
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15278–15294
August 11-16, 2024 ©2024 Association for Computational Linguistics

Natural Language Satisfiability: Exploring the Problem Distribution and
Evaluating Transformer-based Language Models

Tharindu Madusanka1 and Ian Pratt-Hartmann1,2 and Riza Batista-Navarro1

1. Department of Computer Science, University of Manchester;
2. Instytut Informatyki, Uniwersytet Opolski

Abstract
Efforts to apply transformer-based language
models (TLMs) to the problem of reasoning in
natural language have enjoyed ever-increasing
success in recent years. The most fundamen-
tal task in this area to which nearly all others
can be reduced is that of determining satisfia-
bility. However, from a logical point of view,
satisfiability problems vary along various di-
mensions, which may affect TLMs’ ability to
learn how to solve them. The problem instances
of satisfiability in natural language can belong
to different computational complexity classes
depending on the language fragment in which
they are expressed. Although prior research
has explored the problem of natural language
satisfiability, the above-mentioned point has
not been discussed adequately. Hence, we in-
vestigate how problem instances from varying
computational complexity classes and having
different grammatical constructs impact TLMs’
ability to learn rules of inference. Furthermore,
to faithfully evaluate TLMs, we conduct an
empirical study to explore the distribution of
satisfiability problems.

1 Introduction

The impressive performance of transformer-based
language models (TLMs) in natural language infer-
ence tasks (Devlin et al., 2018; Yang et al., 2019;
Raffel et al., 2019; Liu et al., 2019) has created a
surge of interest in the development of linguistic
and deductive reasoning benchmarks to evaluate
these models (Richardson et al., 2020; Geiger et al.,
2018; Tafjord et al., 2021; Yanaka et al., 2020).
One such area of interest is the ability to recognise
valid entailments, understood in a strictly logical
sense (Clark et al., 2021; Richardson and Sabhar-
wal, 2021), where the inference does not depend
on background knowledge and commonsense. The
ability of TLMs to understand this type of entail-
ment is indicative of their ability to learn rules of
inference, understand the logical semantics of nat-
ural language and emulate complex algorithms.

Since the inferences we shall be concerned with
do not depend on background knowledge or intu-
itive plausibility, they can be captured using the
apparatus of formal logic. Logicians usually find
it convenient to reconstruct entailment in terms of
satisfiability: a set of formulae Φ is satisfiable if
there is a structure (in the model-theoretic sense)
A such that every formula of Φ is true in A. A
set of formulae Φ entails a formula ψ just in case
Φ∪{¬ψ} is not satisfiable. The same duality holds
for natural language (which incorporates a con-
cept of negation) just as it does for formal logic.
Thus, we consider the following problem: given a
collection of sentences expressed in a natural lan-
guage such as English, determine whether it is—in
a strictly logical sense—satisfiable. Figure 1 illus-
trates two instances of the satisfiability problem in
English, one positive and one negative. Note that
any method for determining satisfiability yields a
method for recognising entailments and vice versa.

We approach this problem in a controlled way.
The sentences in Figure 1 feature only rudimen-
tary grammatical resources: the determiners some,
no and all, transitive verbs with unqualified noun-
phrases as subjects and objects, and the copula is. It
is well-known from formal logic that the computa-
tional complexity of the satisfiability problem for a
logic depends on its expressive power. For example,
the satisfiability problem for propositional logic
(known as SAT) is NPTIME-complete, but the cor-
responding problem for the two-variable fragment
of first-order logic is NEXPTIME-complete, while
for the whole of first-order logic is r.e.-complete
(i.e. undecidable); for a survey, see Pratt-Hartmann
(2023). The same is true when it comes to frag-
ments of natural languages (Pratt-Hartmann, 2003,
2004; Pratt-Hartmann and Third, 2006), as we ex-
plain presently. The question therefore arises as
to how TLMs’ ability to learn rules of inference is
affected by the fragment of language within which
they operate.

15278

Figure 1: The table depicts two instances of a satisfiability problem; one is unsatisfiable while the other is satisfiable.
In the first example, the first two formulae imply ∀x(scholar(x)→ ∃y(musicians(y) ∧ love(x, y))), while the
last formula is ∃x(scholar(x) ∧ ∀y(musician(y)→ ¬love(x, y)))—a direct contradiction, hence unsatisfiable.
In the the second example (satisfiable), a structure A can be easily found that makes all formulae True: imagine,
for instance, a world where scholars exist, all musicians are artists, and everyone loves everyone.

In recent years, researchers have analysed the
limitations of various neural approaches when solv-
ing satisfiability problems (Selsam et al., 2019;
Evans et al., 2018; Cameron et al., 2020b), in-
cluding natural language satisfiability problems
(Richardson and Sabharwal, 2021). However, in all
cases, the problems are in propositional logic or its
close relatives, and as such, the expressive power
of the expressions or sentences is limited. More-
over, it restricts the problem space to be in a single
computational complexity class, NP-complete. We
overcome these limitations by generating sentences
from various fragments of English that are related
to more varied fragments of first-order logic. By
utilising language fragments of varying expressive
power, we also provide an analysis of how compu-
tational complexity affects TLMs’ ability to grasp
the rules governing logical entailment.

When investigating TLMs’ ability to solve in-
stances of natural language satisfiability problems,
it is important to ensure that the training and test
data sets include a sufficient number of challenging
problem instances. The difficulty is that randomly
constructed sets of formulae (or sentences) are, de-
pending on the sampling parameters, in many cases
easily seen either to be satisfiable or to be unsat-
isfiable, a situation dramatically illustrated in the
case of propositional logic satisfiability (Selman
et al., 1996; Cook and Mitchell, 1997; Mitchell
and Levesque, 1996), where challenging problems
occur only when the ratio of clauses to proposi-
tional variables is close to a critical threshold, i.e.,
the so-called phase-change region. In this region,
where the probability of a randomly generated prob-
lem instance is close to 0.5, algorithms for deter-
mining satisfiability typically exhibit long running
times. Therefore, to demonstrate that TLMs can
learn rules of inference, we must ensure that they
work on the hardest region of the target problem

space. Indeed, recent work has shown some pit-
falls associated with synthetic data due to under-
sampling challenging problems (Shin et al., 2019;
Wu et al., 2021). Consequently, we conduct an em-
pirical study to determine, for each of the language
fragments investigated, the relevant “phase-change”
region where the challenging problem instances are
to be found.

The contributions of this paper are as follows.
(1) We identify a number of fragments of English
featuring a range of logico-syntactic constructions
involving determiners, the copula, transitive verbs,
relative clauses and bound-variable anaphora. (2)
We empirically determine the phase-change region
for these fragments and construct data sets contain-
ing instances of the satisfiability problems sampled
from these regions. (3) We investigate the abil-
ity of transformer-based language models to solve
the satisfiability problem for the investigated frag-
ments and carry out a systematic analysis of how
the underlying computational complexity of the
satisfiability problem correlates with TLMs’ abil-
ity to grasp the relevant inferential principles. (4)
Furthermore, we explore the proficiency of TLMs
in solving instances of the satisfiability problem
within a zero-shot context. To the best of our knowl-
edge, this investigation represents the first attempt
to probe the behaviour of TLMs in zero-shot sce-
narios with respect to their efficacy in solving satis-
fiability problems.

2 Related Work

Our work closely follows the literature on identify-
ing strengths and weaknesses of neural approaches,
including transformer-based language models on
deductive reasoning tasks (McCoy et al., 2019;
Glockner et al., 2018; Lin et al., 2019). Neural net-
works, particularly graph neural networks (GNN),
have been utilised to solve satisfiability problem in-

15279

stances (Xu et al., 2020; Cameron et al., 2020a). As
mentioned in the introduction, various studies have
extended that work to natural language satisfiabil-
ity, utilizing TLMs instead of GNNs (Richardson
and Sabharwal, 2021). However, the sentences
considered fail to exercise the full range of infer-
ence patterns licenced by commonly encountered
grammatical constructions. Moreover, in each case,
the underlying satisfiability problems were derived
from that for propositional logic (i.e. SAT), thus,
confining attention to a single problem type. Indeed
in the case of natural language satisfiability, the
sentences are sometimes hardly natural-sounding.
For example, the Grounded Rule Language (GRL)
fragment introduced in Richardson and Sabharwal
(2021) includes sentences such as “If carrot and
not steak then apples”.

Our work can also be viewed as an attempt to
identify various limitations that affect TLMs’ abil-
ity to emulate algorithms. There have been numer-
ous studies of TLMs’ ability to solve algorithmic
tasks, including SAT-solving (Selsam et al., 2019;
Narodytska et al., 2020), semantic parsing (He
and Choi, 2020; Kamath and Das, 2019), model-
checking (Madusanka et al., 2023a,b), theorem
proving (Weber et al., 2019; Minervini et al., 2020;
Saha et al., 2020; Welleck et al., 2021) etc. We ex-
tend this work to a family of related problems span-
ning multiple computational complexity classes,
thus, providing a breakdown of the impact of com-
putational complexity on TLMs’ ability to solve
algorithmically challenging problems.

3 Methodology

3.1 Language Fragments
By a natural language fragment, we understand a
set of sentences in some natural language equipped
with truth-conditional semantics in terms of which
the dual notions of validity and satisfiability can be
defined. Consider, for example, the set of sentences
of the forms

Every p is a q Some p is a q
No p is a q Some p is not a q,

where p and q range over common (count) nouns
such as artist, beekeeper, carpenter Their se-
mantics can be given by the familiar translation into
first-order logic over a non-logical vocabulary (of
unary predicates) corresponding to the schematic
variables in question:
∀x(p(x)→ q(x)) ∃x(p(x) ∧ q(x))
∀x(p(x)→ ¬q(x)) ∃x(p(x) ∧ ¬q(x)).

These semantics assume that universal sentences
have no existential import (i.e. Every p is a q does
not entail that there are any p’s); otherwise, how-
ever, they are uncontentious, yielding a faithful
reconstruction of the notions of validity (of an ar-
gument) and satisfiability (of a set of sentences)
via the usual model-theoretic definitions. In this
way, we have defined a fragment of English—one
corresponding, modulo translation, to the classi-
cal syllogistic of Aristotle’s Prior Analytics, Book
A (Aristotle, 1938).

Generalising, say that a sentence template is a
sentence of some natural language in which certain
open-class words have been replaced by schematic
variables; and say that a formula template of some
logic is a formula (with no free variables) in which
the same schematic variables are treated as ele-
ments of the non-logical signature, appropriately
typed. Then a simple way to define a natural
language fragment is by means of a finite list of
sentence templates paired with corresponding for-
mula templates giving their semantics in a way
judged appropriate by competent speakers. We
consider five English fragments in the sequel, all
defined in this way: (i) the fragment S, a version
of the syllogistic in which—for the sake of logical
uniformity—we additionally allow negation at the
subject (e.g. Some non-artist is not a beekeeper);
(ii) the fragmentW , which adds relative clauses to
the subjects of sentences in S (e.g. Every artist who
is not a musician is a writer); (iii) the fragment V ,
which extends S with main clauses featuring transi-
tive verbs and a quantifying determiner (e.g. Every
carpenter admires some writer); (iv) the fragment
Z , which extendsW with relative clauses featur-
ing transitive transitive verbs (e.g. Every carpenter
who admires some writer is an electrician); and (v)
the fragment A, which extends Z with certain sen-
tence templates involving bound-variable anaphora
(e.g. Some artist hates no beekeeper who admires
him). The precise sets of sentence templates defin-
ing these fragments are presented at the end of
this paper. Since the relevant sentence templates
correspond to sets of formula templates of first-
order logic, our five language fragments may, to all
intents and purposes, be identified with the corre-
sponding fragments of first-order logic; hence we
alternate freely between sentences and their logical
translations, as the context requires.

If L is a natural language fragment, we denote
by Sat(L) the problem:

15280

Figure 2: The probability of satisfiability for sets of sentences in the language fragments: (a) S , (b)W , (c) V , (d) Z
and (e) A. Here, m denotes the number of clauses, and n1, and n2 the number of common nouns and transitive
verbs, respectively, in the sampled vocabulary.

Given: a finite set Φ of sentences in L,
Return: Y if Φ is satisfiable; N otherwise.

It can be shown that Sat(S) is NLOGSPACE-
complete and Sat(V) is EXPTIME-complete (Pratt-
Hartmann and Moss, 2009, Theorems 4.11 and 6.3).
It is completely routine to show that Sat(W) is
NPTIME-complete. With a little effort, one can
show that Sat(Z) is also EXPTIME-complete, us-
ing essentially the same techniques as for Sat(V).
Finally, Sat(A) is NEXPTIME-complete: mem-
bership in NEXPTIME follows from the fact that
all the corresponding formula templates are in the
two-variable fragment of first-order logic (Grädel
et al., 1997); NEXPTIME-hardness follows by an al-
most identical argument to that given for the rather
larger English fragment E2V in (Pratt-Hartmann,
2003). The proof, along with a detailed complexity-
theoretic analysis of the language fragments dis-
cussed, are depicted in Appendix B. Given these
results, it is natural to ask whether language mod-
els have greater success in learning to recognise
valid entailments (or, dually: satisfiability of sets
of sentences) for the computationally easier frag-
ments, or whether training on easier fragments aids
in recognising entailments in harder ones.

3.2 Identifying the phase change region
It is important to realise that the worst-case com-
plexity bounds for satisfiability problems are not
necessarily representative of randomly generated
problem instances, a phenomenon that is well un-
derstood in the case of propositional logic. Suppose
that k is a positive integer and that a k-clause is
a disjunction of k or fewer proposition letters or
negated proposition letters. The k-SAT problem is
the following: given a finite set of clauses Γ, return
1 if Γ is satisfiable (i.e. if there is a truth-value as-
signment making all the clauses in Γ true), and 0
otherwise. This problem is NPTIME-complete for
all k ≥ 3. However, under certain conditions, it

is trivial to decide random instances of these prob-
lems with high probability. Fixing k = 3, consider
a randomly generated instance Γ of 3-SAT con-
sisting of m clauses featuring n proposition letters
p1, . . . , pn (and their negations). If the ratio m

n is
large, we have a highly constrained problem with
few degrees of freedom, so the probability of satis-
fiability is close to zero; if, on the other hand, the
ratio m

n is small, the probability of satisfiability is
close to unity. In either case, it is trivial for any
algorithm to achieve high performance when pre-
dicting the correct answer. Only for values in a
relatively narrow range of m

n , commonly referred
to as the phase-change region, is the problem chal-
lenging, with this range (centred on a value close
to 4.17) narrowing as n increases (Selman et al.,
1996; Mitchell and Levesque, 1996).

A similar phenomenon is observed for the satis-
fiability problems for natural language fragments
studied here: the satisfiability of a given set of sen-
tences may in many cases be easily determined
with high probability by measuring the number of
degrees of freedom in the given instance. Consider,
for example, the problems Sat(S) and Sat(W). Any
instance of these problems is characterised by the
number n1 of common nouns featured, and the
number m of sentences involved. We find that the
probability of satisfiability for randomly generated
instances is close to 0.5 only when the ratio α = m

n1

is in a relatively narrow band. For the other frag-
ments considered in this study, which feature transi-
tive verbs as well as common nouns, we must con-
sider not only the ratio α but also the ratio β = m

n2
,

where n2 is the number of transitive verbs in the
given problem instance. Again, we find that the
probability of satisfiability for a randomly gener-
ated problem is close to 0.5 only for pairs of values
(α, β) lying in a relatively constrained region. We
continue to refer to this region, informally, as the
phase-change region: notice that this is a region in

15281

2-dimensional space. It is important to remember
that the shape and location of the phase-change re-
gion depend on the fragment considered; however,
in all cases, the gradients involved are observed to
become sharper with increasing n. In assessing the
ability of TLMs to learn to solve the satisfiability
problem for the fragments considered in this paper,
we must make sure to construct data sets involving
only challenging instances, namely, those selected
from the phase-change region: prowess at solving
cases chosen uniformly over parameter space is
a poor test of a system’s grasp of logical princi-
ples. For definiteness, we take the phase-change
region for a fragment L, denoted λL, to be the set
of input parameters for which the probability of
satisfiability is [0.35, 0.65]. This set can be de-
termined empirically by random sampling, much
as in the original studies of 3-SAT. The variation
of probability of satisfiability with other factors is
outlined in Appendix E.

3.3 Data Construction
For each of the language fragments L considered
above, we constructed a data set with which to fine-
tune TLMs. Each data set is a set of data points.
Each data point is a pair consisting of a set of sen-
tences Φ from L, and a label (Y or N) indicating
whether Φ is satisfiable. To generate a single sen-
tence of Φ, we select at random one of the sentence
templates defining L and instantiate its schematic
variables by uniform sampling from a collection
of n1 common nouns and (for the applicable frag-
ments) n2 transitive verbs; repeating this whole
process m times then yields a set Φ of cardinality
m. The label determining the satisfiability of Φ is
determined by applying a theorem prover (in our
case, Z3) to the corresponding set of formulae of
first-order logic as given by the formula templates.
We construct data points for various values ofm, n1
and (where appropriate) n2, taking care to employ
only those combinations within the critical region,
λL. As explained above, λL has been determined
empirically.

For the fragments S andW , we sample values of
n1 from the range [nmin

1 , nmax
1], where nmin

1 = 6,
and nmax

1 = 16. For the fragments V , Z , andA, we
sample values of n1 from the range [nmin

1 , nmax
1],

where nmin
1 = 3, nmax

1 = 8, and we sample values
of n2 from the range [nmin

2 , nmax
2], where nmin

2 =
3 and nmax

2 = 8. In each case, we generate a set
of values of values m for which α = m/n1 and

(for the appropriate fragments) β = m/n2 lie in
λL. The entire protocol for generating data sets is
given in Algorithm 1. We use the theorem prover
Z3 to determine the satisfiability of the generated
set of formulae, Φ = {ϕ1, . . . , ϕm}. For each
language fragment, we construct a training set with
120K data points, an evaluation set with 10K data
points and a test set with 10K data points to fine-
tune and evaluate TLMs. We note that the above
experimental setup can be directly adapted to any
language fragment.

Algorithm 1 Data Construction - Natural language
satisfiability
Input : Language Fragment L; phase-change
region λL (for L); vocabulary of unary predicates
U ; vocabulary of binary predicates V; range for
number of unary predicates [nmin

1 , nmax
1]; range

for number of binary predicates [nmin
2 , nmax

2].
Output : natural language satisfiability dataset D.

1: D ← {}
2: repeat
3: m,n1, n2 ← sample m,n1, n2 such that

nmin
1 ≤ n1 ≤ nmax

1 , nmin
2 ≤ n2 ≤ nmax

2

and (mn1
, m
n2
) ∈ λL

4: U∗,V∗ ← sample n1 unary predicates and
n2 binary predicates from U and V respec-
tively, |U∗| = n1 and |V∗| = n2

5: for i = 1 to m do
6: ti ← randomly sample template from lan-

guage fragment L
7: si ← substitute predicates from U∗ and

V∗ for schematic variables in ti
8: ϕi ← translate si to a first-order logic

formula
9: end for

10: ℓ← SAT-solver({ϕ1, ..., ϕm})
11: D ← D ∪ {⟨ℓ, {s1, ..., sm}⟩}
12: until stop condition is met

For evaluating TLMs in zero-shot settings we set
nmin
1 = 5, and nmax

1 = 10 for fragments S andW
and nmin

1 = 3, nmax
1 = 5, nmin

2 = 2 and nmax
2 = 5 for

fragments V , Z , and A. We then construct an ad-
ditional 1200 problem instances for each language
fragment and formulate the prompt using the con-
structed problem instances employing a template-
based approach. The exact template is depicted in
Appendix C. Further details regarding the data sets
are given in Appendix D.

15282

4 Experimental Setup

4.1 Transformer-based language models
To examine TLMs’ ability to solve hard instances
of natural language satisfiability problems, and in-
vestigate their capability to learn rules of inference,
we fine-tuned two well-known TLMs which have a
proven track record of solving textual entailment
problems1.

T5. Following the work done by Richardson and
Sabharwal (2021) and Tafjord et al. (2021) on logi-
cal reasoning in natural language, we primarily cen-
tred our experiments around the text-to-text trans-
former or T5 (Raffel et al., 2019). The T5 model
employs a unified text-to-text format where all in-
puts and outputs are textual strings, in contrast to
BERT-styled models. We utilised the T5-large
model, which has around 700M parameters.

DeBERTa-v3. Due to the recent success of the
DeBERTa-v3 model (He et al., 2021) in solving nat-
ural language inference tasks, we decided to use it
as a baseline model. The DeBERTa architecture im-
proves upon the BERT and RoBERTa models using
a disentangled attention mechanism and enhanced
mask decoder, and version 3 further improves the
architecture by utilising an ELECTRA-style pre-
training with Gradient Disentangled Embedding
Sharing. We employ the DeBERTa-v3-large
model with around 304M parameters.

Each of the TLMs is fined-tuned by reducing
the binary cross entropy loss over the target us-
ing Adam optimiser (Kingma and Ba, 2015) and
we used the HuggingFace (Wolf et al., 2019) im-
plementation when experimenting with the above-
mentioned TLMs. A detailed description of the
fine-tuning process is described in Appendix D.

To investigate TLMs’ ability to solve satisfiabil-
ity problems in zero-shot settings, we employed
three well-known models.

GPT. Due to the recent success of ChatGPT and
GPT-4 solving many natural language processing
tasks in zero-shot settings, we employed them in a
similar context (Bang et al., 2023; OpenAI, 2023).
Both ChatGPT and GPT-4 models are trained to
follow human instructions utilising Reinforcement
Learning from Human Feedback (RLHF).

1Link to the Dataset and Code: https://github.
com/iTharindu/nl-sat

LLaMa. To better compare the effect of
model size and architecture, we also utilise the
LLaMA-2-chat-70B model in zero-shot set-
tings. LLaMa-2 achieves comparable performance
with state-of-the-art language models such as Chat-
GPT and PALM (Touvron et al., 2023). Similar
to ChatGPT and GPT-4, the LLaMa-2-chat model
also employs RLHF.

4.2 Proposed Dataset and Evaluation
To evaluate the ability of TLMs to solve natural
language satisfiability problem instances, we de-
signed several experiments. Firstly, to answer the
questions, “Can TLMs solve hard natural language
satisfiability problems?” and “How does computa-
tional complexity affect TLMs’ ability to perform a
logical reasoning task?”, we trained and evaluated
the TLMs mentioned in Sec. 4.1 against each of
the language fragments introduced in Sec. 3.1 (see
Table 1). Secondly, to answer the question “Do the
computationally simpler language fragments help
TLMs learn rules inference in complex ones?”, we
trained the same TLMs using a dataset that com-
prises problem instances from all language frag-
ments (see Table 2). We employed two variants
of this joint dataset, one with 600K data points
with 120K data points from each fragment and
the other with 120K data points with 24K data
points from each fragment. Thirdly, to answer
the question “Do TLMs show the ability to gen-
eralise and show scale-invariance properties?”, we
evaluated the same TLMs against a dataset con-
taining more predicates (variables) than that of the
training set (see Table 3). This provided clarity
into TLMs’ ability to learn rules of inference from
natural language satisfiability problem instances.
Finally, to answer the question, "What factors af-
fect TLMs’ ability to solve Satisfiability problem
instances?", we evaluated large-scale transformer-
based language models in zero-shot settings. We
employ a much smaller dataset in this evaluation
and the dataset description is detailed in Appendix
D. The datasets we constructed were balanced with
an equivalent number of satisfiable and unsatisfi-
able instances, and, consequently, we used accu-
racy as the evaluation metric.

5 Results and Discussion

The ability of TLMs to solve natural language
satisfiability problems is affected by the underly-
ing computational complexity of the problem, as

15283

https://github.com/iTharindu/nl-sat
https://github.com/iTharindu/nl-sat

Fragment T5-large DeBERTa-v3-large
S 88.3 89.0
W 80.7 78.6
V 79.5 77.2
Z 75.1 75.2
A 70.1 70.9

Table 1: Accuracy of TLMs (T5-large and DeBERTa-
V3) when fine-tuned and evaluated across the fragments
S,W , V ,Z , and A.

determined by the language fragment in ques-
tion. As shown in Table 1, the performance of
TLMs considered declines as the computational
complexity class increases. It also can be ob-
served that descent is steeper from S to W and
more gradual henceforward. We posit two reasons
for this phenomenon. Firstly, the problems that
are in NLOGSPACE can be solved by the detec-
tion of relatively simple configurations (forbidden
configuration of relatively low length in case the
sentences are unsatisfiable) that TLMs can easily
learn to recognise, while those that are NPTIME-
hard (or harder) are characterised by more intricate
structures. Secondly, the problems in the simpler
fragments have fewer tokens in their input sen-
tences compared to those in the more complex lan-
guage fragments; and TLMs (like other neural ap-
proaches) find it more challenging to process long
dependencies than short ones (Chen et al., 2020;
Beltagy et al., 2020). However, computational
complexity is not the only factor that influences
the behaviour of the TLMs when performing logi-
cal inference tasks, as evidenced by the difference
in performance when predicting the satisfiability
of problem instances in V and Z , both of which
are EXPTIME-complete. The two fragments con-
tain the same language properties, such as relative
clauses and transitive verbs, but Z has sentences
that retain both of those properties together while
V does not. Thus, some sentences in Z are intrinsi-
cally more linguistically complicated than those in
V . As the neural approaches we employed are pre-
trained language models that were trained on large
language corpora, the linguistic complexity of the
input has a noticeable effect on their performance.

Provided adequate data, learning to solve sat-
isfiability problem instances of simpler frag-
ments can help TLMs learn to solve that of com-
plex ones. When the dataset contains problem
instances from all fragments, as shown in Table

Fragment T5-large600k T5-large120k

S 86.7 74.1
W 85.0 73.7
V 83.7 69.5
Z 83.3 68.6
A 82.2 68.0

Table 2: Accuracy of TLMs (T5-large) when trained on
a dataset containing problem instances of all fragments;
the test accuracies are broken down based on the lan-
guage fragment, (S ,W , V ,Z , andA). T5-large600k, and
T5-large120k indicate that the training set contains 600K
and 120K data points respectively.

Fragment n1 + n2 ≤ 20 n1 + n2 ≥ 20

S 75.0 71.3
W 75.3 71.2
V 69.0 68.9
Z 68.9 68.5
A 64.3 58.0

Table 3: TLM’s (T5-large) ability to generalise to harder
problems. The models were trained on problems with
6 ≤ n1 + n2 ≤ 16 and evaluated against problems with
n1 + n2 ≥ 16.

2, the accuracy value for complex fragments in-
creases when trained with an adequate number of
data points (accuracy values for 600K). We hypoth-
esise two reasons for this; first, fragments whose
computational complexity for solving satisfiabil-
ity problems is high have sentences from the frag-
ments such as S , which are much simpler; second,
even in complex language fragments such as A,
the inference is heavily governed by the sentences
belonging to simpler fragments (such as involved
in proofs when the set of sentences is unsatisfiable).
Thus, having problem instances belonging only to
simpler fragments helps TLMs decode reasoning
patterns caused by sentences belonging to them.
However, this raised a concern as to the true diffi-
culty of the underlying dataset, even when sampled
from the phase-change region. When the number
of data points is low, say 120K data points, the
performance of the TLMs decreases for all frag-
ments. We consider 24K data points from a single
language fragment inadequate to learn any mean-
ingful representation required for determining satis-
fiability. This is somewhat dissimilar to the results
yielded by the computationally simpler rule rea-
soning problem of model-checking with natural
language (Madusanka et al., 2023a).

15284

TLMs failed to generalise and learn rules of
inference required to solve satisfiability problem
instances. We investigated whether TLMs learn to
apply rules of inference and comprehend the under-
lying algorithm associated with the satisfiability-
solving task by evaluating them against a dataset
containing more predicates (thus more clauses)
than that of the training test. As depicted in Table
3, TLMs failed to generalise, and accuracy across
all fragments decreased regardless of the computa-
tional complexity, suggesting TLMs do not system-
atically generalise. This hypothesis is reinforced
by the evident failure of TLMs to generalise even
for fragment S, for which they exhibited a good
accuracy level. Prior literature on the systematic
generalisation of neural approaches (Lake and Ba-
roni, 2017; Goodwin et al., 2020) also corroborates
our finding that neural networks generally do not
generalise well outside the training distribution.
Moreover, experiments conducted by Richardson
and Sabharwal (2021) on scale invariance yielded
equivalent results.

Pre-trained transformer-based language mod-
els do not achieve adequate performance when
solving even the simplest satisfiability problems
in zero-shot settings, and factors such as model
architecture, number of variables and exact
prompt can affect models’ ability to follow in-
structions. The GPT-4 model achieved the best
performance among the models we consider and is
the only model whose results are reasonably higher
than random guessing. As depicted in Figure 3, no-
tably, the GPT-4 model outperformed ChatGPT
by a considerable margin for all language frag-
ments, which is in line with prior evaluations on
algorithmic tasks such as coding and answering
Mathematics questions (OpenAI, 2023). Another
notable observation is that the effect of the com-
putational complexity of the language fragments
when solving natural language satisfiability prob-
lem instances is considerably lower compared to
fine-tuned models.

A deeper analysis of the answers generated also
shows that GPT-4 is better at explicitly following
the instructions. For example, if the prompt indi-
cates only to generate “satisfiable” or “unsatisfi-
able”, and asks to generate nothing else, the GPT-4
model follows that instruction explicitly more often
than the other models. Conversely, our experimen-
tation with LLaMa-2 reveals a contrary trend; for
most problem instances, the models do not follow

Figure 3: Variation of accuracy for (a) ChatGPT and (b)
GPT-4 for language fragments, S,W , V ,Z , and A for
different number of variables

the instructions and often generate something other
than “satisfiable” or “unsatisfiable”.

When we introduced a modification to the
prompt by incorporating an illustrative example
and requesting the generation of “True" or “False"
instead of “satisfiable” or “unsatisfiable”, the
model consistently produced responses of True or
False. We hypothesise the model’s failure to ad-
here to the instructions of the original prompt can
be attributed to two factors. Firstly, the terms “satis-
fiable” and “unsatisfiable” are relatively infrequent
in the text data the language model has been trained
on. Consequently, from a probabilistic standpoint,
the likelihood of these specific terms being the most
probable next tokens is low. Therefore, the model
often generates something other than “satisfiable”
or “unsatisfiable”. Secondly, the inclusion of an
illustrative example within the modified prompt
provides the model with an unambiguous context
regarding the desired output. However, even in this
scenario, the model’s performance is equivalent to
random guessing.

Unsurprisingly, when the number of variables in-
creases the accuracy of GPT models decreases. We
posit two reasons for this observed phenomenon,
Firstly, from a logical perspective, the increment
in the number of variables increases the difficulty
of solving the satisfiability problem. As the num-
ber of variables grows, the search space expands,
rendering the task of finding a valid assignment
more challenging. Secondly, the increment of the
number of variables increases the total number of

15285

tokens within a given problem instance. This in-
crease in token count compels the model to grapple
with longer-term dependencies in the input. This
gradual decrement along with the recurring fail-
ure of fine-tuned TLMs to generalise, leads to the
hypothesis that, notwithstanding their impressive
performance, state-of-the-art transformer models
are still far from learning the rules of inference un-
derlying logical reasoning tasks, and the algorithms
required to apply them.

6 Conclusion

We have investigated transformer-based language
models’ ability to solve instances of natural lan-
guage problems belonging to different language
fragments with varying computational complexity.
Our investigation demonstrated that the computa-
tional complexity of the fragment has a noticeable
effect on TLMs’ ability to perform a logical infer-
ential task. Even in a simpler language fragment
for which the transformer models achieved a rea-
sonable performance, the model failed to adjust to
distribution shift and generalise beyond its train-
ing distribution. Thus, we posit that TLMs do not
reliably disentangle the patterns that exist within
the dataset and the rules of inference needed when
determining satisfiability. Therefore, it is imper-
ative to acknowledge that a considerable body of
research remains to be conducted in order to en-
hance the capacity of these models to comprehend
rules of inference. We also acknowledge that the
generalisation aspect of TLMs may need a deeper
analysis, which we leave for future work.

Limitations

The empirical study presented in this paper exhibits
two principal limitations. We explored several
TLMs with different architectures that are in line
with prior work and studied how computational
complexity and other linguistic factors affect those
models when learning an inferential task. However,
due to the empirical nature of the research, there
could exist a language model architecture whose be-
haviour deviates from the claims made in this paper.
Similarly, the language fragments employed in this
literature are not the only fragments in existence
and, as such, would affect the comprehensiveness
of the discussion.

Moreover, when constructing the dataset, we
sampled problem instances from the phase-change
region, and it was observed that the theorem prover

took significantly more time to determine the satis-
fiability when data points were sampled from the
phase-change region as opposed to random sam-
pling. However, it does not provide a guarantee
as to whether all instances are non-trivial, and it
is probable that some problem instances are still
trivial to solve.

Acknowledgements

Ian Pratt-Hartmann was supported by the Polish
NCN, grant 2018/31/B/ST6/03662. The authors
would like to acknowledge the use of the Computa-
tional Shared Facility at The University of Manch-
ester and the Department of Computer Science at
the University for funding this research. We also
thank the anonymous reviewers from the ARR De-
cember 2023 cycle for their valuable feedback.

References
Aristotle. 1938. The Categories, On Interpretation,

Prior Analytics. Loeb Classical Library. Harvard
University Press, Cambridge, MA. Tr. H. Cooke and
H. Tredennick.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Chris Cameron, Rex Chen, Jason Hartford, and Kevin
Leyton-Brown. 2020a. Predicting propositional sat-
isfiability via end-to-end learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3324–3331.

Chris Cameron, Rex Chen, Jason S. Hartford, and Kevin
Leyton-Brown. 2020b. Predicting propositional sat-
isfiability via end-to-end learning. In AAAI.

Ting Chen, Lala Li, and Yizhou Sun. 2020. Differ-
entiable product quantization for end-to-end embed-
ding compression. In International Conference on
Machine Learning, pages 1617–1626. PMLR.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.
Transformers as soft reasoners over language. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI’20.

Stephen A Cook and David G Mitchell. 1997. Finding
hard instances of the satisfiability problem: A sur-
vey. Satisfiability Problem: Theory and Applications,
35:1–17.

15286

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Richard Evans, David Saxton, David Amos, Pushmeet
Kohli, and Edward Grefenstette. 2018. Can neural
networks understand logical entailment? In Interna-
tional Conference on Learning Representations.

Atticus Geiger, Ignacio Cases, Lauri Karttunen,
and Christopher Potts. 2018. Stress-testing neu-
ral models of natural language inference with
multiply-quantified sentences. arXiv preprint
arXiv:1810.13033.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Emily Goodwin, Koustuv Sinha, and Timothy J.
O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1958–
1969, Online. Association for Computational Linguis-
tics.

E. Grädel, P. Kolaitis, and M. Vardi. 1997. On the
decision problem for two-variable first-order logic.
Bulletin of Symbolic Logic, 3(1):53–69.

Han He and Jinho D. Choi. 2020. Establishing Strong
Baselines for the New Decade: Sequence Tagging,
Syntactic and Semantic Parsing with BERT. In
Proceedings of the 33rd International Florida Ar-
tificial Intelligence Research Society Conference,
FLAIRS’20, pages 228–233.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Aishwarya Kamath and Rajarshi Das. 2019. A survey
on semantic parsing. In Automated Knowledge Base
Construction (AKBC).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Brenden M. Lake and Marco Baroni. 2017. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In International Conference on Machine Learning.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard-
ner. 2019. Reasoning over paragraph effects in situ-
ations. In Proceedings of the 2nd Workshop on Ma-
chine Reading for Question Answering, pages 58–62,

Hong Kong, China. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tharindu Madusanka, Riza Batista-navarro, and Ian
Pratt-hartmann. 2023a. Identifying the limits of trans-
formers when performing model-checking with natu-
ral language. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 3539–3550, Dubrovnik,
Croatia. Association for Computational Linguistics.

Tharindu Madusanka, Iqra Zahid, Hao Li, Ian Pratt-
Hartmann, and Riza Batista-Navarro. 2023b. Not
all quantifiers are equal: Probing transformer-based
language models’ understanding of generalised quan-
tifiers. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8680–8692, Singapore. Association for Com-
putational Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel,
Sebastian Riedel, and Edward Grefenstette. 2020.
Differentiable reasoning on large knowledge bases
and natural language. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI February
7-12, 2020, pages 5182–5190. AAAI Press.

David G Mitchell and Hector J Levesque. 1996. Some
pitfalls for experimenters with random sat. Artificial
Intelligence, 81(1-2):111–125.

Nina Narodytska, Hongce Zhang, Aarti Gupta, and Toby
Walsh. 2020. In search for a sat-friendly binarized
neural network architecture. In International Confer-
ence on Learning Representations.

OpenAI. 2023. Gpt-4 technical report.

Ian Pratt-Hartmann. 2003. A two-variable fragment of
english. Journal of Logic, Language and Informa-
tion, 12(1):13–45.

Ian Pratt-Hartmann. 2004. Fragments of language.
Journal of Logic, Language and Information,
13(2):207–223.

Ian Pratt-Hartmann. 2023. Fragments of First-Order
Logic. Oxford University Press, Oxford, UK.

Ian Pratt-Hartmann and Lawrence S Moss. 2009. Logics
for the relational syllogistic. The Review of Symbolic
Logic, 2(4):647–683.

15287

https://openreview.net/forum?id=SkZxCk-0Z
https://openreview.net/forum?id=SkZxCk-0Z
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/2020.acl-main.177
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://openreview.net/forum?id=HylaEWcTT7
https://openreview.net/forum?id=HylaEWcTT7
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D19-5808
https://doi.org/10.18653/v1/D19-5808
https://doi.org/10.18653/v1/2023.eacl-main.257
https://doi.org/10.18653/v1/2023.eacl-main.257
https://doi.org/10.18653/v1/2023.eacl-main.257
https://doi.org/10.18653/v1/2023.emnlp-main.536
https://doi.org/10.18653/v1/2023.emnlp-main.536
https://doi.org/10.18653/v1/2023.emnlp-main.536
https://doi.org/10.18653/v1/2023.emnlp-main.536
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://ojs.aaai.org/index.php/AAAI/article/view/5962
https://ojs.aaai.org/index.php/AAAI/article/view/5962
https://openreview.net/forum?id=SJx-j64FDr
https://openreview.net/forum?id=SJx-j64FDr
http://arxiv.org/abs/2303.08774

Ian Pratt-Hartmann and Allan Third. 2006. More frag-
ments of language. Notre Dame Journal of Formal
Logic, 47(2):151–177.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Kyle Richardson and Ashish Sabharwal. 2021. Push-
ing the limits of rule reasoning in transformers
through natural language satisfiability. arXiv preprint
arXiv:2112.09054.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. PRover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 122–136,
Online. Association for Computational Linguistics.

Bart Selman, David G Mitchell, and Hector J Levesque.
1996. Generating hard satisfiability problems. Artifi-
cial intelligence, 81(1-2):17–29.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy
Liang, Leonardo de Moura, and David L. Dill. 2019.
Learning a SAT solver from single-bit supervision.
In International Conference on Learning Representa-
tions.

Richard Shin, Neel Kant, Kavi Gupta, Chris Bender,
Brandon Trabucco, Rishabh Singh, and Dawn Song.
2019. Synthetic datasets for neural program synthe-
sis. In International Conference on Learning Repre-
sentations.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Leon Weber, Pasquale Minervini, Jannes Münchmeyer,
Ulf Leser, and Tim Rocktäschel. 2019. NLProlog:
Reasoning with weak unification for question answer-
ing in natural language. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6151–6161, Florence, Italy. Asso-
ciation for Computational Linguistics.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021.
Naturalproofs: Mathematical theorem proving in nat-
ural language. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track (Round 1).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Zhengxuan Wu, Elisa Kreiss, Desmond Ong, and
Christopher Potts. 2021. ReaSCAN: Compositional
reasoning in language grounding. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du,
Ken ichi Kawarabayashi, and Stefanie Jegelka. 2020.
What can neural networks reason about? In Interna-
tional Conference on Learning Representations.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, and
Kentaro Inui. 2020. Do neural models learn sys-
tematicity of monotonicity inference in natural lan-
guage? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6105–6117, Online. Association for Computational
Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

A Appendix: Definition of language
fragments

The sentence templates defining S, together with
the corresponding formula templates, are as fol-
lows:
Every (non-) p is a q No (non-) p is a q
Some (non-) p is (not) a q.

We can define the first-order formulae for giving
semantics for the above sentence templates as fol-
lows:

∀x(±p(x)→ ±q(x))
∃x(±p(x) ∧ ±q(x)),

15288

https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=ryeOSnAqYm
https://openreview.net/forum?id=ryeOSnAqYm
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/P19-1618
https://doi.org/10.18653/v1/P19-1618
https://doi.org/10.18653/v1/P19-1618
https://openreview.net/forum?id=Jvxa8adr3iY
https://openreview.net/forum?id=Jvxa8adr3iY
https://openreview.net/forum?id=Rtquf4Jk0jN
https://openreview.net/forum?id=Rtquf4Jk0jN
https://openreview.net/forum?id=rJxbJeHFPS
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/2020.acl-main.543

where ±ψ is either ψ or ¬ψ.
The sentence templates for W are those of S

together with

Every (non-) o who is (not) a p is a q
No (non-) o who is (not) a p is a q
Some (non-) o who is (not) a p is (not) a q.

We can define the first-order formulae for giving
semantics for the above sentence templates as fol-
lows:

∀x((±o(x) ∧ ±p(x))→ ±q(x))
∃x(±o(x)± p(x) ∧ ±q(x)).

The sentence templates for V are those of W
together with

Some/every (non-) p r’s some/every (non-) q
No (non-) p r’s any/every (non-) q
Some (non-) p does not r any/every (non-) q.

We can define the first-order formulae for giving
semantics for the above sentence templates as fol-
lows,

∀x(±p(x)→ ∀y(±q(y)→ ±r(x, y)))
∀x(±p(x)→ ∃y(±q(y) ∧ ±r(x, y)))
∃x(±p(x) ∧ ∀y(±q(y)→ ±r(x, y)))
∃x(±p(x) ∧ ∃y(±q(y) ∧ ±r(x, y))).

The sentence templates for Z are those of V
together with

Some (non-) o who r’s/does not r
some/every (non-) p is (not) a q

Every (non-) o who r’s/does not r
some/every (non-) p is a q

No (non-) o who r’s/does not r
any/every (non-) p is a q.

We can define the first-order formulae for giving
semantics for the above sentence templates as fol-
lows:
∀x(±o(x) ∧ ∀y(±p(y)→ ±r(x, y))→ ±q(x))
∀x(±o(x) ∧ ∀y(±p(y) ∧ ±r(x, y))→ ±q(x))
∃x(±o(x) ∧ ∀y(±p(y)→ ±r(x, y)) ∧ ±q(x))
∃x(±o(x) ∧ ∀y(±p(y) ∧ ±r(x, y)) ∧ ±q(x)).

The sentence templates for A are those of Z
together with

Some/every (non-) o r’s some/every (non-)
p who s’s/does not s him

No (non-) o r’s any/every (non-) p who
s’s/does not s him

Some (non-) o does not r any/every (non-) p
who s’s/does not s him.

We can define the first-order formulae for giving
semantics for the above sentence templates as fol-
lows:

∀x(±o(x)→ ∀y(±p(y) ∧ ±s(y, x)→ ±r(x, y)))
∀x(±o(x)→ ∃y(±p(y) ∧ ±s(y, x) ∧ ±r(x, y)))
∃x(±o(x) ∧ ∀y(±p(y) ∧ ±s(y, x)→ ±r(x, y)))
∃x(±o(x) ∧ ∀y(±p(y) ∧ ±s(y, x) ∧ ±r(x, y))).

B Appendix: Computational Complexity
of Sat(S), Sat(W), Sat(V), Sat(Z)
and Sat(A)

In this section, we justify the complexity-theoretic
information provided in section 3.1. The case of
S requires no work: this is the fragment denoted
S† in (Pratt-Hartmann and Moss, 2009), where the
complexity of satisfiability is established in The-
orem 4.10, p. 668. For W , the upper bound of
NPTIME follows easily from the fact that all the
relevant formulae are in the 1-variable fragment
of first-order logic; the lower bound follows by
a straightforward reduction from 3-SAT, as given,
for example, for the smaller fragment denoted E1
in (Pratt-Hartmann, 2004, Theorem 2, p. 213). The
fragment V is slightly larger than the fragment de-
noted E2 in (Pratt-Hartmann, 2004), whose satisfia-
bility problem is shown to be EXPTIME-complete
in Theorem 3, p.215. This settles the lower bound
for Sat(V). For the upper bound, we note that the
proof depends essentially on the fact that all of
the first-order formulae involved contain just one
occurrence of any binary predicate; therefore, the
same proof applies to the fragment V almost with-
out change of wording. Furthermore, the same
argumentation applies to Z . The only remaining
case to consider is A, which is dealt with by the
following theorem.

Theorem 1 The computational complexity of
the problem of determining satisfiability in a set of
sentences in A is NEXPTIME complete

Proof: A moment’s thought shows that ev-
ery sentence of A is expressed by a formula
of the two-variable fragment of first-order logic,
FO2, whose satisfiability problem is NEXPTIME-
complete (Grädel et al., 1997). Thus, Sat(A) is
in NEXPTIME. To establish a matching lower
bound we take an existing proof of the NEXPTIME-
hardness of Sat(FO2), and show that it can be re-
produced using only the resources of A. The proof
in question proceeds by reduction from a known
NEXPTIME-hard problem P (in this case, P is the
problem of determining whether an exponential-
sized grid can be tiled in a certain tiling system),
and encoding any instance of P as a set Φ of FO2-

15289

formulae such that Φ is satisfiable if and only if the
given instance of P is positive. It can be shown that
such encodings (see for example Pratt-Hartmann
2023, pp. 90 ff.) require only that we can write
FO2-formulae of the following forms:

∃x(p1(x) ∧ · · · ∧ ±pn(x)) (1)

∀x(±p1(x) ∨ · · · ∨ ±pn(x)) (2)

∀x∀y(
n∧

i=1

(pi(x)↔ qi(y))→ r(x, y)) (3)

∀x(±p(x)→ ∃y(±q(y) ∧ ±r(x, y))) (4)

∀x(±p(x)→ ∀y(±q(y)→ ±r(x, y))). (5)

Thus, if we can reproduce the effect of such formu-
lae inA, then we will have established that Sat(A)
is NEXPTIME-hard.

Form (1) can be simulated by a collection of
sentences of the forms “Some p∗ is a p∗”, “Ev-
ery p∗ is a p1”, . . . “Every p∗ is a pn”, where p∗ is
a fresh unary predicate/common noun. Form (2)
is handled similarly, remembering that noun-level
negation is available. Any formula of Form (3) can
be simulated by the formulae ∀x∀y(rn(x, y) →
r(x, y)) and ∀x∀y r0(x, y) together with the col-
lection of formulae ∀x(±1pi(x)→ ∀y(±1qi(y) ∧
ri−1(x, y) → ri(x, y)) (1 ≤ i ≤ n), where
the two occurrences of ±1 are resolved in the
same way, and the r0, . . . , rn are new binary
predicates/transitive verbs. Of these, the formula
∀x∀y r0(x, y) is equivalent to the conjunction of
the four formulae ∀x(±q(x) → ∀y(±q(x) →
r0(x, y)), which can be written directly inA, while
the remaining formulae can be written easily in A.
Forms (4) and (5) can be written directly in A.

Thus, any instance of an exponential tiling prob-
lem can be transformed, in polynomial time, to
an instance of Sat(A) with the same answer. This
establishes the NEXPTIME-hardness of Sat(A).

C Appendix: Zero-shot Prompting
Templates

Given a set of sentences s1, s2, ..., sm and a label ℓ
indicating whether the set of sentences is satisfiable
or not, we formulate the prompt using the following
template.

Q: Given the following set of sentences, tell me
whether they are satisfiable or not. Generate satis-
fiable if they are and unsatisfiable if they are not.
Set of sentences: s1, s2, ..., sm

A:

As we mentioned in the Results and Discussion
section, the LLaMa model did not generate “sat-
isfiable” or “unsatisfiable” for the above prompt
for most problem instances. Therefore, we mod-
ified the prompt by following an example prob-
lem instance and asking it to generate the words
“True” or “False” instead. The example problem
instance consists of a set of sentences s1, s2, ..., sm
and a satisfiability label be ℓ (where ℓ is “True” if
s1, s2, ..., sm is satisfiable and “False” otherwise).
The resultant prompt is as follows:

Q: Given the following set of sentences, tell me
whether they are satisfiable or not. Generate True
if they are and False if they are not.

Set of sentences: s1, s2, ..., sm
A: ℓ
Given the following set of sentences, tell me

whether they are satisfiable or not. Generate True
if they are and False if they are not.

Set of sentences: s1, s2, ..., sm
A:

D Appendix: Dataset and Training
Details

D.1 Dataset details
We utilised five different language fragments,
namely, Syllogistic S, relative clauses W , rela-
tive clauses with relational syllogistic V , relative
clauses with transitive verbs Z and anaphora A.
For each language fragment, we constructed a train-
ing set with 120K, an eval set with 10K and a test
set with 10K data points. When constructing the
dataset, we set the number of unary predicates n1 to
be between 3 and 8 and the number of binary pred-
icates n2 to be between 3 and 8 for fragments V ,
Z and A while setting the n1 value to be between
6 and 16 for fragments S and W . It is apparent
that the distribution of the number of ways spe-
cific numbers between 6 and 16 can be formed by
randomly adding two numbers in the range 3 and
8 formed a bell curve. Hence, the distribution of
the number of problem instances per number of
variables of V , Z and A seems to be a discrete ap-
proximation of normal distribution. Therefore, we
sample the n1 values from a normal distribution for
S andW while sampling n1, n2 values uniformly
for the other fragments.

When testing for TLMs’ ability to generalise,
we construct a separate test set with more predi-
cates than that of the training set. We construct
6K data points for each fragment and the dataset

15290

Language
Fragment

minimum maximum mean

S 29 8 17.06
W 32 9 18.95
V 25 5 14.00
Z 28 6 14.31
A 34 8 16.50

Table 4: minimum, maximum and mean number of
clauses m in the training set for the fragments we con-
sider, S,W , V , Z and A

is balanced having an equal number of satisfiable
and unsatisfiable problem instances. In this setup,
we set the range of the n1 value in the test set be-
tween 16 and 24 for fragments S, and W , while
varying it between 8 and 12 for other fragments.
The range of the number of binary predicates n2 for
fragments V , Z and A was set to be between 8 and
24 due to the asymmetric nature of the variation
of probability of satisfiability with m

n1
compared to

m
n2

. It is important to emphasise that all data points
belonging to each of the datasets (train, eval and
test) are unique.

To evaluate TLMs in zero-shot settings, we con-
struct a separate test set with 1200 data points for
each fragment, with 600 data points being satisfi-
able while the other data points being unsatisfiable.
In this setup, we set nmin

1 = 5, and nmax
1 = 10 for

fragments S andW and nmin
1 = 3, nmax

1 = 5, nmin
2

= 2 and nmax
2 = 5 for fragments V , Z , and A. .

Moreover, for each value n where n = n1 + n2,
the dataset contains 200 data points, with 100 of
them being satisfiable and the other 100 being un-
satisfiable.

When defining the vocabulary, we expanded the
vocabulary introduced by Richardson and Sabhar-
wal (2021). The vocabulary of unary predicates U
comprises 156 nouns (of people’s professions) and
the vocabulary of binary predicates V comprises
70 transitive verbs.

The mean, maximum, and minimum number
of clauses for each of the language fragments are
depicted in Table 4, while mean, maximum, and
minimum instance lengths are illustrated in Table
5.

D.2 Training Details
We chose two TLMs with somewhat different archi-
tectures; T5 and DeBERTa-v3, as both models have

Language
Fragment

minimum maximum mean

S 149 35 83.19
W 267 43 129.08
V 221 22 97.37
Z 274 29 110.22
A 318 39 123.42

Table 5: minimum, maximum and mean number of
words (tokens) when separated by SPACE in the training
set for the language fragments

proven track records on textual entailment tasks.
Since the research question of interest relies on the
learnability of TLMs, not on identifying the best-
performing model, we do not perform any hyperpa-
rameter tuning. Since according to prior literature
(Raffel et al., 2019), the performance of the TLMs
stems from model size and pre-trained data more so
than the architectural choice, as well as, since the
accuracy values yielded for the TLMs are similar,
we anticipated similar performance for other TLMs.
Moreover, exploring different transformer models
and hyper-parameter tuning would leave a higher
carbon footprint (Strubell et al., 2019), which is
deemed unnecessary considering the nature of the
research questions.

A detailed description of the hyperparameters is
as follows,

Maximum sequence length : When training the
DeBERTa-v3 model, we used the maximum se-
quence length between 512 and 700 tokens, and
when training the T5 model using the joint dataset,
we used 700 tokens as the maximum sequence
length. Since we used the T5 models trained on
individual fragments for testing for generalisation,
we used a maximum sequence length of 1024 to-
kens. We did not rely on any truncation, as truncat-
ing input could alter the satisfiability of the input
sentences.

Training epochs : We used five training epochs
and used the eval dataset to identify the best-
performing model.

Batch size : Relying on the gradient checkpoint-
ing, we used a batch size of 24 for the DeBERTa-
v3-large model. Similarly, when trained with the
joint dataset, we used a batch size of 24, again rely-
ing on gradient checkpointing. Since we used the

15291

Figure 4: The variation of probability of satisfiability with clause unary and binary variable ratios for the language
fragments (a) S , (b)W , (c) V , (d) Z and (e) A. The symbol m denotes the number of clauses, and a, b indicate the
number of unary and binary variables respectively.

T5 model trained on the individual dataset for gen-
eralisation experiments, we downgraded the batch
size to 12 to prevent memory errors.

Each of the TLM is fined-tuned to predict the
label by reducing the binary cross entropy loss over
the target using Adam optimiser (Kingma and Ba,
2015) and we used the HuggingFace (Wolf et al.,
2019) implementation when experimenting with
the above-mentioned TLM.

E Appendix: Phase Change Region of
Language Fragments

We explore the problem distribution of the language
fragments we considered along several analytical
viewpoints. The quantifier ratio is used to define
the ratio of the number of ∃ quantifiers to the num-
ber of ∀ quantifiers, and the subject quantifier ratio
is the quantifier ratio between the quantifiers asso-
ciated with the subject while the object quantifier
ratio is that associated with the object. Since sen-
tences belonging to the fragments S andW contain
only one quantifier, which is associated with the
subject, the object quantifier ratio is omitted for
those fragments. The visualisation of variation in
the probability of satisfiability is depicted in figures
4, 5, 6, 7 and 8. Figure 4 illustrates how the proba-
bility of satisfiability varies with m

n1
and m

n2
, which

we have used when defining the phase change re-
gion.

15292

Figure 5: The variation of probability of satisfiability with clause variable ratio for the language fragments (a) S , (b)
W , (c) V , (d) Z and (e) A, where we consider the total variables a+ b.

Figure 6: The variation of probability of satisfiability with clause unary variable ratio and subject quantifier ration
for the language fragments (a) S , (b)W , (c) V , (d) Z and (e) A. The symbol m denotes the number of clauses, and
a indicates the number of unary variables respectively.

15293

Figure 7: The variation of probability of satisfiability with the number of clauses and subject quantifier ratio for the
language fragments (a) S, (b)W , (c) V , (d) Z and (e) A. The symbol m denotes the number of clauses.

Figure 8: The variation of probability of satisfiability with subject quantifier ratio and object quantifier ratio for the
language fragments (a) V , (b) Z and (c) A

15294

