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Abstract

Multimodal summarization with multimodal
output (MSMO) faces a challenging seman-
tic gap between visual and textual modalities
due to the lack of reference images for train-
ing. Our pilot investigation indicates that im-
age captions, which naturally connect texts and
images, can significantly benefit MSMO. How-
ever, exposure of image captions during train-
ing is inconsistent with MSMO’s task settings,
where prior cross-modal alignment information
is excluded to guarantee the generalization of
cross-modal semantic modeling. To this end,
we propose a novel coarse-to-fine image-text
alignment mechanism to identify the most rel-
evant sentence of each image in a document,
resembling the role of image captions in cap-
turing visual knowledge and bridging the cross-
modal semantic gap. Equipped with this align-
ment mechanism, our method easily yet im-
pressively sets up state-of-the-art performances
on all intermodality and intramodality metrics
(e.g., more than 10% relative improvement on
image recommendation precision). Further ex-
periments reveal the correlation between image
captions and text summaries, and prove that
the pseudo image captions we generated are
even better than the original ones in terms of
promoting multimodal summarization.

1 Introduction

With the increase of multimedia data on the Web,
multimodal summarization has drawn widespread
attention from researchers in the communities of
Web technologies(Messaoud et al., 2021; Jangra
et al., 2021a), natural language processing (NLP)
(UzZaman et al., 2011; Li et al., 2017, 2020b) and
computer vision (CV) (Chen and Zhuge, 2018;
Palaskar et al., 2019; Li et al., 2020a; Liu et al.,
2020). More recently, many efforts (Zhu et al.,
2018, 2020; Zhang et al., 2021b) have been ded-
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Figure 1: Overview of text summarization and MSMO.
Compared with text summarization models, existing
MSMO methods usually use an extra image encoder to
project images into intermediate representations. They
identify the salient image by cross-modal attention,
which could be inaccurate due to the lack of golden im-
ages for training. We explicitly transform an image into
a concrete caption by image-text alignment, capturing
visual knowledge better and making text summarization
and image selection more effective yet simpler.

icated to multimodal summarization with multi-
modal output (MSMO), the novel task of generat-
ing pictorial summaries given a Web document con-
sisting of plain text and a collection of images. As
shown in Figure 1, a pictorial summary generated
by MSMO models consists of a text summary and
a salient image, delivering more user-friendly infor-
mation than single-modal text summaries, accord-
ing to human judgments (Zhu et al., 2018, 2020).

MSMO faces two main challenges. (1) There
are no recommended image references available
for training MSMO models. Due to the lack of
supervision signals from visual modality, it is non-
trivial to optimize the cross-modal attention be-
tween texts and images, which is highly relied on
by existing MSMO methods to pick salient images.
According to previous best results(Zhang et al.,
2021b), only about 60% of the predicted images
are correct, indicating that image selection remains
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a bottleneck. (2) Visual knowledge is commonly
underutilized to improve text summaries. Ex-
isting MSMO efforts show no evident improve-
ment or even negative impact on text summaries
(e.g., decreased ROUGE scores) over typical single-
modal text summarization methods. Previous liter-
ature(Zhu et al., 2018) explained that some images
were noises and long text had contained enough
information for text generation, while we conjec-
ture that these methods may not sufficiently exploit
visual knowledge to characterize salient text.

To summarize, previous efforts typically encode
images and texts into the same semantic space,
struggling with optimizing cross-modal interaction
without training signals for image selection, as the
red box in Figure 1 shows. In this dilemma, image
captions, which naturally connect images and texts,
can provide a cross-modal semantic bridge. Indeed,
our preliminary experiments show the efficacy of
introducing imageIn captions (see Section 4.4). Yet,
exposure of image captions during training is incon-
sistent with MSMO’s task settings, since MSMO
excludes them to pursue better generalization of
cross-modal semantic modeling(Zhu et al., 2018,
2020).On the other hand, however, it inspires us
to identify a highly-relevant sentence for an image
as its pseudo yet meaningful caption, providing
us with a new perspective to improve MSMO. As
shown in the blue box in Figure 1, unlike current
works that represent an image as an intermediate
state, we transform it into a concrete sentence to
better capture visual knowledge under MSMO set-
tings. This transformation presents an opportunity
to incorporate pre-trained visual-language models
more smoothly, while making further text summa-
rization and image selection extremely simple.

Aligning a sentence with an image could be
straightforward, but identifying sentences benefit-
ing MSMO the most is non-trivial. The reasons are
two-fold. (1) A sentence well aligned with an in-
dividual image can not guarantee a suitable one
for MSMO. An intuitive way to select a sentence
is to simply retrieve it from the document, with the
image as the query of a pre-trained cross-modal
retrieval model. Unfortunately, we find this manner
yields unsatisfactory MSMO performance (see Sec-
tion 4.3). (2) A classical single-pass one-to-one
alignment strategy may miss salient sentences
for summarization (see Section 4.2). There can
be one-to-many and many-to-one relationships be-
tween images and sentences, and images can be

similar in a document, so we need to synthesize yet
distinguish image semantics from a global perspec-
tive to make better MSMO-oriented alignment.

To this end, we design a coarse-to-fine image-
text alignment mechanism to produce pseudo im-
age captions for MSMO. Firstly, a reference cap-
tion for an image is retrieved with a cross-modal re-
trieval model from the golden summary, rather than
the whole document (Section 2.3), to capture more
summary-friendly information. Since no golden
summary exists at inference time, these reference
captions are used to train a two-pass image-text
alignment model (Section 2.4) that yields pseudo
captions when making inferences (that’s why “ref-
erence captions” are so named). Given a document
with ten images, for example, we will first syn-
thesize them as a whole to select ten sentences
with many-to-many coarse-grained alignment, and
then identify ten individual one-to-one fine-grained
matchings by bipartite graph matching over the
cross-modal attention matrix.

The pseudo image captions that imply visual
knowledge are used as extra highlighted features
for text summarization (Section 2.5), and the salient
image is picked based on the ROUGE score be-
tween its pseudo captions and the generated sum-
mary (Section 2.6). Extensive experiments on an
existing MSMO dataset not only verify the superi-
ority of our method but also reveal the inner con-
nection between image captions and summaries,
demonstrating promising research opportunities for
our novel perspective of bridging the cross-modal
semantic gap by generating pseudo image captions.

2 Method

2.1 Problem Formulation

For MSMO task, the input is a multimodal docu-
ment {T, V } including a text document T with m
sequential sentences, where T = [t1, t2, · · · , tm],
and a image collection V with n images, where
V = {v1, v2, · · · , vn}. The output is a multimodal
summary {S, v̂} where S = [s1, s2, · · · , sl] is a
text summary containing l generated sentences and
v̂ is the image selected from V .

2.2 Method Overview

Our method, named SITA, refers to a multi-
modal Summarization model based on a coarse-
to-fine Image-Text Alignment mechanism. SITA
consists of four modules: (1) Reference Caption
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Figure 2: Coarse-to-fine Image-Text alignment. The left part (figure a) shows the overview of the whole image-text
alignment mechanism. Reference captions are first retrieved from golden summaries based on a cross-modal
retrieval model. We then train an image-text alignment model with reference captions as supervision signals,
identifying a relevant sentence as a pseudo caption for each image. The right part (figure b) demonstrates how our
two-pass coarse-to-fine alignment model works internally.

Retrieval, (2) Image-Text Alignment, (3) Text
Summarization, and (4) Image Selection. See
more illustrative details in Figure 2 (a).

2.3 Reference Caption Retrieval

Given the multimodal document {T, V }, we first
retrieve reference captions from the golden text
summary for each image in V , based on a pre-
trained cross-modal retrieval model consisting of
an image encoder and a text encoder. The image
encoder is ResNet152 (He et al., 2016) pretrained
on ImageNet (Deng et al., 2009) and the text en-
coder is a BERT-based sentence encoder for text
summarization (Liu and Lapata, 2019). Follow-
ing (Faghri et al., 2018), we train the model on the
COCO dataset (Lin et al., 2014) by matching image
representations and sentence representations.

We retrieve reference image captions from the
golden summary rather than the whole docu-
ment, to make the retrieval results more summary-
friendly and narrower-focused (see Section4.3).
However, a new dilemma is the lack of golden
summaries during inference. Therefore, we exploit
them to train an image-text alignment model, which
predicts pseudo captions during inference.

2.4 Coarse-to-fine Image-Text Alignment

We design a coarse-to-fine Image-Text Alignment
model (ITA) with training signals obtained from
reference captions, to generate pseudo image cap-
tions. Since there can be one-to-many and many-

to-one relationships between images and sentences,
employing a simple single-pass one-to-one align-
ment strategy tends to generate a limited set of
aligned sentences repeatedly, incapable of recall-
ing enough relevant sentences (see Section 4.2). To
this end, we propose a novel two-pass coarse-to-
fine mechanism to align sentences better.

Specifically, for the n images in V , we will take
them as a whole to select n sentences from the
document T with coarse-grained alignment, and
then identify one-to-one matchings via fine-grained
alignment. ITA consists of an image encoder, a sen-
tence encoder, a coarse-grained alignment module,
and a fine-grained alignment module.

2.4.1 Image Encoder
We first use ResNet152 to extract image features
for each image in {v1, v2, · · · , vn}. These fea-
tures are then fed into a Transformer-based en-
coder (Vaswani et al., 2017) as a whole to synthe-
size global knowledge and interaction information
among all images. The position embeddings are
not used here since image order information is un-
available. The final output of the image encoder is
denoted as {c1, c2, · · · , cn}.

2.4.2 Sentence Encoder
The sentence encoder here is the same as the
one used in reference caption retrieval. For
m sentences denoted as [t1, t2, · · · , tm], the sen-
tence encoder generate a representation sequence
[g1, g2, · · · , gm].
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2.4.3 Coarse-grained Alignment
To do coarse-grained alignment, we first apply a
cross attention between sentences and images to
refine sentence representations:

oi,j =
Qi ·Kj∑n

k=1Qi ·Kk
(1)

ai,j =
exp(oi,j)∑n

k=1 exp(oi,k)
(2)

ġi = Qi +
n∑

k=1

ai,k × Vk (3)

where Qi = Wq × gi, Kj = Wk × cj , Vj =
Wv× cj , i ∈ {1, 2, · · · ,m}, and j ∈ {1, 2, · · · , n}.
Wq,Wk,Wv ∈ RD×D are learnable parameters,
where D is 768 (the dimension of the image/text
feature vectors). Noted that we have calculated an
attention matrix A ∈ Rm×n based on the equation
1 and 2 where ai,j is the element in the i-th row and
j-th column of A.

The refined representation ġi is then fed to a
sigmoid classifier to predict whether sentence ti
will be selected:

pi = σ(Wp ġi + b) (4)

where Wp ∈ RD×D and b ∈ RD are learnable
parameters.

To train the model, we need n recommended
sentences as references for a multimodal document
with n images. For each image vi, we will calcu-
late the ROUGE scores between sentences in the
document and their reference captions generated
in the first step, and the sentence with the highest
score will be labeled as selected. If a sentence is
selected more than once, we will pick another sen-
tence with the next highest score. We use yi = 1
to denote that sentence ti is selected, and yi = 0
otherwise. Then, for the m sentences in the doc-
ument T = [t1, t2, · · · , tm], we employ the binary
cross-entropy loss to optimize the model as follow:

LBCE = − 1

m

m∑

i=1

yilog(pi) + (1− yi)log(1− pi)

(5)

2.4.4 Fine-grained Alignment
Based on the coarse-grained alignment, we have
calculated the an m× n cross-modal attention ma-
trix (denoted as A), in which the element in the
i-th row and j-th column is ai,j . In this step, we

want further to identify optimal one-to-one relation-
ships between images and these sentences. Gen-
erally, the larger the attention weight between ti
and vj , the more likely ti and vj match. Suppose
we have obtained n selected sentences denoted
as tz1 , tz2 , . . . , tzn and we extract the rows corre-
sponding to these sentences from the matrix A and
concatenate them as a new attention matrix Ȧ :

Ȧ = concat([Az1 , Az2 , . . . , Azn ]) (6)

where Ȧ ∈ Nn×n, Azi ∈ Rn, i ∈ {1, 2, . . . , n}.
Based on the new cross-modal attention matrix Ȧ,
we can construct a complete weighted bipartite
graph G containing two disjoint and independent
vertice sets S and V , where |S| = n and |V | = n.
So there are n× n weighted edges in G. The ver-
tice vi in V represents an image, and vertice sj in
S represents a sentence. The weight of the edge
in G between the vertice vi ∈ V and the the ver-
tice sj ∈ S is the value aij ∈ R in Ȧ. Therefore,
the fine-grained alignment of the sentences and im-
ages can be regarded as a maximum-weight perfect
matching in the bipartite graphs G. We can eas-
ily utilize the bipartite graph matching algorithm
(Kuhn-Munkres algorithm (Kuhn, 2010) in our im-
plementation) to match the vertices in the two sets
in the graph:

M = KM(Ȧ) (7)

where M = [I1, I2, . . . , In] , Ii ∈ {1, 2, . . . , n}
represents the index list of selected sentences(e.g.,
the first image is aligned with the I1-th sentence
in the selected sentences), and KM represents the
Kuhn-Munkres algorithm.

2.5 Text Summarization

We build the text summarization module based on
BERTSum, a recent simple yet robust summariza-
tion model (Liu and Lapata, 2019). We concatenate
all pseudo image captions as a new text document
denoted as Ts. The origin text document T and the
new text document Ts are fed into the encoder of
BERTSum separately, generating two representa-
tion sequences R and Rs. Then, unlike the tradi-
tional Transformer decoder, we have two individual
cross attention modules—corresponding to the two
documents—after the self-attention module in each
Transformer block. The outputs of the two cross at-
tention modules are simply summed, leaving other
components in the Transformer block unchanged.
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Model R-1 R-2 R-L IP Msim MRmax MMAE++
ATG 40.63 18.12 37.53 59.28 25.82 56.54 67.63
ATL 40.86 18.27 37.75 62.44 13.26 55.67 67.26
HAN 40.82 18.30 37.70 61.83 12.22 55.29 66.93
MOF 41.20 18.33 37.80 65.45 26.38 58.38 69.66
UniMS 42.94 20.50 40.96 69.38 29.72 - -
SITA (Ours) 43.64 20.53 41.03 76.41 33.47 65.38 77.91

Table 1: Main results of different metrics. R-{1, 2, L} refers to ROUGE-{1, 2, L}.

2.6 Image Selection
Given the generated summary denoted as S and
pseudo captions {tz1 , tz2 , . . . , tzn}, the image v̂
whose pseudo caption t̂ generates the highest
ROUGE-L with the summary S, is selected as the
most salient image, where:

t̂ = argmax
tk

(R(tk, S)) (8)

k ∈ {z1, z2, . . . , zn} and R(tk, S) represent the
function which calculates the ROUGE-L socre be-
tween tk and S.

Please refer to appendix A and our released code
for more architecture and implementation details4.

3 Experiment Settings

3.1 Dataset
We use the dataset build by Zhu et al. (2018), which
is constructed from the Daily Mail website1, and
contains 293,965 articles for training, 10,355 arti-
cles for validation, and 10,261 articles for testing.
Please refer to appendix B for more dataset details.

Model R-1 R-2 R-L
PGN 41.11 18.31 37.74
ATL 40.86(↓0.05) 18.27(↓0.04) 37.75(↓0.01)
MOF 41.20(↑0.09) 18.33(↑0.02) 37.80(↑0.06)
BERTSum 41.51 19.43 38.85
SITA 43.64(↑2.13) 20.53(↑1.10) 41.03(↑2.18)
BART 41.83 19.83 39.74
UniMS 42.94(↑1.11) 20.50(↑0.67) 40.96(↑1.22)

Table 2: Comparison of text summary quality in terms
of Rouge scores. The numbers in parentheses represent
relative performance improvements of multimodal mod-
els over their single-modal ones (e.g., PGN, BERTSum
and BART). ↑ indicates a positive effect, and ↓ indicates
a performance decrement.

3.2 Evaluation Metrics
Following Zhu et al. (2018, 2020), we choose the
following metrics. (1) ROUGE-{1, 2, L} is the

1http://www.dailymail.co.uk/

standard text summarization evaluation metric. (2)
IP is the abbreviation of Image Precision and used
to evaluate image selection. It is defined by divid-
ing the size of the intersection between the recom-
mended images recimg and the reference images
refimg by the number of recommended images.
(3) Msim evaluates the image-text relevance by
calculating the maximum similarity between the
image and each sentence in the model summary.
(4) MRmax evaluates the information integrity of
the multimodal summary. It exploits a joint mul-
timodal representation to calculate the similarity
between model outputs and multimodal references.
(5) MMAE++ evaluates the overall quality of mul-
timodal summaries. It projects both the candidate
multimodal summary and the reference summary
into a joint semantic space with a trained neural
network. For the details of MMAE++, please check
subsection 3.3 in Zhu et al. (2018)’s work.

Meanwhile, we propose Caption-ROUGE-L,
a metric specific to SITA and its variants by cal-
culating ROUGE-L between a generated pseudo
caption and the golden caption.

3.3 Baselines
We compare our method with the five multimodal
summarization methods. (1) ATG (Zhu et al.,
2018) is a multimodal attention model, which mea-
sures image salience by the visual attention distri-
bution over the global image features. (2) ATL is
an ATG variant using attention distributions over
image patches. (3) HAN is an ATL variant by
adding a hierarchical attention mechanism on im-
age patches. (4) MOF (Zhu et al., 2020) introduces
a multimodal objective function into ATG. Among
the four MOF variants, we choose the one having
the best performance in five of the seven metrics we
used. (5) UniMS (Zhang et al., 2021b) is a recent
unified framework for multimodal summarization.

We also compare our method with the three text
summarization methods. (1) PGN (See et al., 2017)
is the Pointer-Generator Network for abstractive
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text summarization model. (2) BERTSum is a
recent robust BERT-based summarization model
proposed by Liu and Lapata (2019), upon which
our SITA is built. (3) BART (Lewis et al., 2020) is
a pretrained seq2seq model consisting of a bidirec-
tional encoder and an auto-regressive decoder.

4 Experiment Results

4.1 Main Results

Table 1 and 2 show the performance of the base-
line models and our method. By investigating the
results, we have the following observations.

(1) Our SITA achieves improvements over base-
lines across all evaluation metrics of image preci-
sion, text summary quality, image-text relevance,
and multimodal information integrity, clearly set-
ting up a new state-of-the-art performance.

(2) Regarding the visual modality metric (IP),
MOF generally outperforms its predecessor base-
lines by a slight margin due to its auxiliary train-
ing objective of image selection. UniMS further
gain a notable improvement over MOF by distilling
knowledge in a vision-language pre-trained model.
Our SITA impressively improves more than 10%
over UniMS in the precision of recommended im-
ages (e.g., 76.41 of SITA v.s. 69.38 of UniMS on the
IP metric). The reason is that the pseudo captions
identified by our coarse-to-fine alignment mech-
anism provide much more informative clues for
image selection. We will provide more detailed
analyses in the following experiments.

(3) Regarding textual modality metrics, more
comprehensive comparisons are shown in Table
2, which consists of three groups of results. In
the first group, existing multimodal methods (ATL
and MOF) demonstrate no superiority over the
single-modal text summarization model they used
(PGN). These efforts concluded that too many im-
ages could bring noise, and the long document
had contained enough information for text gener-
ation (Zhu et al., 2018, 2020). In contrast, our
SITA (in the second group) gains a much more re-
markable improvement, e.g., of 2.18 ROUGE-L,
on text summaries, even based on a more robust
base model (BERTSum). The latest state-of-the-art
UmiMS (in the third group), built upon BART, also
achieves performance improvements (e.g., +1.22
ROUGE-L) on text summarization, but not as evi-
dent as ours. Note that BART performs better than
BERTSum on text summarization (e.g., 39.74 v.s.
38.85 of ROUGE-L), but SITA still outperforms

UmiMS. These results suggest that visual infor-
mation actually benefits text generation, and our
method exploits it more effectively.

(4) Msim, MRmax, and MMAE++ are used to
check image-text relevance, image-text integrity,
and the overall effectiveness of pictorial summaries.
As expected, SITA maintains dominance over base-
lines on the three intermodality metrics. These
superiorities come from remarkable improvements
on intramodality metrics and SITA’s inherent capa-
bilities of bridging the cross-modal semantic gap.

Note that IP and all intermodality metrics depend
on the selected salient images, hence indirectly re-
lying on the generated text summaries. Rigorously,
baseline methods and our SITA utilize different
text summarization models (e.g., PGC, BART, and
BERTSum), so these metrics will be more friendly
to methods with better-performed base text sum-
marization model. However, this fact has minor
impacts on our above analyses, since image selec-
tion improvements of SITA mainly benefit from
pseudo captions but not the text summaries.

4.2 Effects of the Coarse-to-fine Mechanism

Model R-1 R-2 R-L IP CR−L
SITA 43.64 20.53 41.03 76.41 39.39

-w/o ITA 41.79 19.54 38.97 72.95 38.23
One-pass 40.83 18.32 37.98 57.28 12.31
One-pass(Dedup) 41.67 18.98 38.63 64.32 33.21

Table 3: Performance of SITA and its variants. CR−L
refers to Caption-ROUGE-L. -w/o ITA directly retrieves
pseudo captions in a document without image-text align-
ment, One-pass does image-text alignment in a single-
pass manner, and One-pass (Dedup) adds an sentence
deduplication mechanism over One-pass.

4.2.1 Results of One-pass Alignment Strategy.
To investigate how the coarse-to-fine alignment
strategy boosts performance, we replace it with a
single-pass alignment method, which is trained to
select a pseudo caption for only one single image at
a time. The results of this method variant (named
One-pass) are shown in Table 3, from which we
see notable performance degradation on all met-
rics. Through further qualitative exploration on
its prediction results, we find this method tends to
generate a small set of sentences repeatedly among
different images, incapable of recalling enough rel-
evant sentences. The low Caption-ROUGE-L of
One-pass (e.g., 12.31) also verifies this observa-
tion. One possible reason is that images in a docu-
ment can sometimes be similar, making the single-
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pass strategy fail to characterize the correlation
and difference among these images. In contrast,
by introducing the coarse-to-fine mechanism, our
alignment model synthesizes multiple images from
a global perspective in the coarse-grained pass, re-
calling more sentences more accurately and hence
facilitating further fine-grained alignment.

4.2.2 Comparison with Simple Deduplication

To avoid recalling repeated sentences in one-pass
alignment, one simple alternative strategy is in-
troducing a deduplication mechanism. We hence
implement One-pass (Dedup), which will select
another sentence with the next highest score if the
current sentence has been chosen. As shown in
Table 3, we can see that the deduplication mech-
anism over one-pass image text alignment brings
improvements (e.g., +0.65 on R-L and +7.04 on IP).
But the performance of One-pass (Dedup) is still
far from our full SITA with the coarse-to-fine align-
ment strategy (e.g., with a significant gap of 2.4 on
R-L and 12.09 on IP). The main reason is that one
image may align with multiple semantically rich
sentences. For such an image, even with the dedu-
plicating mechanism, one-pass alignment can only
recall a single sentence, potentially missing critical
information, especially when other images do not
semantically overlap with it. That roughly explains
the performance gaps. This comparison further ver-
ifies the necessity and soundness of the technical
design of the two-pass coarse-to-fine alignment.

Figure 3: ROUGE-1 and ROUGE-L scores of simple
summaries generated by simply concatenating pseudo
captions (orange) or golden captions (blue) of a doc-
ument’s first k images. The scores are calculated by
matching them against the reference summaries. The
horizontal red (dashed) lines represent the text sum-
maries generated by SITA. ROUGE-2 is similar to
Rouge-1, which is not shown for better visualization.

4.3 Effects of Cross-modal Retrieval
To investigate the effect of the cross-modal re-
trieval, we directly retrieve pseudo captions in a
document (rather than a summary), obtaining an-
other method variant (named w/o ITA) requiring
no image-text alignment training anymore.

As shown in Table 3, w/o ITA bring modest
enhancement on text summaries (e.g., 38.85 of
BERTSum v.s. 38.97 of w/o ITA on ROUGE-L),
while achieving more impressive image salience
(e.g., 72.28 on IP). Compared with our full SITA,
this method variant (named w/o ITA) demonstrates
significant performance degeneration on both text
and image salience (e.g., -1.06 on ROUGE-L and
-3.04 on IP). These results reveal that (1) the knowl-
edge in the pre-trained cross-modal retrieval model
mainly helps image selection, and the image-text
alignment over retrieval results is more critical
for the overall performance; and (2) retrieving
reference captions from summaries instead of doc-
uments is a key design of SITA.

Note that our cross-modal retrieval model is
pre-trained with 113K image-text pairs. Though
UniMS distills knowledge from a vision-language
model pre-trained by more than 400M image-text
pairs, SITA demonstrates significant superiority.

4.4 Quality of Pseudo Captions

Model R-1 R-2 R-L IP CR−L
Caption-train 42.22 19.70 39.29 73.59 39.54
Caption-input 42.71 20.04 39.85 75.33 -

SITA 43.64 20.53 41.03 76.41 39.39

Table 4: Comparisons of SITA with models using
golden captions. Caption-train use golden captions to
train image-text alignment model, and Caption-input
directly use golden captions as input for text summa-
rization and image selection. CR−L refers to Caption-
ROUGE-L. Caption-input does not generate pseudo
captions, so its CR-L is unavailable.

We further analyze the effectiveness of our method
from the perspective of pseudo captions’ quality.
We are interested in the relation between golden
captions and our pseudo captions. In the MSMO’s
task settings, golden image captions are excluded.
To perform this study, we allow the compared mod-
els to use golden captions in training under a easier
task setting. Here we build another two baselines.

The first one, named Caption-train, trains the
image-text alignment model with golden captions
instead of the reference sentences retrieved in the
first step. We compare SITA with it on the metrics
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of ROUGE-{1, 2, L}, IP, and Caption-ROUGE-L.
Looking into the empirical results shown in Table
4, the Caption-ROUGE-L of SITA and Caption-
train are generally similar. Hence, from the per-
spective of recovering image captions, the quality
of aligned sentences generated by Caption-train
and SITA are identical. However, SITA gener-
ates better text summaries and salient images than
Caption-train (e.g., with improvements of 0.74
on ROUGE-L and 2.82 on IP), suggesting that our
aligned sentences benefit more MSMO. The rea-
son is that the reference captions used for align-
ment training are retrieved from text summaries,
inherently making predicted pseudo captions imply
better summary features.

The second one, named Caption-input, directly
utilizes golden captions instead of pseudo captions
as inputs for text summarization and image selec-
tion. We find that SITA also outperforms Caption-
input on all metrics. The performance enhance-
ment is less evident but still impressive, consider-
ing that SITA uses a more restricted task setting.
This observation proves that the pseudo captions
we generated are even better than the original im-
age captions for MSMO.

The above analyses verify that pseudo captions
are not only semantically consistent with images
but also informative for text summarization.

4.5 Correlation between Image captions and
Text Summaries

We also investigate the correlation between image
captions and text summaries. Specifically, we con-
struct a simple summary by concatenating golden
(or pseudo) captions of the first k images in a doc-
ument. Then, we calculate the ROUGE scores of
those simple summaries. The results are shown in
Figure 3, and we have the following observations:

(1) Simply aggregating some (pseudo) image
captions can generate generally good summaries.
For example, when selecting more than three cap-
tions, the resulting summaries even have a better
ROUGE-1 than MOF. The observation verifies the
inherent capabilities of image captions on the brid-
ing cross-modal semantic gap.

(2) The upward trend of the ROUGE-L with the
increase of k is not as notable as that of ROUGE-1.
The reason is that text generated by sentence con-
catenation (in random order) may lack coherence.
ROUGE-L is calculated based on the longest com-
mon substring, the length of which will be limited

in this situation. This phenomenon suggests that
an individual text summarization component is still
required given these high-quality image captions.

(3) Generally, the red line is above the blue line
most of the time, indicating that simple summaries
constructed by pseudo captions are even better
than their counterparts consisting of golden cap-
tions. The observation, again, verifies that pseudo
captions generated by our image-text alignment
mechanism are more informative than the original
ones, in terms of improving MSMO performance.

5 Related Work

Existing text summarization approaches can be
roughly categorized into extractive summarization
(Narayan et al., 2018; Xiao and Carenini, 2019;
Zhong et al., 2020; Wang et al., 2020) and ab-
stractive summarization(Syed et al., 2021; Paulus
et al., 2018; Zhang et al., 2020; Lewis et al., 2020;
Tan et al., 2017). Classical abstractive summa-
rizaition model such as Pointer Generator Net-
work(See et al., 2017) and BERTSum(Liu and La-
pata, 2019) serve as fundamental components for
previous MSMO works.

Multimodal summarization takes data of more
than one modalities as input and synthesizes in-
formation across different modalities to generate
the output (UzZaman et al., 2011; Li et al., 2018;
Sanabria et al., 2018; Fu et al., 2020; Im et al.,
2021; Yu et al., 2021; Zhu et al., 2018, 2020; Li
et al., 2020b; Jangra et al., 2020a,b, 2021b; Zhang
et al., 2021a). Zhu et al. (2018) first propose gen-
erating pictorial summaries given a document and
an image collection. Zhu et al. (2020) further in-
troduced a extra cross-entropy loss for image selec-
tion. Recently, Zhang et al. (2021b) proposed to uti-
lize knowledge distillation with a vision-language
pre-trained model to help image selection, but the
image precision was still far from ideal.

6 Conclusion

We have presented SITA, a multimodal
Summarization method based on coarse-to-
fine Image-Text Alignment. SITA introduces a
novel perspective of bridging the semantic gap
between visual and textual modality by exploiting
pseudo image captions. Our cross-modal align-
ment mechanism effectively generates high-quality
pseudo image captions, enabling SITA to set up
state-of-the-art performance easily. We discuss
the feasibility and potential of leveraging pseudo
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image captions , and release code2, to inspire more
future studies from our proposed perspective.

Limitations

By retrieving pseudo captions from summaries, one
limitation is that the most relevant sentence for a
specific image may not be in the summary. How-
ever, it has a trivial impact on the overall MSMO
performance. If this happens, most of the time, the
image will not be the salient image to select, and its
caption will provide no helpful information for the
text summary. In this situation, selecting a pseudo
caption from summary sentences will not hinder
the overall performance, though it may not be the
best for the specific image.

Besides, even though our task setting (includ-
ing the dataset and all evaluation metrics we used)
strictly follows three previous works (Zhu et al.,
2018, 2020; Zhang et al., 2021b), another possi-
ble limitation is that only one MSMO benchmark
is used (no other dataset exists). We believe pro-
viding more diversified datasets and investigating
more about the rationale under the task setting are
critical to pushing forward the multimodal summa-
rization community, although they are out of the
scope of this work.
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A Implementation Details

We use Pytorch-Transformers3 to implement the
Bert-base model. We use the Adam optimizer
(Kingma and Ba, 2014) and set the learning rate
to 0.0001. We limit the text length to 512 to-
kens and resize the resolution of each image to
224×224. The overall process is implemented with
PyTorch(Paszke et al., 2019). We run our experi-
ment using 2 NVIDIA V100 GPUs. The maximum
number of training iterations is set to 200k, and we
save the checkpoint every 2k iterations. We select
the best checkpoints according to the validation
loss and report the results on the test set. When
training the image text alignment model, we freeze
the weight of ResNet152 and use a maximum batch
size of 512. When training the text summarization
model, we use beam search in decoding and set the
beam search size to 5. The batch size is set to 512,
and each input in the batch contains a text article
with 512 tokens and a pseudo caption set with 128
tokens. For more implementation details, please
refer to our released code at Github4.

B Dataset

Train Valid Test
#Documents 293965 10355 10261
#AvgImgsNum 6.56 6.62 6.97
#AvgTokensNum(Document) 720.87 766.08 730.80
#AvgTokensNum(Summary) 70.12 70.02 72.16

Table 5: MSMO Dataset statistics.
We use the MSMO dataset build by Zhu et al.
(2018), which is the largest benchmark dataset.
This dataset is constructed from the Daily Mail
website5, containing 293,965 articles for training,
10,355 articles for validation, and 10,261 articles
for testing. Each article contains a text document,
and approximately seven images on average. The
manually written highlights offered by Daily Mail
are taken as a reference text summary. Noted that
the pictorial summaries are only available on the
test set, so there is no label information about the
salient images during training. Image captions are
excluded from the dataset for generalization.

C Case Study

To qualitatively verify our proposed method’s ef-
fectiveness, we conduct a case study on generated

3https://pytorch.org/hub/huggingface_pytorch-
transformers/

4https://github.com/sitaProject/SITA
5http://www.dailymail.co.uk/

Figure 4: ROUGE-2 of simple summaries generated by
simply concatenating pseudo captions (red) or golden
captions (blue) of a document’s first k images. The
scores are calculated by matching them against the ref-
erence summaries. The horizontal red dashed lines rep-
resent the text summaries generated by our SITA model.

pseudo image captions and multi-modal summaries.
As illustrated in Figure 5, the pseudo captions gen-
erated by our model can express image semantics
appropriately. For the critical entities in the im-
ages, we can find the corresponding descriptions
in the high-quality pseudo captions we produce.
Compared with the text summary generated by
single-modal and alternative multi-modal models,
SITA’s output captures the article’s main point bet-
ter, thanks to the effective incorporation of pseudo
image captions implying visual knowledge. For
example, the descriptions of "A robed figure" and
"M16" are missing in the text summaries of com-
pared models. In contrast, our SITA model gen-
erates a more accurate summary with the help of
pseudo captions containing these essential facts,
which also assists in identifying the salient image
correctly.

D Rouge-2 of Simple Summaries

We only plot Rouge-1 and -L scores of simple sum-
maries in Figure 3 for better visualization in limited
space. The trend of Rouge-2 is similar to that of
Rouge-1, as shown in Figure 4
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Predicted Silent Image Predicted Silent ImageGold Summary

 

Reference Silent Image

Pictorial Summary by MOF Single-modal Text SummaryPictorial Summary by SITAGold Image CaptionsPseudo CaptionsImages

Figure 5: An example of multimodal summarization generation. The text summary in the last column is generated
by the single-modal text summarization model BertSum (Liu and Lapata, 2019). The pictorial summary in the
second last column is generated by MOF (Zhu et al., 2020) re-implemented by ourselves. The orange text in the
pseudo and gold image captions corresponds to the semantically important entities in red boxes of images.
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