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Abstract

The Differentiable Search Index (DSI) is a
novel information retrieval (IR) framework that
utilizes a differentiable function to generate a
sorted list of document identifiers in response
to a given query. However, due to the black-box
nature of the end-to-end neural architecture, it
remains to be understood to what extent DSI
possesses the basic indexing and retrieval abili-
ties. To mitigate this gap, in this study, we de-
fine and examine three important abilities that
a functioning IR framework should possess,
namely, exclusivity, completeness, and rele-
vance ordering. Our analytical experimentation
shows that while DSI demonstrates proficiency
in memorizing the unidirectional mapping from
pseudo queries to document identifiers, it falls
short in distinguishing relevant documents from
random ones, thereby negatively impacting its
retrieval effectiveness. To address this issue, we
propose a multi-task distillation approach to en-
hance the retrieval quality without altering the
structure of the model and successfully endow
it with improved indexing abilities. Through
experiments conducted on various datasets, we
demonstrate that our proposed method outper-
forms previous DSI baselines1.

1 Introduction

Recent advancements in the field of information re-
trieval (IR) have sparked a growing interest in Dif-
ferentiable Search Index (DSI) (Tay et al., 2022).
Unlike traditional methods, which involve build-
ing an index before retrieval (Dai and Callan, 2019;
Nogueira et al., 2019a; Lin et al., 2020; Xiong et al.,
2021), DSI and related techniques such as DSI-
QG (Zhuang et al., 2022) and NCI (Wang et al.,
2022) do not rely on external indexes to store data.
Instead, these methods map user queries directly
to the identifiers (IDs) of the relevant documents,
providing a simpler and more efficient retrieval

1The code and data for this work can be found at https:
//github.com/VerdureChen/Understang_DSI

process. This novel autoregressive approach, rep-
resented by DSI, has expanded the potential IR
applications due to its ease of use, minimal index
storage requirements, and end-to-end retrievability.

However, despite the novel retrieval mechanism
of DSI, current DSI models still rely on relevance
signals of query-passage pairs for training. These
models, which map short texts to specific document
IDs, do not have an explicit interaction between the
query and the document during retrieval, unlike
dense retrieval models (Khattab and Zaharia, 2020;
Hofstätter et al., 2021; Qu et al., 2021; Lin et al.,
2021c; Karpukhin et al., 2020; Gao and Callan,
2021) and cross-attention rerankers (Nogueira et al.,
2019b; Nogueira and Cho, 2019; Zheng et al., 2020;
Li et al., 2020; Wang et al., 2020; Chen et al.,
2022b). This training approach and the inherent
properties of the model may lead to two prob-
lems. First, due to the lack of explicit modeling of
inter-document associations and an explicit query-
document relevance measurement, the model may
only learn a unidirectional mapping from short
texts to specific IDs, without understanding how
the document is relevant to the query, leading to
somewhat random output in the ranking list. Sec-
ond, to reduce computational complexity, DSI mod-
els often simply represent a document by a small
number of tokens or pseudo-queries. However, this
approach may result in a reduced capacity to dif-
ferentiate between documents and capture crucial
relevant information.

This study aims to deepen the understanding
of DSI by evaluating its suitability as an end-to-
end model for indexing and retrieval. To achieve
this, DSI-QG (Zhuang et al., 2022), a recent en-
hancement of DSI using pseudo queries for the
model training, is used as a representative model
for analysis. Our argument is that a usable index
of a non-boolean retrieval model should meet the
following three conditions: 1) The document con-
tent in the index should have a one-to-one corre-
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spondence with the ID to ensure the stability of
retrieval results; 2) The key information of the
documents should be stored in the index as com-
pletely as possible to avoid the loss of information
related to the query and thus affecting the retrieval
results; 3) The model should be able to output doc-
uments in decreasing order of their relevance to
the query. These three abilities are summarized as
exclusivity, completeness, and relevance order-
ing. Our analytical experiments indicate that the
currently available DSI models do not fully meet
the requirements of a general end-to-end indexing-
retrieval model, which limits their conditions of
use and significantly reduces their effectiveness,
especially when compared to the state-of-the-art
dense retrieval models, which, in contrast, is shown
to better meet those requirements.

To this end, we investigate whether DSI mod-
els can be better trained to improve retrieval abil-
ities while maintaining their simple structure and
low storage cost. Specifically, we propose utiliz-
ing a dense retrieval approach to provide effective
supervision signals for training DSI models. To
enhance exclusivity and completeness of DSI, we
propose to improve the document representation
to capture information from different granularities
and filter key information using the document rep-
resentation encoded by the dense retrieval model.
To improve the ability to discriminate the relevance
degree of different documents of DSI, we propose a
new distillation-based training approach. By explic-
itly modeling the connections between documents,
the model is able to reduce the randomness of the
output results and improve retrieval performance,
especially on datasets with deep pool annotations.

Major contributions of this paper are tri-fold.
1) An empirical analysis of basic IR abilities in-
dicates the potential weaknesses of existing DSI
approaches. 2) Based on the analysis above, we pro-
pose a multi-task distillation approach to improve
the effectiveness of DSI by learning from dense
retrieval while keeping its advantages. 3) Further
evaluation shows that our approach substantially
improves retrieval effectiveness of DSI-QG.

2 Empirical Analysis

In this section, we conduct an empirical analysis to
examine to what extent the DSI framework satisfies
the basic requirements of a functioning IR model.
Specifically, we summarize exclusivity, complete-
ness, and relevance ordering, as three essential abil-

ities required for an IR framework, as defined be-
low. While acknowledging that there are certain re-
trieval problems that do not require an ordered list,
it is crucial to emphasize that our research specifi-
cally focuses on ranked retrieval, which inherently
involves non-boolean ranking. The notions used
throughout this paper are listed in Table 3 in Ap-
pendix A.1.

2.1 Definitions

Exclusivity refers to the uniqueness of documents
in an IR system, i.e., the one-to-one correspon-
dence between document content and its identifier,
which determines the extent to which a retrieval
framework can distinguish different documents in
a collection. Although it is typical for document
content and identifiers to have a one-to-one map-
ping, it is important to note that certain collections
may contain duplicate documents, particularly in
real-world scenarios. While exclusivity is primarily
intended for stable experimental evaluations and
reproducibility, it is not an absolute requirement
for an index and is contingent upon the specific
document collection. For the sake of simplicity
and considering the majority of cases, we assume
that the documents utilized in our experiments are
not duplicated. In actual implementation, DSI is
only trained for a one-way mapping (i.e., from doc-
ument representation to document identifier) (Tay
et al., 2022; Zhuang et al., 2022; Wang et al., 2022;
Zhou et al., 2022). Therefore, in our analysis, we
examine the injective relationship for various mod-
els by testing the case of a unidirectional mapping
from a document to its identifier.

Completeness is the ability of an index to re-
trieve all eligible documents in a collection based
on a specific query or search intent. This means that
if a document has relevant content and meets the
search criteria, then that document should appear in
the search results. To obtain more comprehensive
search results, the index structure needs to store as
complete document information as possible (e.g.,
sparse search indexes) or to maximize the identifi-
cation and memory of more valuable key document
information. In this context, the completeness of
an index is narrowly defined as its ability to store
essential information contained within a document
that can be used to respond to a variety of queries,
taking into consideration the various differences in
index structures and practical application require-
ments.
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(a) Exclusivity (b) Completeness (c) Relevance ordering

Figure 1: Results of empirical analysis. (a) Hits@1 by querying different retrieval models with the first-k tokens or
a random pseudo query generated from the passage. Exclusivity shows the ability to retrieve a document by using
its own content as a query. (b) Hits@1 and Hits@10 by querying different retrieval models with the key fragments
within individual documents. Completeness shows the ability to retrieve a document by using its key content as a
query. (c) The relevance ordering scores (y-axis) at different positions of the retrieval results (x-axis) for different
retrieval methods. A higher relevance ordering score indicates a lower ability of the model to distinguish relevant
documents from random ones. As DSI-QG-Multi (proposed in Section 3.1.3) is trained using TCT-ColBERT’s
output as supervision signals, their curves (the bottom two) are almost indistinguishable.

Relevance Ordering is an essential ability of
non-boolean IR models which outputs a sorted list
of documents in decreasing order of relevance. For
two documents 𝑑𝑖 and 𝑑 𝑗 that both appear in the re-
sult list of a one-time retrieval operation R(𝑞𝑡 ,M)
on query 𝑞𝑡 based on a certain retrieval paradigm
M, relevance ordering can be described as:

𝑑 𝑗 ≤𝑞𝑡 𝑑𝑖 , if s(𝑞𝑡 , 𝑑 𝑗) ≤ s(𝑞𝑡 , 𝑑𝑖),
for ∀𝑑𝑖 , 𝑑 𝑗 ∈ 𝑅(𝑞𝑡 ,M) (1)

where 𝑑 𝑗 ≤𝑞𝑡 𝑑𝑖 means a binary relation that 𝑑𝑖
is more relevant to 𝑞𝑡 than 𝑑 𝑗 , and s(𝑞𝑡 , 𝑑∗) is the
predicted relevance score of 𝑑∗, which is in the top-
k recall list (𝑖𝑑1, 𝑖𝑑2, ..., 𝑖𝑑𝑘) given by R(𝑞𝑡 ,M).

For 𝑑𝑖 in the top-k recall list of R(𝑞𝑡 ,M) and 𝑑𝑜
in the index pool but not in the top-k list, relevance
ordering can be given as:

𝑑𝑜 ≤𝑞𝑡 𝑑𝑖 , for ∀𝑑𝑖 ∈ 𝑅(𝑞𝑡 ,M)
and ∀𝑑𝑜 ∈ D \ 𝑅(𝑞𝑡 ,M) (2)

where D \ 𝑅(𝑞𝑡 ,M) is the absolute complement of
the set 𝑅(𝑞𝑡 ,M) in the indexing set D.

2.2 Analysis Methodology
To assess the exclusivity of various models, we
query different models with a cut-off of the first
fragment from the original document, or pseudo-
queries derived from the original documents, and

assess their ability to retrieve the corresponding
documents as the highest-ranked retrieval out-
comes. Following the DSI-QG setup (Zhuang et al.,
2022), a series of experiments are conducted utiliz-
ing the training set of MS MARCO 100k (Nguyen
et al., 2016; Zhuang et al., 2022; Zhou et al., 2022)
to evaluate the exclusivity of various models. MS
MARCO 100k is a subset of the MS MARCO
passage dataset, which has been used in quite a
few recent studies on DSI (Zhuang et al., 2022;
Zhou et al., 2022). The length of first-k cut-off
from the original document is varied within 16,
32, 64, 128. The pseudo queries are generated by
docT5query (Nogueira et al., 2019a), based on the
full text of the passage and followed the same pro-
cedures as the DSI-QG training data generation
process (Zhuang et al., 2022).

To measure the completeness of information
stored in an index, we randomly select 10k doc-
uments from the training set of MS MARCO
100k (Nguyen et al., 2016; Zhuang et al., 2022;
Zhou et al., 2022) and their corresponding queries.
Assuming that the BERT reranker with cross-
attention (Nogueira and Cho, 2019) behaves in a
manner that closely approximates the ranking pref-
erences of human annotators for documents, we
employ a strategy to identify the most pertinent
segments within each document. To achieve this,
we divide the documents into equally-sized chunks
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with overlaps. Each chunk is then scored by the
BERT reranker for its relevance to the query. It is
important to acknowledge that it can be challeng-
ing to fully determine all of the key components of
a document due to the lack of human annotations.
Therefore, it is assumed that the best-scored chunks
to the user queries constitute a subset of the docu-
ment’s essential content. This subset is then used as
queries in various retrieval models, and their ability
to accurately recall the corresponding document is
evaluated as a measure of completeness.

To assess the relevance ordering ability, in the
MS MARCO passage dataset (Nguyen et al., 2016),
we employ the same BERT reranker as above. We
randomly select 10k queries from the training set
of MS MARCO 100k and use each retrieval model
to predict the top 10 documents for each query. The
binary group (𝑞, 𝑑𝑚) comprising of 𝑞 and the doc-
ument 𝑑𝑚 in the result list is incorporated into a set
referred to as S. In the context of a retrieval model
M, the ranking of document 𝑑𝑚 in the result list
returned for a query 𝑞 is represented by 𝑟M(𝑞, 𝑑𝑚),
where 𝑑𝑚 ∈ S. Additionally, a random selection of
10 documents from the dataset is made for 𝑞. For
each randomly selected document 𝑑𝑟 , the binary
group (𝑞, 𝑑𝑟 ), is incorporated into a set referred to
as T . Subsequently, the BERT reranker is utilized
to evaluate the relevance of the documents in the
sets S and T to their corresponding queries, result-
ing in the ranking of document 𝑑𝑖 in the combined
result list as 𝑟𝐵𝐸𝑅𝑇 (𝑞, 𝑑𝑖).

To evaluate the performance of a given model
M, we define a relevance ordering score of M at
the 𝑝th position in the result list returned for 𝑞 as:

𝑟𝑜𝑠𝑞 (M, 𝑝) =𝑐𝑡 (𝑟𝐵𝐸𝑅𝑇 (𝑞, 𝑑𝑟 ) < 𝑟𝐵𝐸𝑅𝑇 (𝑞, 𝑑𝑚)),
for 𝑑𝑟 ∈ T and 𝑟M(𝑞, 𝑑𝑚) = 𝑝 (3)

where 𝑐𝑡 (·) is a counting function that determines
the number of randomly selected documents that
possess a higher relevance score given by BERT
than 𝑑𝑚. Upon conducting an average computation
across all queries, the relevance ordering score for
the retrieval method M at position 𝑝 is obtained:

𝑟𝑜𝑠(M, 𝑝) = 𝑀𝑒𝑎𝑛
𝑞∈𝑄

(𝑟𝑜𝑠𝑞 (M, 𝑝)) (4)

It is important to note that, as we assume that
none of the random documents are relevant to the
query if a significant proportion of these docu-
ments exhibit higher scores than those returned
by the model, this serves as an indication that the

model is returning less relevant documents. Mod-
els from different IR paradigms, including DSI-
QG (Zhuang et al., 2022) which improves upon
DSI, the BM25 sparse retrieval model (Robertson
and Zaragoza, 2009), and the state-of-the-art dense
retrieval model TCT-ColBERT (V2) (Lin et al.,
2021c), are involved in our analysis.

2.3 Analysis Results

For exclusivity, Figure 1a reports Hits@1 to eval-
uate the ability of different models to recall the
document ID when using either a cut-off of the
initial text from the document or pseudo-queries
as input. The results indicate that both BM25 and
TCT-ColBERT exhibit exceptional performance in
accurately recalling the corresponding document
ID when being queried with the original text cut-off,
and the accuracy increases with the length of the
cut-off. However, DSI-QG can recall the correct
document ID for pseudo-queries, but struggles to
do so when queried with text cut-off from the doc-
ument itself. This indicates that the specificity of
DSI-QG is limited mostly to mapping from pseudo-
queries to the associated document IDs, and lacks
the ability to determine the document to which a
segment of the primary text pertains, which could
negatively impact its retrieval effectiveness.

For completeness, Figure1b shows the effective-
ness of different retrieval methods in identifying
important information in a document. Both BM25
and TCT-ColBERT have a high probability of ac-
curately returning the correct document, with a
probability above 95% when considering the top
result, and over 99% when looking at the top 10
results. This suggests that both sparse and dense
indexing methods effectively retain crucial content
of the original document in relation to the user’s
query. In contrast, DSI-QG lacks proficiency in
identifying the correct document, indicating that
under the current training methodology, the differ-
entiable search index may fail to capture important
information, resulting in suboptimal performance.

Figure 1c plots the Relevance Ordering score
(y-axis) at each ranking position (x-axis). As the
ranking progresses further down, the difference
between the returned documents of and randomly
selected documents becomes increasingly insignifi-
cant, which aligns with expectation. However, the
second-ranked document of DSI-QG shows a sig-
nificant decline in ros compared to TCT-ColBERT
and BM25. As the ranking lowers, the differentia-
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tion between the returned documents of DSI-QG
and randomly selected documents becomes increas-
ingly indistinguishable. By the tenth document,
approximately half of the random documents score
higher, indicating a near-random distribution of the
results of DSI-QG at that position. Based on the ob-
servations above, we propose to improve DSI-QG
by a multi-task distillation approach.

3 Model Improvement

3.1 Method

In this section, we propose to improve the DSI-
QG framework in order to gain enhanced abili-
ties in terms of exclusivity, completeness, and rel-
evance ordering, with the help of supervision sig-
nals from dense retrieval models. Specifically, the
dense models are utilized to search through text
fragments comprising all indexed documents and
pseudo-query texts generated from these fragments.
The text fragments that effectively recall the origi-
nal documents are then selected and added to the
training data to provide a more unique and compre-
hensive collection of information. Furthermore, a
new distillation-based model training task, utiliz-
ing document IDs recalled by the dense model as
a supervision signal, is also proposed to address
the semantic gap between short input text and sin-
gle document ID label. Finally, the training tasks
of the DSI model are reclassified in accordance
with their respective task characteristics. By utiliz-
ing this classification, the model is trained with a
multi-task setting, allowing for the improvement of
various abilities through the aid of different tasks.

3.1.1 Training Data Construction
Current DSI methods mostly largely rely on su-
pervised learning from training data to guarantee
effectiveness. Due to the inevitable bottleneck of
model memory against the sheer size of document
corpus, DSI-QG, along with other DSI models
like NCI (Wang et al., 2022) and Ultron (Zhou
et al., 2022), resort to memorizing the much shorter
pseudo queries, hence the gap between the query
and the document representations. To this end,
in order to improve the exclusivity of DSI-QG,
we employ a two-phase procedure for construct-
ing training data. The first step involves divid-
ing each document 𝑑𝑖 in the set D of 𝑛 docu-
ments into equal-length segments with overlaps
O𝑖 = {𝑑1𝑖 , 𝑑2𝑖 , · · · , 𝑑𝑚𝑖 }. The resulting segments of
all documents after this process form the set O =

{O1,O2, · · · ,O𝑛}. Subsequently, for each text seg-
ment 𝑑 𝑗

𝑖 , in O, we utilize docT5query (Nogueira
et al., 2019a) to generate a pseudo query 𝑝𝑞

𝑗
𝑖 . Sim-

ilar to the construction of O, the pseudo query set
P𝑖 = {𝑝𝑞1𝑖 , 𝑝𝑞2𝑖 , · · · , 𝑝𝑞𝑚𝑖 } is obtained for each
document, and P𝑖 constitute the pseudo query set
P of the entire dataset. A combination of these two
sets, U = O ∪ P, is expected to ensure a satisfac-
tory level of information retention and effectively
align the document text with the query.

Utilizing the set U for training may present chal-
lenges, such as difficulty in memorization due to a
large number of text fragments and the inclusion
of excessive irrelevant information. To mitigate
these issues, filtering of U is implemented to opti-
mize retention of crucial information. As previous
analysis in section 2 demonstrates that the dense
retrieval model effectively preserves textual infor-
mation in its representation, we employ the dense
method M for further processing of U by selec-
tively filtering key content from it. The process
involves inputting individual text fragment 𝑡, orig-
inating from the document of 𝑖𝑑𝑡 in U as queries
into the model, and obtaining a list, denoted as
Rk(𝑡,M) = (𝑖𝑑1, 𝑖𝑑2, · · · , 𝑖𝑑𝑘), of the top 𝑘 doc-
ument IDs returned by the model. If 𝑖𝑑𝑡 of the
original text fragment is present within Rk(𝑡,M),
it is determined that the fragment 𝑡 possessed key
information relevant to the original document, and
is included in the corpus T ′ for the model training.

In our implementation, the value of 𝑘 is set to
1 for the original text segments and to 5 for the
pseudo queries. T ′ was included in the initial train-
ing data for DSI-QG along with the original queries
to ensure a valid comparison of results, resulting in
the final training data T .

3.1.2 Explicit Modeling of Relevance
Our previous analysis has shown that in order to
improve the accuracy of retrieval results, the differ-
entiable search index model should prioritize the
enhancement of its relevance weighting capabilities
in addition to its current unidirectional mapping to
document IDs. The current training approach for
the DSI-QG model, which maps brief text to a
single document identifier, is constrained by the
limited amount of information present in the brief
query text, which leads to the gap between the
pseudo queries and document contents. Moreover,
the filtering of training data may cause the loss of
information for certain documents, as the model
would not be able to learn the relevant information
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of omitted documents if their text is not included.
In light of the aforementioned considerations, a

distillation-based training protocol for DSI is pro-
posed in order to explicitly model the relevance of
various documents to a given query. For text frag-
ment 𝑡 from the training set T , the dense retrieval
model M is utilized to query the corpus with 𝑡. The
result list of the top 𝑓 document IDs returned by the
model, denoted as Rf (𝑡,M) = (𝑖𝑑1, 𝑖𝑑2, · · · , 𝑖𝑑 𝑓 ),
in conjunction with the identifier 𝑖𝑑𝑡 of the docu-
ment to which 𝑡 belongs, serves as the supervision
signals for the entire distillation task. Formally, the
supervision signal for text segment 𝑡 in the distilla-
tion task is defined as:

𝑠𝑢𝑝𝑠𝑖𝑔𝑑𝑖𝑠𝑡 = (𝑖𝑑𝑡 ,Rf (𝑡,M)) (5)

= (𝑖𝑑𝑡 , 𝑖𝑑1, 𝑖𝑑2, · · · , 𝑖𝑑 𝑓 )

During the implementation of training procedures,
we set 𝑓 to 10 and utilize commas as a means
of combining all identifiers into a cohesive string
format, and the training objective of this task is:

𝐿𝑑𝑖𝑠 (𝜃) =
∑︁
𝑡∈T

log 𝑝(𝑠𝑢𝑝𝑠𝑖𝑔𝑑𝑖𝑠𝑡 |M(𝑡), 𝜃) (6)

where 𝑝(𝑠𝑢𝑝𝑠𝑖𝑔𝑑𝑖𝑠𝑡 |M(𝑡), 𝜃) denotes the probabil-
ity of generating the supervised string given 𝑡 as
the input of the model.

The distillation process is expected to enable
the model to acquire knowledge from the precise
ID correspondence with the text, and associate the
(pseudo) query to the list of document identifiers
that the dense model deems most pertinent. It is
our contention that learning the relevance relation-
ship between the input text and different documents
could improve the model’s ability of relevance or-
dering, resulting in more relevant documents ap-
pearing at the top of the list of results. However,
prior to this endeavor, the DSI approaches have
been evaluated on datasets that come with only
shallow relevance annotations, where a query usu-
ally has a single labeled relevant document. To
validate the model in the context of deeply anno-
tated data, we have constructed an MS MARCO
300k dataset, comprised of TREC DL19 (Craswell
et al., 2020) and 20 (Craswell et al., 2021) data
based on the MS MARCO passage set with 80
relevant documents per query on average.

3.1.3 End-to-end Multi-task Training
Remind that in DSI (Tay et al., 2022), the training
task is divided into two sub-tasks, indexing and

retrieval, depending on whether the input text is an
original text fragment or a query. Our proposed
model utilizes a multi-task setup, with however
redefined tasks. Empirically, both sub-tasks of DSI
in fact lead the model to learn the features of a
single document, thus we uniformly attribute them
to the indexing task. Therefore, we formally define
the indexing task as:

𝑡 → 𝑖𝑑𝑡 , for 𝑡 ∈ T (7)

where → indicates an injective function that maps a
text segment to its corresponding identifier. During
training, the loss function of the indexing task is:

𝐿𝑖𝑛𝑑𝑒𝑥 (𝜃) =
∑︁
𝑡∈T

log 𝑝(𝑖𝑑𝑡 |M(𝑡), 𝜃) (8)

which maximizes the probability of generating 𝑖𝑑𝑡
with 𝑡 as the input of the model, and 𝑡 can be a
natural text fragment in any form.

In contrast, our newly proposed training task
utilizes a list of document IDs as a supervision
signal, which enables the model to explicitly learn
the relationship of relevance between documents
and queries, as well as the relationship of relevance
between documents themselves. Therefore, we
define this task as the retrieval task:

𝑡 → (𝑖𝑑1, 𝑖𝑑2, · · · , 𝑖𝑑𝑙), for 𝑡 ∈ T (9)

The objective of this task is to assign a text frag-
ment 𝑡 to a list of identifiers, which can be derived
from any method. Here, we use 𝑠𝑢𝑝𝑠𝑖𝑔𝑑𝑖𝑠𝑡 as the
list, thus the loss function for the retrieval task is:

𝐿𝑟𝑒𝑡𝑣𝑙 (𝜃) = 𝐿𝑑𝑖𝑠 (𝜃) (10)

During training, the model is randomly presented
with either a single ID or a list of IDs as the super-
vision signal with equal probability, and a special
symbol is appended to the beginning of the query
to indicate the task type. The loss function of the
multi-task training can be written as:

𝐿𝑚𝑢𝑙𝑡𝑖 (𝜃) = 𝐿𝑖𝑛𝑑𝑒𝑥 (𝜃) + 𝐿𝑟𝑒𝑡𝑣𝑙 (𝜃) (11)

In the following, for the DSI-QG model that
only uses the newly constructed training data, we
denote it as DSI-QG-Merge. The model that only
uses the distillation task for training is labeled as
DSI-QG-Distill, and the model that uses the newly
constructed training data for multi-task training,
first training the index task and then training the
distillation task, is labeled as DSI-QG-M+D. The
model trained using all of the above improvements
is denoted as DSI-QG-Multi.
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3.2 Evaluation Setup

Datasets and Metrics. We experiment on the
MS MARCO (Nguyen et al., 2016) and Natural
Question (NQ) (Kwiatkowski et al., 2019) datasets.
Akin to prior art (Tay et al., 2022; Zhuang et al.,
2022), we employ a 100k subset of MS MARCO
and the Dev queries with shallow annotations. Our
constructed MS MARCO 300k is also used, which
includes queries and documents from both the Dev
set and TREC DL19 (Craswell et al., 2020) and
20 (Craswell et al., 2021). For the NQ dataset,
following the DSI experimental procedures (Tay
et al., 2022), we construct the NQ 320k dataset.
Akin to (Tay et al., 2022), we report Hits@1 and
Hits@10 on Dev set of the data. To accurately
assess the retrieval effectiveness on datasets with
deeper annotations such as TREC DL 19 and 20,
NDCG@10 and P@10 are also reported. Statistical
significance for paired two-tailed t-test is reported.

Baselines. We evaluate against the follow-
ing baselines: the Pyserini implementation of
BM25 (Lin et al., 2021a), and the original DSI (Tay
et al., 2022), DSI-QG (Zhuang et al., 2022), and
the recently proposed NCI (Wang et al., 2022).
The state-of-the-art dense retrieval model TCT-
ColBERT (V2) (Lin et al., 2021c) and SEAL based
on generative retrieval (Bevilacqua et al., 2022a)
are also included. Further information about the
data and baselines can be found in Appendix A.

Implementation Details. Following the DSI
and DSI-QG settings (Zhuang et al., 2022), the
models are initialized using standard pre-trained
T5 models (Raffel et al., 2019). The T5-Base and
T5-Large models are trained with a batch size of
128, the learning rate is 5e-4, and the maximum
number of training steps is determined based on
the scale of training data, with options among
{1M,2M,3M}. All pseudo-queries are generated
by docT5query (Nogueira et al., 2019a) based on
T5-Large. For our proposed method, we adhered
to the DSI approach (Tay et al., 2022) to generate
semantic IDs based on the dense representation of
TCT-ColBERT. Following DSI-QG (Zhuang et al.,
2022), all DSI models, with the exception of NCI,
are trained using Naive String Docids if there are
no extra specifications. We plan to make our code
and data available to public.

3.3 Evaluation Results

The enhanced DSI-QG variants outperform the
DSI baselines. Results on datasets with shal-

low annotations are presented in Table1. The
proposed method of multi-task training, DSI-QG-
Multi, demonstrates a notable enhancement in com-
parison to existing DSI models, with statiscally sig-
nificant improvement reported on three datasets.
Additionally, our experiments demonstrate that
scaling up the model size has limited impact on the
original DSI-QG, whereas the our adjustment to the
training data and training tasks allow model to ob-
tain better results on larger models as the data size
increases, as is evident on the MS MARCO 300k
data. Furthermore, our utilization of multi-task
training enables the selection of different subtask
settings for prediction, with the indexing task yield-
ing the best results for the MS MARCO dataset,
and the retrieval setting producing better results
for the NQ dataset, possibly due to the need to
rely on different types of information for relevant
documents for different datasets.

The proposed training approach facilitates
the three aforementioned abilities of DSI-QG.
The effectiveness of the proposed method in en-
hancing the basic abilities is evaluated through the
DSI-QG-Multi model, for the three experiments
described in Section 2. The results of these ex-
periments are included in Figure 1. The present
study demonstrates that our improvement of DSI-
QG results in significant enhancement in all three
model abilities. Figure 1a illustrates that the model
is able to accurately return the corresponding IDs
of the text of different lengths when the initial parts
of documents are input, and its ability to identify
documents corresponding to pseudo-queries is still
maintained. Figure 1b further supports the valid-
ity of the model’s stored information following
optimized training, as it is able to accurately lo-
cate documents containing key content related to a
given query. This demonstrates that our approach
effectively picks up the unique and key informa-
tion of the documents, and our model effectively
encodes these contents in training, thus makes im-
provements on exclusivity and completeness.

Our proposed improvements has led to a sig-
nificant reduction in the performance gap to
TCT-ColBERT. This is particularly encouraging
as it suggests that our proposed DSI improvements
are able to achieve comparable performance to the
dense model on datasets with more complete an-
notations, as seen in Table 2. Importantly, this
is achieved while still maintaining the advantages
of DSI, such as minimal storage cost and end-to-
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Methods Model Size/ Task
MS Marco 100k Dev MS Marco 300k Dev NQ 320k
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

BM25 -/- 0.5398 0.8295 0.4404 0.7417 0.0834 0.3336
TCT-ColBERT Base/ - 0.7074 0.9506 0.6032 0.9107 0.2411 0.7197
DSI Base/ Index 0.0292 0.0682 0.0218 0.0543 0.0008 0.0083
DSI Large/ Index 0.0874 0.1948 0.0214 0.0652 0.0057 0.0493
SEAL Base/ - 0.2802 0.6219 0.2322 0.5818 0.1377 0.5679
DSI-QG Base/ Index 0.6085 0.8026 0.5123 0.7703 0.2193 0.5180
DSI-QG Large/ Index 0.6182 0.8024 0.5188 0.7589 0.2223 0.5189
NCI (sem) Base/ Index 0.6133 0.8670 0.5289 0.8244 0.2120 0.6999
DSI-QG-Multi Base/ Index 0.6711† 0.9208† 0.5390 0.8726 † 0.2190 0.6138
DSI-QG-Multi Base/ Retrv 0.6711† 0.9143† 0.5219 0.8480† 0.2162 0.7003
DSI-QG-Multi(sem) Base/ Index 0.6626† 0.9115† 0.5615† 0.8801† 0.2390† 0.7202†
DSI-QG-Multi(sem) Base/ Retrv 0.6739† 0.9192† 0.5589† 0.8659† 0.2392 † 0.7135†

DSI-QG-Multi Large/ Index 0.6625† 0.9130† 0.5746† 0.8868† 0.2206† 0.6304
DSI-QG-Multi Large/ Retrv 0.6593† 0.9138† 0.5741† 0.8754† 0.2285† 0.7110†

Table 1: Evaluation results with shallow annotations. Method names suffixed with (sem) indicates that the semantic
IDs are used in the training process. Statistical significance at 0.05 relative to NCI is marked by †.

Methods
DL19 DL20

NDCG@10 P@10 NDCG@10 P@10
BM25 0.6843 0.8837 0.6873 0.4852
TCT-ColBERT 0.7977 0.9279 0.8012 0.6315
DSI 0.2156 0.2209 0.1907 0.1167
DSI-QG 0.6922 0.8256 0.7348 0.5630
NCI 0.6725 0.8419 0.7127 0.5407
DSI-QG-Merge 0.7215† 0.8767†‡ 0.7501† 0.5815†

DSI-QG-Distill 0.7836†‡ 0.9140†‡ 0.7801†‡ 0.6056†‡

DSI-QG-D+M 0.7838†‡ 0.9209†‡ 0.7851†‡ 0.6074†‡

DSI-QG-Multi 0.7920†‡ 0.9279†‡ 0.7983†‡ 0.6278†‡

Table 2: Results on TREC DL datasets with deeper
annotations. DSI-QG-D+M and DSI-QG-Multi are eval-
uated on the retrieval task while others are evaluated on
the indexing task. Statistical significance at 0.05 relative
to NCI or DSI-QG is marked by † or ‡.

end retrievability. As depicted in Figure 1c, the
distribution of the top 10 documents returned by
DSI-QG following optimized training exhibits a
high degree of similarity to that of TCT-ColBERT.
This demonstrates that the model is capable of
effectively modeling the correlation order among
documents through distillation-based training. To
further validate this conclusion, Table 2 presents
the effects of various models that were trained on
MS MARCO 300k data on the TREC DL19 and
DL20 query sets. The data demonstrate that our
method consistently outperforms the original train-
ing method by at least 8.6% on deeply annotated
data, thus achieving a level of performance that
is comparable to that of dense retrieval models.
While our DSI-QG-Multi model still slightly un-
derperforms TCT-ColBERT on datasets with shal-
low annotations, it is important to note that our
objective is to enhance the retrieval effectiveness of
DSI models. Previous studies, such as NCI (Wang
et al., 2022) and Ultron (Zhou et al., 2022), have

indicated that DSI models can outperform dense
retrieval models when trained on similar smaller
datasets. In our experiments, TCT-ColBERT was
trained on the entire MSMARCO dataset, which
likely contributes to its superior performance. By
distilling the ranking capabilities of TCT-ColBERT,
we have achieved significant improvements.

Effects of Document Identifiers. To investi-
gate the impact of various identifiers, we assign
semantic IDs to documents utilizing the hierarchi-
cal clustering process as in DSI (Tay et al., 2022)
in our training process. The results presented in
table 1 indicate that the semantic IDs can further
improve the retrieval on larger datasets (i.e., MS
MARCO 300k and NQ). For comparison of our
model with other models in different tasks under se-
mantic IDs, as well as the ablation analysis, please
refer to Appendix A.4 & A.5.

4 Related Works

The field of information retrieval has recently
seen a surge in interest in generative retrieval
models. Examples of this approach include the
docT5query (Nogueira et al., 2019a), which trains
T5 models to generate document-related queries
and adds them to the original documents for index
construction, and SEAL (Bevilacqua et al., 2022b),
which generates text fragments that the target doc-
ument may contain and uses FM-Index (Ferragina
and Manzini, 2000) for retrieval. GENRE (Cao
et al., 2021) utilizes BART (Lewis et al., 2020) for
entity name generation in entity retrieval tasks.

Furthermore, Tay et al. (2022) proposed the Dif-
ferentiable Search Index (DSI), which explores
various strategies for mapping string queries to
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document IDs based on T5 (Raffel et al., 2019).
This idea has been further developed in models
such as DSI-QG (Zhuang et al., 2022), NCI (Wang
et al., 2022), and Ultron (Zhou et al., 2022), which
have all effectively improved the retrieval perfor-
mance of generative retrieval models through the
use of pseudo queries. More specifically, DSI-
QG (Zhuang et al., 2022) adapted the model for
multilingual retrieval tasks, Ultron (Zhou et al.,
2022) attempted to incorporate hyperlink informa-
tion into document IDs, and NCI (Wang et al.,
2022) employed richer data, more fine-grained se-
mantic ID mapping, and a novel decoder structure
to obtain the best retrieval results. Differentiable
indexing models have also been applied to a wide
range of tasks such as knowledge-intensive lan-
guage tasks (Chen et al., 2022a), long sequence
retireval (Lee et al., 2022b) and QA tasks (Yu et al.,
2022). Additionally, efforts have been made to im-
prove the memory capability (Mehta et al., 2022)
and decoding capability (Lee et al., 2022a) of these
models. This paper aims to gain a deeper under-
standing of differentiable indexing models as a re-
trieval method and proposes a multi-task distilla-
tion approach to improve their performance.

5 Conclusions

We summarized three essential abilities of a func-
tional non-Boolean IR framework. Through an
empirical analysis of these abilities, we identified
potential weaknesses in existing DSI approaches.
To address these weaknesses, we propose a multi-
task distillation approach to enhance the effective-
ness of DSI by learning from dense retrieval while
preserving the advantages of DSI, such as minimal
storage cost and end-to-end retrievability. Our eval-
uation results indicate that our proposed approach
improves the three abilities of DSI and, as a result,
its retrieval effectiveness, particularly on data with
more comprehensive human annotations. There
are several directions to explore. Firstly, the three
capabilities identified in our empirical analysis, al-
though currently applied to DSI, can be further
extended to analyze statistical retrieval methods
as well. Additionally, investigating the trade-off
between these three capabilities would be an inter-
esting avenue for future research. Performing more
comprehensive experiments to ascertain the effec-
tiveness of retrieval models that rely on expanded
queries for downstream tasks would yield valuable
insights.
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Limitations

In this study, we primarily focus on the examination
and experimentation of the DSI-QG model, with
plans to expand our research to include more recent
models that utilize differentiable search indexing,
such as the NCI model. While our approach has
demonstrated effective improvements in DSI re-
trieval outcomes, and both TCT-ColBERT and our
proposed DSI-QG-Multi performed well in our em-
pirical analysis concerning relevance ordering, we
cannot dismiss the possibility that these favorable
results may be attributed to the extraction of in-
sights from a specific BERT reranker model that
shares similarities or correlations with the one used
to define the desired ranking.

Despite showing improvement over DSI-QG, our
model remains slightly less effective than state-
of-the-art dense retrieval methods such as TCT-
ColBERT V2. Our approach offers advantages
over dense retrieval models such as reduced stor-
age and maintenance overhead, as DSI models do
not require additional index structures for online
use. Though index structures are utilized during
the training phase of DSI-QG-Multi, the generated
index structures are temporary in nature.

Furthermore, due to the limitation of model
memory, current research on DSI only experiments
on a subset of the entire MS MARCO dataset or
small dataset such as NQ. Therefore, an impor-
tant future direction is to develop more efficient
architectures to deal with the issue of memory bot-
tleneck, for example, by using the current popular
Large Language Models (LLM) or constructing ag-
gregation structures for storing all information in
hierarchical pieces.
Acknowledgements. This work is supported in
part by the National Key Research and Develop-
ment Program of China (No. 2020AAA0106400)
and the National Natural Science Foundation of
China (No. 62272439).
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Table 3: Summary of notation.

Symbol Definition

D = {𝑑𝑖} Set of documents stored in the index.

I = {𝑖𝑑𝑖} Set of docids of documents in D.

Q = {𝑞𝑖} Set of user queries.

M(𝑑𝑖) An retrieval function take 𝑑𝑖 as input.

R(𝑞𝑖 ,M) A retrieval operation for 𝑞𝑖 based on M.

s(𝑞𝑖 , 𝑑𝑖) Relevance score of 𝑞𝑖 and 𝑑𝑖 .

𝑑 𝑗 ≤𝑞 𝑑𝑖
A binary relation that 𝑑𝑖 is more
relevant to 𝑞 than 𝑑 𝑗

A Appendix

A.1 Notation Table

The notations are listed in table 3 .

A.2 Datasets Details

For MS MARCO 100k dataset, We adhere to the
experimental design outlined in (Zhuang et al.,
2022) by randomly selecting 93k passages from
the dataset and incorporating all text from the vali-
dation set. For MS MARCO 300k dataset, we ran-
domly select 293k passages from the dataset and
incorporate all text from the validation set, as well
as from TREC DL19 and 20. For NQ 320k dataset,
we follow the DSI experimental procedures (Tay
et al., 2022), constructing the data consisting of
approximately 200k passages and 8k validation set
queries after pre-processing.

A.3 Baseline Details

The details of our baselines are as follows:

• BM25 (Robertson and Zaragoza, 2009) is a
classical sparse retrieval model that utilizes
lexical weights. In this study, we employ
a pyserini-based implementation (Lin et al.,
2021b), which leverages the Lucene (Bialecki
et al., 2012) as the underlying infrastructure.

• TCT-ColBERT (V2) (Lin et al., 2021c) is a
state-of-the-art single-vector dense retrieval
model that utilizes knowledge distillation and
hard negative example sampling techniques.
The model combines the performance of Col-
BERT (Khattab and Zaharia, 2020) with the
computational efficiency of a bi-encoder. The
implementation of TCT-ColBERT is based
on the Faiss vector index and is implemented

through the pyserini library. This model is uti-
lized to demonstrate the effectiveness of the
current state-of-the-art model for retrieval and
serves as a guide for training a differentiable
search index. Note that the TCT-ColBERT
model is exclusively trained utilizing the MS
MARCO Passage dataset. Our analysis of
the retrieval performance of various dense
retrieval models on NQ data revealed that
TCT-ColBERT displayed remarkable results
despite not having been specifically trained on
that dataset.

• DSI (Tay et al., 2022) is a T5-based ap-
proach for learning text-to-identifier map-
pings. Specifically, DSI defines the process
of mapping original text to identifiers as an
indexing task and the mapping of query text to
identifiers as a retrieval task. This study repro-
duces the DSI model using the Naive String
Docid and Semantic String Docid techniques,
based on T5-base and T5-large architectures,
utilizing open-source implementations2. As
access to the original training data of DSI is
not available, we followed the settings of the
open-source implementation to set the index-
ing and retrieval ratio to 1:1 for MS MARCO
and 3:1 for NQ.

• DSI-QG (Zhuang et al., 2022) improves upon
DSI by incorporating pseudo-queries that are
generated utilizing DocT5Query during the
training process. Our research has involved
reproducing the model on the MS MARCO
100k dataset, utilizing the available open-
source code, and subsequently applying it to
the MS MARCO 300k and NQ 320k datasets.
This model serves as the baseline for our work
but also serves as the primary focus for our
investigations into potential improvements.

• NCI (Wang et al., 2022), is a recently pro-
posed state-of-the-art differentiable search in-
dexing model that utilizes a variety of tech-
niques to enhance its performance. These in-
clude the generation of semantic identifiers,
the implementation of query generation strate-
gies, and the utilization of a prefix-aware
weight-adaptive decoder. Through the use
of open-source implementation, the effective-

2https://github.com/ArvinZhuang/
DSI-transformers
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ness of the model is validated using the three
distinct datasets.

• SEAL (Bevilacqua et al., 2022a) is a novel
methodology that incorporates an autoregres-
sive language model with a compressed full-
text substring index. The implementation of
this model utilizes BART and an external in-
dex known as the FM-index. We evaluate it
on three datasets based on its official imple-
mentation.

A.4 Impact of Document Identifier
To investigate the impact of various identifiers, we
assign semantic IDs to documents utilizing the hi-
erarchical clustering process as in DSI (Tay et al.,
2022) and have subsequently trained various mod-
els based on these new IDs. From Table 4, it is
observed that for DSI and DSI-QG, the utilization
of semantic clustering-based document IDs results
in improved effectiveness when compared to the
use of Naive String IDs. For our proposed DSI-QG-
Multi, the use of semantic IDs is effective on larger
datasets, such as MS MARCO 300k and NQ320k.
Across all three models, it is evident that semantic
IDs are highly beneficial in enhancing Hits@10 on
NQ.

A.5 Impact of Different Factors
As shown in table 5,the results of DSI-QG-Distill
reveal that the distillation task effectively improves
the performance of the DSI-QG model on Hits@10,
while having comparable performance on Hits@1,
except for a drop on the MS MARCO 300k data.
This suggests that the model is able to recall more
relevant documents for a given query in the 2nd
to 10th positions of the returned list, which is in
line with our objective of enhancing the relevance
ordering capabilities of the model through distilla-
tion. In comparison to the original DSI-QG, DSI-
QG-Merge exhibits a substantial enhancement in
both Hits@1 and Hits@10. This illustrates the non-
negligible impact that training data has on the over-
all performance of the model, thereby highlighting
the importance of utilizing a more judicious and
directed approach in the selection of training data.
When the tasks are trained independently, the result
of DSI-QG-M+D demonstrates an improvement in
Hits@10 across all three datasets in comparison to
prior single-task training. However, this improve-
ment is less substantial than the gain achieved by
DSI-QG-Multi.
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Models ID Type
MSMarco 100k MSMarco 300k NQ 320k

Dev Dev DL19 DL20 Dev
Hits@1 Hits@10 Hits@1 Hits@10 Ndcg@10 P@10 Ndcg@10 P@10 Hits@1 Hits@10

NCI Semantic 0.6133 0.8670 0.5289 0.8244 0.6725 0.8419 0.7127 0.5407 0.2120 0.6999

DSI
Naive 0.0292 0.0682 0.0218 0.0543 0.2156 0.2209 0.1907 0.1167 0.0008 0.0083
Semantic 0.0957 0.2597 0.0602 0.2054 0.3607 0.4279 0.2749 0.2000 0.0212 0.2370

DSI-QG
Naive 0.6085 0.8026 0.5123 0.7703 0.6922 0.8256 0.7348 0.5630 0.2193 0.5180
Semantic 0.6103 0.8109 0.5252 0.7971 0.7022 0.8512 0.7317 0.5759 0.2287 0.6252

DSI-QG-Multi
Naive 0.6711† 0.9208† 0.5390 0.8726† 0.7920† 0.9279† 0.7983† 0.6278† 0.2190 0.6138
Semantic 0.6626† 0.9115† 0.5615† 0.8801† 0.7961† 0.9372† 0.7844† 0.6019† 0.2390† 0.7202†

Table 4: Semantic ID Experiment Results. Results on the dev set of the three datasets are based on index task, and
results on TREC DL are based on retrieval task. Statistical significance at 0.05 relative to NCI is marked by †.

Methods Model Size/ Task
MS Marco 100k Dev MS Marco 300k Dev NQ 320k
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

DSI-QG Base/ Index 0.6085 0.8026 0.5123 0.7703 0.2193 0.5180
NCI Base/ Index 0.6133 0.8670 0.5289 0.8244 0.2120 0.6999
DSI-QG-Distill Base/ Retrv 0.6095 0.8851† 0.4755 0.8143 0.2188 0.6535
DSI-QG-Merge Base/ Index 0.6457† 0.8692 0.5493† 0.8302 0.2199† 0.5957
DSI-QG-D+M Base/ Retrv 0.6460† 0.9097† 0.5007 0.8471† 0.2163 0.6992
DSI-QG-Multi Base/ Index 0.6711† 0.9208† 0.5390 0.8726 † 0.2190 0.6138
DSI-QG-Multi Base/ Retrv 0.6711† 0.9143† 0.5219 0.8480† 0.2162 0.7003

Table 5: Ablation study results with shallow annotations. Statistical significance at 0.05 relative to NCI is marked
by †.
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