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Abstract
According to the Entropy Rate Constancy (ERC)
principle, the information density of a text is
approximately constant over its length. Whether
this principle also applies to nonverbal commu-
nication signals is still under investigation. We
perform empirical analyses of video-recorded
dialogue data and investigate whether listener
gaze, as an important nonverbal communication
signal, adheres to the ERC principle. Results
show (1) that the ERC principle holds for lis-
tener gaze; and (2) that the two linguistic factors
syntactic complexity and turn transition poten-
tial are weakly correlated with local entropy of
listener gaze.

1 Introduction
In human communication, information is conveyed
via various channels. In addition to conveying mean-
ing through linguistic units, interlocutors may ex-
press themselves through multimodal signals such
as hand gestures, head movements, or prosody.

In face-to-face dialogue, interlocutors monitor
signals from different modalities to decide when
to take the turn, give feedback, or interject a brief
response token (backchannel). Humans may also
change their dialogue strategies based on their listen-
ers’ reactions, for example, repeating or explaining
what has been said (Clark, 1996, p. 39, 378). By in-
vestigating such signals, we can gain insights about
(1) how engaged dialogue participants are with
the content of a conversation, or (2) how common
ground (Clark, 1996) and mutual understanding
evolve over the course of an interaction.

One important concept for measuring the growth
of common ground is alignment of linguistic infor-
mation (Pickering and Garrod, 2004). Paralinguistic
information such as prosody, or nonverbal informa-
tion such as body posture or gaze direction, showing
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different levels of convergence during interaction,
can serve as evidence of linguistic alignment (Pick-
ering and Garrod, 2004). Recent work introduces
methods for investigating alignment of linguistic in-
formation through information theoretic measures
such as entropy (Shannon, 1948). It is widely argued
that linguistic information is uniformly distributed
in language use, e.g., in the Uniform Information
Density hypothesis (UID; Jaeger, 2010), or the En-
tropy Rate Constancy principle (ERC; Genzel and
Charniak, 2002, 2003). Xu and Reitter (2017)’s
analysis of spoken dialogue data shows that entropy
of dialogue partners’ speech, interactively evolves
and converges as the discourse develops. This phe-
nomenon indicates that mutual understanding has
been consistently reached over the shifting of top-
ics. Maës et al. (2022) shows that, while global
entropy of dialogue remains constant, topic shift
is a linguistic factor which leads to peaks in local
entropy. Inspired by Xu et al. (2022) and Maës et al.
(2022) this paper focuses on listener gaze during
interaction.

In this paper, we quantify the information con-
veyed through gaze. Based upon and extending our
previous work (Wang and Buschmeier, 2023), we
first investigate gaze local entropy to add further ev-
idence that non verbal communication conforms to
the entropy rate constancy principle, complement-
ing the finding of Xu et al. (2022). Our motivation
for this is based on four points: (1) During interac-
tion, interlocutors spend most of their time looking
at each other (Rogers et al., 2018); (2) New gaze
behaviour will emerge while the conversation de-
velops; (3) Interlocutors are less likely to shift gaze
from one corner of their visual field to the other
when listening, as it can be perceived as being
distracted (but see Goodwin 1985, p. 231); (4) If
listener gaze targets the speaker, a gaze shift is
less likely to happen, unless there is a cognitive
processing-based need for gaze aversion (Argyle
and Cook, 1976).
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Based on these four points, if we consider gaze as
meaningful communicative units (similar to lexical
units), listeners’ gaze behavior should be predictable
to some extent. We also take a closer look at two
high level linguistic factors: syntactic complexity
(Xu and Reitter, 2016), and transition relevance
places (potential turn-taking cues) (Sacks et al.,
1974) in order to investigate if there is a correlation
between gaze local entropy and these two linguistic
factors. We do this as an initial attempt to explain
why nonverbal communication (specifically listener
gaze) may conform to the ERC principle. In this
paper we specifically investigate the following two
research questions:

• Does listener gaze, as a nonverbal signal, adhere
to the Entropy Rate Constancy (ERC) principle?

• If so, why does listener gaze conform to ERC
principle. Do syntactic complexity and transi-
tion relevance places correlate with this phe-
nomenon?

The two main contributions of our work, compared
to previous studies, are as follow:

• We add to the existing evidence that the ERC
principle also holds for nonverbal signals (specif-
ically listener gaze). We do this here for dyadic
conversations in a controlled linguistic context,
namely task oriented dialogue. This finding is
based upon and extends our previous work (Wang
and Buschmeier, 2023), improving its experiment
setting.

• We investigate the effects of the two linguistic
factors syntactic complexity and turn transition
potential, which is based on the prediction of
transition relevant places, on listener gaze entropy
in conversational interaction.

2 Related Work

2.1 Studies on Gaze in Multimodal
Communication

Gaze is an important social cue in human interac-
tion that is used for indicating attention, eliciting
feedback, or taking the turn (Kendon, 1967; Dun-
can, 1975; Goodwin and Goodwin, 1986). Brône
et al. (2017) summarize these communicative func-
tions of gaze as following two roles: a participation
role, where interlocutors show attentiveness during
interaction, and a regulation role, which coordinates
the dynamics of speaker-listener role shifting, in

addition to other cues, e.g., prosodic cues such as
intonation, duration, loudness, and voice quality
(Ward, 2019). A recent lab-based study of human
interaction (Kendrick et al., 2023), in which gaze
was recorded with professional eye trackers, found
gaze direction not to be a significant predictor for
turn shifts, while gaze aversion was a strong cue
for turn holding (which is different from previous
finding Nakano et al. 2003).

From the computational side, gaze has been thor-
oughly investigated for its communicative function
in dialogue modeling tasks. For spoken dialogues
systems, as well as for the design of human robot
interaction, gaze modeling has been used to facil-
itate the grounding process (Nakano et al., 2003;
Skantze et al., 2014). As a multimodal signal in
interaction, gaze can also serve as an important
feature for turn management (Jokinen et al. 2013;
but see Kendrick et al. 2023, above). Onishi et al.
(2023) combine gaze direction with other multi-
modal features (e.g., head rotation) to the baseline
model of a self-supervised voice activity projection
model (Ekstedt and Skantze, 2022b), and show that
they further improve the accuracy of the model’s
performance on next speaker prediction. From a
more theoretical perspective, Eberle et al. (2022)
investigated transformer’s self-attention mechanism
and reveals that it has similar predictive power as
task specific human gaze fixation pattern.

2.2 Measuring Information Content in
Communication

In both written text and spoken dialog, information
theory has been used extensively as a theory for
uncovering properties of language. Let 𝑋𝑖 denote a
linguistic unit (e.g., a single lexical unit or a long
utterance). As the relevant context grows, the pre-
dictability of the next linguistic unit will be higher,
given that enough contextual cues are available
as a prior, which increases the reliability of the
posterior estimation. The information density of
the random variable 𝑋𝑖 is estimated as the entropy
𝐻 (𝑋) (Shannon, 1948).

Genzel and Charniak (2002, 2003) initiated the
idea of measuring the information density through
an 𝑛-gram model on written text. In this study, we
follow Xu and Reitter (2018) and Giulianelli et al.
(2021) in calculating information content: For a
linguistic unit, e.g., a sentence 𝑋 which comprises
of a sequence of smaller units: ⟨𝑤1, . . . , 𝑤𝑖⟩, where
𝑤𝑖 ∈ 𝜗, with 𝜗 being the set of vocabulary. The
information content of the sentence is the aver-
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age of the sum of negative logarithm conditional
probability defined as:

𝐻 (𝑋) = −1
𝑛

∑︁
𝑤𝑖∈𝜗

log 𝑃(𝑤𝑖 | 𝑤1, . . . , 𝑤𝑖−1)

Genzel and Charniak (2002, 2003) further proposed
the so called Entropy Rate Constancy (ERC) prin-
ciple, which stipulates that the rate of transmitted
information of a given linguistic unit, from a global
perspective of a written text, is roughly constant.

Here, we follow Genzel and Charniak (2002) to
explain the ERC principle in details: Let 𝐻 (𝑋𝑖 |
𝐶𝑖 , 𝐿𝑖) denote the conditional entropy of the word
𝑋𝑖, where 𝐿𝑖 = 𝑋𝑖−𝑛+1, . . . , 𝑋𝑖−1 is the local 𝑛-
gram context, and 𝐶𝑖 = 𝑋0, 𝑋1, . . . , 𝑋𝑖−1 the con-
text which contains all of the words preceding the
word 𝑋𝑖 . The conditional entropy of the word 𝑋𝑖 is
then decomposed as:

𝐻 (𝑋𝑖 | 𝐶𝑖 , 𝐿𝑖)︸            ︷︷            ︸
global entropy

= 𝐻 (𝑋𝑖 | 𝐿𝑖)︸       ︷︷       ︸
local entropy

− 𝐼 (𝑋𝑖;𝐶𝑖 , 𝐿𝑖)︸         ︷︷         ︸
mutual information

𝐻 (𝑋𝑖 | 𝐶𝑖 , 𝐿𝑖) is considered roughly constant based
on following reasoning1: Given that 𝐼 (𝑋𝑖;𝐶𝑖 , 𝐿𝑖)
– as the mutual information between 𝑋𝑖 under its
local context 𝐿𝑖 and its global context𝐶𝑖 – increases
because the global context increases, the local en-
tropy 𝐻 (𝑋𝑖 | 𝐿𝑖) would have to increase in order for
𝐻 (𝑋𝑖 | 𝐶𝑖 , 𝐿𝑖) to remain roughly constant, though
a variation of the value is possible.

A theory similar to the ERC principle, the
Uniform Information Density (UID) Hypothesis
(Jaeger, 2010), states that speakers tend to distribute
information uniformly throughout an utterance so
that less processing load is given to the listeners.
Formally, the information expressed by a linguis-
tic signal 𝑦 (e.g., an utterance or, in this study, a
sequence of gaze labels) as the so-called surprisal,
is 𝑦’s negative log probability: 𝑠(𝑦) = − log𝑝ℓ

(𝑦),
which can be further factorized. Recently, surprisal
is commonly approximated using language models
with learned parameters (Smith and Levy, 2013;
Goodkind and Bicknell, 2018; Wilcox et al., 2020).
Besides constraining speaker choice of words, it
has also been discussed how UID influences read-
ing time (Meister et al., 2021), or speech duration
(Pimentel et al., 2021). Moreover, recent studies
investigated whether nonverbal signals adhere to the
ERC principle as well. Xu et al. (2022), for example,

1Note that Verma et al. (2023) re-evaluated the ERC prin-
ciple in text with a neural sequential model and failed to find
decisive evidence for it (with inconclusive results though).

encode co-speech gestures (in monological videos)
into discrete labels. We used a similar approach in
our previous work (Wang and Buschmeier, 2023)
for listeners’ gaze in interaction. These two studies
show that gesture and gaze as nonverbal signal,
conform to ERC principle as well.

In this study, we use surprisal (namely local en-
tropy) to further explain how we transfer the ERC
principle, which was originally developed for texts,
to gaze. Here is an intuitive example: let us assume
the surprisal of the word sequence ⟨a, good, day⟩
is computed as −(log 𝑃(a) + log 𝑃(good | a) +
log 𝑃(day | a, good))/3 (no 𝑛-gram model assumed
here), the words are the representation of mean-
ing. Analogously, gaze labels are representations
of gaze (see Section 5 for details), which seman-
tically represents the distance (distance features)
of the listener’s gaze toward speaker, e.g., close,
far, left, right, attention, aversion, etc. Given an
example gaze label sequence, e.g., ⟨41, 10, 12⟩, the
surprisal is can thus be computed as −(log 𝑃(41) +
log 𝑃(10 | 41) + log 𝑃(12 | 10, 41))/3. The local
context of gaze labels, e.g., ⟨41, 41, 41, 10, 10, . . . ⟩,
is based on the input size, the global con-
text of gaze labels, is a similar sequence, e.g.,
⟨41, 41, 41, 10, 10, 41, 41, 41, 10, 10, . . .⟩, ahead of
the current local context. Since mutual information
is increasing with expansion of previous context (for
both word context and gaze context), gaze can be
treated analogously to words in research on written
text. In this study, we thus investigate whether gaze
local entropy increases to confirm our hypothesis.

3 Data Collection

Nonverbal communication takes place in parallel to
verbal communication (Stivers and Sidnell, 2005).
In order to control the variables in our study, we
(roughly) control and constraint verbal information
so that we can investigate the variation of nonverbal
communication. The interactions we analyze are
explanations of a board game (Deep Sea Adventure;
Sasaki and Sasaki 2014) and were collected in an
interaction study that resulted in the MUNDEX
corpus (Türk et al., 2023). In each interaction an
experienced explainer explains the games to an ex-
plainee who does not know the it yet (see Figure 1).

The interactions are organized into three phases:
In the first phase, the game is explained without
the game material being present. In a second phase,
the game is put on the table and the explanation
continues. In the third phase the two participants
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Figure 1: Study design for the data collections. The
participant on the left (the explainer) explains the board
game to the participant on the right (the explainee). The
explainee’s gaze behavior is captured by a camera behind
the explainer.

start playing the game. The interactions can there-
fore be considered task-oriented dialogues. In this
study we include the videos of 58 interactions from
the corpus and extract the first phase (explanation
without game). These explanations vary in length
from 2:12 min to 17:36 min (mean length 7:04 min,
standard deviation 3:15 min). All participants speak
German.

4 Hypothesis

Our primary hypothesis is as follows: Similar to
verbal information, which is considered to conform
to the entropy rate constancy (ERC) principle, non-
verbal communication signals such as the listener’s
gaze – which, similar to gestures, is usually coordi-
nated with speech during interaction – also conform
to it. The original hypothesis was posed in our pre-
vious work (Wang and Buschmeier, 2023), but the
finding was not conclusive. In this study, we revisit
the original hypothesis by refining the experimen-
tal setting, e.g., by detecting and removing local
outliers and partitioning the video recordings into
several groups in a more reasonable way.

We further test the ERC principle in nonverbal
communication by extending the primary hypoth-
esis as follows: the ERC principle in nonverbal
communication in dialogue is based on the com-
bination of multiple linguistic factors, of which
we investigate two: syntactic complexity and turn
transition potential of lexical items.

5 Processing Listener Gaze and Dialogue
in Interaction

For each recorded video from the corpus, we extract
the explainee’s gaze information using the Open-
face framework (Baltrusaitis et al., 2018). Openface
generates two types of gaze features (i) gaze direc-
tion values in radians averaged from both eyes (two

dimensions) and (ii) gaze vectors in world coordi-
nates (three dimensions for the left and right eye
each). We integrate both representations so that the
final gaze label does not only reflect gaze dynamics
in three dimensions but also incorporates the effects
from listener’s head orientation during interaction.
The computation of a gaze label follows these steps:

1. For the gaze direction values, we use the DB-
SCAN clustering algorithm (Ester et al., 1996)
to find the spatial distribution of gaze and iden-
tify its “dense region” (Tran et al., 2020), both
horizontally and vertically. The motivation of
finding the “dense region” is based on the intu-
ition that interlocutors spend a large proportion
of time during the conversation looking at each
other. Based on the minimal and maximal gaze
direction values, a 3 × 3 grid is set up. The gaze
direction values that are in this dense region
are given the label ‘5’, where the minimum and
maximum gaze direction values among all gaze
direction values in the dense region are used to
decide on its boundary. The gaze direction values
that are not in the dense region are assigned eight
other number-based labels. The overall process
follows the ICE algorithm (Tran et al., 2020)
while the idea of using a 3 × 3 grid is based on
Xu et al. (2022) and Xu and Cheng (2023).

2. For the gaze vectors, we only take the depth
dimension into account and process it similarly
to the previous step. DBSCAN-clustering is used
to find the dense region where the gaze of the left
and right eye are located in the depth dimension.
The eye gaze vector inside this dense region is
again given the label ‘5’. Based on how close
the left eye vector or right eye vector are to
the dense region, eight different labels are used.
This process can sometimes fail, so that only
one cluster is generated. We cope with these
exceptional cases, by normalizing the depth value
to a range [0, 1] and consider values in the range
[0.25, 0.75] to be inside the ‘dense region’.

3. Given the label 𝑥𝑑 ∈ [1, 9] for the gaze direction
value and the label 𝑥𝑣 ∈ [1, 9] for the gaze vector,
a combined label 𝑦, that represents the gaze
information, is generated as y = (𝑥𝑑 − 1) · 9 + 𝑥𝑣
(with 𝑦 ∈ [1, 81] representing the set of possible
eye gaze labels). See Appendix A for further
details on encoding eye gaze.

Figure 2 shows the distribution of the 15 most fre-
quent gaze label in our data. The six most frequent
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Figure 2: Distribution of the 15 most frequent gaze labels
in the data set.

labels (41, 37, 38 ,40, 42, 45) represent the ex-
plainees looking in the direction of explainers with
various distance (closer or more distant). The less
frequent labels (68, 50, . . . ) instead start to show
explainees averting their gaze from explainers.

Dialogues were automatically transcribed using
‘Whisper’ (Radford et al., 2022), which generates
speech segments with a start and an end time. In
order to calculate word timings, we approximated
word onset times by calculating the duration of each
speech segment, dividing it by its length in words,
and approximating word duration (assuming, for
this study, that words have uniform length). Eye
gaze labels are then aligned with words based on
the video’s frame rate (50 fps).

We consider eye movements as sequences of
gaze labels (Figure 9 shows an example of speech
gaze alignment). To be able to compute the entropy
for gaze, we train a transformer model (Vaswani
et al., 2017) to estimate the underlying probability
distribution of the gaze sequences.We have chosen
a transformer model since it has a stronger psycho-
metric predictive power compared to LSTM-RNNs
models (Wilcox et al., 2020). To compute the local
entropy of a gaze sequence, we first calculate its
negative log probability:

NLL(𝑒1, 𝑒2, . . . , 𝑒𝑇 )

= −
(
log 𝑃(𝑒1) +

𝑇∑︁
𝑖=2

log 𝑃(𝑒𝑖 | 𝑒1, . . . , 𝑒𝑖−1)
)

where 𝑇 is the maximum index of a given eye
movement sequence and 𝑒𝑖 ∈ [1, 81] are the gaze
labels. The local entropy 𝐻 (𝑒1, 𝑒2, . . . 𝑒𝑖) of the
gaze sequence is then the exponential of NLL (i.e.,
perplexity). The learning task is thus to predict
the next gaze label 𝑒𝑖 based on the preceding se-
quence ⟨𝑒1, . . . , 𝑒𝑖−1⟩ and minimize its negative
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Figure 3: General trends in perplexity (local entropy)
of explainee gaze gaze during explanations, without
removing the effect from the length of dialogues.

Table 1: Statistics of gaze local entropy grouped by
length of dialogues (see Figure 4 for labels A, B, C).

A B C

Coefficient 5.98× 10−3 1.35× 10−3 3.49× 10−7

p-value < 0.05 < 0.01 < 0.01

log probability NLL.

6 Preliminary Result

After computing the local entropy, we first calculate
statistical significance, removing outliers. We use a
simple local outlier detection method by calculating
the standard score (Z-score) of each data point. If
the standard score is greater than a threshold (for
the gaze local entropy, we define it as 4 so that only
very extreme values are considered outliers), it is
considered an outlier and replaced by the median
of the local entropy.

Figure 3 shows the change of local entropy of
the combined eye gaze sequences from all 58 inter-
action videos after removing outliers. The 𝑥-axis
represents the dialogue position of the speech seg-
ments (with each dialogue position corresponding
to about 7 seconds of speech) and the y-axis rep-
resents the local entropy of the gaze sequences.
Although there seems to be a general increasing
trend of the local entropy, we also have to con-
sider the different length of the videos, which may
bias the result. Therefore, we decided to divide the
videos into three groups based on length to mitigate
the length bias and replot the local entropy (see
Figure 4).

We then use a linear model and conduct statistical
significance tests between dialogue position and
gaze local entropy for each of the three sub groups.
The results show us that, coefficient values in all
three sub groups are positive, with 𝑝-values smaller
than 0.05. The increase of local entropy of gaze
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Figure 4: General trends in perplexity (local entropy)
of explainees’ eye gaze during explanations, grouped
by length of dialogues (in dialogue positions): A: 27
dialogues shorter than 45; B: 24 dialogues between
46 to 90; C: 7 dialogues longer than 90. The reason
for choosing 45 as the breaking point is that using
this threshold, the data size in the first two groups is
roughly equal, while dialog positions larger than 90 are
comparatively rare.

(shown in Figure 4) is thus statistically significant,
that is, the preliminary result supports our basic
hypothesis. The general increasing trend of local
entropy indicates that more new gaze labels appear
over the course of the explanations.

7 Analysis of Linguistic Factors

The goal of this section is to answer the question
why listener gaze, as a nonverbal signal in interac-
tion, conforms to the ERC principle (see Section 6).
Specifically, we focus on exploring linguistic fac-
tors which may influence the information amount
conveyed by listeners’ gaze during interaction. We
select two metrics – syntactic complexity and turn
transition potential – as the linguistic factors to
investigate and perform statistical analyses to check
for correlations between gaze local entropy and
these two factors.

7.1 Syntactic Complexity and Gaze Local
Entropy

Studies of human sentence processing show that
when humans are exposed to written language that
is structurally complex, processing difficulties ac-
cumulate, and this is reflected in the collected eye
movement data, e.g., increasing eye fixation can be
found in the syntactically complex area among all
of the sentences given (cf. Clifton and Staub, 2011).
That is, gaze behavior correlates with cognitive
load, which can be increased by syntactic complex-
ity. For example, it has been shown that cognitive

load can cause gaze aversion during interaction
(Argyle and Cook, 1976). This correlation between
syntactic complexity and eye movement found in
the literature leads us to the following conjecture:
Is syntactic complexity also relevant to the increase
of local entropy of listeners’ gaze in face-to-face
interaction?

7.1.1 Calculating Syntactic Complexity
Xu and Reitter (2016) show two metrics for cal-
culating syntactic complexity: (1) tree depth of a
syntactic tree, and (2) branching factor, i.e., the
average number of children in non-leaf nodes when
parsing a syntactic tree. We use dependency parsing
(specifically ‘Stanza’; Qi et al. 2018) to parse the
automatically recognized speech and calculate its
syntactic complexity. The advantage of using de-
pendency parsing is that the input does not have to
be a complete sentence to be parsed. We calculate
syntactic complexity similarly to Xu and Reitter
(2016). Given a speaker’s utterance, we compute
its length 𝐿 and use dependency parsing to get
the number of heads 𝛼 as well as the maximum
tree depth 𝛽. The syntactic complexity 𝑆𝐶 of the
utterance is then computed as

𝑆𝐶 =

{
𝜆 · 𝐿

𝛼
+ (1 − 𝜆) · 𝛽 if 𝛼 > 0,

(1 − 𝜆) · 𝛽 otherwise.

𝜆 is a tuning factor set to 0.5 by default.
First, an utterance which is lengthy is considered

more complex, since it has a bigger tree depth value.
Second, the more complex phrases an utterance
contains, the more complex the utterance is. We
take utterances from explainers as input to the linear
model. Figure 5 shows a plot of the development of
syntactic complexity of utterances over the course of
the interactions. Within the defined topic we analyze
(explanations of the board game), the syntactic
complexity of utterances increases, as verified by
a linear model which weakly correlates utterance
position to syntactic complexity (𝛽 = 0.0009, 𝑝 <

0.001). Although the beta coefficient is quite low,
we consider that the effect size is still valid given
that the value range of syntactic complexity is quite
small (from 2.8 to 3.05 in Figure 5 2 and 1.5 to 5.9
in the whole data).

7.1.2 Correlation with Gaze Local Entropy
Based on these results (Figure 5), we further inves-
tigate whether there is a correlation between the

2While the syntactic complexity is decreasing at the early
stage, it is increasing after dialogue position 25.
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Figure 5: Syntactic complexity of explainers’ speech.
The 𝑥-axis shows dialogue positions, the 𝑦-axis scales
the variation of measured syntactic complexity.

local entropy of listeners’ gaze and the syntactic
complexity of speech 3. A linear model shows a
statistically significant relation between the two
variables (𝛽 = 0.02, 𝑝 < 0.05). A weak positive
correlation between syntactic complexity and local
entropy of gaze indicates that, as syntactic com-
plexity is in general increasing, gaze local entropy
increases accordingly. A possible explanation for
the correlation between syntactic complexity and
local entropy of gaze could be that, with the devel-
opment of the board game explanation, the speech
from explainers becomes more syntactically com-
plex, the explainees instead, take more effort to
process the information which may lead to, e.g.,
longer periods of gaze shift, and thus more variation
in gaze labels.

Two illustrative examples from our data can be
seen in Figure 6. In the chosen dialogue segments
(from the two videos), an increase of local entropy
is in general correlated with an increase of syntactic
complexity (An exception is A of Example 2 in
Figure 6b). Moreover, the chosen examples suggest
that a higher local entropy value is generally caused
by shifts between frequent gaze labels to less fre-
quent ones and vice versa (e.g., shift from label
41 to 71 in A of example 1 (Figure 6a), shift from
label 41 to 62 in C of example 2 (Figure 6b). This
is in line with the UID theory: the appearance of
less frequent units leads to a higher surprisal value

3Here we use all of the utterances instead of only explainers’
utterance since gaze labels are aligned with all of the utterances.
Despite some noise, we still think it is the most optimal way
based on our observation that explainee utterances are very
limitted in our explanation data.

(a) Example 1

(b) Example 2

Figure 6: Sample dialogue segments from two videos.
Utterances are followed by corresponding gaze label.
The dialogues progress from A to C

(Jaeger, 2010).

7.2 Turn Transition Potential and Gaze Local
Entropy

The interaction of gaze behavior and turn-taking
have constantly attracted research attention (e.g.,
Skantze et al. 2014; Kendrick et al. 2023). For
this study, we assume that, turn-taking signals are
a linguistic factor which can influence listeners’
gaze behavior and thus gaze local entropy. Our
assumption is based on the intuition that listeners
will usually wait until speakers finish speaking and
then start to talk. And when listeners want to take a
turn or give the turn back to previous speakers in
interaction, they usually gaze towards the speakers.
According to Sacks et al. (1974), in dyadic conver-
sations, some lexical units, which are defined as
transition relevant places (TRP), have higher prob-
ability that a turn shift can happen. These usually
occur at syntactic or pragmatic completeness.

For our study, we did not use the real turn-taking
occurrences from our data to test our hypothesis
(because explainees are less likely to take the turn
during the initial game explanation phase; Fisher
et al. 2022), but instead analyze the transition rel-
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evance places as turn-taking potential in our data.
The experimental setting is as follows: We train
a neural sequential model (TurnGPT; Ekstedt and
Skantze 2020) based on two available German
dialogue data sets (VM2 and DialogueSUM, see be-
low) to approximate human turn-taking behaviour.
We aim at calculating the turn-taking potential of
each lexical unit in dialogue, represented as a prob-
ability 4. After getting the turn-taking potential for
all of the lexical units, we analyze the interaction of
turn-taking potential, dialogue position, and gaze
local entropy.

7.2.1 Estimating Turn Transition Potential
using TurnGPT

We use TurnGPT (Ekstedt and Skantze, 2020) to
calculate the turn transition potential for our speech
data. TurnGPT extends the GPT-2 architecture (Rad-
ford et al., 2019) with additional speaker embed-
dings. The turn-taking ground truth is encoded by
adding a token (<ts>) after lexical items where
turn-taking occurred. To process German data, we
replace the original GPT-2 model with German-
GPT2 (Schweter, 2020) and fine-tune it on two
datasets:

• VERBMOBIL (VM2; Kay, 1992): The dataset
is based on recordings of various appointment
scheduling scenario and consists of 30 800 ut-
terances collected in face-to-face interactions.
Utterances are annotated with dialogue acts and
include a corresponding speaker ID.

• DialogueSum (Chen et al., 2021): DialogSum
is a large-scale dialogue summarization dataset,
consisting of 13 460 dialogues. Each utterance
in the dataset is aligned with a speaker label.
The original data is in English; we used a Ger-
man translation of the data (Dialogsum-German)
available on HuggingFace.

Figure 7 shows two examples of model predic-
tions (with English translations). Lexical items are
aligned with the turn transition probabilities pre-
dicted by our German TurnGPT model. Lexical
items with higher probabilities indicate syntactic
and pragmatic completeness, and are considered
reasonable places for turns in real conversation. Ad-
ditional examples can be found in the Appendix A.5.

4It is worth noting that a lexical item classified as a place
with a high turn-taking potential probability, does not necessar-
ily coincide with turn-taking in the real dialogue. We interpret
the high probability as a reasonable point for taking the turn
in a real conversation.

(a) Example 1: Sobald wir uns
einen Schatz schnappen dann
wird es kritisch dann müssen
wir Geld dafür bezahlen (‘As
soon as we grab a treasure,
things become critical and we
have to pay money for it’).

(b) Example 2: wir sind also
eigentlich Gegner wir spie-
len gegeneinander aber wir
nutzen den gleichen Sauer-
stoff (‘So we are actually op-
ponents, we play [against
each other], but we use the
same oxygen’).

Figure 7: Examples of turn transition potential probabil-
ity predictions by TurnGPT, including English transla-
tions. Words in bold have higher turn transition proba-
bility.

(a) Turn transition potential
probability in three bins (from
left to right: A, B, C) and
the relevant gaze local entropy.
The red dot inside the boxes
are the means of gaze local
entropy.
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(b) Regression model of turn
transition potential probabil-
ity and gaze local entropy. The
red line shows the general
trend of gaze local entropy
with the increase of turn tran-
sition potential probability.

Figure 8: Statistics of turn transition potentials and gaze
local entropy.

7.2.2 Correlation with Gaze Local Entropy
We first use a linear model to investigate whether
turn transition probabilities (obtained from the pro-
cess shown in Section 7.2.1) correlate with dialogue
position. No statistically significant correlation is
found between the two variables (𝛽 = −3.28, 𝑝 =

0.17, 𝛼 = 0.05). However, the negative coefficient
value indicates that, in general, higher turn transition
probabilities are distributed more at the beginning
of dialogues.

After feeding each utterance into the TurnGPT
model to obtain the corresponding turn transition
potential probability, we divide the data in to three
groups by turn transition potential probability 𝑝𝑇 .
A/comparatively low: 𝑝𝑇 < 0.5; B/comparatively
high: 𝑝𝑇 ∈ [0.5, 0.75]; C/high: 𝑝𝑇 > 0.75. We
then aggregate and analyze gaze local entropy by
group (Figure 8a). In group B and C, where higher
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turn transition probability is aggregated, the corre-
sponding gaze local entropy generally has a slightly
lower mean and median value compared to group
A. A possible explanation for this result could be
that listeners tend to look at the speaker’s face when
taking turns or returning the turn to the speaker, re-
sulting in more uniform and predictable gaze labels
defined in our study and thus a comparatively low
gaze local entropy value.

Using a linear model, we find a weak, but statis-
tically insignificant correlation (𝛽 = −0.0064, 𝑝 =

0.143, 𝛼 = 0.05) between turn transition potential
probability and gaze local entropy. Figure 8b shows
this general decreasing linear trend (but data points
are distributed quite sparsely).

8 Conclusion

In this study, we extracted listeners’ gaze from
video-recorded human interaction dialogues (specif-
ically from explainees in explanatory dialogues)
and found evidence that listener gaze, as an im-
portant nonverbal signal, adheres to the Entropy
Constancy Rate principle – a property of human
language use (Genzel and Charniak, 2002). This
finding is supported by an increasing trend of the
local entropy of listeners’ gaze over the course of
the dialogues we analyzed. We believe that this find-
ing can provide future insight into the evaluation
of co-speech gaze generation and interpretation
in the field of human-agent interaction, e.g., in
explanatory settings.

We further investigated two linguistic factors -
syntactic complexity and turn-taking potential - that
may contribute to this increase in gaze entropy, as
they have been considered to interact with gaze
behavior in previous studies. Our statistical analysis
provides initial evidence that these two factors are
correlated (weakly) with the local entropy value of
gaze, which could potentially provide an explana-
tion for why listeners’ gaze may adhere to the ERC
principle.

9 Limitations

At the current stage, our study has a number of
limitations that need to be taken into account when
interpreting its results.

A first limitation is that the calculation of gaze
local entropy based on a model that takes only gaze
labels as input is not optimal, since listener gaze
is affected by other modalities, speech, speaker’s
prosody, etc. in the interaction. The neural sequen-

tial model (transformer) is autoregressive in that it
predicts the current gaze label based only on pre-
vious gaze labels. This approach should be better
than random guessing, but ignores the effects of
the other modalities. This should be addressed in
future work, e.g. by building a model that takes
different modalities as input and calculates gaze
local entropy based on them.

A second limitation concerns the the two weak
correlations found in our study. They might be due
to other linguistic factors that may influence the con-
solidation of the ERC principle for listener gaze (or
nonverbal communication in general). For example,
Giulianelli et al. (2022) found that the repetition of
constructions (e.g., ‘yes yeah I’, ‘uhm I think’) in di-
alogue reduces its informational content. Similarly,
Bowers et al. (2010) show that listeners pay more at-
tention to fluent than to disfluent speech, suggesting
that disfluencies influence listeners’ gaze behav-
ior. Possible question to investigate, then, might
be whether repetitions of constructions or disfluen-
cies influence the information content conveyed by
listener gaze in dialogue.

A third limitation concerns the computation of
the turn transition probabilities, which is based only
on textual representations of the interactions. In
practice, prosody is also an important factor that
affects turn-taking behavior (Ekstedt and Skantze,
2022a) and such features should be taken into ac-
count as well.

A fourth limitation concerns the processing of
the video data. The extraction of eye movements
using OpenFace is suboptimal. For more reliable
gaze estimation, dedicated eye-tracking hardware
should be used instead – although this may affect
the naturalness of the interactions.

10 Ethics Statement

The used data in the study is for research purposes
only and commercial use is not allowed. The par-
ticipants (i.e., dialogue participants) were mainly
university students. They gave informed consent
to participate in the study and to have their data
used, and were paid 10 euros per hour. The study
was approved by the university’s internal ethics and
data protection review boards.

Supplementary materials Code and data of anal-
yses is available in the following data publication:
https://doi.org/10.17605/OSF.IO/A4RHV
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A Appendix

A.1 Model Parameter Settings
The following parameters were set for training the
transformer model for gaze local entropy: batch
size 35; input size 25; initial learning rate 0.05. The
data was divided into 80% for training and 20% for
testing. Both the training and testing data sets are
used to compute the local entropy.

The following parameters were set for fine-tuning
the German TurnGPT model: batch size 3; weight
decay 0.01; dropout rate 0.1; learning rate 0.0001. A
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Figure 9: An example of gaze-speech alignment (from
Wang and Buschmeier (2023))

total of 15 epochs were used to finish the fine-tuning
tasks. After each epoch, one checkpoint (model)
was generated, saving the weight parameters gained
during training. The model with minimal loss value
(1.0083) was chosen as the final model for estimat-
ing the turn transition potential probability.

A.2 DBSCAN Algorithm Parameters
We set up a criterion to ensure that a point can
only be considered a core point for a cluster if it is
surrounded by at least ten samples.

A for-loop was used to find an optimal 𝜖 value
(required by DBSCAN) in the range [0.01, 0.1]
such that the ratio between the two most frequent
cluster labels is just below 15%. In this way, the
cluster with the most frequent label is considered to
be the region where an explainee’s gaze is mostly
located.

A.3 Example of Speech-Gaze Alignment
Figure 9 shows an example of gaze and speech
alignment.

A.4 Examples ASR-Results
Figure 10 shows an example of a diarized speech
transcript created automatically with the automatic
speech recognition Whisper. We selected the model
large-v3. Whisper’s word error rate (WER) for
German is given as 5.7% the in Common Voice
15 dataset and as 4.9% in the Fleurs datasets
(see https://github.com/openai/whisper/
blob/main/README.md). The transcripts were not
corrected.

A.5 Additional Examples of Turn Transition
Potential Estimation

Four additional examples of model predictions for
turn transition potential probability are shown in
Figure 11.
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68 00:06:54,072 -> 00:06:58,950
Speaker 1: Du meintest doch vorher, wenn man wieder zurückgeht,
dass man die Schätze dann da wieder ablegen kann, wo so ein leeres
Feld ist.

69 00:06:59,110 -> 00:07:02,208
Speaker 0: Achso, das könntest du, wenn du merkst, ich habe zu
viele Schätze mir gegaunert.

70 00:07:03,493 -> 00:07:05,069
Speaker 1: Ja, wenn der Schatz sowieso nichts bringt.

71 00:07:05,650 -> 00:07:06,327
Speaker 0: Das siehst du nicht.

72 00:07:06,571 -> 00:07:07,186
Speaker 0: Okay, das sage ich noch.

73 00:07:08,331 -> 00:07:13,150
Speaker 0: Unten drunter steht eine Zahl und die wird erst aufgedeckt,
wenn du zurück im U-Boot bist und dir den Schatz anschaust.

Figure 10: An example of an automatically generated
speech transcript with speaker diarization.

(a) Das Problem ist wir haben
nur ein billiges Uboot (‘the
problem is, we only have a
cheap submarine’).

(b) und wir haben dann eine
Karte das ist ein Uboot und
da ist eine Sauerstoffanzeige
drin mit so einem kleinen
Stein (‘and then we have a
card it’s a submarine and
there’s an oxygen gauge with
a little stone in it).

(c) Wie bringt man die zum
Uboot zurück (‘How do you
get them back to the subma-
rine’).

(d) und sobald man dann so
einen Schatz genommen hat
dann muss man aufpassen
(‘and once you have taken
such a treasure, you have to
be careful’).

Figure 11: Four additional examples of model predictions
for turn transition potential probability, with translations
in parentheses.
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