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Abstract

Functional Distributional Semantics (FDS)
models the meaning of words by truth-
conditional functions. This provides a natural
representation for hypernymy but no guaran-
tee that it can be learnt when FDS models are
trained on a corpus. In this paper, we probe
into FDS models and study the representations
learnt, drawing connections between quantifica-
tions, the Distributional Inclusion Hypothesis
(DIH), and the variational-autoencoding objec-
tive of FDS model training. Using synthetic
data sets, we reveal that FDS models learn hy-
pernymy on a restricted class of corpus that
strictly follows the DIH. We further introduce a
training objective that both enables hypernymy
learning under the reverse of the DIH and im-
proves hypernymy detection from real corpora.

1 Introduction

Functional Distributional Semantics (FDS; Emer-
son and Copestake, 2016; Emerson, 2018) suggests
that the meaning of a word can be modelled as a
truth-conditional function, whose parameters can
be learnt using the distributional information in a
corpus (Emerson, 2020a; Lo et al., 2023). Aligning
with truth-conditional semantics, functional rep-
resentations of words are logically more rigorous
than vectors (e.g., Mikolov et al., 2013; Pennington
et al., 2014; Levy and Goldberg, 2014; Czarnowska
et al., 2019) and distributions (e.g., Vilnis and Mc-
Callum, 2015, Bražinskas et al., 2018) as concepts
are separated from their referents (for a discussion,
see: Emerson, 2020b, 2023). On top of its theo-
retical favour, Lo et al. (2023) also demonstrate
FDS models in action and show that they are very
competitive in the semantic tasks of semantic com-
position and verb disambiguation.

Hypernymy is also known as lexical entailment.
It is formally defined as the subsumption of exten-
sions between two word senses, which can be mod-
elled with truth-conditional functions. Although

FDS provides the basis for embedding hypernymy,
it is not obvious whether hypernymy can be learnt
by training an FDS model on a corpus, and if so,
what kind of corpus it can successfully learn from.

To acquire hypernymy automatically from a cor-
pus, one way is through the use of distributional
information. In this class of methods, hypernymy
is learnt in an unsupervised manner given certain
hypotheses about the distributional properties of
the corpus. One such hypothesis is the Distribu-
tional Inclusion Hypothesis (DIH; Weeds et al.,
2004; Geffet and Dagan, 2005), which relates lexi-
cal entailment of words to the subsumption of the
typical contexts they appear with in a corpus.

In §2, we first highlight that while existential
quantifications support the DIH, universal quan-
tifications reverse it. In §3, we discuss how FDS
can embed hypernymy, formulate our hypothesis
that FDS learns hypernymy under the DIH, and
introduce a training objective that handles simple
universal quantifications. In §4, using synthetic
data sets, we show that FDS learns hypernymy un-
der the DIH, and under the reverse of DIH when the
new objective is used. In §5, we show that the new
objective encodes word generality and improves
hypernymy detection by FDS on real corpora.

2 Distributional Inclusion Hypothesis and
Quantifications

The Distributional Inclusion Hypothesis (DIH) as-
serts that the typical characteristic features (con-
texts) of rh are expected to appear with rH if and
only if rH is a hypernym of rh. Although Geffet
and Dagan (2005) report that the DIH is largely
valid on a real corpus, it is not deemed fully correct
in general as a hyponym can appear in exclusive
contexts due to collocational (Rimell, 2014) and
pragmatic reasons (Pannitto et al., 2018), and fea-
ture inclusion has been found to be selective (Roller
et al., 2014). In this section, we describe how quan-
tifications can also be pivotal to the hypothesis.
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animal { ARG1←−−− grow}

mammal { ARG1←−−− furry}

bat { ARG1←−−− fly}dog { ARG1←−−− bark}

Figure 1: A taxonomic hierarchy of nouns. Next to
each noun is the set of contexts that are applicable to
the extension of it and those of its descendants (e.g., all
dogs are furry, but not all animals.).

Corpus 1 (DIH)

a dog barks
a mammal barks
an animal barks
a bat flies
a mammal flies
an animal flies
a mammal is furry
an animal is furry
an animal grows

Corpus 2 (rDIH)

every dog barks
every dog is furry
every dog grows
every bat flies
every bat is furry
every bat grows
every mammal is furry
every mammal grows
every animal grows

Table 1: Corpora generated from the hierarchy in Fig. 1.
Existential and universal quantifications result in two
corpora that follow the DIH and rDIH respectively.

While Geffet and Dagan (2005) consider syntax-
based context, we suggest that contexts based on
semantic representation are more suitable since syn-
tactic differences do not necessarily contribute to
semantic ones (e.g., passivizations and inversions),
and the subject of concern should be semantics.
We use Dependency Minimal Recursion Seman-
tics (DMRS; Copestake et al., 2005; Copestake,
2009) as the semantic representation, which is de-
rived using the English Resource Grammar (ERG;
Flickinger, 2000, 2011). Fig. 2 shows the predicate–
argument structure of an example DMRS graph. If
ri

ARG[a]←−−−− rj exists in the DMRS graph of a sen-
tence in the corpus, we can say that ri appears in
the context ARG[a]←−−−− rj .

Consider a corpus as a partial description of a
world. Distributional properties would depend on
how the world is described. Here, we consider a
corpus of simple sentences in the form ‘[quanti-
fier] [noun] [context word]’. Take the taxonomic
hierarchy in Fig. 1 as an example, where each noun
has a set of applicable contexts. If we want to
generate existentially quantified statements that are
true, then: (1) a noun can appear in its hypernyms’
contexts, e.g., ‘a dog grows’, where ARG1←−−− grow
is applicable to animal; and (2) a noun can appear
in its hyponyms’ contexts, e.g., ‘an animal barks’,

where ARG1←−−− bark is applicable to dog. If we only
generate (2) and restrict (1) so that contexts that are
broadly applicable are not used with more specific
nouns, this creates a corpus that follows the DIH.
Corpus 1 of Table 1 shows an example.1

In contrast, generating sentences with universal
quantifications results in a corpus that follows the
reverse of the DIH (rDIH), as in Corpus 2, where
the set of contexts of mammal is a subset of that of
dog. Consequently, methods that rely on the DIH
as a cue for hypernymy would be undermined.

In §5, we use these processes to generate corpora
which strictly align with the DIH or rDIH. Corpora
with more complex sentence structures would re-
quire a richer world model than can be encoded
in a taxonomic hierarchy like Fig. 1. For instance,
with a restricted relative clause, ‘every dog that is
trained is gentle’ does not entail ‘every Chihuahua
is gentle’ even if Chihuahua is a hyponym of dog,
as the universal quantifier applies only to trained
dogs. We also disregard negations because they
can co-occur nearly freely, effectively making a
context word in the negated scope uninformative.
For example, ‘a dog does not ’ is much less
selective than ‘a dog ’.

3 Functional Distributional Semantics

In this section, we introduce Functional Distribu-
tional Semantics (FDS), discuss hypernymy rep-
resentation in FDS and explain how FDS can be
adapted to handle quantifications. We follow Lo
et al. (2023)’s FDS implementation which is briefly
described here.

3.1 Model-Theoretic Semantics
FDS is motivated by model-theoretic semantics,
which sees meaning in terms of an extensional
model structure that consists of a set of entities, and
a set of predicates, each of which is true or false of
the entities. In parallel, FDS represents an entity
by a pixie which is taken to be a high-dimensional
feature vector, and represents a predicate by a truth-
conditional semantic function which takes pixie(s)
as input and returns the probability of truth.

3.2 Probabilistic Graphical Models
The framework is formalized in terms of a family
of probabilistic graphical models. Each of them

1Without the restriction on (1), exhaustively generating
true assertions generates a corpus where the DIH does not hold
between nouns in a unary chain (e.g., animal and mammal in
Fig. 1), which would appear in the same set of contexts.
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postman deliver
ARG1 ARG2

mail

Figure 2: Probabilistic graphical model of FDS for gen-
erating words in an SVO triple ‘postman deliver mail’.
Only R1 = postman, R2 = deliver, and R3 = mail are
observed.

describes the generative process of predicates in
the semantic graph of a sentence. Fig. 2 illustrates
the process of generating the words given the ar-
gument structure R1

ARG1←−−− R2
ARG2−−−→ R3. First, a

pixie Zj ∈ Rd is generated for each node in the
graph, together representing the entities described
by the sentence. Then, for each pixie Zj , a truth
value T

(ri,0)
Zj

is generated for each predicate ri in
the vocabulary V; and for each pair of nodes con-
nected as Rj

ARGa−−−→ Rk whose corresponding pix-
ies are Zj and Zk, a truth value T (ri,a)

Zj ,Zk
is generated

for each predicate ri in the vocabulary. Finally, a
single predicate Rj is generated for each pixie Zj

conditioned on the truth values.

3.3 Semantic Functions

As mentioned in §3.1, instead of treating a predi-
cate as an indicator function, FDS models the prob-
ability that it is true of the pixie(s) with unary (in
(1)) and binary semantic functions (in (2)). This
allows the model to account for vagueness.

P
(
T
(ri,0)
Zj

=⊤
∣∣∣ zj

)
= t(ri,0)(zj) (1)

P
(
T
(ri,a)
Zj ,Zk

=⊤
∣∣∣ zj , zk

)
= t(ri,a)(zj , zk) (2)

The functions are implemented as linear classi-
fiers as in (3) and (4), where S denotes the sigmoid
function, and the trainable parameters of the se-
mantic functions are the weights, v(ri,0), v(ri,a)1

and v
(ri,a)
2 , and the biases, b(ri,0) and b(ri,a).

t(ri,0)(zj) = S
(
v(ri,0)

⊤
zj + b(ri,0)

)
(3)

t(ri,a)(zj , zk) =

S

(
v
(ri,a)
1

⊤
zj + v

(ri,a)
2

⊤
zk + b(ri,a)

)
(4)

3.4 Representing Hypernymy
In truth-conditional semantics, for a set of enti-
ties D, rH is a hypernym of rh if and only if

∀x ∈ D : rh(x) =⇒ rH(x). (5)

Although FDS provides truth-conditional inter-
pretations of words, it is not straightforward
to define hypernymy in FDS where predicates
are probabilistic and work over high-dimensional
pixies. One way is to translate (5) to a
probabilistic counterpart for a score on hyper-
nymy, P

(
T
(rH ,0)
Z =⊤

∣∣∣T (rh,0)
Z =⊤

)
. However,

FDS only directly models P
(
T
(rH ,0)
Z =⊤

∣∣∣ z
)

and

P
(
T
(rh,0)
Z =⊤

∣∣∣ z
)

. The proposed conditional
probability is in principle underspecified without
further assuming a density p(z) and the conditional
independence of T (rH ,0)

Z and T
(rh,0)
Z given Z, and

to obtain it is also computationally prohibitive as
it requires integration over the high dimensional
pixie space.

Another way is to interpret the probability model
from a fuzzy set perspective and use fuzzy set con-
tainment (Zadeh, 1965):

∀z : t(rH ,0)(z) > t(rh,0)(z). (6)

Note that if we consider all z ∈ Rd, (6) can only be
true when v(rh,0) = v(rH ,0) and b(rH ,0) > b(rh,0).
This poses a very strict condition on the semantic
function parameters which is in practice impossi-
ble to be obtained from model training. For a more
viable representation of hypernymy, we restrict the
pixie space and only consider the valid space to be
a unit hypersphere or hypercube. As a consequence,
the original training objective that considers pixies
within the whole Rd space has to be amended ac-
cordingly, which will be described in §3.5. With
(3) and (4), rH is considered the hypernym of rh if
and only if s(rh, rH) > 0, as defined by

s(rh, rH) = b(rH ,0) − b(rh,0)

−
∥∥∥v(rH ,0) − v(rh,0)

∥∥∥
p
,

(7)
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where p ∈ {1, 2} (derivation in Appendix A).
Cheng et al. (2023) also use this score for hyper-
nymy. Note that the transitivity of (5) is paralleled
(derivation in Appendix B):

s(r1, r2) > 0 ∧ s(r2, r3) > 0

=⇒ s(r1, r3) > 0.
(8)

Having a hypernymy representation built into
a distributional model allows generalization out
of missing information, which can be difficult
for hypernymy models based on strict subsump-
tion of contexts. To illustrate, consider the nouns
dog and mammal in Fig. 1 and Corpus 1 in Ta-
ble 1. If a dog is furry does not exist in Cor-
pus 1, the DIH does not hold between dog and
mammal, and it would be challenging for models
based strictly on the DIH to recover their hyper-
nymy relations. However, if we know that fox has
largely overlapping contexts with dog in a corpus
(e.g., { ARG1←−−− bark, ARG1←−−− omnivorous, . . . }), and
that mammal is known to be a hypernym of fox
(e.g., from strict context subsumption), we may in-
fer that mammal is also a hypernym of dog. This
generalization can also apply to hyponymy, e.g.,
machine and system sharing { ARG1←−−− complex} and
sharing computer as their hyponym. In §4.4, we
will present experimental results on the distribu-
tional generalization behaviour of FDS on hyper-
nymy learning.

3.5 Original Training Objective
FDS models are trained using the variational-
autoencoding method on simplified DMRS graphs
where quantifiers and scopal information are re-
moved from the graphs before training, leaving us
with just the predicate–argument structure. The
approximate posterior distribution of pixies qϕ is
taken to be n spherical Gaussian distributions, each
with mean µZi and covariance σ2

Zi
I . Given an ob-

served DMRS graph G with n pixies Z1 . . . Zn,
we maximize (9), reformulated from the β-VAE
(Higgins et al., 2017).

L =

n∑

i=1

Ci +
∑

ri
ARG[a]−−−−→rj in G

Ci,j,a

− d

2

n∑

i=1

β1µ
2
Zi

+ β2
(
σ2
Zi
− lnσ2

Zi

)
(9)

The first two terms, further defined by (10) and (11)
respectively, aim to maximize the truthness of ob-
served predicates and the falsehood of K negatively

sampled ones r′k over the inferred pixie distribution
qϕ. The last term in (9) is the regularization term
for the approximate posterior. Owing to the deci-
sion of restricting the valid pixie space described in
§3.4, β1 has to be set higher in our models than Lo
et al. (2023)’s (details described in Appendix D).

Ci = lnEqϕ

[
t(ri,0)(zi)

]

+
K∑

k=1

lnEqϕ

[
1− t(r

′
k,0)(zi)

] (10)

Ci,j,a = lnEqϕ

[
t(ri,a)(zi, zj)

]

+
K∑

k=1

lnEqϕ

[
1− t(r

′
k,a)(zi, zj)

] (11)

Both the local predicate–argument structure of
each predicate and global topical information in
the graph are used for variational inference. For in-
stance, the approximate posterior distribution of the
pixie Z1 of postman in Fig. 2 is inferred from the
direct argument information, ARG1←−−− deliver, and
the indirect topical predicate, ̸←− mail.

Our Hypothesis. We hypothesize that if the train-
ing corpus strictly follows the DIH, hypernymy can
be learnt by FDS models. The intuition behind our
hypothesis is elaborated in Appendix C.

3.6 Proposed Objective for Universal
Quantifications

FDS assumes that each observed predicate refers
to only one point in the pixie space and offers
no tools for dealing with regions. We propose a
method to allow optimizations of semantic func-
tions with respect to a region in the pixie space,
thus enabling FDS to handle simple sentences with
universal quantifications. Essentially, we add the
following ∀-objective to the original objective in
(9) to give

L∀ =
∑

rj
ARG[a]←−−−−ri in G

sa(ri, rj) + Ui,j,a,
(12)
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where rj is a predicate whose referent is universally
quantified, and

sa(ri, rj) = b(ri,a) − b(rj ,0)

−
∥∥∥v(ri,a)2 − v(rj ,0)

∥∥∥
p
,

(13)

Ui,j,a =
K∑

k=1

min
(
0,−s0(ri, r′k)

)

+
K∑

k=1

min
(
0,−sa′′k (r

′′
k , rj)

)
.

(14)

Note that (13) is modified based on (7), previously
defined for classifying hypernymy.

To explain (12), consider the sentence ‘every
dog barks’ as an example. The first term inside the
summation in (12) enforces that extension of rj is
a subset of that of prototypical argument a of ri,
i.e., the set of dogs should be contained in the set
of agents that barks. The second term, described
in (14), incorporates K randomly generated neg-
ative samples. r′k is a noun, which is a negative
sample for rj . r′′k is a verb or adjective and a′′k is
an argument role, together form a negative sample
for ri and a. Then, (14) requires that it is false
to universally quantify the referents of the noun

r′k in r′k
ARG[a]←−−−− ri and rj in rj

ARG[a′′k ]←−−−−− r′′k . For
the example, both of the following sentences are
considered false: ‘every dog is owned’ and ‘every
cat barks’, where r′k = cat, r′′k = own and a′′k = 2.

4 Experiments on Synthetic Data Sets

Testing our hypothesis in §3.5 and the effectiveness
of the new objective for universal quantifications
in §3.6 requires corpora that strictly follow the
DIH or rDIH, which is impractical for real corpora.
Therefore, we create a collection of synthetic data
sets and perform experiments on them.

4.1 Synthetic Data Sets under the (r)DIH
Each of the synthetic data sets consists of a tax-
onomic hierarchy of nouns and a corpus, created
using the following procedure:

1. Create a taxonomic hierarchy. Define a set
of nouns, the hypernymy relations of them,
and the contexts applicable to its extension
and those of its hyponyms (as in Fig. 1).

2. Choose a hypothesis. The DIH or rDIH.

3. Create a corpus. Create sentences in the form
‘[quantifier] [noun] [context word]’ following

the chosen hypothesis and the defined hierar-
chy (as in Table 1).

4.1.1 Topology of Hierarchy
Different topologies of hierarchy lead to different
distributional usage of words, thus possibly varying
representations learnt for hypernymy. For example,
a noun can have multiple hypernyms (e.g., dog is
the hyponym of both pet and mammal), or share
overlapping contexts with another noun far in the
hierarchy (e.g., both bat and airplane ARG1←−−− fly).

To test the robustness of FDS models for learning
hypernymy, we experiment with a range of topolo-
gies. Fig. 3 exemplifies the five classes of topolo-
gies used. We expect that directed acyclic graphs
(HDAG and H ′

DAG) be harder topologies than trees
(Htree and H ′

tree), and topologies with overlapping
contexts (H ′

tree and H ′
DAG) be harder than those

without (Htree and HDAG). In addition, we test
Hchains with pixie dimensionality d = 2. A 2-D
pixie space allows lossless visualization of the se-
mantic functions. To test hypernymy learning at
scale on an actual hierarchy, we make use of Word-
Net (Miller, 1995; Fellbaum, 1998) and test our
models on the WordNet’s hierarchy (HWN).

Every node in the hierarchy consists of a noun
and a semantic context. The topology of the Hchains
used in the experiment is exactly as depicted in
Fig. 3. HWN is created out of the synset entity.n.01
in WordNet, which is the root, and its hyponymic
synsets. This results in 74,374 nodes with 663,492
hypernymy pairs. We randomly sample 663,492
pairs from the remaining pairs as negative instances
for evaluation. For the remaining hierarchies, each
of them consists of 153 nodes with a height of
5. For Htree, the first level is a root node, and a
node at the hth level has (h + 1) direct children.
Htree′ is created from Htree by choosing 5 pairs of
nodes and making each pair share a context set.
HDAG and H ′

DAG are created from Htree and Htree′

respectively by choosing 5 pairs of nodes, where
the nodes of each pair are at different levels, and
make the higher level node the direct parent of the
lower level one.

4.2 FDS Models Training
We experiment with two variations of FDS train-
ing: FDS is trained using the original objective in
(9) whereas FDS∀ incorporates the ∀-objective fol-
lowing §3.6. The hypernymy score of each model,
given by (7), is averaged over two runs of differ-
ent random seed. We empirically find that setting
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r1 {c1}

r2 {c2}

r3 {c3}

r4 {c4}

r5 {c5}

r6 {c6}

r7 {c7}

r8 {c8}

r9 {c9}

r10 {c10}

r11 {c11}

r12 {c12}

(a) Four chains (Hchains)

r1 {c1}

r3 {c3}

r6 {c6}

r2 {c2}

r5 {c5}r4 {c4}

(b) Tree (Htree)

r1 {c1}

r3 {c3}

r6 {c2}

r2 {c2}

r5 {c5}r4 {c4}

(c) Tree with overlap-
ping contexts (under-
lined; H ′

tree)

r1 {c1}

r3 {c3}

r6 {c6}

r2 {c2}

r5 {c5}r4 {c4}

(d) DAG (HDAG)

r1 {c1}

r3 {c3}

r6 {c2}

r2 {c2}

r5 {c5}r4 {c4}

(e) DAG with overlap-
ping contexts (under-
lined; H ′

DAG)

Figure 3: Examples of the topologies of the synthetic taxonomic hierarchies.

p = 1 in (13) and p = 2 in (7) almost always give
the best performances, and we only report the re-
sults in this setup. Other than the newly introduced
training objective, training of the models largely
follows that of Lo et al. (2023). No hyperparame-
ter search is conducted due to the large number of
experiments (details described in Appendix D).

4.3 Evaluation on Hypernymy Detection
We test if a model trained on the corpus learns to
identify hypernymy defined in the hierarchy that
generates the corpus. Concretely, a model is asked
to give a score of hypernymy between every pair
of nouns using (7). Performance is then measured
by the area under the receiver operating character-
istic curves (AUC). Unlike average precision, AUC
values do not reflect changes in the distribution
of classes, which is favourable since we are com-
paring models’ performances across varying class
distributions generated from different topologies.

We include two distributional methods for hy-
pernymy detection based on the DIH in the experi-
ments, namely WeedsPrec (Weeds et al., 2004) and
invCL (Lenci and Benotto, 2012):

WeedsPrec(r1, r2) =

∑
i u

(r1)
i 1

u
(r2)
i >0

∑
i u

(r1)
i

invCL(r1, r2) =
√

CL(r1, r2)(1− CL(r2, r1)),

where CL(r1, r2) =

∑
imin

(
u
(r1)
i , u

(r2)
i

)

∑
i u

(r1)
i

.

They measure the context inclusion of r1 by r2 and
invCL measures also the non-inclusion of r2 by
r1. Their distributional space is constructed by first
counting co-occurrences of adjacent predicates in
the preprocessed DMRS graphs, then transform-
ing the resulting matrix using positive pointwise
mutual information. Each row vector u(ri) in the
transformed matrix represents a predicate ri.

Table 2 and Table 3 show the results of FDS
models when trained on the DIH and rDIH corpora

Model Hchains Htree H ′
tree HDAG H ′

DAG HWN

FDS .990 .994 .995 .995 .995 .940
FDS∀ .925 .206 .210 .214 .221 .788
WeedsPrec 1.000 1.000 1.000 1.000 1.000 1.000
invCL 1.000 1.000 1.000 1.000 .999 1.000

Table 2: AUC of models trained on the DIH corpora.

Model Hchains Htree H ′
tree HDAG H ′

DAG HWN

FDS .876 .842 .793 .752 .688 .444
FDS∀ .988 .983 .978 .981 .977 .675
WeedsPrec .900 .675 .619 .613 .556 .809
invCL .900 .355 .280 .236 .276 .564

Table 3: AUC of models trained on the rDIH corpora.

respectively (a visualization of results on Hchains is
provided in Appendix E). As expected, FDS, Weed-
sPrec and invCL are shown to work on the DIH
corpora, and only FDS∀ works on the rDIH corpora.
Reversing the FDS models on respective corpora
yields substantially worse performances. In particu-
lar, FDS∀ attains AUCs of about 0.2 on the DIH cor-
pora means hypernymy predictions are even mostly
reversed, which in turn reflects the effectiveness
of the universal objective when FDS∀ interprets
the subsumption of contexts reversely based on the
rDIH. Moreover, hierarchies with overlapping con-
texts and multiple direct hypernyms are not harder
for FDS than those without. Scaling up to the huge
WordNet hierarchy HWN results in a slight drop in
AUC for FDS on the DIH corpus, and markedly
worse performances for FDS∀. While our preset
hyperparameters work nicely on all other settings,
it is possible that FDS∀ requires a different set of
hyperparameters to perform optimally on the rDIH
corpora generated from huge hierarchies.

We further produce new corpora by combining
the DIH and rDIH corpus of each topology. The
resulting corpora still follow the DIH. In this setup,
instead of applying the same FDS training objec-
tive across the whole corpus, the ∀-objective can
be added only when there is a universal quantifier
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Model Hchains Htree HDAG HWN

FDS .947 .991 .990 .946
FDS∀ .956 .358 .378 .183
FDS(∀) .999 .986 .984 .992
WeedsPrec .950 .996 .993 .993
invCL .958 .891 .864 .868

Table 4: AUC of models trained on combined corpora.

r1 {c1}

r3 {c3}

r6 {c6}

r2 {c2}

r5 {c5}

r8 {c8}

r4 {c5}

r7 {c7}

(a) An example taxonomy
with missing relations. The
siblings r4 and r5 have the
same context c5. Dashed
lines show the relations to
be removed from training.

Hyp. Noun Contexts

DIH r4 {c5, c7}
r5 {c5, c8}

rDIH r4 {c1, c3, c5}
r5 {c1, c2, c5}

(b) Contexts that r4 and r5
in a would appear with in the
new (r)DIH corpora.

Figure 4: Illustration of the setup for testing distribu-
tional generalization.

(e.g., every). We name this FDS model FDS(∀). Ta-
ble 4 shows the results. The DIH methods (FDS,
WeedsPrec, and invCL) perform well as expected,
whereas invCL performs worse since it also mea-
sures non-inclusion which is undermined by the
rDIH half. There are several interesting insights
into FDS models. First, FDS still works on the
corpora with an rDIH half because it is still valid
to say ‘a dog grows’, as mentioned in §2. Sec-
ond, FDS(∀) is as good as FDS across topologies
and even better on Hchains and HWN. This implies
that the ∀-objective indeed captures simple uni-
versal quantifications and can be used compatibly
with the original training method on a corpus with
varying quantifications. Third, on HWN, FDS(∀)
performs better than FDS on the DIH corpora and
much better than FDS∀ on the rDIH corpora. This
reflects that the ∀-objective is more effective when
mixed with the original mode of training.

4.4 Evaluation on Distributional
Generalization

We also test if the distributional generalization
power mentioned in §3.4 exists in FDS. We con-
struct a new corpus from a hierarchy with removed
hypernymy information. Fig. 4 illustrates the idea
with an example hierarchy of nouns and the con-
texts that would appear with the nouns in the new
corpora obtained. If upward (downward) distri-
butional generalization exists in a model, based

on that r4 and r5 share c5 as their contexts, it
should identify the hypernyms (hyponyms) of r5
(r4) as the candidate hypernyms (hyponyms) of
r4 (r5) after training on the new corpus. That
is, we expect ∀rj ∈ {r5, r6, r7, r8} : s(r4, r2) >
s(r4, rj) if upward generalization exists, and ∀rj ∈
{r1, r2, r3, r4, r6} : s(r7, r5) > s(rj , r5) if down-
ward exists in FDS.

In our experiments, we sample five nouns from
the H ′

DAG hierarchy. Then, for each of these nouns
r̃, we equate the contexts set of r̃ to that of one of its
siblings and remove the hypernymy (hyponymy) in-
formation of their common parent (daughter) from
r̃ when creating the new corpora.

Model Hypothesis Upward Downward

FDS DIH .922 .742
FDS∀ rDIH .976 .998

Table 5: Mean AUC for distributional generalizations.

For each r̃, we compute the hypernymy score of
between r̃ and each of the candidate hypernyms,
and between r̃ and a random noun. We measure
the performance with mean AUC, averaged over
the five chosen r̃. Table 5 shows that both upward
and downward distributional generalizations exist
when the corpus follows either the DIH or rDIH,
and to a larger extent on the rDIH corpus.

4.5 Summary
The experimental results confirm that: (1) the orig-
inal FDS models learn hypernymy under the DIH,
(2) the proposed ∀-objective captures universal
quantifications and enables hypernymy learning
under the rDIH, and (3) FDS models can gener-
alize about nouns with incomplete contexts in a
corpus using distributional information.

5 Experiments on Real Data Sets

Seeing how FDS performs on restricted synthetic
data sets is helpful for understanding models’ be-
haviour but it does not immediately tell us more
about hypernymy learning from open classes of sen-
tences. Therefore, we perform further experiments
using a real corpus and data sets for hypernymy.

5.1 FDS Models Training
Training Data. FDS models are trained on Wiki-
woods (Flickinger et al., 2010; Solberg, 2012),
which provide linguistic analyses of 55m sentences
(900m tokens) in English Wikipedia. Each of the
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sentences was parsed by the PET parser (Callmeier,
2001; Toutanova et al., 2005) using the 1212 ver-
sion of the ERG, and the parses are ranked by
a ranking model trained on WeScience (Ytrestøl
et al., 2009). We extract the DMRS graphs from
Wikiwoods using Pydelphin2 (Copestake et al.,
2016). After preprocessing, there are 36m sen-
tences with 254m tokens.

Model Configurations. Although quantifica-
tions are annotated in Wikiwoods, neither of the
proposed training objectives is entirely applicable
in general. For example, even for a sentence of
modest complexity like ‘every excited dog barks’,
it requires a universal quantification over the in-
tersection of the set of dogs and excited entities.
However, set intersection is not modelled by FDS.
In our experiments, we apply either FDS or FDS∀
described in §4.2 to every training instance. We
also test an additional model FDS∀/2 where the ∀-
objective is scaled by 0.5. Each model is trained for
1 epoch and the results of each model are averaged
over two random seeds as discussed in §4.2.

5.2 Evaluation Method

We test the trained models on four English hyper-
nymy data sets for nouns, namely Kotlerman2010
(Kotlerman et al., 2010), LEDS (Baroni et al.,
2012), WBLESS (Weeds et al., 2014), and EVA-
Lution (Santus et al., 2015). Each of them consists
of a set of word pairs, each with a label indicating
whether the second word is a hypernym of the first
word. We removed the out-of-vocabulary instances
from all data sets, and non-nouns from EVALution
during the evaluation. Table 6 reports the statistics
of the test sets data. We report the AUC as in §4.

Test Set # Positive # Negative

Kotlerman2010 880 [831] 2058 [1919]
LEDS 1385 [1344] 1385 [1342]
WBLESS 834 [830] 834 [813]
Evalution 1592 [1352] 4561 [3241]

Table 6: Class distributions of test sets. In brackets
are the numbers after removal of OOV instances and
non-nouns.

In addition, we use WBLESS for further per-
formance analysis, which provides categorizations
of the negative instances. Each of the negative in-
stances is either a hyponymy pair, co-hyponymy
pair, meronymy pair, or pair of random nouns.

2https://github.com/delph-in/pydelphin

5.3 Baselines
Following Roller et al. (2018), we implement five
distributional methods and train them on Wiki-
woods using the distributional space described in
§4.3. Apart from the two DIH measures in §4.3,
we use SLQS (Santus et al., 2014), a word gen-
erality measure that rests on another hypothesis
that general words mostly appear in uninformative
contexts:

SLQS(r1, r2) = 1− Er1

Er2

,

where Eri = medianNj=1[H(cj)].

For each word ri, the median of the entropies of
N most associated contexts (as measured by lo-
cal mutual information) is computed, where H(cj)
denotes the Shannon entropy of the associated con-
text cj . Then, SLQS compares the generality of
two words by their medians. N is chosen to be
50 following Santus et al. (2014). We also include
cosine similarity (Cosine) of u(r1) and u(r2), and
SLQS–Cos, which multiplies the SLQS measure
by Cosine since the SLQS measure only considers
generality but not similarity.

5.4 Results

Model Kotlerman2010 LEDS WBLESS Evalution

Cosine .701 .782 .620 .526
WeedsPrec .674 .897 .709 .650
invCL .679 .905 .707 .620
SLQS .491 .480 .568 .532
SLQS–Cos .489 .477 .557 .532
FDS .473 .650 .508 .459
FDS∀/2 .558 .759 .660 .583
FDS∀ .550 .735 .655 .554

Table 7: AUC on the test sets.

Table 7 shows the results on the four test sets.
The DIH baselines are competitive and nearly out-
perform all models across the test sets. FDS∀ and
FDS∀/2 both outperform FDS considerably across
the test sets. This reflects that including the pro-
posed ∀-objective in training is useful for extracting
hypernymy information in a corpus. Compared to
the 2.7-billion-token corpus used by Santus et al.
(2014) in training SLQS, we suggest that the Wiki-
woods corpus is too small for SLQS to obtain mean-
ingful contexts of the median entropy: setting N
to be small results in frequent contexts that are
not representative of the nouns, whilst setting it
large would require a disproportionate number of
contexts for the infrequent words.
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Model Hyponymy Co-hyponymy Meronymy Random

Cosine .511 .369 .683 .924
WeedsPrec .754 .615 .631 .843
invCL .745 .568 .652 .872
SLQS .606 .551 .590 .524
SLQS–Cos .581 .525 .574 .547
FDS .596 .288 .561 .587
FDS∀/2 .783 .612 .549 .704
FDS∀ .783 .625 .527 .691

Table 8: AUC on the sub-categories of WBLESS.

Table 8 shows the results on the WBLESS sub-
categories. It is shown that FDS∀ is stronger than
the DIH baselines in distinguishing between hy-
ponymy and hypernymy pairs, and between co-
hyponymy and hypernymy pairs, while weaker for
meronymy or random pairs. FDS∀ and FDS∀/2 out-
perform FDS in three out of the four sub-categories,
with much higher distinguishing power for co-
hyponymy and hyponymy. These imply that the
∀-objective makes FDS more sensitive to the rela-
tive generality than the similarity of word pairs.

6 Conclusion

We have discussed how Functional Distributional
Semantics (FDS) can provide a truth-conditional
representation for hypernymy and demonstrate that
it is learnable from the distributional information
in a corpus. On synthetic data sets, we confirm that
FDS learns hypernymy under the Distributional In-
clusion Hypothesis (DIH), and under the reverse
of the DIH if the proposed objective for univer-
sal quantifications is applied. On real data sets,
the proposed objective substantially improves FDS
performance on hypernymy detection. We hope
that this work provides insights into FDS models
and hypernymy learning from corpora in general.

Limitations

The proposed representation of hypernymy in FDS
compares the semantic functions of DMRS pred-
icate pairs. Following previous implementations
of Functional Distributional Semantics, a semantic
function is a linear classifier. Consequently, each
DMRS predicate is assumed to have only one sense.
Modelling polysemy would require more expres-
sive parametrizations of semantic functions, which
can pose additional challenges to model training,
and the hypernymy representation would possibly
need to be revised. Such an approach is considered
out of the scope of this work.

Ethics Statement

We anticipate no ethical issues directly stemming
from our experiments.
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A Derivation of Hypernymy Conditions

Consider (6). ∀z:

t(rH ,0)(z) > t(rh,0)(z)

S
(
v(rH ,0)⊤z + b(rH ,0)

)
> S

(
v(rh,0)

⊤
z + b(rh,0)

)
.

S is monotonic, so ∀z:

v(rH ,0)⊤z + b(rH ,0) > v(rh,0)
⊤
z + b(rh,0)

b(rH ,0) − b(rh,0) >
(
v(rh,0) − v(rH ,0)

)
⊤z. (15)

Consider z within a unit hypercube, (15) is equiv-
alent to

b(rH ,0) − b(rh,0) > max
∥z∥∞≤1

(
v(rh,0) − v(rH ,0)

)⊤
z.

Note that

argmax
z : ∥z∥∞≤1

(
v(rh,0) − v(rH ,0)

)⊤
z

= sgn(v(rh,0)i − v
(rH ,0)
i ),

where sgn is the sign function. Hence, we have

b(rH ,0) − b(rh,0) >
∥∥∥v(rH ,0) − v(rh,0)

∥∥∥
1
.

If we consider z within a unit hypersphere, (15)
is equivalent to

b(rH ,0) − b(rh,0) > max
∥z∥2≤1

(
v(rh,0) − v(rH ,0)

)⊤
z.

Note that

argmax
z : ∥z∥2≤1

(
v(rh,0) − v(rH ,0)

)⊤
z

=
v(rh,0) − v(rH ,0)

∥∥v(rh,0) − v(rH ,0)
∥∥
2

.

Hence, we have

b(rH ,0) − b(rh,0) >
∥∥∥v(rH ,0) − v(rh,0)

∥∥∥
2
.
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B Derivation of Transitivity

s(r1, r2) + s(r2, r3)

= b(r2,0) − b(r1,0) −
∥∥∥v(r2,0) − v(r1,0)

∥∥∥
p

+ b(r3,0) − b(r2,0) −
∥∥∥v(r3,0) − v(r2,0)

∥∥∥
p

= b(r3,0) − b(r1,0)−
(∥∥∥v(r2,0) − v(r1,0)

∥∥∥
p
+
∥∥∥v(r3,0) − v(r2,0)

∥∥∥
p

)
.

By the Minkowski inequality, the last term is
greater than

∥∥v(r3,0) − v(r1,0)
∥∥
p
. Besides, when

s(r1, r2) > 0 and s(r2, r3) > 0, s(r1, r2) +
s(r2, r3) > 0. Hence,

b(r3,0) − b(r1,0) −
∥∥∥v(r3,0) − v(r1,0)

∥∥∥
p
> 0

s(r3, r1) > 0.

C Intuition behind Hypernymy Learning
by FDS under the DIH

We hypothesize that the way that FDS models are
trained allows hypernymy learning under the DIH.
During training described in §3.5, the approximate
posterior distributions of pixies are first inferred
from the observed graph. After variational infer-
ence, the semantic functions of the observed predi-
cates are optimized to be true of the inferred pixie
distributions. This process is analogous to the fol-
lowing process under a model-theoretic approach:
the entities described by a sentence are first identi-
fied, and then the truth conditions of predicates over
the entities are updated as asserted by the sentence.

Under the DIH, the contexts of nouns are also
contexts of their hypernyms. The local predicate–
argument information of nouns, i.e. contexts, is
thus repeated for their hypernyms for inference dur-
ing training. Consequently, the semantic functions
of hypernyms are trained to return values at least
as high as those of their hyponyms over the pixie
distributions inferred from the same contexts. The
additional contexts appearing exclusively with the
hypernyms will further increase the probability of
truths of the hypernyms over the pixie space. By
(6), hypernymy should thus be learnt under the
DIH.

D Training Details

D.1 Hyperparameters and Tuning
For all the experiments, the hyperparameters of the
FDS models largely follow that of FDSASid in Lo

et al. (2023) except that we set β1 to 0.5 instead of
0. The consequence is that the inferred pixie distri-
butions during VAE training will be centred closer
to the origin. This is motivated by our decision in
§3.4 that pixies are only meaningful within the unit
hypersphere or hypercube.

Here are the changes exclusive to the experi-
ments on the synthetic data sets. We set K to 1 and
perform random negative sampling without weigh-
ing by unigram distribution, which trains models
maximally using information from the data with
minimal assumptions needed for the negative sam-
ples. We set the learning rate to 0.01. For experi-
ments on Hchains, d is set to 2. For HWN, d is set
to 50. For the remaining topologies, d is set to 10.
The models are trained for 2 epochs for HWN, and
5000 epochs for the rest.

D.2 Computational Configurations
All models are implemented in PyTorch (Paszke
et al., 2019) and trained with distributed data par-
allelism on three NVIDIA GeForce GTX 1080 Ti.
Training a run of FDS or FDS∀ on Wikiwoods takes
about 360 GPU hours.

E Visualization of Semantic Functions

A visualization of results on Hchains is provided in
Fig. 5. As seen in Figs. 5a and 5c, training FDS on
the DIH corpus and FDS∀ on the rDIH corpus both
result in four nicely divided pixie subspaces, each
for one of the four hypernymy chains, as shown in
the plots on the left column. In contrast, applying
the other models sometimes gives badly learnt se-
mantic functions, as shown in Figs. 5b and 5d. For
example, t(r12,0) points to the opposite direction of
t(r10,0) and t(r11,0) in Fig. 5b.
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(a) FDS on DIH corpus
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Figure 5: Visualization of semantic functions of a run
trained on Hchains. Each plot shows a pixie space in
a unit square (unit circle in grey). Each line plots
t(ri,0)(z) = 0 and the arrow points to the pixie sub-
space where t(ri,0)(z) > 0.
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