alerting us to the fact.
In other words, we can blindly trust anything the
parser gives us as correct, at least in the sense of
(proof-theoretic) syntactic validity.

2Source code can be found at https://github.com/
konstantinosKokos/aethel.
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Wat

⊸♢whbody

⊸♢predc

PRON0 Svi
1

WHQ2

is

⊸♢predc

⊸♢suPRON3

NP4 Svi
5

die

2det⊸

N6 NP7

rare

2mod⊸

N8 N9

tekening

N10

Figure 3: Proof net equivalent of the proof of Figure 2, with unary diamonds (resp. boxes) fused with the implication
dominating (resp. dominated by) them for depth compression. Atomic propositions are indexed by enumeration for
identification purposes. Color coding here serves to differentiate between resources we have (green) and resources
we need (red) – the rule is start green from the bottom, change (resp. keep) color for the left (resp. right) daughter of
an implication. Bold edges denote the tree structure underlying type assignments. Dashed edges denote the correct
matching between resources of opposite polarity.

2.2 Supertagging Module

Lexical type ambiguity and lexical type sparsity
are common and pervasive problems for any cat-
egorial grammar. The de facto approach rests on
a supertagger, a neural module replacing the fixed
lexicon, traditionally formulated as a sequence clas-
sifier and trained to produce the most plausible type
assignments for each word in the context of an in-
put sentence. Here, these problems are exacerbated
by the highly elaborated type system. Some 80%
of Æthel’s approx. 6 000 types are rare (i.e. have
less than 10 occurrences in the corpus), and some
10% of the total sentences contain at least 1 such
rare type. This necessitates a more ambitious treat-
ment than the standard "set-and-forget" approach
of completely discarding rare type assignments as
inconsequential. The solution comes in the form
of a constructive supertagger, an auto-regressive
neural decoder that is trained to construct types
on the fly according to their algebraic decompo-
sition, rather than treat them as singular, opaque
blocks (Kogkalidis et al., 2019). This configuration
enables the construction of valid types regardless
of whether they have been seen before or not, ex-
tending coverage beyond the training data. The
supertagger employed here follows a geometrically
informed, task-specific decoding order, whereby
types are represented as the structural unfolding of
binary trees. Following Prange et al. (2021), trees
are decoded in parallel across the entire batch of
input sequences, establishing an upper temporal

bound on decoding that scales with the maximal
tree depth – in practice, a constant. To circumvent
the locality of a standard tree decoder, the target
output being not a batch of trees but a batch of
sequences of trees (see Figure 3), the supertagger
is formulated as a a graph neural network, utilizing
message-passing connections to transfer feedback
from tree nodes to their lexical roots and from lex-
ical roots to their neighbours, ensuring that deci-
sions made at each decoding step are influenced
by prior decisions across the entire output (Kogka-
lidis and Moortgat, 2022). As a result, it strikes the
perfect balance between the speed and memory ef-
ficiency of a tree-shaped architecture, allowing for
more training iterations and faster inference, and
the stronger autoregressive properties of a seq2seq
model, improving performance. Further, being in-
herently constrained to trees, its output is struc-
turally correct-by-construction – under no circum-
stance can any of the types produced be ill-formed.
Used in isolation, the architecture currently sits at
the top of the accuracy leaderboard for categorial
grammar supertagging across different formalisms
and languages – the performance is marginally in-
ferior in the multi-task training setup adopted here.

2.3 Permutation Module

Conducting search over proof nets is typically ill-
advised. The problem traditionally involves ex-
amining all possible bijections between positive
and negative atomic propositions. The number of
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such bijections scales factorial to the number of
atomic propositions, quickly becoming prohibitive.
To navigate this combinatorially explosive land-
scape, neural proof nets relax proof search into a
continuous, differentiable problem, where finding
the correct bijection is translated to a transporta-
tion problem (Kogkalidis et al., 2020b) learned by
yet another graph neural network. Concretely, the
representations of all occurrences of atomic propo-
sitions are extracted from the decoder and binned
according to their sentential index, sign and polarity
(e.g. a single bin would be all occurrences of a pos-
itive NP in sentence #13 of the input batch). Each
bin is contrasted with its inverse polarity counter-
part using some similarity metric (here a weighted
inner product). The result is a collection of square
matrices, each matrix containing attention weights
(or similarity scores) in the cartesian product of
positive and negative items of the same sign and
sentence. These matrices are grouped by their car-
dinality, and the Sinkhorn operator (Sinkhorn and
Knopp, 1967) is used to push them towards bina-
rity and bistochacity, yielding approximations of
permutation matrices representing the goal bijec-
tions (Mena et al., 2018).

To make things concrete using the running ex-
ample of Figure 3, each of the atomic types Svi,
NP and PRON has a single negative and a single
positive occurrence, therefore their bijections are
trivial (a testament to supertagging being almost
parsing). The single positive occurrence of WHQ

stands for the goal type of the phrase, and remains
unmatched. Only N requires a decision, having two
possible bijections. The correct candidate is en-
coded by the permutation table below, where rows
enumerate positive and columns negative items:

✓
✓

6 8
9

10
ΠN :=

This reformulation entails a tremendous speedup:
the painstakingly slow problem of symbolic proof
search is cast into simple, well-optimized and
batchable matrix operations. The current parser
builds on the insight that the permutation module is
invariant to the source of atomic symbol represen-
tations, and in fact greatly benefits from the faster
and more accurate task-adapted supertagger.

2.4 Integration
Neurosymbolic integration yields an end-to-end
pipeline that consists of the following phases. First,
the user inputs a list of sentences to be parsed.
Contextualized token representations are obtained
from a fine-tuned BERTBASE model, which are then
aggregated according to the input’s word bound-
aries. The resulting word representations act as
initial seeds for decoding to begin on an empty
canvas. During decoding, types are progressively
constructed, while seeds are updated by exchang-
ing messages with one another on the basis of their
sequential proximity. After a small number of de-
coding steps, the process terminates, yielding a se-
quence of type assignments for each input sentence.
A rudimentary invariance check is then performed,
controlling whether each sequence counts an equal
number of atomic propositions of each polarity.
Sentences failing the invariance check are not eligi-
ble for proof search, and their analysis stops early.
Passing sentences are symbolically processed to
obtain a collection of sparse indexing tensors, used
to gather the decoder’s representations into the bins
described earlier. Bins are batched and contrasted,
and a small number of Sinkhorn iterations is em-
ployed as a 2-dimensional softmax analogue. The
soft Sinkhorn distances are discretized using the
Hungarian algorithm in order to enforce bijectiv-
ity (Jonker and Volgenant, 1987). Bijections are re-
associated with their origin symbols and sentences,
using the reverse of the previous indexing operation.
Control is then passed to the symbolic component,
which attempts to traverse the candidate proof nets,
verifying the correctness criteria of acyclicity and
connectedness in the process (Danos and Regnier,
1989). The traversal coincides with a translation
to a natural deduction format, the construction of
which corresponds to static type checking of the
output (Lamarche, 2008). Assuming no type mis-
matches are caught, the output is a proof proper,
which by Curry-Howard isomorphism is rewritten
as a dependency-decorated λ term. The user is
finally presented with an analysis for each input
sentence – ideally, a λ term, but occasionally a
rejected intermediate result together with an error
description.

3 Evaluation

3.1 Performance
The system has been evaluated on the test set of
Æthel. Without any pre-filtering or post-processing
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training wheels (i.e. no constraints on sentence
length, type rarity/depth or cardinality of bijec-
tions), the parser produces a proof that satisfies
strict syntactic equality with the ground truth in
3 191 of the 5 770 test set samples. This amounts
to a significant 55.30% of the test sentences being
analyzed without a single error with respect to type
assignments, phrasal chunking, function-argument
structures and dependency annotations produced3

In total, 4 901 sentences are assigned a passing
analysis, which sets the coverage to a more modest
84.94%. The discrepancy between the high accu-
racy and low coverage is due to the rigidness of
the type system: only 5 010 of the sentences satisfy
the invariance check, being thus amenable to any
proof. This signals that the performance bottleneck
lies on the supertagger rather than the permutation
module; a parse is assigned to 97.82% of parsable
sentences, and it’s also the perfect parse 75.30% of
the time. These findings are summarized in Table 1.

parsability coverage
(some proof obtainable) (some proof obtained)

86.83 84.94

types correct accuracy
(correct proof obtainable) (correct proof obtained)

56.88 55.30

Table 1: Sentential-level evaluation of the parser.

To obtain a more refined perspective on perfor-
mance, we employ an adaptation of the parsing
community’s favorite F1-score. Concretely, we
gather all samples for which a proof was produced,
and decompose both prediction and ground truth
into their respective sets of subproofs. We measure
tp as the two sets’ intersection, fp as the differ-
ence between predicted and correct subproofs and
fn as the difference between correct and predicted
subproofs, from which we may obtain precision as
p = tp/(tp+ fp), recall as r = tp/(tp+ fn) and their
harmonic mean as F1 = 2pr/(p+ r). On top of the
vanilla versions of these metrics, we can also ex-
amine relaxations by incorporating a combination
of two modulo factors. Relaxation one targets the
functional core of the logic, applying a forgetful
transformation that strips proofs of their modali-
ties in order to examine typed function-argument

3This is comparable to the state-of-the-art for the similar
(in fact simpler) problem of CCG parsing; see Clark (2021)
for an up-to-date overview.

structures in isolation. Relaxation two targets the
modal enhancement of the logic, collapsing the set
of atomic types into a single point (thus treating
all functional types of the same shape as equal) in
order to examine dependency structures in isola-
tion. Relaxing on both axes at once is essentially
replacing type constants by type variables, where
all we care about are the type- and dependency-
agnostic linear function-argument structures – this
is the metric most comparable to external theories.4

Note that relaxations are performed only after in-
ference – the point being that a strict proof must
have been produced for its relaxations to be consid-
ered (i.e. lax accuracy is still bottlenecked by strict
coverage). The results are averaged over covered
samples5 and presented in Table 2.

local metrics
modulo p r F1

– 89.52 89.68 89.39
modalities 90.93 91.13 90.85
functional types 91.09 91.26 90.97
both 92.31 92.52 92.24

Table 2: Decomposition metrics and relaxations.

3.2 Efficiency

Regarding efficiency, the architecture contains a
non-negligible total of 117M parameters, 94% of
which are inherited from the underlying BERT
model. The memory footprint of the network’s
forward pass does not exceed 3.5GB on the test
set with a batch size of 64, making it reasonably
lightweight for use at home. Using a middle range
laptop GPU, the network takes about 15 seconds
to tag the full test set (i.e. 370 sents/sec or 6 000
tokens/sec), and 80 seconds to tag and parse it
(i.e. 70 sents/sec), including tokenization and post-
processing. Note, however, that sentence-level
batching is not yet implemented for inference mode
proof search, i.e. sentences are tagged in parallel
but proven sequentially. Cross-sentential padding
and batching of Sinkhorn inputs is in the works
– benchmarking shows that the asymptotic behav-
ior of a forward pass over batches of 64 matrices
only starts becoming apparent when they exceed

4Proofs are in β and η normal, so no free points from
abstractions. Variables are only equal if they match in both
name and type, so no free points from variable instantiations
either.

5Averaging over the full test set would artificially inflate p
and deflate r scores, since no partial proofs are returned from
failing samples.
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>>> from inference import InferenceWrapper as IW
>>> from aethel.utils.tex import compile_tex, sample_to_tex
>>> parser = IW(weight_path='./data/model_weights.pt')
>>> analysis = parser.analyze(['Wat is die rare tekening?'])[0]
>>> analysis
Analysis(

lexical_phrases=(
LexicalPhrase(string=Wat, type=(♢whbody(♢predc(VNW)→SV1))→WHQ, len=1),
LexicalPhrase(string=is, type=♢predc(VNW)→♢su(NP)→SV1, len=1),
LexicalPhrase(string=die, type=2det(N→NP), len=1),
LexicalPhrase(string=rare, type=2mod(N→N), len=1),
LexicalPhrase(string=tekening, type=N, len=1),
LexicalPhrase(string=?, type=PUNCT, len=1)),

proof=c0, 〈c1, 〈〈c2〉det, 〈c3〉mod, c4〉su〉whbody ⊢ c0 △whbody((λx0.c1 x0 △su(▼det(c2) (▼mod(c3) c4)))) : WHQ)
>>> tex_proof = compile_tex(sample_to_tex(analysis)) # see Figure 2 for output :)

Figure 4: User interaction example in python console.

the order of 27, being locked at an insubstantial
1ms prior to that.6

4 User Interface

The user interface is bare-bones, but simple and
easy to use. The parser is currently packaged as a
code repository, which, once downloaded, can be
used as a python module. A front-end class wraps
around the scary inner workings of the parser and
provides easy access to an inference routine. Struc-
ture checking is handled internally and error han-
dling is graceful: the user is guaranteed an output
even in the case of a partial failure. The output
implements the same protocols as samples of the
Æthel corpus, and is thus compatible with all of
the latter’s bells and whistles. Proofs can be pretty-
printed, interactively processed and transformed
(e.g. for semantic applications), or visualized using
LATEX as a middlewoman. For the more ambitious,
training and evaluation utilities are also available.

5 Conclusion & Future Work

Thus concludes the demonstration tour of spind2λe:
a unique neurosymbolic parser that can accurately
and efficiently convert raw text into λ expressions.
Unlike cheaper alternatives, these λ expressions
are not structureless ad-hoc imitations produced
from arbitrary decoding, but executable, type-safe
and 100% guaranteed correct programs. The soft-
ware focuses on Dutch, but the universality of the
intuitionistic linear core allows easy cross-lingual
adaptation that essentially boils down to retraining
with a new type lexicon; a French implementation
is currently in the works (De Pourtales et al., 2023).

6To comprehend how extremely unrealistic 27 is, consider
that this would amount to finding the correct bijection out
of 27! = 3.9 × 10215 possibilities across 64 pairs of sets in
parallel.

As to what the future holds, the intention is to
keep the module synchronized and up-to-date with
Æthel: any upcoming major release of the latter
will be reflected in an update of the former (be it
soft patching or retraining). Compatibility aside,
planned features include deploying the module as
a web service, compiling it as a stand-alone pack-
age and documenting the annotations (so as to be
more inclusive towards the type-uninitiated). Any
performance, stability or efficiency improvements
stemming from related research or moments of en-
gineering inspiration are also likely to find their
way to the user-facing front. Contributions and
feedback are always welcome.

Limitations

The implementation described capitalizes on a dis-
entanglement between neural and symbolic oper-
ations to improve efficiency. But doing so comes
at the heavy price of a unidirectional data flow that
lacks feedback. The symbolic component has the
singular role of testing and verifying the neural out-
put, but emits back no messages of its own. Failures
may be caught, but they are nonetheless irrecov-
erable – a partial output that fails some structural
constraint signifies an abrupt and non-negotiable
end to the processing pipeline, significantly reduc-
ing coverage. A better operationalization would be
to use the symbolic core to continuously ask for
neural output as long as the structural constraints
are not met (or the user is not satisfied with the
parse provided). However, this would only be fea-
sible if the neural components were to be extended
with some notion of backtracking. In that sense,
the parallel nature of both the supertagger and the
parser becomes now a double-edged sword, hinder-
ing the potential applicability of standard heuristic
algorithms like beam search.

More generally, the software carries the standard
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risks of any NLP architecture reliant on machine
learning, namely linguistic biases inherited from
the unsupervised pretraining of the incorporated
language model and annotation biases derived from
the supervised training over human-labeled data.
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Abstract
This paper presents the development of the AI-
based language-learning platform, Revita. It
is an intelligent online tutor, developed to sup-
port learners of multiple languages, from lower-
intermediate toward advanced levels. It has
been in pilot use with hundreds of students at
several universities, whose feedback and needs
shape the development. One of the main emerg-
ing features of Revita is the system of linguistic
constructs to represent the domain knowledge.
The system of constructs is developed in col-
laboration with experts in language pedagogy.
Constructs define the types of exercises, the
content of the feedback, and enable detailed
modeling and evaluation of learner progress.

1 Introduction
The focus of this paper is the novel Domain Model
in Revita,1 an Intelligent Tutoring System (ITS) for
language learning (Katinskaia et al., 2018, 2017).
Revita follows the classic design of ITS—with a Do-
main model, Student model, and Instruction model.
The Domain Model describes what must be mas-
tered by the learner: concepts, rules, etc.—known
as skills in ITS literature—and relationships among
them (Wenger, 2014; Polson et al., 1988). We rep-
resent the Domain Model as a system of linguis-
tic constructs—a wide range of linguistic phenom-
ena, including inflexion of various paradigms, gov-
ernment relations, collocations, complex syntactic
constructions, etc. The system of constructs is de-
veloped in collaboration with experts in language
teaching. It impacts all apcects and components
of Revita—the variety of exercises that it gener-
ates automatically, the intelligent feedback given
to the learner, modeling of learner knowledge, and
evaluation of learner progress.

The Student model represents the learner’s profi-
ciency. It is based on the history of answers given
by the learner to many exercises, and tries to build

1revita.cs.helsinki.fi — Link to a short demo here.

a detailed picture of what the user knows vs. does
not know. The Instruction model embodies the ped-
agogical principles that lie behind the decisions:
which exercises the learner is best prepared for next,
and which feedback should be provided to guide
the learner toward the right answer. These models
are interconnected in ITS.

Revita is currently undergoing pilot studies with
real-world learners and teachers at several universi-
ties (Stoyanova et al., 2021). Revita’s main target
group are learners who have passed beyond the be-
ginner level — above A2 on the CEFR scale.2 Re-
vita is developed as a tool for learners and teachers
of several languages: Finnish and Russian are cur-
rently the most developed languages. Several “beta”
languages, including Italian, German, Swedish,
and others, are in earlier stages of development.
The user interface also works in several languages
(English, Finnish, Russian, Chinese, Italian). Re-
vita is not meant to replace the teacher. For students,
it provides 24/7 access to an unlimited amount of
personalized exercises for practice matching the
learner’s current level, with immediate feedback
and progress estimation. For teachers, it provides
time-saving benefits by allowing them to delegate
the mundane work of creating hundreds of exercises
for each topic for students at different levels. Re-
vita allows the teachers to share learning materials,
create their own exercises, work with groups, and
monitor progress and evaluation.
The paper is organized as follows: Section 2

briefly reviews work on intelligent computer-
assisted language learning (ICALL). The principles
and ideas behind Revita are described in Section 3.
It also describes its main components: linguistic
constructs, automatic generation of exercises and
feedback, and modeling of learner knowledge. Sec-
tion 4 describes tools for learners and teachers. Sec-
tion presents the conclusions and future work.

2The Common European Framework of Reference for Lan-
guages: Learning, Teaching, Assessment
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2 Prior Work

Interest in computer-assisted language learning
(CALL) is growing with the rapid development of
language technology. CALL is seen as the “study
of applications of the computer in language teach-
ing and learning” (Levy, 1997). Applying ITS
to language learning and supporting CALL by in-
telligent and/or adaptive methodologies, such as
expert systems (ES), natural language processing
(NLP), automatic speech recognition (ASR), etc.—
is the domain of intelligent CALL, or ICALL. The
goal of ICALL is building advanced applications
for language learning using NLP and linguistic re-
sources—corpora, lexicons, etc. (Volodina et al.,
2014).
The number of academic and commercial tools

for language learning is growing drastically, e.g.,
popular commercial systems like Duolingo, Rosetta
Stone, Babbel, Busuu, iTalki, etc. Some CALL
systems aim to give learners access to authentic
materials (White and Reinders, 2010), the oppor-
tunity to interact with teachers and native speakers
(e.g., the app Lingoda is a platform for live video
classes), and provide text or sound feedback based
on learner needs and knowledge (Bodnar et al.,
2017). Modern CALL systems are also mobile,
which increases their accessibility (Derakhshan and
Khodabakhshzadeh, 2011; Rosell-Aguilar, 2018;
Kacetl and Klímová, 2019).

In developing CALL, pedagogical goals—rather
than technological means—should be the primary
focus (Gray, 2008). It has been shown that us-
ing ICALL systems for education improves learner
motivation and attitudes, increases options for
self-study (Golonka et al., 2014), improves re-
tention of various learning concepts, communica-
tion between students and teachers, academic self-
efficacy (Bandura, 1977; Rachels and Rockinson-
Szapkiw, 2018), and overall language skills (Yeh
and Lai, 2019; Zhang and Zou, 2022).
Despite having existed for decades, ICALL still

has a number of serious limitations to overcome.
Apart from platforms where teachers directly in-
teract with students in video classes, most existing
ICALL systems are based on the so-called “canned”
approach—the available sets of exercises are pre-
made, and therefore limited. This limits the level
of personalization: pre-made exercises can be ar-
ranged into different individual programs, but no
personalized exercises can be provided.

Figure 1: Revita’s home page, with the main activities.

3 Core Components of Revita
3.1 Main Principles
Revita’s approach is founded on the following pri-
mary principles:
1. Practice should be based on authentic content.

By authentic we mean a text which is not arti-
ficial and written for learning purposes. The
learner (or teacher) can upload any text from
the Internet using a URL, upload any file, etc.,
to use it directly as learning content.

2. Exercises are automatically generated based
on any authentic text chosen by the user, in-
cluding any texts uploaded to the system.

3. Exercises are personalized to match the
learner’s current skill levels, so that each new
exercise is selected to be a challenge that the
learner is able to meet.

4. Immediate feedback: rather than saying only
“right/wrong”, the tutor gradually guides the
learner toward finding the correct answer by
providing hints, which begin as general hints
about the context and then give more and more
specific information about the answer.

5. Continual assessment of skills allows Revita
to select exercises optimally personalized for
each learner based on past performance.

The first principle is the bedrock of Revita’s
philosophy—in the story-based approach, all learn-
ing activities are based on authentic texts, which
should be inherently interesting for the learner to
read, which motivates her to practice longer. A few
sample texts are available in the system’s “public”
library for each language; also, several new stories
are recommended daily as “Stories of the day”—
crawled daily from several selected websites. But
the main idea is that texts be chosen and uploaded
by the learners themselves (or teachers). The button
“Add new stories” on the home page (see Figure 1)
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Constructs Examples
Finnish
(1) Necessive construction: Present Energiakriisin lähestyessä kaikki keinot on otettava käyntiin.
passive participle, with -ttava ending (With the energy crisis approaching, all means must be taken into action.)
(2) Transitive vs. intransitive verbs Voisitko sammuttaa valon? (Could you turn off the light?)
(3) Verb government: translative case Kaupungit eivät ole muuttuneet energiatehokkaammiksi.

(Cities have not become more energy efficient.)
(4) Substitute clause: participle Maija kertoi vanhempien asuvan kaupungissa.
substitutes for “that”-relative clause (Maija said that her parents live in the city.)

Russian
(5) Verb: II conjugation Мы скоро увидим восход. (We will see the sunrise soon.)
(6) Complex pronoun: Нам нужно кое о чем поговорить. (We need to talk about something)
(7) Perfective vs. imperfective aspect Страны согласовали проект о будущих отношениях.

(The countries agreed on a draft on future relations.)
(8) Dative subject & impersonal verb Мне необходимо поговорить с врачом. (I need to talk to a doctor.)

German
(9) Past perfect tense Ich wäre mit ihm gekommen, aber er wurde krank.

(I would have come with him, but he got sick.)
(10) Weak masculine nouns Ich möchte den Jungen kennenlernen. (I want to meet the boy.)
(11) Prepositions governing dative case Wir sind aus dem Haus gelaufen. (We ran out of the house.)

Table 1: Examples of grammatical constructs found in sentences (underlined). Candidates are words that will be
chosen for exercises about the constructs (marked in bold).

allows the user to upload new text material into her
private library.

3.2 Linguistic Constructs

At the core of Revita’s approach is the system of
linguistic constructs that are represented in the Do-
main model. Constructs are linguistic phenomena
or rules, that vary in specificity: e.g., a construct (in
Finnish) may be verb government: the verb tutustua
(“to become acquainted”) requires its argument to
be in the illative case (“into something”), while
tykätä (“to like”) requires its argument in the ela-
tive case (“from something”), etc. Constructs also
include all constructions, as conceived in Construc-
tion Grammar (CG). CG treats many phenomena—
grammatical constructs, multi-word expressions,
collocations, idioms, etc.—within a unified formal-
ism. Examples of constructs for several languages
are shown in Table 1.

When customizing the system for a new language,
we engage experts in language teaching in creating
the inventory of constructs, which need to be mas-
tered by the learners. Currently, Finnish and Rus-
sian have the most developed system of constructs,
each with over 200 constructs. Potentially, the num-
ber of constructs can be much larger. The Russian
constructs evolved from the extensive grammatical
inventory covered in tests for second language (L2)
learners developed at the University of Helsinki

(Kopotev, 2012). The Finnish constructs are based
on inventories of grammatical topics developed by
experts in teaching Finnish as L2.
As shown in the examples in Table 1, each con-

struct needs to be identified in the text, when the
text is uploaded to Revita. For this purpose, we use
finite-state morphological analyzers (e.g., HFST3),
neural dependency parsers,4 and rule-based pattern
detection. Each morphological analyzer is wrapped
into a “Revita” analyzer which modifies the output
analyses into a uniform standard set of features used
in the system. Considering that none of these tools
can provide perfect performance alone, we rely on
the agreement between morphological analyzers,
parsers, and rules.
In Example (1), for construct “Present passive

participle with -ttava ending,” the rule matches the
participle “otettava” by morphological features:
participle, present tense, passive voice. This form
is then recognized as the head of the “necessive”
construction “on otettava” (“must be taken”), de-
tected by a rule that matches: the singular 3rd per-
son present form of modal verb “olla” (“to be”)
and the present passive participle, in the nominative
case. Thematching rule has to agree with the output
of a dependency parser. In Example (2), the con-
struct “Transitive vs. intransitive verbs” is detected

3GiellaLT
4Turku NLP, DeepPavlov
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Figure 2: Preview mode for a story (before practice). All purple words can appear in an exercise. Noun phrases
and prepositional phrases are circled in red. Government relations and constructions are underlined. Top-right
corner—the list of constructs found in the story. Bottom-right corner—translation of the clicked word: “asennetaan”,
into English (target language can be selected). The green box over the clicked word lists all constructs related to it.

by using dictionaries of verb lemmas or by rules
that detect regular transitive/intransitive ending pat-
terns in verb lemmas (e.g., sammuttaa vs. sammua,
“turn something off” vs. “turn itself off”). Dictionar-
ies contain hundreds of the most frequent Finnish
lemmas and are continually updated.
Verb government is detected by several compo-

nents: large sets of government patterns (2000-3000
per language); pattern matching for noun phrases,
prepositional phrases, and analytic verb forms; de-
pendency relations detected by parsers. Each rule
for government pattern tests the dependency roles
of the arguments as conditions. In Example (3), a
government pattern for the intransitive verb “muut-
tua” (“to change”) requires an argument in the
translative case—here, the comparative adjective
energiatehokkaammiksi (“more energy-efficient”).
The government detector will find an argument of
“muuttua” regardless of its position in the sentence,
and for any form of the verb, including complex an-
alytic forms, e.g., the negative perfect tense “eivät
ole muuttuneet.”
Detecting longer and more complex syntactic

constructions relies on all of the components men-
tioned above. In (4), to match the complex construc-

tion “kertoi vanhempien asuvan”, we use a rule
states that the verb “kertoi” (“said”) must govern a
subordinate clause starting with “että” (“that”); the
substitute clause contains a noun phrase in the geni-
tive case, which acts as the subject (“vanhempien”)
and a genitive active participle (“asuvan”).

The user can preview all constructs identified in a
story in the PreviewMode prior to practice, see Fig-
ure 2. All noun and preposition phrases are circled,
government relations and syntactic constructions
are underlined. A list of all constructs found in the
story is in the top-right window: clicking on a con-
struct highlights all instances of the construct in the
story. Figure 2 shows all impersonal passive forms
highlighted in blue. Clicking on any word in the
story will also show all constructs linked to it (green
box above the clicked word, the see word “asen-
netaan”). The translation of the clicked word into
the learner’s chosen language (English here) is in
the bottom-right. This lets the learner (or teacher)
see what can be exercised in the given text.

3.3 Exercise Generation Based on Constructs

Revita offers several practice modes; the main ac-
tivity for the learner is the Grammar Practice Mode
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Figure 3: Practice mode with a story. Figure shows the second paragraph of a story with three exercises: two clozes
(“halukas” and “aurinkopaneeli”) and one MC. Previous answers are marked green and blue—correct and incorrect.
The green box shows the hints requested so far for the cloze exercise.

based on a story from the public or private library,
see Figure 3. Practice mode offers “cloze” (fill-
in-the-blank) and multiple-choice (MC) exercises.
A cloze exercise is shown as a text box, with the
lemma of the expected answer given as a hint to
the learner. In Figure 3, the lemma in the box is
aurinkopaneeli (“sun panel”). The learner is ex-
pected to insert the correct form of this word that
suits the context; here, it is the plural partitive case
(“aurinkopaneeleja”)—the expected answer is the
original word form from the story, which was re-
placed with the exercise. Each word picked to be
exercised must be disambiguated—we must know
the correct lemma to show to the learner. Disam-
biguation is performed by agreement rules and by
dependency parsers. For analytic verb forms, such
as “on otettava” (“should be taken”), the cloze box
will show the lemma of the head verb: ottaa (“to
take”).
All candidates—potential exercises in practice

mode—are based on the constructs detected in the
story. In Example (3) for Finnish in Table 1, an exer-
cise on the construct “Verb government” is in bold:
the learner will see the lemma energiatehokas
(“energy-efficient”). To insert the correct form
in the translative case, the learner needs to know
which case is required by the governing verb.
MC exercises are more targeted: the options to
choose from—known as “distractors”—are gener-
ated based on the exercised construct. Therefore,
the same word or construction may have more than
one set of distractors, since more than one construct
may be linked to the candidate.

Distractors are created by rules and morpholog-
ical generators. In Example (6), for the construct
“Complex pronoun", tests the knowledge of joint
vs. hyphenated spelling—a rule generates distrac-
tors like: “кое о чем”, “кое-о-чем”, “о кое-чем”
(“about something”). For transitive vs. intransitive
verbs, we use dictionaries of lemma pairs. How-
ever, the distractors must be inflected forms that fit
the context, not lemmas. We use morphological
generators to produce the required inflected forms.

MC distractors are often an effective way of learn-
ing a particular construct, and choosing good dis-
tractors is a task that requires pedagogical expertise.
In Example (4), e.g., the construction requires the
subject to be in genitive case. It is useful to offer
the lemma “vanhemmat” (“parents”) in other cases
which can mark the subject in other constructions,
e.g., nominative, partitive, etc. These forms, which
differ only by case, are produced by the morpholog-
ical generator.
In addition to the mentioned exercise types, Re-

vita generates MC exercises for stress in Russian.5
Distractors are generated using the finite-state mor-
phological analyser UDAR6 (Reynolds, 2016). An-
other kind of exercises is based on Text-to-Speech
technology7—the learner needs to to listen to a spo-
ken fragment and insert the missing forms. These
exercises are not generated based on constructs, and
are therefore outside the scope of the paper.

5Stress is a very complex topic in learning Russian.
6https://github.com/reynoldsnlp/udar
7Text-to-Speech
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3.4 Feedback

Feedback is a second essential feature of Revita.
The learner gets multiple attempts for every exer-
cise. Feedback is designed to gradually guide the
learner toward the correct answer by providing a
sequence of hints that (a) depend on the context, (b)
on the constructs linked to the exercise, and (c) on
the answer that was given by the learner. Feedback
hints are ordered so they become more specific on
subsequent attempts: starting from referring to syn-
tactic construction or word paradigms and then to
grammatical features required in the answer. For
example, for an object of a verb governs the parti-
tive case, the feedback sequence may be: “The is
the object of the verb ’xyz’.” →“Use another case.”
→“Use partitive case.” The learner can also re-
quest hints before giving an answer: as seen in the
green box in Figure 3, four of the available hints are
already “used up” (one heart remaining). Request-
ing hints indicates that the learner has not mastered
the construct, and affects the learner’s scores.
Feedback that depends on the context gives in-

formation on whether a word in question is part of
some construction or relies on a governing word
(verb, noun, or adjective), etc. Hints also appear
as underlining of syntactically related elements in
the context. These hints are generated based on
detected syntactic constructions.
Some feedback hints are generated in the stage

when the construct is linked to the text. For exam-
ple, a hint “Use past perfect tense” will be attached
to “wäre gekommen” (see example (9) in Table 1).
A more complicated example is for an exercise with
the participle “asuvan” in substitute that-clause
construction (see example (4) in Table 1). We gen-
erate the feedback for it: This is equivalent to “...ker-
toi että vanhemmat asuvat...” (“...said that parents
live...”)—by generating the actual clause which is
substituted by the participle. To produce this feed-
back message, Revita uses information about the
syntactic roles of each word in the original construc-
tion “kentoi vanhempien asuvan”, and the required
grammatical features of the forms in the feedback—
to produce these forms, we use the morphological
generator.
When the learner inserts an answer which does

not match the expected one (i.e, the one in the orig-
inal story), Revita analyzes the answer and checks
which grammatical features are incorrect. To give
feedback on these features in the order of increased
specificity, Revita uses a language-specific hierar-

chy of features. For example, in Russian, the hi-
erarchy specifies that the hint about an incorrect
gender of an adjective is shown before hints about
an incorrect number or case.
All mechanisms which define the order and the

content of feedback hints and algorithms of sam-
pling exercises for students are part of the Instruc-
tion Model of Revita.

3.5 Learner Modeling and Exercise Sampling

All learner answers and all requested hints to each
exercise are recorded. A learner may attempt to an-
swer each exercise multiple times. For each attempt,
Revita analyzes the answers and the requested hints
to calculate credits and penalties for the correspond-
ing language constructs. Partial correctness of an-
swers is taken into account, e.g., if the answer used
the correct tense but wrong number, only number
will be penalized, and tense will receive credit.

The collected information on performance with
constructs is used to model learner skills and the dif-
ficulty of the constructs. Tomodel learner skills and
exercise difficulty, we use Item Response Theory
(IRT) (Embretson and Reise, 2013; van der Linden
and Hambleton, 2013). IRT comes from psycho-
metrics and is widely used in education (Klinken-
berg et al., 2011). The Item in IRT is a task that
the learner should solve. Most IRT applications
have a clear definition of an item, and a clear credit
standard. The classic example of an item is a test
question in mathematics: it is unambiguous and
there is a clear judgment of the answer—correct or
wrong. Our major challenge is that language con-
structs are not directly judged, as test items in other
learning domains. It is challenging to determine
the credit and penalty for each construct based on
the student’s answer, because the link from exercise
to constructs is one-to-many.
We leave the details of modeling difficulty with

IRT outside the scope of this paper. To date, we
have collected 570K answers for Russian exercises.
Experiments with this data show a strong correla-
tion between students’ proficiency estimated by IRT
vs. by their teachers. This suggests that with IRT we
are able to reliably model learner proficiency. Inter-
estingly, the estimates of exercise difficulty do not
correlate with teachers’ judgments, which agrees
with the findings of other researchers (Abbakumov
and Lebedeva, 2016).

At present, we assume that the difficulty of an ex-
ercise depends on the hardest construct linked to it.
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Thus, exercises are sampled for practice based on
the difficulty of the hardest construct linked to each
exercise. The difficulty of constructs is modeled by
IRT.We aim to provide exercises that are best suited
to each student’s proficiency level. For each possi-
ble exercise, IRT first estimates the probability that
the student will answer the exercise correctly—then
the probability of picking this exercise for practice
is sampled from a normal distribution around the
mean of a 50% chance that the learner would an-
swer correctly. Thus, on average, the exercises are
not too difficult and not too easy.
For languages with insufficient learner data for

training IRT, we ask teachers to assign manually
CEFR difficulty levels to constructs. Earlier experi-
ments using specialized Elo ratings8 for assessing
learner skills and evaluating the difficulty of linguis-
tic constructs based on the learner data collected
by Revita are presented in Hou et al. (2019).

4 Tools for Students and Teachers

At any time, the student can set her CEFR profi-
ciency level manually or take an adaptive placement
test to estimate proficiency (see the button “Adap-
tive Test” on Figure 1). The test draws on a bank
of questions prepared by teachers; the sampling
of questions is driven by an IRT model trained on
learner data. After that, the estimate of the learner’s
proficiency levels is adjusted according to the cor-
rectness of answers to exercises.

The learner can upload a story from any website
or a local file. To each uploaded text, Revita applies
classification by semantic topic—culture, science,
sport, politics—and difficulty classifiers. In case
the learner does not want to choose a text for prac-
tice, there is a “Dive-in” option to practice with a
randomly sampled story from a selected category
(private vs. public or story tagged by a semantic
topic). Another option is to choose a “story of the
day” suggested by Revita.

The Preview mode (see Figure 2) allows the user
to read a story, edit it (in case it was extracted from a
web page inaccurately), and review the grammatical
topics that can be learnt through practice with this
story. Clicking on each word provides its translation
into a number of languages. The learner can mark
whether she knows a word or not. All unfamiliar
words are added to the learner’s personal set of
flashcards, which are used for Vocabulary Practice.

8The Elo rating system is a method for calculating the
relative skill levels of players in zero-sum games such as chess.

The Practice mode presents the grammar and
listening exercises—the learner can hear a segment
of text in context and is expected to type the missing
words correctly in the empty box. The user can
also practice with a story in the Competition Mode,
against a bot: the difference from normal practice is
that the learner needs to do the exercises faster than
the bot—whose skill levels approximately match
those of the learner. Another option is to practice
with a Crossword built on the authentic text—the
translations of words are used as hints. Practice
mode also allows the user to create notes during
practice, which can be attached to words in the story.
All learner’s notes are collected together (see button
“Notes” in Figure 1) for easy review; each note has
a reference to words in the story it was attached to.

Revita offers various statistics and info-graphics
to track progress on grammar constructs and vocab-
ulary. These analytics are available to the learner
and to the teacher. Revita allows teachers to build
groups of students, share texts with them, and cre-
ate tailored exercises that can be shared with the
group. Revita allows teachers to track how their
students practice and how well they perform on
various tasks.

5 Conclusions and Future Work

This paper presents an in-depth discussion of the
novel core component of the Revita language learn-
ing system—the Domain model embodied in a sys-
tem of linguistic constructs. This system of con-
structs underlies and supports all aspects of the
learning experience in Revita, it supports the gen-
eration of the quality exercises and feedback. It
also supports the modeling of learner skills more
accurately to provide informative progress analyt-
ics, and to offer exercises most appropriate for the
learner’s current level.
We have results from pilot studies with Finnish

and Russian L2 learners using the new Domain
Model, but the discussion of the results is beyond
the scope of this paper. In the future, we plan to im-
prove the Domain Model by adding more informa-
tion about the interactions and dependencies among
the constructs—which will enable the creation of
more intelligent learning paths. We also plan to add
new types of activities, e.g., speech exercises.

Limitations

Revita works with many languages, however, at
present, only Finnish and Russian have a sufficiently
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developed inventory of constructs that can be actu-
ally used by students in real-world scenarios. Most
other languages have a limited set of constructs,
which affects the quality and variety of the exer-
cises, as well as limited feedback. Developing a
substantial inventory of constructs is a complex
task, that requires expertise in computational lin-
guistics, as well as in language pedagogy. As men-
tioned above, Finnish and Russian have the order
of 200 constructs. Meanwhile, “the Great Finnish
Grammar” has over 1500 articles (Vilkuna et al.,
2004), each of which introduces at least one con-
struct, which, in principle, constitutes an aspect of
the linguistic competency of a native speaker. A
fascinating research challenge is determining the
“essential” core inventory of constructs, which can
support effective learning. Our experience so far
with the rather modest inventories suggests that
they already bring enormous value to learners and
teachers (Stoyanova et al., 2021).
Revita’s approach relies on arbitrary authentic

texts being uploaded from theweb; sometimes these
texts cannot be extracted from the website without
some inaccuracies. Also, the original texts may con-
tain typos, mistakes, etc. These problems should
be fixed manually by editing the text. Of course,
learners with a low proficiency level cannot do that
independently. To avoid having thesemistakes nega-
tively affect learning, the stories can be checked by a
human teacher/tutor. We also plan to employ strong
language models for grammatical error detection
to identify such potential problems and highlight
them to alert the user that additional checking may
be needed.
Revita relies on the text when checking the

learner’s answers. Currently, only one correct an-
swer is allowed—the one that is present in the
story. Sometimes the word form entered by the
learnermay also be valid in the given story context—
“alternative correct” answers. In such cases, Revita
may still tell the learner that the answer is not cor-
rect. This is one of the important problems that
we are researching at present, using neural models
for the detection of grammatical errors (Katinskaia
et al., 2019; Katinskaia and Yangarber, 2021).

Revita also has certain limitations related to the
use of external tools and services: dependency
parsers, morphological analyzers, and external
dictionaries—all may contain inaccuracies and er-
rors. All of these factors can be a source of mistakes
in the intelligent tutor: wrong analyses, incorrectly

disambiguated lemmas, missing translations, etc.
The system tries to collect multiple sources of ev-
idence for its predictions to raise the confidence
in—and precision of—the predictions. When the
confidence is low—e.g., in the presence of conflict-
ing evidence—the exercise, feedback, etc., is not
offered to the learner.

Ethics Statement

Revita is designed to carefully guard the privacy
of its users—learners and teachers. It does not
share any personal information collected during
the learner’s practice with any third parties. The
teacher can track the learner’s performance only if
the learner has explicitly accepted the invitation to
join the teacher’s group.
Any authentic text material uploaded into the

system is visible only in the user’s personal pri-
vate library. If the teacher shares a story with a
group of students, it is visible only inside the group
library, never to anyone outside the group. Texts
pre-loaded into Revita’s public library come either
from sources that have given us explicit permission
to use their content or from the public domain.
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Abstract

We present GATE Teamware 2: an open-source
web-based platform for managing teams of an-
notators working on document classification
tasks. GATE Teamware 2 is an entirely re-
engineered successor to GATE Teamware, us-
ing contemporary web frameworks. The soft-
ware allows the management of teams of mul-
tiple annotators, project managers and admin-
istrators - including the management of anno-
tators - across multiple projects. Projects can
be configured to control and monitor the an-
notation statistics and have a highly flexible
JSON-configurable annotation display which
can include arbitrary HTML. Optionally, doc-
uments can be uploaded with pre-existing an-
notations and documents are served to anno-
tators in a random order by default to reduce
bias. Crucially, annotators can be trained on ap-
plying the annotation guidelines correctly and
then screened for quality assurance purposes,
prior to being cleared for independent annota-
tion. GATE Teamware 2 can be self-deployed,
including in container orchestration environ-
ments, or provided as private, hosted cloud in-
stances. GATE Teamware 2 is an open-source
software and can be downloaded from Github.1

A demonstration video of the system has also
been made available.2

1 Introduction

Machine learning models are an important element
of modern natural language processing (Cunning-
ham et al., 2013; Otter et al., 2021). These models
need to be trained and evaluated on gold-standard
human-annotated datasets. Depending on the pur-
pose of the model, there are two types of annota-
tions: classification and chunking. Chunking tasks
(e.g. named entity recognition) require the annota-
tors to identify the subset (or span) of the given text,
while classification tasks (such as sentiment and

1https://github.com/GATENLP/gate-teamware
2https://youtu.be/KoXkuhc4fmM

stance classification) require annotators to assign
labels to the given text. GATE Teamware 2 focuses
on classification annotation tasks specifically.

Depending on text length or specific machine
learning tasks, the classification annotation could
vary from word level to document level, or single-
label to multi-label annotation. In addition, other
information (e.g. confidence score for the annota-
tions) may also be needed. This requires annotation
tools to be configurable and flexible to adapt to dif-
ferent classification annotation tasks.

Furthermore, machine learning model perfor-
mance is highly dependent on annotation quality
and as such, large annotation tasks often hire mul-
tiple annotators to collaborate to remedy this. Per-
sonal biases may be unknowingly introduced into
annotations, so being able to collaborate with nu-
merous annotators is a way to reduce the effect of
this (Hovy and Prabhumoye, 2021).

Here we introduce GATE Teamware 2 (Kar-
makharm et al., 2022), a free open-source soft-
ware tool for the management of teams of human
annotators engaged in annotating datasets for docu-
ment level classification, referred to here simply as
document classification tasks. GATE Teamware 2
provides a highly flexible annotation configuration
mechanism. Annotators can participate in more
than one project. In order to ensure high quality hu-
man annotations, GATE Teamware 2 also provides
functionality for training and testing annotators on
a subset of example documents, prior to qualifying
them to perform the given annotation task indepen-
dently. GATE Teamware 2 is the spiritual succes-
sor to the popular GATE Teamware (Bontcheva
et al., 2013), but has been entirely re-implemented
in modern web frameworks with a containerised
deployment architecture, as well as extended with
new functionalities.

Teamware 2 has a number of unique features
for an application specifically targeted at creating
datasets for document classification tasks, includ-
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ing:

• defined user roles and permissions,

• providing automatically ‘pre-annotated’ data,
which the human annotators correct, rather
than annotate from scratch, and

• optional training and testing qualification
stages for annotators.

As a demonstration of its utility, Teamware 2 has
already been used successfully for the annotation of
several datasets consisting of tens of thousands of
documents by numerous annotators per project on
research topics such as COVID vaccine hesitancy
on Twitter, stance detection in tweets (Figure 1)
and emotion recognition.

2 Related Work

There is an abundance of software tools facilitating
document annotation serving a variety of concerns
in this area. Neves and Ševa (2020) collated a
searchable directory of over 90 such tools and their
features. In this section, the focus will be on the
review of tools which can perform document clas-
sification while also offering collaborative features
that allow multiple users to annotate the same set
of documents.

According to Neves and Ševa (2020) and ad-
ditional web searches, four annotation tools are
available, which can:

• facilitate collaborative corpus annotation in
document classification NLP tasks;

• permit management of multiple users;

• are actively maintained;

• and are available for general use.

These tools are doccano (Nakayama et al.,
2018), tagtog (Cejuela et al., 2014), Universal Data
Tool (Ibarluzea et al., 2022), and Label Studio
(Tkachenko et al., 2020-2022).

These four tools all allow self-hosting of the soft-
ware, enable multiple annotators to annotate docu-
ments through a web interface on a single hosted
instance, and support a wide variety of annotation
tasks out of the box in addition to document classi-
fication. However, they vary widely in availability
of collaborative features and handling of document
classification tasks.

Figure 1: An example of Teamware 2’s annotation inter-
face, customised for the task of hostile tweet response
classification. Actual tweet is not shown due to its sen-
sitive nature. The application is able to capture multiple
groups of labels in a single annotation using standard
HTML form components (radio buttons, checkboxes,
drop-down selectors and text boxes). Documents can
be fully styled through HTML and CSS to suit various
tasks.
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In terms of suitability for document classifica-
tion, while tagtog (Cejuela et al., 2014) can perform
document classification as it allows document-wide
labels to be captured, its focus is on sequence la-
belling tasks, and this is reflected in the user inter-
face where these document-wide labels are only
located in the sidebar, making it unsuitable for use
especially when document classification is the only
annotation task. Both Universal Data Tool (Ibar-
luzea et al., 2022) and doccano (Nakayama et al.,
2018) have recipes for performing document clas-
sification, but both are only able to capture a single
category; expect a fixed document layout; and have
no options to customise the presentation of the text
to be annotated by the user.

Label Studio (Tkachenko et al., 2020-2022) is
perhaps the most similar tool to GATE Teamware 2
in that it provides a fine-grained way to customise
the number of labels, their layout, and how the text
to be annotated can be formatted and presented to
the annotator.

In terms of collaborative features, Universal Data
Tool (Ibarluzea et al., 2022), unlike the other tools,
does not have user accounts and collaborators can
join an annotation project through a generated
link which would make the tool more suitable for
smaller and shorter annotation projects. The free
version of Label Studio (Tkachenko et al., 2020-
2022) does not allow multiple users with clearly-
defined user roles – all users are able to add and
modify documents and annotations freely, though
this may be different under a paid subscription. Fi-
nally, tagtog (Cejuela et al., 2014) and doccano
(Nakayama et al., 2018) are the only two applica-
tions that have clear definition of user roles and
limit annotators to performing annotation tasks,
preventing them from modifying annotation project
settings.

With these four tools, the expectation is for an-
notators to annotate every document in the project.
With larger annotation projects that can contain
thousands of documents, in order to limit the num-
ber of documents that have to be annotated by
each individual annotator, it becomes necessary
to split the corpus into multiple projects, recruit-
ing different sets of annotators to each one. GATE
Teamware 2 solves this problem by allowing lim-
its to be placed on the number of annotations a
document requires and the maximum proportion
of the corpus a single annotator can annotate. This
means annotation tasks can instead be automati-

cally distributed to annotators within the project
whilst avoiding the problem of annotators having
too many annotation tasks.

Relation to GATE Teamware
As stated above, GATE Teamware 2 is intended
as a successor to GATE Teamware version 1
(Bontcheva et al., 2013). Many of the design con-
cepts in GATE Teamware 2 originate in the original
GATE Teamware, for example the management of
teams of human annotators, their assignment to an-
notation projects, monitoring of the average time-
per-document for each annotator, and the option for
the project manager to provide “pre-annotations”
for the annotators to correct, rather than having
them annotate every document from scratch. How-
ever, the original GATE Teamware was designed
around the annotation of spans of characters within
text and is poorly suited to more general document
classification tasks of the sort required for mod-
ern ML models. In GATE Teamware, annotation
schemas can be provided to control the sets of la-
bels and features that annotators may assign, but
every label must be tied to a specific span within
a longer document, which increases the cognitive
load on annotators.

There are other desirable features missing from
GATE Teamware, notably:

• Annotator training and validation – GATE
Teamware included tools to facilitate resolu-
tion of disagreements among annotators or
between a single annotator and a gold stan-
dard annotation set, but there is no real-time
feedback to the annotators on how well they
are following the annotation guidelines and
no way to automatically check that annota-
tors have reached a certain quality threshold
before starting on a real project.

• Limiting the number of documents each anno-
tator can consume – GATE Teamware ensured
that each document is annotated by a set num-
ber of annotators, but cannot ensure that each
annotator sees the same number of documents.
An annotator will continue to be assigned doc-
uments until either all documents have been
fully annotated, or they have been presented
with every available document. In many cases,
it is desirable to better balance the documents
across annotators.

In addition, GATE Teamware was built as a Java

147



web application using a complex stack of software
libraries, while the annotator interface was derived
from the annotation editor of GATE Developer, a
desktop Java Swing application. The interface was
delivered to annotators as a Java Web Start applica-
tion3, but this technology ceased to be supported by
Oracle with the release of Java 11 in 2018, and is
very difficult to operate in modern browsers. One
of the key motivations for starting from scratch
when implementing GATE Teamware 2 was to be
able to use a more modern and performant devel-
opment framework and purely browser-based user
interface, vastly simplifying both server-side de-
ployment and annotator on-boarding.

3 GATE Teamware 2 Overview

GATE Teamware 2 provides a database-backed
web application for managing groups of annotators
and providing document classification annotations.
It is written in the modern web frameworks Django
and Vue.js with a PostgreSQL database.

A Teamware 2 instance is set up by an adminis-
trator for a set group of users who can act as project
managers and/or annotators. Project managers can
create projects, which represent annotation tasks
and are configured for the annotation of a single cor-
pus of documents. Annotators can then be added
to a project to create annotations according to the
guidelines and configuration for that project.

4 User Roles

There are 3 user roles in Teamware 2:
Annotator: Can only annotate via the annota-

tion view, when assigned to a project with annota-
tion tasks available to them. Once a task is com-
plete, they must contact a manager to be added to
any new projects. This is the default role assigned
to newly registered users. See section 6.

Manager: Can annotate as the annotator above.
Also has the ability to create new projects and edit
all existing projects on the instance. See section 5.

Admin: As roles above; also has total responsi-
bility over an entire Teamware 2 instance, including
the ability to promote annotator users to manager,
and manage all users.

5 Annotation Projects

Annotation in GATE Teamware 2 is organised into
‘Projects’, each of which has a manager, who owns

3https://docs.oracle.com/javase/8/docs/
technotes/guides/javaws/

the project.

Managers create projects simply through a web
interface which populates the configuration form
with default options. Alternatively, an existing
project can be ‘cloned’ to create a new project with
no documents or annotators, but an identical con-
figuration.

Projects are configured to include a description
and annotator guidelines, both of which can contain
text formatted as markdown or HTML and can
be previewed by the project manager. Annotation
parameters are set at this stage to include: the total
number of annotations required per document; the
maximum proportion of documents in the corpus
that any one user can annotate; and how long an
annotator assigned a document has to annotate it
before it is returned to the pool of documents. In the
interface, each of these options has concise inline
help text to remove ambiguity and streamline the
project setup process.

5.1 Configuring annotation display and
collected labels

Configuring how annotations will be presented and
the details of collected labels is performed with a
highly flexible JSON format in which elements are
defined as JSON objects (see Figure 2a). Detailed
documentation and examples are provided. Anno-
tations can include HTML, fields or columns from
the document data (see subsection 5.2), widgets
such as radio buttons, free text fields, checkboxes,
and drop-down menus. The result of the config-
uration JSON is previewed alongside its input in
the form (e.g. Figure 2c), allowing managers to
experiment with the best display for their project.

5.2 Documents

Under the ‘Documents & Annotations’ tab of the
project management page, a corpus can be up-
loaded for annotation via single or multiple file
upload, or by dragging and dropping files. Docu-
ments can be provided as JSON or CSV, and users
can set a global preference for how they view doc-
uments for either one of these formats. Once docu-
ments are uploaded to the project, they are shown
in a searchable list along with annotation statistics
including how many annotations for each docu-
ment are complete, aborted, rejected, timed out,
and pending.
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[
{

"name": "htmldisplay",
"text": "{{{ text }}}",
"type": "html"

},
{

"name": "sentiment",
"type": "radio",
"title": "Sentiment",
"options": {

"neutral": "Neutral",
"negative": "Negative",
"positive": "Positive"

},
"description": "Please␣select␣a␣

↪→ sentiment␣of␣the␣text␣above."
}

]

(a) Example project configuration JSON.

{
"text": "<p>Document␣text␣can␣be␣

↪→ <strong >arbitrarily␣
↪→ styled </strong >␣using␣
↪→ HTML.</p><p>Second␣
↪→ paragraph.</p>"

}

(b) Example document JSON containing styling HTML.

(c) Example annotation display produced by configuration in
Figure 2a and document text field in Figure 2b.

Figure 2: Example simple project configuration and
document text with the resulting annotation view.

5.3 Pre-Annotation

A project can be configured to look for a field in
the document that contains pre-annotation informa-
tion. At the annotation stage, the annotation display
will be pre-filled if the configured pre-annotation
field exists in the document and contains data in
the same layout as the expected annotation output.
An example annotation output can be obtained by
filling out the annotation display preview in the
project configuration page.

5.4 Managing a Project

Currently available annotators can be added from
a pool of those available, using a list of annota-
tors which is searchable by email and username.
Once added to the project, user status can be mon-
itored with respect to completion of training and
testing stages (optional) and annotations. Annota-
tors can then be marked as complete or rejected
from a project, as well as made active again in a
project, provided that they have not met their quota
of annotations. These user management actions
can also be performed in batch mode to save time.

The status of documents and their annotations
can be monitored throughout the project, including
icons showing the number of annotations and their
status. Annotations can also be edited by project
managers. Similarly, annotator status is shown in
the ‘Annotators’ tab.

5.5 Training & Testing Annotators

Training and testing stages can be enabled for any
project to ensure quality in annotations. Training
mode allows project managers to supply interactive
examples for annotators to complete, prior to par-
ticipating in a project. Similarly, a testing stage can
be enforced with a threshold of correct answers that
an annotator must achieve before being allowed to
annotate. For both options, a lightweight JSON
format, similar to the main project documents, is
used, with an additional field indicating the correct
answers.

Depending on choice at the project configuration
stage, annotators can be automatically advanced to
the annotation stage once they have successfully
scored over the pass threshold or, from the project
management screen, be approved by a project man-
ager or admin.
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5.6 Collected Annotations

Annotations can be exported as CSV, JSON or
JSONL format, of which the latter two can be ei-
ther formatted in the same style as uploaded JSON
documents or in the format used by GATE4. The
project configuration (section 5 & Figure 2a) also
defines how the annotations are exported.

By default, each exported annotation contains a
unique numerical key associated to an annotator
instead of the annotator’s username. This is to
ensure anonymisation when sharing the dataset,
while at the same time allowing cross-referencing
of annotators between exported datasets from the
same Teamware 2 instance. An option is available
to export with usernames instead if required.

6 Annotating with GATE Teamware 2

Once logged in, annotators are only able to view the
annotation view, which presents them with the next
annotation task assigned to them. Depending on
the project configuration, there are several options
made available; such as rejecting an annotation,
or adding a training or test stage to the project.
Once there are no more documents available, they
are instructed to contact the project manager to be
assigned to a new project (if applicable).

During an annotation task, annotators are able
to go back to the previous annotation to make a
correction. Annotations can also be changed at
any stage by visiting the ‘My Annotations’ view
which displays all of an annotator’s annotations.
A complete history of all annotations and changes
made is kept for posterity.

7 Using GATE Teamware 2

GATE Teamware 2 is available under an open
source AGPL license and as such is free to use and
deploy. However, subject to arrangements, private
hosted instances can be provided for NLP projects5

as a low-overhead way to set up an instance of the
software. For hosting your own instance, GATE
Teamware 2 has been designed so users can deploy
via a container orchestration tool such as Kuber-
netes or Docker Compose, for instance on a cloud
service. Deployment options can be chosen by
editing a single text file and without changing the

4https://gate.ac.uk/userguide/sec:creole:
gatejson

5Please contact the team at https://gate.ac.uk/g8/contact to
arrange.

source code, enabling easy annotation task man-
agement.

8 Software Quality Assurance

Quality and consistency of GATE Teamware 2’s
source code is ensured via extensive software test-
ing using pytest for the back end unit tests, jest
for the front end unit tests and Cypress for integra-
tion testing. Testing currently covers 85% of the
codebase. The software is under active develop-
ment and uses a continuous integration approach
using GitHub Actions to run tests on all changes
to the source code, therefore reducing breaking
changes to functionality.

9 Conclusions & Future work

GATE Teamware 2 is a fast and simple to use plat-
form for facilitating collaborative document anno-
tation, and includes a number of important features
such as pre-annotation upload, flexible annotation
configuration and multiple user management.

The software is under active development and a
number of valuable features will be coming to the
software soon. For instance, in addition to docu-
ment classification, sequence labelling is planned
to be integrated in the future, allowing it to be used
in an even greater range of NLP annotation tasks.
Other planned future features include: calculation
of inter-annotator agreement metrics, ability to de-
fine hierarchical/dependent annotations, exposing
an annotation management API for integration with
active learning algorithms, control over project vis-
ibility and ownership, and availability of the plat-
form as a cloud service.

Limitations

The major current limitations of GATE Teamware
2 align closely with the future work above and
so many of its limitations will be resolved in the
short to medium term. Primarily, Teamware 2 is
designed for document classification tasks and so at
present cannot be used for chunk annotation. There
is no facility yet for calculation of inter-annotator
agreements within the application, though these
can be simply calculated from the exported annota-
tion data. Similarly, Teamware 2 does not yet have
web-based annotation adjudication capabilities and
annotation quality can only be evaluated based on
exported data. Hierarchical annotations, i.e. nested
options which depend on the initial annotation, are
not yet available. As Teamware 2 is designed so
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far, all projects are visible and editable by all other
managers and admins on the instance, however this
is something that may become an option to change
in the future. In the mean time if such separation is
required (e.g. to protect data from one project be-
ing seen by managers of another), a workaround is
possible by having the different annotation projects
run on separate GATE Teamware 2 deployments.

Ethics Statement

The development of GATE Teamware 2 as an an-
notation tool was in line with the ethical clearances
of the respective research projects that provided
the funding. Ethical approvals for each annotated
dataset and the respective volunteer annotators re-
cruited for that project may need to be sought in
addition, in line with the ethical guidelines of the
user’s institution and any data protection and pri-
vacy laws that apply to the managing organisation
and to the annotators if they are located in a differ-
ent jurisdiction. For example, for the authors’ own
annotation projects, individual ethical approvals
have been obtained via the standard University of
Sheffield research ethics process, and it is envis-
aged that similar processes would be followed by
users at other institutions.

A limited amount of personally identifiable infor-
mation, namely an email address and username, is
collected from each annotator who registers an ac-
count with a given installation of GATE Teamware
2. This is made clear to users in a privacy pol-
icy prior to registration, and provision is made to
remove all personal identifiers from the user’s ac-
count if they choose to withdraw from participat-
ing in annotation projects on that installation. The
annotations they have performed so far are not nec-
essarily deleted6, and will remain linked to the
dormant account, so that it is still possible to de-
termine whether disparate sets of annotations were
created by the same individual, but the username
and email address on their account profile are re-
placed by anonymous placeholders so the account
is no longer linked to an identifiable person.
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Abstract
The methods used to create many of the well-
known Question-Answering (QA) datasets are
hard to replicate for low-resource languages. A
commonality amongst these methods is hiring
annotators to source answers from the internet
by querying a single answer source, such as
Wikipedia. Applying these methods for low-
resource languages can be problematic since
there is no single large answer source for these
languages. Consequently, this can result in a
high ratio of unanswered questions, since the
amount of information in any single source is
limited. To address this problem, we devel-
oped a novel crowd-sourcing platform to gather
multiple-domain QA data for low-resource lan-
guages. Our platform, which consists of a
mobile app and a web API, gamifies the data
collection process. We successfully released
the app for Icelandic (a low-resource language
with about 350,000 native speakers) to build a
dataset which rivals large QA datasets for high-
resource languages both in terms of size and
ratio of answered questions. We have made the
platform open source with instructions on how
to localize and deploy it to gather data for other
low-resource languages.

1 Introduction

Replicating well known Question-Answering (QA)
data collection methods, such as those used to
create the SQuAD (Rajpurkar et al., 2016) and
TyDi (Clark et al., 2020) datasets, for low-resource
languages poses a few problems. First, many
large-scale QA datasets are gathered using a sin-
gle source for answers, e.g. Wikipedia. This is
problematic since low-resource languages do not
have access to any single, large knowledge base
from which information can be extracted to create
such a dataset. Second, QA datasets gathered in
an information-seeking manner (where the ques-
tion is asked prior to finding the answer), will have

questions that cannot be answered by the answer
source(s). As we will show, the ratio of answerable
questions is positively correlated with the amount
of content in an answer source. Third, many of
these methods rely on paid workers to perform
the laborious task of annotating data and the nec-
essary funds may not be available in regions of
low-resource languages.

In this paper, we introduce GameQA, a crowd-
sourcing platform to build QA datasets. GameQA
consists of a mobile trivia app (for iOS and An-
droid) and a web API. GameQA, which is open
source, is specifically designed to gather QA data
for low-resource languages. It can be trivially lo-
calized and published for specific geographical re-
gions. The main contributions of GameQA are as
follows:

• Gamification: It incorporates numerous as-
pects of gamification to increase the number
of annotations provided per user. This in-
cludes rewarding points, level-ups, streaks,
avatar upgrades, and prestige tokens to users
as they contribute to the data collection.

• Social features: The users are made aware of
their contributions relative to other users. This
includes a leaderboard and notifying users
once another user has answered their ques-
tion.

• Cultural relevance: Our results show that
GameQA gathers questions which are relevant
to the culture, history, and geography of the
region in which it is employed.

• Multiple Answer Sources: The plat-
form’s API integrates Google’s Programmable
Search Engine1 to allow users to find answers

1https://developers.google.com/custom-search/
v1/introduction
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on multiple websites, thus seamlessly con-
structing a multiple-domain QA dataset.

To spur QA research for low-resource languages,
we have made the GameQA platform open source
with instructions on how to localize it and subse-
quently release it for any geographical area2.

2 Related Work

In recent years, the literature has seen an explo-
sion in the number and diversity of QA datasets
(Cambazoglu et al., 2021). The most prevalent
type of QA datasets are sentence classification
and span-prediction datasets. These include doc-
uments, questions, and demarcated answer spans
that a machine learning model must learn to pre-
dict for a given question. Rajpurkar et al. (2016)
introduced SQuAD, one of the first large span-
prediction datasets. They crowd-sourced the cre-
ation of the dataset by showing crowd-workers an
excerpt from Wikipedia and tasking them with writ-
ing a question whose answer is contained within the
excerpt. This results in QA data with a high lexical
overlap between questions and answer paragraphs
(Ribeiro et al., 2019; Gan and Ng, 2019) which can
lead to biased data (Shinoda et al., 2021). In this
paper, we will refer to span-prediction datasets con-
structed in this manner as being squad-like. CoQa
(Reddy et al., 2019), NarrativeQA (Kočiský et al.,
2018), and NewsQA (Trischler et al., 2016) are
other examples of datasets falling into this cate-
gory.

To address the problems associated with squad-
like datasets, researchers have developed ways
that encourage information-seeking behavior dur-
ing question elicitation. The aim is to emulate
human curiosity by having annotators ask ques-
tions about something they do not know the answer
to. WikiQA (Yang et al., 2015), which poses the
problem as a sentence classification problem in-
stead of span prediction, is orders of magnitude
smaller than SQuAD (3,047 vs. 100,000 ques-
tions, respectively). However, WikiQA brings forth
interesting ideas, such as collecting QA data in
an information-seeking manner and using web-
search queries as a means to capture the curios-
ity of information-seeking users. This web-search
query-based approach was later adopted by larger
information-seeking QA datasets, such as MS-
Marco (Bajaj et al., 2016), SearchQA (Dunn et al.,

2https://github.com/cadia-lvl/GameQA

2017), and Natural Questions (Kwiatkowski et al.,
2019). TyDi is an example of an information-
seeking dataset constructed using answer para-
graphs from the encyclopedic domain (Clark et al.,
2020). Clark et al. showed crowd-workers a para-
graph from Wikipedia, but instructed them to ask a
question that was not answerable by the paragraph.

Just as QA datasets can differ in terms of how
they source their questions (e.g., squad-like or
information-seeking), they can also be categorized
in terms of where their answer paragraphs are
sourced, i.e. the domain that contains the answers.
A very common practice is to constrain a dataset
to a single domain – this is the case for the ma-
jority of over 80 QA datasets reviewed by Rogers
et al. (2020). SQuAD, WikiQA, TyDi, and Natu-
ral Questions are examples of such single-source
datasets, i.e. they all source answer paragraphs
from Wikipedia only. Examples of datasets sourc-
ing answers from another notable domain, the news
domain, are NewsQA and CNN/Daily Mail (Her-
mann et al., 2015). However, low-resource lan-
guages are unlikely to have access to a single
source that contains enough information to con-
struct a large QA dataset.

Multiple-domain QA datasets have also been
created. MS-Marco, which utilized Bing3 search
queries, used a proprietary state-of-the-art pas-
sage retrieval system at Bing to match queries
with answer paragraphs on the internet. Since
MS-Marco relies on such an algorithm, replicat-
ing their methods (i.e. for other languages) is im-
possible. MMQA, a multiple-domain, squad-like
dataset in English and Hindi, was created by web-
crawling and subsequently having annotators write
questions about the crawled articles (Gupta et al.,
2018). However, it is likely that it suffers from the
same problems as other squad-like datasets. To
the best of our knowledge, there exists no easily
reproducible method in the literature to gather a
multi-domain dataset where the questions reflect
information-seeking intent.

2.1 QA for Icelandic

In the last few years, Icelandic has been growing
considerably with regard to language resources
(Nikulásdóttir et al., 2022). However, for many
natural language processing tasks it still lacks the
necessary resources. For reading comprehension
and open QA tasks, there only exists one dataset

3https://www.bing.com
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for Icelandic (Snæbjarnarson and Einarsson, 2022).
It was created using the same information-seeking
process as was introduced with TyDi. Furthermore,
the authors specifically mentioned that they ex-
hausted the Icelandic Wikipedia4 when creating
questions for the dataset, thereby highlighting the
need to include more domains both for question
elicitation and answer annotation.

3 The GameQA Platform

Our crowd-sourcing platform consists of a mobile
app and web API. The mobile app was written in
React Native, the web server in Node.js, and the
underlying database is MongoDB.

We recruited users by sending an email to all
students at Reykjavik University and by advertising
the app on social media platforms. The app was
distributed through Apple App Store (iOS version)
and Google Play Store (Android version), and, in
both cases, only made accessible in Iceland.

The users form a community where they help
each other finding answers to user generated ques-
tions. For example, the app might ask a user to
write a question. Later on, another user would be
tasked with reviewing it. Once it passes peer re-
view, a third user would be tasked with finding a
specific paragraph on a web page containing the
answer, using an integrated web-search interface.
Lastly, another user would verify the answer. These
tasks are served randomly and users are not able to
review their own content.

3.1 User centered development

In the design and development of GameQA, we
applied user-centred design methodology through
iterative development and three prototypes. In the
first iteration, a web-based interface was evaluated.
As a result, in the second iteration, the interface
was simplified and gamification was added. When
evaluating the second version, users pointed out
the need for a mobile phone interface. In the fi-
nal iteration, the mobile app was thus developed
and evaluated. Involving users in the design and
the development of the application improved the
final result and the user experience. By qualita-
tively analysing the user interface prior to launch,
we were able to understand which gamification
features could increase adoption and usage of the
app.

4At the time, the Icelandic Wikipedia had only 3,730 pages
with more than 250 characters.

4 Gamification and Social Features

Gathering and annotating QA data is a laborious
and repetitive task. Since the crowd-workers of
GameQA are not financially compensated for their
contributions, and thus have little incentive to par-
ticipate, GameQA leverages gamification to incen-
tivize the users and to give them positive feedback
when they contribute to the data collection.

4.1 User levels and avatars
Every user collects points by completing tasks. For
each completed task, the user is rewarded with 1
point. Upon completing a certain number of tasks,
the user is awarded with a “level-up”. We used an
ad-hoc formula (see Equation 1) to calculate the
number of tasks T in order to complete a specific
level L:

TL = ⌊2.5 × L1.1⌋ (1)

Here TL ∈ N,∀L ∈ N. For example, a user
would have to complete ⌊2.5 × 11.1⌋ = 2 tasks for
the first “level-up”, and

∑20
l=1 Tl = 667 tasks to

complete all 20 levels.
Users are also given avatars which change as the

users level up. Since users can see each other’s
avatars, they are a signal from a user to the commu-
nity about their status.

4.2 Prestige tokens
Once we rolled out the data collection, we were
doubtful that any user would finish the 667 tasks
required to complete all 20 levels. After the first
day, however, we realized that a few completed 667
tasks within 24 hours and, subsequently, stopped
playing. We hypothesized that this was because
users had little motivation to continue annotating
once they had reached the maximum level. As a
result, taking inspiration from gaming franchises
like Call of Duty5, we added Prestige Tokens.
The prestige tokens work as follows: Users are
prompted when they finish level 20 to restart the
game at level 1, but with a token that appears next
to their avatar which signals to other users that they
have finished the game once over. The prestige to-
kens then change color, every time the user reaches
level 20.

4.3 Leaderboard
We implemented a live leaderboard within
GameQA which allows users to see how they are

5https://www.activision.com/
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performing relative to other users. We observed sig-
nificant competitiveness amongst some users after
adding this feature. For example, some users spent
several hours per day annotating data, in order to
achieve the highest rank. The avatar of the highest
ranking user was given a crown to further incentive
users to compete for the highest rank.

It is worth mentioning that even though users
competed to achieve high ranks they were informed
that the data collection was a collaborative effort,
for the purpose of compiling a training corpus for
Icelandic QA models.

4.4 User notifications

Once a question has been answered by the com-
munity, a notification is sent to the author of the
question telling them that they can see the answer
(and who answered it) in the app. This serves as an
important way for users to see that their contribu-
tion is impacting the data collection.

5 Data Collection Steps

In total, the data collection consists of five different
stages that each QA pair has to pass: 1) question
elicitation, 2) question review, 3) web search and
answer paragraph selection, 4) answer span mark-
ing, and 5) answer review6. Tasks are randomly
served to users – subsequent tasks are thus indepen-
dent of one another.

For our Icelandic QA dataset, which we call
RUQuAD (Reykjavik University Question An-
swering Dataset)7, we sourced answers from five
sources in four separate domains: The Icelandic
Wikipedia8, “Vísindavefurinn” (The Icelandic Web
of Science)9, the news websites mbl.is and
visir.is, and “Stjórnarráðið” (The Icelandic Gov-
ernment Information website)10.

5.1 Question elicitation

Users are shown an image and asked to write a
question that comes to mind. However, users are
not constrained to ask a question about the image
itself. Instead, the image serves as a stimulus for
curiosity. To gather the set of images, we first
constructed a list of 78 broad topics. From there,
we found one image related to each topic.

6Demonstrated in a YouTube video: https://www.
youtube.com/watch?v=PmCR7v_KDhQ

7https://github.com/cadia-lvl/RUQuAD
8https://is.wikipedia.org/wiki/
9https://www.visindavefur.is/

10https://www.stjornarradid.is/

5.2 Question review

Since we seek to gather questions based on the
users’ curiosity with minimal guidance and influ-
ence, we purposefully place little restrictions on
the nature of the questions. Users are asked to rate
questions given the following criteria:

Clarity If it is clear what the author of the question
is asking for.

Consistency If the answer is unlikely to change
depending on whom or when you ask.

Answer length If it seems like this question could
be answered in three sentences or less.

We chose to include the Answer Length criteria
in order to simplify other annotation tasks such as
answer reviews. Each question has to pass all of
these criteria in two separate reviews performed by
two separate users. Researchers seeking to localize
GameQA can modify these criteria if needed.

5.3 Web search and paragraph selection

A distinguishing feature of our data collection is
the users’ ability to find answers in various differ-
ent sources and domains instead of only linking
a question to a Wikipedia article. When search-
ing for an article online containing an answer to a
given question, the users form a search string that
they believe will lead to success, i.e. for which an
answer will be found (see Figure 1). This is carried
out in very much the same way as a user of a search
engine performs a web search.

Once the users find a website that contains the
information necessary to answer the question, they
select the exact paragraph that contains the answer.
If annotators are not able to find an answer, they
can mark it as unanswerable.

5.4 Answer span marking

Once a question has been linked to an answer para-
graph, the question and the attached paragraph is
shown to users. First, they are asked whether or not
they think that the answer is contained within the
paragraph. If the user responds in the affirmative,
they are then tasked with selecting the first and last
word (the span) of the answer (see Figure 2). How-
ever, if the question is a YES or NO question, then
the user will mark it as such with the right answer.
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Figure 1: A screenshot from the mobile app demon-
strating the interface for the Web search and paragraph
selection task. The question (in Icelandic) presented
to the user is “Hver drap Frankenstein” (Who killed
Frankenstein). The user has formed the search string
“Frankenstein”, and a list of search results from the five
sources appears below. At the top, the users can see
their avatar, level, position on the leaderboard, and their
progress towards their next level.

5.5 Answer review

The last step in this pipeline is the answer review
step. Similar to the question review step, each an-
swer has to pass two separate reviews from two
separate users. The review step consists of a single
question, asking users if they believe an answer
shown to them to be correct or not. The users are
not required to know the precise answer to the ques-
tion, instead they use their reading comprehension
skills and judgement to determine if the answer
seems correct.

6 Results and Data Analysis

Throughout our QA collection process for Icelandic
using GameQA, 1,524 users created an account.

Figure 2: A screenshot from the mobile app demonstrat-
ing the interface for the Answer span marking task. The
question (in Icelandic) presented to the user is “Í hvaða
heimsálfu er Perú” (In which continent is Peru). The
user has marked “Suður-Ameríku” (South America) as
the answer.

Roughly 2
3 of those (1,024 users) contributed con-

tent to the creation of the RUQuAD dataset. By the
end, they had generated 23,036 questions, 20,730
(90%) of which passed the double peer review.
12,772 answers were annotated and reviewed, re-
sulting in an unanswerable ratio of 38.4%. A pre-
liminary analysis suggests that approximately 30%
of the questions that either failed the peer review or
were marked as unanswerable might have been mis-
labeled as such. As a result, the unanswerable rate
might become considerably lower with additional
labeling after crowd-sourcing the data.

There is a remarkable diversity in the number
of answer articles. 7,835 articles were gathered in
total for the 12,722 answers, i.e. 1.64 answers per
article. This ratio is roughly 2.05 and 200 for TyDi
and SQuAD, respectively. We expect that more di-
verse answer paragraphs will help a machine learn-
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ing model, trained on the data, to generalize better.
The distribution of articles over the sources is as
follows: 68.3% came from the Icelandic Wikipedia,
18.4% from The Icelandic Web of Science, 13.1%
from the two news websites, and 0.2% from the
Government Information website.

6.1 Understanding user contributions

Since the crowd-workers weren’t paid, but rather
users playing a game in their own free time, the
strength of each users contribution was mostly im-
pacted by the time they were willing to spend on
the app. In total, the users performed 137,972 an-
notation tasks (elicit questions, review questions,
find answers, label answers, review answers). As
Figure 3 shows, the amount of work performed per
user follows a pareto distribution.

Figure 3: Tasks completed per user follow a pareto dis-
tribution where a minority of the 1,524 users contributed
a majority of the content.

6.2 Unanswerable Questions

As mentioned in Section 2, a particular problem
with information-seeking methods for low-resource
languages is the high ratio of unanswerable ques-
tions – this can be observed in Table 1.

Icelandic has fewer Wikipedia articles (54,121)
than all languages in TyDi. Yet, by leveraging mul-
tiple answer sources with GameQA, we achieved
an unanswerable rate of 38% which is lower than
all languages in TyDi, except Arabic.

6.3 Span length distribution

Out of the five annotation steps, marking answer
spans is the step that requires the highest degree of
standardization of annotation. Without such stan-
dards (or precise guidelines) and a way of enforcing
them, the annotators will not mark answer spans in
a consistent manner.

Language Number of Ratio of questions
Wikipedia with an

articles answer span

Russian 1,816,916 51%
Japanese 1,324,304 32%
Arabic 1,165,575 69%
Indonesian 620,863 34%
Korean 587,573 22%
Finnish 530,420 41%
Thai 147,378 43%
Bengali 122,041 35%
Telugu 76,259 27%
Kiswahili 71,570 22%

Table 1: A comparison of the ratio of questions, which
had an answer span, with the number of Wikipedia
articles, for each of the 10 non-English languages in
the TyDi dataset. The Pearson correlation coefficient is
p = 0.54.

Figure 4: A comparison of the minimum answer span
with the annotated and predicted spans. The underlying
subsentence is: “hófst snemma að morgni 4. apríl 2010
og stóð til 23. maí sama ár” (started early in the morning
on April 4, 2010 and lasted until May 23 of the same
year).

Figure 4 shows a comparison of the minimum
answer span (needed to answer a question) with the
span annotated by a user and the span predicted by
the IceBERT model (Snæbjarnarson et al., 2022),
fine-tuned on our dataset. We expect this discrep-
ancy between ground truth labels and the prediction
to be a result of lack of alignment amongst annota-
tors when marking answer spans. We propose that
researchers that localize GameQA standardize and
shorten the answer spans where needed, once the
crowd-sourcing has concluded.

Table 2 shows summary statistics for the answer
span lengths for three different datasets. Higher
variance in answer span lengths in RUQuAD is to
be expected since enforcing annotation standards
across thousands of crowd-workers is non-trivial.
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Dataset Span Length Standard Deviation

SQuAD 19.75 20.73
TyDi 25.77 46.12
RUQuAD 75.64 91.52

Table 2: Summary statistics of answer span lengths
(character count)

6.4 Cost-effective data collection

A clear advantage of localizing GameQA for data
collection for other languages is the possibility of
gathering QA data in a cost-effective manner. By
gamifying the data collection, we were able to cre-
ate a large-scale QA data set, gathered by thousands
of crowd-workers without the need of hiring, train-
ing, and managing annotators. The majority of the
cost we incurred with GameQA was the cost of
developing the platform. By making the code open
source, we hope to enable researchers around the
world to gather cost-effective large-scale multiple-
domain QA data for low-resource languages.

6.5 Cultural relevance

As a result of having thousands of annotators, we
observe a considerable diversity in terms of the
range of topics users asked about. Furthermore, we
notice that our proposed method is able to gather
questions which are representative of the local his-
tory and culture. In order to build QA systems,
researchers for low-resource languages might be
tempted to translate large English datasets. How-
ever, translation of English datasets will not pro-
duce questions relevant to local culture, history, ge-
ography, etc. Out of 100 questions from our dataset,
sampled uniformly at random, 33 were directly
asking about local (Icelandic) culture, history, or
geography. This emphasis on culture-related ques-
tions can possibly be attributed to some extent to
the images used in the prompting step, but it also
highlights how the right combination of annotators
and prompts can lead to greater culture focus in the
resulting data.

7 Conclusion

In this paper, we have presented GameQA – a novel
mobile trivia game platform for collecting QA data
for low-resource languages. We successfully gam-
ified the experience to increase the number of an-
notations tasks performed per user and conducted
different iterations of user experience testing. The

QA data gathered by GameQA’s users is culturally
relevant for the language and/or geographical re-
gion in question. We have made GameQA open
source, with instructions on how to localize and
subsequently release it for particular geographical
areas.

We believe that our platform can help to re-
duce the cost and time associated with collecting
QA data for low-resource languages. Our method
opens up new areas of research e.g. comparing dif-
ferent prompting methods, such as image vs. text
prompts, as well as possible advancements for QA
research in languages where traditional methods
might fail to gather a large-scale QA dataset.

Given the success of the gamification for collect-
ing QA data, we propose that gamified crowdsourc-
ing can be leveraged to gather data for other NLP
tasks as well. For an app such as GameQA, there
is a target user base that is interested in triva and
knowledge and thus willing to annotate data in this
manner. Similarly, for other NLP tasks, such as ma-
chine translation, there exists a potential user base
of multilingual persons that are greatly interested
in languages and translation. We see great potential
in applying the knowledge learned through imple-
menting GameQA for such tasks.

Limitations

The question elicitation part of GameQA is differ-
ent from prior work. An image is shown to the
user instead of a textual prompt to inspire ques-
tions. It is unclear what effect that decision has on
the chances of the question being answerable since
users could make more or less challenging ques-
tions when prompted with images instead of text.
Furthermore, the source from which the images are
taken could further influence answerability. Future
work will need to reveal the difference between
prompting with text or images.

In GameQA, the user is responsible for finding
the article that could contain an answer to a given
question. This step was automated in prior work by
selecting top search engine results. This approach
gives the user more freedom when looking for the
answer. Still, it could also limit their ability to find
answers since they are responsible for performing
Google search queries themselves. Although an
answer might exist, their queries might not suffice
to identify relevant candidate pages.

Furthermore, it is likely that some of the ques-
tions asked are ambiguous, i.e. that for a given

158



question more than one correct answer is possi-
ble. In such cases, a rewrite of the question, for
the purpose of clarifying its interpretation, might
be beneficial (Min et al., 2020). In GameQA, this
would require an additional task in the question
review step (see Section 5.2).

Ethics Statement

The data collection process in GameQA con-
sists of collecting paragraphs, from a set of
sources/domains (see Section 5), in which answers
can be found to given questions. Before starting
our RUQuAD corpus collection process, we ob-
tained formal permissions from The Icelandic Web
of Science, the news cites mbl.is and visir.is,
and the Icelandic Government Information web-
site, to freely include paragraphs from their sources
in our corpus. For the last domain, the Icelandic
Wikipedia, formal permission was not needed be-
cause its material is already freely licensed.

As a part of the data collection, we did not col-
lect any information about the users aside from
their email address which was necessary to verify
an account after registration. The data collection
was GDPR compliant and we offered to remove
any annotations or datapoints belonging to a users
should they request that. However, no user made
such a request.

As discussed in Section 4, GameQA is a game
open to any user in a particular geographic area and
does not compensate crowd-workers financially.
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Abstract

We introduce an SSMT (Speech to Speech Ma-
chine Translation, aka Speech to Speech Video
Translation) Pipeline1, as a web application
for translating videos from one language to an-
other by cascading multiple language modules.
Our speech translation system combines highly
accurate speech to text (ASR) for Indian En-
glish, pre-possessing modules to bridge ASR-
MT gaps such as spoken disfluency and punctu-
ation, robust machine translation (MT) systems
for multiple language pairs, SRT module for
translated text, text to speech (TTS) module and
a module to render translated synthesized audio
on the original video. It is user-friendly, flex-
ible, and easily accessible system. We aim to
provide a complete configurable speech trans-
lation experience to users and researchers with
this system. It also supports human interven-
tion where users can edit outputs of different
modules and the edited output can then be used
for subsequent processing to improve overall
output quality. By adopting a human-in-the-
loop approach, the aim is to configure technol-
ogy in such a way where it can assist humans
and help to reduce the involved human efforts
in speech translation involving English and In-
dian languages. As per our understanding, this
is the first fully integrated system for English
to Indian languages (Hindi, Telugu, Gujarati,
Marathi, and Punjabi) video translation. Our
evaluation shows that one can get 3.5+ MOS
score using the developed pipeline with hu-
man intervention for English to Hindi. A short
video demonstrating our system is available at
https://youtu.be/MVftzoeRg48.

1 Introduction

India writes in many languages and speaks in many
more tongues 2. It is a geographically vast multi-
lingual society with 22 recognized languages. The
languages constitute 1.17+ billion speakers across

1https://ssmt.iiit.ac.in/ssmtiiith
2shorturl.at/dnSV8

28 states and 7 union territories. According to the
2011 Census, while 129 million (10.6%) Indians
speak English, only 259,678 (0.02%) Indians speak
it as their first language. And only 8% Indians read
newspapers in English while others prefer news in
their local languages. As stated in a report from
karnataka (gfgc.kar.nic.in, 2014), about 40% of all
enrolled students from non-metropolitan regions
fail to achieve their educational goals because they
are unable to cope with English and very few study
materials are available in native Indian languages 3.
Same is true for medical and health awareness re-
lated content. There is a huge void of content in In-
dian languages that necessitates urgent action. One
solution for this problem is to use translation. Such
translations can help different language speakers to
seamlessly communicate with each other. With this
work, we aim to ease this language barrier through
speech to speech machine translation (SSMT) by
providing a baseline system for video translation.

Generally, there are two ways to implement
speech-to-speech translation (SSMT): the first ap-
proach is to cascade systems of Automatic Speech
Recognition (ASR), Machine Translation (MT),
and Text-to-Speech (TTS); second, direct end to
end speech translation. Cascaded SSMT systems
have been successfully demonstrated for English
and European languages, but one finds minimal
work done for Indian languages. Recent work in
direct end to end speech translation (Translatotron)
(Jia et al., 2019, 2022) attempts to directly translate
speech from one language into speech in another
language with the source speaker’s voice in the
translated speech. It achieves high translation qual-
ity on two Spanish to English datasets, although
the reported performance is poorer than a baseline
cascade of speech translation and TTS models (Jia
et al., 2019, 2022). We are not aware of any cas-
caded or direct speech-to-speech translation work
involving Indian languages.

3shorturl.at/crCJ7
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Figure 1: Speech to Speech Machine Translation: Cas-
cading Approach

For the purpose of our work, we decided to im-
plement a cascaded SSMT system. We also analyse
gaps between the automatic modules and address
them with pre-processing and post-processing
tools. These gaps are :speech disfluencies, domain
processing, and target language subtitling. Our
system takes an English video as an input and
outputs the same video in the chosen Indian
language. Our proposed video translation pipeline
is user-friendly, flexible, and easily accessible with
following key modules:

1. highly accurate speech to text (ASR) for In-
dian English, 2. pre-possessing modules to bridge
ASR-MT gaps such as spoken disfluency and punc-
tuation, 3. robust machine translation (MT) sys-
tems for multiple language pairs, 4. SRT module
for translated text, 5. text to speech (TTS) module,
and 6. a module to render translated synthesized
audio on the original video.

2 Approaches

The canonical approach as shown in Figure-1 in-
cludes automatic speech recognition (ASR) to tran-
scribe source language speech to text and then,
machine translation (MT) to translate transcribed
text into target language, and at the end, text to
speech synthesis (TTS) to generate speech in tar-
get language from the translated text (Sperber and
Paulik, 2020; Wahlster, 2000; Lavie et al., 1997).

In this work, we aim to develop a system which
can translate speech or video in English to selected
Indian languages. While following a cascaded ap-
proach, one can not directly chain modules such
as ASR, MT, and TTS as it is a well known fact
that spoken language has various idiosyncrasies.
These include lack of well-formed sentences and
disfluencies (Rao et al., 2007). Traditional machine
translation systems are trained on well formed, writ-
ten, and grammatical pairs of sentences. Therefore,
it is crucial to address these aspects before directly
translating transcribed text using machine trans-
lation. Similarly, to sync original video with the
translated text, time-stamping translated text is an

essential step before text to speech synthesis. Also,
video content syncing (speaker lip, video content)
with the generated speech is another important fac-
tor in making system complete.

In recent times, technological advancements
have enabled ASR, MT, and TTS to make quan-
tum leaps. Today, computers are capable of doing
these with greater accuracy and efficiency than ever
before. But they cannot be expected to be 100%
accurate. Human effort is still required to correct
or edit these outputs. Therefore, in our pipeline,
we also include steps where a human can intervene
after each automatic module which eventually re-
duces the overall human effort for the task. For the
translation of technical lectures, domain process-
ing is one of the important steps before translating
transcribed text into the target language. Domain
processing is included as a pre-processing step,
where identification of domain and domain terms
are carried out before machine translation.

In this pipeline, we also aim to develop an in-
terface for state-of-the-art video to video machine
translation between English to 5 Indian languages
(Hindi, Telugu, Gujarati, Marathi, and Punjabi)
along with pre-processing of ASR output to make
it translatable as well as post-processing of ma-
chine translation output to make it suitable for dub-
bing and video syncing. The subsequent section
explains the SSMT pipeline, the interface, and the
process in it. In section 4, we discuss the pipeline
performance and conclude in section 5.

3 Process

Here, our task is to combine technologies to make
video to video translation possible for English to In-
dian languages as shown in Figure-2. As discussed
earlier, there are gaps between the components that
need special processing. In order to fill these gaps,
we link the major components with pre/post pro-
cessing support tools with the provision of human
interventions. These are before and after each ma-
jor language component. Therefore, as visible in
different colors in Figure-2, we categorize the over-
all process into 4 major parts: Input/Output, Core
technology, Pre/Post Processing Support Tools,
and Pre/Post Editing as Human Intervention.

3.1 Input/Output

In this, we deal with the input and output process,
tools, and the user interface of the pipeline. This
includes uploading a video, processing the video,

162



Figure 2: Worked out Speech to Speech Video Translation Process

displaying the translated video and subtitling in
the target language. These are shown in dark blue
color in Figure-2 at start and end. Figure-3 shows
the application page where users can upload video,
select one of the target languages, gender for tar-
get video voice, and start the process by clicking
START button. Figure-4 shows the screenshot of
the interface after it completes the entire process
(visible as Speech to Text, English to Indian Lan-
guage MT, and Text to Speech). Users can play
the source language video and choose the subtitled
language either as English or the opted one. Users
can play the same video in the opted language by
clicking the language button as shown in blue color
Figure-4.

3.2 Core Technology

This category includes core components such as
ASR, MT, SRT, TTS, and Video Syncing. They are
in sky blue color boxes in Figure-2. We describe
each of these core components in detail and also
point out where human intervention is required.

3.2.1 ASR for Transcription
Transcription is the process of translating an audio
(of a video lecture) into text. This is usually carried
out using automatic speech recognition (ASR) tech-
nology, human transcriptionists, or a combination
of the two. ASR refers to the technologies devel-
oped to process human speech automatically and
convert it into text (Juang and Rabiner, 2005). For
this work, we have integrated the ASR developed
by IIT-Madras (Shetty et al., 2020; Arunkumar and
Umesh, 2022). Along with the verbatim output,
ASR is also tuned to provide timestamp for each
token which is directly used to create subtitle for
the video/audio. The ASR system achieves 6 and
13 WER (Favre et al., 2013)4 on the general and
technical domain, respectively. The different cat-
egories of errors in the automatically transcribed

4https://github.com/Speech-Lab-IITM/
English ASR Challenge

Figure 3: Speech to Speech Video Translation: Input
Screen

text constitute missed words, wrongly transcribed
words, spelling errors etc (Zafar et al., 2004). An
editing functionality will be helpful to correct these
errors for further processing.

3.2.2 MT for Translation
Translation is the process through which text con-
tent is transferred from a source language into a
target language. The translation task can be carried
out using machine translation systems or by human
translators (Somers, 2011). For this task, we have
integrated an MT system deployed by LTRC-IIIT-
Hyderabad using methods presented in (Mujadia
and Sharma, 2022, 2021a,b). The MT systems 5

achieved 36.33, 21.61, 18.73, 18.36, 15.89 BLEU
scores (Post, 2018) on Flores Benchmarks (Goyal
et al., 2022) for English-Hindi, English-Telugu,
English-Gujarati, English-Punjabi, and English-
Marathi language pairs, respectively. The state-
of-the-art MT technology has not yet reached a
level where it can directly provide publishable, us-
able, and accurate output in the target language.
To address this, providing multiple translation op-
tions could be one possible solution. Our interface
supports multiple translation options by leverag-
ing multiple MT models for the involved language
pairs. In this process, a user can choose one transla-
tion output from the available choices that can then

5http://ssmt.iiit.ac.in/translate
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Figure 4: Speech to Speech Video Translation: Output
Screen

be used for all the subsequent processing. The ma-
chine translation task becomes even more challeng-
ing when it encounters technical text. To support
technical domain translation, we integrated fine-
tuned machine translation systems which learn to
retain already marked domain terms in the source
script (Bak et al., 2021) along with domain adapta-
tion (Ala et al., 2021; Ala and Sharma, 2020).

On top of this, human intervention in the form
of post-editing is necessary to achieve fluency, ade-
quacy, and faithfulness for the translated text. We
have added the functionality for post-editing ma-
chine translation outputs that can later be used for
further processing.

3.2.3 SRT - Subtitling Translated Text
Subtitling is the process of displaying spoken utter-
ance as a text on the video screen. It is an audiovi-
sual translation with a set of rules and guidelines
6. The subtitle for a video is derived using the
utterance speech and word alignment from ASR.
We have developed an in-house mapping module
which places translated text into timestamps based
subtitles using source text mapping. It plays a vital
role in speech to speech video translation as it helps
to keep the translated text in sync with the video
frame.

3.2.4 TTS for Text to Speech & Video Syncing
We integrated a Text to Speech (TTS) and video
syncing system from IIT-Madras 7 (M et al., 2021;
Mukherjeee et al., 2021). It uses target language
subtitles and source speaker pauses to synthesize

6https://www.ted.com/participate/translate/
subtitling-tips

7https://www.iitm.ac.in/donlab/tts/

speech in the target language. To match and align
the source video and synthesized audio duration, a
video syncing module interpolates several frames
in the middle of two adjacent frames of the original
video. The integrated TTS and video syncing sys-
tem has average Mean Opinion Score (MOS) (1-5)
of 4 and 3.5, respectively.

3.3 Pre/Post Processing Support Tools

As discussed, to fill the gaps between core com-
ponents, we have introduced pre and post process-
ing tools. They are shown in pink color boxes in
Figure-2. To bridge the gap between ASR and MT,
we are using ASR post-processing tools such as
punctuation marker/corrector, speech disfluency re-
moval, repair and repeat identifier and processing.
Similarly, for technical lectures, identification of
domain and domain terms play an important role
in translation. Therefore, we added these as a pre-
processing utility to the machine translation system.
Below subsections discuss each of these support
tools in detail.

3.3.1 ASR Post-Processing
To prepare the raw ASR text for MT, we included
3 supporting tools as shown in Figure-2. We call
these as ASR post-processing steps. First comes
the Punctuation Marker. It is a standalone tool
where it corrects, deletes, adds existing punctuation
from ASR. We have integrated it for English (Mu-
jadia et al., 2021). The second step involves Dis-
fluency Processing where it removes filled pause
(ahh, uhh, ah, etc) and Pet Phrases (okay, ok, so,
right, etc) which are very frequent in speech. The fi-
nal pre-processing step is Repair/Repeat Process-
ing (Heeman, 1997), where it identifies repeated
occurrences for a given ASR transcript and remove
duplicate word sequences.

3.3.2 MT Domain Pre-Processing
After the ASR Post-Processing, we have integrated
text based domain identification (a classification
task) and text based domain term identifier as
shown in Figure-2. Here, once the domain of a text
is identified using the domain classifier (Sharma
et al., 2020a), a domain term identifier (Sharma
et al., 2020b) is used which is based on domain
specific dictionaries and TextRank (Mihalcea and
Tarau, 2004). These are later fed into the machine
translation system which handles these identified
domain terms differently in target language trans-
lation. For the purpose of this work, we integrated
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Figure 5: SSMT: ASR Post-processing for Punctuation

a domain classifier and domain dictionaries for
law, computer science, biochemistry, general health
awareness, and communication skill domains.

3.3.3 TTS Pre-Processing
Translated subtitled text or SRT text is a sequence
of words along with a timestamp following certain
language subtitling rules8. A valid SRT block may
or may not represent a valid sentence. It can have
multiple sentences or a part of a sentence as a SRT
block. TTS requires valid sentences as an input to
maintain target language speech flow. Therefore,
the TTS pre-processing tool adjusts the subtitle
timeline and keeps a valid sentence in one timeline.
This tool is positioned after the SRT module in the
SSMT pipeline as shown in Figure-2.

3.4 Pre/Post Editing as Human Intervention

Automatic tools are not 100% accurate. This war-
rants human intervention in the process. It is also
required to control error propagation from one com-
ponent to another. For this, we introduce a hu-
man intervention step after every automatic process.
Figure-2 shows them in yellow color boxes. In our
interface, one just needs to press“Edit”button to en-
able the editing mode after it completes processing
as can be seen in Figure-4.

Figure-5 shows the editing page for punctuation
marking post ASR tool. Here, it has 3 different text
boxes, where 1st shows the input text to the tool
(here punctuation marker), 2nd shows the output of
the module where the differences can be viewed
in green color. A user can edit in the 3rd text box
to make any further corrections. After this, the

8https://www.ted.com/participate/translate/
subtitling-tips

Figure 6: SSMT: MT Post-editing for Machine Transla-
tion

user needs to press the “Next” button to rerun the
pipeline with the updates. Similar visual structures
have been provided for editing throughout the inter-
face. The user can navigate between different steps
in the whole pipeline by clicking on the “Next” and
“Previous” buttons.

Figure-6 shows the edit page for machine trans-
lation. Here, the 1st text box shows the input for
the MT which is received after the domain pre-
processing step. Here, automatic domain terms are
being shown in upper case. 2nd, 3rd and 4th text
boxes show translation outputs generated by differ-
ent translation models. A user can pick one of them
by clicking it or post-editing it. This edited/selected
text box will be used for further processing in the
pipeline. At each stage, the interface also gives
flexibility to skip the human intervention and run
the pipeline directly. As mentioned in Figure-1, we
recommend that the post editing for ASR and MT
output is quintessential; MT pre editing is done if
required while other editing can be optional.

Core components and pre/post processing tools
have been plugged based on their performance and
availability. If better efficient systems are made
available in future, then the pipeline has modularity
to easily integrate them.

4 Performance

We evaluate the performance of the developed
pipeline with two different metrics. They are: time
taken to execute the pipeline and performance of
major modules on their known evaluation met-
rics. One can access and execute presented SSMT
pipeline using internet without installing special-
ized tools. The execution time for pipeline depends
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V 1
CS

Options Duration
ASR

Verbatim
(WER)

ASRtoMT
(WER)

Eng-Hin
MT (BLEU)

Eng-Hin MT
+ Domain
(BLEU)

MOS
(1-5)

1
Direct

+ No Punct
0:00:59 14.29% 21.74% 5.81 5.81 -

2 + Fix len Punct 0:00:59 14.29% 23.23% 15.79 15.89 2.0
3 + Punct by ASR 0:00:59 14.29% 22.28% 21.29 25.56 3.0
4 + ASR PostPro 0:00:59 14.29% 18.48% 25.41 28.06 3.45
5 + MT PreEdit 0:00:59 Gold Gold 33.45 39.34 3.65
6 + MT PostEdit 0:00:59 Gold Gold Gold Gold 4.0

V 2
CS

1
Direct

+ No Punct
0:01:00 9.57% 18.48% 3.4 3.4 -

2 + Fix len Punct 0:01:00 9.57% 19.47% 20.26 20.26 2.0
3 + Punct by ASR 0:01:00 9.57% 16.11% 22.32 25.46 3.0
4 + ASR PostPro 0:01:00 9.57% 12.32% 23.3 25.57 3.2
5 + MT PreEdit 0:01:00 Gold Gold 35.26 37.92 3.5
6 + MT PostEdit 0:01:00 Gold Gold Gold Gold 4.1

Table 1: Speech to Speech Video Translation Pipeline Evaluation at each stage; WER for ASR and ASERtoMT,
BLEU for MT, Mean Opinion Score (MOS) score is for generated video in target language. Gold indicates human
editing was carried out at that stage.

on the video length. On an average, it takes 1/3
of the video time for execution on a single GPU
(NVIDIA-3080Ti) system. Due to resource con-
straints, for now we have set the input video length
limit to 1 min in the interface, but this can be in-
creased based on availability of compute infrastruc-
ture.
We created an evaluation dataset of 2 small English
technical videos of computer science domain for
English-Hindi translation direction. We hired
experienced language professionals to carry out
manual transcription and Hindi translation for these
videos. We used WER (Favre et al., 2013) to evalu-
ate ASR verbatim (WER) and ASRtoMT Gaps
(WER) (that is verbatim + correct punctuation and
without spoken disfluency). We used BLEU (Post,
2018) to evaluate English to Hindi machine trans-
lation Eng-Hin MT (BLEU) performance without
and with domain pre-processing Eng-Hin MT +
Domain (BLEU) to the MT. Mean Opinion Score
(MOS) is used to evaluate generated Hindi speech
and synced video. Table-1 shows the evaluation
results for SSMT pipeline for 2 videos. 1st rows
“Direct + No Punct” of video 1 and video 2 show
the results when ASR verbatim (without punctu-
ation), MT, TTS, and video syncing modules are
used. The 2nd rows “+ Fix len Punct” of video
1 & 2 show the results when a punctuation sym-

bol is placed after every 20 tokens on the direct
ASR verbatim. The 3rd rows “+ Punct by ASR” of
video 1 & 2 show the results when punctuations are
given by ASR along with ASR verbatim. The 4th

rows “+ Punct by ASR” of video 1 & 2 show the
results when punctuation and disfluency process-
ing are given by ASR post processing tools. Here,
we can notice that rows from 1 to 4 for both the
videos denote results for a fully automatic pipeline.
For both the videos, ASR post processing tools
along with domain processing for machine transla-
tion give best 18.48% and 12.32% WER scores for
ASRtoMT respectively. Similarly, highest BLEU
scores of 28.06 and 25.57 were achieved for ma-
chine translation with domain processing. Here,
we got 3.45 and 3.2 MOS scores respectively for
the Hindi audio synced video.
We have also measured the performance of the
pipeline when there is human involvement in edit-
ing at major steps of the pipeline. Rows 5 of video 1
and 2 show the results after performing pre-editing
for machine translation. Here, we clearly see a 12
BLEU score and 0.25 MOS score improvement in
the machine translation and TTS quality, respec-
tively when corrected texts are given to it. Rows 6
of both videos show results when post-edited ma-
chine translation output was passed to TTS and
video syncing module. On the post-edited transla-
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tion, we see an improvement of 0.5 MOS score.
This indicates that speech to speech translation
technology needs human intervention to get the
best possible translated video. As speech-to-speech
translation involving Indian languages is relatively
a new area of research, it is difficult to compare
our work with any end-to-end speech translation
models.

5 Conclusion and Future Work

In this paper, we introduce an SSMT pipeline, an in-
telligent Speech to Speech Video Translation inter-
face for English to Hindi, Telugu, Gujarati, Marathi,
and Punjabi. This work demonstrates that speech to
speech (video to video) translation is possible with
a cascaded pipeline and support tools. We believe
that large scale deployment of this can help lower
the language barrier. The results also point out that
human intervention is necessary to get high quality
video translation output. In the near future, we aim
to come up with benchmark corpora for speech to
speech machine translation and evaluation involv-
ing English and multiple Indian Languages. We
also plan to further improve the developed pipeline
and its components to reduce involved human ef-
fort over a period of time. We will also plan to
add multiple language directions to the pipeline in
future.
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Abstract

Text-based games offer a challenging test
bed to evaluate virtual agents at language un-
derstanding, multi-step problem-solving, and
common-sense reasoning. However, speed is
a major limitation of current text-based games,
capping at 300 steps per second, mainly due
to the use of legacy tooling. In this work
we present TEXTWORLDEXPRESS, a high-
performance simulator that includes implemen-
tations of three common text game benchmarks
that increases simulation throughput by approx-
imately three orders of magnitude, reaching
over one million steps per second on common
desktop hardware. This significantly reduces
experiment runtime, enabling billion-step-scale
experiments in about one day.1 2 3

1 Introduction

One of the long standing goals of artificial intelli-
gence is to create agents that can work and reason
in embodied environments. Toward this goal, a va-
riety of virtual environments have been created that
allow simulated robots the opportunity to learn to a
variety of tasks, in settings from household environ-
ments (Kolve et al., 2017; Shridhar et al., 2020a)
to Minecraft (Guss et al., 2019). Because high-
fidelity 3D virtual environments are challenging
and resource intensive to develop, simpler 2D envi-
ronments have also been proposed (e.g. Chevalier-
Boisvert et al., 2019; Küttler et al., 2020) that allow
agents to focus on learning skills such as search or
navigation in graphically simpler environments.

Recently, text games – or environments rendered
entirely in natural language – have emerged as an
alternate research methodology for embodied agent
research, centrally due to their low barrier to entry
compared to 3D games, coupled with their ability
to easily model complex tasks at a high-level (see

1Code: github.com/cognitiveailab/TextWorldExpress
2Video: youtu.be/HLFAnRKuTlE
3Demo: marccote-textworldexpress.hf.space

Environment Simulator SPS

2D/3D Simulators4

AI2THOR (Kolve et al., 2017) 30†
MINERL (Guss et al., 2019) 180†
BABYAI (Chevalier-Boisvert et al., 2019) 3k
NETHACK (Küttler et al., 2020) 14k
MEGAVERSE (Petrenko et al., 2021) 327k†

Text Game Simulators5

TEXTWORLD (Côté et al., 2018) 300
JERICHO (Hausknecht et al., 2020) 1
SCIENCEWORLD (Wang et al., 2022) 20

TEXTWORLDEXPRESS (online, PYTHON) 32k
TEXTWORLDEXPRESS (precrawled, PYTHON) 316k
TEXTWORLDEXPRESS (online, JAVA) 212k
TEXTWORLDEXPRESS (precrawled, JAVA) 4M

Table 1: Single-thread simulation speed of common
2D, 3D, and text-game environment simulators. Speed
is measured in terms of Steps Per Second (SPS). †
symbolizes that simulation is carried out on GPUs.
TEXTWORLDEXPRESS outperforms other text game
simulators by approximately three orders of magnitude.

Jansen, 2022, for review). For example, a cooking
game might require an agent to read a recipe, find
ingredients, then prepare those ingredients to create
a meal. Text games model an agent as they navigate
an environment, rendering their observations in text
(e.g. “You are in the kitchen. You see...”). Simi-
larly, agents interact with the environment through
abstracted high-level natural language commands
(e.g. “move south”, or “pick up carrot”), rather
than lower-level actions common in 3D environ-
ments (e.g. rotate agent 2 degrees clockwise).

Text games require a variety of common-sense
knowledge to complete successfully (Ryu et al.,
2022; Murugesan et al., 2021b), including under-
standing common procedures (such as how to read
and follow instructions), as well as affordances
about the world – for example, that buildings have
rooms, containers must be opened before their con-

4Performance reported from (Zholus et al., 2022).
5Benchmark scripts provided in the code repository.
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tents can be observed or removed, and so forth. As
such, text games are still extremely challenging for
agents, with current state-of-the-art performance
at only 12% for classic interactive fiction games
such as Zork (Yao et al., 2021; Ammanabrolu et al.,
2021). Similarly, interactivity and explicit step-by-
step reasoning appears challenging for agents. For
example, there appears to be a large dissociation be-
tween a model’s ability to answer questions about
topics (e.g., science exam questions) and its ability
to perform very similar experiments in interactive
text environments, even with substantial training
(Wang et al., 2022). This suggests that explicit
interactive multi-step reasoning is still very chal-
lenging for contemporary methods like language
models, and that accurate procedural knowledge
is currently difficult to generate. Together, these
highlight the importance of using text games as a
vehicle for explicit, embodied, step-by-step reason-
ing about the world.

To help support these efforts, a number of simu-
lators have recently been developed for text game
research, shown in Table 1. Current tooling for
text games is built on legacy code bases, providing
strong limitations in rendering speed – at present,
most simulators are limited to running at between
1 and 300 steps per second. This generally limits
agents from using modeling paradigms with fast it-
eration cycles and high sample requirements (such
as reinforcement learning, or evolutionary learn-
ing), and restricts users to modeling techniques
with large train and inference cycles (such as lan-
guage models) where the simulator no longer be-
comes the bottleneck in experiment runtimes.

In this work, we develop a high-speed framework
for text-based games in natural language processing
research. Our contributions are:

1. TEXTWORLDEXPRESS, a highly optimized
simulator that includes reimplementations of
three text game benchmarks focusing on in-
struction following, commonsense reasoning,
and object identification, as well as other
newer benchmarks for evaluating arithmetic,
navigation, and neurosymbolic reasoning.

2. We empirically demonstrate that this simula-
tor runs up to three orders of magnitude faster
than current tooling, reaching 300k steps per
second (SPS) on a single-thread, and exceed-
ing 1M SPS on modest multi-core desktop
hardware. This substantially reduces experi-

ment times (from weeks to hours) for sample-
heavy machine learning agents.

2 Related Work

Research Paradigm: Text games are a rapidly
expanding research paradigm for learning and eval-
uating situated natural language processing agents
on a variety of tasks, with over 100 papers writ-
ten using this paradigm in the last few years (see
Jansen, 2022, for review). This may be in part due
to language providing useful abstractions for more
efficient exploration and planning (Karch et al.,
2020; Colas et al., 2020; Mu et al., 2022; Tam
et al., 2022), making task modeling at the level of
language more easily approached than with lower-
level 3D simulations.

Agent Modeling: Agent modeling has explored a
variety of modeling paradigms, including reinforce-
ment learning approaches (Osborne et al., 2021; Xu
et al., 2021), combined with reading comprehen-
sion techniques (Narasimhan et al., 2015; Tamari
et al., 2019; Guo et al., 2020; Yao et al., 2020,
2021), commonsense reasoning (Ryu et al., 2022;
Murugesan et al., 2021b), graph-based networks
(Ammanabrolu and Riedl, 2019), and neurosym-
bolic logic (Kimura et al., 2021b; Chaudhury et al.,
2021; Kimura et al., 2021a). Most recent agents
make use of large pretrained language models (e.g.
Devlin et al., 2019), though these can pose chal-
lenges both in inference speed, as well as general-
ization to interactive environments. For example,
a model that can correctly answer 90% of multi-
ple choice elementary science exam questions fails
to solve text games that test that same knowledge
but in a step-by-step procedural setting, even with
significant training (Wang et al., 2022).

Simulation Speed: A variety of simulators cur-
rently exist for text games, typically focusing
on providing domain-general tooling for creat-
ing small procedurally generated research envi-
ronments (e.g. Côté et al., 2018), or interfacing
to the existing body of large interactive fiction
games such as Zork (Lebling et al., 1979) from
the 1980s and 1990s by providing tooling and APIs
(Hausknecht et al., 2020). Nearly all frameworks
ultimately generate and run games as Z-machine
code (e.g. Nelson, 2014), an almost 40-year-old
domain specific language designed for portability
rather than simulation speed. One of the central
challenges in building fast research tooling is valid
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action generation. Because games implement dif-
ferent sets of actions, and at different levels of gran-
ularity, nearly all contemporary agents require the
simulator to supply a list of possible valid actions
(such as put coat in closet) that could be undertaken
by the agent at a given time step. Action spaces can
be large – hundreds of thousands of action-object
combinations are frequently possible at a given
step in most games – and existing frameworks (e.g.
Hausknecht et al., 2020) built on legacy tooling per-
form valid action generation by enumerating then
running all possible action-object combinations at
each game step then recording which ones are valid.
This is extremely costly, substantially reducing sim-
ulation performance (as shown in Table 1). In this
work, TEXTWORLDEXPRESS has been built from
the ground-up using heavily optimized and pro-
filed code to quickly render environments while
simultaneously generating an exhaustive list of pos-
sible next valid actions for agents, greatly speeding
simulation time.

3 Environments

TEXTWORLDEXPRESS offers high-speed versions
of three popular benchmark environments fre-
quently used in text game research, as well as a
number of newer environments for evaluating spe-
cific reasoning competencies:

CookingWorld: The CookingWorld environment
(Côté et al., 2018) tasks agents with preparing
meals by following the instructions in a recipe that
is provided in the environment.6 Agents must first
collect required food ingredients (e.g. milk, bell
pepper, flour, salt) that can be found in the environ-
ment in canonical locations (e.g. kitchen, pantry,
supermarket, garden) and containers (e.g. fridge,
cupboard). Randomly generated recipes require
agents to first use a knife to prepare food by slicing,
dicing, or chopping a subset of ingredients, then
additionally using an appropriate heating appliance
to fry, roast, or barbeque the ingredients. If all in-
gredients are prepared according to the recipe, the
agent can use an action to prepare the meal, and fi-
nally eat the meal to complete the task successfully.
Task complexity can be controlled by varying the
number of locations in the environment, the num-
ber of ingredients required for the recipe, and the
number of distractor ingredients randomly placed

6This task was used as part of the First TextWorld Prob-
lems competition (https://aka.ms/ftwp) and named by
(Madotto et al., 2020).

CookingWorld Game

North of House
You are in the kitchen. In one part of the room you see a fridge that is closed.
There is also a dining chair, that has nothing on it. You also see a dishwasher
that is closed. In another part of the room you see a trash can that is closed. In
one part of the room you see an oven. There is also a cutlery drawer that is
closed. You also see a stove. In another part of the room you see a counter
that has a cookbook, a green apple, and a red hot pepper on it. In one part of
the room you see a kitchen cupboard that is closed. To the South you see the
backyard. To the West you see the pantry.
> read cookbook

Gather all following ingredients and follow the directions to prepare this tasty
meal.
Ingredients: purple potato, yellow bell pepper.
Directions: dice the purple potato, fry the purple potato, roast the yellow
bell pepper, prepare meal.
> open cutlery drawer

You open the cutlery drawer. The cutlery drawer contains a knife.
> take knife

You take the knife.
> move south

You are in the backyard. In one part of the room you see a barbeque. There
is also a patio chair, that has nothing on it. You also see a clothes line, that
has nothing on it. In another part of the room you see a garden that has a raw
purple potato, and a yellow bell pepper on it. In one part of the room you
see a workbench, that has nothing on it. There is also a patio table, that has
nothing on it. To the North you see the kitchen.
> take purple potato

You take the purple potato.
> take yellow bell pepper

You take the yellow bell pepper.
> move north

You are in the kitchen.
> dice purple potato

You dice the purple potato.
> cook purple potato in stove

You fry the purple potato with the stove.
> cook yellow bell pepper with the oven

You roast the yellow bell pepper with the oven.
> prepare meal

The meal has been added to your inventory.
> eat meal

Game completed.

Table 2: An example CookingWorld text game, requiring
the agent to read a recipe, collect ingredients, and follow
preparation instructions. User or agent-entered actions for
the 12-step solution are italicized. Relevant task objects are
bolded, while distractor objects are underlined. Here, an easy-
level parametric game was generated consisting of 3 locations
(kitchen, backyard, pantry), 2 required ingredients (potato,
bell pepper), and 2 distractor ingredients (apple, hot pepper).

in the environment that are not required for the
recipe. The recipes and environments are paramet-
rically generated, with subsets of ingredients and
specific preparations held out between training, de-
velopment, and test sets to prevent overfitting. An
example CookingWorld task is shown in Table 2.

TextWorld Commonsense (TWC): Text game
agents frequently learn the dynamics of environ-
ment – such as the need to open a door before
one can move through it – from interacting with
the environment itself, rather than using a pre-
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existing knowledge base of common sense facts
or object affordances that would speed task learn-
ing. TextWorld Commonsense (Murugesan et al.,
2021a) aims to evaluate agents on common sense
knowledge that can not be directly learned from the
environment by providing agents a clean-up task
where the agent must place common household ob-
jects (e.g. a dirty dish) in their canonical locations
(e.g. the dishwasher) that can be found in knowl-
edge bases such as ConceptNet (Liu and Singh,
2004; Speer et al., 2017). Separate lists of objects
are used in the training, development, and test sets,
meaning the agent can not learn object locations
from the training set alone, and must rely on an
external common sense knowledge base to perform
well on the development and test sets. Murugesan
et al. (2021a) specify three task difficulty levels,
with the easiest including a single location and ob-
ject to put away, while the hard setting includes
two location and up to 7 objects.

Coin Collector: Agents frequently find tasks such
as object search, environment navigation, or pick-
and-place tasks challenging (Shridhar et al., 2020b).
The Coin Collector game (Yuan et al., 2018) distills
these into a single benchmark where an agent must
explore a series of rooms to locate and pick up a
single coin. In the original implementation, the
game map typically takes the form of a connected
loop or chain, such that continually moving to new
locations means the agent will eventually discover
the coin – while including medium and hard modes
that add in one or more “dead-end” paths. To con-
trol for environment difficulty across games, the
TEXTWORLDEXPRESS reimplementation uses the
same map generator across environments, and gen-
erates arbitrary home environments rather than con-
nected loops. The user maintains control of other
measures of difficulty, including the total number of
rooms, and the number of distractor objects placed
in the environment.

Adding new games: New games can be added to
TEXTWORLDEXPRESS, and 4 additional games
that benchmark arithmetic, navigation, and neu-
rosymbolic reasoning have been added since its
initial release7. Adding new games takes about a
day of coding, which can be more effortful than us-
ing the domain-specific implementation languages
of existing game engines (e.g. Côté et al., 2018).

7See full list at https://github.com/cognitiveailab/
TextWorldExpress#environments.

Action Description

Generic actions

look around describe current location
inventory list agent inventory
examine OBJ examine an object
move DIR move north, east, south, or west
open OBJ open a door or container
close OBJ close a door or container
take OBJ pick up an object
put OBJ in OBJ put an object in a container

Extended actions (CookingWorld)

read OBJ read a recipe book
cook OBJ in OBJ cook an ingredient
chop OBJ chop an ingredient
slice OBJ slice an ingredient
dice OBJ dice an ingredient
eat OBJ eat an ingredient
prepare meal prepare the meal

Table 3: The action space of the environments, as well
as descriptions of each action. Actions can take zero,
one, or two object (OBJ) or direction (DIR) arguments.

3.1 Action Space and Valid Action Generation

The three benchmark games each have up to 15
different types of actions available to agents, de-
scribed in Table 3. These include common text-
game actions such as taking objects, moving lo-
cations, and opening doors, as well as domain-
specific actions such as slicing or cooking ingredi-
ents for the cooking-domain game. Actions may
take zero (e.g. look around), one (e.g. take shirt),
or two (e.g. put shirt in closet) objects as argu-
ments.

Most contemporary high-performance game
agents (e.g. Ammanabrolu and Hausknecht, 2020;
Murugesan et al., 2021a) make use of a “valid-
action handicap” – that is, at each step, they require
a list of possible valid actions that can be taken
in the environment, from which they select a sin-
gle action to undertake. For example, a kitchen
agent might wish to dice the carrot, but such an
action would only be available to the agent if it
currently possessed both a carrot and a knife in
its inventory. This valid-action detection is typi-
cally implemented overtop of existing interactive
fiction games (such as Zork) by an interface frame-
work (e.g., Jericho; Hausknecht et al., 2020) at
significant loss to the simulation framerate. In con-
trast, TEXTWORLDEXPRESS was designed from
the ground-up to provide fast valid action genera-
tion to maintain high framerates.
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Figure 1: An example of the random map generation
process, containing 11 separate locations. Locations are
iteratively placed on a 7x7 grid, then interconnected
(edges) on the four cardinal directions (north, east,
south, west) based on connection preferences. For ex-
ample, the Pantry prefers to connect to the Kitchen, and
will never connect to the Bedroom.

3.2 Map Generation

Navigation tasks – such as exploring an environ-
ment, or navigating to a specific location – are
typically challenging for contemporary text game
agents. Because of this, games typically reduce the
burden of navigation by providing simplified maps.
At one end of the extreme, the original TextWorld
Commonsense uses small maps containing only one
or two locations, while at the other extreme Cook-
ingWorld creates maps with over a dozen locations
interconnected in common ways (i.e. a kitchen is
usually connected to a pantry, backyard, and/or cor-
ridor, but is never directly connected to a supermar-
ket). To control for the difficulty of the navigation
task across environments, TEXTWORLDEXPRESS

uses the same map generator across all three bench-
mark games, while allowing the user to specify
parameters such as the number of map locations to
control the difficulty of the navigation task.

Environments can consist of up to 11 locations,
consisting of locations common to both the TWC
and CookingWorld games. Maps are randomly gen-
erated at the start of each game, and allow naviga-
tion on four cardinal directions (north, south, east,
west). Optionally, rooms may be connected with
doors that an agent is required to open before allow-
ing passage, increasing task complexity. Figure 1
shows an example map produced by the generator.

3.3 Object Library

Task objects, room objects, and distractor objects
are populated from the object libraries provided by
the TextWorld Commonsense and CookingWorld
games. This results in approximately 500 possible
objects that can populate environments, including
containers (e.g. fridge, shelf, countertop), and mov-
able objects (e.g. red onion, dirty shirt).

3.4 Parametric Variation

To reduce overfitting, generated tasks and environ-
ments vary in their requirements and presentation.
Tasks typically vary in task-critical objects, such
as the specific objects that need to be cleaned up in
TextWorld Commonsense, or the recipe, ingredients,
and their locations in CookingWorld. Environments
parametrically vary, centrally in the environment
map (how the rooms are interconnected), while also
allowing different numbers of distractor objects to
be generated in different randomized locations in
the environment. Critically, games are determinis-
tic and the generation is repeatable and controlled
by a single random seed, such that the same game
can be regenerated during agent training and eval-
uation. To create independent train, development,
and test sets, in addition to each game having spe-
cific task objects that are unique across training and
evaluation sets, we also assign blocks of random
seeds to the train, development, and sets. This al-
lows generating thousands of possible parametric
variations for each set, while ensuring that the tasks
and environments remain unique.

3.5 Scoring

At each time step, the simulator provides the agent
a score that signifies the agent’s progress in solving
a given task. Games typically assign rewards for
critical task steps, such as picking up correct ingre-
dients, or preparing ingredients correctly. Because
the total score required to complete a game can
vary both across games and across task complexity,
scores are provided both as raw counts, as well
as normalized to between zero (no task progress)
and one (task completion). Each game has specific
success and failure criterion, which are automati-
cally detected by the simulator, and provided to the
agent by the API. For example, if a recipe requires
a carrot to be chopped, but the agent instead slices
it, this will cause a task failure, and can be used
as a reward signal for the agent model to use in
adjusting its action policy.
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4 Speed Comparison

4.1 Online and Precrawled Generation
To enable extremely fast simulations,
TEXTWORLDEXPRESS supports two game
generation modes: normal (online) generation,
and precrawled generation. In online generation,
games are parametrically generated and played at
runtime, allowing a large number of parametric
game variations to be generated, and games to be
played up to any number of steps. Conversely,
where speed is of critical importance, the simulator
supports precrawling all possible paths an agent
might take in a given environment, and pre-caching
these to disk as a JSON file. This allows extremely
fast game playing – at essentially the speed of
updating a pointer to a particular node in the
precrawled state tree – at the expense of generating
and loading large files, that pragmatically limit
the total number of steps that can be crawled and
precached in the environment.8 Precrawling is a
unique feature offered by TEXTWORLDEXPRESS,
as games taking minutes to crawl in this framework
can take days or weeks to crawl in TEXTWORLD.

4.2 Evaluating Simulation Speed
We empirically compare the simulation speed of
TEXTWORLDEXPRESS with three frameworks.

TextWorld (Côté et al., 2018) is a framework for
generating parametric text games for natural lan-
guage processing research. Games are specified
using predicate logic (to define action rules) and
a context-free grammar (to generate text), which
TextWorld reformulates into Inform7 code (Nel-
son, 2006), that is then ultimately compiled to a
Z-Machine game (Nelson, 2014). The three bench-
mark games reimplemented in TEXTWORLDEX-
PRESS were originally implemented in TextWorld.

Jericho (Hausknecht et al., 2020) provides a re-
search interface to the existing body of interactive
fiction games, such as Zork (Lebling et al., 1979),
that were originally written for the Z-Machine in-
terpreter. Critically, Jericho provides facilities for
action template extraction and valid-action genera-
tion, to reduce the difficulty of interfacing classic
interactive fiction games with language agents.

ScienceWorld (Wang et al., 2022) is a science-
domain text game simulator that provides the abil-

8As an example, a 1GB file can typically store precrawled
game trees for a single game variation up to between 8 and 12
steps, depending on the complexity of the action space.

ity to train and evaluate agents on scientific tasks
normally learned by elementary science students,
such as changes of states of matter (melting, boil-
ing, freezing), life cycles of plants and animals,
and basic chemistry. Supporting this is a series of
complex simulation engines (e.g., thermodynamics,
electrical conductivity, genetics) which increase
simulation fidelity at the cost of speed. Similar
to TextWorld and Jericho, ScienceWorld supports
generating valid actions at each time step.

The results of this evaluation, using random
agents to traverse the environments, are shown in
Table 1. The highly optimized TEXTWORLDEX-
PRESS is able to simulate games in online genera-
tion mode at an average of 212k frames per second
per thread, or nearly three orders of magnitude
faster than other frameworks.9 This varies between
256k steps per second for the fastest environment
with the least complex action space (Coin Collec-
tor), to 155k steps per second for the most complex
action space (CookingWorld). On an 8-core work-
station, this enables million-step experiments to be
simulated per second, with billion-step experiments
possible in approximately one hour.10 In contrast,
one billion steps would take approximately 38 days
using the original TextWorld implementations. In
precrawled mode, where game states are precached,
single-thread speeds of up to 4 million steps per
second are possible. Our fastest multi-threaded
benchmark on desktop hardware (an AMD 3950X
16-core, 32-thread CPU) reaches 34M steps per
second, enabling billion-step-scale simulations in
approximately 30 seconds.

5 Conclusion

We present TEXTWORLDEXPRESS, a fast simula-
tor for text-game research that reimplements three
benchmark environments while running three or-
ders of magnitude faster than their original imple-
mentations. New games can be added using ex-
isting games as templates, and four new games
benchmarking specific reasoning competencies like
arithmetic and navigation have been added since
its initial release. The simulator supports com-
mon features (such as valid action detection), while
providing new enabling features, such as quickly
precrawling entire game state trees. This work is
released as open source.

9PYTHON performance is 10X slower than JAVA/SCALA
performance due to the speed of PYTHON-JVM binders.

10Using pre-crawled paths, we managed to run billion-game
experiment on a 32-core server in about a day.
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6 Broader Impacts

Embodied agents require a variety of common-
sense reasoning skills and competencies about the
world in order to successfully perform tasks. Text
games distill task learning to a high level of abstrac-
tion, allowing conceptual-level procedural knowl-
edge to be acquired without simultaneously learn-
ing challenging low-level perceptual or motor tasks
as in 3D simulators (e.g. Shridhar et al., 2020a;
Petrenko et al., 2021), while reducing the com-
putational requirements to run experiments from
expensive GPU servers to common desktop hard-
ware. Futher, Shirdhar et al. (2020b) have em-
pirically demonstrated that agents can be inexpen-
sively pretrained on tasks in a text world environ-
ment, then transfer much of their performance to
more realistic 3D environments, speeding train-
ing. TEXTWORLDEXPRESS, which increases the
speed of text game experiments by three orders of
magnitude, enables running experiments faster, at
greater scale, or using alternate sample-heavy ma-
chine learning frameworks than currently available
simulators.

7 Limitations

TEXTWORLDEXPRESS has two main limitations
compared to existing simulators. TEXTWORLD-
EXPRESS gains much of its speed by developing
a highly-profiled simulator with hard-coded im-
plementations of text games. Unlike the original
TEXTWORLD simulator, which is designed to al-
low new environments to be implemented with
a domain-specific language, adding new environ-
ments to TEXTWORLDEXPRESS is more effortful
and requires coding in SCALA, a derivative of JAVA.
Similarly, for speed, the TEXTWORLDEXPRESS

user input parser is simplified, and it only recog-
nizes valid actions as it presents them to the agent,
without facilities for alternate surface forms, mis-
spellings, or other variations. While it is common
for agents to select actions from a valid action list,
the lack of a diverse input parser limits utility for
human participants who might choose to play these
games.

Acknowledgements

This work supported in part by National Science
Foundation (NSF) award #1815948 to PJ, and gift
from the Allen Institute for Artificial Intelligence
(AI2).

References
Prithviraj Ammanabrolu and Matthew Hausknecht.

2020. Graph constrained reinforcement learning for
natural language action spaces. In International Con-
ference on Learning Representations.

Prithviraj Ammanabrolu and Mark Riedl. 2019. Play-
ing text-adventure games with graph-based deep re-
inforcement learning. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3557–3565, Minneapolis, Minnesota.
Association for Computational Linguistics.

Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li,
Arthur Szlam, Tim Rocktäschel, and Jason Weston.
2021. How to motivate your dragon: Teaching goal-
driven agents to speak and act in fantasy worlds. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 807–833.

Subhajit Chaudhury, Prithviraj Sen, Masaki Ono, Daiki
Kimura, Michiaki Tatsubori, and Asim Munawar.
2021. Neuro-symbolic approaches for text-based
policy learning. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3073–3078, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. Babyai: First
steps towards grounded language learning with a hu-
man in the loop. In International Conference on
Learning Representations, volume 105.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-
Michel Dussoux, Clément Moulin-Frier, Peter Ford
Dominey, and Pierre-Yves Oudeyer. 2020. Language
as a cognitive tool to imagine goals in curiosity-
driven exploration. ArXiv, abs/2002.09253.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan,
Ben A. Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew J. Hausknecht, Layla El Asri, Mah-
moud Adada, Wendy Tay, and Adam Trischler. 2018.
Textworld: A learning environment for text-based
games. In CGW@IJCAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Mur-
ray Campbell, and Shiyu Chang. 2020. Interactive

175

https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/2021.emnlp-main.245
https://doi.org/10.18653/v1/2021.emnlp-main.245
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.624


fiction game playing as multi-paragraph reading com-
prehension with reinforcement learning. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7755–7765, Online. Association for Computational
Linguistics.

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019. Minerl: a large-scale
dataset of minecraft demonstrations. In Proceedings
of the 28th International Joint Conference on Artifi-
cial Intelligence, pages 2442–2448.

Matthew J. Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In AAAI.

Peter A Jansen. 2022. A systematic survey of text
worlds as embodied natural language environments.
In WordPlay Workshop: When Language Meets
Games.

Tristan Karch, Nicolas Lair, Cédric Colas, Jean-
Michel Dussoux, Clément Moulin-Frier, Pe-
ter Ford Dominey, and Pierre-Yves Oudeyer. 2020.
Language-goal imagination to foster creative explo-
ration in deep rl.

Daiki Kimura, Subhajit Chaudhury, Masaki Ono, Michi-
aki Tatsubori, Don Joven Agravante, Asim Munawar,
Akifumi Wachi, Ryosuke Kohita, and Alexander
Gray. 2021a. LOA: Logical optimal actions for text-
based interaction games. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing: System
Demonstrations, pages 227–231, Online. Association
for Computational Linguistics.

Daiki Kimura, Masaki Ono, Subhajit Chaudhury,
Ryosuke Kohita, Akifumi Wachi, Don Joven Agra-
vante, Michiaki Tatsubori, Asim Munawar, and
Alexander G. Gray. 2021b. Neuro-symbolic rein-
forcement learning with first-order logic. In EMNLP.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon,
Yuke Zhu, Abhinav Gupta, and Ali Farhadi. 2017.
Ai2-thor: An interactive 3d environment for visual ai.
arXiv preprint arXiv:1712.05474.

Heinrich Küttler, Nantas Nardelli, Alexander Miller,
Roberta Raileanu, Marco Selvatici, Edward Grefen-
stette, and Tim Rocktäschel. 2020. The nethack learn-
ing environment. Advances in Neural Information
Processing Systems, 33:7671–7684.

P David Lebling, Marc S Blank, and Timothy A Ander-
son. 1979. Zork: a computerized fantasy simulation
game. Computer, 12(04):51–59.

Hugo Liu and Push Singh. 2004. Conceptnet—a practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Andrea Madotto, Mahdi Namazifar, Joost Huizinga,
Piero Molino, Adrien Ecoffet, Huaixiu Zheng,
Alexandros Papangelis, Dian Yu, Chandra Khatri,
and Gokhan Tur. 2020. Exploration based language
learning for text-based games. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 1488–1494.
International Joint Conferences on Artificial Intelli-
gence Organization. Main track.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang,
Noah D. Goodman, Tim Rocktaschel, and Edward
Grefenstette. 2022. Improving intrinsic exploration
with language abstractions. ArXiv, abs/2202.08938.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,
and Murray Campbell. 2021a. Text-based rl agents
with commonsense knowledge: New challenges, en-
vironments and baselines. In AAAI.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Kartik Talamadupula, Mrinmaya Sachan, and
Murray Campbell. 2021b. Efficient text-based rein-
forcement learning by jointly leveraging state and
commonsense graph representations. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 719–725, Online.
Association for Computational Linguistics.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1–11,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Graham Nelson. 2006. Natural language, semantic
analysis, and interactive fiction. IF Theory Reader,
141:99–104.

Graham Nelson. 2014. The z-machine standards docu-
ment version 1.1.

Philip Osborne, Heido Nomm, and André Freitas. 2021.
A survey of text games for reinforcement learning in-
formed by natural language. ArXiv, abs/2109.09478.

Aleksei Petrenko, Erik Wijmans, Brennan Shacklett,
and Vladlen Koltun. 2021. Megaverse: Simulating
embodied agents at one million experiences per sec-
ond. In International Conference on Machine Learn-
ing, pages 8556–8566. PMLR.

Dongwon Ryu, Ehsan Shareghi, Meng Fang, Yunqiu Xu,
Shirui Pan, and Reza Haf. 2022. Fire burns, sword
cuts: Commonsense inductive bias for exploration
in text-based games. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 515–
522, Dublin, Ireland. Association for Computational
Linguistics.

176

https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2021.acl-demo.27
https://doi.org/10.18653/v1/2021.acl-demo.27
https://doi.org/10.24963/ijcai.2020/207
https://doi.org/10.24963/ijcai.2020/207
https://doi.org/10.18653/v1/2021.acl-short.91
https://doi.org/10.18653/v1/2021.acl-short.91
https://doi.org/10.18653/v1/2021.acl-short.91
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
http://inform7.com
http://inform7.com
http://inform-fiction.org/zmachine/standards/z1point1/index.html
http://inform-fiction.org/zmachine/standards/z1point1/index.html
https://doi.org/10.18653/v1/2022.acl-short.56
https://doi.org/10.18653/v1/2022.acl-short.56
https://doi.org/10.18653/v1/2022.acl-short.56


Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020a. ALFRED: A
Benchmark for Interpreting Grounded Instructions
for Everyday Tasks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020b. Alfworld: Aligning text and
embodied environments for interactive learning. In
International Conference on Learning Representa-
tions.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-first AAAI conference on
artificial intelligence.

Allison C. Tam, Neil C. Rabinowitz, Andrew Kyle
Lampinen, Nicholas A. Roy, Stephanie C. Y. Chan,
DJ Strouse, Jane X. Wang, Andrea Banino, and Fe-
lix Hill. 2022. Semantic exploration from language
abstractions and pretrained representations. ArXiv,
abs/2204.05080.

Ronen Tamari, Hiroyuki Shindo, Dafna Shahaf, and Yuji
Matsumoto. 2019. Playing by the book: An interac-
tive game approach for action graph extraction from
text. In Proceedings of the Workshop on Extracting
Structured Knowledge from Scientific Publications,
pages 62–71, Minneapolis, Minnesota. Association
for Computational Linguistics.

Ruoyao Wang, Peter Alexander Jansen, Marc-
Alexandre Côté, and Prithviraj Ammanabrolu. 2022.
Scienceworld: Is your agent smarter than a 5th
grader? ArXiv, abs/2203.07540.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, and
Chengqi Zhang. 2021. Generalization in text-based
games via hierarchical reinforcement learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 1343–1353, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Shunyu Yao, Karthik Narasimhan, and Matthew
Hausknecht. 2021. Reading and acting while blind-
folded: The need for semantics in text game agents.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3097–3102, Online. Association for Computa-
tional Linguistics.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in text-
based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8736–8754, Online. Association
for Computational Linguistics.

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sor-
doni, Romain Laroche, Rémi Tachet des Combes,
Matthew J. Hausknecht, and Adam Trischler. 2018.
Counting to explore and generalize in text-based
games. ArXiv, abs/1806.11525.

Artem Zholus, Alexey Skrynnik, Shrestha Mohanty,
Zoya Volovikova, Julia Kiseleva, Arthur Szlam,
Marc-Alexandre Côté, and Aleksandr I. Panov. 2022.
IGLU gridworld: Simple and fast environment for
embodied dialog agents. CoRR, abs/2206.00142.

177

https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/W19-2609
https://doi.org/10.18653/v1/2021.findings-emnlp.116
https://doi.org/10.18653/v1/2021.findings-emnlp.116
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.48550/arXiv.2206.00142
https://doi.org/10.48550/arXiv.2206.00142


Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 178–186

May 2-4, 2023 ©2023 Association for Computational Linguistics

TermoUD — a language-independent terminology extraction tool

Małgorzata Marciniak and Piotr Rychlik and Agnieszka Mykowiecka
Institute of Computer Science, Polish Academy of Sciences

Jana Kazimierza 5, 01-248 Warsaw, Poland

Abstract

The paper addresses TermoUD — a language-
independent terminology extraction tool. Its
previous version, i.e. TermoPL (Marciniak
et al., 2016; Rychlik et al., 2022), uses language
dependent shallow grammar which selects can-
didate terms. The goal behind the development
of TermoUD is to make the procedure as uni-
versal as possible, while taking care of the lin-
guistic correctness of selected phrases. The
tool is suitable for languages for which the Uni-
versal Dependencies (UD) parser exists. We
describe a method of candidate term extraction
based on UD POS tags and UD relations. The
candidate ranking is performed by the C-value
metric (contexts counting is adapted to the UD
formalism), which doesn’t need any additional
language resources. The performance of the
tool has been tested on texts in English, French,
Dutch, and Slovenian. The results are evaluated
on the manually annotated datasets: ACTER,
RD-TEC 2.0, GENIA and RSDO5, and com-
pared to those obtained by other tools.

1 Introduction

The purpose of automatic term extraction (ATE)
is to identify recurring phrases that are relevant to
the domain of a given text. Such phrases can then
be interpreted as candidates for key phrases, index
terms or potential domain lexicon entries.

The first among many approaches to this prob-
lem is selecting term candidates based on one of the
following methods: n-grams (Rose et al., 2010); a
set of patterns defining sequences of part-of-speech
(POS) tags allowed within phrases (Hulth, 2003);
phrases identified by a syntactical parser or an NP-
chunker (Cram and Daille, 2016). All the gener-
ated candidate terms are then ranked with an order-
ing procedure based, among other things, on tf/idf
(Salton, 1988), the C-value (Frantzi et al., 2000), or
the mutual information value. The top elements of
the obtained list are treated as domain terminology.
Methods based solely on n-grams are language in-

dependent but achieve worse results (especially for
inflectional languages) than those based on shallow-
parsers which are language dependent. One of the
important objectives of developers of ATE tools
is to make them language independent. The JATE
system (Zhang et al., 2016) selects candidate terms
on the basis of syntactic analysis. However, it is
designed to make it easy to adapt to different do-
mains and/or languages — a flexible mechanism to
determine how candidate phrases are constructed
has been defined.

The second approach to ATE involves combin-
ing solely statistical features extracted from the
processed text used in heuristics selecting termi-
nology. An example of this approach is YAKE!
(Campos et al., 2020), which supports 9 languages.
The score assignment in YAKE! combines features
such as letter case, a position within the text, word
frequency and the number of different sentences in
which a given term appears and, finally, the num-
ber of different contexts in which a term appears.
Scores for 1-grams are combined to give the rank-
ing of n-grams. The method gives good results for
keyphrase extraction from short texts. The method
doesn’t work so well for inflection-rich languages,
as the statistics are counted on forms, moreover;
the processing of texts longer than a few pages is
time-consuming.

The newest approach solves the problem of ter-
minology extraction as a sequential tagging task
and applies machine learning methods similar to
the Named Entities Recognition. This approach
was first used in the Termeval 2020 shared task
(Rigouts Terryn et al., 2020), whose organisers pub-
lished English, French and Dutch data collected in
the Annotated Corpora for Term Extraction Re-
search (ACTER) (Terryn et al., 2020).

All of the above approaches have various limi-
tations. Although the latter approach has proven
quite effective on the ACTER corpus, its use is lim-
ited to cases where we have annotated data, which
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are quite rare. Using only statistical heuristics to
identify phrases has proven ineffective, especially
for highly inflected languages, and defining POS
patterns or grammatical rules requires knowledge
of the language in question. Here we propose a
method that, while not completely universal, can be
used without additional modifications or resources
for a great many languages.

Our tool for terminology extraction performs se-
lection of candidate terms by using dependency
parsing. The presented method is language inde-
pendent and time-efficient. Nowadays, dependency
parsers are very popular and are available for many
languages (e.g. SpaCy works for 20, and Stanza for
70 languages) and are robust enough to be used in
NLP applications. They are quite naturally used a
lot in relation extraction, e.g. (Fundel et al., 2006)
or (Geng et al., 2020), but there is still little in-
terest in using dependency parsing in terminology
extraction. The only two known approaches are
(Gamallo, 2017) and (Liu et al., 2018). Gamallo
used dependency parsers for bilingual term align-
ment. In the second paper, the authors used depen-
dency parses for candidate selection for Chinese
and achieved better results (both in terms of recall
and precision) than using only POS based rules. In
(Marciniak et al., 2020), the authors proposed the
post-processing of selected phrase-candidates by
checking the consistency of dependency parses of
already selected phrases.

2 Extraction Process

To make our program as universal as possible, we
had to define a set of rules to identify, without any
changes, noun phrases in dependency trees con-
structed by parsers processing sentences in differ-
ent languages.

2.1 Identification of Candidate Phrases

The UD project assumes a consistent structure
of annotation schemes for many languages. In
the terminology candidate identification algorithm
described below, we use this consistency to de-
fine rules for selecting nominal phrases that are
based on four sets of information. Two sets con-
sist of UD POSs. The first – head-pos – contains
UD POSs of nodes that can be heads of the term
phrases, i.e. NOUN, PROPN and VERB (if the con-
sidered node is classified as a gerund). The sec-
ond – non-head-pos – contains UD POSs of nodes
that can be part of the term phrases but not their

PART VERB ADP NOUN ADP ADJ NOUN

to request for waiver of applicable immunity

mark case amod
obl

amod

case
nmod

Figure 1: Dependency graph corresponding to phrase:
to request for waiver of applicable immunity. All framed
words are terminology nodes, heads are gray; obligatory
relations: case, facultative relation: amod, nmod, obl.

heads, i.e. ADJ, ADP, ADV, DET and NUM. The next
two sets consist of relations: obligatory-rel and
facultative-rel. The first set groups relations
between words that should appear together in ter-
minology phrases, while the second set contains
relations between words that may or may not ap-
pear in a sentence. The appropriate relations are
listed below:

obligatory-rel: amod:flat, case, case:poss, ccomp,
compound, compound:prt, expl:pv, fixed, flat,
iobj, nmod:arg, nmod:flat, nsubj:ger,obj,
obl:agent,obl:arg, xcomp.

facultative-rel: acl, advmod, advmod:emph,amod,

appos, nmod, nmod:poss, nummod, nummod:gov, obl

Note that even if we add the relations that are only
typical for a certain language to the lists, it will
not destroy the generality of the solution. These
relations will not affect the results obtained for
other languages.

To create UD structures from plain text, we use
the Stanza (Qi et al., 2020) dependency parser. The
structure obtained in this way consists of sentence
nodes with relations pointing to their dependent
nodes, see Fig. 1. We select all nodes which may be
included in terminology phrases creating the list of
potential terminology nodes. This list includes all
nodes whose UD POS belong to one of the above-
mentioned sets: head-pos or non-head-pos. For
hyphenated compound words, which are allowed
in many languages, all nodes of the UD structures
representing them are placed in the list of poten-
tial terminology nodes. All nodes from structures
representing hyphenated compound words, except
those that are heads of these structures, are also
placed in the list of hyphenated nodes. Each of
the nodes in the list of hyphenated nodes will be
selected for creating phrases if and only if its head
is also selected.

In the structure, we leave only relations between
the terminology nodes and check if, for each node,
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all obligatory-relations are in the current struc-
ture. Doing so, we avoid some truncated phrases,
as we do not want to create phrases with nodes that
have unrealized requirements.

We repeat the process of making phrases in the
loop for all nodes from the list of potential ter-
minology nodes. For each node we take into ac-
count all combinations of dependent nodes, where
nodes connected by obligatory-relations and
those from the list of hyphenated nodes must be
included in the phrase, while nodes connected
by facultative-relations may be omitted. As
the candidate term phrase, we accept only those
for which the head element is included in the
head-pos set. The list of established phrases for
the considered node is passed to the upper node
(if relevant), and the considered node is removed
from the list of potential terminology nodes. The
whole procedure is repeated until the list of poten-
tial terminology nodes is empty. Pseudocode for
the algorithm is given in the Appendix A.

Many forms of a given term can occur in the pro-
cessed texts, especially in the case of inflectional
languages. Therefore, the program identifies terms
by their lemmatized forms. To present terms in
a more readable way, we choose their most fre-
quently occurring forms, preferably from those in
nominative case (if applicable) and/or in the singu-
lar.

The method described above allows the extrac-
tion of discontinuous phrases. Figure 1 gives a
phrase from the ACTER part of the corpus on cor-
ruption. Our method extracts 5 term candidates
for this structure, i.e., waiver, applicable immunity,
immunity, waiver of applicable immunity and the
phrase with a gap: waiver of immunity. All phrases,
except the second one, are terms according to the
manual annotation.

While our goal is to build a tool that can pro-
cess texts in many languages, we are aware that
omitting all language-dependent features may de-
grade the results. One such feature is the use of
determiners, which for some languages are oblig-
atory while in others they are used sporadically.
Some pronouns, (indicative, possesive), which are
usually excluded from terminological phrases, can
also play role of determiners, so we focused not
on syntactic classes but on the det relation. In Ta-
ble 1, we have included the ratio (multiplied by
100) of the number of det relations to the number
of nouns (both common and proper) for 20 lan-

guages from the PUD set used for CoNLL 2017
shared task (Zeman et al., 2017). Its value varies
from above 60 for French to 2.4 for Japanese. We
have chosen an arbitrary threshold equal to 20 be-
low which we assume that terminology phrases do
not include determiners. For languages with this
coefficient larger than 20 we allow for determin-
ers within terminological phases. In this case we
include determiners to the set non-head-pos and
make det relation obligatory.

name tokens N PN det-rel %
French 24,131 4,672 1,272 3,857 64.9
Portuguese 21,917 4,600 1,393 3,726 62.2
Italian 22,182 4,392 1,756 3,751 61.0
Spanish 22,822 4,818 1,250 3,514 57.9
German 21,000 4,249 1,219 2,771 50.7
English 21,176 4,036 1,741 2,047 35.4
Swedish 19,076 4,035 1,216 1,017 19.4
Hindi 23,829 5,597 1,358 791 11.4
Indonesian 19,034 4,687 2,113 718 10.6
Turkish 16,536 5,829 1,525 686 9.3
Russian 19,355 4,897 1,209 476 7.8
Czech 18,565 4,482 1,091 423 7.6
Icelandic 18,831 4,101 1,464 318 5.7
Thai 22,322 6,052 1,491 413 5.5
Chinese 21,415 5,410 1,361 338 5.0
Korean 16,584 8,052 1,677 457 4.7
Finnish 15,807 4,223 1,504 245 4.3
Arabic 20,747 5,578 1,728 285 3.9
Polish 18,338 4,504 1,326 196 3.4
Japanese 28,788 7,424 1,363 210 2.4

Table 1: Frequency of using det relations in the corpora
used for training dependency parsers. The columns
include number of nouns, proper nouns, det dependency
relations and the ratio (multiplied by 100) by the latter
to the sum of all nouns.

2.2 Ranking of Phrases

The method of identifying term candidates de-
scribed above leads a large number of phrases in-
cluding their subphrases. For ranking candidates
we use C-value coefficient which depends on the
frequency of an evaluated phrase (the higher the
frequency of the phrase in the text under study,
the higher the C-value), its length (longer terms
are preferred) and the number of different contexts
in which it occurs (the C-value increases with the
number of different contexts). We adapted this
method to rank term candidates extracted using
dependency relations. In particular, since the ob-
tained phrases can be discontinuous, the definition
of phrase contexts had to be reformulated.

When determining the context of a given phrase,
we take into account its UD structure and the maxi-
mum structure that contains it. For example, for the
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phrase waiver of immunity from Figure 1, the max-
imum structure will be the structure corresponding
to the maximum phrase waiver of applicable im-
munity. From the maximum structure, we select
those nodes that do not belong to the structure of
the examined phrase and are directly adjacent to
some of its nodes. We then concatenate the lemmas
of the tokens corresponding to the nodes found in
the order in which these tokens appear in the sen-
tence. We treat the resulting string of characters as
the context of the examined phrase. For the phrase
waiver of immunity, its context is applicable.

3 Evaluation

To compare the results with other approaches, we
evaluate our tool on the following corpora anno-
tated with terminology: ACTER, GENIA, ACL
RD-TEC, and RDSO5. So, we tested the method on
four languages: English, French, Dutch and Slove-
nian. For comparison, the D-Terminer (Rigouts Ter-
ryn, 2021; Rigouts Terryn et al., 2022a) and Sketch
Engine (Jakubíček et al., 2014) were also used to
process the same datasets. In the case of TermoUD,
we tested the plain tool without additional exist-
ing filters developed for TermoPL, e.g., removing
stopwords from candidate terms.

The result of TermoUD is a sorted list of all de-
tected phrases, with no indication of where a split
between terms and non-terms is suggested. Since
the ranking method used in the tool assigns the
same values to many terms, the evaluation can-
not be carried out at any point in the ranking list,
but only in those places where the value changes.
Therefore, it is not possible to compare our method
with others for the lists of terms of the same length.

3.1 ACL RD-TEC

The ACL Reference Dataset for Terminology Ex-
traction and Classification, version 2.0 (ACL RD-
TEC 2.0) (QasemiZadeh and Schumann, 2016) has
been developed with the aim of providing a bench-
mark for the evaluation of term and entity recogni-
tion tasks based on specialised text from the com-
putational linguistics domain. It consists of 300
abstracts from articles published between 1978 and
2006 in which both single and multi-word lexical
units with a specialised meaning are manually an-
notated. 6,818 occurrences of terms are identified
in total and 1918 of them are different strings.

To compare the results of TermoUD with the
best tool for English, i.e. D-terminer, we use both

to extract terms and compare the results. To make
the comparison more reliable, we unify upper and
lower case letters, so natural language processing
and Natural Language Processing are treated as
the same phrase. If phrases have different charac-
ter sets, we consider that they are different, e.g.,
word-sense disambiguation algorithms and word
sense disambiguation algorithms. The results of
the comparison are given in Table 3. For the com-
parison, we select the number of elements returned
by TermoUD, which is similar to the length of
the manually annotated list of terms. A specific
problem with the manually annotated ACL RD-
TEC data is the high number of phrases containing
acronyms surrounded by parentheses (128 cases),
e.g., Question Answering (QA) systems. Neither
of the two tools recognised these phrases, in effect
lowering results equally. The D-terminer doesn’t
indicate any phrase with an acronym inside, while
TermoUD indicates them without parentheses.

selected terms prec. recall F1
D-terminer 613 0.51 0.16 0.25
TermoUD(1) 171 0.60 0.05 0.10
TermoUD(2) 1276 0.26 0.17 0.21
TermoUD(3) 2610 0.28 0.38 0.33

Table 2: Results for D-terminer and TermoUD applied
to the ACL RD-TEC corpus. Three lists of TermoUD
differ in the numbers of selected terms and are given for
three consecutive C-values.

3.2 Genia

The GENIA corpus (Kim et al., 2003) consists of
2000 MEDLINE abstracts containing about 400K
words. Included in the collection are articles con-
taining such MeSH terms as human, blood cell and
transcription factor. The annotation for biological
terms refers to concepts defined within the GENIA
ontology, which contains 47 biologically relevant
nominal categories. From a linguistic point of view,
the selected terms were nominal phrases in which
the noun was followed by an optional sequence
of adjectives and noun modifiers. There are about
80K annotated phrases in the corpus. The data
is challenging because the structure of biological
terms varies widely, and the vast majority of terms
(76% of 36230) occur only once.

As with the previous data set, we used the D-
terminer to identify terms in the Genia corpus. It
performed very well, achieving an F1 value of 0.45
and finding almost 40% (13,487) of all annotated
terms. As expected for such data (many singular oc-
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currences), our program performed worse in terms
of precision at the top of the returned list (Table
3). We tested phrases with lengths up to 4 and 6
elements. The method recognized 116,499 phrases
with length up to 4 tokens. The list contains 71% of
manually annotated terms. While the list of phrases
with length up to 6 tokens is longer and consists
of 153,122 elements, but it contains only slightly
more of manually annotated phrases – 73%. The
top of the lists (the first 8,986 elements) is the same
for both tested lengths of phrases and the precision
is 0.52. Significant differences appear in the terms
that were placed in positions above 33,000.

terms
selected good prec. recall F1

D-terminer 23,813 13,487 0.57 0.37 0.45
TermoUD
4&6 top(1) 1173 740 0.63 0.02 0.04
4&6 top(2) 8,986 4,665 0.52 0.13 0.21

4 (1) 32,688 9,856 0.30 0.27 0.28
4 (2) 43,939 14,412 0.33 0.40 0.36
6 (1) 33,066 9,905 0.30 0.27 0.28
6 (2) 57,664 14,940 0.26 0.41 0.32

Table 3: Results for D-terminer and TermoUD applied
to GENIA. The following results are reported for Ter-
moUD: a) two results for the top parts of the lists (com-
mon for longer and shorter phrases) b) two results (con-
secutive C-values) for phrases of lenghts up to 4 and
6 which have the number of selected terms below and
above the number of manually selected terms.

3.3 ACTER
The Annotated Corpora for Term Extraction Re-
search (ACTER) dataset (Rigouts Terryn et al.,
2022b) includes domain-specific corpora in three
languages (English, French, and Dutch) and four
domains (corruption, dressage (equitation), heart
failure, and wind energy). Manual annotations are
available for terms and Named Entities for each
corpus, with almost 20k unique annotations in to-
tal. The corpus was used by those participating
in the shared task at the Computerm workshop
(Rigouts Terryn et al., 2020). The best result was
achieved by a BERT based architecture used for se-
quential token classification, TALN-LS2N (Hazem
et al., 2020). As the corpus contains a relatively
short texts, our ranking methods are not too ef-
ficient, so the results for the top part of the can-
didate terms lists, shown in Table 4, are signifi-
cantly worse (similar to the results of the standard
methods taking part in the shared task). The worst
result were obtained for Dutch texts. The TALN-
LS2N results demonstrate some differences in the

data across languages. For English, recall is much
higher than precision, while for French they are
similar. In our experiment, for English data, preci-
sion was higher than recall. The D-terminer appli-
cation was trained on ACTER data, so we cannot
use it as a comparison.

terms
all selected good prec. recall F1

TermoUD, English
corp 1087 1008 245 0.24 0.23 0.23
equi 1427 661 255 0.39 0.18 0.24
htfl 2459 3466 494 0.14 0.20 0.17
wind 1434 1028 282 0.27 0.20 0.23
TermoUD, French
corp 1103 1230 245 0.20 0.22 0.21
equi 1079 619 192 0.31 0.18 0.23
htfl 2202 3305 453 0.14 0.21 0.16
wind 870 840 152 0.18 0.17 0.18
TermoUD, Dutch
corp 1215 845 161 0.19 0.13 0.16
equi 1457 1673 182 0.11 0.12 0.12
htfl 2137 2586 193 0.07 0.09 0.08
wind 1159 735 96 0.13 0.08 0.10
TALN-LS2N, English
htfl 2479 - - 0.35 0.71 0.47
TALN-LS2N, French
htfl 2220 - - 0.46 0.52 0.48

Table 4: Results for ACTER data. The ’all’ column rep-
resents the number of different terms annotated within
the data. htfl data was used as test data for TALN-LS2N
while the other sets were used as train data. In the
TALN-LS2N approach there was no initially selected
list of terms – all tokens were tested.

3.4 RSDO5

The Slovenian corpus RDSO5 (Jemec Tomazin
et al., 2021) was created to train tools for auto-
matic term identification. It consists of around
250,000 tokens and gathers texts from four do-
mains: biomechanics, linguistics, chemistry, and
veterinary. 38,000 phrases were manually marked
as terms in the data, among them 6165 differ-
ent strings. Slovenian is an inflectional language,
which means that each term may occur in many
forms, e.g. virusni sev ’virus strain’ has the fol-
lowing inflected forms in the data: virusnih sevov,
virusni sevi, virusnimi sevi, virusnim sevom, virusni
sev, virusnega seva, virusnih sevih, virusnemu sevu,
virusna seva. TermoUD gives a list of unique terms
as its output, so we join various manually selected
term forms with the help of the lemmas provided
by the Stanza parser. As a result, we obtain a list
of 4200 items.

Table 5 contains the results of applying the Ter-
moUD tool to four subcorpora of the RSDO5 cor-
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pus. The third column of Table 5 gives the number
of various terms (not term forms) which are identi-
fied in the data. For the evaluation we took lists of
terms that have a length equal to the list of manu-
ally selected phrases. For this reason, the values of
the precision, recall and F1 measure are equal. In
the table, we give only the first value.

tokens diff. terms prec. (nb)
bim 61,375 797 0.21 (169)
jez 109,421 1000 0.25 (249)
kem 65,620 773 0.24 (186)
vet 76,138 1630 0.21 (349)

Table 5: Results for TermoUD applied to RSDO5

We are not aware of other experiments per-
formed on the RSDO5 corpus, so we have no data
to evaluate the quality of TermoUD’s performance.
We decide to compare the obtained results with
the free trial Skech Engine (Jakubíček et al., 2014)
which gives the first 100 one-word terms and the
first 100 multi-word terms, and almost all of them
are unique terms. We select the same number of
terms in the same proportion from our lists. The
results of selected terms are given in Table 6. A
comparison of the results shows that TermoUD is
better at providing the first 100 one- and multi-
words terms. Only the results for multi-word terms
of biomechanic texts are at a similar level.

Sketch Engine TermoUD
one multi one multi

bim 0.13 0.17 0.45 0.19
jez 0.26 0.31 0.42 0.47

kem 0.23 0.17 0.45 0.38
vet 0.14 0.24 0.53 0.46

Table 6: Precision of 100 extracted terms by Sketch
Engine and TermoUD.

4 Conclusion and Future Work

TermoUD’s method of selecting traditional candi-
date terms restricted to nominal phrases allows mul-
tiple languages to be processed with the same tool.
As linguistic knowledge is already contained in the
UD parsers, no language adjustments are needed.
For example, it is irrelevant whether adjectives can
come before or after a noun in a given language. An
additional, unique feature of UD-based candidate
term selection is its ability to extract discontinuous
phrases, see Figure 1.

The best current methods of terminology extrac-
tion use machine learning and sequential tagging.
The results obtained by these methods are much

better than TermoUD’s, especially measured by
precision. These methods also facilitate the expan-
sion of term types, e.g. to include those which are
adjectives and verbs. However, the methods require
the preparation of training data, that exists for only
a few languages, text types and domains.

The quality of the results obtained by TermoUD
depends on the quality of the parser for the lan-
guage in question, especially how good the lemma-
tisation is. This feature is particularly important
for languages with rich morphology, as we need
to recognise and join various inflected forms of
candidate terms.

The important feature that differentiates the
two approaches is the list of results. For the
classification-based methods, we get a list of terms,
whereas TermoUD generates a sorted list of all term
candidates. The disadvantage of the TermoUD tool
is the need to establish where the list is divided
into terms and non-terms, but the advantage is we
can choose how many of the candidates we would
like to choose. Machine learning methods only
provide a list of accepted terms, which is fragmen-
tary knowledge as we do not know the phrases
that were rejected and should have been classified
as terms. As the ranking coefficient used in Ter-
moUD is highly dependent on term frequencies,
our method gives much better results for larger data.
Terms used in text only once are always located
very low on the final list.

In the near future, we plan to deal with the anal-
ysis of coordinated phrases, which are quite a chal-
lenge for all terminology extraction tools and the
UD mechanism seems to enable their correct han-
dling. Moreover we should test the tool on lan-
guages from other families, and improve the term
ordering method. as our lists contain on average
about 80% of terms, changes in ordering method
may significantly improve the results.

TermoUD1 is available from http://zil.
ipipan.waw.pl/TermoPL, the same page as Ter-
moPL, the previous version of the tool described
in the paper. TermoPL is also a part of Korpu-
somat (Kieraś and Kobyliński, 2021), a simple
tool for creating linguistic corpora in Polish https:
//korpusomat.pl/. TermoUD will be available
from the multilingual version of the Korpusomat
tool currently under development.

1A system demonstration and the results of the tool are
available from the same page.
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5 Limitations

ThermoUD requires the existence of a UD parser.
It does not consider candidate terms like adjectives,
verbs, coordinated phrases and phrases containing
coordinated phrases. We only evaluated the tool
on Indo-European languages as we are not aware
of any terminology-annotated datasets for other
languages. We used our extraction method to ex-
tract terminology from Finish texts. Used texts and
obtained results are available on the project page
given above.
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(2):49–58.

J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GE-
NIA corpus—a semantically annotated corpus for
bio-textmining. Bioinformatics, 19(suppl_1):i180–
i182.

Ying Liu, Tianlin Zhang, Pei Quan, Yueran Wen,
Kaichao Wu, and Hongbo He. 2018. A novel
parsing-based automatic domain terminology extrac-
tion method. In Shi Y. et al., editor, Computational
Science – ICCS 2018. Lecture Notes in Computer
Science, vol 10862, pages 796–802. Springer, Cham.

Małgorzata Marciniak, Agnieszka Mykowiecka, and Pi-
otr Rychlik. 2016. TermoPL — a flexible tool for ter-
minology extraction. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation, LREC 2016, pages 2278–2284, Portorož,
Slovenia. ELRA, European Language Resources As-
sociation (ELRA).

Małgorzata Marciniak, Piotr Rychlik, and Agnieszka
Mykowiecka. 2020. Supporting terminology extrac-
tion with dependency parses. In Proceedings of the
6th International Workshop on Computational Ter-
minology, pages 72–79, Marseille, France. European
Language Resources Association.

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The ACL RD-TEC 2.0: A language resource
for evaluating term extraction and entity recognition
methods. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1862–1868, Portorož, Slovenia.
European Language Resources Association (ELRA).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Ayla Rigouts Terryn. 2021. D-TERMINE : data-driven
term extraction methodologies investigated. Ph.D.
thesis.

184

https://doi.org/10.1093/bioinformatics/btl616
https://doi.org/10.1093/bioinformatics/btl616
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.006
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.006
https://doi.org/https://doi.org/10.1016/j.ins.2019.09.006
https://aclanthology.org/2020.computerm-1.13
https://aclanthology.org/2020.computerm-1.13
https://doi.org/10.3115/v1/E14-2014
https://doi.org/10.3115/v1/E14-2014
http://hdl.handle.net/11356/1470
https://doi.org/10.31286/JP.101.2.4
https://doi.org/10.31286/JP.101.2.4
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/https://doi.org/10.1007/978-3-319-93713-7_77
https://doi.org/https://doi.org/10.1007/978-3-319-93713-7_77
https://doi.org/https://doi.org/10.1007/978-3-319-93713-7_77
http://www.lrec-conf.org/proceedings/lrec2016/index.html
http://www.lrec-conf.org/proceedings/lrec2016/index.html
https://www.aclweb.org/anthology/2020.computerm-1.10
https://www.aclweb.org/anthology/2020.computerm-1.10
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://aclanthology.org/L16-1294
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf


Ayla Rigouts Terryn, Veronique Hoste, Patrick Drouin,
and Els Lefever. 2020. TermEval 2020: Shared task
on automatic term extraction using the annotated cor-
pora for term extraction research (ACTER) dataset.
In Proceedings of the 6th International Workshop on
Computational Terminology, pages 85–94, Marseille,
France. European Language Resources Association.

Ayla Rigouts Terryn, Veronique Hoste, and Els Lefever.
2022a. D-terminer: Online demo for monolingual
and bilingual automatic term extraction. In Proceed-
ings of the Workshop on Terminology in the 21st
century: many faces, many places, pages 33–40,
Marseille, France. European Language Resources
Association.

Ayla Rigouts Terryn, Véronique Hoste, and Els Lefever.
2022b. Acter 1.5: Annotated corpora for term extrac-
tion research.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text Mining: Applications
and Theory, pages 1 – 20.

Piotr Rychlik, Małgorzata Marciniak, and Agnieszka
Mykowiecka. 2022. Termopl: A tool for extracting
and clustering domain related terms. In Proceedings
of the 22nd ACM/IEEE Joint Conference on Digital
Libraries, JCDL ’22, New York, NY, USA. Associa-
tion for Computing Machinery.

Gerard Salton. 1988. Syntactic approaches to automatic
book indexing. In Proceedings of the 26th Annual
Meeting on Association for Computational Linguis-
tics, ACL ’88, pages 204–210, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ayla Rigouts Terryn, Véronique Hoste, and Els Lefever.
2020. In no uncertain terms: a dataset for mono-
lingual and multilingual automatic term extraction
from comparable corpora. Language Resources and
Evaluation.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Missilä,
Christopher D. Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria dePaiva, Kira
Droganova, Héctor Martínez Alonso, Çağrı Çöltekin,
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A Candidate phrase extraction from UD
structures (pseudocode for the
algorithm)

1. Define sets:

head-pos, non-head-pos,
obligatory-rel, facultative-rel.

2. Create the structure ud: for every token j in a
sentence create a node nj and define ud[nj] as a
set of pairs (ni,ri), where ni is the dependant (in
the sense of the dependency relation ri) of nj and
corresponds to the token i.

3. Create the list T-nodes consisting of all
nodes that might be included in term phrases.
T-nodes will contain all nodes from ud with POS
in head-pos or non-head-pos.

4. Identify the structures corresponding to hyphen-
ated compound words. Add all nodes from this
structures to T-nodes. Select all nodes from the
identified structures that are not their heads and put
them in the list H-nodes.

5. Remove nodes from the structure ud that are not
in the list T-nodes.

6. Check if obligatory relations lead to the nodes
that may create terms:

for each element e of T-nodes:
for each pair (n,r) ∈ ud[e]:

if r ∈ obligatory-rel:
if n /∈ T-nodes:

delete e from T-nodes;
else: # r is facultative

if n /∈ T-nodes:
delete pair (n,r) from ud[e];

7. For each node n in T-nodes, create an empty
set P[n]. This set will contain lists of all possible
phrases p[d] for which d is the head element, for
all dependants d of n. These phrases will be rep-
resented by sets of nodes. After determining the
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set P[n], the list p[n] can be created. Each phrase
from p[n] must contain:

(a) node n,
(b) all nodes from one phrase in p[d],

if (d,r) ∈ ud[h] and
r ∈ obligatory-rel,

(c) none or all nodes from one phrase in p[d],
if (d,r) ∈ ud[h] and
r ∈ facultative-rel,

(d) all nodes x ∈ H-nodes, if (x,r) ∈ ud[n].

8. Select candidates for terminology phrases:

create empty list terms;
while T-nodes is not empty:

for each n ∈ T-nodes:
if ud[n] is empty:

# phrases are established for all
# dependent nodes of n
remove n from T-nodes;
create p[n];
find the head node h of n;
if h∈T-nodes:

add p[n] to P[h];
remove all pairs (n,r) from ud[h];

if POS(n) ∈ head-pos:
add all phrases from p[n] to terms;

9. Clean up:

(a) sort each element of terms according to
the position of the nodes in the sentence,

(b) remove the node from the begining of a
phrase, if it is a preposition referring to the
head of the sentence, or if it is a determiner.
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Abstract

Automated text anonymization is a classi-
cal problem in Natural Language Process-
ing (NLP). The topic has evolved immensely
throughout the years, with the first list-search
and rule-based solutions evolving to statisti-
cal modeling approaches and later to advanced
systems that rely on powerful state-of-the-art
language models. Even so, these solutions fail
to be widely implemented in the most privacy-
demanding areas of activity, such as health-
care; none of them is perfect, and most can not
guarantee rigorous anonymization. This paper
presents INCOGNITUS, a flexible platform for
the automated anonymization of clinical notes
that offers the possibility of applying different
techniques. The available tools include an un-
derexplored yet promising method that guaran-
tees 100% recall by replacing each word with a
semantically identical one. In addition, the pre-
sented framework incorporates a performance
evaluation module to compute a novel metric
for information loss assessment in real-time.

1 Introduction

The digitization of medical textual data has allowed
for a whole new range of possibilities, such as
the development of tools for the summarization
of clinical notes or the automated identification of
the International Classification of Diseases (ICD)
codes in clinical text. However, clinical data con-
tains sensitive information regarding both patients
and health professionals. These entities are pro-
tected by the General Data Protection Regulation
(GDPR), which grants equal data protection rights
to all European Union (EU) citizens (GDPR, 2018).
Therefore, information systems must be compliant
to maintain such information private. This poses
a challenge when considering the publication of
clinical data for secondary usage.

The GDPR (GDPR, 2018) defines anonymiza-
tion as the process through which "personal data
(is) rendered anonymous in such a manner that

the data subject is not or no longer identifiable"
(Recital 26). However, achieving true anonymiza-
tion is not a simple task, especially when consider-
ing unstructured data such as clinical notes. In fact,
despite the fact that many literature works propose
strategies for the automated anonymization of clin-
ical text, their implementation in real contexts is
still scarce. Consequently, the problematic access
to clinical text data for secondary usage remains a
barrier to scientific research.

This demonstration paper presents the INCOG-
NITUS platform for automated clinical notes
anonymization. The beta version is avail-
able online at https://tospe-incognitusfhp.
streamlit.app/. An overview video can be
watched at https://www.youtube.com/watch?
v=4lePn19ZwJE. Besides offering a wide range of
methods to perform anonymization tasks, INCOG-
NITUS was designed to address two common flaws
of similar systems: (i) the inability to provide truly
anonymized outputs (100% sensitive information
removal) (Abdalla et al., 2020) and (ii) the lack
of an assessment on the quantity of relevant infor-
mation that gets lost in the anonymization process
(Mozes and Kleinberg, 2021).

The remainder of the manuscript is organized
as follows. The next section contextualizes text
anonymization literature, mainly focusing on the
clinical domain. Then, the platform proposed is
described, along with its composing methods and
models. The experimental setup followed to de-
velop each component is detailed in Section 4. The
results associated with these experiments are then
discussed in Section 5. In the last section, the main
conclusions of this work are presented.

2 Background

The list of literature publications focused on clin-
ical text anonymization is extensive. This section
presents a chronological overview of the develop-
ments achieved in this area of research, culminating
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in a final discussion on the main findings regarding
the strengths and flaws of current techniques and
future research tendencies.

2.1 First Approaches
The first works on clinical text de-identification in-
volved the development of simple systems relying
on handcrafted sets of rules, dictionary and medi-
cal thesaurus lookups, and pattern matching algo-
rithms (Sweeney, 1996; Ruch et al., 2000; Thomas
et al., 2002; Gupta et al., 2004; Douglass et al.,
2004). These methods established the potential
of applying Natural Language Processing (NLP)
techniques to the anonymization problem, report-
ing performances between 94% and 99% in terms
of recall. Even so, since they were usually highly
adapted to the characteristics shared by the very
notes that they were tested upon, their generaliza-
tion ability was poor.

2.2 Conditional Random Fields
Following these early developments, two events
boosted the scientific knowledge around clinical
text data de-identification: the 2006 and 2014 Infor-
matics for Integrating Biology to the Bedside (i2b2)
challenges (Uzuner et al., 2007; Stubbs et al., 2015).
These competitions encouraged researchers to pro-
duce innovative solutions to approach unstructured
data anonymization. At this point, solutions based
in Conditional Random Fields (CRF) took over as
the best-performing methods (Aramaki et al., 2006;
Wellner et al., 2007; Gardner and Xiong, 2008;
Dehghan et al., 2015; Liu et al., 2015; Yang and
Garibaldi, 2015). These systems leveraged features
such as Part-of-Speech (POS) tags, surrounding
words, position within the document, word form,
and capitalization to identify sensitive information
within the text. Some of them also included reg-
ular expression matching and list search modules
along with the main CRF model (Wellner et al.,
2007; Dehghan et al., 2015; Liu et al., 2015; Yang
and Garibaldi, 2015). In 2006, all the proposed
methodologies achieved f1-scores higher than 95%,
while the best-performing method in 2014 reported
a value of 93.6%.

2.3 Deep Learning
As the scientific community’s focus shifted towards
Deep Learning (DL) strategies, many studies were
published where these models were trained on the
anonymization task. Most of these studies imple-
ment long short-term memory (LSTM) recurrent

neural networks (RNN), which are known to be ef-
fective in Named Entity Recognition (NER) tasks
(Dernoncourt et al., 2016; Liu et al., 2017; Stubbs
et al., 2017; Yang et al., 2019). Some of these con-
sisted of hybrid approaches, complementing the DL
models with CRF-based and even simpler modules.

Friedrich et al. (Friedrich et al., 2019) pro-
posed an adversarial learning approach based on an
LSTM-CRF architecture. Their solution prevents
two procedures that can be used to re-construct
Personal Health Identifiers (PHIs): (i) the devel-
opment of a model which can learn the reverse
transformation mechanism; and (ii) a look-up table
with all the inputs and their respective representa-
tions. An adversarial representation is trained to
perform two tasks directly following these two pro-
cedures. The goal is to achieve a secure solution
where the best adversarial/negative representation
cannot re-construct the PHIs.

Recently, Abdalla et al. (Abdalla et al., 2020)
presented an innovative approach that leverages
proximity measures between word embeddings.
They argue that solutions based on NER techniques
are insufficient to guarantee that no sensitive infor-
mation gets overlooked, as search algorithms are
never perfect. To counter this possibility, they pro-
pose the substitution of each token with a seman-
tically proximate from the embedding space. This
obfuscation strategy ensures that all sensitive infor-
mation gets removed at the cost of a low readability.
Even so, the authors report that little influence is ob-
served on clinical machine learning tasks by taking
the anonymized data as input (up to a 5% decrease
in f1-score) since the contextualized token substi-
tution allows for the preservation of data patterns
that are useful in those tasks.

2.4 Discussion

While most of the discussed methods present ex-
tremely high performance considering the tradi-
tional metrics (f1-score and recall), their success
remains mostly scientific, and thus the problem of
automated text anonymization remains unsolved.
This might be due to problems such as low general-
ization to external data and high production of false
positives, which constitute huge barriers to real-
world deployment and application. The Track 1A
of the CEGS de-identification challenges (Stubbs
et al., 2017) exposed these limitations by using
test data collected from a different source than the
train data. Although this is a fundamental measure
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to attain a reliable performance assessment, it is
not usually adopted in most literary works around
this topic (Yang et al., 2019). The state-of-the-art
methods could not maintain their success rates in
the mentioned task. The higher-performing solu-
tion presented an f1-score of approximately 80%,
way below the above-90% scores reported in most
literary works.

A recent paper by Mozes and Kleinberg (Mozes
and Kleinberg, 2021) alerted for the necessity of
reliable performance assessment strategies, putting
forward an innovative method based on three crite-
ria: i) technical evaluation through the commonly
used evaluation metrics, ii) information loss estima-
tion, and iii) de-anonymization tests. In addition,
Pilán et al. (Pilán et al., 2022) also proposed a new
set of metrics focused on privacy protection and
utility preservation to evaluate text-anonymization
solutions.

3 INCOGNITUS Framework

INCOGNITUS is a flexible and intuitive toolbox
aimed at transparent and accountable automated
text anonymization. This framework offers the
possibility to employ different techniques while
providing performance measures relating to the
anonymization task itself and the resultant loss of
information. All this content is displayed and ac-
cessible through an interactive, user-friendly inter-
face, which can be seen in Figure 1. With these
insights, the user can consciously select the ade-
quate approach to anonymization, considering the
specifications of each application context.

The flow of information circulating through
INCOGNITUS is represented in the diagram of
Figure 2. First, the user uploads or writes the con-
tent of a clinical note. The anonymization may
then be performed through any of the available
techniques. As the anonymization is completed,
an ICD-10 classification model runs in the back-
ground, and its outputs are leveraged to estimate the
ratio of information that got lost in the anonymiza-
tion process. By the end of the calculation, this
measure is displayed in the user interface, as well
as the values of the standard performance metrics
(recall, precision, and f1-score) associated with the
technique selected. The user can then choose to
(i) download the anonymized content or (ii) select
another technique and repeat the process.

Figure 1: INCOGNITUS interface’s outlook. In the
depicted scenario, the user selected a NER approach
based on a CRF model. On the right side of the page,
the user can consult the contents of the original (top) and
anonymized (bottom) versions of the uploaded sample
note. A performance report is presented on the bottom
left corner of the page, regarding the estimated values
of recall, f1-score, precision, and Information Loss for
the selected approach.

3.1 Components

Currently, INCOGNITUS comprises four NLP
models that fulfill different purposes. First, there
are two NER models for de-identification: a CRF
classifier (Lafferty et al., 2001) and a pre-trained
Spacy model (Montani et al., 2020). A Word2Vec
embeddings model (Mikolov et al., 2013) is used to
fuel the K-Nearest Embeddings Obfuscation tech-
nique (KNEO) based on the work of Abdalla et al.
(Abdalla et al., 2020). And finally, a pre-trained
BioBERT-based model (Lee et al., 2020) fine-tuned
on the MIMIC III dataset (Johnson et al., 2016) is
employed to infer the information loss over an ICD-
10 classification problem.

3.1.1 Named Entity Recognition and Removal

CRF classifiers are standard in NLP and considered
reliable benchmarks in de-identification tasks. On
the other hand, Microsoft Presidio (Mendels and
Balter) is a powerful tool designed to ensure that
sensitive data, such as credit card numbers, names,
locations, and financial data, is appropriately iden-
tified and anonymized in text. It comprises two
modules: an analyzer based on NER techniques to
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Figure 2: INCOGNITUS pipeline flowchart. After the clinical text content is uploaded to the platform, the user
selects the technique and model desired to perform the anonymization task. The anonymization is performed, by
employing the methodologies selected. Both the output of the anonymization phase and the original content is then
fed into an ICD-10 classification model, which provides lists of the top ICD-10 code categories associated with each
input. These results are leveraged to estimate the loss of information associated with the anonymization process.
Finally, the user interface presents the anonymized content and the information loss estimate, along with other
traditional metrics measured a priori. At the end of this process, the user may choose to download the anonymized
version of the uploaded content or repeat the whole process using a different anonymization technique.

determine the sensitive entities and an anonymizer
that takes the locations of those entities and re-
moves or replaces them.

INCOGNITUS offers two possibilities for the
recognition of sensitive entities: a CRF model
trained upon the joint content of the training
datasets of the i2b2 challenges (Uzuner et al., 2007;
Stubbs et al., 2015), and an implementation of Pre-
sidio’s analyzer module, receiving a Spacy model
as input. Spacy is a Python package that provides
accurate and up-to-date language models.

Once the identification of entities is performed
through either of these NER-based techniques, the
outputs are provided to the Presidio anonymizer,
which returns a version of the original note where
categorized tags replaced the identified entities.

3.1.2 K-Nearest Embeddings Obfuscation
A fundamental component of INCOGNITUS is its
obfuscation module, which integrates a version of
the algorithm proposed by Abdalla et al. (Abdalla
et al., 2020). This approach is referred to as K-
Nearest Embeddings Obfuscation (KNEO) in this
work. It consists of randomly replacing each token
composing a given text with one of the K seman-
tically nearest ones within a space of embeddings.
This methodology guarantees 100% recall in the
anonymization task since no token is left unaltered.

3.1.3 Performance and Information Loss
Another innovative feature of this toolbox is the
provision of a case-specific estimation of the in-
formation lost during the anonymization process,
apart from the general performance metrics associ-

ated with each solution provided.
Before and after the anonymization of a clinical

record, a pre-trained model (BioBERT fine-tuned
on MIMIC III data (Lee et al., 2020; Johnson et al.,
2016)) is used to identify the top N most frequent
ICD-10 code categories (out of 157 possible) of
both the original and anonymized versions of the
same document. The value of Information Loss
(IL) is inferred by dividing the number of classes si-
multaneously present in both prediction lists by the
number N of top categories considered. Equation
1 presents the formalization of the proposed met-
ric, where yorig and yanon represent the list of top
N codes predicted in the original and anonymized
versions of the same document, respectively. In
INCOGNITUS, N = 10.

IL = (1−
∑N

i=1 (yanoni ∈ yorig)

N
)× 100 (1)

4 Experimental Setup

4.1 Datasets
Three distinct datasets were used to develop and
evaluate the different anonymization strategies
available at the INCOGNITUS platform.

MIMIC-III (Johnson et al., 2016) is an extensive,
freely-available database comprising health-related
data of over 40,000 patients who stayed in critical
care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. This dataset con-
tains 1.2 million notes, including radiology reports,
nursing notes, and discharge summaries.

The i2b2 project organized two challenges on
automatically removing PHIs from medical records
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(Uzuner et al., 2007; Stubbs et al., 2015). Both
datasets released for the competitions are utilized
in this research. The 2006 dataset contains 669
notes for training and 220 for testing, while the one
used in 2014 counts 790 training samples and 514
testing samples.

4.2 Preprocessing

The original splits of both i2b2 datasets were main-
tained. As for the MIMIC III data, only discharge
summaries were considered for this study, totaling
59,652 clinical notes, of which 5,000 were selected
to test the different anonymization approaches. The
remaining 54,652 were used to train the Word2Vec
embeddings model employed in the KNEO ap-
proach.

Both i2b2 datasets contain fake PHI to simulate
real, non-anonymized clinical records. The same
is not valid for the MIMIC III notes, where all the
sensitive information appears replaced by catego-
rized entity tags. In order to re-establish a realistic
clinical note structure, the Faker library for Python
(Faraglia) was used to create fake entities according
to each tag category.

4.3 NER Models

The first method developed was the CRF model.
For this purpose, the following features were con-
sidered regarding each token and their immediate
neighbors: POS tag, the last 2 and 3 constituting
characters, whether it starts with a capital letter,
whether it is a title, and whether it is a digit. This
model was trained upon the train datasets of both
i2b2 challenges, adding up to 1389 clinical notes.

For the second NER approach, Presidio Ana-
lyzer was used together with a language model
from spacy, pre-trained on the OntoNotes 5 dataset
(Ralph Weischedel, 2013), and reporting F1-score
and recall values of 90% on the NER task. This
solution was used as an off-the-shelf method; there-
fore, the language models were not re-trained upon
any of the working train sets.

4.4 Word Embeddings

The training of embedding models is a complex
task that requires extensive data. As such, the
INCOGNITUS embeddings model was trained
upon the subset of 54,652 discharge summaries
retrieved exclusively from MIMIC III, following a
Word2Vec strategy (Mikolov et al., 2013).

5 Results

To estimate the performance of the offered strate-
gies in the anonymization task, they were tested
against the working test sets. For each experiment,
the f1-score regarding the binary task of classifying
sensitive information was calculated. The mean IL
associated with anonymizing each clinical note was
also measured, based on Equation 1. The results of
this experiment are displayed in Table 1.

f1-score IL

i2b22006

CRF 94.8 15.8± 11.4
Presidio 73.0 21.6± 13.0
KNEO - 59, 9± 21.3

i2b22014

CRF 87.8 15.7± 12.4
Presidio 64.6 21.3± 14.0
KNEO - 58.4± 21.1

MIMIC
CRF 69.1 21.3± 13.8
Presidio 66.6 24.9± 14.6
KNEO - 63.4± 18.4

Table 1: Values of f1-score and mean ± standard devi-
ation of the IL, attained by each of the anonymization
methods offered by INCOGNITUS, in each test set.

By looking at the f1-score values in Table 1, it
is clear that achieving high performance through
fairly simple NER techniques is possible, as is ev-
ident by the results attained by the CRF model.
These are in line with most reported values in the
literature for similar tasks, when the data used for
the test follows the same structure as the training
data. Suppose one considers the results attained
through the Presidio Analyzer instead, which uses
a model trained upon the OntoNotes dataset. In
that case, one can observe a clear drop in perfor-
mance compared to that achieved with CRF. This
might seem strange initially, considering that the
configuration used by Presidio incorporates much
more complex methods than those involved in train-
ing the CRF model. The fact that the NER models
used by Presidio were not re-trained in any of the
available clinical datasets might be the reason be-
hind this. In fact, when the CRF model was tested
against an external dataset (MIMIC III discharge
notes subset), it presented a drop in performance
of almost 20%, much closer to the values attained
by presidio. These results are concerning because
expecting access to notes for training in real appli-
cation contexts is somewhat unrealistic. To have
that, one would need access to content anonymized
in a non-automated way or not anonymized at all,
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which defeats the purpose of these tools.

Furthermore, while f1-scores of 95% are high,
these values can never comply with the GDPR def-
inition of anonymization. Even if these rose to
100%, the underlying risk of existing particular
identifiers not being considered during training is
still a threat. In this regard, the traditional methods
of automated anonymization (NER-based) cannot
compete with the KNEO strategy, since the latter
replaces every single token from the original text,
guaranteeing no such occurrences. Since every
original token is exchanged, the f1-score calcula-
tion becomes inappropriate for the KNEO method-
ology. On the one hand, by replacing every token, it
is guaranteed that none of the original content gets
overlooked, ensuring 100% recall. On the other
hand, since the replacement of every original word
is the fundamental ideology behind this method,
the concept of false positives makes little sense.
One could argue that every non-sensitive token re-
placed might be regarded as a false positive. Still,
such an interpretation ignores the role of neighbor
word embeddings in preserving the information
encoded.

Even so, although KNEO outperforms both
NER-based strategies in preventing sensitive in-
formation leaks, the quantity of relevant informa-
tion lost in the process is undeniably higher than
what is observed for the other methods. Looking at
the information loss values, this tendency is clear:
around 60% of the original content is lost when
applying the KNEO strategy. This means that, on
average, the obfuscator hides the information re-
lated to six of the ten codes identified in the original
notes. This becomes even more concerning if we
consider that the classification task used to com-
pute the IL metric simplifies a much more complex
one: identifying individual ICD10 codes. There-
fore, applying this strategy before performing ad-
vanced text processing tasks, such as clinical note
summarization, could be problematic. The rates
of information lost for the NER-based strategies
are much lower, although it is visible that some
information also gets hidden (around 20%).

In sum, since no technique is flawless, it is fun-
damental to understand (i) the context of applica-
tion and (ii) the pros and cons of applying each
technique. INCOGNITUS answers to the second
necessity by providing various solutions and esti-
mating performance during anonymization. In this
way, it allows the users to switch between strategies

according to their needs and the characteristics of
each method.

6 Conclusions

This paper introduced INCOGNITUS, a user-
friendly platform to prompt conscious automated
anonymization of clinical text. It provides two dis-
tinct NER-based methods and a recently proposed
alternative that guarantees proper anonymization
(100% recall) at the cost of information loss and
low readability. Employing a pre-trained classifier
of ICD-10 code categories, INCOGNITUS brings
a new way of estimating the information lost dur-
ing anonymization. This framework moves the
research around clinical text anonymization for-
ward, towards accountable strategies and fair per-
formance assessments.
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Abstract

Chain-of-thought (CoT) prompting enables
large language models (LLMs) to solve com-
plex reasoning tasks by generating an expla-
nation before the final prediction. Despite it’s
promising ability, a critical downside of CoT
prompting is that the performance is greatly
affected by the factuality of the generated ex-
planation. To improve the correctness of the
explanations, fine-tuning language models with
explanation data is needed. However, there
exists only a few datasets that can be used
for such approaches, and no data collection
tool for building them. Thus, we introduce
CoTEVer, a tool-kit for annotating the factual
correctness of generated explanations and col-
lecting revision data of wrong explanations.
Furthermore, we suggest several use cases
where the data collected with CoTEVer can
be utilized for enhancing the faithfulness of
explanations. Our toolkit is publicly available
at https://github.com/SeungoneKim/CoTEVer.

1 Introduction

Chain-of-thought prompting (Wei et al., 2022b)
generates an explanation before the answer to elicit
the reasoning capabilities of large language mod-
els. An intuitive way to interpret chain-of-thought
prompting is that the process of ‘generating an ex-
planation’ is analogous to ‘decomposing multiple
step problems into smaller sub-problems’, which
enables to solve complex reasoning tasks. There-
fore, generating a plausible explanation is crucial
to derive the correct answer (Wang et al., 2022).

To generate a plausible explanation, previous
works have attempted to generate multiple expla-
nations and use a task-specific verifier that would
access the quality of the explanations and choose
one of them (Cobbe et al., 2021; Shen et al., 2021;
Thoppilan et al., 2022; Li et al., 2022). A more
fundamental solution to this problem is fine-tuning
the underlying language model with high-quality
annotated explanations (Ling et al., 2017; Cobbe

Figure 1: Example of Explanation Verification and An-
swer Verification of GPT-3’s output. Explanation Veri-
fication requires additional knowledge which makes it
hard for annotators to intuitively write a revised expla-
nation and answer.

et al., 2021; Zelikman et al., 2022; Huang et al.,
2022; Chung et al., 2022). However, fine-tuning
would require to gather large amounts of annotated
explanation data, which is impractical.

Collecting large amounts of annotated explana-
tion data is difficult for several reasons. First, while
existing works gather explanation data by asking
annotators to manually write explanations using
existing datasets (Wiegreffe and Marasovic, 2021),
gathering human authored labels is often expen-
sive in terms of time and cost (West et al., 2021).
Second, writing a good quality explanation from
scratch is difficult because it requires sufficient
background knowledge (Geva et al., 2021a).

In this paper, we address the question: can we
gather explanation data in a more efficient manner?
Inspired by human-in-the-loop methods, we ask an-
notators to verify a machine generated explanation
instead of manually writing them (Wallace et al.,
2019; Weber et al., 2021; Du et al., 2022). In other
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words, annotators get to check whether the under-
lying language model hallucinate (i.e., generate
explanations that are factually incorrect) (Shuster
et al., 2021; Lin et al., 2022a). To do this, we
provide a set of supporting evidence documents re-
trieved from the web. Annotators access the quality
of the given explanation, and provide a feedback
score along with a better alternative.

As shown in Figure 1, let’s consider gathering an
explanation and answer for the question, ‘Can you
see harbor seals in Washington D.C.?’1. In this ex-
ample, GPT-3 generates an explanation ‘1) You can
see harbor seals in the Pacific Ocean. 2) Washing-
ton D.C. is not in the Pacific Ocean. 3) Therefore
you cannot see harbor seals in Washington D.C.’
and predicts ‘No’ as the answer. In this case, the
first sentence of the explanation missed the point
that harbor seals not only live in the west coast, but
also in the east coast of the US. By providing the
background knowledge ‘Harbor Seals live in east
and west coasts of United States’, annotators could
successfully revise the explanation.

To this end, we propose CoTEVer (Chain
of Thought Prompting Annotation Toolkit for
Explanation Verification), which is designed to effi-
ciently gather explanation data, by 1) alleviating the
role of annotators to verify instead of writing from
scratch and 2) supplementing the required back-
ground knowledge via evidence documents. With
the gathered explanation data, researchers could
use them for CoT fine-tuning (Chung et al., 2022)
or transform them into other knowledge intensive
datasets.

2 Related Works

2.1 Tool-kits for Data Annotation
There exists a number of interactive tool-kits for
annotating and verifying labels (Götze et al., 2022;
Lin et al., 2022b; Friedrich et al., 2021; Bach et al.,
2022; Thrush et al., 2022). For instance, Prompt-
source (Bach et al., 2022), is a framework designed
to try out diverse set of prompts that can be used
in in-context learning (Liu et al., 2021), or instruc-
tion tuning (Sanh et al., 2021; Wei et al., 2021;
Min et al., 2021; Ye et al., 2022; Jang et al., 2023).
Other human-in-the-loop annotation toolkits (Wal-
lace et al., 2019; Weber et al., 2021; Du et al., 2022)
provides functionality for annotators to verify the
neural model’s prediction instead of manually cre-
ating them. Compared to these toolkits, CoTEver

1Example from StrategyQA (Geva et al., 2021b)

provides additional features specifically designed
for gathering explanation data such as retrieving ev-
idence documents and supporting different Chain
of Thought prompts.

2.2 Explanation Data

Chain of Thought Prompting is an in-context learn-
ing based methodology that generates an explana-
tion before the answer. Instead of directly answer-
ing to the question, Wei et al. (2022b) conjectures
that generating an explanation on-the-fly (explain-
and-generate) enhances the reasoning capabilities
of large language models. Wei et al. (2022a) argues
that the ability to solve complex reasoning only ap-
pears when using large-scale language models, and
defines this phenomenon as ‘Emergent Abilities’.
CoTEver uses Chain of Thought Prompting to gen-
erate an explanation that could serve as a starting
point for annotators to verify.

Recently, Chung et al. (2022) has shown that
fine-tuning with explanation data unlocks the emer-
gent abilities in large language models and achieves
good performance not only at seen tasks (Ling et al.,
2017; Cobbe et al., 2021; Zelikman et al., 2022),
but also unseen tasks. The explanation data col-
lected by CoTEVer could be used for CoT Fine-
tuning since we collect a revised explanation.

2.3 Hallucination in Language Models

Hallucination is a phenomenon where a model gen-
erates a falsehood output that may contradict with
the factual knowledge. Lin et al. (2022a) reported
that as the model size increases, the less truthful
they tend to be. Lewis et al. (2020) explains that
models that rely only on parametric memory (e.g.,
GPT-3) are more likely to suffer from hallucination.
When collecting explanation data from annotators,
hallucination is a critical issue because the model
may generate an unfaithful but very fluent output
that is not easily distinguishable (Gao et al., 2022).
To collect factually correct explanations from anno-
tators, we provide supporting evidence documents
using a search engine.

3 System Design and Workflow

In Figure 2, we present an illustration of the over-
all explanation verification process of CoTEver
with 3 steps and show how the annotated expla-
nations could be obtained effectively. We assume
a scenario where a researcher requests a group of
annotators to query a large language model and
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You can see harbor seals along the U.S. west and 
east coasts.

Suggest a better alternative for Step1!

1 2 3 4 5

Q:  Where can you see harbor seals?

A:  You can see harbor seals in the Pacific Ocean.

Is Step 1 reasonable? (1 to 5)

Is the final answer reasonable? (1 to 5)

Rate this Explanation!

Can you see harbor seals in Washington D.C.?

Step 1

Q: Where can you see harbor seals?

A: You can see harbor seals in the .Pacific Ocean

Step 2

Q: Is Washington D.C. in the Pacific Ocean?

A: Washington D.C. is not in the Pacific 
Ocean.
Step 3 

Q: Can you see harbor seals in Washington 
D.C.?

A: Since you can see harbor seals in the 
Pacific Ocean, and Washington D.C is not in 
the Pacific Ocean, you cannot see harbor 
seals in  Washington D.C. 

User Query

S1: Prompting S3: Explanation and Answer Verification

So the answer is no.

Document 1

Harbor seals are among one of the most 
common marine mammals 

 They are commonly 
seen resting on rocks and baches alone the 
coast and on floating ice in glacial ...

URL: https://www.fisheries.noaa.gov/
species/harbor-seal

along the U.S. 
west and east coasts.

Document 2

Harbor sea’s are brown, silvery white, tan, 
or gray with distinctive V-shaped nostrils. 
males may fight over mates under water 
and on land. females bear a single pup 
after a nine-month gestation, which they 
care for alone ...

URL: https:/www.marinemammalcenter.org/

animal-care/learn-about-marine-mammal...

S2: Evidence Retrieval

1 2 3 4 5

So the answer is yes.

Figure 2: The overall illustration of CoTEver. An annotator asks a question to CoTEver and receives an
explanation, supporting evidence documents, and a prediction. Then, the annotator’s rating of the explanation (5
for most relevant), suggestions for a better explanation is stored in the Database which can be used for research
purposes.

verify the explanations and predictions to collect
explanation data. Although CoTEVer could sup-
port gathering free-form questions from annotators,
it would either require 1) the researcher to make
predefined few-shot demonstrations and retrieving
them on-the-fly or 2) generating the explanation
in a zero-shot setting (Kojima et al., 2022), which
is both challenging to gather good quality expla-
nations. Therefore, we define a scenario where a
researcher assign users to query specific type of
questions, such as ‘Ask a question that could be
answered with yes/no’(Answer Format) or ‘Ask
a question that is related to economics’(Domain).
In this case, we could assume that the researcher
prepared few-shot demonstrations beforehand.

3.1 S1: Prompting

Prompting Composition. We use GPT-3 (Brown
et al., 2020) which is one of the standard large
language models for CoT prompting (Wei et al.,
2022b; Kojima et al., 2022). CoT prompting has
limitations in that the generated explanations does
not have a unified format, which makes verification
harder. So, we adopt Self Ask (Press et al., 2022)
as our prompting method to generate explanations
composed of sub-questions and sub-answers. We
provide more details of our prompt in Table 4.
Explanation Generation. As a first step, annota-
tors are asked to explore our framework by query-
ing a variety of different questions under the des-
ignated requirements. The user question is con-
catenated to the demonstrations as an input for the
model. We then send a request via OpenAI API
and get a response which contains the output of

GPT-3. Upon obtaining the responses, we decom-
pose the output into reasoning steps consist of a
sub-question and sub-answer.

3.2 S2: Evidence Retrieval

Document Retrieval. To help the annotators’
judgement, we provide documents that can be
used as evidence to the generated explanation. For
that, we retrieve documents using the sub-question
directly as a query for document retrieval. Note
that while Press et al. (2022) use the sub-questions
to retrieve and answer to the question, we instead
use them to retrieve and help annotators verify
the explanations. In order to retrieve documents
that are not outdated from the Web database, we
use Google Search API 2. We use the top-10
documents as candidates for reranking.

Document Reranking. We first split the retrieved
documents into smaller chunks of maximum 512
tokens, the maximum number of input tokens ac-
ceptable in our reranking module. To provide re-
liable evidence documents to the annotators, we
rerank the documents candidates and choose the or-
der to be displayed on the user interface. We obtain
the embeddings of the query and the supporting
document candidates using Sentence-T5 (Ni et al.,
2021), a state-of-the-art sentence embedding model
trained to capture the semantic textual similarity
between two input sequences. We then rank the
retrieved documents with a cosine similarity score
between the document and query embedding.

2https://pypi.org/project/google-api-python-client/
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Error Type Example

Insufficient
Knowledge

18%

Do all crustaceans live in the ocean?
Q#1: What are crustaceans? Crabs can be found in all oceans and in

freshwater. Some crabs live on land,
sometimes several miles from water.
Species such as the fiddler crab live in
burrows in the sand or mud, where
they stay during winter and high tides.

A#1: Crustaceans are a group of animals that
include crabs, lobsters, and shrimp.

Q#2: Where do crabs live?
A#2: Crabs live in the ocean.
Q#3: Where do lobsters live?
A#3: Lobsters live in the ocean.
Q#4: Where do shrimp live? Shrimp occur in all oceans—in shallow

and deep water—and in freshwater
lakes and streams.

A#4: Shrimp live in the ocean.
Q#5: Do all crustaceans live in the ocean?
A#5: Since crabs, lobsters, and shrimp live in the

ocean, all crustaceans live in the ocean.

Out of Date
22%

Could a single bitcoin ever cover cost of a Volkswagen Jetta?
Q#1: How much is a single bitcoin? Bitcoin’s price today is $ 21,282.48,

with a 24-hour trading volume of
$ 37.84 B.

A#1: A single bitcoin is about $6,000.
Q#2: How much is a Volkswagen Jetta?
A#2: A Volkswagen Jetta is about $18,645.
Q#3: Could a single bitcoin ever cover cost

of a Volkswagen Jetta?
A#3: Since a single bitcoin is about $ 6,000,

and a Volkswagen Jetta is about $ 18,645,
and $ 6,000 is smaller than $ 18,645,
single bitcoin could not cover the cost
of a Volkswagen Jetta.

Wrong Fact
43%

Can a lifeboat rescue people in the Hooke Sea?
Q#1: What is the Hooke Sea? Hooke Crater is an impact crater in the

Argyre quadrangle on Mars at 45.2°S
and 44.4°W and is 139.0 km in diameter.
It was named after British physicist-
astronomer Robert Hooke.[1]

A#1: The Hooke Sea is a sea in Antarctica.
Q#2: Is the Hooke Sea a dangerous place?
A#2: The Hooke Sea is a dangerous place

because it is a sea in Antarctica.
Q#3: What is a lifeboat?
A#3: A lifeboat is a boat designed for

rescuing people in danger.
Q#4: Can a lifeboat rescue people in the Hooke Sea?
A#4: Since the Hooke Sea is a dangerous place

in Antarctica, and a lifeboat is a boat
designed for rescuing people in danger,
lifeboat can rescue people in
the Hooke Sea.

Table 1: Examples of frequent error types within explanations. The left side is the original explanation generated by
a language model, and the right side is the retrieved evidence document. The evidence documents could provide the
required knowledge when revising the original explanation.

3.3 S3: Explanation and Answer Verification

Explanation verification. In light of the provided
evidence documents, annotators could easily check
the correctness of the given explanation and give
a 1-5 star Likert scale rating for each step in the
explanation. In cases where the explanation needs
to be revised, annotators can submit a better al-
ternative. Our main intuition is that compared to
writing a new explanation from scratch, revising an
explanation with the evidence documents is much

more easier for the annotators. Also, it is more
likely that the revised explanation would be factu-
ally correct because the evidence documents would
ground the required knowledge during annotation.
The rating data is further used to determine the
quality of a given explanation, which we further
explain in Section 5

During the verification process, the annotators
also label which evidence document is used as an
evidence. For example, in Step 2 of Figure 2, the
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annotator put a check mark on the document that
contains the information about the habitat of harbor
seals which contradicts to the sub-answer in the
first step, “You can see harbor seals in the Pacific
Ocean.”. We further explain how this data could
be utilized in Section 5.
Answer verification. Lastly, annotators are asked
to verify the correctness of the model’s final predic-
tion. Since large language models tend to output
incorrect conclusions when the explanation is fac-
tually mistaken (Wang et al., 2022), it is very likely
that the answer would be wrong when the original
explanation got a low score in S3.

4 Analysis of Explanation Data

In this section, we analyze what error cases are
abundant within an explanation and show how
they can be revised using evidence documents re-
trieved by CoTEVer. As mentioned in Section 3.1,
we adopt a Self-Ask style prompt and use TEXT-
DAVINCI-002 (Ouyang et al., 2022) to generate a
corresponding explanation and answer for the train
set of StrategyQA (Geva et al., 2021b). Then, we
sample 300 instances where the prediction is incor-
rect, ask annotators to classify the error type and
revise the explanation using CoTEVer.

While we analyze the error types of explanations
using human evaluation, automatic evaluation
metrics proposed to measure the quality of a given
explanation (Golovneva et al., 2022; Chen et al.,
2022) is another promising direction, and we
leave for future work. Also, we provide more
detail of the human evaluation experiment process
in Appendix B. Table 1 shows three frequently
observed errors types, Insufficient Knowledge,
Out of Date and Wrong Fact along with the
corresponding percentage among the error cases
(18%, 22%, 43% respectively).

Insufficient Knowledge. It is well known
that language models mainly learn from high-
frequency patterns and largely fail when tested
on low resource tasks such as few-shot learn-
ing (Tänzer et al., 2021). Such behavior can be
seen in the first example of Table 1. In general,
it may be correct that crabs, lobsters and shrimp
live in the oceans. However, the important point
of the question is whether all crustaceans live
in the ocean, making the generated explanation
insufficient. The knowledge needed in such
situation is included in the evidence documents,

where it indicates that crabs and shrimp also live in
freshwater.

Out of Date. The static nature of the text data
that large language models are trained on makes it
difficult to cope with rapidly changing real world
situations (Jang et al., 2021). For instance, in the
second example of Table 1, bitcoin is a highly
volatile asset that has gone up significantly in
the past few years. According to the retrieved
evidence document, it is no longer $6000 but
actually more than $20k which exceeds the price
of a Volkswagen Jetta. These types of updates
need to be done frequently through retrieval of
up-to-date documents.

Wrong Fact. As shown in the third example of
Table 1, large language models also generate false
facts within the explanation. In this case, the first
step within the explanation quoting, "The Hooke
Sea is a sea in Antarctica." is not true. Because
the Hooke Sea is not in Antarctica but on Mars,
it isn’t actually a sea, eliminating the lifeboat sce-
nario. This fact can also be found in the retrieved
document.

5 How to Utilize Explanation Data
gathered with CoTEVer

In this section, we suggest three promising
directions on how the explanation data collected
with CoTEVer can be utilized. We define E and A
to be the original explanation and answer generated
by a language model, respectively. Similarly, the
revised explanation and answer from the annotator
can be defined as E∗ and A∗. Explanations consist
of pairs of sub-questions sqi and sub-answers sai
which brings the following definition:

• Explanation E with N pairs of ei = (sqi, sai)
is E = {ei}Ni=1

• A revised explanation E∗ with N∗ pairs of
e∗ = (sq∗i, sa

∗
i) is E∗ = {e∗i }N

∗
i=1

Now for an explanation, sets of documents Di

are retrieved for each pair ei, based on sqi. Within
Di, we define the top-kth document aligned by the
re-ranking module as Dk

i . Finally, D̃i is defined
as the evidence document chosen by the annotator
upon the set Di.
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5.1 Chain of Thought Fine-tuning
Chung et al. (2022) indicated that fine-tuning lan-
guage models to generate an explanation is effec-
tive to improve reasoning abilities of language mod-
els. We suggest training a model using the revised
explanation collected by CoTEVer instead of us-
ing manually collected explanations. The objective
could be formalized such as:

Le∗ = −
|E∗|∑

i=1

|e∗i |∑

j=1

logP (e∗i,j |e∗<i, e
∗
i,<j) (1)

La∗ = −
|A∗|∑

i=1

logP (a∗i |a<i, E∗) (2)

where the ith explanation e∗ consists of |e∗i |
tokens. Note that in CoT Fine-tuning, the
explanation is first generated by conditioning on
the question, and then the answer is generated
by conditioning on the question and explanation
(explain-and-generate).

Unlikelihood Training In addition to using the
revised explanation to teach language models to
generate an explanation coupled with the final pre-
diction, we also suggest using the incorrect expla-
nations for knowledge unlearning via unlikelihood
training (Welleck et al., 2019). Prior work proposed
that simply negating the original cross entropy loss
is effective in knowledge unlearning (Jang et al.,
2022). In the case of explanation data, models can
forget incorrect explanations and learn the correct
explanations instead. Using the rating score pro-
vided by the annotators, we could define how much
room of improvement there was between the orig-
inal explanation and the revised explanation. We
could use ‘original explanations with relatively low
scores’ among the collected explanations as hard
negatives. Then, the objective could be formalized
such as:

Le = −
|E|∑

i=1

|ei|∑

j=1

log(1− P (ei,j |e<i, ei,<j)) (3)

Future work could consider analyzing whether
forgetting the incorrect explanation before learning
the correct explanation is more effective, or vice
versa. Also, a more sophisticated definition of how
to determine ‘incorrect explanations’ and ‘correct
explanations’ using the user’s feedback score could
be explored.

5.2 Knowledge-Intensive Tasks
As we show in Table 1, large language models
tend to generate unfaithful explanations, which is
especially problematic when solving knowledge-
intensive tasks (Lewis et al., 2020). We suggest
two approaches that could resolve this issue
by building datasets for fact verification and
information retrieval from the revised explanations
and the evidence documents.

Fact Verification. Following the task definition of
FEVER (Thorne et al., 2018), we define labels for
each pair of sub-answer sai and a evidence doc-
ument from Di as either SUPPORTED, REFUTED,
and NOTENOUGHINFO.

Since the annotators use D̃i as evidence when
finding contradictions, sai rated as 1 and D̃i can
be labeled as REFUTED. Similarly, the pair of sa∗i

3

and document D̃i can be labeled as SUPPORTED.
As low-ranked documents D10

i from our re-ranking
module are less likely to contain information that
supports nor refutes the explanations, we use
them as examples for NOTENOUGHINFO. The
fact verification data obtained with CoTEVer
could be used to to train a factual error correction
model (Thorne and Vlachos, 2021).

Information Retrieval. Karpukhin et al. (2020) ex-
plains that using negative examples helps substan-
tially, whilst they mitigated the difficulty in obtain-
ing them via setting in-batch negatives. CoTEVer
is effective to acquire hard negative as well as pos-
itive pairs using the sub-questions sqi and a evi-
dence document from Di.

Since the annotators find D̃i to contain the most
helpful information when revising sai rated as 1
to sa∗i , D̃i would form a positive relation with sqi.
Meanwhile, D10

i , which was ranked low by our re-
ranking module would serve as a hard negative for
sqi. The information retrieval data obtained with
CoTEVer could be used to train a enhanced dense
embedding model (Gao et al., 2021; Chuang et al.,
2022).

6 Conclusion

In this work, we introduce CoTEver, an interactive
annotation framework designed to verify unfaith-
ful outputs and gather truthful explanation data
from annotators. To reduce the cost of manually

3sa∗
i where the original sai was rated as 1, which is the

lowest score.
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searching for evidence while verifying an explana-
tion, we provide supporting evidence documents
via a search engine. Next, we analyze some of
the abundant reasons where large language models
generated incorrect explanations. Also, we suggest
three directions on how explanation data gathered
with CoTEVer can be utilized. We hope CoTEVer
will contribute to gather high quality explanation
data used for future research.
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A Link to Video & Code

The link to our video and code is as follows:

1. Demonstration Video: Link

2. Official Code: Link

B Experiment Details for Human
Evaluation

Following Wei et al. (2022b), we use the open-
domain setting (question-only set) of Strate-
gyQA (Geva et al., 2021a) from Srivastava et al.
(2022). We use TEXT-DAVINCI-002 to generate
explanations. We set the temperature as 0.

The 6-shot prompt we used are shown in Ta-
ble 4. Our prompt are divided into sub-questions
and sub-answers where the sub-questions are used
as a query for retrieving the evidence documents.

strategyQA
CoT (Wei et al., 2022b) CoTEVer (Ours)

65.4 70.52

Table 2: Few-shot Prompting accuracy on
StrategyQA(question-only set). Our prompt con-
sists of sub-questions and sub-answers.

Table 2 shows the performance when using our
designed prompt. Although our purpose of con-
sisting prompts with sub-questions was for evi-
dence retrieval, Self-Ask (Press et al., 2022) style
prompts achieves better performance compared to
the prompts used in Wei et al. (2022b). Also, these
results support the fact that the incorrect explana-
tions(29.18%) were not generated due to the quality
of our prompt.

To analyze the error types, we sample 300 incor-
rect instances since the explanation is likely to be
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wrong when the prediction is incorrect (Wang et al.,
2022). We ask 20 annotators with background in
deep learning and proficient English skills to 1)clas-
sify the error type and 2)revise the explanation us-
ing CoTEVer. While the error types introduced in
Table 1 (total 83%) could be revised based on the
supporting evidence documents, 17% were error
types were GPT-3 didn’t generate a final prediction
by keep repeating itself, or error types where the
knowledge was all correct, but the reasoning was in-
correct. In this case, retrieving evidence documents
does not help during explanation verification.

C Limitations

The following are the limitations of CoTEVer.

Dependency on Prompt Design. While we
experimented with prompts from StrategyQA,
where only yes/no questions are given, annotators
could type in any form of questions such as
multiple choice questions or ‘why’ style questions.
In this case, the prompts used to query a large
language model should be changed. Therefore, we
provide functionality where the researcher using
CoTEVer could change the prompt. To prevent
unexpected behavior of large language models, it
is recommended to instruct annotators what types
of questions they should ask. Also beside output
format, large language models are also sensitive
to the domain of the question. For example,
when annotators ask questions requiring financial
of legal domain knowledge, the prompts we
provided might not perform well. In this case, re-
searchers should change the prompts to their needs.

Prevention on Usage for Unethical Use Cases.
Large language models often tend to generate toxic
outputs. This is a critical issue when annotators
use our framework. Our annotation toolkit is built
on top of the Open AI API, where there has been
various attempts to mitigate the toxic behavior of
GPT-3. For instance, their TEXT-DAVINCI-002
version uses reinforcement learning to align
towards non-toxic language.

Cases when Explanation is wrong due to In-
correct Reasoning. While CoTEVer could sup-
plement insufficient knowledge for annotators, it
couldn’t tell which step within the explanation con-
tains incorrect reasoning.
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Error Type Example

Incomplete
Answer

Is Black Lives Matter connected with capsaicin?
#Q1 : What is capsaicin?

Capsaicin (8-methyl-N-vanillyl-6-none
namide) is an active component of
chili peppers, which are plants
belonging to the genus Capsicum.
It is a chemical irritant for mammals,
including humans, and produces a
sensation of burning in any tissue
with which it comes into contact.

#A1 : Capsaicin is a chemical compound
that can be found in chili peppers.
#Q1 : What is Black Lives Matter?
#A1 : Black Lives Matter is a movement that fights against
racism and violence towards black people.
#Q2 : Is Black Lives Matter connected with capsaicin?
#A2 : Since Black Lives Matter is a movement that fights
against racism and violence towards black people,
and capsaicin is a chemical compound that can be found
in chili peppers, Black Lives Matter is not connected
with capsaicin.
So the answer is no.

Wrong Fact

Does Soylent use Pea for their source of protein?
#Q1 : What is Soylent?

Soy protein isolate is the ingredient
we use in Soylent as our source
of protein.

#A1 : Soylent is a meal replacement drink.
#Q2 : What is the source of protein for Soylent?
#A2 : Soylent uses pea protein.
#Q3 : Does Soylent use Pea for their source
#A3 : Since Soylent uses pea protein, Soylent uses pea for
their source of protein.
So the answer is yes.

Update
Required

Has Kelly Clarkson outsold season 4 American Idol winner?
#Q1 : Who won season 4 of American Idol?

To date, Clarkson has sold over
28 million albums and 54 million
singles worldwide.

#A1 : Carrie Underwood won season 4 of American Idol.
#Q2 : How many albums did Carrie Underwood sell?
#A2 : Carrie Underwood sold over 15 million albums.
#Q2 : How many albums did Kelly Clarkson sell?
#A2 : Kelly Clarkson sold over 25 million albums.
#Q3 : Has Kelly Clarkson outsold season 4 American Idol Throughout her career, Underwood has

sold 66 million albums worldwide. In
the United States, she remains the best
-selling album artist from American
Idol franchise with a total of 16.3
million albums sold

winner?
#A3 : Since Kelly Clarkson sold over 25 million albums, and
Carrie Underwood sold over 15 million albums, Kelly
Clarkson sold more albums than Carrie Underwood.
So the answer is yes.

Table 3: Additional Examples of frequent error types within explanations. The left side is the original explanation
generated by a language model, and the right side is the retrieved evidence document. The evidence documents
could provide the required knowledge when revising the original explanation.
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Figure 3: Snapshot of CoTEVer. Annotator gets to type in a question, and receive the output of a large language
model(e.g., GPT-3).

Figure 4: Snapshot of CoTEVer. Annotator could check the retrieved evidence documents in order to verify each
step within the explanation.
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Prompt
[Example 1]
Question: Do hamsters provide food for any animals?
Output:
Sub Question #0 : What type of animals are hamsters?
Sub Answer #0 : Hamsters are prey animals.
Sub Question #1 : Can prey animals be food for other animals?
Sub Answer #1 : Prey are food for predators.
Sub Question #2 : Do hamsters provide food for any animals?
Sub Answer #2 : Since hamsters are prey animals, and prey are food
for predetors, hamsters provide food for some animals.
Final Answer : So the answer is yes.

[Example 2]
Question: Could Brooke Shields succeed at University of Pennsylvania?
Output:
Sub question #0 : What university did Brooke Shields went to?
Sub answer #0 : Brooke Shields went to Princeton University.
Sub question #1 : Did Brooke Shields succeed at Princeton University?
Sub answer #1 : At Princeton University, she got all As and Bs while
pursing her bachelor’s degree in French literature, meaning she had a
successful school life.
Sub question #2 : How rigorous is Princeton University compared to
University of Pennsylvania?
Sub answer #2 : Princeton University is about as academically rigorous
as the University of Pennsylvania because they have a similar ranking
according to U.S. News Rankings.
Sub question #3 : Could Brooke Shields succeed at University of Pennsylvania?
Sub answer #3 : Since University of Pennsylvania and University of
Princeton are in similar circumstances, Brooke Shields has been successful
in University of Princeton, Brooke Shields could also succeed at the
University of Pennsylvania.
So the answer is yes.

[Example 3]
Question: Hydrogen\u2019s atomic number squared exceeds number of Spice Girls?
Output:
Sub question #0 : What is the atomic number of Hydrogen?
Sub answer #0 : Hydrogen has an atomic number of 1.
Sub question #1 : What is 1 squared?
Sub answer #1 : 1 squared is 1.
Sub question #2 : How much Spice Girls are there?
Sub answer #2 : There are 5 Spice Girls.
Sub question #3 : Hydrogen\u2019s atomic number squared exceeds number
of Spice Girls?
Sub answer #3 : Since Hydrogen’s atomic number squared is 1, the number of
Spice Girls are 5, and 1 is smaller than 5, Hydrogen\u2019s atomic number
squared is less than the number of Spice Girls.
So the answer is no.
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[Example 4]
Question: Is it common to see frost during some college commencements?
Output:
Sub question #0 : When does College commencement ceremonies usually happen?
Sub answer #0 : College commencement ceremonies can happen in December,
May, and June.
Sub question #1 : Does it usually frost in December?
Sub answer #1 : December is in the winter, so there can be frost.
Sub question #2 : Is it common to see frost during some college commencements?
Sub answer #2 : Since there can be frost in December and a college
commencement are held in December, there could be frost at some commencements.
So the answer is yes.

[Example 5]
Question: Could a llama birth twice during War in Vietnam (1945-46)?
Output:
Sub question #0 : How long was the Vietnam war?
Sub answer #0 : The War in Vietnam was 6 months.
Sub question #1 : How long is the gestation period?
Sub answer #1 : The gestation period for a llama is 11 months.
Sub question #2 : How long does it take for a llama to birth twice?
Sub answer #2 : Since the gestation period for a llama is 11 months,
and 11 times 2 is 22, it will take 22 months.
Sub question #3 : Could a llama birth twice during War in Vietnam (1945-46)?
Sub answer #3 : Since it takes 22 months for a llama to birth twice,
War in Vietnam was 6 months, and 22 is bigger than 6, llama could not
give birth twice during the War in Vietnam.
So the answer is no.

[Example 6]
Question: Would a pear sink in water?
Output:
Sub question #0 : What is the density of a pear?
Sub answer #0 : The density of a pear is about 0.6g/cm3.
Sub question #1 : What is the density of water?
Sub answer #1 : The density of water is 1g/cm3.
Sub question #2 : Is the density of pear smaller than water?
Sub answer #2 : Since 0.6 is smaller than 1, the density of pear
is smaller than water.
Sub question #3 : If the density of an object is less than water, what happens?
Sub answer #3 : Objects less dense than water float.
Sub question #4 : Would a pear sink in water?
Sub answer #4 : Since a pear has a smaller density than water, a pear would
float.
So the answer is no.

[Example 7]

Table 4: Prompt used to gather explanations for human evaluation experiments.
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Abstract

State-of-the-art models for identifying offen-
sive language often fail to generalize over more
nuanced or implicit cases of offensive and hate-
ful language. Understanding model perfor-
mance on complex cases is key for building ro-
bust models that are effective in real-world set-
tings. To help researchers efficiently evaluate
their models, we introduce OLEA, a diagnos-
tic, open-source, extensible Python library that
provides easy-to-use tools for error analysis in
the context of detecting offensive language in
English. OLEA packages analyses and datasets
proposed by prior scholarship, empowering re-
searchers to build effective, explainable and
generalizable offensive language classifiers.

1 Introduction

Offensive language1 detection models are integral
to online platforms’ moderation systems. Such
systems excel at detecting and filtering out mes-
sages with explicit keywords and mentions, how-
ever these systems are known (1) to perform poorly
on messages that are implicitly offensive or have
negation (Röttger et al., 2020; Palmer et al., 2020);
(2) to be subject to annotator biases (Sap et al.,
2021); (3) not to be robust to diachronic language
(Florio et al., 2020); and (4) to be insensitive to
and to overdetect AAE as offensive language (Sap
et al., 2021; Blodgett et al., 2016). Failing to ad-
dress these issues and gaps can cause marginal-
ized groups to be further dehumanized or attacked
(Mathew et al., 2021; Kennedy et al., 2020).

Models have been shown to be ineffective at gen-
eralizing across these complexities (Yin and Zu-
biaga, 2021), tending to aggregate different types
of hate speech under broad labels, causing large
within-class variances (Waseem et al., 2017a). In

∗ The first three authors contributed equally.
† Please direct inquiries about the library to this email.

1We use the term "offensive language" to encompass offen-
sive language and hate speech. This paper contains censored
offensive language examples.

response, prior research has curated diagnostic
datasets such as HateCheck (Röttger et al., 2020)
and COLD (Palmer et al., 2020), to evaluate exist-
ing models on specific types of hate speech. Such
evaluation datasets allow us to view model perfor-
mance as a continuum, and move away from mono-
lithic F1 scores that can obscure a model’s limita-
tions and explainability (Kennedy et al., 2020).

We introduce OLEA,2,3 an extensible, open-
source Offensive Language Error Analysis tool and
infrastructure designed to a) evaluate offensive lan-
guage classifiers on different types of problematic
language use, and b) provide detailed feedback
about model performance. The library makes it
convenient for researchers to analyze their mod-
els by providing an extensive set of error-analysis
methods, callable with minimal coding, to measure
case-specific model performances. In addition, the
library provides a common interface for comparing
different offensive language classifiers on granular
linguistic categories. OLEA provides:

- nuanced error analysis methods focused on
understanding model performance on specific
linguistic occurrences;

- interfaces to two evaluation datasets that com-
pile a broad typology of offensive language
phenomena; and

- scaffolding to support easy distribution of new
datasets and associated analysis methods.

OLEA formats evaluation datasets to be easily in-
terpreted, and uses popular Python packages such
as Pandas (Wes McKinney, 2010) and Matplotlib
(Hunter, 2007) to encapsulate the data and error
analysis methods.

2 Background and Related Work

Offensive language is complex, and systems for
detecting it automatically need to be able to han-
dle both explicit and implicit cases (Schmidt and

2https://pypi.org/project/olea/
3https://www.youtube.com/watch?v=e8VVhP6kNlY
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Figure 1: Diagram of the OLEA Library pipeline.

Wiegand, 2017; Waseem et al., 2017b). Detect-
ing explicit offensive language often relies on key-
word detection (Wiegand et al., 2019), but keyword-
driven systems can lead to messages being falsely
flagged, causing unchecked or unnoticed racial bi-
ases to propagate in the system’s decisions (Sap
et al., 2021; Blodgett et al., 2016). Implicit offen-
sive language is generally more difficult to detect
than its explicit counterpart (ElSherief et al., 2021;
Caselli et al., 2020). It is also more likely to change
over time, as the world changes, and as users coin
new phrases and terms to implicitly refer to minor-
ity groups (Florio et al., 2020).

Datasets for this task address different (often
overlapping) concerns, making direct comparison
difficult. HateXplain (Mathew et al., 2021) and
CAD (Vidgen et al., 2021) both provide rationales
indicating where annotators see offensive content.
OLID (Zampieri et al., 2019a) identifies offensive
text and the specific targeted minority group in a
three-tiered labeling structure. HateCheck (Röttger
et al., 2020) and COLD (Palmer et al., 2020) are
described more in Section 3.1.

Linguistic explainability of the prediction fail-
ures of NLP models has lagged behind perfor-
mance gains according to benchmark datasets
(Hovy, 2022). McMillan-Major et al. (2022) pro-
vide an interactive system mostly for end users of
offensive language detection systems. Their sys-
tem helps users explore datasets and understand
how different models score and classify individ-
ual text inputs.OLEA has complementary function-
ality, focusing on fine-grained analysis of model
performance (especially misclassifications) across
existing evaluation datasets. We focus instead on
model developers, providing streamlined error
analysis and interpretation of system outputs rel-
ative to linguistically-grounded categorizations.

3 Library Tour and Design

Figure 1 shows an overview of OLEA’s core func-
tionalities. Users submit their model’s predictions

(3.2) on OLEA’s preloaded datasets (3.1) and then
call error analysis and evaluation functions (3.3).
Users may also extend OLEA with new datasets
and may write new analysis functions, adding to
the library’s capabilities (3.4). Most of OLEA’s
modules expect a Pandas4 dataframe with the text
of the instance to be classified, one or more labels
indicating offensiveness, and a predicted label for
the instance. Dataframes may include columns
with additional information related to the instance
and/or its annotation.

3.1 Preloaded diagnostic datasets

The primary function of OLEA is to make it easy
for users to evaluate the capabilities of their mod-
els in a fine-grained way. We provide interfaces
(via HuggingFace’s datasets library5 and the Hug-
gingFace Hub) to two offensive language datasets,
both designed specifically for diagnostic evaluation
of detection systems. Both datasets include fine-
grained annotations and binary offensiveness labels
and were curated to compare model performance
with linguistic phenomena. Tables 1 and 2 list the
features available for analysis.

The HateCheck (Röttger et al., 2020) test suite
includes labels reflecting specific linguistic con-
structions often seen in online hate speech, such as
use of spelling changes to obscure hateful language
and presence of threatening language. HateCheck
also includes annotations of specific identities tar-
geted in each instance of hate speech.

COLD (Palmer et al., 2020) provides fine-
grained labels of some linguistic phenomena rele-
vant for implicit/complex offensive language. Two
examples are presence/absence of slur terms and
presence/absence of adjectival nominalizations.

3.2 Submitting predictions

Before using the analysis functions described be-
low, the user needs to submit their model’s predic-

4https://pandas.pydata.org/docs/
5https://huggingface.co/docs/datasets/index
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Feature Description

functionality
The shorthand for the functionality tested
by the test case.

case_id
The unique ID of the test case (assigned to
each of the 3,901 cases initially generated)

test_case The text of the test case.

label_gold
The gold standard label (hateful/non-hateful)
of the test case. All test cases within a given
functionality have the same gold standard label.

target_ident

Where applicable, the protected group
targeted or referenced by the test case. We
cover seven protected groups in the test suite:
women, trans people, gay people, black people,
disabled people, Muslims and immigrants.

direction

For hateful cases, the binary secondary label
indicating whether they are directed at an
individual as part of a protected group or aimed
at the group in general.

focus_words
Where applicable, the key word or phrase in a
given test case (e.g. "cut their throats").

focus_lemma
Where applicable, the corresponding
lemma (e.g. "cut sb. throat").

ref_case_id

For hateful cases, where applicable, the ID of the
simpler hateful case which was perturbed to
generate them. For non-hateful cases, where
applicable, the ID of the hateful case which is
contrasted.

ref_templ_id The equivalent, but for template IDs.

templ_id

The unique ID of the template from which the
test case was generated (assigned to each of the
866 cases and templates from which we
generated the 3,901 initial cases).

Table 1: Features available via the HateCheck dataset.
Names and descriptions from Röttger et al. (2020).

Feature Description
ID The unique ID for the text

Text
The text containing social media messages

(some containing offensive language)
Cat The gold label category of the text

Off
Offensive or not? ( Y / N )

Majority Vote
Off1, Off2, Off3 Individual annotator labels for Off ( Y / N )

Slur
Contains a slur? ( Y / N )

Majority Vote
Slur1, Slur2, Slur3 Individual annotator labels for Slur ( Y / N )

Nom
Contains adjectival nominalization? ( Y / N )

Majority Vote
Nom1, Nom2, Nom3 Individual annotator labels for Slur ( Y / N )

Dist
Contains linguistic distancing? ( Y / N )

Majority Vote
Dist1, Dist2, Dist3 Individual annotator labels for Dist ( Y / N )

Table 2: Features available as part of the COLD dataset.
Names and descriptions from Palmer et al. (2020).

tions on the selected dataset, as well as a map-
ping between the model’s predicted labels (e.g.
1, 0) and the labels in the selected dataset (e.g.
hateful, non-hateful).6 The code snippet below
illustrates the process and assumes that the user’s
data has been stored as a Pandas dataframe named

6Note that this process applies both for preloaded datasets
and for datasets read in from the user’s own system.

user_data. In this example, the model predictions
are found in a column called predictions. The
user has selected three features for potential analy-
sis: Text, is_slur and text_length.
from olea.data import Dataset
setup = Dataset(

data = user_data ,
features = ["Text","is_slur",

"text_length"],
gold_column = "gold_labels",
text_column = "Text")

predictions = user_data["predictions"]
mapping = {"hateful": 1,

"non -hateful": 0}
data_submit = setup.submit(

batch = user_data ,
predictions = predictions ,
map = mapping)

The submit method passes the relevant parameters
to the analysis module.

3.3 Error analysis functions
The heart of our library is a collection of func-
tions for detailed evaluation and error analysis.
Throughout, we evaluate the model’s coarse-
grained classification performance (e.g. offen-
sive vs. not offensive) for subsets of instances
grouped according to a particular feature. The
features generally correspond to dataframe
columns. For example, we may compare per-
formance for instances containing a slur term
to performance for instances with no slur term.
Plots are produced using Matplotlib (Hunter, 2007),
and we include the option to save plots to files.
Section 4 shows concrete examples of the analysis
outputs, and code examples appear in Appendix A.

analyze_on. In its most general version, this
function evaluates model performance for a cat-
egorical column specified by the user. OLEA in-
cludes versions of analyze_on customized to the
two preloaded datasets. The COLD-specific ver-
sion evaluates performance for features constructed
from combinations of four binary features: offen-
siveness, presence of slur term, presence of adjecti-
val nominalization, and presence of linguistic dis-
tancing. The HateCheck-specific version includes
linguistic features (e.g. negation, derogation, or
profanity) and features related to the identity of
the targeted individual or class (e.g. trans people,
Muslims, or disabled people).

check_anno_agreement. This function is in-
tended for datasets which include labels from mul-
tiple annotators, such as COLD. The function com-
pares performance on instances with full annotator
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agreement for the label of offensiveness to perfor-
mance on instances with partial agreement. Full an-
notator agreement is taken as a proxy for instances
that are “easy” to classify, and partial agreement
indicates more complex cases.

aave. This function evaluates performance for
instances (likely) written using African American
English. The scores are calculated using the Twit-
terAAE model (Blodgett et al., 2016). These scores
represent an inference of the proportion of words
in the instance that come from a demographically-
associated language/dialect.

check_substring. Given a user-specified text
string, this function compares performance on in-
stances with the substring to instances without.

str_len_analysis. This function outputs a his-
togram showing model performance on instances
of different lengths (character or word count).

3.4 Adding datasets and analyses

Extensibility is a key principle guiding the design
of OLEA, with the goal of providing an easy-to-use,
uniform platform for error analysis in the context
of offensive language detection. In addition to the
two preloaded datasets, users can submit their own
datasets using the process described in 4.2. To add
a dataset, users need only define an interface (using
the Dataset class) indicating where to find both
target labels and features relevant for analysis.

OLEA has a helper function for preprocessing
English text to remove user names and URLs and
convert emoji to their textual descriptions.7

from olea.utils.preprocess_text import
PreprocessText as pt

processed_text = pt.execute(user_data["
raw_text"])

user_data["preprocessed_text"] =
preprocessed_text

For example, the preprocessor converts "@user-
name_1 Have you seen the video that @an-
other_user made? https://fakelink.io" to
"USER have you seen the video that USER made?
eyes fire HTML".

Finally, users can write and share their own anal-
ysis functions, focusing on user-specified dimen-
sions, as in 4.2.2. OLEA’s code is modularized
such that adding a new analysis requires enough
Python knowledge to write the function, but not a
detailed understanding of the entire codebase.

7Preprocessing scheme is described in Palmer et al. (2020).

4 Use Case Demonstrations

OLEA aids model development by providing an
easy and comparable platform to test and build ro-
bust offensive language classifiers. We demonstrate
three use cases: a) analysis on preloaded datasets
(4.1), including model comparison (4.1.4), b) anal-
ysis on custom data (4.2), and c) sharing datasets
and analysis functions (4.2).

4.1 User model performance evaluation using
preloaded datasets

This section demonstrates how to use OLEA for
detailed analysis of the strengths and weaknesses
of existing offensive language detection models.
For this demo, we use roBERTa-offensive (Bar-
bieri et al., 2020), a pre-trained generic language
model, fine-tuned on the SemEval2019 OffensEval
dataset (Zampieri et al., 2019b). We use this model
to make top-level predictions (offensive or not) for
both COLD and HateCheck. Although they use
different labels (offensive vs hateful), COLD and
HateCheck align in their definitions by taking into
account non-offensive uses of slurs and classify-
ing derogatory text as offensive. Users explicitly
run individual error analyses and specify whether
a plot of the results should automatically be gener-
ated. These individual analysis functions show the
model’s performance with respect to a particular
feature (i.e. an existing dataframe column, or a new
one added by the function).

Each function returns two dataframes. The
metrics dataframe contains a classification report
for the analysis.8 This dataframe uses OLEA’s
built in Metrics function, which is built upon and
uses Scikit-learn’s (Pedregosa et al., 2011) met-
rics library. The plot_info dataframe contains
details of the analysis for the selected dimension,
plus computed accuracy and the option to show
textual examples. If show_examples = True, the
function returns one randomly-selected incorrectly-
classified instance for each value of the dimension
being analyzed.9 If the plot option is selected, the
plots are built from the plot_info dataframe.

4.1.1 Generic analysis functions
Table 3 shows the classification report for roBERTa-
offensive on COLD. Here, the classification report

8Appendix A provides more code examples for loading in
data and starting generic analyses.

9The variable show_examples defaults to false to avoid
accidental viewing of hateful or offensive language.

212



N Y macro avg weighted avg
precision 0.743 0.587 0.665 0.670
recall 0.502 0.803 0.652 0.643
f1-score 0.599 0.678 0.639 0.636
support 1072 944 2016 2016

Table 3: Metrics classification report for roBERTa-
offensive on COLD, using analyze_on on the dimen-
sion of offensiveness. N=not offensive, Y=offensive.

Annotator Agreement Full Partial
Total 1431 585

Total Correct 1004 292
Accuracy 0.702 0.499

Incorrect Classification
Example

an illegal is not an
immigrant and
illegals do take
american jobs
considering they
are not americans.

USER yooo i was
thinking bout
that the other day
lol.. you only really
speaking of one
person my n*ggah

Example’s
Predicted Label

N Y

Example’s Gold Label Y N

Table 4: plot_info report for roBERTa-offensive on
COLD, using check_anno_agreement (full vs. partial),
with randomly-selected examples.

provides F1, precision, and recall for the two cat-
egories of offensive and non-offensive, as well as
the macros and weighted averages. This model
performs better overall on offensive instances, with
high recall, but shows much better precision for
non-offensive instances. These reports can be eas-
ily modified to analyze subsets of the data.

Table 4 shows plot_info for
roBERTa-offensive on COLD, using
check_anno_agreement. The table shows
accuracy for each category (full vs. partial) and
one example incorrect prediction. Accuracy is
much higher for instances with full agreement than
for those with some disagreement. Offensiveness
can be subjective, so it is useful to examine model
performance on these different cases. Showing
examples allows users to review difficult cases and
may provide insights for model improvement.

4.1.2 COLD analysis

The next analysis (Fig. 2) is on the fine-grained
COLD categories. roBERTa performs well on of-
fensive tweets containing slurs and poorly on the re-
claimed category (non-offensive tweets containing
slurs). The model also performs poorly on offen-
sive tweets containing adjectival nominalization.
These insights suggest that the model relies too
much on slurs for identifying offensive language.

Figure 2: Results for roBERTa-offensive on COLD,
focusing on fine-grained categories. Percent value above
a bar shows percent accuracy for that category.

Figure 3: Results for roBERTa-offensive on HateCheck,
focusing on identity of the target.

4.1.3 HateCheck analysis

HateCheck includes a column identifying the tar-
geted group of the offensive language. This analy-
sis can help identify which groups a model is more
or less sensitive to. Figure 3 shows that the model
does a better job of recognizing hateful speech
when an identity is targeted than when one is not.

Figure 4a analyzes the performance of roBERTa-
offensive on the fine-grained HateCheck categories;
complete table is in Appendix B. Most instances
of counter-speech (when hate speech is quoted or
is referred to with a non-hateful effect) are incor-
rectly classified. An example of counter-speech is
"I lost all respect for you when you said women
are pathetic". Instances belonging to the categories
of derogation, identity, threats, pronoun references,
and phrasing are mostly correctly classified.
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Figure 4: Comparison of HateXplain and roBERTa models on the fine-grained HateCheck categories. The category
labels are followed by either (h) to denote that it is comprised of only hateful instances, (nh) for only non-hateful
instances, or nothing to denote a mix of hateful and non-hateful instances

(a) Results for roBERTa-offensive on HateCheck, focusing on
fine-grained categories.

(b) Results for HateXplain on HateCheck, focusing on fine-
grained categories.

4.1.4 Model comparison
So far we have compared one model’s performance
on two different datasets. Next, we compare two
different models on the same dataset. The sec-
ond model is HateXplain (Mathew et al., 2021).
Both models of course suffer when classifying data
sourced from outside their training domain.10,11

But we get a much truer sense of the models’ out-
of-domain capabilities when we look at the side-
by-side analysis of the two models for the fine-
grained HateCheck categories (Figures 4a and 4b).
While roBERTa-offensive does not perform well
on counter-speech, HateXplain correctly classifies
most counter-speech instances. And while Hat-
eXplain struggles to recognize hateful expressions
with spelling changes, roBERTa does much better.

4.2 OLEA as infrastructure: Extending
functionality

OLEA is open-source12 and has been designed to
be extensible with new datasets and new analyses.

4.2.1 Analysis on custom data
The analysis methods described above can be eas-
ily applied to new corpora. The code below shows

10roBERTa-offensive reports an F1 of 0.78 on OLID but
drops to 0.62 on HateCheck. HateXplain reports F1 of 0.69
on the HateXplain dataset, and drops to 0.37 on HateCheck.

11We map HateXplain’s “offensive” and “hate speech” la-
bels both to HateCheck’s “hateful”.

12https://github.com/alexispalmer/olea, Licensed
under MIT License

the process of loading the OLID dataset (Zampieri
et al., 2019a) as a pandas dataframe. The user
only needs to specify a path to the data and the
relevant column headings. The Dataset class acts
as a wrapper for the data loaded from disk and
allows the user to access class utilities such as
generator(), which in turn is helpful for access-
ing data in batches.
olid = pd.read_csv('data/olid/

olid_levela.csv')
olid_dataset = Dataset(data = olid ,

features = 'Text',
gold_column = 'label ',
text_column = 'Text')

data_gen = olid_dataset.generator(
batch_size =64)

data = next(data_gen)

We can now submit model predictions, returning a
DatasetSubmissionObject which can be used to
conduct the generic analyses previously described;
code in Appendix A.

4.2.2 Sharing datasets and analysis patterns
With just a bit of coding, interfaces new datasets
can be added to the OLEA library more perma-
nently, and for the benefit of all users.13 We demon-
strate again using OLID,14 establishing the new
OLIDDataset class which inherits from Dataset.
class OLIDDataset(Dataset) :

text_column = 'Text'

13OLEA is not currently hosting datasets. The preloaded
datasets are hosted via HuggingFace’s datasets library.

14Note that we only consider OLID’s "level-A" annotations.
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gold_column = 'label '
features = ['Text','label_id ']

def __init__(self , olid_csv_path:str) :
self.olid_csv_path = olid_csv_path
self._data = self._load_data ()

def _load_data(self) -> pd.DataFrame:
return pd.read_csv(self.
olid_csv_path)

To accommodate the properties of the new dataset,
we need to override some attributes of the Dataset
class and to modify the method for loading data.

OLEA’s scaffolding minimizes the amount of
new code needed to add a new dataset, as well
as automatically handling helper utilities such
as mapping model predictions to the custom
Dataset object. The library also runs sanity
checks on submitted predictions before returning a
DatasetSubmissionObject.

The advantage of using a native
DatasetSubmissionObject is that users may run
Generic analyses on it. However, if authors have
a unique analysis that they wish to couple with
their dataset, they may specify a special Analysis
class that can operate on submissions. The class
methods can be modified to accommodate patterns
or properties specific to the dataset.

class OLIDAnalysis(object) :
@classmethod
def analyze_on(cls , submission:
DatasetSubmissionObject , on:str) :

'''
Unique OLID analysis goes here!
'''
return get_metrics(submission ,

on)

5 Conclusion and Future Directions

This paper introduces OLEA, a tool for easy, in-
depth error analysis and an infrastructure for shar-
ing new datasets and analysis methods. OLEA
helps researchers understand the strengths and
weaknesses of their offensive language detection
models. In the near term, we will continue to add
new analysis methods and datasets, including meth-
ods for corpus exploration, and providing auto-
matic trends and insights of model performance
without users needing to run explicit analyses. Mid
term, we plan to extend OLEA to additional lan-
guages, and eventually we would like to expand
OLEA into a general error analysis library for a
range of language classification tasks. Because
OLEA is a convenient way for authors to share
datasets and analyses, it is our hope that a com-
munity will develop around the library, and that

models ultimately will improve as we learn more
about what they can and cannot do.

Ethical Considerations. We acknowledge the
ethical implications of releasing a tool that encour-
ages accessing hate speech datasets where tweet
author anonymity may not be ensured. This tool
is to help researchers identify how their offensive
language model can improve, with the intended
benefit of more accurate identification of language
that negatively affects vulnerable populations, and
should not be used for any task that promotes or
spreads the usage of hate speech or unnecessarily
exposes people to hate speech. Even when used
as intended and functioning correctly, users may
react negatively to seeing offensive language, so
we take steps to minimize exposure by defaulting
show_examples to False during analysis, though
researchers belonging to vulnerable populations
might be more negatively affected. If the tool gives
incorrect results, researchers might overestimate
their model performance, which could directly hurt
vulnerable populations depending on the deploy-
ments of the model. This tool relies on datasets
that often categorize people based on their identity,
and it supports analyses based on these categories.
We believe that these categorizations are necessary
for a granular understanding and examination of
offensive language classification.

Limitations. OLEA is restricted in the languages
that it can be applied to. Currently, for the substring
analyses, it assumes that the language is delimited
by spaces. Additionally, the library is primarily fo-
cused on providing error analyses for offensive lan-
guage applications. Its use outside of this domain
is not known or well-defined. Though we focus
on error analysis for offensive language identifi-
cation, the system makes no binding assumptions
as to the proper definitions of offensive language
and hate speech, nor does it assert (or assume) any
difference between these two categories which can
complicate cross-model comparison. Furthermore,
this tool is just an analysis tool; it does not ad-
dress concerns regarding language drift and other
sociolinguistic biases that may be present within
a user’s dataset, nor does it address any annotator
biases present in original datasets.

Acknowledgments. Thanks to the anonymous re-
viewers for useful feedback. Thanks also to Cutter
Dalton for testing, and to members of the 2021-
2023 CLASIC cohort for helpful discussions!
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A Code Examples

In this appendix, we provide code snippets corre-
sponding to Section 4.

A.1 Preliminaries
Installation
pip install olea

Import Statements
import pandas as pd
from olea.data.cold import COLD ,

COLDSubmissionObject
from olea.data.hatecheck import

HateCheck
from olea.analysis.cold import

COLDAnalysis
from olea.analysis.generic import

Generic
from olea.analysis.hatecheck import

HateCheckAnalysis
from olea.utils import preprocess_text

A.2 Code examples for Section 4.1
Download and Preprocess COLD text:
cold = COLD()
pt = preprocess_text.PreprocessText ()
processed_text = pt.execute(cold.data()[

"Text"])
cold.data()["Text"] =processed_text

Create predictions using roBERTa-offensive
from transformers import AutoTokenizer ,

AutoModelForSequenceClassification
from transformers import

TextClassificationPipeline

link = "cardiffnlp/twitter -roberta -base
-offensive"

tokenizer = AutoTokenizer.
from_pretrained(link)

model =
AutoModelForSequenceClassification.
from_pretrained(link)

#Create Pipeline for Predicting

pipe =
TextClassificationPipeline(model=
model , tokenizer=tokenizer)

preds = pd.DataFrame(pipe(list(
cold.data()["Text"])))["label"]

Create Submission Objects:

cold_so = cold.submit(
batch = cold.data(),
predictions = preds ,
map = {"LABEL_0": 'N', 'LABEL_1 ': "Y
"})

hc_so = hc.submit(
batch = hc.data(),
predictions = preds ,
map = {"LABEL_0": 'non -hateful ', '
LABEL_1 ': "hateful"})

Generate Table 3:

plot_info , metrics = Generic.analyze_on(
cold_so ,
'Cat',
show_examples = False ,
plot = False)

Generate Table 3 and Save plot to file:

plot_info , metrics = Generic.analyze_on(
cold_so ,
'Cat',
show_examples = False ,
plot = False ,
savePlotToFile= "cold_cats.png")

Generate Table 4:

plot_info , metrics = Generic.
check_anno_agreement(cold_so , ["Off1
","Off2","Off3"],show_examples =
True , plot = False)

Generate Figure 2:

plot_info , metrics =COLDAnalysis.
analyze_on(
cold_so ,
'Cat',
show_examples = False ,
plot = True)

Generate Figure 3:

plot_info , metrics = Generic.analyze_on(
hc_so ,
'target_ident ')

Generate Figure 4a, Figure 4b, and Table 5:

plot_info , metrics = HateCheckAnalysis.
analyze_on(
hc_so ,
'category ')

A.3 Code examples for Section 4.2

Run analysis functions on local custom data:
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predictions = model.predict(data)
submission = olid_dataset.submit(

batch = data ,
predictions = predictions ,
map = {1:'OFF', 0:'NOT'})

# performance on AAVE
Generic.aave(submission)
# performance on texts containing

substring 'female '
Generic.check_substring(submission , "

female")

Submit predictions for newly-established dataset
class OLIDDataset:
olid = OLIDDataset('data/olid.csv')
datagen = olid.generator (64)
data = next(datagen)
preds = model.predict(data)
map = {'OFF' : 1.0 , 'NOT' : 0.0}
submission = olid.submit(batch = data ,

predictions = preds ,
map = map)

B Full Results Table for Figure 4a

category Metrics precision recall f1-score support
counter (nh) hateful 0.000 0.000 0.000 0
counter (nh) non-hateful 1.000 0.038 0.074 314
counter (nh) macro avg 0.500 0.019 0.037 314
counter (nh) weighted avg 1.000 0.038 0.074 314
derogation (h) hateful 1.000 0.805 0.892 560
derogation (h) non-hateful 0.000 0.000 0.000 0
derogation (h) macro avg 0.500 0.403 0.446 560
derogation (h) weighted avg 1.000 0.805 0.892 560
identity(nh) hateful 0.000 0.000 0.000 0
identity(nh) non-hateful 1.000 0.892 0.943 315
identity(nh) macro avg 0.500 0.446 0.471 315
identity(nh) weighted avg 1.000 0.892 0.943 315
negation hateful 0.295 0.236 0.262 140
negation non-hateful 0.335 0.406 0.367 133
negation macro avg 0.315 0.321 0.315 273
negation weighted avg 0.315 0.319 0.313 273
nonhateful-abuse (nh) hateful 0.000 0.000 0.000 0
nonhateful-abuse (nh) non-hateful 1.000 0.339 0.506 192
nonhateful-abuse (nh) macro avg 0.500 0.169 0.253 192
nonhateful-abuse (nh) weighted avg 1.000 0.339 0.506 192
phrasing (h) hateful 1.000 0.868 0.929 273
phrasing (h) non-hateful 0.000 0.000 0.000 0
phrasing (h) macro avg 0.500 0.434 0.465 273
phrasing (h) weighted avg 1.000 0.868 0.929 273
profanity hateful 0.601 1.000 0.751 140
profanity non-hateful 1.000 0.070 0.131 100
profanity macro avg 0.800 0.535 0.441 240
profanity weighted avg 0.767 0.613 0.492 240
pronoun-references (h) hateful 1.000 0.908 0.952 273
pronoun-references (h) non-hateful 0.000 0.000 0.000 0
pronoun-references (h) macro avg 0.500 0.454 0.476 273
pronoun-references (h) weighted avg 1.000 0.908 0.952 273
slurs hateful 0.593 0.778 0.673 144
slurs non-hateful 0.515 0.306 0.384 111
slurs macro avg 0.554 0.542 0.528 255
slurs weighted avg 0.559 0.573 0.547 255
spelling changes (h) hateful 1.000 0.549 0.709 760
spelling changes (h) non-hateful 0.000 0.000 0.000 0
spelling changes (h) macro avg 0.500 0.274 0.354 760
spelling changes (h) weighted avg 1.000 0.549 0.709 760
threats (h) hateful 1.000 0.810 0.895 273
threats (h) non-hateful 0.000 0.000 0.000 0
threats (h) macro avg 0.500 0.405 0.447 273
threats (h) weighted avg 1.000 0.810 0.895 273

Table 5: The Metrics classification report for roBERTa-
offensive on HateCheck
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Abstract

Access to natural language processing re-
sources is essential for their continuous im-
provement. This can be especially challeng-
ing in educational institutions where the soft-
ware development effort required to package
and release research outcomes may be over-
whelming and under-recognized. Access to
well-prepared and reliable research outcomes
is important both for their developers as well
as the greater research community. This paper
presents an approach to address this concern
with two main goals: (1) to create an open-
source easily deployable platform where re-
sources can be easily shared and explored, and
(2) to use this platform to publish open-source
Turkish NLP resources (datasets and tools) cre-
ated by a research lab. The Turkish Natural
Language Processing (TULAP) was designed
and developed as an easy-to-use platform to
share dataset and tool resources which supports
interactive tool demos. Numerous open access
Turkish NLP resources have been shared on
TULAP. All tools are containerized to sup-
port portability for custom use. This paper
describes the design, implementation, and de-
ployment of TULAP with use cases (available
at https://tulap.cmpe.boun.edu.tr/). A
short video demonstrating our system is avail-
able at https://figshare.com/articles/
media/TULAP_Demo/22179047.

1 Introduction and Motivation

There is a growing interest in the field of natural
language processing (NLP) due to the recent ad-
vances in deep learning-based approaches, such as
transformer architectures and pretrained language
models. This interest shows itself in the demand
both for applications solving NLP tasks and for
high-quality corpora that can be used in machine
learning models. Although there are plenty of such
resources for well-studied languages such as En-
glish, there is a scarcity of these resources in most
of the other languages. In addition to developing

such resources, there is a need for building software
environments that collect these resources within a
platform and offer them to the NLP community
with easy-to-use interfaces.

This paper introduces TULAP (Turkish Language
Processing Platform) that aims to provide a vari-
ety of Turkish NLP resources (datasets and tools).
TULAP provides a user-friendly user interface (UI)
where users can easily discover and examine NLP
resources. Tools can be explored without the hassle
of having to build and install them. All tools are
containerized APIs (Application Programming In-
terface) to facilitate easy installation and use. The
tools served on TULAP are provided as open-source
to facilitate further research and development. This
is particularly important in educational institutions
where students tend not to package their code ap-
propriately, leading to to loss of time and effort for
those who wish to use their work.

The main motivation of TULAP is to develop a
platform that supports the continuous contribution
of NLP resources generated by our research lab,
TABILab1. For the initial deployment, we gathered
previously developed resources, created APIs, and
containerized them. Hereafter, the resource devel-
opers will be able to make their contributions with
an easy-to-use interface. The aim is to provide an
up-to-date NLP platform with resources that are
easy to discover and explore as well as to contribute
new resources produced by researchers.

The main contributions of this work are summa-
rized as follows:

• The creation of an NLP platform (TULAP)2

that supports access to Turkish NLP datasets
and tools, provides interactive demos, enables
easy end-user contribution of datasets and
tools, and open access to all resources;

1Text Analytics and BioInformatics Lab (TABILab) is a re-
search lab of the Computer Engineering Department of Boğaz-
içi University. https://tabilab.cmpe.boun.edu.tr/

2https://tulap.cmpe.boun.edu.tr/
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• Systematic documentation of the Turkish NLP
datasets and tools with access information 3;

• Creation of APIs and containerized versions
of the tools to facilitate accessibility;

• Introduction of a general archival process to
support continuous contributions by develop-
ing a research output platform4;

• A monitoring system to identify problems and
track how the platform is being used, and

• A deployment that aggregates Turkish NLP
resources developed at Boğaziçi University.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of NLP plat-
forms; Section 3 describes the platform require-
ments, design, and implementation; Section 4 de-
scribes the resources on TULAP with use-cases in
Section 5. Finally, Section 6 discusses the current
state and future work with concluding remarks.

2 Related Work

The goal of collecting NLP resources under a uni-
fied framework and thus making implementing vari-
ous types of applications easier has led to the devel-
opment of NLP platforms in several languages. In
this section, we briefly review a few of the widely-
used NLP platforms with different functionalities
including those specific to the Turkish language.

NLTK (Bird, 2006) is one of the earliest NLP
libraries consisting of tools as a hierarchy of mod-
ules. It supports a wide range of tasks as well as
corpora that can be used in various NLP tasks. Al-
lenNLP (Gardner et al., 2018) is a library for deep
learning-based NLP research. The users can build
their own models using common deep learning op-
erations. Stanford CoreNLP toolkit (Manning et al.,
2014) provides a pipeline of preprocessing oper-
ations and downstream NLP tasks in various lan-
guages. It is one of the most widely used NLP
platforms partly due to its simple design. Users can
also integrate new NLP tasks to the pipeline.

The Hugging Face platform (Hugging Face, Inc.,
2023) is one of the most popular platforms that
is actively used in current NLP research. It in-
cludes a wide range of libraries that consist of
different types of software such as machine learn-
ing models, datasets, demos, and evaluation tools.
The transformers library (Wolf et al., 2020) in-
cludes open-source implementations of state-of-

3https://github.com/BOUN-TABILab-TULAP
4https://github.com/BOUN-TABILab-TULAP/

tabi-rop

the-art transformer-based models. The users can
easily share the resources they have developed in
the platform via the Hugging Face Hub.

Among the platforms specific to Turkish, İTÜ
Turkish NLP Web Service (Eryiğit, 2014) offers a
variety of tools that can be used in Turkish NLP
studies. The tools in the platform can be used ei-
ther as a pipeline or as stand-alone components.
Since the platform has been designed for Turkish,
it includes tools that are specific to Turkish such as
diacritic restorer. A recently-developed platform is
Mukayese (Safaya et al., 2022), which is a bench-
marking platform that provides a set of datasets
and benchmarks for seven different types of Turk-
ish NLP tasks. The Mukayese platform is also a
part of the Turkish Data Depository (TDD) project5

for building a repository of Turkish NLP resources.
The platform that we introduce in this work, TU-

LAP, bears commonalities with these earlier works
as well as different functionalities. Unlike most
other platforms, we offer both NLP datasets and
software tools. The tools can be used as ready-to-
use stand-alone applications, while the datasets can
be utilized for training machine learning models
or for other purposes. With respect to the tool set,
TULAP is similar to the Stanford CoreNLP frame-
work in the sense that both preprocessing and down-
stream operations are supported, and the platform
is extendable with new tools. There are several
differences of TULAP from the currently available
Turkish platforms. While these platforms mostly
provide preprocessing operations, TULAP also sup-
ports a wide range of more complex tasks like text
summarization and question answering. Further-
more, all the resources are made accessible with
open-source or Creative Commons licenses and all
tools are containerized for portability purposes. Fi-
nally, the platform is extensible with support for
end-user contribution of new tools and datasets.

3 Platform Design & Implementation

3.1 Requirements

The main goals of the platform are to: (1) provide
information and access to NLP resources (datasets
and tools); (2) demonstrate the use of tools; (3)
facilitate acquisition and use of resources; and (4)
contribute new resources. There are three types of
users: end users, resource providers, and system
administrators. The main requirements are:

5https://tdd.ai/?language=en
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Figure 1: An overview of TULAP. The containers (docker) are indicated with double borders.

• A user should be able to browse and search
the resources by keywords, tags, and authors.

• Resource providers should be able to spec-
ify or modify information (authors, language,
etc.) related to the resources they contribute.

• The system should provide a demo interface
that processes the input and returns the results.

• The system should provide installation and
tool usage instructions.

• Containerization should be used to support
portability, executability and scalability.

• All resources should be easy to obtain and use
to support accessibility and extensibility.

• System administrators should be able to con-
trol and monitor the use of the tools.

3.2 Design and Implementation

The design of TULAP addresses the description, dis-
covery and access to NLP-related dataset and tool
resources. To support the portability and ease of
building we chose to implement the platform with
containerized components using Docker (Boettiger,
2015). Furthermore, all tools that are hosted on the
platform must also be containerized. Thus, the plat-
form as well as the tools it hosts are easily reusable.

The TULAP platform consists of several contain-
ers (Figure 1): An Nginx (NGINX, 2022) con-
tainer serves as a reverse proxy for TULAP ser-
vices and static files. There are two main func-
tions that TULAP serves: (1) the specification and
the access to information regarding NLP-related
resources, and (2) demonstration of how tools func-
tion. The first part is addressed with the Repos-
itory, based on CLARIN-DSPACE (UFAL, 2022)

(Common Language Resources and Technology In-
frastructure) which is widely used for repositories.
Users may browse and search about structured in-
formation related to datasets and tools, including
references to corresponding academic articles. A
PostgreSQL (PostgreSQL, 2022) container is used
to persist data related to these resources.

Tool-related functionality is handled with the
Tool Manager and Tool Demo containers. The
Tool Manager supports the addition of new tool
demos which involves specifying project source
code (dockerized), information about the input &
output types, and a user guide (see Section 5). Tool
Demo enables the interactive exploration of tool de-
mos using predefined or user-provided input. Fig-
ure 2 shows a sequence diagram of how a user
interacts with a specific tool demo. First, the tool
specification is fetched to generate a user interface
(form). The input provided by the user is used to
generate an API request which is sent to the tool.
The response is processed according to the output
specification and presented to the user.

Tools must be open-source, dockerized, and pro-
vide an application programming interface (API).
Tool specifications are used to generate user in-
terfaces to support interaction with demos. The
front-end of tool demos is handled with a Node
container6 and the back-end (API calls) is handled
with a Python container7. A MongoDB container8

stores tool specifications and their usage informa-
tion. The aim to provide ease of access and use to

6https://hub.docker.com/_/node
7https://hub.docker.com/_/python
8https://hub.docker.com/_/mongo
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Figure 2: The sequence diagram for using a specific tool.

tools is the reason for imposing these criteria. As
tools are dockerized, they can be fetched, built, and
used for custom purposes.

Finally, the System Monitor allows the system
administrators to gain insight into which, when,
and how tools have been accessed. The system
health is tracked to ensure that tools are up and
running and to mitigate any problems.

3.3 Adding New Tools to the Demo Platform

Tool developers and system administrators are au-
thorized to add new tools to the platform. Tools
can be contributed by specifying four kinds of in-
formation: (1) general information which includes
name & description (in Turkish and English), Git
repository link, contact email, and API endpoint;
(2) input specification which includes a name and
type for each field type, at least one sample input,
and the corresponding parameter name used by the
tool; (3) output specification which includes the
name and type of fields in the response provided
by the tool; and (4) user guide which describes the
input and output expected by the tool demo. This
tool specification is posted to the Tool Demo which
clones the Git repository and builds a Docker im-
age. Then it creates a container from the image and
stores the container details for future invocations.
Once the container starts, it can handle requests.

4 TULAP Deployment

At the time of the writing of this article, TULAP

includes 12 datasets and 16 tools which are shown
in Table 1 and Table 2, respectively.

NLP Datasets
BOUN Dependency Treebank v2.8 (Türk et al., 2019; Türk
et al., 2021); v2.11 (Marşan et al., 2022; Marşan, 2022)
Question Answering Corpus (Derici et al., 2018b,a)
Scientific Abstracts Corpus (Öztürk et al., 2014b,a)
Sentiment Analysis Corpus (Köksal and Özgür, 2021c,b)
Sign Language Corpus (Buz and Güngör, 2019a,b)
Türkiye Büyük Millet Meclisi (Grand National Assembly
of Turkey) Corpus (Güngör et al., 2018a,b)
Turkish-English Parallel Corpus (Taşçı et al., 2006a,b)
Turkish Multi-document Summarization Corpus (Nuzum-
lalı and Özgür, 2014a,b)
Turkish Question Answering Dataset (SQuAD-TR) (Budur
et al., 2020)
Web Corpus (Sak et al., 2011, 2010)
Word Embeddings (Güngör and Yıldız, 2017a,b)

Table 1: The datasets provided on TULAP

The tools on the platform are dynamically up-
dated with new contributions. The platform itself is
open-source and accessible at: https://github.
com/BOUN-TABILab-TULAP/tabi-rop.

5 Using TULAP

This section describes how TULAP can be used
through use cases. The landing page of TULAP
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NLP Tools
Tokenizer (Ak and Güngör, 2022c)
Sentence Splitter (Ak and Güngör, 2022b)
Deasciifier (Ak and Güngör, 2022a)
Lemmatizer (Köksal, 2018)
Morphological Analyzer (Sak et al., 2007a,b)
Morphological Disambiguator (Sak et al., 2007a,c)
Dependency Parser (Özateş et al., 2018, 2020)
Verbal Multiword Expression Identifier (Yirmibeşoğlu and
Güngör, 2020a,b)
Named Entity Recognizer (Güngör et al., 2018c,d)
Question Answerer (Derici et al., 2018b,c)
Relation Extractor (Köksal and Özgür, 2020, 2021a)
Sentiment Analyzer. i) Binary (Aydın and Güngör, 2020;
Aydın et al., 2021); ii) Ternary (Köksal and Özgür, 2021c,b)
Text Summarizer (Baykara and Güngör, 2022b,a)
Grammar Annotation Tool. i) Standalone (Türk et al., 2022;
Berk and Köksal, 2021); ii) Web (Akkurt et al., 2022;
Akkurt and Uskudarli, 2022)

Table 2: The tools provided on TULAP

allows users to browse and search for datasets and
tools. Dataset resources can be easily searched, in-
spected, and downloaded. Due to space limitations,
in this section we focus on describing tool handling
as it is significantly more complicated. The follow-
ing use cases demonstrate how users: (1) discover
and inspect tools; (2) contribute new resources; (3)
fetch, build, and use tools independently; and (4)
monitor the use of TULAP:

(1) Tool Discovery and Demo Figure 3a shows
the repository where users can browse and search
for resources. The user has searched for “named
entity” for which resources that include either
keyword are shown. Figure 3b shows the details
pages when the “Named Entity Recognition” tool
is selected. Figure 3c 9 shows the use of the demo
with the Turkish sentence İstanbul Barosu’ndaki
Yapay Zekâ, Robotlar ve Hukuk Konferansı’nda
pirimiz Alan Turing’i anmadan olmazdı10. The
tool returns the entity tags for tokens, for which
the demo provides two alternative presentations
(BRAT (Stenetorp et al., 2012) and JSON).

(2) Adding new tools Adding a new tool to the
repository consists of providing information
about the source-code (Git) and executable demo
(URL) of the tool as well as academic information
such as related papers, authors, and funding.

(3) Executing tools TULAP provides all the re-
sources related to the tools along with an interface

9For higher resolution of the images see https://
figshare.com/articles/figure/TULAP_NER/21629549

10Translation: It is impossible not to remember our sage
Alan Turing during the Artificial Intelligence, Robots, and
Law Conference held at the Bar Association of Istanbul.

to demonstrate their functionality. All the tools
provided in TULAP are open-source and are also
independently available at TULAP repository11.
For those who wish to utilize a tool beyond the
demo interface (e.g. to recognize named enti-
ties in a large dataset using the NER tool), we
have dockerized their APIs for easy deployment.
TULAP itself utilizes the dockerized tools along
with an interface we generate to demonstrate their
functionality. Anyone can easily build the dock-
erized tools in their environment to use the APIs
to their specific purposes. Listing 1 shows how
easily the Named Entity Recognition tool can be
built and used. Note that the API call is the one
for the example shown in Figure 3c.

(4) Monitoring Tool Demos System administra-
tors use the System Monitor to observe metrics
like the number of requests and response times
for the tools. These metrics are collected and
visualized using Grafana (Grafana, 2022).

6 Discussion and Conclusions

This work’s primary focus was to create an acces-
sible and sustainable platform for Turkish NLP re-
sources produced at Boğaziçi University. For this,
we developed a research output platform (tabi-rop)
where open access to datasets and tools that result
from research activities related to NLP or other
fields can be shared. TULAP was developed using
tabi-rop and hosts numerous resources produced by
our research lab. One of the most challenging tasks
was the collection and packaging of previously de-
veloped resources. This fact validated the need for
such a platform – a sentiment also expressed by
the research lab alumni when reviewing TULAP.
We continuously monitor TULAP as well as main-
tain tabi-rop12. Currently, we are upgrading the
Repository component to benefit from DSpace v7
(Lyrasis, 2022) improvements.

Moving forward, we plan to include pre-
processing tasks, new tasks, and improved versions
of present tools. We are pleased that new resources
have been contributed subsequently to the initial
release. Other future work includes platform main-
tenance and improvements to the presentation of
and interaction with resources.

While many platforms have been emerging to

11URL: https://github.com/BOUN-TABILab-TULAP
12https://github.com/BOUN-TABILab-TULAP/

tabi-rop
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(a) Search for resources including the keywords named entity

.
(b) Details for the Named Entity Recognizer.

(c) NER for sentence: İstanbul Barosu’ndaki Yapay Zekâ, Robotlar ve Hukuk Konferansı’nda pirimiz Alan Turing’i anmadan
olmazdı. Response is in BRAT format. The JSON serialization is shown in the dotted frame.

Figure 3: Searching (a), inspecting (b), and using a tool (c) in TULAP.

$ git clone https :// github.com/BOUN -TABILab -TULAP/NER.git
$ docker build -t ner .
// docker console feedback omitted
$ docker run -d -p 8080:8080 ner
$ curl -X POST http :// localhost :8080/ ner/predict/ -H 'Content -Type: application/json' -d '{"text ":"İstanbul

Barosu 'ndaki Yapay Zekâ, Robotlar ve Hukuk Konferansı'nda pirimiz Alan Turing 'i anmadan olmazdı."}'

{'tagger_output ': {'0': ['İstanbul ', 'B-ORG '], '1': ["Barosu 'ndaki", 'I-ORG'], '2': ['Yapay ', 'O'], '3':
['Zekâ', 'O'],...}

Listing 1: The commands to acquire, build, run the NER tool and an API request. The output of the docker build
and API response are truncated due to space limitation.

submit various resources, we expect that research
teams will strongly benefit from a repository where
reference versions of their work are collected in
a single platform. The systematic publication of
research outcomes supports the sustainability and
continuity of research. Having control over the
body of work makes it easier to track and include
resources valued by the team that may not meet

the criteria of external repositories. Similarly, it
reduced the risks of relying solely on other reposi-
tories. This is not to imply that we do not support
contributing our work on all relevant platforms. We
expect that consistent effort in preparing reference
material will result in following good practices that
enhance the preparation of resources that can also
be shared on all relevant platforms.
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We approached the development of this platform
as a software project starting from requirements
elicitation, design, implementation, deployment,
and maintenance. The project was managed with
weekly meetings, version management, and issue-
tracking tools. We believe that this approach was
instrumental to achieving our goals. We note that
the research output platform (tabi-rop) which we
designed and developed for TULAP supports shar-
ing computational research outputs in general and
stands as a valuable contribution in its own right.
It is not restricted to the deployment of TULAP
and it can serve as an underlying platform in other
domains and languages.

Our hope is that TULAP facilitates research and
development efforts in Turkish NLP with infor-
mation, demos, open-source resources, and easily
accessible/usable reference versions of data and
tools that we have provided.
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Research Fund Grant Number 16909. We are
grateful to all resource providers and the TABILab
alumni who provided valuable feedback.

References
Buse Ak and Tunga Güngör. 2022a. Deasciifier. [On-

line; https://hdl.handle.net/20.500.12913/28; last ac-
cessed 19 July 2022].

Buse Ak and Tunga Güngör. 2022b. Sentence Splitter.
[Online; https://hdl.handle.net/20.500.12913/26; last
accessed 19 July 2022].

Buse Ak and Tunga Güngör. 2022c. Tokenizer. [Online;
https://hdl.handle.net/20.500.12913/25; last accessed
19 July 2022].
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Şerafettin Taşçı, Mustafa Güngör, and Tunga Güngör.
2006b. Turkish-English Parallel Corpus. [Online;
https://hdl.handle.net/20.500.12913/19; last accessed
19 July 2022].

Utku Türk, Furkan Atmaca, Şaziye Betül Özateş,
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Abstract

Supervised machine learning has become the
cornerstone of today’s data-driven society, in-
creasing the need for labeled data. However,
the process of acquiring labels is often expen-
sive and tedious. One possible remedy is to
use active learning (AL) – a special family of
machine learning algorithms designed to re-
duce labeling costs. Although AL has been
successful in practice, a number of practical
challenges hinder its effectiveness and are of-
ten overlooked in existing AL annotation tools.
To address these challenges, we developed
ALANNO, an open-source annotation system
for NLP tasks equipped with features to make
AL effective in real-world annotation projects.
ALANNO facilitates annotation management in
a multi-annotator setup and supports a variety
of AL methods and underlying models, which
are easily configurable and extensible.

1 Introduction

We are witnessing an ever-growing demand for
data along with the rapid development of machine
learning and deep learning algorithms. In partic-
ular, we need an abundance of labeled data to de-
velop well-performing models, which is not easy
to obtain. For many natural language processing
(NLP) tasks, the labeling process, i.e., annotation,
is often the most expensive and time-consuming
part of developing machine learning models. The
cognitive exertion of human annotators can affect
their judgment, which further affects label validity.
Consequently, this manifests in poor agreement – a
proxy for label reliability, which is a prerequisite
for validity (Artstein and Poesio, 2008; Paun et al.,
2022). Poor label reliability and validity negatively
affect the machine learning algorithm, as it is only
as good as the data it consumes.

Designed to alleviate labeling issues and reduce
annotation cost, active learning (AL; Settles, 2009)

♠Equal contribution

is a special family of machine learning algorithms.
In contrast to the standard random selection of in-
stances for labeling, a typical AL method itera-
tively queries the most informative instances for
the underlying model to achieve the best possible
performance with the fewest possible labels. AL
has been shown to reduce annotation effort across
machine learning applications, e.g., (Beluch et al.,
2018; Zhang and Chen, 2002), especially in NLP,
e.g., (Chen et al., 2012; Settles and Craven, 2008;
Ein-Dor et al., 2020).

Despite the demonstrated successes of AL, many
challenges are involved in deploying AL in real-
world scenarios (Lowell et al., 2019; Attenberg and
Provost, 2011). Unfortunately, these challenges are
often overlooked in both research and practice. In
particular, annotation tools that support AL rarely
address the problems of unbiased evaluation of
AL, imbalanced data, and stopping criteria for AL.
The lack of concrete solutions for these problems
hinders the effectiveness of AL. Aside from the
practical challenges in AL, managing annotation
campaigns is often very cumbersome, especially
in multi-annotator setups (when multiple annota-
tors are assigned to a single instance). Specifically,
assigning instances to multiple annotators can be
painstaking, particularly if one aims to achieve bal-
anced combinations of annotators across instances.
While there are many serviceable frameworks for
simulating AL in idealized scenarios, e.g., (Danka
and Horvath, 2018; Tang et al., 2019; Schröder
et al., 2021), there are only a few tools for running
real-world AL annotation campaigns with multiple
annotators, none of them explicitly addressing the
practical AL challenges.

To facilitate the creation of high-quality NLP
datasets at reduced annotation costs, we developed
ALANNO (Active Learning Annotation), an open-
source annotation system with AL strategies for
data sampling. ALANNO’s is specifically designed
to address the practical challenges of AL and fa-
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cilitate the management of multi-annotator anno-
tation projects. In particular, ALANNO guides to-
ward more quality labels with a novel method for
the balanced assignment of unlabeled instances
to annotators in a multi-annotator setup. We sup-
port building gold labels by monitoring the inter-
annotator agreement with task-specific metrics and
agreement-aware weighted aggregation of labels.
Equally important, ALANNO incorporates many
features to address the major challenges of using
AL in practice. Namely, we support guided learn-
ing (Attenberg and Provost, 2010) for mitigating
data imbalance, and we ensure trustworthy eval-
uation of the underlying model on an unbiased
test set and a stopping criterion to maximize the
effectiveness of AL. As an essential practical solu-
tion, we enable a project-specific stopping criterion
with a novel performance forecasting method based
on Bayesian regression. By estimating the perfor-
mance of the underlying model with hypothetically
enlarged labeled sets, we enable practitioners to de-
termine on the spot whether further annotation will
only have diminishing returns. Lastly, ALANNO

supports a wide range of state-of-the-art AL meth-
ods from the literature, allowing seamless inclusion
of new models or methods.

In summary, our main contribution is ALANNO,
an open-source AL annotation system for NLP
tasks, which features (1) practical strategies for
applying AL to real-world problems with a range
of AL methods and (2) annotation management
facilitation in a multi-annotator setup with qual-
ity control. ALANNO enables non-experts in AL
to reap its benefits by accounting for key practi-
cal issues in annotation management and AL. In
two case studies, we demonstrate ALANNO’s two
key features – balanced data assignment and AL
performance forecasting. We also provide a short
video1 demonstration and release the code2 under
the Apache 2.0 license. While ALANNO has been
born out of several years of experience with NLP
annotations for various tasks and has evolved with
each new project, it remains highly configurable,
allowing easy customization and extension.

2 System Overview

We briefly describe the key aspects of ALANNO,
which include projects, data assignment, label man-

1https://www.youtube.com/watch?v=
hPcHPM8ttvE

2https://github.com/josipjukic/alanno
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Figure 1: Organization of an ALANNO project. The lines
between the icons indicate different lines of interaction,
with the numbers denoting the temporal order. In brief,
the project manager recruits annotators 1 , creates la-
bels 2 , and imports the unlabeled data 3 , which are
then appointed to annotators via an assignment algo-
rithm 4 , 5 . The annotators use the created labels 6
to annotate the data 7 .

agement, and annotation.

Projects. In ALANNO, the entire annotation pro-
cess is encapsulated into a project, which handles
the interactions between different parts of an an-
notation project, as depicted in Figure 1. A typ-
ical NLP annotation project is long-lasting and
dynamic: annotators may be temporarily unavail-
able, new annotators may join an already-running
project, and others may leave. ALANNO supports
the managing of such a workforce dynamic. To sep-
arate the concerns and responsibilities, ALANNO

defines two user roles: project managers, who are
in charge of the annotation campaign, and annota-
tors, whose task is to apply labels to the unlabeled
data. At the moment, project managers can create
three main types of projects: single- and multi-
label classification, as well as sequence labeling
tasks (e.g., named entity recognition).

Data assignment. Due to the dynamic nature of
real-world annotation campaigns, it is convenient to
separate the annotation process into smaller chunks.
Moreover, annotation is an incremental process
that often requires calibration in the initial phases.
To meet these needs, the workload in ALANNO

is divided into rounds, where each round can be
configured independently. The project manager
can specify the number of unlabeled instances to
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Figure 2: Data assignment interface

Figure 3: Annotation interface

be assigned, select annotators for the round, and
the number of annotators per instance (Figure 2).

Annotation. The annotation interface (Figure 3)
depends on the project type. For classification
tasks, we support a single-label setup, where only
one of the labels can be applied, and a multi-label
setup with the possibility of applying multiple la-
bels. In addition, we cover a large variety of se-
quence labeling tasks, where it is only necessary
to define labels to fit the context of a specific use
case. For example, one can define organization,
person name, and location as labels for named en-
tity recognition. Annotators can then select spans
of text that fall into one of the defined categories.

Data management. The end product of an
ALANNO project is the annotated dataset, which
consists of labels gathered from annotators.
ALANNO offers the user a choice between export-
ing an aggregated dataset, in which each instance
appears precisely once with a single label obtained
by aggregating the labels of different annotators,
or a complete dataset, where each instance appears
as many times as it has been annotated. The latter
option is in line with recent recommendations to
publish annotated datasets with the original labels
rather than adjudicated labels (Kenyon-Dean et al.,

2020), allowing for disagreement analysis, train-
ing of models that predict soft labels, e.g., (Pavlick
and Kwiatkowski, 2019), or application of statisti-
cal label aggregation techniques, e.g., (Qing et al.,
2014; Hovy and Yang, 2021; Gordon et al., 2021).
Furthermore, to make it possible to follow up on
earlier annotation projects, ALANNO supports par-
tially annotated datasets where the annotations are
specified as user-label pairs.

3 Features

Motivated by our experience in annotation projects
and the practical challenges that emerge when de-
ploying AL, we designed practical solutions that
enable efficient labeling in real-world scenarios.
We identified several key challenges, which, if not
adequately addressed, may impair label quality and
AL efficiency. Specifically, we focused on (1) label
reliability, (2) unbiased evaluation of active learn-
ing models, (3) the stopping criterion for active
learning, i.e., knowing when to terminate the active
learning process, and (4) working with imbalanced
data.

3.1 Annotation management
Annotation management in ALANNO is centered
around the first critical challenge – label reliabil-
ity. We support agreement-aware label aggregation
and advanced data assignment to simultaneously
promote label quality and make the management
of annotation campaigns as seamless as possible.

Balanced assignment. Assigning unlabeled in-
stances to annotators is an important aspect of the
annotation process, in which combinations of an-
notators assigned to particular data points should
be balanced to achieve more reliable labels. We
have found that using uniform sampling based
on pseudo-random numbers results in unbalanced
combinations of annotators, with varying frequen-
cies of different annotator tuples. To mitigate this
and help improve label reliability, we developed
a Quasi-Monte Carlo assignment method based
on quasi-random numbers. In particular, we used
Sobol sequences (Burhenne et al., 2011) to produce
balanced combinations. In a scenario with n an-
notators and k annotators per data point, we draw
n dimensional vectors generated from the Sobol
sequence, where each element is in the [0, 1] in-
terval. We round the values to the nearest integer
(0 or 1). If a particular vector has exactly k ele-
ments with value 1, we distribute the data point
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to the annotators at the corresponding indices of
the vector. Otherwise, we discard the vector and
draw a new one. The process is guaranteed to con-
verge since all possible combinations are covered in
the first 2n vectors from the sequence. This proce-
dure produces balanced combinations with uniform
frequencies of annotator pairs, triplets, and up to
k-tuples. We demonstrate its effects in a case study
in Section 4.

Monitoring agreement. In a multi-annotator
setup, annotator agreement is a strong indicator
of label quality. ALANNO computes the inter-
annotator agreement using metrics appropriate for
the particular NLP task. Specifically, we use Co-
hen’s κ coefficient (Cohen, 1960) to evaluate pair-
wise agreement for binary and multi-class annota-
tion. For the joint measure that considers all annota-
tors simultaneously, we use Fleiss’ κ (Fleiss, 1971).
On the other hand, for the multi-label setup, we use
Krippendorff’s α coefficient (Krippendorff, 2018)
paired with MASI distance (Passonneau, 2006) for
both pairwise and joint agreement.

Gold labels. Aggregating labels from multiple
annotators is a critical component of creating high-
quality datasets. In practice, different annotators
often have different reliability levels due to dif-
ferences in expertise. Such differences are excep-
tionally prominent with large groups of annota-
tors. Therefore, ALANNO generates gold labels
that consider an estimate of annotators’ reliability.
In particular, we aggregate the labels by assigning
each annotator a weight proportional to how many
times they assigned the majority label to a data
point (Qing et al., 2014). For tasks with multiple
labels, we chose to use the majority principle. The
weighted aggregation leaves room for future im-
provement by incorporating systems such as Multi-
Annotator Competence Estimation (MACE; Hovy
et al., 2013).

3.2 AL acquisition models and functions
ALANNO supports AL as one of the key features.
We incorporate practical solutions to mitigate the
problems of deploying AL in real-world scenarios.
We first describe what the system offers in terms
of acquisition models, i.e., the underlying models
used for AL, and acquisition functions, i.e., AL
methods.

ALANNO offers a rich palette of acquisition mod-
els for AL. We include various approaches to pre-
processing tailored for a specific language for the

NLP task at hand, including TF-IDF, customizable
n-gram models, and word embeddings, using En-
glish as the default language. Besides English, we
currently also support Croatian. ALANNO provides
many traditional models, including logistic regres-
sion, SVM, and random forest classifier. We also
support deep models such as recurrent networks
and Transformers (Vaswani et al., 2017).

ALANNO supports a wide range of active acquisi-
tion functions for both traditional and deep learning
models. Starting from uncertainty sampling (Set-
tles, 2009), a simple but powerful family of AL
methods, ALANNO covers the least confident, mar-
gin, and entropy methods. All uncertainty-based
methods are available for single- and multi-label
problems. We have also incorporated acquisition
functions that focus more on data diversity, such
as the informative density method, which lever-
ages information about the instances in the input
space and gives higher weights to instances in high-
density parts of the input space. From the family of
AL methods specialized for deep neural networks,
ALANNO provides the core-set method (Sener and
Savarese, 2017) and BADGE (Ash et al., 2019).

3.3 AL challenges and solutions
We describe the aforementioned practical chal-
lenges in AL (unbiased evaluation, stopping cri-
terion, and class imbalance) and our solutions that
aim to preserve AL effectiveness.

Unbiased evaluation. Before starting the anno-
tation process, ALANNO reserves a random sample
of the imported data to be used later as a test set.
In each round, managers can select how many test
instances drawn from the reserved pool should be
labeled out of the entire batch. In this way, one can
adequately evaluate the model, as the reserved pool
is not affected by the sampling bias (Prabhu et al.,
2019). Since the acquisition functions often rely
on the acquisition model’s output, it is important
to decouple evaluation and AL selection. A bi-
ased test set can lead to overestimating the model’s
performance, establishing a vicious cycle of unin-
formative queries in the early stages of acquisition.
This often leads to redundant labels and, conse-
quently, poorly performing models (Attenberg and
Provost, 2011).

Stopping criterion. Although several stopping
criteria for active learning have been proposed (Vla-
chos, 2008; Zhu et al., 2010; Laws and Schütze,
2008; Bloodgood and Vijay-Shanker, 2014), they
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Figure 4: AL evaluation and performance forecasting.
After each round, ALANNO re-trains the underlying AL
model and plots the corresponding performance on the
train set (the plot on the left-hand side). The perfor-
mance is calculated on an unbiased test set reserved
beforehand. We use F1 score for the classification tasks,
with confidence intervals approximated by bootstrap-
ping. The plot on the right-hand side shows test per-
formances on the data labeled so far (in green) and the
forecast of performance increase with additional anno-
tation effort (in gray).

are rarely employed in practice. We can save valu-
able resources by using a stopping criterion to iden-
tify when our model performs sufficiently well.
Even more helpful would be the ability to fore-
cast how much more data needs to be annotated
to reach the desired model performance. To this
end, we integrated a forecasting feature based on
Bayesian regression, which we have implemented
in Pyro (Bingham et al., 2019). The forecasting
functionality is a practical solution for the stopping
criterion, allowing annotation managers to gauge
the trade-off between the expected boost in per-
formance versus the additional annotation effort.
Figure 4 shows an example of evaluating an active
learning model and performance forecasting.

Class balancing through guided learning. AL
often struggles with imbalanced data. Moreover,
class balance is crucial for active learning strate-
gies, especially in the early phases of the annotation
process, as the model may have difficulty learn-
ing classes with low frequency. To address this,
ALANNO supports guided learning, also known as
active search (Attenberg and Provost, 2010). The
main idea of guided learning in NLP is to use key-
words to search for data points in the minority class.
This way, users can annotate the retrieved data to
make the class frequency distribution more uni-
form. We use BM25 (Robertson et al., 2009) as the
retrieval algorithm for guided learning.

k = 2 k = 3 k = 4 k = 5

UNIFORM 132.66 52.14 18.09 3.38
QMC 0.75 0.42 0.15 .03

Table 1: The average variance of k-tuple frequencies.
UNIFORM denotes the standard uniform sampling of an-
notators, while QMC stands for our Quasi-Monte Carlo
assignment method. We simulated the assignment of
1,000 unlabeled instances with ten annotators in total
and five annotators per instance. We report the average
variance of frequencies across 1,000 runs.

4 Case Studies

In the following case studies, we highlight the two
essential features of ALANNO, namely balanced
data assignment and AL performance forecasting.

Case study 1: Balanced assignment. To com-
pare our Quasi-Monte Carlo assignment method
with uniform annotators combinations, we ran sim-
ulations of distributing unlabeled instances to an-
notators. As Table 1 shows, our method achieves
more balanced combinations compared to the stan-
dard uniform sampling, ranging from pairs and up
to k-tuples, where k is the number of annotators
per data point.

Case study 2: AL performance forecasting. To
demonstrate the forecasting feature in ALANNO, we
conducted a case study on the Stanford Sentiment
Treebank (SST; Socher et al., 2013) and subjectiv-
ity (SUBJ; Pang and Lee, 2004) datasets. We used
a simple logistic regression model with TF-IDF
vectors and least confident sampling method for
SST and BERT with BADGE sampling method for
SUBJ. We then compared random sampling to AL
and used our forecasting technique to predict the
performance of AL. In each step, we sampled 200
data points for SST and 50 data points for SUBJ

from the pool of unlabeled data, simulating the an-
notation process. We re-trained the models in each
AL step and evaluated them on the test set. Fig-
ure 5 demonstrates the usefulness of performance
forecasting, which provides a possibility to decide
on the trade-off between the additional annotation
cost and the expected increase in performance.

5 Related Work

As the popularity of machine learning and deep
learning grows, so does the need for annotated
data. Since high-quality data is imperative for high-
quality machine learning models, data annotation
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Figure 5: AL performance forecasting. The subfigures show the predictions of F1 score gain with a hypothetical
increase in the number of labeled data. The green line pertains to the random selection baseline, the blue one is the
corresponding AL selection, and the dashed orange line is the forecast of F1 score for AL selection. The dashed red
line represents the boundary between the steps the forecast model was trained on (left of the line) and the steps
whose values the forecast model was predicting (right of the line). The left subfigure shows the results for SST with
logistic regression using uncertainty sampling as the AL method, while the right subfigure corresponds to SUBJ with
BERT using BADGE for AL sampling.

has become a lucrative industry, and new tools
are constantly emerging. There are commercial
tools such as Prodigy,3 V7,4 and Hasty.5 However,
these tools hide their full functionality behind a
paywall. In contrast to the mentioned commercial
system, several open-source annotation tools have
appeared recently, such as Label Sleuth (Shnarch
et al., 2022), Label Studio,6, INCEpTION (Klie
et al., 2018), MATILDA (Cucurnia et al., 2021),
and Paladin (Nghiem et al., 2021).

Label Sleuth is an elegant annotation system
designed to make NLP accessible for non-experts.
The system enables AL selection for labeling. How-
ever, it only supports simple binary classification
with a single annotator per project.

Label Studio is offered as an open-source sys-
tem and a paid enterprise version. While the paid
version supports active learning, the free version is
limited to random selection. The system supports
multiple annotators but with minimal functionali-
ties in managing the annotations.

INCEpTION is a highly configurable tool that
supports AL and multi-annotator setups. However,
the system is hard to use, as it requires external
libraries to integrate a model for AL purposes.

MATILDA is a platform for dialogue annotation
in a multi-annotator setup with support for multiple
languages.

3https://prodi.gy/
4https://www.v7labs.com/
5https://hasty.ai/
6https://labelstud.io/

Paladin integrates active learning and supports
multi-label classification.

To the best of our knowledge, ALANNO is the
only AL annotation tool that explicitly addresses
practical challenges in AL. ALANNO also dif-
fers from the above-mentioned systems in imple-
menting practical solutions for managing multi-
annotator annotation projects.

6 Conclusion

ALANNO is an open-source annotation system for
natural language processing tasks powered by ac-
tive learning. The system addresses the critical
practical challenges of active learning in real-world
annotation projects that have previously been over-
looked. ALANNO enables non-experts in active
learning to conduct effective annotation campaigns
by supporting solutions for unbiased evaluation,
stopping criterion for active learning, and class
balancing. Additionally, the system facilitates an-
notation management in a multi-annotator setup,
emphasizing label quality through agreement mon-
itoring, agreement-aware label aggregation, and a
novel method for the balanced assignment of unla-
beled instances to annotators.
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Abstract

We present TrialsSummarizer, a system that
aims to automatically summarize evidence pre-
sented in the set of randomized controlled trials
most relevant to a given query. Building on
prior work (Marshall et al., 2020), the system
retrieves trial publications matching a query
specifying a combination of condition, inter-
vention(s), and outcome(s), and ranks these
according to sample size and estimated study
quality. The top-k such studies are passed
through a neural multi-document summariza-
tion system, yielding a synopsis of these tri-
als. We consider two architectures: A standard
sequence-to-sequence model based on BART
(Lewis et al., 2019), and a multi-headed archi-
tecture intended to provide greater transparency
to end-users. Both models produce fluent and
relevant summaries of evidence retrieved for
queries, but their tendency to introduce unsup-
ported statements render them inappropriate
for use in this domain at present. The pro-
posed architecture may help users verify out-
puts allowing users to trace generated tokens
back to inputs. The demonstration video is
available at: https://vimeo.com/735605060
The prototype, source code, and model weights
are available at: https://sanjanaramprasad.
github.io/trials-summarizer/.

1 Introduction

Patient treatment decisions would ideally be in-
formed by all available relevant evidence. However,
realizing this aim of evidence-based care has be-
come increasingly difficult as the medical literature
(already vast) has continued to rapidly expand (Bas-
tian et al., 2010). Well over 100 new RCT reports
are now published every day (Marshall et al., 2021).
Language technologies — specifically automatic
summarization methods — have the potential to
provide concise overviews of all evidence relevant
to a given clinical question, providing a kind of
systematic review on demand (Wang et al., 2022;
DeYoung et al., 2021; Wallace et al., 2021).

We describe a demonstration system, TrialsSum-
marizer, which combines retrieval over clinical tri-
als literature with a summarization model to pro-
vide narrative overviews of current published evi-
dence relevant to clinical questions. Figure 1 shows
an illustrative query run in our system and the re-
sultant output. A system capable of producing ac-
curate summaries of the medical evidence on any
given topic could dramatically improve the ability
of caregivers to consult the whole of the evidence
base to inform care.

However, current neural summarization systems
are prone to inserting inaccuracies into outputs
(Kryscinski et al., 2020; Maynez et al., 2020;
Pagnoni et al., 2021; Ladhak et al., 2021; Choubey
et al., 2021). This has been shown specifically to
be a problem in the context of medical literature
summarization (Wallace et al., 2021; Otmakhova
et al., 2022), where there is a heightened need for
factual accuracy. A system that produces plausi-
ble but often misleading summaries of comparative
treatment efficacy is useless without an efficient
means for users to assess the validity of outputs.

Motivated by this need for transparency when
summarizing clinical trials, we implement a sum-
marization architecture and interface designed to
permit interactions that might instill trust in out-
puts. Specifically, the model associates each token
in a generated summary with a particular source
“aspect” extracted from inputs. This in turn allows
one to trace output text back to (snippets of) inputs,
permitting a form of verification. The architecture
also provides functionality to “in-fill” pre-defined
template summaries, providing a compromise be-
tween the control afforded by templates and the
flexibility of abstractive summarization. We realize
this functionality in our system demonstration.

2 Related Work

The (lack of) factuality of neural summarization
systems is an active area of research (Chen et al.,
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Figure 1: An example query (regarding use of statins to reduce risk of stroke) and output summary provided by the
system. In this example, the summary accurately reflects the evidence, but this is not always the case.

2021; Cao et al., 2020; Dong et al., 2020; Liu et al.,
2020; Goyal and Durrett, 2021; Zhang et al., 2021;
Kryscinski et al., 2020; Xie et al., 2021). This
demo paper considers this issue in the context of a
specific domain and application. We also explored
controllability to permit interaction, in part via tem-
plates. This follows prior work on hybrid tem-
plate/neural summarization (Hua and Wang, 2020;
Mishra et al., 2020; Wiseman et al., 2018).

We also note that this work draws upon prior
work on visualizing summarization system outputs
(Vig et al., 2021; Strobelt et al., 2018; Tenney et al.,
2020) and biomedical literature summarization
(Plaza and Carrillo-de Albornoz, 2013; Demner-
Fushman and Lin, 2006; Mollá, 2010; Sarker et al.,
2017; Wallace et al., 2021). However, to our knowl-
edge this is the first working prototype to attempt
to generate (draft) evidence reviews that are both
interpretable and editable on demand.

3 System Overview

Our interface is built on top of Trialstreamer (Mar-
shall et al., 2020), an automated system that iden-
tifies new reports of randomized controlled trials
(RCTs) in humans and then extracts and stores
salient information from these in a database of all
published trial information. Our system works by
identifying RCT reports relevant to a given query
using a straightforward retrieval technique (Section
3.1), and then passing the top-k of these through
a multi-document summarization model (Section
3.2). For the latter component we consider both a
standard sequence-to-sequence approach and a as-
pect structured architecture (Section 3.3) intended
to provide greater transparency.

3.1 Retrieving Articles
Trialstreamer (Marshall et al., 2020; Nye et al.,
2020) monitors research databases — specifically,
PubMed1 and the World Health Organization In-
ternational Clinical Trials Registry Platform — to

1https://pubmed.ncbi.nlm.nih.gov/

automatically identify newly published reports of
RCTs in humans using a previously validated clas-
sifier (Marshall et al., 2018).

Articles describing RCTs are then passed
through a suite of machine learning models which
extract key elements from trial reports, including:
sample sizes; descriptions of trial populations, in-
terventions, and outcomes; key results; and the
reliability of the evidence reported (via an approxi-
mate risk of bias score; Higgins et al. 2019). This
extracted (semi-)structured information is stored in
the Trialstreamer relational database.

Extracted free-text snippets describing study
populations, interventions, and outcomes (PICO el-
ements) are also mapped onto MeSH terms,2 using
a re-implementation of MetaMap Lite (Demner-
Fushman et al., 2017).

To facilitate search, users can enter MeSH terms
for a subset of populations, interventions, and out-
comes, which is used to search for matches over the
articles and their corresponding extracted key data
in the database. Matched studies are then ranked
as a score function of sample size s and risk of bias
score rob: score = s/rob; that is, we prioritize
retrieval of large, high-quality trial reports.

The novelty on offer in this system demonstra-
tion is the inclusion of a summarization component,
which consumes the top-k retrieved trials (we use
k=5 here) and outputs a narrative summary of this
evidence in the style of a systematic review abstract
(Wallace et al., 2021). By combining this summa-
rization module with the Trialstreamer database,
we can provide real-time summarization of all tri-
als that match a given query (Figure 1).

3.2 Summarizing Trials

We consider two realizations of the summarization
module. We train both models on a dataset intro-
duced in prior work which comprises collections

2MeSH — short for Medical Subject Headings — is a
controlled vocabulary maintained by the National Library of
Medicine (NLM).
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decrease

Aspect-specific auto-regressive decoders; 
we induce aspect weights per time-step t

Encoder-Aspect Decoders

α(t)I

α(t)O

α(t)PL

……

Figure 2: Our proposed structured summarization approach entails synthesizing individual aspects (automatically
extracted in a pre-processing step), and conditionally generating text about each of these.

of RCT reports (PICO elements extracted from
abstracts) as inputs and Authors’ Conclusions sec-
tions of systematic review abstracts authored by
members of the Cochrane Collaboration as targets
(Wallace et al., 2021) (see Section 4).

As a first model, we adopt BART (Lewis et al.,
2019) with a Longformer (Beltagy et al., 2020)
encoder to accommodate the somewhat lengthy
multi-document inputs. As inputs to the model
we concatenate spans extracted from individual
trials containing salient information, including
populations, interventions, outcomes, and “punch-
lines.” The latter refers to extracted snippets
which seem to provide the main results or find-
ings, e.g., “There was a significant increase in
mortality ...”; see (Lehman et al., 2019) for more
details. We enclose these spans in special tags.
e.g., <population>Participants were diabetics ...
</population>. As additional supervision we run
the same extraction models over the targets and
also demarcate these using the same set of tags.

An issue with standard sequence-to-sequence
models for this task is that they provide no natu-
ral means to assess the provenance of tokens in
outputs, which makes it difficult to verify the trust-
worthiness of generated summaries. Next we dis-
cuss an alternative architecture which is intended
to provide greater transparency and controllability.

3.3 Proposed Aspect Structured Architecture
to Increase Transparency

We adopt a multi-headed architecture similar to
(Goyal et al., 2021), which explicitly generates
tokens corresponding to the respective aspects (Fig-
ure 2). We assume inputs are segmented into texts
corresponding to a set of K fields or aspects. Here
these are descriptions of trial populations, inter-

ventions, and outcomes, and “punchline” snippets
reporting the main study findings. We will denote
inputs for each of the K aspects by {xa1 , ..., xaK},
where xak denotes the text for aspect k extracted
from input x. Given that this is a multi-document
setting (each input consists of multiple articles),
xak is formed by concatenating aspect texts across
all documents using special tokens to delineate in-
dividual articles.

We encode aspect texts separately to obtain
aspect-specific embeddings xakenc. We pass these (re-
spectively) to aspect-specific decoders and a shared
language model head to obtain vocabulary distri-
butions ôakt . All model parameters are shared save
for the last two decoder layers which comprise
aspect-specific parameters. Importantly, the repre-
sentation for a given aspect is only based on the
text associated with this aspect (xak ).

We model the final output as a mixture
over the respective aspect distributions:
ôt =

∑K
k=1 z

ak
t (ôakt ). Mixture weights

zt = za1t , . . . , zaKt encode a soft selection
over aspects for timestep t and are obtained as a
dot product between each penultimate represen-
tation of the decoder yakt (prior to passing them
through a language model head) and a learnable
parameter, Wz ∈ RD. The K logits z̃akt are then
normalized via a Softmax before multiplying with
the aspect-specific vocabulary distributions ôakt
Tracing outputs to inputs This architecture per-
mits one to inspect the mixture weights associated
with individual tokens in a generated summary,
which suggests which aspect (most) influenced the
output. Further inspection of the corresponding
snippets from studies for this aspect may facilitate
verification of outputs, and/or help to resolve errors
and where they may have been introduced.
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Figure 3: Template generation. To in-fill, we force
generation from a specific head and monitor the model’s
mixture distribution to decide when to stop.

Controlled generation Neural summarization
models often struggle to appropriately synthesize
conflicting evidence to arrive at the correct overall
determination concerning a particular intervention
effectiveness. But while imperfect, summarization
models may be useful nonetheless by providing a
means to rapidly draft synopses of the evidence
to be edited. The multi-headed architecture natu-
rally permits template in-filling, because one can
explicitly draw tokens from heads corresponding
to aspects of interest. In our demo, we allow users
to toggle between different templates which corre-
spond to different conclusions regarding the overall
effectiveness of the intervention in question. (It
would be simple to extend this to allow users to
specify their own templates to be in-filled.)

To in-fill templates we use template text preced-
ing blanks as context and then generate text from
the language head corresponding to the designated
aspect. To determine span length dynamically we
monitor the mixture distribution and stop when the
it shifts to the another aspect (Figure 3).

3.4 User Interface
Figure 5 shows the interface we have built inte-
grating the multi-headed architecture. Highlighted
aspects in the summary provide a means of inter-
preting the source of output tokens by indicating
the aspects that informed their production. One can
in turn inspect the snippets associated with these
aspects, which may help to identify unsupported
content in the generated summary. To this end
when users click on a token we display the subset
of the input that most informed its production.

We provide additional context by displaying
overviews (i.e., “punchlines”) communicating the
main findings of the trials. Because standard
sequence-to-sequence models do not provide a
mechanism to associate output tokens with input

aspects, we display all aspects (and punchlines) for
all trials alongside the summary for this model.

Capitalizing on the aforementioned in-filling
abilities of our model, we also provide pre-defined
templates for each possible “direction” of aggre-
gate findings (significant vs. no effect). We discuss
the interface along with examples in Section 5.

4 Dataset and Training Details
We aim to consume collections of titles and ab-
stracts that describe RCTs addressing the same
clinical question to abstractive summaries that syn-
thesize the evidence presented in these. We train
all models on an RCT summarization dataset (Wal-
lace et al., 2021) where we extract clinically salient
elements — i.e., our aspects — from each of the
(unstructured) inputs as a pre-processing step using
existing models (Marshall et al., 2020).

Training We use the Huggingface Transformers li-
brary (Wolf et al., 2020) to implement both models.
We initalize both models to bart-base (Lewis et al.,
2019). We fine-tune the models with a batch size of
2 for 3 epochs, using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 3e-5.

Inference We use beam search with a beam size of
3. We set the min and max length of generated text
to be 10 and 300, respectively.

5 Case Study: Verification and
Controllability

To demonstrate the potential usefulness of the in-
terface (and the architecture which enables it), we
walk through two case studies. We highlight the
type of interpretability for verification our proposed
approach provides, also demonstrate the ability to
perform controllable summarization to show how
this might be useful. The queries used in these
case studies along with the investigation were per-
formed by a co-author IJM, a medical doctor with
substantial experience in evidence-based medicine.
We also compare the models and report automatic
scores for ROUGE and factuality in the Appendix
section A and find that the two models perform
comparably.

Model Interpretability As an example to high-
light the potential of the proposed architecture and
interface to permit verification, we consider a query
regarding the effect of Oseltamivir as an interven-
tion for patients infected with influenza. The stan-
dard architecture produces a summary of the top

239



Figure 4: Example output and interface using a standard BART (Lewis et al., 2019) model.

Figure 5: Qualitative example where the structured summarization model (and associated interface) permits token-
level verification of the summary generated regarding the use of oseltamivir on influenza-infected patients. This
approach readily indicates support for the claim that it is “effective” (top; yellow) and for the description of the
population as individuals at risk of “complications” (bottom; purple).

most relevant RCTs to this query shown in Figure
4. This comprises two claims: (1) The intervention
has been shown to reduce the risk of adverse events
among adults and children, and, (2) There is no
consensus as to the most effective dosage. One can
inspect the inputs to attempt to verify these. Doing
so, we find that reported results do tend to indicate a
reduced risk of adverse events and that adolescents
and adults were included in some of these studies,
indicating that the first claim is accurate. The sec-
ond claim is harder to verify on inspection; no such

uncertainty regarding dosage is explicitly commu-
nicated in the inputs. Verifying these claims using
the standard seq2seq architecture is onerous be-
cause the abstractive nature of such models makes
it difficult to trace parts of the output back to inputs.
Therefore, verification requires reading through en-
tire inputs to verify different aspects.

The multi-headed architecture allows us to pro-
vide an interactive interface intended to permit eas-
ier verification. In particular, associating each out-
put token with a particular aspect provides a natural
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Figure 6: Inaccurate summaries generated by the structured model regarding the effect of Chloroquine on patients
with COVID-19 (top). Template-controlled summary using the structured model (bottom).

mechanism for one to inspect snippets of the inputs
that might support the generated text. Figure 5 il-
lustrates this for the aforementioned Oseltamivir
and flu example. Here we show how the “effec-
tive” token in the output can be clicked on to reveal
the aspect that influenced its production (Figure 2),
in this case tracing back to the extracted “punch-
lines” conveying main study findings. This readily
reveals that the claim is supported. Similarly, we
can verify the bit about the population being indi-
viduals at risk of complications by tracing back to
the population snippets upon which this output was
conditioned.

Controllability As mentioned above, another po-
tential benefit of the proposed architecture is the
ability to “in-fill” templates to imbue neural genera-
tive models with controllability. In particular, given
that the overall (aggregate) treatment efficacy is of
primary importance in this context, we pre-define
templates which convey an effect direction. The
idea is that if upon verification one finds that the
model came to the wrong aggregate effect direction,
they can use a pre-defined template corresponding
to the correct direction to generate a more accurate
summary on-demand.

We show an example of a summary generated
by the structured model in the top part of Figure
6. By using the interpretability features for veri-

fication discussed above, we find that the model
inaccurately communicates that the intervention
Chloroquine is effective for treating COVID-19.
However, with the interactive interface we are able
to immediately generate a new summary featur-
ing the corrected synthesis result (direction), as
depicted in the bottom of Figure 6, without need
for manual drafting.

We provide additional case studies in Appendix
Section B.

6 Conclusions

We have described TrialsSummarizer, a prototype
system for automatically summarizing RCTs rel-
evant to a given query. Neural summarization
models produce summaries that are readable and
(mostly) relevant, but their tendency to introduce
unsupported or incorrect information into outputs
means they are not yet ready for use in this domain.

We implement a multi-headed architecture in-
tended to provide greater transparency. We pro-
vided qualitative examples intended to highlight
its potential to permit faster verification and con-
trollable generation. Future work is needed to test
the utility of this functionality in a user trial, and
to inform new architectures that would further in-
crease the accuracy and transparency of models for
summarizing biomedical evidence.
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Limitations and Ethical Issues

Limitations This work has several limitations.
First, as stated above, while the prospect of auto-
matic summarization of biomedical evidence is tan-
talizing, existing models are not yet fit for the task
due to their tendency to introduce factual errors.
Our working prototype serves in part to highlight
this and motivate work toward resolving issues of
reliability and trusworthiness.

In this demo paper we have also attempted to
make some progress in mitigating such issues by
way of the proposed structured summarization
model and accompanying interface and provided
qualitative examples highlighting its potential, but
really a formal user study should be conducted to
assess the utility of this. This is complicated by
the difficulty of the task: To evaluate the factual-
ity of automatic summaries requires deep domain
expertise and considerable time to read through
constituent inputs and determine the veracity of a
generated summary.

Another limitation of this work is that we have
made some ad-hoc design decisions in our current
prototype system. For example, at present we (ar-
bitrarily) pass only the top-5 (based on trial sample
size and estimated reliability) articles retrieved for
a given query through the summarization system.
Future work might address this by considering bet-
ter motivated methods to select which and how
many studies ought to be included.

Ethics Accurate summaries of the biomedical
evidence have the potential to ultimately improve
patient care by supporting the practice of evidence-
based medicine. However, at present such models
bring inherent risks. In particular, one may be
tempted to blindly trust model outputs; given the
limitations of current summarization technologies,
this would be ill-advised.

Our prototype demonstration system is designed
in part to highlight existing challenges that must
be solved in this space before any model might ac-
tually be adopted (and beyond this, we emphasize
that need for verification of outputs, which has been
the focus of the present effort). In the interface we
indicate with a hard-to-miss warning message that
this system should only be used for research pur-
poses and these summaries are unreliable and not
to be trusted.
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Appendix

A Automatic Evaluation

We report ROUGE scores with respect to the tar-
get (manually composed) Cochrane summaries, for
both the development and test sets. We report
scores for both the vanilla standard BART model
along with our proposed multi-headed model in-
tended to aid verifiability and controllability. The
models perform about comparably with respect to
this metric as can be seen in Table 1.

However ROUGE measures are based on (exact)
n-gram overlap, and cannot measure the factuality
of generated texts. Measuring factuality is in gen-
eral an open problem, and evaluating the factual
accuracy of biomedical reviews in particular is fur-
ther complicated by the complexity of the domain

and texts. Prior work has, however, proposed au-
tomated measures for this specific task (Wallace
et al., 2021; DeYoung et al., 2021). These met-
rics are based on models which infer the reported
directionality of the findings, e.g., whether or not
a summary indicates that the treatment being de-
scribed was effective. More specifically, we make
binary predictions regarding whether generated and
reference summaries report significant results (or
not) and then calculate the F1 score of the former
with respect to the latter.

Model ROUGE-L (dev) ROUGE-L(test)
BART 20.4 19.7

Multi-head 19.9 19.3

Table 1: ROUGE scores achieved by the standard BART
model and our proposed multi-headed architecture on
the dev and test sets.

Model Direc (dev) Direc(test)
BART 49.6 51.8

Multi-head 49.3 52.7

Table 2: Directionality scores on the vanilla BART
model and our proposed multi-headed architecture on
the dev and test sets.

B Additional Case Studies

In this section we highlight a few more use cases
that demonstrate the need for interpretability and
controllability.

Interpretability We first highlight a set of exam-
ples where verifying model generated summaries
is difficult without an interface explicitly designed
to provide interpretability capabilities. In Figure 7
(a) we show an example where the model generates
a summary that accurately synthesized a summary
on the effect of using Mirtazapine for patients with
depression. However, the summary also includes
a statement that states the need for adequate, well-
designed trials. Because this statement is generic
and does not point to discussing any of the PICO el-
ements, it is unclear what element was responsible
for the generation of the statement. A user would
therefore need to review all (raw) input texts.

In the case of Figure 7 (b), the model gener-
ated summaries has two contradicting sentences.
The first sentence indicates a reduction in hospital
admission and death among COVID-19 patients
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Figure 7: a) BART generated summary when queried about the use of Mirtazapine to treat depression b) BART
generated summary when queried about the use of Ivermectin to treat COVID-19)
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Figure 8: The summary on top shows the default summary generated by the multi-headed model when queried for
the effect of Mirtazapine on depression. The bottom summary shows the controlled summary using a pre-defined
template.

when Ivermectin was used and the second sentence
claims there is insufficient evidence for the same.
However without interpretability capabilities it is
not possible to debug and verify if the same set of
elements were responsible for contradicting state-
ments or not.

The example in Figure 7 (c) shows a case where
the model first accurately synthesizes the findings
in the studies of the effect of glucosamine in com-
bination of chondroitin sulfate on knee pain. How-
ever, the following statement talks about the rela-
tive effects of the two. Again, in this case it is is
not intuitive which element led to the generation
of the statement and verification requires careful
reviewing of all the text and their implication in all
elements.

Controllability We next highlight examples
where one can effectively control the generation of
summaries that would otherwise be incorrect using
the template in-filling capabilities afforded by our
model. While the interpretability features may per-
mit efficient verification, models still struggle to
consistently generate factual accurate summaries.
We showcase instances where one can arrive at
more accurate summaries quickly via the control-
lability (template in-filling) made possible by our
model.

In the example shown in Figure 8 the default
summary synthesizes the effect accurately. How-
ever, the model summary discusses the effect on
short-term and long-term benefits generated from
the punchlines of the studies. Reading through ex-
tracted ‘punchlines’, we find that the studies indi-
cate issues upon withdrawal but do not necessarily
provide information on long-term use of the med-
ication. In-filling templates constrains the output,
and can be used to produce more accurate sum-
maries while still taking some advantage of the
flexibility afforded by generation. For instance in
this case we can see that the edited summary in-
duced using the template is more accurate.

Similarly, in Figure 9 when the multi-headed
model is queried for the effect of Glucosamine on
Osteoarthritis of knee, we observe that the model
on its own produces a summary conveying an in-
correct aggregate effect of studies. We can verify
this by inspecting the elements responsible for the
generation, as discussed above. We then arrive at a
more accurate summary using the template shown.

The example in Figure 10 is an interesting mis-
take made by the model. Because the outcomes
can be presented with the same information but in
a positive or negative direction (e.g., weight loss
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Figure 9: The summary on top shows the default summary generated by the multi-headed model when queried
for the effect of Glucosamine on Osteoarthritis of knee. The bottom summary shows the edited summary using a
pre-defined template

Figure 10: The summary on top shows the default summary generated by the multi-headed model when queried for
the effect of Semaglutide on obese patients. The bottom summary shows the edited summary using a pre-defined
template

vs weight gain), the model has to accurately infer
the effect of all studies. In this case, the model gen-
erates a summary with the right effect but views

weight loss as an undesirable effect. Here again
we select a template and allow the model quickly
in-fill, yielding a more accurate summary.
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Abstract
Graphs are a natural representation of com-
plex data as their structure allows users to
discover (often implicit) relations among the
nodes intuitively. Applications build graphs
in an ad-hoc fashion, usually tailored to spe-
cific use cases, limiting their reusability. To
account for this, we present the Corpus Anno-
tation Graph (CAG) architectural framework
based on a create-and-annotate pattern that en-
ables users to build uniformly structured graphs
from diverse data sources and extend them
with automatically extracted annotations (e.g.,
named entities, topics). The resulting graphs
can be used for further analyses across multi-
ple downstream tasks (e.g., node classification).
Code and resources are publicly available on
GitHub1, 2 and downloadable via PyPi3 with
the command pip install cag.

1 Introduction

In many areas of knowledge, facts are spread across
a multitude of documents in various forms and
modalities (e.g., texts, images, sound recordings,
videos, and program code). It is of great interest
to exploit explicit links between these documents
and - even more so - to detect hidden (or implicit)
connections — for knowledge extraction through
searching, classifying, comparing, and analyzing.

The most explicit and efficient data structure
for working with such interlinked document col-
lections (corpora) is that of a graph whose nodes
represent documents, entities, and annotations
with edges representing relations between them.
Graph databases can naturally manage these for
efficient knowledge querying and storage. In par-
ticular, property graph databases like Neo4j4 and
ArangoDB5 consider nodes as objects with at-

1https://github.com/DLR-SC/
corpus-annotation-graph-builder

2The README includes a link for the documentation.
3https://pypi.org/project/cag/
4https://neo4j.com
5https://www.arangodb.com

tributes and are, therefore, appropriate for holding
documents and metadata or more general objects of
interest (OOI). OOIs can vary in scale and can be
linked via containment relationships: e.g., a book
series contains books, a book contains chapters, a
chapter contains text, pictures, etc.

One central idea behind our framework is that
graphs are not only the object of analysis but also
containers for analysis results. More precisely, to
unveil hidden connections, we suggest deriving a
second type of nodes, which we call annotation
nodes associated with the OOI nodes. They repre-
sent features extracted from the OOIs by methods
like named entity recognition, topic discovery, sen-
timent analysis, image captioning, etc. Implicit
links of OOIs can then be established via shared
annotation nodes (e.g., common topics) that can be
used for further analysis. In this way, with every
analysis passed, the graph can get richer and possi-
bly more connected. We call the resulting graph a
Corpus Annotation Graph.

In this demo paper, we present an architectural
framework that facilitates the application of the
create-and-annotate pattern for creating such a
graph: the Corpus Annotation Graph Builder
(CAG). CAG is built on top of ArangoDB and
its Python drivers. The create-and-annotate pat-
tern consists of two phases (see Figure 1) that
can be repeated multiple times: (1) OOI data can
be collected from different sources (e.g., publica-
tion databases, online encyclopedias, news feeds,
web portals, electronic libraries, repositories, me-
dia platforms) and pre-processed to build the core
nodes. The component responsible for this phase
is the Graph-Creator. (2) Annotations are ex-
tracted from the nodes, and corresponding anno-
tation nodes are created and attached to the graph.
The component dealing with this phase is the
Graph-Annotator. At any time, new OOI nodes
or new annotations can be added, introducing new
information to enrich the graph with subsequent
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Figure 1: A simplified illustration of the framework: (1a) The data is collected from different data sources (e.g.,
scientific articles, Wikipedia. (1b) Then, the data is pre-processed and loaded into one common graph with core
nodes and edges referred to as objects of interest (OOI). And (2) Annotations are added to the core nodes, which
creates additional levels of abstraction and allows core components to be linked across different corpora. An
example of a query is Get all documents that contain images with the Person Of Interest; Greta Thunberg. This
results in getting text a from a datasource and text b from another datasource.

runs further.
The CAG architectural framework aims to offer

researchers a flexible but unified way of organizing
and maintaining their interlinked document collec-
tions in a reproducible way.

In the following sections, we go over related
work (Section 2), then we present the architecture
of CAG by describing the building blocks of our
framework (Section 3). Last but not least, Section 4
exemplifies two applications, one as the backbone
technology for searching scientific work and an-
other one describing a knowledge graph construc-
tion using CAG.

2 Related Work

Existing research and tools related to graph data
structures cover various topics, from database man-
agement systems for creating and maintaining
graphs, over a formal framework for graph annota-
tions, to task-oriented (e.g., information retrieval,
node classification) approaches.

As we mentioned in the Introduction (Section 1),
as the foundation of the architectural framework
(CAG), we use a pattern of creating and annotat-
ing graphs. Currently, there exist powerful graph
databases, such as Neo4j and ArangoDB.They of-
fer a mature engine to build and persist property
graphs. We base our architectural framework on
ArangoDB because it allows saving attributes not
only in the nodes but also in the edges of a graph.
It is a valuable option for incorporating more infor-
mation if needed.

Throughout the years, graphs are highly used
to solve several downstream tasks, such as devel-
oping extended similarity metrics for documents
embedded in graphs (Minkov et al., 2006), Named
Entity Recognition (Yu et al., 2008), measuring
the semantic distance between texts (Tsang and
Stevenson, 2010), using a graph-based ranking al-
gorithm (Demir et al., 2010), frame semantic pars-
ing (Zheng et al., 2022) among many others ((Chen
et al., 2022), (Colas et al., 2022), etc.). All these
works demonstrate the importance of graphs and
their multipurpose usage, making it essential to
develop an architectural framework to create and
annotate graphs so they can be (re)used later on for
similar or different downstream tasks.

Regarding graph annotations, lately, Bikaun et al.
(2022) introduced QuickGraph, a rapid annotation
tool that allows users, via its web interface, to up-
load corpora and add annotations to it by select-
ing the annotation type from a predefined list (e.g.,
named entities). As mentioned above, CAG is not a
tool but rather a more general programming frame-
work that employs an architectural pattern for the
goal of code centralization and reproducibility, giv-
ing users the flexibility to select their datasources
and annotation types. CAG has predefined nodes
(e.g., TextNode) and edges to encourage the unifi-
cation of information from different sources, and
it allows the addition of any annotation type to its
predefined annotations.

Formerly, Bird and Liberman (1999, 2001) de-
fined ‘Linguistic annotation’ as a descriptive or
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Figure 2: The building blocks of the CAG framework.
The framework uses ArangoDB as a graph database with
the Python driver PyArango. On top of that, CAG has a
Config block responsible for establishing the connection
to the database. Moreover, the Main component is the
base component responsible for creating/updating the
graph ontology, nodes, and edges. The top building
blocks are Graph-Creator and Graph-Annotator.

analytical notation applied to raw language data of
any form (e.g., textual, voice). The added notations
may include annotations of all sorts (from phonetic
features to discourse structures) (Bird and Liber-
man, 2001), which provides a formal framework for
constructing, maintaining, and searching linguistic
annotations while remaining consistent with many
alternative data structures and formats. They fo-
cus on linguistic annotations regardless of the raw
data from which they exploit the commonalities
between them. Our work here adapts the same con-
cept for annotations. Our annotation framework
extends an existing graph with new node types hold-
ing a notation derived from any raw data. Maeda
et al. (2002, 2006) present the Annotation Graph
Toolkit, a formal framework to support the develop-
ment of annotation tools of time series data based
on Bird and Liberman (2001) framework; these
tools allow users to annotate a data point manually.
The main difference is that CAG is an architectural
framework, not a toolkit. It allows the incorpora-
tion not only of time series data but any data. Most
importantly, our framework supports automated
bulk annotations instead of manual ones.

3 The Framework

In this section, we describe the technical framework
of the Corpus Annotation Graph builder (CAG). As
mentioned in Section 1, we create an architectural
framework that employs the create-and-annotate
pattern, which requires two main building blocks
in CAG: Graph-Creator and Graph-Annotator. As
shown in Figure 2, these two blocks are built on
top of several other blocks. From the bottom up,
CAG uses ArangoDB as a graph database to store
graphs, which is accessed via the python library,

Function Name Description

Main Component cag.framework.component.py

Constructor Establishes the connection to the
database using the Config class, creates
the graph ontology if it does not exist, or
updates it.

get_document Gets a node or an edge based on a key
or set of attributes.

upsert_node Updates or creates a new node instance.
It uses the get_document function to
fetch existing nodes.

get_edge_attributes Gets the edge attributes based on Edge
type and from and to nodes.

upsert_edge Update or create a new edge instance.

Config cag.utils.config.py

Constructor Establishes the connection to the
database using the database attributes:
database URL, username, password, and
port. It retries in case of connection fail-
ure.

configuration Re-establishes a new connection and
rewrites a previous one.

Table 1: Summary of the functions in the Main
Component and the Config. These functions are used
by CAG’s Graph-Creator and -Annotator.

PyArango6. After that comes the Main Compo-
nent block, which creates and updates the graph
ontology by manipulating the graph elements. It
uses the Config block to establish the connection
to the database. Table 1 summarizes both compo-
nents’ methods, each a Python class.

The sections below delve deeper into the two
main building blocks on top, Graph-Creator, and
Graph-Annotator, where we explain the relation
between them and between the lower blocks.

3.1 Graph-Creator
As mentioned in Section 1, a Graph-Creator (GC)
creates objects of interest (OOI) from a datasource
as nodes and edges where these OOIs are directly
extracted without further analysis (e.g., text content,
image). GC offers a unified layout, structuring the
creation process of a graph from one or many data-
sources. GraphCreatorBase, CAG’s primary
GC class, allows the management of a datasource

6https://pypi.org/project/pyArango/
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Function Name Description

Constructor Sets the path to the source data, sets the
data configuration from Config, and calls
the initialization method that should be
implemented.

init_graph An abstract method to initialize
the nodes and edges by using pre-
existing node/edge specific methods
(e.g., create_corpus_node,
create_text_node,
create_image_node,
create_author_node) or by using
the upsert_node or upsert_edge
from the Component class.

update_graph An abstract method to update the
nodes and edges by using pre-existing
methods from the Component methods.

Table 2: Summary of the main functions in the Graph
Creator abstract class.

Name Attributes and Description

Nodes
GenericOOSNode timestamp. The generic node class from

which all python class nodes inherit.

CorpusNode name, type, description, created_on and
timestamp.

TextNode text, timestamp

AuthorNode name and timestamp

ImageNode URL and timestamp

WebResource URL and timestamp

Edges
BelongsTo timestamp. For example a TextNode Be-

longsTo a CorpusNode

HasAuthor timestamp. For example, TextNode
HasAuthor an AuthorNode

RefersTo timestamp. For example, TextNode
RefersTo a WebResource node

Table 3: A sample of the predefined nodes and edges
in CAG (cag.graph_elements).

within a graph. It is an abstract class that inherits all
the functionalities of the "Main Component" (Table
1). As shown in Table 2, GraphCreatorBase
enforces the implementation of two functions: one
for initializing the graph from a datasource and one
for updating it. Additionally, GC offers a prede-
fined set of edges and nodes with their correspond-
ing maintenance (inserting/updating) that can be
optionally used (see Table 3). A project can have as
many graph creators as is needed, usually one per

datasource. A sample code is available on GitHub7.
Another trait of GC is that it allows time propa-

gation through linked nodes since each OOI node
carries a timestamp of its creation. For example,
if a set of content nodes (N ) linked to a parent
node (P ) is updated/created, the latest timestamp
of these nodes can be recursively propagated to P .

The CG creates a graph by loading raw data
to it. This graph is enriched by using the Graph-
Annotator.

3.2 Graph-Annotator
The Graph-Annotator (GA) enriches the graph by
analyzing object of interest (OOI) nodes and link-
ing them to newly created annotation nodes. For
example, as shown in Figure 1, a textual node can
be linked with a has_person edge to a named en-
tity node of type PERSON and attribute “Greta
Thunberg”. Annotations can be applied on differ-
ent levels: (1) a collection of nodes such as corpus
level to extract corpus statistics, topics, etc., (2) a
single node such as text nodes (e.g., keyphrases),
image nodes (e.g., generated captions), etc.

Figure 3 shows the workflow of GA. A set of
nodes, predefined by the user, is fed to a cus-
tomizable pipeline where each pipe has three re-
sponsibilities:(1) accessing the node(s) and extract-
ing a corresponding feature (e.g., named entities),
(2) processing the features (e.g., count the number
of times a named entity, e.g., ORGANIZATION:
“Google”, occurred), (3) updating the graph by sav-
ing the annotations corresponding to this pipe. For
example, Figure 3 shows that all the text nodes
were selected to be annotated. They are, then, fed
to a pipeline that has three pipes: a sentence di-
vider, a named entity pipe, and an emotion pipe.
After running the pipeline, the graph is updated
with the corresponding annotation nodes.

Pipe We define a CAG pipe as a set of objects that
encapsulates several functionalities to deal with the
technical part of annotation, the post-processing,
and the persistency of the annotation nodes in the
graph. A pipe is mainly defined in two steps:
(1) defining its attributes in CAG’s registered
pipes dictionary and (2) and defining a
PipeOrchestrator.
registered pipes is a Python dictionary

that has one entry for each pipe, holding all at-
7https://github.com/DLR-SC/

corpus-annotation-graph-builder/blob/
main/examples/1_create_graph.ipynb

251

https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb
https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb
https://github.com/DLR-SC/corpus-annotation-graph-builder/blob/main/examples/1_create_graph.ipynb


Set of Nodes Annotation Pipeline

shows

contains

contains

contains

quotes

contains

shows

Person
Greta Thunberg

Emotion
Sad

Organisation
Google

Sentence 
divider NER emotion

NER

NER

emotion

Annotations in Graph

has_ner

{5 occurrences}

has_emotion

{0.3 sentence
ratio}

has_ner

{2 occurrences}

{6 occurrences}

Annotation Node

Text Node

Corpus Node

OOI Edge

Annotation Edge
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Figure 3: A simplified illustration of the Graph-Annotator. (1) The text node set is selected and fed to a pipeline.
(2) The pipeline consists of three pipes: sentence divider (preprocessing), NER, and Emotion pipes. After annotating,
(3) the annotation nodes are saved in the graph.

tributes (Table 4) needed for a pipe to tackle its
responsibilities and distinguished by a unique key.
.

Attribute Description

orchestrator_class The path to the pipe’s orchestrator
class.

pipe_id_or_func A Spacy predefined id (e.g., ner) or
a customized function id that is im-
plemented in the pipe_path.

pipe_path The path to the customized function
or empty in case of Spacy.

level Annotation level whether it is on the
level of a single node or a set of
node.

data_type Whether the annotated OOI is a text,
image or URL.

annotated_node_name the name of the OOI node being an-
notated.

node_class The Path to the class of the annota-
tion node.

edge_class The Path to the class of the edge
node.

Table 4: The attributes of a registered
pipes. CAG’s predefined pipes are under
cag.framework.annotator.registered_pipes.py.

The PipeOrchestrator is an abstract
python class that loads the pipe components based
on the attributes provided in the registered
pipes. The orchestrator validates the attributes
in Table 4 (e.g., ensures correct paths) and loads
the required python modules, making them acces-
sible later on for the pipeline. It also creates new

annotation node/edge types by updating the graph
ontology. Additionally, the PipeOrchestrator is an
abstract class that enforces the implementation of
three methods: create_node, create_edge
and save_annotations. The latter method
should loop over the annotations and use the other
two methods to save the annotation nodes and
edges.

After defining all the pipes, the pipeline man-
ages them.

Pipeline GA offers a feature to unify the
pipeline’s definition. The pipeline manages
pipes by using the pipe’s information accessed from
the PipeOrchestrator. It deals with enforc-
ing the flow of the pipes (e.g., extract sentences
before classifying them), executing the pipeline (us-
ing pipe_id_or_func in Table 4), which outputs
the annotations, and saving to the graph (by calling
the pipe’s corresponding save_annotations
mentioned previously). The Pipeline class supports
the execution of customized pipes (a function call),
Spacy (Honnibal et al., 2020) customized com-
ponents, or Spacy native components (e.g., Sen-
tenceRecognizer for sentence segmentation). The
pipeline only executes these functions based on
information provided by the pipe, and it is not re-
sponsible for the logic within these pipes. A pipe is
added as follows to a pipeline (sample on GitHub8):

add_annotation_pipe(
name="MyPipeOrchestrator",
save_output=True,
is_spacy=True
)

It is important to note that for provenance track-
8https://github.com/DLR-SC/

corpus-annotation-graph-builder/blob/
main/examples/2_annotate_graph.ipynb
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Figure 4: Linking Git repositories and publication en-
tries through readme files and metadata.

ing of annotations, an annotation node can be
equipped with additional metadata about its cre-
ation timestamp, the component that created the
annotation, and additional parameters needed for
the analysis reproduction. An example is listed
below:

{
analysis_component: ’keyphrases,’
parameters:

{
algorithm: text_rank,
relevance_threshold: 0.75

}
}

4 Use Cases

4.1 Linking Publications and Software
In many fields of science, it is common to use Git
repositories hosting platforms such as GitHub and
GitLab. Those repositories often have a “readme”
file introducing the purpose of tools, dataset de-
scriptions, or usage instructions. Thus, these files
agglomerate valuable science and software knowl-
edge (El Baff et al., 2021) that is worth exploring.
Often one can also find references to associated tra-
ditional publications. We use the CAG to integrate
search over fragmented information in publication
outlets and Git repositories. More precisely, we
build a graph that indirectly links repositories and
papers via intermediate keywords and persons and
directly by parsing paper references in repositories’
“readme” files (Figure 4).

The German Aerospace Center (DLR), with a
constantly growing corpus of publications and soft-
ware tools, is interested in efficiently retrieving
digital scientific information. Thus, as a backbone
of an internal search application, the CAG frame-
work is used to build an organizational knowledge
graph linking publications in the DLR publication
database elib9 and repositories in its self-hosted

9https://elib.dlr.de/
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Figure 5: CAG structure for linking GitLab (blue)
projects and publications (yellow). Graph creators cre-
ate blue, yellow, and grey (common node) nodes and
solid edges, and graph annotators add green nodes and
dashed edges by analyzing the OOI nodes.

GitLab instance10.

Graph-Creator. The graph creator processes a
dump of GitLab “readme” files and the associated
project metadata (e.g., contributors, title, URL) re-
trieved through the GitLab API11, as well as dumps
of publication abstracts from the elib publication
database along with titles, authors, institutes into
the hierarchical structure of OOI nodes depicted in
Figure 5 with colors blue for projects, yellow for
publications and grey for common nodes between
the datasources, linked via solid edges.

Graph Annotators. We implement a pipeline
containing several pipes to annotate the graph by
extracting information from the text nodes and sav-
ing the annotation nodes, as shown in Figure 5.

Readme section classifier: We use the Prana et al.
(2019) readme classifier to extract sections labeled
as a description (What/Why sections), reference,
and acknowledgment. These labels are linked to
the readme text nodes.

Reference parser: We developed a tool for pars-
ing paper references in “readme” from raw form
(e.g., APA, BibTeX) to items such as author, title,
and venue. This annotator uses the extracted in-
formation to establish links to publication nodes
where possible.

Concept extraction: For linking software repos-
itories and publications, even if there is no direct
reference or overlap in persons, we use the SPERT
(Eberts and Ulges, 2020) information extraction
model trained on scientific corpora SciERC (Luan
et al., 2018) to extract concepts where we focus
on “Method” and “Task” since these constitute the
most relevant links between papers and software
projects. Such concept annotations are attached

10https://gitlab.dlr.de/
11https://docs.gitlab.com/ee/api/
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to the text nodes of publication abstracts and the
“readme” sections tagged as “description”.

This use case is similar to the portal https:
//paperswithcode.com/, but our solution is
automatized. The CAG framework eases process-
ing large volumes of publications and repository
corpora into a well-defined graph format.

4.2 Wikipedia Page Revisions
We present here a simple use case depicting the
usage of the Graph-Creator and -Annotator from a
widely known source, Wikipedia.

As a community-driven encyclopedia, Wikipedia
has a lens on societal discourse. Since the entire
revision history of each article is publicly available,
Wikipedia constitutes a research dataset that allows
tracing the evolution of themes over time. Using
the CAG framework, we demonstrate how to create
a graph from Wikipedia revisions for the two cat-
egories, climate change and artificial intelligence.
We extract the revisions for two periods, October
2012 and -2022. The data is downloaded using our
tool, wikipedia-periodic-revisions12

which downloads Wikipedia revisions for a specific
category and period. It, then, saves each Wikipedia
Page as a file. The code is available on GitHub13.

Graph-Creator. Figure 6 shows the nodes and
edges predefined by CAG (in blue) and the ones
the newly defined ones (in yellow). The Wikipedia
graph creator loops over the pages to load the data
into the graph. On top, it creates a Wikipedia cor-
pus node as the most general OOI node, referenced
by Wikipedia articles. Each article comprises of
revision nodes, each linked to a text node. Addi-
tionally, the graph creator already establishes cross-
article connections by parsing images and external
references. Figure 6 shows the general scheme of
our use case.

Graph-Annotators. We create an annotation
pipeline utilizing the Spacy named entity recog-
nition module14 to extract named entities from revi-
sion texts. Text nodes containing common entities
(e.g., referring to the same Organization) will be
indirectly linked together through these entities. In
this way, article relationships are also established

12https://github.com/DLR-SC/
wikipedia-periodic-revisions, also down-
loadable via PyPi https://pypi.org/project/
wikipedia_tools/

13https://github.com/roxanneelbaff/cag_
wikipedia_usecase

14https://spacy.io/api/entityrecognizer
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Figure 6: Wikipedia graph structure. CAG’s predefined
nodes are in blue, and newly defined nodes are in yellow.

based on common referencing (either explicit by
containing, for example, common images (an OOI)
or implicit by just mentioning common entities).

The resulting CAG structure (see Figure 6) al-
lows interesting graph queries to analyze the co-
evolution of Wikipedia articles through time. Ex-
amples are: “In which context a certain organiza-
tion (named entity) is mentioned on Wikipedia?” or
“Which articles reciprocally reference each other?”.

5 Conclusion and Future Work

We presented CAG, a publicly available architec-
tural framework aiming to employ unified and re-
producible patterns in graph creation and extension
via annotations. CAG allows users to concentrate
on graph ontologies and pipelines while the frame-
work takes the burden of handling repetitive and
cumbersome tasks. We further aim to extend our
framework to have an analysis component incor-
porating dynamic data analysis through time and
space, exploiting the ’create-and-annotate’ graph
results.
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Abstract

As Transformers are increasingly relied upon
to solve complex NLP problems, there is an in-
creased need for their decisions to be humanly
interpretable. While several explainable AI
(XAI) techniques for interpreting the outputs of
transformer-based models have been proposed,
there is still a lack of easy access to using and
comparing them. We introduce ferret , a Python
library to simplify the use and comparisons of
XAI methods on transformer-based classifiers.
With ferret , users can visualize and compare
transformers-based models output explanations
using state-of-the-art XAI methods on any free-
text or existing XAI corpora. Moreover, users
can also evaluate ad-hoc XAI metrics to select
the most faithful and plausible explanations.
To align with the recently consolidated pro-
cess of sharing and using transformers-based
models from Hugging Face, ferret interfaces
directly with its Python library. In this paper,
we showcase ferret to benchmark XAI meth-
ods used on transformers for sentiment analy-
sis and hate speech detection. We show how
specific methods provide consistently better ex-
planations and are preferable in the context of
transformer models.

1 Introduction

Transformers have revolutionized NLP applications
in recent years due to their strong performance on
various tasks; their black-box nature remains an
obstacle for practitioners who need explanations
about why specific predictions were made and what
features drove them. The development of explain-
able AI (XAI) techniques on several NLP tasks
(Madsen et al., 2022) has helped bridge this gap by
providing insight into the inner workings of trans-
formers and helping users gain trust in their deci-
sions. Several XAI approaches have been proposed
in the literature (Ribeiro et al., 2016; Lundberg and

Lee, 2017; Simonyan et al., 2014a; Pastor and Bar-
alis, 2019), also tailored to Transformer models
(Wallace et al., 2019a; Li et al., 2016; Jin et al.,
2019; Ross et al., 2021). Despite the importance
of making XAI methods accessible to NLP experts
and practitioners through practical tools, there is
still a lack of accessibility for transformer models.
XAI for transformers is mainly scattered and hard
to operationalize. Methods come with independent
implementations or framework-specific libraries
that do not allow either evaluation or cross-method
comparison. Further, existing implementations
are not integrated with widespread transformers
libraries (e.g., Hugging Face’s transformers (Wolf
et al., 2020)). The lack of standardization and weak
interoperability leaves practitioners with unsolved
questions, such as choosing the best method given
a task and a model (Attanasio et al., 2022).

We introduce ferret (FramEwork foR bench-
maRking Explainers on Transformers), an open-
source Python library that drastically simplifies the
use and comparison of XAI methods on transform-
ers. The library stems from vertical scientific contri-
butions and focused engineering efforts. On the one
hand, ferret provides the first-of-its-kind API (see
Figure 1) to use and compare explanation methods
along the established criteria of faithfulness and
plausibility (Jacovi and Goldberg, 2020). On the
other hand, it integrates seamlessly with transform-
ers (Wolf et al., 2020), making it an easy add-on
to existing Transformer-based pipelines and NLP
tasks. ferret permits to run four state-of-the-art
XAI methods, compute six ad-hoc XAI evaluation
metrics, and easily load four existing interpretabil-
ity datasets. Further, it offers abstract interfaces to
foster future integration of methods, metrics, and
datasets.

We showcase ferret on sentiment analysis and
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hate speech detection case studies. Faithfulness
and plausibility metrics highlight SHAP (Lundberg
and Lee, 2017) as the most consistent explainer on
single- and multiple-samples scenarios.

Contributions. We release ferret , the first-of-its-
kind benchmarking framework for interpretability
tightly integrated with Hugging Face’s transform-
ers library. We release our code and documenta-
tion,1 an interactive demo,2 and a video tutorial.3

2 Library Design

ferret builds on four core principles.

1. Built-in Post-hoc Interpretability We in-
clude four state-of-the-art post-hoc feature impor-
tance methods and three interpretability corpora.
Ready-to-use methods allow users to explain any
text with an arbitrary model. Annotated datasets
provide valuable test cases for new interpretability
methods and metrics. To the best of our knowledge,
ferret is first in providing integrated access to XAI
datasets, methods, and a full-fledged evaluation
suite.

2. Unified Explanation Benchmarking We pro-
pose a unified API to evaluate explanations. We
currently support six state-of-the metrics along the
principles of faithfulness and plausibility (Jacovi
and Goldberg, 2020).

3. Transformers-readiness ferret offers a di-
rect interface with models from the Hugging Face
Hub. Users can load models using standard nam-
ing conventions and explain them with the built-in
methods effortlessly. Figure 1 shows the essen-
tial code to classify and explain a string with a
pre-existing Hugging Face model and evaluate the
resulting explanations.

4. Modularity and Abstraction ferret counts
three core modules, implementing Explainers,
Evaluation, and Datasets APIs. Each module
exposes an abstract interface to foster new
development. For example, user can sub-class
BaseExplainer or BaseEvaluator to include
a new feature importance method or a new
evaluation metric respectively.

1https://github.com/g8a9/ferret
2https://huggingface.co/spaces/g8a9/ferret
3https://youtu.be/kX0HcSah_M4

Feature Category

Gradient Saliency
Integrated Gradient Saliency
LIME Surrogate Model
SHAP Shapley Values

Comprehensiveness Faithfulness
Sufficiency Faithfulness
Correlation with
Leave-One-Out scores Faithfulness
Intersection-Over-Union Plausibility
Area Under
Precision-Recall Curve Plausibility
Token-level F1 score Plausibility

HateXplain Hate Speech
MovieReviews Sentiment
SST Sentiment
Thermostat Generic

Table 1: ferret at a glance: built-in methods (top), met-
rics (middle), and datasets (bottom).

ferret builds on common choices from the inter-
pretability community and good engineering prac-
tices. We report the most salient technical details
(e.g., efficiency via GPU inference, visualization
tools, etc.) in Appendix A.

2.1 Explainer API
We focus on the widely adopted family of post-
hoc feature attribution methods (Danilevsky et al.,
2020). I.e., given a model, a target class, and a
prediction, ferret lets you measure how much each
token contributed to that prediction. We integrate
Gradient (Simonyan et al., 2014b) (also known as
Saliency) and Integrated Gradient (Sundararajan
et al., 2017); SHAP (Lundberg and Lee, 2017) as a
Shapley value-based method, and LIME (Ribeiro
et al., 2016) as representative of local surrogate
methods.

We build on open-source libraries and streamline
their interaction with Hugging Face models and
paradigms. We report the supported configurations
and functionalities in Appendix A.

2.2 Dataset API
Fostering a streamlined, accessible evaluation on
independently released XAI datasets, we provide
a convenient Dataset API. It enables users to load
XAI datasets, explain individual or subsets of sam-
ples, and evaluate the resulting explanations.
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from transformers import AutoModelForSequenceClassification, AutoTokenizer
from ferret import Benchmark

name = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
model = AutoModelForSequenceClassification.from_pretrained(name)
tokenizer = AutoTokenizer.from_pretrained(name)

bench = Benchmark(model, tokenizer)
explanations = bench.explain("You look stunning!", target=1)
evaluations = bench.evaluate_explanations(explanations, target=1)

Figure 1: Essential code to benchmark explanations on an existing Hugging Face model using ferret .

Currently, ferret includes three classification-
oriented datasets annotated with human rationales,
i.e., annotations highlighting the most relevant
words, phrases, or sentences a human annotator
attributed to a given class label (DeYoung et al.,
2020; Wiegreffe and Marasovic, 2021). Moreover,
ferret API gives access to the Thermostat collection
(Feldhus et al., 2021), a wide set of pre-computed
feature attribution scores.

HateXplain (Mathew et al., 2021). It contains
20,148 English instances labeled along three axes:
(i) hate (either hateful, offensive, normal or un-
decided), (ii) target group (either race, religion,
gender, sexual orientation, or miscellaneous), and
(iii) word-level human rationales (expressed only
on hateful and offensive texts).4

MovieReviews (Zaidan and Eisner, 2008; DeY-
oung et al., 2020). The dataset contains 2,000
movie reviews annotated with positive and negative
sentiment labels and phrase-level human rationales
that support gold labels.

Stanford Sentiment Treebank (SST) (Socher
et al., 2013). A sentiment classification dataset of
9,620 movie reviews annotated with binary senti-
ment labels, including human annotations for word
phrases of the parse trees. We extract human ra-
tionales from annotations following the heuristic
approach proposed in Carton et al. (2020).

Thermostat Datasets Thermostat (Feldhus et al.,
2021) provides pre-computed feature attribution
scores given a model, a dataset, and an explanation
method. ferret currently provides built-in access
to pre-computed attributions on the news topic
classification and sentiment analysis tasks.

4If a model splits a relevant word into sub-words, we con-
sider all of them relevant as well.

These datasets provide an initial example of
what an integrated approach can offer to re-
searchers and practitioners.

2.3 Evaluation API

We evaluate explanations on the faithfulness and
plausibility properties (Jacovi and Goldberg, 2020;
DeYoung et al., 2020). Specifically, ferret im-
plements three state-of-the-art metrics to measure
faithfulness and three for plausibility.

Faithfulness. Faithfulness evaluates how accu-
rately the explanation reflects the inner working of
the model (Jacovi and Goldberg, 2020).

ferret offers the following measures of faithful-
ness: comprehensiveness, sufficiency, (DeYoung
et al., 2020) and correlations with ‘leave-one-out’
scores (Jain and Wallace, 2019).

Comprehensiveness (↑) evaluates whether the
explanation captures the tokens the model used to
make the prediction. We measure it by removing
the tokens highlighted by the explainer and observ-
ing the change in probability as follows.

Let x be a sentence and let fj be the prediction
probability of the model f for a target class j. Let
rj be a discrete explanation or rationale indicat-
ing the set of tokens supporting the prediction fj .
Comprehensiveness is defined as f(x)j−f(x\rj)j
where x \ rj is the sentence x were tokens in rj
are removed. A high value of comprehensiveness
indicates that the tokens in rj are relevant for the
prediction.

While comprehensiveness is defined for discrete
explanations, feature attribution methods assign a
continuous score to each token. We hence select
identify rj as follows. First, we filter out tokens
with a negative contribution (i.e., they pull the pre-
diction away from the chosen label). Then, we
compute the metric multiple times, considering the
k% most important tokens, with k ranging from
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10% to 100% (step of 10%). Finally, we aggregate
the comprehensiveness scores with the average,
called Area Over the Perturbation Curve (AOPC)
(DeYoung et al., 2020).

Sufficiency (↓) captures if the tokens in the ex-
planation are sufficient for the model to make the
prediction (DeYoung et al., 2020). It is measured as
f(x)j − f(rj)j . A low score indicates that tokens
in rj are indeed the ones driving the prediction. As
for Comprehensiveness, we compute the AOPC by
varying the number of the relevant tokens rj .

Correlation with Leave-One-Out scores (↑). We
first compute leave-one-out (LOO) scores by omit-
ting tokens and measuring the difference in the
model prediction. We do that for every token, once
at a time. LOO scores represent a simple measure
of individual feature importance under the linearity
assumption (Jacovi and Goldberg, 2020). We then
measure the Kendall rank correlation coefficient τ
between the explanation and LOO importance (Jain
and Wallace, 2019) (taucorr_loo). taucorr_loo
closer to 1 means higher faithfulness to LOO.

Plausibility. Plausibility reflects how explana-
tions are aligned with human reasoning by compar-
ing explanations with human rationales (DeYoung
et al., 2020) .

We integrate into ferret three plausibility mea-
sures of the ERASER benchmark (DeYoung et al.,
2020): Intersection-Over-Union (IOU) at the token
level, token-level F1 scores, and Area Under the
Precision-Recall curve (AUPRC).

The first two are defined for discrete explana-
tions. Given the human and predicted rationale,
IOU (↑) quantifies the overlap of the tokens they
cover divided by the size of their union. Token-level
F1 scores (↑) are derived by computing precision
and recall at the token level. Following DeYoung
et al. (2020) and Mathew et al. (2021), we derive
discrete explanations by selecting the top K to-
kens with positive influence, where K is the aver-
age length of the human rationale for the dataset.
While being intuitive, IOU and Token-level F1 are
based only on a single threshold to derive ratio-
nales. Moreover, they do not consider tokens’ rel-
ative ranking and degree of importance. We then
also integrate the AUPRC (↑), defined for expla-
nations with continuous scores (DeYoung et al.,
2020). It is computed by varying a threshold over
token importance scores, using the human rationale
as ground truth.

2.4 Transformers-Ready Interface

ferret is deeply integrated with Hugging Face in-
terfaces. Users working with their standard mod-
els and tokenizers can easily integrate it for diag-
nostic purposes. The contact point is the main
Benchmark class. It receives any Hugging Face
model and tokenizer and uses them to classify, run
explanation methods and seamlessly evaluate the
explanations. Similarly, our Dataset API leverages
Hugging Face’s datasets5 to retrieve data and hu-
man rationales.

3 Case Studies

We showcase ferret in two real-world tasks, fo-
cusing on benchmarking explainers on individual
samples or across multiple instances. In the fol-
lowing, we describe how ferret highlights the best
explainers in sentiment analysis and hate speech de-
tection tasks. Our running examples use an XLM-
RoBERTa model fine-tuned for sentiment analysis
(Barbieri et al., 2021) and a BERT model fine-tuned
for hate speech detection (Mathew et al., 2021).

3.1 Faithfulness Metrics for Error Analysis

Explanations on individual instances are often used
for model debugging and error analysis (Vig, 2019;
Feng et al., 2018). However, different explanations
can lead users to different conclusions, hindering a
solid understanding of the model’s flaws. We show
how practitioners can alleviate this issue including
ferret in their pipeline.

Figure 2 shows explanations and faithfulness
metrics computed on the sentence “Great movie
for a great nap!” for the “Positive” class label
misclassified by the model as “Negative”.

Faithfulness metrics show that SHAP adheres
best to the model’s inner workings since it re-
turns the most comprehensive and relevant explana-
tions. Indeed, SHAP retrieves the highest number
of tokens the model used to make the prediction
(aopc_compr(↑) = 0.41) that are relevant to drive
the prediction (aopc_suff(↓) = 0.09). Further,
taucorr_loo(↑) = 0.43 indicates that SHAP ex-
planations capture the most important tokens for
the prediction under the linearity assumption. Al-
though Integrated Gradient (x Input) shows a higher
taucorr_loo, it does not provide comprehensive
and sufficient explanations. Similarly, Gradient
and Integrated Gradient show bad sufficiency and

5https://github.com/huggingface/datasets
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from transformers import
AutoModelForSequenceClassification,
AutoTokenizer

from ferret import Benchmark

name = "cardiffnlp/twitter-xlm-roberta-base
-sentiment"

model = AutoModelForSequenceClassification.
from_pretrained(name)

tokenizer = AutoTokenizer.
from_pretrained(name)

bench = Benchmark(model, tokenizer)
query = "Great movie for a great nap!"

scores = bench.score(query)
print(scores)

# Run built-in explainers
explanations = bench.explain(

query,
target=2 # "Positive" label

)
bench.show_table(explanations)

# Evaluate explanations
evaluations = bench.evaluate_explanations(

explanations, target=2
)
bench.show_evaluation_table(evaluations)

## Output
>> {'Negative': 0.013735532760620117,
>> 'Neutral': 0.06385018676519394,
>> 'Positive': 0.9224143028259277}

Figure 2: Code to explain and evaluate explanations on
a sentiment classifier (top). Token attributions (middle):
darker red (blue) show higher (lower) contribution to
the prediction. Faithfulness metrics (bottom): darker
colors show better performance.

comprehensiveness, respectively. LIME and Gradi-
ent (x Input) do not return trustworthy explanations
according to all faithfulness metrics.

Once SHAP has been identified as the best ex-
plainer, its explanations enable researchers to inves-

tigate possible recurring patterns or detect model
biases thoroughly. In this case, the explanations
shed light on a type of lexical overfitting: the word
“great” skews the prediction toward the positive
label regardless of the context and semantics.

3.2 Multi-Instance Assessment
Instance-level analysis finds explainers that meet
specific requirements locally. However, the best lo-
cal explainer might be unsatisfactory across multi-
ple instances. With ferret , users can easily produce
and aggregate evaluation metrics across multiple
dataset samples—or the entire corpus.

We describe how to choose the explainer that
returns the most plausible and faithful explanations
for the HateXplain dataset. For demonstration pur-
poses, we focus only on a sample of the dataset.

Figure 3 (Appendix C) shows the metrics av-
eraged across ten samples with the “hate speech”
label. Results suggest again that SHAP yields the
most faithful explanations. SHAP and Gradient
achieve the best comprehensiveness and sufficiency
scores, but SHAP outperforms all explainers for the
τ correlation with LOO (taucorr_loo (↑) = 0.41).
Gradient provides the most plausible explanations,
followed by SHAP.

4 Related Work

This section provides a review of tools and libraries
that offer a subset of the ferret’s functionalities,
namely the option to use multiple XAI methods and
datasets, evaluation API, transformer-readiness,
and built-in visualization. Table 2 summarizes
them and compares ferret with similar frameworks.

Tools for Post-Hoc XAI. Toolkits for post-hoc
interpretability offer built-in methods to explain
model prediction, typically through a code inter-
face. ferret builds on and extends this idea to a
unified framework to generate explanations, eval-
uate and compare them, with support to several
XAI datasets. Moreover, ferret’s explainers are
integrated with transformers’s (Wolf et al., 2020)
principles and conventions.

PyTorch’s Captum (Kokhlikyan et al., 2020) is
a generic Python library supporting many inter-
pretability methods. However, the library lacks in-
tegration with the Hugging Face Hub and offers no
evaluation procedures. AllenNLP Interpret (Wal-
lace et al., 2019b) provides interpretability methods
based on gradients and adversarial attacks for Al-
lenNLP models (Gardner et al., 2018). We borrow
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Multiple
XAI approaches

Transformers-
readiness

Evaluation
APIs

XAI
datasets

Built-in
visualization

Captum ✓ ✗ ✗ ✗ ✓

AllenNLP Interpret ✓ ✗ ✗ ✗ ✗

Transformers-Interpret ✗ ✓ ✗ ✗ ✓

Thermostat ✓ ✓ ✗ ✗ ✓

ContrXT ✗ ✗ ✗ ✗ ✗

OpenXAI ✓ ✗ ✓ ✗ ✗

NLPVis ✗ ✗ ✗ ✗ ✓

Seq2Seq-Vis ✗ ✗ ✗ ✗ ✓

BertViz ✗ ✓ ✗ ✗ ✗

ELI5 ✗ ✗ ✗ ✗ ✓

LIT ✓ ✗ ✗ ✗ ✓

ERASER ✗ ✗ ✓ ✓ ✗

Inseq ✓ ✓ ✗ ✗ ✓

ferret ✓ ✓ ✓ ✓ ✓

Table 2: Comparing off-the-shelf features across different XAI libraries. When assessing built-in visualization, we
disregard tools that either do not provide a unified interface or provide single data-point visualizations.

the modular and extensible design and extend it to
a wider set of explainers. Transformers-Interpret6

leverages Captum to explain Transformer models,
but it supports only a limited number of meth-
ods. Thermostat (Feldhus et al., 2021) exposes
pre-computed feature attribution scores through
the Hugging-Face Hub but no features oriented to
implement or evaluate XAI. We support the Ther-
mostat as a third-party add-on and let users test
and benchmark pre-computed explanations. Un-
like our study, Inseq (Sarti et al., 2023) focuses on
post-hoc interpretability for sequence generation
models. Although researchers can use the library
to add interpretability evaluations to their models,
the toolkit lacks built-in evaluation metrics.

Other related approaches enable global (rather
than local) explainability (Malandri et al., 2022), or
explanation interfaces for non-transformers models
on non-NLP tasks (Agarwal et al., 2022). Other
approaches study model behavior at the subgroup
level (Wang et al., 2021; Goel et al., 2021; Pastor
et al., 2021a,b), focusing more on model evaluation
and robustness rather than its interpretation.

Visualization. Most studies that develop visual-
ization tools to investigate the relationships among
the input, the model, and the output focus either on
specific NLP models - NLPVis (Liu et al., 2018),
Seq2Seq-Vis (Strobelt et al., 2018), or explainers

6https://github.com/cdpierse/
transformers-interpret

- BertViz (Vig, 2019), ELI57. LIT (Tenney et al.,
2020) streamlines exploration and analysis in differ-
ent models. However, it acts mainly as a graphical
browser interface. ferret provides a Python inter-
face easy to integrate with pre-existing pipelines.

Evaluation. Although prior works introduced di-
agnostic properties for XAI techniques, evaluating
them in practice remains challenging. Studies ei-
ther concentrate on specific model architectures
(Lertvittayakumjorn and Toni, 2019; Arras et al.,
2019; DeYoung et al., 2020), individual datasets
(Guan et al., 2019; Arras et al., 2019), or a single
group of explainability methods (Robnik-Šikonja
and Bohanec, 2018; Adebayo et al., 2018). Hence,
providing a generally applicable and automated
tool for choosing the most suitable method is cru-
cial. To this end, Atanasova et al. (2020) present a
comparative study of XAI techniques in three ap-
plication tasks and model architectures. To the best
of our knowledge, we are the first to present a user-
friendly Python interface to interpret, visualize and
empirically evaluate models directly from the Hug-
ging Face Hub across several metrics. We extend
previous work from DeYoung et al. (2020), who
developed a benchmark for evaluating rationales on
NLP models called ERASER by offering a unified
interface for evaluation and visual comparison of
the explanations at the instance- and dataset-level.

Closer to ferret , the OpenXAI framework (Agar-
7https://github.com/TeamHG-Memex/eli5
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wal et al., 2022) enables a systematic evaluation of
feature attribution explanation, integrating multiple
explainers and XAI structured datasets. OpenXAI
supports tabular datasets while we focus on textual
data and NLP models.

5 Conclusions

We introduced ferret , a novel Python framework
to easily access XAI techniques on transformer
models. With ferret , users can explain using state-
of-the-art post-hoc explainability techniques, evalu-
ate explanations on several metrics for faithfulness
and plausibility, and easily interact with datasets
annotated with human rationales.

We built ferret with modularity and abstraction
in mind to facilitate future extensions and contribu-
tions from the community (see Appendix B for an
overview of the ongoing development). As future
work, we envision off-the-shelf support for new
NLP tasks and scenarios. Building on the classi-
fication setup presented in this paper, we plan to
add support to more NLP tasks that can be framed
as classification, such as Mask Filling Prediction,
Natural Language Inference, Zero-Shot Text Clas-
sification, Next Sentence Prediction, Token Clas-
sification, and Multiple-Choice QA. One further
direction would be improving ferret’s interoperabil-
ity with new libraries, e.g., Inseq (Sarti et al., 2023)
for XAI on text generation tasks and models.

Ethics Statement

ferret’s primary goal is to facilitate the comparison
of methods that are instead frequently tested in iso-
lation. Nonetheless, we cannot assume the metrics
we currently implement provide a full, exhaustive
picture, and we work towards enlarging this set
accordingly.

Further, interpretability is much broader than
post-hoc feature attribution. We focus on this fam-
ily of approaches for their wide adoption and intu-
itiveness.

Similarly, the evaluation measures we integrate
are based on removal-based criteria. Prior works
pointed out their limitations, specifically the prob-
lem of erased inputs falling out of the model input
distribution (Hooker et al., 2019).
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A Technical Details

A.1 Explainer API

Our implementation is built on top of original im-
plementations (as for SHAP and LIME) and open-
source libraries (as Captum (Kokhlikyan et al.,
2020) for gradient-based explainers) to directly ex-
plain Transformer-based language models.

Currently, we integrate Gradient (G) (Simonyan
et al., 2014b), Integrated Gradient (IG) (Sundarara-
jan et al., 2017), SHAP (Lundberg and Lee, 2017),
and LIME (Ribeiro et al., 2016). For G and IG,
users can get explanations from plain gradients or
multiply gradients by the input token embeddings.
For SHAP, we use the Partition approximation to
estimate Shapley values.8

A.1.1 Evaluation API
While human gold annotations are normally dis-
crete, current explainers provide continuous token
attribution scores. Following previous work, we
hence go from continuous scores to a discrete set of
relevant tokens (i.e., rj in Section 2.3) as follows.

We consider only tokens with a positive contri-
bution to the chosen label (i.e., they push the pre-
diction towards the chosen label). For the AOPC
comprehensiveness and sufficiency measures, the
relevant tokens in the discrete rationale are the most
k% important tokens with k ranging from 10% to
100% (step of 10%). For token-level IOU and F1
scores plausibility measure, we follow the DeY-
oung et al. (2020) and Mathew et al. (2021) ap-
proach, and we select the top k tokens where k
is the average length of human rationales for the
dataset.

The evaluation measures at the dataset level are
the average scores across explanations. Differently
than DeYoung et al. (2020) that use the F1 IOU
score, we directly compute the average token-level
IOU.

All human rationales are at the token level, in-
dicating the most relevant tokens to a given class
label.

A.2 Technical Features

ferret implements several functionalities to facili-
tate end users in using it.

• High-level interface. Most of ferret’s features,
such as interpretability methods and evalua-

8https://shap.readthedocs.io/en/latest/
generated/shap.explainers.Partition.html
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Figure 3: Faithfulness and Plausibility metrics averaged across ten samples with the “hateful” label of HateXPlain.
Darker colors mean better performance.

tion measures, are accessible via a single entry
point, the Benchmark class.

• GPU-enabled batched inference. ferret re-
quires running inference for certain execu-
tions. It uses batching and local GPUs trans-
parently to the user whenever that happens.

• Visualization methods. The Benchmark class
exposes several methods to visualize attribu-
tion scores and evaluation results in tabular
format. These tables are plotted seamlessly
on Jupyter Notebooks (see Figure 2 (bottom)
for an example).

B Ongoing Development

ferret is under active development. We are extend-
ing the core modules as follows.

Explainers. We plan to integrate two recent in-
terpretability methods that require training a com-
plementary model. Sampling and Occlusion (SOC)
(Jin et al., 2019) provides a hierarchical explana-
tion to address compositional contributions. Mini-
mal Contrastive Editing (MiCE) (Ross et al., 2021)
trains a T5 (Raffel et al., 2020) model to imple-
ment contrastive edits to the input to change the
model output. Finally, we are including a third

gradient-based algorithm. Integrated Discretized
Gradients (Sanyal and Ren, 2021) improve IG sam-
pling intermediate steps close to actual words in
the embedding space.

Evaluators. We plan to include additional evalu-
ation measures such as sensitivity, stability (Yin
et al., 2022), and Area Under the Threshold-
Performance curve (AUC-TP) (Atanasova et al.,
2020).

C Additional Results

Figure 3 shows a screenshot of dataset-level assess-
ment from our demo web app. It reports the eval-
uation metrics averaged across ten samples with
the “hate speech” label for the HateXplain dataset,
discussed in Section 3.

The user specifies a model from the Hugging
Face Hub (HF Model field), the target class (Tar-
get), and the set of samples of interest (List of sam-
ples). ferret web app directly computes explanation
and their evaluation and visualizes the results.
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Abstract

In this paper, we propose Learn, a unified, easy-
to-use tool to apply question generation and
selection in classrooms. The tool lets instruc-
tors and TAs create assignments that can write
and re-write themselves. Given existing course
materials, for example a reference textbook,
Learn can generate questions, select the high-
est quality questions, show the questions to
students, adapt question difficulty to student
knowledge, and generate new questions based
on how effectively old questions help students
learn. The modular, composable nature of the
tools for handling each sub-task allow instruc-
tors to use only the parts of the tool necessary
to the course, allowing for integration in a large
number of courses with varied teaching styles.
We also report on the adoption of the tool in
classes at the University of Pennsylvania with
over 1000 students. Learn is publicly released
at https://learn.withmartian.com.

1 Introduction

Advances in natural language processing, particu-
larly through large langauge models, will enable
the creation of powerful applications in many fields
(Bommasani et al., 2021). One of the most positive
and most promising may be education, where rapid
improvement has been achieved in fields like ques-
tion generation (Dugan et al., 2022; Drori et al.,
2022; Zhang et al., 2022).

In this paper, we propose Learn, a unified, easy-
to-use tool to apply question generation in class-
rooms. The tool allows instructors to create as-
signments that can write and re-write themselves.
Instructors provide existing course materials, and
the platform is able to generate new questions, se-
lect the best questions, show those questions to
students, provide analytics, and improve as it col-
lects more data on student performance. We also
report on a case study of the successful adoption of
Learn in classes at the University of Pennsylvania.

Figure 1: A diagram of steps, sub-steps, and features
in Learn. Learn is a tool for creating assignments that
write and re-write themselves. To write new assign-
ments, users upload material and the platform generates
questions. To re-write assignments and improve them,
the questions are first shown to students, then the data
from student interactions is analyzed to update the ques-
tions.

We hope this tool can be used by course staff to
save time and improve education, and that Learn
can serve as an example of a high-quality social-
good tool which inspires the development of further
applications.

2 Tool Tour and Design

We begin with a brief tour. Generating questions
is done simply by uploading the materials from
which the questions should be generated.
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Figure 2: The interface for uploading material to Learn.

Uploaded materials can be text, code, pdf, or
audio/video. In the case of PDF, they are converted
to text through OCR. In the case of audio/video,
they are converted to text through ASR.

Once the materials are uploaded and text is ex-
tracted, they are used to generate questions. The
generated questions are then shown to the course
staff.

Figure 3: The interface which allows course staff to
review questions. Users can accept, reject, or edit ques-
tions by clicking on the check, cross, and pencil buttons
respectively.

Members of the course staff can accept, reject,
or edit any question. Accepting a question adds it
either to the general question bank for the course
or to a particular assignment.

After questions are added to an assignment, the
assignment can be released to students, who can
then complete the assignment.

Figure 4: The interface through which a student com-
pletes assignments by answering questions.

When the student is completing the assignment,
their answers are stored, alongside relevant meta-
data such as the amount of time to complete the
question and whether the student got the question
correct. Students can also mark questions as being
“really good” for studying, or as “not helpful”.

The data collected in this way is then analyzed,
both to inform instructors and to improve future
question generation. That data is used to provide
suggestions to course staff.

Figure 5: The interface alerting instructors about issues
and potential improvement to existing questions.

Note 1: Uploading Material. Users have
multiple means of uploading material to Learn.
Although they can upload all their content
manually, that is typically not necessary. Instead,
if they have an existing course website, they can
point a scraper built into the Learn tool at that
website, and it will find the relevant material (e.g.
the course textbook, lecture notes, youtube links,
etc.) and only upload the material which cannot be
found on their course website. We also have an LTI
integration, allowing us to pull data from existing
learning management systems (like Canvas and
Moodle), as well as pushing data (like generated
questions or student grades) to those systems.
These alternative methods of uploading material
decrease effort required to adopt the platform,
making it something which can be used in minutes.
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Note 2: Rich Question Formats. In most
tools for creating assignments, questions are purely
text. This is not the case for Learn. Instead, all
questions are javascript functions of the type

() => ({question: HTML, answer: HTML})

If a user wants to create a question which
acts like text, we provide an interface which
lets them create such questions without writing
any code, just as they would in a traditional
assignment-creation software. However, we also
give users access to a coding environment which
they can use to create questions. This lets them
– or our question generation models – generate
questions in rich formats. That includes questions
with images, Latex, or interactive components
like coding challenges, animations, or full-fledged
games (see figure 8).

Note 3: Composability. Courses can use
the various parts of the tool independently. For ex-
ample, if a course largely uses written assignments
and does not want to switch to online assignments,
the tool can be used purely for question generation
by sending all questions to the question bank and
then copying them into the physical exams. A
course which has existing questions can bring them
onto the platform, display them to students, then
get analytics and have them re-written to be more
effective. Courses with an LTI or which use other
tools like gradescope can display all questions
through those platforms, link them to Learn, and
get analytics using their existing data. This allows
many different kinds of courses to use the tool, and
also for gradual adoption of those parts of the tool
which are most useful to any given course.

Complete Flow An instructor uploads the
material for their course, either manually, by
pointing our scraper to their course website, or
through an LTI integration. We then generate
richly-formatted questions which can include
interactive components through code. Those
questions are placed into assignments which can
be completed by students. Once students complete
the assignments, the results are used to re-write
the assignments and improve future question
generation.

3 How Natural Language Processing Is
Being Used To Augment Education

Although the most visible application of NLP in
Learn is that questions are generated automatically,
many aspects of writing and re-writing assignments
are enhanced by NLP research. In this section, we
detail the features of the platform enabled by NLP.

3.1 Question Generation

LLMs For Question Generation
Our platform uses multiple large langauge mod-

els, including GPT-3 (Brown et al., 2020), Codex
(Chen et al., 2021), and a fine-tuned T5 (Raffel
et al., 2019) variant to generate questions from
material uploaded by course staff. Recent work
has shown the ability of these models to generate
questions for STEM subjects such as mathematics
(Drori et al., 2022) and computer science (Zhang
et al., 2022) at a college level. Our prior work
(Dugan et al., 2022) showed that question quality
can be greatly enhanced by summarizing input
before using it to generate questions. Using
that insight, we first extractively summarize the
content using BERT (Devlin et al., 2018), before
passing the summarized inputs to the larger models.

Prompting For Question Style Transfer
When generating questions for a course, there

is a kind of cold-start problem. Courses use a
wide variety of different questions, from multiple-
choice to short-answer to long-form and proof-
based. Courses may even prefer more fine-grained
distinctions than those. How do we know what
kind of question to generate, and how do we get
our model to generate questions of that type?

Few-shot prompting, as in (Brown et al., 2020),
allows us to solve this problem. In the materials
which professors upload, there will often be
examples of questions from assignments used in
their class. We can then either generate question
and then re-write them using an arbitrary style
transfer method like that in (Reif et al.), or prepend
a course’s existing questions to our question
generation prompt. This allows us to generate
questions in a wide variety of styles, matching a
wide variety of courses. As a demonstration, we
can generate questions at all levels of Bloom’s
taxonomy (Bloom, 1956). Examples of questions
at the different levels can be seen in appendix A
(see table 1).
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Over-generation & Ranking
Despite the successes of large language models,

many of the questions which these models gen-
erate are still not acceptable according to human
annotators. Our prior work established that even
high-performing completely-automated methods
only generate acceptable questions 50% of the time
(Dugan et al., 2022). To mitigate this problem, we
over-generate and rank questions using BERT. So,
if a course needs 20 questions for an assignment,
we might generate 200 questions and surface the
top 20.

Course staff make the final decision about what
questions should be shown to students. In particu-
lar, course staff are shown the generated questions,
and either accept, reject, or edit questions. This has
two advantages. First, it ensure that all questions
which students see are of high quality. Second, it
provides data to train a ranking model. Accepted
questions are better than rejected questions, and
edited questions are better after editing than before.
As a result, our ranking model (and the quality of
questions shown to users) improves over time.

3.2 Showing Questions To Students

Spaced Repetition & Reinforcement Learning
Not all orders of presenting material to students

are equally effective. It is clear, for example, that
showing a student material on calculus before they
understand arithmetic is much less effective than
the other way around.

A particularly effective method of ordering ma-
terial to present it to students is spaced repetition
(Tabibian et al., 2019). The core idea is that, instead
of showing a piece of material to a student only
once or cramming many reviews all at once, they
should review that material multiple times at inter-
vals to avoid forgetting it. This technique has been
shown to improve student outcomes in subjects as
varied as mathematics (Smith and Rothkopf, 1984;
Mayfield and Chase, 2002; Patac and Patac JR,
2013), language learning (Cepeda et al., 2009), and
medicine (Kerfoot and Brotschi, 2009; Kerfoot,
2009). (Donovan and Radosevich, 1999) find an
overall mean weighted effect size of d=0.46 when
evaluating the effectiveness of spaced repetition
across 63 studies.

Learn implements spaced repetition to determine
what questions should be shown to students. This
improves student understanding without any addi-
tional effort for course instructors.

As noted in (Rafferty et al., 2016), the question
of what material should be shown to students can
be formulated as a Partially-Observable Markov
Decision Process (POMDP). That means we can
construct a schedule via reinforcement learning,
as in (Reddy et al., 2017), to determine what
material should be shown to a student in order to
maximize their understanding of the material. This
has the potential to significantly out-perform more
traditional spaced-repetition algorithms.

A/B Testing Assignments
In addition to allowing the platform to select

the questions shown to the students, we can
test collections of questions by A/B testing
assignments. This ability is also provided to
instructors, who can assign different versions of
an assignment to different students. This allows
instructors to collect information about their assign-
ments and get additional analytics (see section 3.3).

Automatically Identifying Course Concepts
A common criticism of spaced repetition is that

it primarily aids in "rote memorization": if a stu-
dent reviews the same question repeatedly, they
may only remember the content of the question, as
opposed to remembering the underlying concept.

A solution to this problem is to repeat a con-
cept with multiple different questions, rather than
a single question. For example, if asking questions
about breadth-first search, the first repetition might
ask about the running time, the second repetition
about the implementation of the algorithm, the third
repetition about a specific application, etc.

Learn implements both supervised and unsuper-
vised methods to identify concepts. First, we use
BERT to identify questions which are explicitly
asking the same thing in different ways. Then,
we cluster embedded vectors of the questions to
identify groups of questions with high semantic
similarity. By showing students questions selected
from these groups, we can avoid the problem of
memorization while still benefiting from spaced
repetition.

3.3 Analytics & Improving Questions

Item Response Theory
Item response theory (IRT) is a statistical frame-

work for analyzing the effectiveness of tests and
of individual questions within those tests. An in-
troduction to the theory can be found in (Partchev,
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Figure 6: Examples of two IRT curves from Columbia
Public Health. The x-axis represents a student’s ability,
as measured by standard deviations from average perfor-
mance in the overall course. They y-axis represents the
probability that a student gets the question correct. Both
curves here are 3 parameter logistic regression models.
Item 1 is a better question than item 2 because its IRT
curve is steeper, are therefore distinguishes ability bet-
ter. Both questions are of equal difficulty, as they are
centered around the same point (ability=0).

2004).
At a basic level, we want questions to tell us

what students know. A question is a good indicator
of a student’s knowledge if students who get that
question correct tend to do well in the course over-
all. So, we can measure the quality of a question
by seeing how strongly it correlates with overall
performance on assignments (see figure 6).

By computing this correlation, we can inform
course staff of particularly good or bad questions
(see figure 5), and refine assignments over time.

Automating The Creation of Autograders
Some questions are easy to grade, and the act of

creating them results in an auto-grader (e.g. multi-
ple choice questions, or questions that are solved
by invoking an algorithm such as linear algebra
problems). Many questions are harder to grade,
and in many classes a majority of TA time is spent
grading such questions.

To reduce the burden on TAs, Learn can
automatically construct auto-graders for questions
using data collected when students complete the
questions. There are multiple methods which
Learn uses to do this. The first is that students or
TAs can mark the questions as correct or incorrect,
then the platform looks for exact strings matches

in the future and is able to tell that those are
certainly correct. We can also use a BERT model
to classify the correctness of a new answer given
previous answers. These can both be done in
an automated manner, automatically reducing
the grading burden for course staff. We also
cluster the errors which students make, allow-
ing TAs to grade the work of many students at once.

RLHF For Question Generation
The annotations we collect from TAs (accepting,

rejecting, or editing questions) provides us with
data about human feedback for question generation
(see section 3.1). Following the methodology from
(Ziegler et al., 2019), we can then use this data to
improve our question generation models through
the following process:

1. Starting with a supervised policy, in this case,
our existing question generation model.

2. Training a reward model from the human feed-
back on question generation.

3. Optimizing a policy against the reward model
using Proximal Policy Optimization (PPO).
(Schulman et al., 2017)

This allows us to improve our question generation
models over time as we collect additional usage
data.

In the future, we will explore the use of other
data we collect (for example, IRT metrics) as addi-
tional supervision signals; if analytics can improve
questions that TAs have written, then they also ex-
press preferences which should be encoded in the
reward model, potentially allowing for more rapid
improvement.

4 Case Study

Learn has been integrated in multiple courses at the
University of Pennsylvania, and over 1000 students
have used the platform. The different classes used
the tool in different ways, verifying its composabil-
ity. In many of those classes, for example, Learn
was a supplementary tool, whereas the Introduction
to Artificial Intelligence class used it as a quizzing
platform for reading quizzes. In the latter class, we
were able to collect significant data on the efficacy
of the platform, which we report here.

4.1 Methodology
We conducted a control trial in the Introduction
to Artificial Intelligence course at the University
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of Pennsylvania. The course is divided into two
sections of approximately 300 students each. We
randomly assigned one section to use traditional
reading quizzes (which had been used in the class
during prior years), while the other section used
the Learn platform. On both platforms, the quizzes
were administered on a weekly basis. For the first
three weeks of the class, all students used the tra-
ditional quizzes, then the section using Martian
switched to using the new platform. The quizzes
covered the required readings for that week (from
the textbooks Artificial Intelligence: A Modern
Approach and Speech and Language Processing).
The students using Learn were also shown material
from prior weeks due to the integration of spaced
repetition (see section 3.2). Material on Learn was
created through a combination of automatic gener-
ation and TA-written questions.

There is one notable confounder in the experi-
ment, which is that one section of the class was en-
tirely online, while the other had the option of both
online and in-person classes. After random assign-
ment, the online-only section used traditional read-
ing quizzes, while the mixed section used Learn.
However, from exams scores in previous semesters,
we do not expect a difference in exam scores be-
tween the online and mixed sections.

We collected two evaluation metrics to deter-
mine the effectiveness of the platform. First, we
collected the students’ exam scores, which we
could compare across sections. Second, as a more
subjective metric, we asked the students who used
both traditional reading quizzes and Learn which
platform they preferred.

4.2 Results

The exam scores for students using Learn were
higher than those using traditional reading quizzes.
The students in the section that used Learn had
exam scores which were 0.29σ higher on average.
Among students who used Learn, every 15 minutes
of additional studying led to a 0.08σ improvement
in exam scores.

Similarly, Learn outperformed traditional read-
ing quizzes according to the subjective evaluations
of the students. 83% of students preferred Learn
to traditional reading quizzes (see figure 7). 11%
of students preferred traditional reading quizzes.
6% had no preference. We also received comments
from students regarding the platform, overwhelm-
ingly positive, some of which can be found in Ap-

Figure 7: At the end of the semester, students were
asked which section they preferred. A large majority of
students preferred Learn to traditional methods.

pendix A.

5 Conclusion

Learn is a unified, easy-to-use tool to apply ques-
tion generation in classrooms. The tool is able to
create assignments which write and re-write them-
selves. It achieves this through a number of features
enabled by recent advances in NLP. Having been
tested in multiple classes with over 1000 students,
it has been demonstrated to improve test scores and
is prefered by students to traditional alternatives.

Limitations

While the platform is well-featured, we hope to be
able to evaluate those features more thoroughly in
the future. The limitations to evaluating the system
so far stem from limits in how much the system has
been used.

This is a direct limit in the case of testing certain
features, like RLHF for question generation (see
section 3.3), which require more data than we have
currently collected. It is an indirect limit in the
kinds of classes which the tool has been tested
in. At the time of authorship, all the classes in
which the tool has been tested are computer science
classes. Although we see no reason why the tool
should not generalize to other courses (we have
tested the quesion generation outside of computer
science), that should be verified through further
expermentation.

Ethics Statement

If our platform works as intended and sees broader
use in higher-ed, course staff and students can ben-
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efit.

For course staff, it can reduce the time taken in
writing and grading assignments. It should also
help to alleviate concerns around cheating, as new
questions can be generated each semester, poten-
tially even creating new questions for each indi-
vidual student. By reducing this logistical burden,
Learn will allow course staff to focus on the parts of
teaching which are higher-leverage, and to improve
their courses in ways that weren’t before possible.

For students, the introduction of Learn into a
classroom is an opportunity to use more effective
methods for studying (such as spaced repetition), to
see higher-quality study material, and to have many
more questions with which to study. The ability
to automatically generate questions provides an
opportunity for students to get much more practice
– an arbitrarily large quantities of practice question
could be created, tailored to the topics in which
any particular student is struggling. As the system
improves over time we hope that students will have
study materials of higher quality than they would
without automated tools.

There are also large disparities in computer
science, especially for certain underrepresented
groups. These groups face structural issues which
may lead to differences in achievement. For ex-
ample, students in underrepresented groups may
feel uncomfortable asking questions of or reaching
out to course staff, and therefore may receive less
attention and aid from instructors. We can help
tackle those disparities by improving accessibility
through more effective learning systems.

It is also important to note, however, the po-
tential risks to privacy when building and using
education applications. Given the sensitive nature
of the data, such as grades, it is important to take
proper privacy and security safeguards when de-
ploying such systems. In order to minimize such
risks, we went through thorough evaluation by the
privacy office for the Computer and Information
Science Department at the University of Pennsyl-
vania. We also filled out the HECVAT lite security
questionnaire, receiving an A rating.

As education is downstream of many important
societal factors, such as economic growth and pub-
lic welfare, we are optimistic about the positive
impacts of new AI applications for education, like
Learn.
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A Select Comments From Students

1. "Thank you for making this! I really wasn’t
sure how much it would help me since I
have established study techniques I’ve used
throughout hs/college and didn’t want to
change. But this has actually been so im-
mensely helpful and I now really believe in
the proven science behind how tools like this
can really help retain information."

2. “This is a great tool - amazing job overall!”
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Figure 8: A question created using code which can
randomly generate an graph from an adjacency list, and
display an image of the generated graph.

3. "It was very helpful (the repetitive review of
materials). The variety of some cards asking
the same material helped a lot too."

4. "I thought [Learn] was [a] very helpful way
to learn the material!"

5. "Thank you guys! This was really helpful!"

B Example Questions
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Level Question Answer
Remember What is the policy improvement

theorem?
The policy improvement theorem is a theorem that
says if we have two deterministic policies π and π′

such that, for all s ∈ S,
qπ (s, π

′(s)) ≥ vπ(s), then the policy π′ must be as
good as, or better than, π. That is, it must obtain
greater or equal expected return from all states s ∈ S
:
vπ′(s) ≥ vπ(s).

Understand Why is policy evaluation guar-
anteed to converge?

Because the value function is a fixed point of the
Bellman equation.

Apply What is vπ(15) for the equiprob-
able random policy in this case?

-1

Analyze What is the difference between
Synchronous DP and Asyn-
chronous DP?

Synchronous DP updates state values in a determin-
istic order, e.g. from small to large. Asynchronous
DP updates state values in a stochastic order.

Evaluate What are the limitations of Dy-
namic Programming?

The limitations of Dynamic Programming are that it
requires a perfect model of the environment and that
it is computationally expensive.

Create Draw a graph of 8 nodes, with
a completeness of 40%! Adja-
cency List = [[3, 6], [3], [6, 7],
[4, 6, 7], [6, 7], [], [7]]

Varies by response

Table 1: A collection of questions generated using Learn at each level of Bloom’s taxonomy (Bloom, 1956).
Bloom’s taxonomy establishes a series of levels of that represent different cognitive goals. The cognitive goals
become more difficult, going from remembering to creating.

276



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 277–297

May 2-4, 2023 ©2023 Association for Computational Linguistics

EVALIGN: Visual Evaluation of Translation Alignment Models

Tariq Yousef † Gerhard Heyer † Stefan Jänicke‡

†Leipzig University ‡University of Southern Denmark
<tariq.yousef@uni-leipzig.de>

Abstract

This paper presents EVALIGN, a visual ana-
lytics framework for quantitative and qualita-
tive evaluation of automatic translation align-
ment models. EVALIGN offers various visual-
ization views enabling developers to visualize
their models’ predictions and compare the per-
formance of their models with other baseline
and state-of-the-art models. Through different
search and filter functions, researchers and prac-
titioners can also inspect the frequent alignment
errors and their positions. EVALIGN hosts nine
gold standard datasets and the predictions of
multiple alignment models. The tool is extend-
able, and adding additional datasets and models
is straightforward. EVALIGN can be deployed
and used locally and is available on GitHub1.

1 Introduction

Translation Alignment is the process of finding
and linking translation equivalents between a text
and its translations. It can be performed on
different granularity levels. Word-level Trans-
lation Alignment plays a key role in several
NLP and Digital Humanities tasks such as sta-
tistical machine translation (Brown et al., 1993;
Koehn et al., 2003), cross-lingual transfer (Hin-
richs et al., 2022; Jacqmin et al., 2021), classical
language learning (Palladino et al., 2021; Palladino,
2020), dynamic dictionaries induction (Shi et al.,
2021), Word Sense Disambiguation (Luan et al.,
2020)and analyzing neural machine translation sys-
tems (Alkhouli et al., 2016).

The work on automatic translation alignment
started 30 years ago when Brown et al. (1993)
introduced the first statistical alignment models
called IBM models. Later, several tools and mod-
els such as Giza++ (Och and Ney, 2003) and
fast_align (Dyer et al., 2013) were developed based
on Brown’s models with different improvements

1https://github.com/TariqYousef/EVALign

and optimization additions. With the recent ad-
vances in neural machine translation systems and
the emergence of pre-trained multilingual trans-
former models (Devlin et al., 2018; Conneau et al.,
2019), it has been possible to develop neural align-
ment models that significantly outperform the sta-
tistical models without needing extensive training
datasets.

Performance evaluation of alignment models is
essential, and many ground truth datasets have been
developed for this purpose. Precision, Recall, F1,
and Alignment Error Rate (AER) are used as indi-
cators of the alignment quality. Although they are
widely used, quantitative metrics have their limi-
tations (Ayan and Dorr, 2006; Vilar et al., 2006;
Lambert et al., 2005). Thus, additional qualitative
evaluation is required for a better understanding of
the models behaviors.

For this purpose, we introduce EVALIGN, a tool
for quantitative and qualitative evaluation of au-
tomatic alignment models that allows developers
to estimate the quality of alignment models and
get insights into their performance. With multiple
visualization approaches and tailored views, the
proposed framework helps researchers and devel-
opers working on automatic translation alignment
models inspect their predictions with different gold
standard data sets and compare their performance
to other baseline and state-of-the-art models quan-
titatively and qualitatively. Further, it supports non-
experts who want to employ alignment models in
their research or business to explore different align-
ment models and their performance on texts in
different languages to choose the suitable model
for their purpose. EVALIGN is available online2

and the online demo hosts nine benchmark datasets
and five alignment methods combined with four
different embeddings models (20 models in total);
EVALIGN can be deployed locally, and users can
add new datasets and import new models.

2http://evalign.info/
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2 Related Works

Employing visualization for exploring benchmark
data sets, analyzing models’ behaviour, and con-
ducting qualitative evaluation is common practice
in NLP. The Language Interpretability Tool LIT
(Tenney et al., 2020) offers several interactive vi-
sualization techniques for a broad range of NLP
tasks. DeepCompare (Murugesan et al., 2019) sup-
ports visual and interactive performance compari-
son of deep learning models. SummVis (Vig et al.,
2021) and Summary Explorer (Syed et al., 2021)
support qualitative evaluation for the summariza-
tion task. Paper with Code3 platform allows to
track state-of-the-art performance on benchmark
datasets for different NLP tasks. Vis-Eval (Steele
and Specia, 2018), ASIYA (Gonzàlez et al., 2012)
and MT-ComparEval (Klejch et al., 2015) allow for
systematic comparison and evaluation of various
machine translation models.

Visualizing word-level alignments was the aim
of many tools such as Ugarit (Yousef et al., 2022b)
and WA-Continuum (Steele and Specia, 2015),
which visualizes word alignment of automatically
aligned sentences to facilitate their evaluation.
ImaniGooghari et al. (2021) introduced the Par-
allel Corpus Explorer which supports exploring a
word-aligned parallel corpus.

To our best knowledge, EVALIGN is the first
system that allows researchers and practitioners to
qualitatively evaluate the performance of alignment
models on multiple gold standard datasets.

3 Automatic Alignment Models

Automatic translation alignment models can be cat-
egorized into three main categories: Statistical
models such as Giza++, fast_align (Dyer et al.,
2013), and eflomal (Östling and Tiedemann, 2016).
They have been widely used and achieved state-of-
the-art performance until recently and are currently
used as a baseline. However, the performance of
the statistical models is governed by the availability
of training corpora in the form of parallel sentences.
Neural Models utilize neural machine translation
models or multilingual transformer models to cap-
ture word-level translation alignment. Different
workflows are available. For instance, extracting
alignment using embeddings-based semantic simi-
larity by employing pre-trained and fine-tuned mul-
tilingual contextualized embeddings such as SIMA-

3https://paperswithcode.com/

LIGN (Jalili Sabet et al., 2020), AWEASOME
(Dou and Neubig, 2021), XLM-ALIGN (Chi et al.,
2021), and MirrorAlign(Wu et al., 2022). Hybrid
Models combine statistical and neural models aim-
ing for better performance, for instance, by using
the output of statistical models as supervision to
train neural models (Alkhouli et al., 2018).

4 Evaluation

4.1 Alignment Gold Standards

Gold standards are the main components for eval-
uating the performance of NLP models. Devel-
oping alignment gold standards involves multiple
domain experts (at least 2) to avoid any bias in the
manual annotation process. Annotators must fol-
low predefined guidelines to reduce disagreements
and ensure consistency and quality of the manual
alignments. Moreover, Inter-Annotator Agreement
(IAA) can be computed to validate the reliability
and quality of the alignment guidelines and gold
standard. The gold standard dataset is a list of
manually aligned sentences, each sentence has a
list of translation pairs, and each translation pair
is assigned one of two categories, SURE (S) or
POSSIBLE (P ).

Table 1 shows that most literature papers eval-
uated their models mainly on three alignment
datasets, German-English, English-French (Och
and Ney, 2003), and Romanian-English (Mihalcea
and Pedersen, 2003). However, several datasets are
available in various languages (Table 2), but they
have not yet been used for performance evaluation.
For this reason, EVALIGN hosts some of the "un-
used" datasets, and we generated the alignments of
different alignment models for these datasets and
made them available for users for further experi-
ments.

4.2 Evaluation Metrics

In addition to the classical quantitative evaluation
metrics Precision, Recall, and F1; researchers uti-
lize the Alignment Error Rate (AER) (Och and Ney,
2003). These metrics are based on the overlap be-
tween the model’s predictions A with the SURE (S),
and POSSIBLE (P ) alignment sets of the gold stan-
dards (Equation 1). Lambert et al. (2005) studied
the influence of the amount of SURE and POSSI-
BLE alignments in the gold standard on AER and
concluded that AER would be smaller when the
S/P ratio is low, and vice versa. Figure 4 confirms
this conclusion.
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AER = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S| (1)

4.3 Limitations

Evaluating the performance of translation align-
ment models is a complex task, even for humans.
In many cases, it is challenging to tell if an align-
ment between two tokens/phrases is entirely correct
because that relies on several factors, mainly the
text genre, context, translation quality, and human
annotator’s knowledge.

AER is highly affected by the gold standard
dataset, i.e., the selection of sure and possible
translation pairs and their proportions of the whole
dataset. And the gold standard alignments are sub-
ject to the alignment guidelines and annotators’
agreement, which is also influenced by the char-
acteristics of the selected corpus, the annotators’
knowledge, and the target application. That means
it might be possible to have correct alignments pre-
dicted by the models, but the gold standards do
not consider them. Thus, AER will treat them as
incorrect alignments. We encountered such cases
repeatedly while inspecting the existing gold stan-
dard datasets.

AER is intolerant; it considers all tokens equally
important and there is no distinction between func-
tion words and context words. In the example il-
lustrated in Figures 5A and 5C, AER penalizes
a missing alignment of the full-stop the same as
missing alignment of Madrid.

Further, AER fails to capture phrase misalign-
ments. In Figure 5B, the German word auch must
be aligned to the English phrase aswell, producing
two sure alignments auch− as and auch− well.
Nevertheless, If an alignment model aligns only a
part of the phrase, auch − well, this will be con-
sidered a correct alignment, while it is not because
there is no constraint saying that the model must
produce the two sure alignments together in order
to count them as correct alignments. Also, AER
does not consider null-alignments, i.e. tokens with
no translation equivalents in the parallel sentence.
Thus, quantitative evaluation gives an overview of
models’ performance, but it is limited and must be
accompanied by qualitative evaluation.

All these reasons motivated us to develop
EVALIGN. The framework allows users to explore
quantitative evaluation metrics and also provides
the ability to conduct an extensive qualitative evalu-
ation using different interactive visualization views

and filtering options. Additionally, we proposed
two metrics to overcome the limitations above. The
ALIGNMENT COVERAGE represents the portion of
the aligned tokens out of all tokens in the dataset.
It can computed for the gold standard dataset and
for models’ predictions. We compute Coverage as
follows:

Coverage = 1− |Sn|+ |Tn|
|S|+ |T | (2)

Where S and T are the sets of all tokens in the
source and target sentences, respectively, Sn and
Tn are the sets of null-alignments in the source
sentences and target sentences.

The PHRASE ALIGNMENT ACCURACY (PAC)
measures the model’s ability to align phrases.
Phrase alignment appears when a token in one
sentence is aligned to multiple tokens in the
corresponding translation (one-to-many or many-
to-one), or when multiple tokens in one sentence
are aligned to multiple tokens in the corresponding
sentence (many-to-many). Our definition of phrase
does not constrain that the tokens must be consec-
utive. However, the phrase is correctly aligned
if all its tokens are aligned with each other. For
instance, the English phrase public health policy
and the German equivalent Gesundheitspolitik
are aligned correct if, and only if the model
predicts public − Gesundheitspolitik,
health − Gesundheitspolitik and
policy − Gesundheitspolitik pairs. Because all
tokens contribute to the meaning of the phrases,
and missing any token changes the meaning or
make it incomplete. We compute PAC as stated in
Equation 3:

PAC =
|Pm ∩ Pgs|

|Pgs|
(3)

Where Pgs is the aligned phrases set of the gold
standard, and Pm is the set of predicted aligned
phrases by the model. Figure 14 compares the
performance of the best five alignment models on
the German-English dataset, the models use the
fine-tuned mBERT embeddings.

5 Implementation Details

We surveyed the automatic alignment papers pub-
lished after 2019 (Table 1). Most researchers
evaluate their models performance on at least
three benchmark datasets, mainly German-English,
French-English, and Romanian-English. We

279



used these three datasets in addition to six
other datasets ( English-French, English-Spanish,
English-Portuguese, Spanish-French, Portuguese-
Spanish, and Portuguese-French) that have not
been used before for evaluation.

Regarding the alignment models, we selected
embeddings-based Softmax, Entmax (Dou
and Neubig, 2021), Argmax, Itermax, and
Match (Jalili Sabet et al., 2020) with different con-
textualized embeddings, namely, mBERT, XLM-R,
fine-tuned mBERT4, and XLM-Align5 (Chi et al.,
2021). In addition to Giza++, fast_align, and EfLo-
MAl for the datasets DE-EN, EN-FR, and RO-EN.
Our selection was subject to the implementation
availability and reproducibility. We used the de-
fault implementations provided by authors in their
GitHub repositories with the default parameters.
The backend API is implemented using Django and
Postgres database, while the visualization views are
created with React JS and D3.js.

5.1 User Interface

Figure 1 illustrates EVALIGN usage workflow;
users start navigating through the tool by select-
ing a dataset from the landing page, which lists
all hosted benchmark datasets or selecting a model
from the models page, which lists all hosted models
or selecting a model or dataset from the aggregated
overview. EVALIGN offers five main views:

Single Dataset vs Multiple Models (V1). This
view provides a performance overview of the align-
ment models hosted on EVALIGN over the selected
dataset using a bar chart. The overview allows
users to select among different quantitative evalua-
tion metrics, namely, Precision, Recall, F1, AER,
Coverage, PAC, and the number of translation pairs.
The view also visualizes all sentences of the se-
lected dataset using a grid view allowing users to
inspect the possible and sure alignments and assess
their correctness and coverage (Figure 7A) . From
this view, users can select a single model to inspect
its performance on a specific dataset.

Single Model vs Multiple Datasets (V2). This
view provides a summarized performance overview
of the selected alignment model over different
benchmark datasets using a bar chart that allows
switching among different evaluation metrics. Se-

4https://github.com/neulab/awesome-align
5https://huggingface.co/microsoft/

xlm-align-base

lecting a dataset will forward the user to Single
Models vs Single Dataset view.

Single Model vs Single Dataset (V3). This view
offers various corpus-level and sentence level visu-
alization views providing the user with all needed
functions to inspect the the dataset sentences and
explore the alignments predicted by the selected
model. This view aggregate wrong alignments,
missing alignments and correct alignments to facil-
itate the analysis of the model performance. Fur-
ther it shows the relation of the different evaluation
metrics with sentence lengths. The predicted align-
ments are visualized with Grid, Side-by-side, and
Table views. Moreover, it offers various sorting, fil-
tering and searching options to support qualitative
evaluation (Figures 7B and 7C).

Two Models vs Single Dataset (V4). In this view,
users can compare two models at sentence-level us-
ing the Grid and Table view which show the agree-
ment and disagreement between the two models
(figure 7D and 16).

All Models vs all Datasets (V5). In this aggre-
gated view, all hosted datasets and models are pre-
sented in a table. Users can switch between dif-
ferent quantitative metrics with different sorting
options (figure 13).

5.2 Visual Design

EVALIGN offers a variety of corpus and sentence
level visualization views in addition to several
searching and filtering functions. When design-
ing EVALIGN, we consulted the text alignment
visualization survey (Yousef and Jänicke, 2020)
and adapted Schneiderman’s Information Seek-
ing Mantra (Shneiderman, 2003) "Overview first,
zoom and filter, then details-on-demand" to facili-
tate interactive navigation through the benchmark
datasets and alignment models.

5.2.1 Corpus-level Views
Corpus-level views provide comprehensive
overviews of the compared models by visualizing
aggregated statistics and evaluation metrics at the
dataset level. A bar chart on the dataset page will
be shown in the upper left corner, allowing users
to compare available alignment models. A button
bar is located above the bar chart, allowing users
to switch between the evaluation metric. Each
model is assigned a unique color (Figure 6A). A
bar chart on the dataset page is placed in the upper
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Figure 1: Overview of EVALIGN

left corner, allowing users to compare available
alignment models. A button bar is located above
the bar chart, allowing users to switch between
seven evaluation metrics: AER, Precision, Recall,
F1, Number of Translation Pairs, Coverage, and
PAC. Each model is assigned a unique color
(Figure 6A) and hovering a bar will show a tooltip
with the corresponding information.

Selecting a model with a mouse click on the
corresponding bar will load a pie chart that shows
a comparison between the model predictions and
the gold standard. We distinguish among three
sets (Figure 3): i) correct alignments, where the
model predictions match the gold standard, shown
in green. ii) wrong alignments, where the model
failed to align the translation pairs correctly, shown
in red. iii) missing alignments, the pairs the model
was supposed to align, shown in orange. Clicking
on any of the three sets will load the corresponding
translation pairs in the neighbouring table, which
aggregates the translation pairs and shows them
with their frequency. Moreover, the translation
pairs are clickable, and the corresponding gold stan-
dard sentences with sentence-level views will be
displayed when clicked.

Further, users can switch between the pie chart
and the scatter plot, which displays the relation be-
tween the sentence length (x-axis) and the selected
evaluation metric (y-axis) of the selected alignment
model; each sentence is presented as one dot (Fig-
ure 6B). The scatter plot helps users detect outliers
and interesting observations, such as the relation
between the AER and the sentence length. More-

over, a range selector allows filtering of the dataset
by selecting multiple sentences to be visualized
at the sentence level for more detailed inspection.
Further, the evaluation metrics will be calculated
for the selected sentences and displayed under the
scatter plot. This allows users to eliminate subsets
(for example, short or long sentences) and see how
these subsets affect the quantitative evaluation met-
rics. The selected sentences will be displayed as
paginated list of sentence-level views. The tool
provides sorting options according to the selected
metric.

5.2.2 Sentence-level Views

The sentence-level views aim to show the align-
ment among words of the source and target sen-
tences. The framework provides two sentence-
level views, namely, grid view and side-by-side
view. The views are accompanied with a bar chart
showing the sentence-level evaluation metrics of
the hosted models and enabling users to select a
model to visualize its output for the correspond-
ing sentence. The grid view places the two sen-
tences as a grid. The source sentence tokens are
placed vertically, and the target tokens are placed
horizontally. The gold standard Sure and Possible
alignments will be displayed in the corresponding
cells as big and small dots, respectively. The grid
view is suitable for visualizing the alignments of a
single model by coloring the corresponding cells
with the model’s unique color. It is also appropriate
to visualize the alignments of two models and their
agreement (Figure 2).
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Figure 2: A Grid View to visualize the alignment at
sentence level.

The side-by-side view places the two sentences
alongside each other; it utilizes the mouse hover to
highlight the hovered token and the aligned tokens
in the parallel sentence. The current implementa-
tion of this view allows visualizing the alignment
of a single model, and users can switch between
models via a neighboring bar chart.

Figure 3: A Pie Chart shows the overlap between the
model’s predictions and the gold standard in three cat-
egories. The neighboring table shows the translation
pairs with their frequency of a selected category.

6 Usage Scenarios

The framework offers a variety of usage scenarios
that can be summarized as follows:

Gold standard quality control. Visualizing the
gold standard datasets using the Grid View allowed
us to inspect their accuracy and assess their qual-
ity. The analysis of the English-French (EN-FR)
dataset showed that the dataset contains several
single or two token sentences, for which the align-
ment will always be correct (figure 9C-D). More-
over, some sentences occur more than once in the
dataset, and that would affect the evaluation pro-
cess since they increase recall and precision and

consequently reduce AER (figure 9B,C,E). The in-
spection showed that there are several sentences
with plenty of Possible alignments and few or no
Sure alignments (figure 9A,F).

Comparing datasets’ characteristics. Users can
see all hosted datasets on the datasets page with dif-
ferent statistics on the number of sentences, tokens,
sure and possible alignments and their percent-
ages. For instance, the English-French (EN-FR)
dataset has significantly more possible alignments
than sure alignments (figure 15). This explains
why all alignment models have the lowest AER
on this dataset compared to all other datasets. The
same applies to the Romanian-English (RO-EN)
dataset since it only has sure alignments, which
explains why the AER is always higher than the
other datasets.

Comparing model performance with different
configurations. As an example, we compare the
performance of Softmax with two different em-
beddings models,namely, mBERT and a fine-tuned
mBERT, to estimate the improvement achieved
with the fine-tuning process. In addition to compar-
ing all quantitative metrics, the framework allows
filtering sentences where model A outperforms
model B. Figure 2 shows that the fine-tuning en-
hanced the overall alignment accuracy and allowed
to predict two more correct Sure alignments and
eliminate two incorrect ones.

Comparing quantitative metrics. The frame-
work provides different options to compare the
models performance using different quantitative
metrics at corpus and sentence levels using bar
chart and table views. The aggregated results in the
table view (V5) reveals that the fine-tuned mBert
achieved the best results in all datasets regarding
AER. While Itermax achieved the best Recall
on all datasets, Argmax with fine-tuned mBert
embeddings achieved best precision on 7 datasets
and second best precision on 2 datasets. Further,
Itermax with the fine-tuned mBERT embeddings
achieved the best Phrase Alignment Accuracy on
all datasets. The Match algorithm generates more
translation pairs than all other algorithms, and
Entmax with XLM-RoBERTa embeddings gen-
erates always less translation pairs that all other
algorithms.

Analyzing alignment errors. From the pie chart
provided for the Single Dataset – Single Model
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view (figure 3), we can click on the red arc that
represents the wrong alignment pairs to list all in-
correct pairs produced by the model. Our analysis
of Itermax with the fine-tuned mBert model on
the German-English (DE-EN) dataset revealed the
following:
- The most frequent wrong pairs involve a punctua-
tion mark in one or both languages. However, such
issues can be avoided by adding constraints that
prevent aligning punctuation to a word (Figure 18).

- Long sentences with repeated tokens are more
likely to produce incorrect alignments despite that
the pairs are correct translations, but their positions
in the two sentences do not correspond (Figure 19).

- The majority of wrong pairs are function words,
such as articles, pronouns, prepositions, and con-
junctions, and most of them are semantically cor-
rect translations such as (nicht - not) (Figure 12C).

- The German-English (DE-EN) dataset contains
incorrect alignments. For instance, in sentence 10,
the model generated the correct pair präzise - pre-
cise. However, it is classified as wrong because the
gold standard aligns präzise with very and sind
with precise, which is incorrect. Moreover, some
sentences are not entirely aligned, and many to-
kens are left. For example, in sentence 40 (Figure
8), there are many correct translation pairs pre-
dicted by the model such as Soziale− social and
Sicherheit− security, but they are not included
in the gold standard. However, these errors are
not model-specific but apply to different alignment
models and datasets (Figure 11).

7 Conclusion

Evaluating translation alignment models is a non-
trivial task. Qualitative evaluation is needed be-
cause quantitative evaluation metrics do not reflect
the real quality of the alignment models due to
many factors. For this purpose, we presented the
framework EVALIGN that supports quantitative and
qualitative evaluation of automatic alignment sys-
tems. EVALIGN hosts several evaluation datasets
and various alignment models. It offers different
visualization views and filtering functions to help
users to investigate alignment datasets and models
and conduct various quality analyses. Moreover,
we presented different usage scenarios that show-
case the use and effectiveness of the tool.

Our analyses revealed that gold standard
datasets, especially the German-English (DE-EN)

and French-English (FR-EN), which have been
used almost in all related works on automatic align-
ment, contain plenty of errors and need to be re-
vised and corrected by linguists and domain experts.
In future work, we aim to incorporate morphologi-
cal features such as POS, lemma and named entities
to assess model performances and classify align-
ment errors.

Finally, we will keep the tool updated by adding
new datasets and/or models, and we encourage re-
searchers to send us the output of their new models
to publish them on EVALIGN. A short video
demonstrating the tool is available on youtube
https://youtu.be/hfii6xObktw

Limitations

Some literature papers do not share the source
code or their models’ output. Therefore, we could
not host their models on EVALIGN. Also, not all
datasets mentioned in the literature are accessible.

Regarding the visualization views, the current
tool implementation allows for comparing two
alignment models simultaneously at the sentence
level. Also, the sentence-level side-by-side visual-
ize only one model’s alignments. The view does
not allow comparing two or more models. The grid
view is not suitable for long sentences.

Ethics Statement

The datasets hosted on EVALIGN are downloaded
from their authors’ websites. The datasets are well-
known and have been used for evaluation in most
literature papers. Model predictions are generated
using the code published on developers’ Github
repositories. We have not retrained or fine-tuned
any language models and used the publicly avail-
able language models on Huggingface. The tool
offers visualization views to facilitate the perfor-
mance evaluation to get a better understanding of
models’ behaviours.
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Paper EN-CZ EN-DE EN-FR EN-HI EN-RO EN-JA EN-ZH EN-IC EN-VI EN-FA EN-AR
(Stengel-Eskin et al., 2019) x x
(Garg et al., 2019) x x x
(Ding et al., 2019) x x x
(Jalili Sabet et al., 2020) x x x x x x
(Zenkel et al., 2020) x x x
(Chen et al., 2020) x x x x
(Ho and Yvon, 2020) x x
(Xu and Hong, 2020) x x x
(Nagata et al., 2020) x x x x x
(Dou and Neubig, 2021) x x x x x
(Zouhar and Pylypenko, 2021) x x
(Steingrímsson et al., 2021) x x x x
(Marchisio et al., 2021) x x x
(Ngo Ho and Yvon, 2021) x x x x x x
(Chen et al., 2021) x x x x
(Chi et al., 2021) x x x x
(Wu et al., 2022) x x x

Table 1: An overview of gold standard datasets that have been used for performance evaluation in the literature
papers.

Source Language Pair # Sentences IAA Text Type
(Och and Ney, 2000) English-German 508 Verbmobil

Romanian-English 248
(Mihalcea and Pedersen, 2003)

English-French 447 Hansard
(Lambert et al., 2005) English-Spanish 500 Europarl
(Kruijff-Korbayová et al., 2006) Czech-English 2400 93% Penn Treebank corpus (WSJ)

English-Portuguese 100 89.5 % Europarl
English-Spanish 100 86.7 % Europarl
English-French 100 90.8 % Europarl
Portuguese-Spanish 100 93.2 % Europarl
Portuguese-French 100 93.5 % Europarl

(Graca et al., 2008)

Spanish-French 100 96.5 % Europarl

(Macken, 2010) Dutch-English 1500 84-94 %
Journalistic texts, Newsletters,

and Medical Reports
(Holmqvist and Ahrenberg, 2011) English–Swedish 1164 91.3% Europarl
(Steingrímsson et al., 2021) Icelandic-English 604 ParIce Corpus6 Project7

Ancient Greek-English 275 86.17% Perseus Digital Library
(Yousef et al., 2022a)

Ancient Greek-Portuguese 183 83.31% Perseus Digital Library
(Yousef et al., 2022c) Ancient Greek-Latin 100 90.50% DFHG Project8

(Han and Thida, 2019) Myanmar-English 500 91.56% Myanmar- English ALT parallel corpus

Table 2: An overview of the existing alignment gold standard datasets.
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Figure 4: The correlation between AER and S/P Ratio. The alignment model used for this illustration uses Argmax
method with fine-tuned mBERT Embeddings.

Figure 5: AER Limitations, the bold circles means gold standard sure alignments and colored cells represent model’s
output. A) The model failed to align Madrid. B) The model failed to align auch to as well. C) The model failed to
align ".". D) The model aligned "." incorrectly.
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Figure 6: Single Dataset-Single Model view, A) Bar Char to compare the performance of different alignment models
according to a selected metric. B) Scatter Plot shows the relation between sentences length and the selected metric.

289



Figure 7: Sentence-level views, A) The default view when no model is selected, showing the sure (big dots) and
possible (small dots) alignments. B) Visualizing the alignment of one model. C) the side-by-side view. D) the gird
view visualizing the alignments of two models and their agreement.
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Figure 8: Sentence 40 in the DE-EN dataset, an example of incorrect/incomplete annotation of the gold standard
sentence. The model predicts correct translation pairs but they are counted incorrect since they are not included in
the gold standard.
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Figure 9: Examples from the EN-FR dataset. A) Sentence 0027 with too many possible links. B) This sentence is
repeated 4 times in the datasets in sentences 0007, 0008, 0045, and 0046. C) This sentence is repeated twice in
sentences 0001 and 0002. D) Sentence 0011, another example of short sentences with a number and a full stop. E)
Short sentence with non-informative tokens repeated 3 times in sentences 0003, 0004, and 0005. F) Sentence 0223,
another example of sentences with too many possible links.
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Figure 10: Sentence 202 in the DE-EN dataset, an example of incorrect/incomplete annotation of the gold standard
sentence.
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Figure 11: Sentence 101 in the RO-EN dataset; An example of incorrect/incomplete annotation of the gold standard
sentence. The Romanian word mollioane is translated to million but the gold standard aligns the word de to million
instead. Moreover, the sentence is not entirely aligned.
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Figure 12: Frequent Alignment Errors, A) The alignment produced by XLMAlign_Argmax on RO-EN dataset. B) The
alignment produced by XLMAlign_Argmax on EN-FR dataset. C) The alignment produced by XLMAlign_Argmax
on DE-EN dataset.
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Figure 13: Aggregated table view allows to compare the quantitative metrics of all models on all datasets.

Figure 14: Comparison among five alignment models on the German-English dataset regarding AER and PAC.
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Figure 15: A dataset card contains all related informa-
tion such as languages, number of tokens, sentences,
Sure, and Possible pairs

Figure 16: Table View shows the agreement of two
models predictions at sentence level. Sentence 1 form
DE-EN dataset

Figure 17: Sentence 46 from DE-EN, comparing two
models at sentence level.

Figure 18: Frequent alignment errors produced
Itermax model and fine-tuned mBert model on the
DE-EN dataset.

Figure 19: Sentence 127 from DE-EN, incorrect align-
ment of repeated tokens

297



Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
System Demonstrations, pages 298–306

May 2-4, 2023 ©2023 Association for Computational Linguistics

ALLECS: A Lightweight Language Error Correction System

Muhammad Reza Qorib, Geonsik Moon, and Hwee Tou Ng
Department of Computer Science, National University of Singapore

mrqorib@comp.nus.edu.sg, moon97@nus.edu.sg, nght@comp.nus.edu.sg

Abstract

In this paper, we present ALLECS, a
lightweight web application to serve grammati-
cal error correction (GEC) systems so that they
can be easily used by the general public. We de-
sign ALLECS to be accessible to as many users
as possible, including users who have a slow
Internet connection and who use mobile phones
as their main devices to connect to the Internet.
ALLECS provides three state-of-the-art base
GEC systems using two approaches (sequence-
to-sequence generation and sequence tagging),
as well as two state-of-the-art GEC system com-
bination methods using two approaches (edit-
based and text-based). ALLECS can be ac-
cessed at https://sterling8.d2.comp.nus.
edu.sg/gec-demo/1.

1 Introduction

English has become the de facto language for inter-
national discourse, spoken by approximately more
than 1.4 billion speakers, with almost 75% of them
being non-native speakers (Eberhard et al., 2022).
As the number of English-as-a-second-language
(ESL) and English-as-a-foreign-language (EFL)
speakers keeps increasing, the need for automated
tools to assist ESL and EFL speakers in learning
and writing English also increases in tandem.

Grammatical Error Correction (GEC) is a task
that aims to automatically detect and correct er-
rors that are present in a text, including grammati-
cal errors, orthographic errors, misspellings, word
choice errors, etc. (Ng et al., 2014; Bryant et al.,
2022). GEC tools have a wide range of applica-
tions, including helping native speakers to correct
their occasional mistakes, assisting language learn-
ers (Knutsson et al., 2003; Chollampatt et al., 2016;
Nadejde and Tetreault, 2019; Katinskaia and Yan-
garber, 2021), and improving the quality of other

1The source code and a video demonstration of ALLECS
can be accessed at https://github.com/nusnlp/ALLECS.

natural language processing (NLP) tasks (Yin et al.,
2020; Liao et al., 2022).

GEC experienced significant progress in the last
decade thanks to the HOO (Dale and Kilgarriff,
2011), CoNLL-2013 (Ng et al., 2013), CoNLL-
2014 (Ng et al., 2014), and BEA-2019 (Bryant
et al., 2019) shared tasks. Qorib and Ng (2022)
reported that state-of-the-art GEC systems have ex-
ceeded human-level performance based on the stan-
dard evaluation metric, F0.5 score. With the rapid
progress in GEC, different approaches emerged to
achieve state-of-the-art performance, including sys-
tem combination (Qorib et al., 2022), sequence tag-
ging (Lai et al., 2022), and sequence-to-sequence
generation (Rothe et al., 2021). Even though many
GEC systems publicly publish their source code
along with their trained models, these systems can
typically only be run through a command-line in-
terface on a highly capable computing resource.
Command-line interface is not easy to navigate for
non-technical people and few people have access
to a capable computing resource. These factors
become a formidable barrier for the general public
to benefit from the research progress of GEC.

In this paper, we present ALLECS (A
Lightweight Language Error Correction System), a
simple system to release GEC models to the general
public with a lightweight web-based interface. Our
web interface only requires 2.5 KB of data transfer
overhead for each run. This means that ALLECS
can be readily used by users in developing coun-
tries with slow Internet connections (Delaporte and
Bahia, 2020). Furthermore, we use a responsive
design for the web interface, allowing it to be run
comfortably on devices with various screen dimen-
sions and sizes. This allows users to use the system
through a mobile phone, which is the dominant
device type to connect to the Internet in developing
countries (Glushkova et al., 2019). Usability is im-
portant for people living in developing countries,
as they are the ones who can benefit the most from
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Figure 1: The user interface of ALLECS

a GEC system.

ALLECS can easily host GEC systems using dif-
ferent approaches, including system combination.
Currently, ALLECS hosts two sequence-tagging
base models, one sequence-to-sequence generation
base model, and two combination methods. We
briefly explain the base systems we use in AL-
LECS in Section 3. ALLECS also easily allows
the addition of other base models. To the best of
our knowledge, ALLECS is the first web applica-
tion with a graphical user interface for GEC system
combination methods.

2 System Overview

The interface of ALLECS consists of five compo-
nents, which are base model selection, combination
method selection, output mode, input text box, and
output text box. The user interface of ALLECS is
shown in Figure 1.

2.1 Base model selection

The user first needs to choose the base model(s). If
the user chooses more than one base model, AL-
LECS will run a system combination method based
on the combination method selected, as described
in the next section. ALLECS includes three state-
of-the-art GEC systems as the base models: GEC-
ToR Roberta (Omelianchuk et al., 2020), GECToR
XLNet (Omelianchuk et al., 2020), and T5-Large
(Rothe et al., 2021). We describe the base systems
in more detail in Section 3.

2.2 Combination method selection

Next, the user needs to choose the combination
method. If the user only chooses one base sys-
tem, the selected combination method is ignored.
ALLECS includes two state-of-the-art system com-
bination methods, ESC (Qorib et al., 2022) and
MEMT (Heafield and Lavie, 2010). We describe
the system combination methods in more detail in
Section 3.

2.3 Output mode

Users can choose to highlight the corrections by se-
lecting the “Highlight corrections” box. If the user
chooses to highlight the corrections, text spans in
the output text that are different from the input text
are highlighted in blue and a simple explanation of
each correction can be displayed by clicking a high-
lighted text span. The appearance of highlighted
corrections can be seen in Figure 2. Displaying
corrections with simple explanations can help lan-
guage learners to understand their mistakes better.
We extracted the corrections with their edit types
using ERRANT (Bryant et al., 2017).

2.4 Input text box

The user needs to put the text he wants to correct
in the input text box and clicks the run button. The
corrected text will then be displayed in the output
text box. Most recent GEC base systems expect the
input to be a single sentence tokenized with SpaCy
(Honnibal et al., 2020) version 1.9, following the
requirement from the BEA-2019 shared task. As
such, an input text needs to be segmented into sen-
tences and then tokenized with SpaCy before each
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Figure 2: Text spans displayed in blue are the corrections made by the GEC system. A vertical blue bar without
any text inside denotes text deletion. When a blue highlight or a blue bar is clicked, a simple explanation of the
correction is shown.

sentence is given as the input to the GEC model.
To retain the text structure, it is first split by line
before segmented into sentences. This way, we
can keep the information on which line a sentence
should be printed. To segment a text into sentences,
we follow the practice used in the NUCLE corpus
(Dahlmeier et al., 2013) by using the nltk Punkt
tokenizer (Bird and Loper, 2004; Kiss and Strunk,
2006).

2.5 Output text box

After a text is entered into the input text box and
the “Run” button is clicked, the corrected text will
appear in the output text box. As the base GEC
systems are expected to work on tokenized input
and output, the output text needs to be detokenized
to look more natural. Since SpaCy does not have a
detokenizer and the document context of the origi-
nal input may no longer be relevant after a sentence
is corrected, we use Moses (Koehn et al., 2007) to
detokenize a sentence. We found that Moses can
detokenize a sentence that is tokenized by SpaCy
reasonably well, only missing some cases like the
detokenization of “is n’t” and “are n’t” and remov-
ing spaces around hyphens. For these missed cases,
we create simple rules to apply string replacement
after Moses detokenization. Detokenization is not
applied if the user chooses to highlight the correc-
tions because the highlights need some room to
make them clearly visible.

3 GEC Base Systems and Combination
Methods

In ALLECS, we provide three base systems
and two system combination methods. The
base systems we provide come from two ap-
proaches, sequence-to-sequence generation (T5-
Large) and sequence tagging (GECToR). The com-
bination methods we provide also come from
two approaches, edit-based (ESC) and text-based
(MEMT) combination. The performance of the
base systems and the combination methods on the
BEA-2019 development set, CoNLL-2014 test set,
and BEA-2019 test set is presented in Table 1. The
scores of the base systems are presented in the top
part of the table while the scores of the combination
methods when combining the three base systems
are presented in the bottom part.

3.1 T5-Large

T5 (Text-To-Text Transfer Transformer) (Raffel
et al., 2020) is a large transformer model trained
with a unified framework that converts all text-
based language tasks into a text-to-text format. T5
is a sequence-to-sequence model with an architec-
ture similar to the original Transformer (Vaswani
et al., 2017).

Rothe et al. (2021) adapt T5 for grammatical
error correction by fine-tuning the model on a
new dataset they released, cLang-8. The cLang-8
dataset is made from re-labeling the Lang-8 dataset
(Mizumoto et al., 2011; Tajiri et al., 2012), using a
large model that is pre-trained with 50 billion doc-
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BEA-2019 Dev CoNLL-2014 BEA-2019 Test
Model P R F0.5 P R F0.5 P R F0.5
1. T5-Large 60.38 44.04 56.21 72.84 51.62 67.30 74.30 66.75 72.66
2. GECToR XLNet 66.00 34.14 55.62 77.49 40.15 65.34 79.20 53.90 72.40
3. GECToR Roberta 62.37 35.52 54.18 73.91 41.66 64.00 77.20 55.10 71.50
ESC 72.24 37.29 60.84 81.72 42.04 68.74 85.71 57.45 78.04
MEMT 61.82 44.02 57.19 70.64 50.20 65.32 75.41 66.44 73.42

Table 1: The top rows report the performance of the GEC systems that are provided as the base systems in
ALLECS, while the bottom rows report the performance of the GEC system combination methods that are provided
in ALLECS when combining the three base systems above.

uments from 101 languages and trained with the
BEA-2019 training data. See (Rothe et al., 2021)
for more details.

The T5 authors released the code2 to train the
GEC model but not their trained model. We use
their original code to train the GEC base model
using their hyper-parameter values3.

3.2 GECToR

GECToR models GEC as a sequence tagging task
by defining a set of token transformations. They
defined two types of token transformations: basic
transformations and g-transformations. The ba-
sic transformations include the keep, delete, and
token-dependent append and replace transforma-
tions. The g-transformations are task-specific trans-
formations such as merging two words, changing
the verb form, changing the noun number, etc.

GECToR was built by fine-tuning a large pre-
trained model in three rounds of training. In the
first round, they trained the model on 9M sentence
pairs of synthetic data. In the last two rounds, the
model is further trained on the BEA-2019 training
data. At inference time, GECToR runs iteratively
for a number of rounds. This helps to increase both
precision and recall of the corrections. Despite
running the inference multiple times, GECToR’s
inference speed is up to 10 times faster compared to
models using the sequence-to-sequence approach.
See (Omelianchuk et al., 2020) for more details.

In ALLECS, we use the XLNet and Roberta ver-
sions of GECToR, as the ensemble of these models
produces the highest scores. We use the original
source code and model weights4 in ALLECS.

2https://github.com/google-research/
text-to-text-transfer-transformer/

3https://github.com/google-research-datasets/
clang8/issues/3#issuecomment-913682092

4https://github.com/grammarly/gector/tree/
fea1532608

3.3 ESC
ESC is a system combination method that formu-
lates the combination task as binary classification.
ESC takes the union of all edits from the base sys-
tems and generates the features for each edit based
on its edit type and inclusion in the base systems.
ESC uses logistic regression to predict the probabil-
ity that an edit is correct, and filters the edits based
on a threshold and a greedy selection method.

At the time of writing, ESC is the highest-
scoring GEC system on the CoNLL-2014 test
set and the BEA-2019 test set, by combining
T5-Large (Rothe et al., 2021), GECToR XLNet
(Omelianchuk et al., 2020), GECToR Roberta
(Omelianchuk et al., 2020), Riken & Tohoku (Kiy-
ono et al., 2019), UEDIN-MS (Grundkiewicz et al.,
2019), and Kakao&Bain (Choe et al., 2019). In
ALLECS, for simplicity, we only provide the top
three base systems since the performance of the
ensemble of these three systems is still highly com-
petitive with other state-of-the-art systems. We use
ESC’s original code5 but slightly modify it to take
inputs stored in memory rather than reading them
from files. We then train the ensemble model for
all possible base system configurations.

3.4 MEMT
MEMT is a system combination method that com-
bines the base models’ outputs by first aligning
them and generating all possible candidate sen-
tences based on the token alignment. Candidate
generation has some constraints, such as no repe-
tition, weak monotonicity, and completeness. For
each candidate sentence, MEMT generates the fea-
tures based on the language model score, n-gram
similarity to each base model’s output, and the
sentence length. MEMT then learns the weights
to score the features and uses the trained weights

5https://github.com/nusnlp/esc
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to find the highest-scoring candidate sentence via
beam search during inference.

MEMT was originally designed for combin-
ing machine translation models, but Susanto et al.
(2014) have demonstrated that MEMT can effec-
tively combine GEC models as well. In ALLECS,
we use MEMT’s original code6 and train the en-
semble model for all possible base system configu-
rations.

4 System Design and Implementation

To make ALLECS more modular, we design it
to have two parts: the web interface (front-end)
and the base models’ API (back-end). The web
interface accepts a user’s input text and handles
the pre-processing and post-processing, while the
base models’ API focuses on generating a corrected
sentence from the pre-processed input. This sep-
aration allows the base models’ API to run on a
GPU-powered server while the web interface runs
on a CPU-focused server. However, both parts can
also be run on the same server.

As Python has become the dominant program-
ming language of choice for most NLP research
projects, we develop ALLECS in Python. This
makes ALLECS highly extensible such that it can
be used to host new GEC systems in the future.
The separation between the front-end and back-
end parts also allows ALLECS to host other base
models that are written in a different program-
ming language or use different library dependen-
cies. This also allows the web interface to work
with other closed-source GEC models, as long as a
GEC model provides an API to generate a corrected
sentence.

We describe the process flow of ALLECS in
Figure 3. All inputs are first split by line and seg-
mented into sentences. The line index for each
sentence is recorded to retain the text structure in
the output. Then, the web interface tokenizes the
sentences and combines them into mini-batches to
be sent to the base models’ API. If the user chooses
to highlight the corrections or combine multiple
base models with ESC, the web interface will also
use ERRANT to parse the input sentences. Af-
ter receiving the output sentences from each base
model, the interface will then parse the base mod-
els’ outputs using ERRANT if the user chooses to
highlight corrections or use ESC. If not, the outputs
are sent to MEMT if the user chooses to combine

6https://github.com/kpu/memt

the models with MEMT. Otherwise, the output sen-
tences are directly detokenized. Detokenization
also applies to the combination method’s output if
the user selects more than one base model.

The correction speed of ALLECS is fast. Run-
ning on an NVIDIA Titan X GPU server with 12GB
memory, GECToR Roberta can correct text at a
speed of 723 words per second, GECToR XLNet at
640 words per second, and T5-Large at 37 words
per second. Using ESC to combine base systems
only adds a small amount of overhead. For exam-
ple, using ESC to combine GECToR Roberta and
T5-Large can correct text at a speed of 32 words
per second, marginally slower than using T5-Large
alone.

Figure 3: The process flow of ALLECS.

4.1 Web interface

We use flask version 2.0.37 and Bootstrap version
58 frameworks to develop the web interface. Boot-
strap is a lightweight CSS and JavaScript frame-
work that helps developers to design an interface
with accessibility in mind, building a responsive
layout and conforming with Web Content Acces-
sibility Guideline (WCAG) 2.1. We design the
web interface to only use colors with a contrast
ratio above 4.5:19. The web interface also works
well when zoomed to 200%10 and can be used with

7https://flask.palletsprojects.com/en/2.0.x/
8https://getbootstrap.com/docs/5.0/

getting-started/introduction/
9Conforming to WCAG 2.1 minimum contrast recommen-

dation https://w3.org/TR/WCAG/#contrast-minimum
10Conforming to WCAG 2.1 resize text recommendation

https://www.w3.org/TR/WCAG/#resize-text
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different screen dimensions and sizes11. With the
responsive design, the position of the output box is
moved to the bottom of the input box when opened
from a screen with smaller size or with vertical
orientation, such as on mobile phones, as shown in
Figure 4.

Figure 4: The interface layout on a vertical screen such
as a mobile phone.

4.2 Base models’ API
The base models’ API hosts all base systems in
ALLECS. The base models’ API first loads each
base system on different GPUs at start time. This
approach makes the application persistently uses
a large amount of GPU memory but allows much
faster inference. We build the base models’ API
using flask version 2.0.3 and flask RESTful version
0.3.912 frameworks. The base models’ API serves
an API with the HTTP POST request method, ex-
pecting a JSON that contains a list of sentences
on the keyword “text_input_list”, and returns a
JSON that contains a list of corrected sentences
with the same length as the input list, on the key-
word “text_output_list”. Adding new base systems
to ALLECS only requires changing a few lines of
code.

5 Related Work

There are some ready-to-use web services for cor-
recting English text such as services from Gram-

11Conforming to WCAG 2.1 orientation recommendation
https://www.w3.org/TR/WCAG/#orientation

12https://flask-restful.readthedocs.io/en/
latest/

marly13 and John Snow Labs14, but those web ser-
vices are not open-source. Thus, they are not cus-
tomizable for deploying different GEC systems.
In this section, we will discuss the comparison
of ALLECS to other open-source English correc-
tion tools, namely GECko+ (Calò et al., 2021) and
MiSS (Li et al., 2021).

5.1 GECko+

GECko+ (Calò et al., 2021) is a grammatical and
discourse correction tool that combines a sentence-
level GEC model, GECToR XLNet, and a sentence
ordering model (Prabhumoye et al., 2020). When a
user inputs a text into the system, it segments the
text into sentences and corrects the sentences with
GECToR before re-ordering them by the sentence
ordering model.

Compared to ALLECS, GECko+ lacks the op-
tions of choosing the GEC base models and using
system combination methods. It is also unclear how
easy it is to extend GECko+ to other GEC systems.
ALLECS does not include a sentence re-ordering
model because it focuses on grammatical error cor-
rection, and re-ordering sentences can confuse the
user and makes it harder for the user to learn from
the corrections.

5.2 MiSS

MiSS (Li et al., 2021) is a comprehensive tool for
machine translation that includes grammatical error
correction as a feature. The main machine transla-
tion features of MiSS include: basic machine trans-
lation, simultaneous machine translation, and back-
translation for quality evaluation. For the GEC
part, it uses GECToR XLNet for English GEC and
GECToR with BERT-chinese and BERT-japanese
models for Chinese and Japanese GEC respectively.

Compared to ALLECS, MiSS also lacks the op-
tions of choosing the GEC base models and using
system combination methods. It is also unclear how
easy it is to extend MiSS to other GEC systems.

6 Conclusion

We have presented ALLECS, a web-based applica-
tion for GEC that can be easily used by the general
public. We design ALLECS to be accessible to as
many users as possible, including users who have
a slow Internet connection and who use mobile

13https://www.grammarly.com/
14https://demo.johnsnowlabs.com/public/T5_

LINGUISTIC/
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phones as their main devices to connect to the Inter-
net. In ALLECS, we provide three base GEC sys-
tems using two types of approaches, sequence-to-
sequence generation and sequence tagging, as well
as two GEC system combination methods from
two types of approaches, edit-based and text-based
combination. ALLECS is separated into two parts
to make the application modular and easily extensi-
ble to other base GEC systems.

Limitations

ALLECS is currently limited to English GEC sys-
tems, but it can be extended to other languages
by incorporating base GEC models for other lan-
guages and modifying the pre-processing and post-
processing steps.
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Abstract

Electronic Medical Records are integral parts
of modern healthcare. Part of the records are
clinical notes that healthcare providers take dur-
ing encounters with patients. Notes are key to
differential analysis which is the reasoning pro-
cess leading to diagnosis and treatment. This
paper presents DAVE, a differential analysis au-
tomation and visualization to assist healthcare
professionals through the differential analysis
process. DAVE takes as input clinical notes
as they are being written by professionals and
suggests candidate diagnostic algorithms. We
digitized textbook diagnostic algorithms into
directed acyclic graphs. We trained a distri-
butional semantics model using an annotated
corpora of electronic medical records and text
from diagnostic algorithm descriptions. The
model, boosted with PUBMed-based semantic
similarity metrics, ranks the diagnostic algo-
rithm graphs and suggests the top three. The
model achieved 74.3% success rate and was
highly accepted by multiple medical profes-
sionals for usability.

1 Introduction

Information reported in electronic medical records
(EMRs) revolutionized medical language research.
Healthcare providers follow specific procedures in
the process of caring for and managing a patient.
The clinical assessment starts by noting the chief
complaints of the patient and the purpose of the
visit. This step is followed by a review of family
history and symptoms. The healthcare providers
document the aforementioned information in clini-
cal notes embedded in an EMR. They proceed with
differential analysis leading to a diagnosis of the
case on hand and a declaration of the future actions
to be taken.

The adequate decision comes from following
a specific set of evidence-based diagnostic algo-
rithms that medical professionals learn during their
education and training. These algorithms are de-

Figure 1: Diagnostic algorithm extracted from “Symp-
tom to Diagnosis: An Evidence-based Guide”

cision diagrams whose top nodes are labeled with
markers and identifiers that occur typically in the
chief complaints.

The algorithms lead the healthcare providers
with a series of choice nodes reaching to the leaves
which typically dictate the diagnosis and the treat-
ment plan. Intermediary nodes in the algorithms
describe lab tests, medication prescriptions, spe-
cial treatments, and life-style changes among other
actions. The healthcare providers select the algo-
rithms to follow after assessing the situation from
discussions with the patient, initial clinical tests
and documentation in the clinical notes and EMRs.

They select and follow the algorithm that best
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matches the encountered case. They traverse the
decision diagram of the algorithm, come up with
an adequate diagnosis, and declare further actions
to be taken.

The healthcare provider documents the informa-
tion collecting during the encounter with the patient
in a clinical note summarizing the process from the
initial complaint to the actual outcomes. Our aim is
to assist the healthcare professionals in the process
of coming up with adequate diagnosis by filtering
out the top three diagnostic algorithms matching
their notes and visualizing them.

In this paper, we present DAVE (Differential
Analysis Visualizer for EMRs), a system that au-
tomates the selection and visualization process of
the diagnostic algorithms. DAVE alleviates health-
care providers from the tedious tasks that require
remembering and visualizing the graphs. It also
simplifies the decision-making process involved in
the diagnostic differential analysis (DDA) phase.
DDA consists of analyzing in real time the input
notes and selecting the most suitable algorithms.

We developed and fine-tuned DAVE via training
on pre-existing curated datasets. We leveraged an
annotated corpora of electronic medical records
collected from AUBMC and the Hariri Medical
Center in Beirut, Lebanon. The corpora consist
of 151,930 total medical notes focused on family
medicine. All the notes are annotated with diag-
nostic codes and treatment plans that annotate the
whole record. A subset of 3,616 of the notes are
richly annotated with textual annotations referring
to textual elements in the note itself.

DAVE also leverages digitized clinical diagnos-
tic algorithms extracted from medical books: “The
Patient History: Evidence-Based Approach” (Hen-
derson et al., 2012a) and “Symptom to Diagnosis:
An Evidence-based Guide” (Stern et al., 2019).
These textbook algorithms represent the steps that
need to be taken to determine and treat a specific
healthcare condition. Our method involves cross-
document analysis based on cross-referencing elec-
tronic medical record entities. This aims at extract-
ing diagnosis indicators from the notes using natu-
ral language processing (NLP) and computational
linguistics (CL).

We presented DAVE to a number of medical pro-
fessionals, physicians, and medical IT experts and
received overwhelmingly positive feedback. We
demonstrated the project to three physicians and
interviewed them about usability and functionality.

After using DAVE, they provided positive feed-
back and emphasized its usefulness, particularly
for students, nurses, and young physicians. We
also interviewed the head of IT at AUBMC, a well-
established medical center, and her team. She also
praised the software and encouraged its integration
within the medical center for professional use.

2 Related Work

Information extraction (IE) from EMR has become
a crucial tool to progress medical and clinical prac-
tice research since the emergence of digital records.
The understanding gained from this data has a sig-
nificant positive impact on current medical research.
For this reason , a number of studies and initiatives
have looked into the best ways of extracting data
from medical records. Rule-based algorithms, ma-
chine learning (ML) models and keyword-based
search are the major methodologies used in IE from
EMRs, with rule-based models being the most ac-
curate but most time consuming to build. This is
due to the fact that the rules express accurately
the direct knowledge and experience of healthcare
professionals (Ford et al., 2016; Wang et al., 2018).

Several reviews discussed the different ap-
proaches used for IE in the medical field (Ford
et al., 2016; Wang et al., 2018; Deléger et al.,
2010). DAVE will be built using ML as its core.
It will mimic the behavior of rule-based methods
by capturing insight from clinical diagnostic books.
It avoids the cost of rule-based approaches since
healthcare professionals will not have to manually
provide rules.

The work (B.Sharafeddin, 2020) introduced a
model for the automation of the process of diag-
nostic extraction from clinical notes. It matches
unstructured de-identified medical notes to medi-
cal diagnostic algorithms using a cross-document
analysis method. The model uses the diagnostic
algorithms (Henderson et al., 2012b) from medical
books to build Bayesian Networks corresponding
to every diagnosis case. In these networks, nodes
are interrelated by informational dependencies.In
other words, each node is given a conditional prob-
ability depending on the probability of its parent
(Pearl, 2011).

Afterwards, it calculates the distributional simi-
larity for the words in the electronic medical notes
and United States Medical Licensing Examination
(USMLE) questions using DISCO (extracting DIs-
tributionally related words using CO-occurrences)
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(Kolb, 2008).
This method allows the extraction of diagno-

sis indicators by retrieving the semantic simi-
larity between words and phrases in large text
fields to create sets of similar words for every
word (B.Sharafeddin, 2020).

In order to compute semantic similarity, we
also used DISCO, also known as the KOLB (af-
ter Peter Kolb) vector similarity. DISCO retrieves
the most semantically similar words for an input
word (Kolb, 2008). It is accompanied with the
DISCO builder tool (DBuilder). The latter creates a
database of contextually similar words, given a text
corpus. Prior to the actual build, DBuilder recom-
mends configuring the corpus to the given format to
ensure the best possible outcome. DBuilder accepts
lemmatized or tokenized input in single or multiple
files. Larger contexts (or paragraphs as referred to
by the documentation) should be specified using
tags. DBuilder takes care of excluding stop-words
from the context as they can contribute to noise. It
is also important to specify the size of the context
each word should be taken in when configuring
the builder instance. (Kolb, 2008). Giving a ±3
to the context window will check the surrounding
three words from the right and left of each target
term. Subsequently, DBuilder creates a matrix of
co-occurrences in which each row describes a spe-
cific word.

The size of the resulting matrix would be n ×
m× r where n denotes the number of words in the
corpus, m denotes the number of words used as
features and r is the window size.

Equation 1 is used to provide meaningful
weights for the features in which w, and w′ stand
for words, r stands for the window size, − within
functional parameters stands for dependency rela-
tion and f is the frequency of occurrence.

log(((f(w, r, w′)− 0.95) ∗ f(−, r,−))

f(w, r,−) ∗ f(−, r, w′))
(1)

The information theory based Lin’s measure is
then used for the comparison of every word vec-
tor with all other word vectors to create a distri-
butional similarity scheme between all the words
(Kolb, 2008).

Negated words present in the medical notes lead
to faulty results when matching them to the corre-
sponding diagnostic algorithm in our work. The
ConText algorithm provides an approach to deal
with negated words by employing a specific scope

of its trigger terms. Once medical conditions are
indexed, the algorithm assigns three contextual
properties to each condition being (i) Negation,
(ii) Temporality and (iii) Experiencer. Negation
can be either negated or affirmed. Temporality can
be recent, historical, or hypothetical. Finally, ex-
periencer can be either patient or other. A set of
trigger words is assigned to each non-default status
(Harkema et al., 2009).

The status of the contextual properties is up-
dated when the indexed medical condition term
falls within the scope of one of the trigger terms.
Moreover, the algorithm contains pseudo-trigger
words for each non-default status of the contextual
properties. The scope of the trigger or pseudo-
trigger terms includes all the clinical conditions fol-
lowing them till the termination word or till the end
of the sentence if no termination word was present.
The termination words are assembled in the algo-
rithm following conceptual groups. In other words,
the algorithm takes as input the sentence, indexes
the clinical conditions, and assigns each of the con-
textual properties a default value. Then, it marks all
the trigger, pseudo-trigger and termination words
and iterates through them to determine the scope
of each trigger term and update the corresponding
contextual property of the indexed medical case.

3 Methods

This section discusses the preprocessing of EMR
notes, building and utilising DISCO models, aggre-
gating scores from different models, capturing user
input, and visualizing the graphs.

3.1 Preprocessing

Since medical text contains a large amount of noise
that affects the results of an NLP model we exe-
cuted a series of preprocessing and data cleaning
before inputting the data in our model.

3.1.1 Abbreviations
Medical doctors tend to use numerous abbrevia-
tions when documenting their clinical notes given
the overloaded schedule, heavy workload, and over-
all workflow efficiency. In the aim of simulating a
real medical note, a medical data set for abbrevi-
ations had to be included. This dataset was used
to replace all the abbreviations in the medical cor-
pora by their actual meaning. When processing the
user’s input, tokens are then matched with their full
word if applicable.
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3.1.2 Autocorrection
Apart from using abbreviations, potential spelling
mistakes were accounted for in both the train-
ing and the user data. DAVE used Levenshtein’s
method of distance metrics for auto-correction
through the PySpellChecker implementation. The-
oretically, the Levenshtein distance is a metric
for measuring the differences between two strings
treated as two separate sequences (Yujian and Bo,
2007). This metric creates a matrix by looping
over all the letters of the two input strings it takes
according to the rule in figure 2 shown below.

Figure 2: Levenshtein Distance Rule for Matrix Cre-
ation

The size of the matrix would be (m+1)×(n+1)
where m and n are the sizes of the tested words,
respectively. The matrix is filled from the upper left
cell initialized to zero to the lower right entry with
the actual distance between both words (Yujian and
Bo, 2007).

This method proved to be the fastest for offline
and dynamic performance. It uses the permuta-
tions within a 2 edit distance radius from the orig-
inal word and returns the most likely correct re-
sult. However, in the case of medical autocorrec-
tion, many medical terms and abbreviations were
treated as spelling mistakes and corrected accord-
ingly. Therefore, a set of medical terms was in-
cluded to be interpreted by PySpellChecker before
making the decision to correct any given token.
The process goes as follows:

1. The spell checker goes through the tokenized
words and flags the included unknown words.

2. The unknown words are then filtered by the
set of medical terms.

3. If not found to be medical terms, another pass
is done to determine if the word is an abbrevi-
ation of a medical or an English term.

4. If the word is still not found, auto-correction
is then applied.

For the training medical notes corpora, all of the
tokenized words were checked in the described

manner. However, for the dynamic user input, if the
word is pre-computed and available in the model,
it is automatically used for scoring and not passed
for spell checking.

3.1.3 Negation Extraction
DAVE handled negated sentences featured in train-
ing medical notes by extracting and analyzing them
on a context level rather than a token level by virtue
of DISCO. However, negation can contribute to
noise when analyzing the user’s input. Therefore,
DAVE adopted a conservative negation extraction
technique. If an input token symbolizes negation,
the following word is excluded from matching. For
instance, in the sentence: “No Fever”, the word
“Fever” would be removed as it might lead to a
faulty diagnosis conclusion if included(Mehrabi
et al., 2015). The negation operators were identi-
fied within context from a precomputed NegSpaCy
negation list.

Furthermore, we experimented with the ConText
algorithm approach (Harkema et al., 2009), im-
plemented as part of the MedSpacy library (Eyre
et al., 2021) in the negation extraction scheme. The
scheme returned good results in terms of accuracy
and relevance. However, it is not yet implemented
in the application and requires additional work to
ensure optimization. The algorithm is in considera-
tion for future work.

3.2 DISCO, PubMed word spaces

The DISCO (Kolb, 2008) linguistic tools compute
the distributional similarity between given words
in a left-right context array, given the start and
the end of the context. DISCO takes input in tok-
enized or lemmatized format. The clinical notes
corpora gathered from the Medical Institutes, is
processed through DISCO Builder to create a word
space out of the given lemmatized/tokenized doc-
uments. DBuilder relies on tags to determine the
full corpora, and the seperate contexts at hand. We
configured the medical corpora by lemmatizing the
notes and seperating them into “contexts", where
each note detail was considered to be one context.
From there, every given word is analyzed based
off a specific context window (i.e. words to its left
and right). Word vectors are created based off con-
textual similarity. The weighting methods and the
similarity measures are following Lin’s measure
and the KOLB methods respectively. The output
of DBuilder is a word space, packaged through an
indexing schema, ready to be loaded through the
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DISCO java library to output scores. With a corpus
size of 7, 060, 230 feature words, 2, 122, 706 after
filtering, the output word space included a 136, 145
target feature words.
In order to provide better accuracy metrics, we
also utilized a pre-computed word space from
PubMed, with over 181 million tokens and fea-
ture words. This word space is built using approxi-
mately 100, 000 medical articles from the PubMed
Open Access database.

3.3 Score Aggregation

Annotated
EMR notes

Digitized
Graphs

Score
Aggregation

Visualization
Engine

Physician's input

Patient reports bilateral ankle

and joint pain

Desired output

Preprocessing

DISCO

Pubmed
Corpora

Score

Figure 3: Illustration of DAVE’s Pipeline

To generate diagnostic predictions, DAVE uti-
lizes a map from the diagnostic algorithm nodes to
the words present in these nodes featured. DAVE
tokenizes the feature words and assigns the peak
word score at 1. Every instance of a given term is
stored accordingly, including repeated occurrences
within the same graph.

The feature words are then augmented using the
DISCO word space model. Each word featured
originally in the map is passed through the indexed
word space to retrieve the most semantically similar
words within two collocation contexts.

1. The given word with the clinical note corpora
word space.

2. The given word with the PubMed corpora
word space.

The top three most semantically similar terms
and their respective similarity scores are fed back
into the model, and are matched with the same
graphs as the original input term, but with the
scores provided by DISCO.

To further refine the scores and reduce the noise
caused by frequently occurring terms, DAVE ap-
plies a score modification scheme. The modified
score considers the frequency of the term. This
modified score assigns a lower weight to frequently
occurring terms and a higher weight to less frequent
terms, thus improving the accuracy of DAVE by
giving more weight to terms specific to a particular
diagnosis.

Finally, according to the user’s input the score
of each term is aggregated to provide a final score
for each potential diagnosis. DAVE determines
the score of each diagnostic graph by summing
the scores of its nodes. This scoring aggregation
scheme helps DAVE to accurately identify the most
relevant diagnoses for a given clinical note.

3.4 Capturing User Input
DAVE takes the clinical notes written by the user as
input, tokenizes them, and matches them with the
feature words inside the computed DISCO mod-
els. With each tokenized input word w, if present,
DAVE proceeds to score each diagnostic algorithm
a based on the occurrences of w inside a. This
leads to incrementing the scores of the involved
algorithms, progressively forming a leaderboard of
the top matching algorithms to the user’s live input.
The top matching algorithms are then transmitted
to the user’s interface graphing engine for display.

3.5 Graph Visualization
DAVE implemented the visualization of the graphs
using Cytoscape.js(Franz et al., 2016), a powerful
graph engine, and presented through a web inter-
face. Cytoscape.js enabled us to achieve a fast and
interactive experience for physicians.

It allowed us to customize our visualization
schema by adding multiple extra features to en-
hance the user’s experience. The user is prompted
with the top three graphs along with their corre-
sponding score and can issue a request for three
more graphs. Furthermore, we implemented the
displaying of the top matching node within a graph.
The user is then free to accept or reject the given
node. If rejected, the user is taken to the next top
scoring node within the given graph. The Accept-
Reject feature serves as a potential reinforcement
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learning model, to provide better results in the fu-
ture.

yes

no yes

no

Dyspnea

chronic

cough?

cardiomyopathy, anemia, neuromuscular disease wheezing?

interstitial lung disease, malignancy,
chronic pneumonia, pleural effusion

Cough : 0.73

Dyspnea : 0.55

Flank Pain : 0.4

Figure 4: DAVE demo illustration

4 Testing

We tested the NLP model we built for DAVE on
real medical notes from AUBMC and the Hariri
Medical Center. The notes, in XML format, have
the following standardized layout.

• The <text> tag represents the input of the med-
ical doctor,

• The <DxDesc> represents the Diagnosis De-
scription, which is the final diagnosis con-
cluded by the MD.

• These two fields were the target for experi-
mental testing.

• The remaining fields were anonymized if out
of context.

We constructed a unit testing program that tra-
verses the given notes and randomly picks out N
notes for testing. One constraint forced on picking
the target test note was the length of the text field
after tokenization. We imposed a minimum length
of 10 words, as notes shorter than that would prove
inconclusive even to the medical doctor himself
since they should be considered as poorly docu-
mented. After picking the N notes, the program
pairs each text field with its diagnosis description
field. Having gathered the test notes, the program
stores the test notes for reference in future testing
runs and requests the hash map model in question.
The test program then compiles the given notes and
passes them through the pipeline and outputs the
top three results along with their scores.

The output is then dumped into a text file,
where we check and calculate the given model and
pipeline precision and accuracy. Even though the fi-
nal diagnosis and considerations are included in the
test notes, performance testing is reviewed manu-
ally since final note diagnoses are not standardized
and show countless expressions for the same diag-
nosis across the dataset.

5 User Study and Feedback

During its development phases, Dr. Lama Sharafed-
dine and Dr. Rabiaa Algeboury provided valuable
feedback on DAVE, praising its usability and ef-
fectiveness in its final version. As medical profes-
sionals themselves, they recommended the tool as
a learning aid for up-and-coming physicians and a
support tool for note completion during patient vis-
its, as well as for the visualization of more complex
cases. Additionally, they expressed interest in train-
ing DAVE with notes and algorithms in specialty
medicine so that medical doctor residents may also
benefit from its use.

We conducted two sets of interviews with med-
ical IT experts, specifically the head of IT of
AUBMC, Ms. Rola Antoun, and her team.

In the first round, we presented the idea of DAVE
and our preliminary implementation plans. They
commended our design and helped us brainstorm
potential use cases among physicians. They also
provided us with insight on what to avoid so that
physicians don’t refrain from using the software.
For example, because it appears complex or re-
quires any additional load like navigating through
multiple pages and pressing multiple buttons. Fi-
nally, they showcased a few of the more popular
software tools and applications among physicians,
in hopes of providing further inspiration for DAVE.
After completing the project, we met for a second
round to demonstrate our work and get usability
feedback. They praised the project, were fascinated
by the results, and thought it was mature enough to
be deployed in the EHR of the medical center for
professional use. Furthermore, we had three physi-
cians try out the software and discuss its usability
and practicality. We first asked them if this software
would benefit them. Two of three said they find
the visualization very helpful and beneficiary and
would assist the complex task of differential anal-
ysis visualization in memory. They also thought
that expanding beyond the top three matches is
helpful. When asked about user-friendliness, all
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physicians found the user experience to be simple,
fast, and non-tasking. Finally, we received some
ideas to make DAVE better. For example, adding
specialty diagnostic books to target specific areas
of medicine would make the software more useful
for more experienced physicians.

6 Results

DAVE’s model presented successful and promising
results. Considering the difficulty and challenges
of NLP in the medical field and case detection algo-
rithms in general, DAVE’s model achieved a fairly
high accuracy while maintaining a small computa-
tion overhead since the results are required to be
displayed instantaneously. It also has no problem
supporting large text and does not require GPU
resources. The best version of the model with all
the processing and word augmentations achieved a
74.3% rate of displaying a related diagnosis in the
top three scored algorithms. We opted for precision
at the best three results to eliminate any chance of
bias from headache and fatigue diagnoses which
are very general making their symptoms usually
present in all diagnoses. This accuracy increased
significantly with the addition of PubMed medical
corpora as shown in Table 1. The table presents
different accuracy results after each step of the
pipeline. The prediction rate improved significantly
from the processing and the elimination of mislead-
ing scores and unnecessary words.

Text Corpus Score
Notes + PubMed 57%
Notes + PubMed + stop words removed (SWR) 68%
Notes + PubMed + SWR + modification of scores (MS) 70%
Notes + PubMed + SWR + MS + correction (CORR) 73%
Notes + PubMed + SWR + MS + CORR + negation 74.3%

Table 1: Summary of the experimental results through-
out multiple stages of the DAVE’s pipeline

To further understand the performance of DAVE
we also conducted a precision@k test where the
evaluation metric is predicting a correct diagnosis
in one of the top k-matched graphs, with k ranging
from 1 to 5. Table 2 presents the results. The
results reinforce that displaying the top three scored
algorithms for the medical professionals is the best
practical choice.

To conclude, DAVE achieved accurate results
and was deemed user-friendly and very convenient
for professional use. It offloads a tedious task from

K 1 2 3 4 5

Precision (%) 31.25 53.125 74.3 78.125 78.125

Table 2: Precision obtained when a correct diagnosis is
in the top k-matched algorithms.

physicians and supports their decision-making dur-
ing patient visits. It was also regarded as ready for
professional use by medical professionals and med-
ical IT experts. Several medical information outlets
such as hospitals, and medical insurance companies
provide text to diagnosis portals. However, they
do not attempt to fully automate the differential
diagnosis process. Up to our knowledge no DAVE
alternative systems exist so that we can perform a
one to one comparison.

7 Limitations

The main limitation of DAVE is testing it in real
time situations. Since the involvement of physi-
cians is required to test DAVE in different note-
taking stages, exhaustive realtime testing proved
to be difficult. DAVE’s objective is to guide and
support the physician during the diagnosis pro-
cess, hence we are interested in the accuracy of
the program during different stages of completion
of the clinical note. We tested DAVE with volun-
teer physicians, however, we consider the sample
tests as initial and we think that full deployment
requires more systematic testing.

8 Conclusion

This paper details a novel model that can suggest di-
agnostic algorithms to medical professionals based
on their clinical notes in real-time. The model uses
directed acyclic graphs and semantic similarity met-
rics to rank diagnostic algorithm graphs taken from
digitized medical textbooks and suggests the top
three for consideration. The model achieves 74.3%
success rate and high acceptance for usability. This
model is a significant step forward in improving
the accuracy and efficiency of the differential anal-
ysis process, which is crucial in making timely and
accurate diagnoses and developing effective treat-
ment plans for patients. You can find DAVE on-
line: www.davemr.com. The following is a DAVE
system demonstration video. You could also find
DAVE’s source code on Github
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