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Abstract

This paper proposes Multi-modAl Retrieval
model via Visual modulE pLugin (MARVEL),
which learns an embedding space for queries
and multi-modal documents to conduct re-
trieval. MARVEL encodes queries and multi-
modal documents with a unified encoder model,
which helps to alleviate the modality gap be-
tween images and texts. Specifically, we enable
the image understanding ability of the well-
trained dense retriever, T5-ANCE, by incorpo-
rating the visual module’s encoded image fea-
tures as its inputs. To facilitate the multi-modal
retrieval tasks, we build the ClueWeb22-MM
dataset based on the ClueWeb22 dataset, which
regards anchor texts as queries, and extracts
the related text and image documents from
anchor-linked web pages. Our experiments
show that MARVEL significantly outperforms
the state-of-the-art methods on the multi-modal
retrieval dataset WebQA and ClueWeb22-MM.
MARVEL provides an opportunity to broaden
the advantages of text retrieval to the multi-
modal scenario. Besides, we also illustrate
that the language model has the ability to ex-
tract image semantics and partly map the im-
age features to the input word embedding space.
All codes are available at https://github.
com/OpenMatch/MARVEL.

1 Introduction

With the growth of multimedia information on the
Internet, search engines tend to return multi-modal
retrieval results to better satisfy the user informa-
tion need (Tautkute et al., 2019; Zhu et al., 2023).
The media information provides more vivid re-
trieval results, such as texts, images, videos, and
more, which improves users’ experiences and even
changes their browsing behaviors.

Multi-modal retrieval (Bain et al., 2021; Awad
et al., 2021; Arni et al., 2008; Chang et al., 2022)

*indicates equal contribution.
†indicates corresponding author.

Figure 1: Retrieval Pipeline with Our MARVEL Model.
MARVEL incorporates the visual module plugin, aim-
ing to unlock the multi-modal capabilities of well
trained dense retrieval model.

aims to return fusion results of images and texts
to answer user questions. The task can be mod-
eled using a divide-and-conquer pipeline (Chang
et al., 2022; Liu et al., 2023b) or universal dense
retrieval (Liu et al., 2023b). UniVL-DR (Liu et al.,
2023b) encodes queries and multi-modal docu-
ments into a universal embedding space for multi-
modal retrieval. However, this work encodes image
features and texts using different encoders from
CLIP (Radford et al., 2021) and the separated text
and image encoding leads to a modality gap in
representing multi-modal documents. It makes
UniVL-DR design an additional image verbaliza-
tion method to alleviate the modality gap and also
limits the text retrieval models (Karpukhin et al.,
2020; Xiong et al., 2021a; Zhan et al., 2021; Li
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et al., 2021b; Yu et al., 2021) to excel their advan-
tages in multi-modal scenarios.

In this paper, we propose Multi-modAl Retrieval
model via Visual modulE pLugin (MARVEL). As
shown in Figure 1, MARVEL is based on the text
retriever T5-ANCE (Yu et al., 2023), regards the
visual module as a plugin and pretrains the visual
module with image-caption contrastive training for
adaption. By incorporating a visual module into
well-trained text retriever T5-ANCE, MARVEL
seizes the opportunity to extend the benefits of
unimodal learning to the multi-modal retrieval task.

To facilitate the multi-modal retrieval task, we
build a large-scale benchmark, ClueWeb22-MM,
based on the web page dataset, ClueWeb22 (Over-
wijk et al., 2022). Following previous work in
text retrieval (Zhang et al., 2020; Xie et al., 2023),
we regard the anchor text as a query and assume
that its linked web page is related to the query.
Subsequently, we extract image and text docu-
ments from these anchor-linked web pages. Af-
ter processing, the ClueWeb22-MM encompasses
over 90k queries, maintaining a scale compara-
ble to existing benchmark WebQA (Chang et al.,
2022). Previous work (Xie et al., 2023) demon-
strates that the high-quality training signals from
anchor-document pairs contribute to developing a
state-of-the-art dense retrieval model.

Our experiments show that MARVEL outper-
forms all baseline models, achieving improvements
of over 2% and 7%, in the main metric MRR, on
WebQA (Chang et al., 2022) and ClueWeb22-MM,
respectively. The evaluation results indicate the
effectiveness of MARVEL comes from the visual
module plugin architecture, the visual module pre-
training method, and the text matching knowledge
learned by T5-ANCE. Our further analyses illus-
trate that the image representations encoded by the
visual module can be easily captured by only fine-
tuning the language model parameters. The train-
ing strategies guide the language model to assign
more appropriate attention weights to image and
text features, preventing the visual module from
overfitting to the training signals. These encoded
image representations not only inhabit the input
embedding space for semantics alignment but also
function as a kind of prompt.

2 Related Work

Existing dense retrieval models (Karpukhin et al.,
2020; Xiong et al., 2021a; Ren et al., 2021; Xiong

et al., 2021b; Gao and Callan, 2022; Luan et al.,
2021; Khattab and Zaharia, 2020) usually focus
on retrieving text documents and modeling the
relevance between queries and documents. They
usually employ pretrained language models to en-
code queries and text documents into an embedding
space, followed by a KNN search to retrieve candi-
date documents.

Unlike the text retrieval task, the multi-modal
retrieval task (Chang et al., 2022; Hannan et al.,
2020; Singh et al., 2021; Talmor et al., 2021) aims
to provide users with multi-modal documents that
satisfy their information needs. Earlier work pri-
marily focuses on building a divide-and-conquer
pipeline for multi-modal retrieval (Chang et al.,
2022; Liu et al., 2023b; Escalante et al., 2008;
Grubinger et al., 2008). In these models, retrievers
individually search candidates from the document
collections of different modalities and then use a
reranking model to fuse the retrieval results, such
as vision-language models (Zhang et al., 2021).
However, this approach usually struggles to fuse
the retrieval results across different modalities (Liu
et al., 2023b). UniVL-DR (Liu et al., 2023b) builds
a universal multi-modal dense retrieval model. It
encodes queries and multi-modal documents as em-
beddings and conducts retrieval, modality routing,
and result fusion within a unified embedding space.

Representing images is also the core of multi-
modal retrieval, aiming to alleviate the modality
gap between images and texts. Existing work usu-
ally focuses on representing the images using cap-
tions and image features (Liu et al., 2023b) with
different encoding methods. BERT-style pretrained
visual-language models (Chen et al., 2019; Lu et al.,
2019; Tan and Bansal, 2019; Su et al., 2020; Li
et al., 2019, 2021a; Cho et al., 2021; Hu et al.,
2020; Wang et al., 2022) provide an opportunity to
model the captions and image features using the
same model. However, these visual-language mod-
els typically aim to align the semantics between
image features and captions instead of learning rep-
resentations for image documents. Thus they show
less effectiveness in learning an embedding space
for multi-modal retrieval (Liu et al., 2023b).

Another way to facilitate the image document
representations is using the visual-language mod-
els that focus on representation learning, such as
CLIP (Radford et al., 2021). It encodes image fea-
tures and texts using different encoders. However,
these approaches often only provide shallow inter-
actions between texts and visual features. Thus,
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existing models (Liu et al., 2023b) pay more atten-
tion to alleviating the modality gap between texts
and images by the image verbalization method,
aiming to bridge the modality gap between images
and texts in the raw text space.

Recent advancements in multi-modal large lan-
guage models (Brown et al., 2020; Touvron et al.,
2023) have introduced a novel approach to mod-
eling multi-modality features. This approach in-
corporates a visual encoder module into large lan-
guage models through a transformation layer (Li
et al., 2023; Alayrac et al., 2022; Liu et al., 2023a).
These models extract image features using the vi-
sual encoder module of CLIP and then optimize the
prompt tokens and transformation layer to map the
encoded image embeddings to the raw input space
of large language models (Merullo et al., 2023;
Lester et al., 2021). Such a visual encoder plu-
gin method presents a unified modeling approach
for handling image and text features. It not only
enables the visual comprehension ability of large
language models but also preserves their effective-
ness by freezing their parameters.

3 Multi-Modal Retrieval Model via Visual
Module Plugin (MARVEL)

In this section, we first describe the multi-modal
retrieval (Sec. 3.1) and then introduce the model
architecture of MARVEL (Sec. 3.2).

3.1 Preliminary of Multi-Modal Retrieval

Given a query q, the retrieval task requires the
dense retrieval models to search relevant docu-
ments from the document collection D to meet
the information needs of users.

Previous dense retrieval models (Karpukhin
et al., 2020; Xiong et al., 2021a; Gao and Callan,
2021; Yu et al., 2023) usually focus on the text
retrieval task, which aims to model the relevance
between user query q and text documents D =
{d1Text, ..., d

m
Text}. They encode both query and the

i-th document diText using language models, such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and T5 (Raffel et al., 2020):

q⃗ = TextEncoder(q); d⃗iText = TextEncoder(diText). (1)

Different from text retrieval (Nguyen et al., 2016;
Thakur et al., 2021), the multi-modal retrieval
task (Chang et al., 2022) aims to return a fusion re-
sult of documents from the collection D, which are
from different modalities. The document collection

D not only contains texts T = {d1Text, ..., d
m
Text},

but also includes images I = {d1Image, ..., d
n
Image}.

The multi-modal retrieval task requires retriev-
ers to conduct relevance modeling, cross-modal
matching, and modality fusion (Liu et al., 2023b).
Previous work (Liu et al., 2023b) maps text and im-
age documents in an embedding space for retrieval,
encodes texts and images using different encoders,
and tries to bridge the modality gap using image
verbalization methods. However, this limits the
capability of dense retrieval models, hindering the
expansion of text matching knowledge for learning
representations for multi-modal documents.

3.2 Universal Multi-Modal Encoding

We show the model architecture in Figure 2. Dif-
ferent from previous work (Liu et al., 2023b), we
can universally encode query q and multi-modal
documents D = {d1Text, ..., d

m
Text, d

1
Image, ..., d

n
Image}

using one encoder, T5-ANCE-CLIP:

q⃗ = T5-ANCE-CLIP(q);

d⃗iText = T5-ANCE-CLIP(diText);

d⃗iImage = T5-ANCE-CLIP(diImage(I), d
i
Image(C)),

(2)

where diImage(I) and diImage(C) are the image fea-
ture and caption of the i-th image document diImage.

Then we calculate the relevance score f(q, di)
between query q and the i-th document di using
cosine similarity:

f(q, di) = cos(q⃗, d⃗i). (3)

Following this, we conduct KNN search (Johnson
et al., 2019) to retrieve multi-modal document can-
didates for the given query q.

Subsequently, we first introduce the visual mod-
ule plugin architecture of our MARVEL model
(Sec. 3.2.1). Then we adapt the visual module to
T5-ANCE by pretraining the visual understanding
module (Sec. 3.2.2). Finally, we finetune the pa-
rameters of T5-ANCE to learn an embedding space
for multi-modal retrieval (Sec. 3.2.3).

3.2.1 Dense Retrieval with Visual Plugin
MARVEL starts from the T5-ANCE model (Yu
et al., 2023), which is a dense retrieval model that
is well-trained using MS MARCO dataset (Nguyen
et al., 2016). Then we enable T5-ANCE by incorpo-
rating the visual module from the vision-language
model, CLIP (Radford et al., 2021), and conduct
the T5-ANCE-CLIP model. We can use a universal
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(a) Visual Module Adaption Pretraining.

(b) Modality-Balanced Language Model Finetuning. We follow previous work (Liu et al., 2023b) and sample one image
document and one text document from corresponding negative document collections.

Figure 2: The Architecture of Multi-modAl Retrieval model via Visual modulE pLugin (MARVEL). We first
pretrain the visual modules using the image-caption alignment task (Figure 2(a)) and then finetune the language
model to conduct multi-modal retrieval (Figure 2(b)).

encoder, T5-ANCE-CLIP, to encode texts, image
features, and image documents.

Specifically, we encode the image feature I us-
ing the visual encoder of CLIP (Radford et al.,
2021) and get its encoded visual representation h⃗I :

h⃗I = CLIP(I), (4)

This representation is obtained from the grid fea-
tures of the last layer of the visual encoder of CLIP,
and h⃗I = {h⃗I1, ..., h⃗I49}. Here 49 is the number
of patches. Then we follow the previous visual-
language model (Merullo et al., 2023) and use a
linear transformation layer to adapt the visual fea-
tures h⃗Ii into the embedding space of the inputs of
dense retrieval model:

I⃗i = Linear(⃗hI
i ). (5)

Finally, we can feed these encoded image features
I⃗ = {I⃗1, ..., I⃗49} as the ahead input embeddings
X⃗ for T5-ANCE:

X⃗ = e⃗(<start>); I⃗1; ...; I⃗49; e⃗(<end>); e⃗1; ...; e⃗k, (6)

where ; is the concatenation operation. e⃗(<start>)
and e⃗(<end>) are the embeddings of prompt tokens
to denote the start and end of encoded image feature
representations. {e⃗1...; e⃗k} are the word embed-
dings of the text input sequence T = {T1, ..., Tk}.

Different from these visual-language mod-
els (Alayrac et al., 2022; Li et al., 2023; Liu et al.,
2023a; Tsimpoukelli et al., 2021), our MARVEL
model aims to bring the advance of text retrieval-
based pretraining to multi-modal retrieval tasks by
using the visual model plugin to bridge the modal-
ity gap between images and texts.

3.2.2 Visual Module Adaption Pretraining
In MARVEL, we adapt the visual understanding
module to T5-ANCE by only pretraining the param-
eters of the visual module (Eq. 4) and the projection
layer (Eq. 5). We follow Radford et al. (2021) and
leverage the image-caption contrastive training loss
LVM to pretrain the visual understanding module.
The training loss utilizes the alignment between
image features I and captions C:

LVM = LIC + LCI, (7)

where LIC and LCI are the dual direction training
losses to regard image and caption as queries and
then map them with corresponding caption and
image, respectively:

LIC = − log
ef(I,C

+)/τ

ef(I,C+)/τ +
∑

C−∈D−
C
ef(I,C−)/τ

, (8)

LCI = − log
ef(C,I+)/τ

ef(C,I+)/τ +
∑

I−∈D−
I
ef(C,I−)/τ

, (9)
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Dataset Modality #Doc #Query
Train Dev Test

WebQA
Image 389,750 16,400 2,554 2,511
Text 787,697 15,366 2,446 2,455
Multi-Modal 1,177,447 31,766 5,000 4,966

ClueWeb22-MM
Image 368,710 35,873 5,041 5,030
Text 363,508 36,155 4,959 4,970
Multi-Modal 732,218 72,028 10,000 10,000

Table 1: Data Statistics.

where τ is the temperature used to scale the simi-
larity score. D−

C and D−
I contain negative captions

and negative images respectively, which are sam-
pled from in-batch negatives.

3.2.3 Modality-Balanced Language Model
Finetuning

During finetuning, we can freeze the parameters
of the visual module (Eq. 4) and optimize other
parameters of MARVEL. To enable the MARVEL
model to learn a universal embedding space for
both queries and multi-modal documents, we fol-
low previous work (Liu et al., 2023b) and employ
modality-balanced hard negative training to allevi-
ate the modality discrimination of retrieval models:

LLM = − log
ef(q,d

+)/τ

ef(q,d+)/τ +
∑

d−∈D− ef(q,d−)/τ

∝ − f(q, d+)/τ︸ ︷︷ ︸
LAlign

+ log(
∑

d−∈D−
(ef(q,d

−
Image)/τ︸ ︷︷ ︸

LImage

+ ef(q,d
−
Text)/τ︸ ︷︷ ︸

LText

)),

(10)

where D− contains the same number of negative
documents of image and text. LAlign teaches mod-
els to align the query with related documents. LText
and LImage guide retrievers to choose the modality
and make the embedding space uniform (Liu et al.,
2023b; Wang and Isola, 2020; Chen et al., 2020).

4 Experimental Methodology

This section describes datasets, evaluation metrics,
baselines and implementation details.

Dataset. During pretraining, we collect the
image-caption pairs from ClueWeb22 (Overwijk
et al., 2022) to train the visual understanding mod-
ule. More details of pretraining data are shown
in Appendix A.2. Then two multi-modal retrieval
datasets, WebQA and ClueWeb22-MM, are used
for finetuning and evaluation. The data statistics
are shown in Table 1.

WebQA is a multi-hop, multi-modal, open-
domain question answering benchmark (Chang
et al., 2022). The dataset contains images and pas-
sage snippets that are crawled from the general

Web and Wikipedia. We follow previous work (Liu
et al., 2023b) to keep the same experimental set-
tings to preprocess the dataset. Besides, we build
a new multi-modal retrieval dataset, ClueWeb22-
MM, based on ClueWeb22 (Overwijk et al., 2022),
which provides 10 billion web pages with rich infor-
mation. We only retain web pages in English and
build the ClueWeb22-MM dataset. We establish
query-document relations by pairing anchors with
their corresponding document (Xie et al., 2023;
Zhang et al., 2020). And then we regard the anchor
texts as queries and extract image documents and
text documents from the linked documents. More
details of building the ClueWeb22-MM dataset are
shown in Appendix A.4.

Evaluation Metrics. We use NDCG@10,
MRR@10 and Recall@100 as evaluation met-
rics. Following previous work (Liu et al., 2023b;
Nguyen et al., 2016), we regard MRR@10 as our
main evaluation. MRR and NDCG are computed
using the official scripts1. Statistic significances
are tested by permutation test with P< 0.05.

Baselines. In our experiments, we follow pre-
vious work (Liu et al., 2023b) to conduct baseline
models and divide them into three groups: single
modality retrieval, divide-and-conquer, and univer-
sal dense retrieval models.

Single Modality Retrieval. In our experi-
ments, we represent image documents using cap-
tions and use several text retrieval models as
baselines. BM25 (Robertson et al., 2009) is
widely used in text retrieval work, which con-
ducts exact matches between queries and docu-
ments. DPR (Karpukhin et al., 2020) is trained us-
ing NQ dataset (Kwiatkowski et al., 2019) and uses
a dual-encoder to encode queries and documents
as dense vectors for retrieval. We start from vanilla
BERT (Devlin et al., 2019) and DPR (Karpukhin
et al., 2020) checkpoints and train the encoders
using in-batch negatives to conduct BERT-DPR
and NQ-DPR models. NQ-ANCE is also com-
pared, which continuously trains NQ-DPR using
hard negatives (Xiong et al., 2021a). Besides, T5-
ANCE (Yu et al., 2023) and Anchor-DR (Xie et al.,
2023) are dense retrieval models that are trained on
MS MARCO and ClueWeb22, respectively.

Divide-and-Conquer. The divide-and-conquer
models retrieve image documents and text docu-
ments individually and then fuse the retrieval re-

1https://github.com/microsoft/
MSMARCO-Passage-Ranking/blob/master/
ms_marco_eval.py
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sults. Following previous work (Liu et al., 2023b),
we use single modality retrievers, VinVL-DPR,
CLIP-DPR and BM25, and fuse the retrieval re-
sults according to their unimodal rank reciprocals.

Universal Dense Retrieval. CLIP-DPR and
VinVL-DPR employ the visual language models
CLIP (Radford et al., 2021) and VinVL (Zhang
et al., 2021) as image and text encoders and then are
trained with in-batch negatives. UniVL-DR (Liu
et al., 2023b) is our main baseline model, which
further uses modality-balanced hard negative to
train text and image encoders and also utilizes the
image verbalization method to bridge the modality
gap between images and texts.

Implementation Details. In our experiments,
we use T5-ANCE (Yu et al., 2023) as our backbone
language model, which is well-trained on the MS
MARCO dataset (Nguyen et al., 2016). Then we
implement our MARVEL model by utilizing CLIP
as the visual understanding module to empower the
image understanding capability of T5-ANCE. The
visual encoder is initialized with the clip-vit-base-
patch32 checkpoint from OpenAI2. For MARVEL,
we truncate queries, text documents and image cap-
tions to 128 tokens and set the max number of
visual tokens to 49.

During training, we use AdamW (Loshchilov
and Hutter, 2019) optimizer and set maximum train-
ing epoch=20, batch size=64, learning rate=5e− 6,
and the temperature hyperparameter τ = 0.01. We
follow UniVL-DR (Liu et al., 2023b) and conduct
MARVEL-ANCE by starting from in-batch nega-
tive finetuned MARVEL-DPR, and continuously
training MARVEL-DPR with modality-balanced
hard negatives. These hard negatives are randomly
sampled from the top 100 retrieved negatives using
MARVEL-DPR. All models are evaluated per 500
steps and the early stop step is set to 5.

5 Evaluation Result

In this section, we first evaluate the performance of
MARVEL and conduct ablation studies. Then, we
explore the effectiveness of different visual and lan-
guage model fusion methods and analyze the role
of visual module adaption pretraining in MARVEL.
Some case studies are shown in Appendix A.8.

5.1 Overall Performance

The multi-modal retrieval performance of MAR-
VEL and baseline models is shown in Table 2. Be-

2https://github.com/openai/CLIP

sides retrieval performance, we also compared re-
trieval efficiency in Appendix A.7.

Overall, MARVEL significantly outperforms
baseline models on all datasets by achieving more
than 2% improvements on both datasets, demon-
strating its advantages in multi-modal retrieval
tasks. Compared with text retrieval models, MAR-
VEL improves their performance, showing that the
image features are crucial in the multi-modal re-
trieval task. Furthermore, these universal multi-
modal dense retrievers, UniVL-DR and MARVEL,
outperform divide-and-conquer models by alle-
viating the modality fusion problem (Liu et al.,
2023b). Compared with our main baseline UniVL-
DR, MARVEL encodes queries and multi-modal
documents using a universal encoder. Experimental
results show that MARVEL significantly improves
the retrieval effectiveness of UniVL-DR on both
datasets, demonstrating its effectiveness in bridging
the modality gap between images and texts.

5.2 Ablation Study
As shown in Table 3, we conduct ablation studies to
explore the role of different modules of MARVEL
in multi-modal retrieval. More ablation studies are
shown in Appendix A.5.

In the comparison between MARVEL and MAR-
VEL w/o CLIP Pretraining, pretraining the visual
understanding module shows its effectiveness by
improving the performance on single/multi-modal
retrieval tasks. It shows that the image-caption
alignment relations provide some opportunities to
adapt the visual module to the language model
via pretraining. Subsequently, MARVEL also out-
performs MARVEL w/o MS MARCO Pretraining,
especially on the text retrieval task. It demonstrates
that MARVEL can broaden the advantage of text
relevance modeling to the multi-modal retrieval
task. To unify the multi-modal encoding, MAR-
VEL follows previous work (Hannan et al., 2020)
uses prompt tokens to indicate the start and end po-
sitions of encoded image features (Eq. 6), aiming
to distinguish the image features from text token
embeddings. These image prompt tokens bring
light improvements, illustrating their roles in multi-
modal document representation.

5.3 Retrieval Effectiveness of Different
Visual-Language Fusion Methods

In this experiment, we show the retrieval effective-
ness of MARVEL on the WebQA dataset by using
different modality fusion and finetuning methods.
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Setting Model WebQA ClueWeb22-MM
MRR@10 NDCG@10 Rec@100 MRR@10 NDCG@10 Rec@100

Single Modality
(Text Only)

BM25 53.75 49.60 80.69 40.81 46.08 78.22
DPR (Zero-Shot) 22.72 20.06 45.43 20.59 23.24 44.93
CLIP-Text (Zero-Shot) 18.16 16.76 39.83 30.13 33.91 59.53
Anchor-DR (Zero-Shot) 39.96 37.09 71.32 42.92 48.50 76.52
T5-ANCE (Zero-Shot) 41.57 37.92 69.33 45.65 51.71 83.23
BERT-DPR 42.16 39.57 77.10 38.56 44.41 80.38
NQ-DPR 41.88 39.65 78.57 39.86 46.15 83.50
NQ-ANCE 45.54 42.05 69.31 45.89 51.83 81.21

Divide-Conquer
VinVL-DPR 22.11 22.92 62.82 29.97 36.13 74.56
CLIP-DPR 37.35 37.56 85.53 39.54 47.16 87.25
BM25 & CLIP-DPR 42.27 41.58 87.50 41.58 48.67 83.50

UnivSearch

CLIP (Zero-Shot) 10.59 8.69 20.21 16.28 18.52 40.36
VinVL-DPR 38.14 35.43 69.42 35.09 40.36 75.06
CLIP-DPR 48.83 46.32 86.43 42.59 49.24 87.07
UniVL-DR 62.40†§ 59.32†§ 89.42†§ 47.99†§ 55.41†§ 90.46†§

MARVEL-DPR 55.71† 52.94† 88.23† 46.93† 53.76† 88.74†

MARVEL-ANCE 65.15†‡§ 62.95†‡§ 92.40†‡§ 55.19†‡§ 62.83†‡§ 93.16†‡§

Table 2: Overall Performance. We keep the same experimental settings with previous work (Liu et al., 2023b). †, ‡
and § indicate statistically significant improvements over CLIP-DPR†, UniVL-DR‡ and MARVEL-DPR§.

Model Modality WebQA ClueWeb22-MM
MRR@10 NDCG@10 Rec@100 MRR@10 NDCG@10 Rec@100

MARVEL-ANCE
Text 64.72‡ 58.88‡§ 90.26‡§ 71.73†‡§ 75.40†‡§ 92.29‡§

Image 66.12† 67.49†‡ 95.12†‡§ 77.57†‡§ 81.34†‡§ 96.50†‡

Multi 65.15‡ 62.95†‡ 92.40‡§ 55.19‡§ 62.83‡§ 93.16‡§

w/o CLIP Pretraining
Text 64.63‡ 58.79‡ 90.21‡§ 70.92§ 74.67§ 92.13‡§

Image 65.17 66.69 94.64 76.99‡§ 80.83‡§ 96.22
Multi 64.66 62.50‡ 92.24 ‡§ 55.18‡§ 62.81‡§ 93.07‡

w/o MS MARCO Pretraining
Text 63.37 56.93 88.54 70.74§ 74.35§ 91.27
Image 65.73 66.91 94.66 76.26 80.11 96.08
Multi 64.21 61.63 91.43 54.61§ 62.16§ 92.52

w/o Prompt
Text 63.86 58.00‡ 89.60‡ 69.99 73.82 91.65
Image 66.53†‡ 67.56†‡ 94.42 76.07 80.14 96.58†‡

Multi 64.92‡ 62.50‡ 91.81‡ 54.20 61.79 92.93‡

Table 3: Ablation Studies. †, ‡, and § indicate statistically significant improvements over MARVEL-ANCE w/o
CLIP Pretraining†, MARVEL-ANCE w/o MS MARCO Pretraining‡ and MARVEL-ANCE w/o Prompt§.

Modality Fusion. Three kinds of visual-
language fusion methods are compared in our ex-
periments, including Sum, Concat and Plugin. For
Sum and Concat methods, we encode the captions
and image features separately as embeddings, then
sum or concatenate these embeddings, followed by
joint training of T5-ANCE and CLIP models with
in-batch negatives. We show the experimental re-
sults in Table 4. MARVEL’s visual module plugin
method outperforms other fusion methods. This
highlights the effectiveness of utilizing pretrained
attention heads of language models for extracting
image semantics and fostering deeper interactions
between image and text inputs. Our plugin method
proves instrumental in mitigating the modality gap
between texts and images, enabling MARVEL to
better represent image documents by jointly mod-
eling image captions and features.

Different from Liu et al. (2023b), we use T5-

ANCE and CLIP as the text and image encoders,
respectively. These models have different archi-
tectures and are pretrained on text retrieval and
image-caption matching tasks. The multi-modal re-
trieval performance of CLIP-Sum decreases when
we encode the image caption with a stronger re-
trieval model T5-ANCE (T5-CLIP-Sum) instead
of CLIP. It demonstrates that incorporating an ad-
ditional visual module into a well-trained dense
retrieval model is still challenging for multi-modal
retrieval. Notably, MARVEL provides a promising
way to enable the image understanding ability of
dense retrieval models by using the visual module
plugin modeling method.

Finetuning Strategies. We then show the effec-
tiveness of different finetuning strategies. In this
experiment, we individually finetune the language
model (T5) and visual module (CLIP) to show the
changes of attention distributions and analyze the

14614



Method Modality MRR@10 Rec@100
Text 51.75 84.37

CLIP-Sum Image 60.61 94.84
Multi 48.83 86.43
Text 51.84 85.06

T5-CLIP (Sum) Image 58.09 93.13
Multi 35.03 79.00
Text 48.71 81.78

T5-CLIP (Concat) Image 37.20 81.14
Multi 25.19 62.77
Text 54.28 85.80

T5-CLIP (Plugin) Image 60.81 93.55
Multi 55.58 88.50

Table 4: Retrieval Performance of the Models using
Different Visual-Language Fusion Methods. T5-CLIP
(Sum/Concat) is similar to previous work (Liu et al.,
2023b), which only replace the image caption encoder
with T5-ANCE. The CLIP-Sum model is the CLIP-
DPR model from previous work (Liu et al., 2023b). All
models are trained with in-batch negatives. MRR@10 is
used to evaluate the retrieval effectiveness of all models.

(a) Attention Weights. (b) Attention Entropy.

Figure 3: Attention Distribution of MARVEL-ANCE.
The attention weights of image features are shown in
Figure 3(a). And the attention weight entropy of image
captions and features is shown in Figure 3(b).

behaviors of different finetuning strategies.
As shown in Figure 3. The attention scores are

calculated by cross attentions from the decoder
to the encoder module of T5. We first show the
attention weight distribution of image features in
Figure 3(a). When we only finetune the language
model, the attention heads tend to allocate more
balanced attention weights between image features
and captions, helping to adapt the visual module
in the language model. On the other hand, the
image features win more attention weights when
the CLIP module is finetuned. However, as shown
in Figure 3(b), only finetuning the CLIP module
shows a scattered attention weight mechanism than
other models, which misleads the T5-ANCE to
capture more important information from encoded
representations of documents. All these phenom-
ena demonstrate the necessity of the training strate-

gies of MARVEL, which pretrain visual module
for adaption and only finetune the language model
for multi-modal retrieval. In addition, we show
the retrieval effectiveness with different finetuning
methods in Appendix A.3.

5.4 Effectiveness of Visual Module Adaption
Pretraining

We show some cases in Table 5 to show the ef-
fectiveness of the visual understanding module by
verbalizing encoded image features. Besides, more
experiments about the encoded image features are
shown in Appendix A.6.

We randomly select four image documents of
different topics and represent the encoded image
feature with some tokens to verbalize the image se-
mantics. Specifically, we first use the visual plugin
modules of MARVEL and MARVEL w/o CLIP
Pretraining to encode the image features. Then, to
show the semantics of the encoded image features,
we utilize cosine similarity to find the k-NN tokens
for each encoded image feature. Finally, the to-
kens with the highest score are used to represent
the semantics of the encoded image features.

For the first two examples, MARVEL w/o CLIP
Pretraing learns more similar representations for
both image documents. The related word tokens of
these image documents contain lots of same tokens,
such as “7,000”, “Hi”, and “RAM”, which are un-
related to the semantics of the image documents.
On the contrary, our MARVEL model can learn
more similar semantics to both image documents.
Specifically, MARVEL verbalizes the first image
document using the words “brightness”, “resident”
and “store”, which are related to the image descrip-
tion of “Bourbon Street”. Additionally, MARVEL
captures the semantics of “animals”, “wildlife” and
“creatures” in the second image document. The next
two instances show the effectiveness of MARVEL
in learning more fine-grained semantics of the im-
age documents by verbalizing the image documents
with more related words, such as “militari”, “vehi-
cle”, “flag”, “legislatur”, and “government”. Over-
all, compared with the MARVEL w/o CLIP Pre-
training model, MARVEL has the ability to learn
more effective representations that are closer to the
semantics of the images, demonstrating the impor-
tant role of MARVEL’s visual module pretraining
strategy in adapting the visual understanding mod-
ule for dense retrievals.
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Figure Text
Manual Caption: Mardi Gras Bourbon Street 2015 Bourbon Street, New Orleans, during Mardi Gras

Nearest Tokens: [“kehr”,“voted”, “brightness”, “event”, “city”, “venue”, “local”, “pub”, “bounce”, “island”, “ferry”,

“keto”, “Ice”, “residents”, “lighting”, “store”, “lights”, “banks”, “Lake”, “impacted”, “lively”, “drinks”, “eye”]

Nearest Tokens w/o CLIP Pretraining: [“OUG”, “7,000”, “ban”, “CU”, “edited”, “ition”, “Pop”, “imprisonment”,

“O”, “militari”, “immuno”, “Ton”, “reset”, “États”, “concise”, “Arbeits”, “IN”, “Hi”, “RAM”,

“Hello”, “stocked”, “charged”, “institu”]

Manual Caption: Red-shanked Douc at the Philadelphia Zoo

Nearest Tokens: [“Whale”, “endangered”, “horn”, “bird”, “goat”, “animals”, “wildlife”, “mammals”, “whale”, “Gib”,

“Elephant”, “Savannah”, “dach”, “birds”, “creatures”, “Wildlife”, “lois”, “biomass”, “limb”, “Creatures”]

Nearest Tokens w/o CLIP Pretraining: [“RAM”, “bilingual”, “MOD”, “native”, “recognizable”, “Graphic”, “charged”,

“ordentlich”, “gray”, “suffisamment”, “colorful”, “clar”, “haunt”, “riad”, “CM”, “ammunition”, “ordre”, “thetic”,

“Hi”, “auftrag”, “he”, “ban”, “sets”, “7,000”, “representation”]

Manual Caption: Military parade in Baku on an Army Day28 Military parade in Baku on an Army Day

Nearest tokens: [“vehicles”, “Fahrzeug”, “territories”, “flag”, “chemical”, “replies”, “migrants”, “parliament”, “bikes”,

“militari”, “equipment”, “République”, “troops”, “clothing”, “gear”, “prisoners”, “machinery”, “tribe”, “vorgesehen”]

Nearest Tokens w/o CLIP Pretraining: [ “împreună”, “RAM”, “ened”, “troupe”, “Compet”, “sie”, “own”, “RGB”,

“Ha”,“operation”, “arbeit”, “enforcement”, “Cor”, “EU”, “LCD”, “countries”, “SO”, “institu”, “grief”, “limbi”,

“default”, “16”, “raum”, “haunt”, “unanimous”]

Manual Caption:Parlament Wien Austria, Vienna, Austrian Parliament Building

Nearest Tokens: [“Schloss”, “funds”, “Statut”, “furniture”, “Albany”, “structure”, “palace”, “Capitol”, “statute”, “locul”,

“headquarters”, “occupie”, “structures”, “legislature”, “cinéma”, “legislation”, “governmental”, “Argentin”,“vederea”]

Nearest Tokens w/o CLIP Pretraining: [ “militari”, “reset”, “Ton”, “shrine”, “commands”, “hi”, “împreună”, “Achtung”,

“genug”, “shake”, “RAM”, “iconic”, “committed”, “département”, “colo”, “Hi”, “Sammlung”, “pop”, “1951”, “ban”,

“russia”, “Color”, “vivid”, “HM”, “arbeit”, “default”]

Table 5: The Nearest Tokens of Image Features. We randomly select five image documents, encode these image
features using the visual module of MARVEL and MARVEL w/o CLIP Pretraining, and then show the nearest
tokens of the encoded image features. The tokens related to the semantics of the image document are highlighted.

6 Conclusion

This paper proposes Multi-modAl Retrieval via
Visual modulE pLugin (MARVEL). MARVEL in-
tegrates a visual plugin module with a well-trained
dense retriever and pretrains the visual module
with image-caption contrastive training for adap-
tion. Our MARVEL model achieves state-of-the-
art on all benchmarks by unifying the multi-modal
document encoding and alleviating the modality
gap between images and texts.

Limitations

Even though MARVEL shows strong effectiveness
in the multi-modal retrieval task, there are some
limitations in our work. Existing multi-modal re-
trieval systems still highly depend on the semantics
of image caption instead of the image understand-
ing ability of the visual module. In this case, MAR-
VEL pretrains the visual understanding module but
achieves limited improvements. Building an effec-
tive visual understanding module is crucial for the
multi-modal retrieval task.
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Finetune Modality MRR@10 NDCG@10 Rec@100
Text 64.89 58.71 89.98

CLIP & T5 Image 64.36 65.41 94.19
Multi 64.37 61.77 91.78
Text 64.72 58.88 90.26

T5 Image 66.12 67.49 95.12
Multi 65.15 62.95 92.40
Text 48.38 41.63 75.11

CLIP Image 56.28 56.17 87.67
Multi 49.22 45.80 80.42
Text 48.38 41.39 74.57

N/A Image 55.09 54.99 87.26
Multi 48.12 44.75 79.69

Table 6: The Retrieval Performance with Differ-
ent Training Strategies. We freeze each module of
MARVEL-ANCE to explore the benefits of training
between different modules.

A Appendix

A.1 License

We show the licenses of the datasets that we use.
WebQA uses CC0-1.0 license, while ClueWeb22
shows its terms of use at website3. All these li-
censes and agreements permit the use of their data
for academic purposes.

A.2 Experimental Details of MARVEL
Pretraining Data

In this subsection, we introduce the experimental
details to process the pretraining data.

To pretrain the visual module in MARVEL,
we collect the image-caption pairs from the
ClueWeb22 dataset. We retain the English pages,
extract the content within the image tag and use the
image and alt-text to construct the image-caption
pair. To ensure the quality of the pretraining dataset,
following LAION-400M (Schuhmann et al., 2021),
we use CLIP to calculate the embeddings of im-
ages and captions and compute the cosine similar-
ity between the two embeddings. Subsequently,
we discard all samples with a cosine similarity
lower than 0.3. The pretraining dataset contains
1.6M image-caption pairs, and we randomly select
10,000 pieces of data as the development set and
use the rest for the pretraining visual module.

A.3 Retrieval Effectiveness of Different
Finetuning Strategies

In this experiment, we show the performance of
single/cross and multi-modal retrieval tasks with
different finetuning strategies.

3https://lemurproject.org/clueweb22/

Data Type Median Average Max Min
Queries 8.0 9.9 245.0 1.0
Text Documents 52.0 127.8 1121183.0 1.0
Image Captions 6.0 8.1 998.0 1.0

Table 7: Length Statistics of Queries, Text Documents
and Image Captions in ClueWeb22-MM Dataset.

Range of Image Sizes Number
Height or Width ≥ 1024 23.8k
Height and Width ≥ 1024 7.4k
Height or Width ≥ 512 81.9k
Height and Width ≥ 512 43.9k
Height or Width ≥ 256 234.6k
Height and Width ≥ 256 170.2k

Table 8: Image Size Distribution of ClueWeb22-MM.

As shown in Table 6, finetuning the CLIP mod-
ule indeed improves the retrieval performance of
the whole frozen model, especially in the image
retrieval task. This observation shows that multi-
modal training signals are effective to benefit the ca-
pability of visual modules. When we only tune the
parameters of T5, MARVEL-ANCE achieves sig-
nificant improvements over the frozen model, show-
ing the language model’s strong ability to adapt the
visual module to the dense retriever. Nevertheless,
the fully finetuned model decreases the retrieval
performance of MARVEL-ANCE that only fine-
tunes T5. It shows the necessity of the pretraining-
and-then-finetuning strategy of MARVEL, which
pretrains the visual understanding module for adap-
tion and finetunes the language model for multi-
modal retrieval.

A.4 More Details of ClueWeb22-MM
To show the details of our ClueWeb22-MM dataset,
we show the data collection, data processing, and
data statistics in this subsection.

Data Collection. Following previous work in
text retrieval (Zhang et al., 2020; Xie et al., 2023),
we regard the anchor text as a query and assume
that its linked web page is related to the query.
Then we extract image documents and text doc-
uments from these anchor-linked web pages. To
obtain image documents, we parse HTML to ex-
tract the content within the image tag, then use
alt-text as image caption, and crawl the image fea-
tures from the image URL.

Data Processing. Ensuring the quality and
meaningfulness of the ClueWeb22-MM dataset, we
conduct additional processing on the data to filter
out noise data according to the quality of images
and alt-texts. Concerning images, we retain data
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Queries with the Text Document as Label
Query: Chinese Dragons — Facts, Culture, Origins, and Art
Text Document: Live updates on China travel restrictions for 2022. Learn more Home Chinese Culture Traditional
Chinese Clothes Chinese Dragons — Facts, Culture, Origins, and Art Written by Mike Ho Updated Dec. 14, 2021 Chinese
dragons are powerful and benevolent symbols in Chinese culture, with supposed control over watery phenomenon, e.g.
summoning rain during a drought. Dragons are everywhere in China — in legends, festivals, astrology, art, names, and
idioms.
Query: How to manage partitions with the Disk Management tool, in Windows | Digital Citizen
Text Document: Disk Management A new window should pop up, listing the drive letter of the partition. Click or tap
Change and, in the next window, select the new drive letter you wish to assign to it. Then, click or tap OK.
Query: here’s a small-batch peanut butter oatmeal cookie recipe for you
Text Document: You are here: Home / Recipes / Small-batch Peanut Butter Oatmeal Cookies Small-batch Peanut Butter
Oatmeal Cookies 02/21/19 | Cookies , Desserts , Recipes , Small-batch Dessert These Small-batch Peanut Butter Oatmeal
Cookies are the perfect cookie hybrid. They’re rich and peanut buttery, bendy and chewy, and the best of both worlds. A
few weeks ago, I posted these (AMAZING) Peanut Butter Oatmeal Cookies . It was a big-batch recipe meant for sharing
and freezing, so I promised that I’d add a small-batch version ASAP for those of you who are here for small-batch desserts.
So here we go. Let’s make a cute little batch of Peanut Butter Oatmeal Cookies and share with no one.
Query: What foods increase uric acid
Text Document: Vegetables and legumes that increase uric acid Legumes such as lentils, chickpeas or beans are known
for their purine content, so their intake should be limited to only once or twice a week if you have high uric acid. Other
vegetables that should be eaten in moderation are asparagus, mushrooms, cauliflower, spinach, radishes and leeks... Other
foods that increase uric acid Other foods that increases uric acid and should be avoided are: All kinds of alcoholic
beverages , especially beer and wine. Carbonated beverages, sugar-laden soft drinks and packaged juices. Avoid cooking
with brewer’s yeast...

Queries with the Image Document as Label

Query: Use Web apps With the New Chromium Edge on Windows 10
Image Caption: Web Apps Running Chromium Edge

Query: What are Runestones In Witcher 3?
Image Caption: Witcher 3 best runewords

Query: Everything We Know About Mindy Kaling and BJ Novak’s
Relationship—Including Sweet Details from Her Book
Image Caption: mindy-kaling-bj-novak-removebg

Query: Vector Cross Product Formula Excel Template
Image Caption: Vector Cross Product Formula-1.2

Table 9: Examples of ClueWeb22-MM. We give practical examples of queries, image documents, and text
documents.

with image file extensions such as jpg/png/jpeg and
discard samples with image URLs containing key-
words, e.g. “logo”, “button”, “icon”, “plugin”, or
“widget”. Besides, we exclude the example, which
has empty alt-text, has “no alt attribute” and con-
tains an alt-text that is shorter than 5.

To further guarantee the quality of the dataset,
we use T5-ANCE (Yu et al., 2023) to estimate the
relevance between the anchor and its corresponding
image document. We encode all captions of image
documents using T5-ANCE, use the anchor texts

as queries to retrieve the images and reserve the
anchors that are ranked in the top 10. Finally, we
respectively sample 10,000 queries to build the
development and test set. The rest data are used for
finetuning models, which contain 72,028 queries.

Data Statistics. We provide length statistics
on queries, text documents, and image captions in
Table 7 and present the image size distribution in
Table 8. Subsequently, as shown in Table 9, we
show eight examples to illuminate the ClueWeb22-
MM dataset. These examples show that the anchor-
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Model Modality WebQA ClueWeb22-MM
MRR@10 NDCG@10 Rec@100 MRR@10 NDCG@10 Rec@100

MARVEL-ANCE
Text 64.72 58.88 90.26 71.73 75.40 92.29
Image 66.12 67.49 95.12 77.57 81.34 96.50
Multi 65.15 62.95 92.40 55.19 62.83 93.16

w/o Image Caption
Text 64.67 58.30 89.49 69.75 73.32 90.60
Image 3.85 4.32 24.81 18.26 20.65 45.07
Multi 33.70 30.83 56.45 37.29 40.74 64.26

w/o Image Feature
Text 63.42 57.95 90.27 71.17 74.78 91.57
Image 64.32 65.42 94.15 76.83 80.60 95.88
Multi 63.60 61.43 91.99 54.98 62.64 92.60

Table 10: Additional Ablation Study Results on MARVEL-ANCE.

Model MRR@10 NDCG@10 Rec@100
MARVEL-DPR 55.71 52.94 88.23
w/ 1-NN Token 38.80 35.89 73.59
w/ 5-NN Tokens 42.39 39.27 75.04
w/ Random Token 37.73 35.34 71.92
MARVEL-ANCE 65.15 62.95 92.40
w/ 1-NN Token 51.37 48.27 80.47
w/ 5-NN Tokens 52.22 49.35 81.88
w/ Random Token 44.22 41.55 71.23

Table 11: Multi-Modal Retrieval Performance of Differ-
ent Image Feature Replacement Strategies. We conduct
experiments on MARVAL-DPR and MARVAL-ANCE
models by replacing the image features with the average
of k-NN (k Nearest Neighbour) word embeddings. The
k is set to 1 and 5.

document pairs are of high quality. Thus we can
use them to build an evaluation benchmark for
multi-modal retrieval.

A.5 Additional Ablation Studies on MARVEL
We conduct additional ablation studies to explore
the role of image captions and image features in
the multi-modal retrieval task.

As shown in Table 10, the relevance modeling
between queries and image documents heavily de-
pends on the image caption, which is also observed
in previous work (Liu et al., 2023b). The image
features contribute to approximately 1% improve-
ments in the image retrieval task, demonstrating
the effectiveness of image features in helping the
model better understand the image documents.

A.6 Learned Semantics of Image Features
In this experiment, we explore the semantic infor-
mation of image features encoded by the visual
module on the WebQA dataset. During training
MARVEL model, we map the encoded image fea-
tures into the input space of T5-ANCE’s word em-
beddings. We conduct several experiments by re-
placing the encoded image features with the em-
beddings of the nearest or random tokens.

As shown in Table 11, replacing encoded image

features with k-NN token embeddings generally
outperforms the retrieval model using randomly
selected token embeddings. It demonstrates that
the visual plugin module effectively maps image
semantics in the input space of the language model,
and the ability to keep growing with more token
embeddings (5-NN). However, the retrieval per-
formance significantly drops when employing k-
NN token embeddings to replace the image fea-
tures, compared to the MARVEL model. It demon-
strates the role of encoded image features beyond
the semantic representations of word embeddings.
The encoded image features may act as a kind of
prompt, encouraging language models to capture
image semantics (Merullo et al., 2023).

A.7 Retrieval Efficiency of MARVEL

In this section, we compare the retrieval efficiency
of MARVEL with other baselines on the same de-
vice, as shown in Table 12.

MARVEL follows the general dense retrieval
framework (Karpukhin et al., 2020) for efficient
document retrieval. It encodes the entire corpus
offline and constructs the document index using
FAISS (Johnson et al., 2019) for online searches.
While the offline encoding time for queries and im-
age/text documents in MARVEL is longer than that
in UniVL and other baseline models, this encoding
process does not impact retrieval efficiency.

When comparing the retrieval latency of these
models in retrieving the top 100 relevant documents
for each query, MARVEL’s retrieval time is com-
parable to its base model, T5-ANCE, which has a
retrieval time of 48.3 ms. Furthermore, the retrieval
time for document encoding using the CLIP model
is less than that of models such as T5 and BERT.
This demonstrates that the retrieval time is influ-
enced by the dimensionality of the embeddings,
and MARVEL’s architecture does not introduce
any additional retrieval latency.
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Setting Model Encoding Time (ms) Retrieval Time (ms)
Query Img Doc Text Doc Query

Single Modality
(Text Only)

BM25 - 0.1 0.1 41.9
DPR (Zero-Shot) 1.8 2.7 4.7 48.4
CLIP-Text (Zero-Shot) 0.4 0.2 0.3 32.7
Anchor-DR (Zero-Shot) 2.2 2.0 2.0 47.7
T5-ANCE (Zero-Shot) 2.1 2.0 2.0 48.3
BERT-DPR 1.1 2.7 3.1 47.6
NQ-DPR 1.3 2.8 4.9 47.8
NQ-ANCE 1.3 2.7 4.7 48.1

Divide-Conquer
VinVL-DPR 1.4 5.2 4.7 48.4
CLIP-DPR 0.4 0.8 0.3 32.8
BM25 & CLIP-DPR 0.4 0.8 0.1 37.3

UnivSearch

CLIP 0.4 0.8 0.3 32.8
VinVL-DPR 1.3 5.3 4.7 47.6
UniVL-DR 0.4 0.9 0.3 32.9
MARVEL 2.1 3.7 2.0 48.0

Table 12: Retrieval Efficiency. We compare the encoding and retrieval times of different architectural models on
the same device. These models encode the multi-model documents and queries offline and construct the FlatL2
index using FAISS (Johnson et al., 2019) for online retrieval.

A.8 Case Studies
In Figure 4, we show two cases from WebQA
and ClueWeb22-MM to study the multi-modal re-
trieval effectiveness of MARVEL. The top 5 doc-
uments retrieved by UniVL-DR, MARVEL-DPR,
and MARVEL-ANCE are presented.

For the first case, UniVL-DR conducts shallow
keyword matching and returns text documents that
are related to “animal” and “Peace” mentioned in
the query, which are unrelated to the query. In con-
trast, MARVEL can better understand that “Peace
and Plenty” is a famous painting and retrieve more
related images and text documents for users. In
the second case, UniVL-DR, MARVEL-DPR, and
MARVEL-ANCE all return documents related to
“promotion ideas”. Notable, MARVEL can better
understand the user’s query and return the expected
modality. MARVEL-ANCE introduces a variety of
sales promotion strategies rather than matching on
“promotion” keywords. It shows the effectiveness
of MARVEL in better fusing the retrieval results
from different modalities, which thrives on univer-
sal multi-modal document encoding.
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(a) Top5 Multi-modal Documents Retrieved from WebQA.

(b) Top5 Multi-modal Documents Retrieved from Clueweb22-MM.

Figure 4: Case Studies. We present two cases from WebQA and ClueWeb22-MM and show the top5 retrieved multi-
modal documents. The ground-truth documents and related content are highlighted in red and blue respectively.
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