
Findings of the Association for Computational Linguistics: ACL 2024, pages 7655–7671
August 11-16, 2024 ©2024 Association for Computational Linguistics

Unlocking Efficiency in Large Language Model Inference:
A Comprehensive Survey of Speculative Decoding

Heming Xia1, Zhe Yang2, Qingxiu Dong2, Peiyi Wang2,
Yongqi Li1, Tao Ge3, Tianyu Liu4, Wenjie Li1, Zhifang Sui2

1Department of Computing, The Hong Kong Polytechnic University
2National Key Laboratory for Multimedia Information Processing, Peking University

3Microsoft Research Asia 4Alibaba Group
{he-ming.xia}@connect.polyu.hk; {yz_young}@pku.edu.cn

Abstract

To mitigate the high inference latency stem-
ming from autoregressive decoding in Large
Language Models (LLMs), Speculative Decod-
ing has emerged as a novel decoding paradigm
for LLM inference. In each decoding step, this
method first drafts several future tokens effi-
ciently and then verifies them in parallel. Un-
like autoregressive decoding, Speculative De-
coding facilitates the simultaneous decoding of
multiple tokens per step, thereby accelerating
inference. This paper presents a comprehensive
overview and analysis of this promising decod-
ing paradigm. We begin by providing a formal
definition and formulation of Speculative De-
coding. Then, we organize in-depth discussions
on its key facets, such as drafter selection and
verification strategies. Furthermore, we present
a comparative analysis of leading methods un-
der third-party testing environments. We aim
for this work to serve as a catalyst for further
research on Speculative Decoding, ultimately
contributing to more efficient LLM inference.1

1 Introduction

Large Language Models (LLMs) have achieved
remarkable proficiency in a range of downstream
tasks (OpenAI, 2023; Touvron et al., 2023a,b; Chi-
ang et al., 2023; Jiang et al., 2023). They are pro-
gressively evolving as the cornerstone of compre-
hensive API interfaces (e.g., ChatGPT2), offering
human life services and guidance through real-time
human-machine interactions. However, the infer-
ence latency of these sizable models has emerged
as a substantial obstacle restricting their broader
applications. This latency primarily arises from
the token-by-token generation necessitated by au-
toregressive decoding, resulting in an escalation of
the inference latency with both the length of the
generated sequence and the model’s scale.

1The relevant papers will be regularly updated at https:
//github.com/hemingkx/SpeculativeDecodingPapers.

2https://chat.openai.com
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Figure 1: In contrast to autoregressive decoding (left)
that generates sequentially, Speculative Decoding (right)
first efficiently drafts multiple tokens and then verifies
them in parallel using the target LLM. Drafted tokens
after the bifurcation position (e.g., ) will be discarded
to guarantee the generation quality.

To accelerate LLM inference, an innovative in-
ference paradigm, Speculative Decoding has been
introduced (Stern et al., 2018; Xia et al., 2023;
Leviathan et al., 2023; Chen et al., 2023a). As
shown in Figure 1, in each decoding step, Specula-
tive Decoding first efficiently drafts multiple tokens
as speculation of future decoding steps of the target
LLM and then utilizes the LLM to verify all drafted
tokens in parallel. Only those tokens that meet the
LLM’s verification criterion are accepted as final
outputs to guarantee generation quality.

Speculative Decoding is founded upon two key
observations about LLM inference: 1) many easy
tokens can be predicted with less computational
overhead (e.g., using a smaller model), and 2) LLM
inference is highly memory bandwidth bound (Pat-
terson, 2004; Shazeer, 2019) with the main latency
bottleneck arising from memory reads/writes of
LLM parameters rather than arithmetic computa-
tions. Drawing on these observations, Speculative
Decoding adapts the concept of speculative execu-
tion3 to focus LLMs’ efforts on the validation of

3Speculative execution (Burton, 1985; Hennessy and Pat-
terson, 2012) is an optimization technique used in computer
architecture where tasks are performed in advance and subse-
quently verified for their necessity, thereby circumventing the
delays inherent in sequential task execution.
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Figure 2: Timeline illustrating the evolution of Speculative Decoding. After 2022, Speculative Decoding was
formally introduced as a general decoding paradigm to accelerate LLM inference and garnered widespread attention.

pre-drafted tokens, substantially diminishing the
need for frequent memory operations of LLM pa-
rameters, thereby improving inference efficiency.

While Speculative Decoding shows promise, it
raises several critical questions that warrant further
investigation. For instance, how to design an opti-
mal drafter to strike a balance between speculation
accuracy and drafting efficiency (Xia et al., 2023;
Zhou et al., 2023; Li et al., 2024). Additionally, it
is essential to assess whether the verification crite-
rion can maintain both generation parallelism and
output quality (Miao et al., 2024; Cai et al., 2024).
Furthermore, since existing methods are evaluated
under disparate testing conditions, a unified bench-
mark is needed to facilitate realistic speedup expec-
tations within the research community.

Amid the rapid expansion of research in Specula-
tive Decoding, this work makes the first attempt to
present a survey of this field, aiming to raise aware-
ness among academics about the latest advance-
ments. We provide a systematic categorization of
current research and an in-depth analysis of rele-
vant studies. Moreover, we introduce Spec-Bench,
a comprehensive benchmark to assess Speculative
Decoding methods in diverse application scenarios.
Our contributions can be summarized as follows:

(1) First survey: To our knowledge, we are the
first to present a comprehensive survey on
Speculative Decoding;

(2) Formal definition: We furnish a formal defini-
tion and formulation of Speculative Decoding,
laying the groundwork for future research.

(3) New taxonomy: We provide a systematic tax-
onomy for Speculative Decoding, offering an
organized categorization of existing work.

(4) Spec-Bench: We introduce Spec-Bench, an
extensive benchmark designed for assessing
Speculative Decoding, enabling a comparative
evaluation of leading methodologies.

We hope that this work can serve as an essential
guide for newcomers and motivate future research.

2 Overview

This paper offers a comprehensive survey of Specu-
lative Decoding. We commence by introducing the
early stages of Speculative Decoding research (§3),
illustrated by a timeline of its evolution (as shown
in Figure 2). This is followed by a formal defini-
tion and formulation of Speculative Decoding (§4).
Then, we delve into a detailed discussion of leading
techniques, including the selection of draft mod-
els (§5), verification strategies (§6), and alignment
between the drafter and the target LLM (§7). More-
over, we introduce Spec-Bench, an extensive evalu-
ation benchmark designed for assessing the accel-
eration effect of Speculative Decoding (§8).

3 Evolution of Speculative Decoding

This section discusses the motivation behind Specu-
lative Decoding (§3.1) and then provides a detailed
introduction to early attempts in this field (§3.2).

3.1 Motivation
The widespread adoption of LLMs has established
autoregressive decoding as the de facto standard to
LLM inference (Chowdhery et al., 2023; OpenAI,
2023; Jiang et al., 2024). However, autoregressive
decoding is limited by its inference latency, which
primarily stems from the memory-bound compu-
tation of LLMs (Patterson, 2004; Shazeer, 2019).
Specifically, the main latency bottleneck of each
decoding step is not due to computational opera-
tions but arises from the necessity to transfer all
LLM parameters from High-Bandwidth Memory
(HBM) to the on-chip cache of modern accelerators
like GPUs. This process, which generates only one
token per step, leads to the underutilization of these
accelerators and results in inefficiencies.
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Algorithm 1 Autoregressive Decoding
Require: Language modelMq , input sequence x1, . . . , xt,

and target sequence length T ;
1: initialize n← t
2: while n < T do
3: Set qn+1 ←Mq (x | x<n+1)
4: Sample xn+1 ∼ qn+1

5: n← n+ 1
6: end while

3.2 Pioneering Draft-then-Verify Efforts

To mitigate the above issue, an intuitive way in-
volves leveraging idle computational resources to
enhance parallelism in LLM inference. To this end,
Stern et al. (2018) introduced Blockwise Decoding,
an approach that incorporates extra feedforward
neural (FFN) heads atop the Transformer decoder,
enabling the simultaneous drafting of multiple to-
kens per step. These tokens are then verified by the
original LLM in parallel, ensuring that the outputs
align with those of the original LLM. As a pioneer-
ing work proposing the Draft-then-Verify paradigm,
Blockwise Decoding effectively reduces the num-
ber of required LLM calls by increasing generation
parallelism, thereby accelerating inference.

To further unleash the potential of this paradigm,
Xia et al. (2023) introduced Speculative Decoding
(SpecDec), which utilizes an independent drafter,
notably a specialized Non-Autoregressive Trans-
former, to perform the drafting task both accurately
and efficiently. Moreover, this method presented
an innovative strategy that relaxes the rigid ver-
ification criterion, thereby increasing the accep-
tance rate of drafted tokens. Impressively, SpecDec
achieves around 5× speedup over autoregressive
decoding with comparable quality, underscoring
the substantial potential of Speculative Decoding.

Following SpecDec, Leviathan et al. (2023) and
Chen et al. (2023a) made concurrent contributions
by proposing Speculative Sampling, expanding this
paradigm to encompass the lossless acceleration
of various sampling methods. These approaches
employed smaller LMs from the same series (e.g.,
T5-small) to speed up the inference of their larger
counterparts (e.g., T5-XXL). Unlike previous work,
these off-the-shelf small LMs do not require ad-
ditional training, enabling the rapid adoption of
Speculative Decoding in LLM acceleration. This
advancement has elevated Speculative Decoding to
the forefront of LLM efficiency research, attracting
widespread interest within the NLP community.

To sum up, these pioneering efforts in Specula-

Algorithm 2 Speculative Decoding
Require: Target language modelMq , draft modelMp, in-

put sequence x1, . . . , xt, block size K, target sequence
length T , drafting strategy DRAFT, verification criterion
VERIFY, and correction strategy CORRECT;

1: initialize n← t
2: while n < T do

// Drafting: obtain distributions fromMp efficiently
3: Set p1, . . . , pK ← DRAFT (x≤n,Mp)

// Drafting: sample K drafted tokens
4: Sample x̃i ∼ pi, i = 1, . . . ,K

// Verification: compute K+1 distributions in parallel
5: Set qi ←Mq (x | x≤n, x̃<i) , i = 1, . . . ,K + 1

// Verification: verify each drafted token
6: for i = 1 : K do
7: if VERIFY (x̃i, pi, qi) then
8: Set xn+i ← x̃i and n← n+ 1
9: else

10: xn+i ← CORRECT (pi, qi)
11: and Exit for loop.
12: end if
13: end for
14: If all drafted tokens are accepted, sample next token

xn+1 ∼ qK+1 and set n← n+ 1.
15: end while

tive Decoding have gradually solidified the Draft-
then-Verify paradigm, showcasing its promising
potential in LLM acceleration. We provide a de-
tailed categorization and discussion of these studies
and subsequent research in the following sections.

4 Formulation and Definition

In this section, we first provide a concise overview
of standard autoregressive decoding (§4.1). Then,
we offer an in-depth exposition of Speculative De-
coding (§4.2), which encompasses a formal defini-
tion, a comprehensive description of the methodol-
ogy, and a detailed elaboration of the algorithm.

4.1 Autoregressive Decoding
Transformer-based LLMs typically make genera-
tions in an autoregressive manner. Given an input
sequence x1, . . . , xt, an autoregressive language
modelMq generates the next token according to:

xt+1 ∼ qt+1 =Mq (x | x<t+1) , (1)

where q is the conditional probability distribution
calculated byMq and xt+1 denotes the next token
sampled from qt+1. We illustrate a detailed process
in Algorithm 1.

As discussed in Section 3, while the standard au-
toregressive decoding offers desirable generation
quality, it is bounded by memory bandwidth, result-
ing in low utilization of modern accelerators. In
this process, each memory-bound LLM call (i.e.,
an LLM forward step) produces merely a single
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Figure 3: Taxonomy of Speculative Decoding.

token for the entire sequence, making the whole
generation inefficient and time-consuming.

4.2 Speculative Decoding

Following Xia et al. (2023), Leviathan et al. (2023),
and Chen et al. (2023a), we here provide a formal
definition of Speculative Decoding:

Speculative Decoding is a Draft-then-
Verify decoding paradigm in which, at
each decoding step, it first efficiently
drafts multiple future tokens and then
verifies all these tokens in parallel using
the target LLM to speed up inference.

We formulate a detailed Speculative Decoding
process in Algorithm 2. Subsequently, we delve
into the two fundamental substeps integral to this
paradigm – drafting and verification:

Drafting At each decoding step, Speculative De-
coding first efficiently drafts multiple future tokens,
as a speculation of the target LLM’s output. For-
mally, given an input sequence x1, . . . , xt and the
target LLM Mq, this paradigm employs an effi-
cient draft modelMp (e.g., a smaller LM) to de-
code the next K drafted tokens:

p1, . . . , pK = DRAFT (x≤t,Mp) ,

x̃i ∼ pi, i = 1, . . . ,K,
(2)

where DRAFT(·) denotes various drafting strate-
gies that we will discuss in Section 5, p is the con-
ditional probability distribution calculated byMp,
and x̃i denotes the drafted token sampled from pi.

Verification Subsequently, these drafted tokens
are verified by the target LLMMq in parallel. For-
mally, given the input sequence x1, . . . , xt and the
draft x̃1, . . . , x̃K , Speculative Decoding utilizes
Mq to compute K + 1 probability distributions
simultaneously:

qi =Mq (x | x≤t, x̃<i) , i = 1, . . . ,K + 1. (3)

Then, each drafted token x̃i is verified by a spe-
cific criterion VERIFY (x̃i, pi, qi). Only those to-
kens that meet the criterion are selected as final
outputs, ensuring quality consistent with the target
LLM’s standards. Otherwise, the first drafted token
x̃c that fails the verification will be corrected by
the strategy CORRECT (pc, qc). All drafted tokens
after position c will be discarded, to guarantee the
high quality of the final outputs. If all tokens pass
verification, an additional token xt+K+1 will be
sampled from qK+1 as Eq. (1).

The drafting and verification substeps will be
iterated until the termination condition is met, i.e.,
the [EOS] token is decoded or the sentence reaches
the maximal length.

Notably, the acceleration effect of Speculative
Decoding primarily hinges on the acceptance rate
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Methods DRAFT (x≤t,Mp) Drafter Type

Parallel
Drafting p1, . . . , pK =Mp (x | x≤t)

FFN Heads (Stern et al., 2018; Cai et al., 2024), Non-Autoregressive
LM (Xia et al., 2023), Mask-Predict (Santilli et al., 2023; Fu et al., 2024)

Autoregressive
Drafting

pi =Mp (x | x≤t, x̃<i) , i =
1, . . . ,K

Small LMs (Leviathan et al., 2023; Chen et al., 2023a), Early Exiting (Yang
et al., 2023b), Layer Skipping (Zhang et al., 2023a)

Table 1: Summary of formulations for various drafting strategies in Speculative Decoding. We categorize these
methods into two distinct groups based on their formulations: parallel drafting and autoregressive drafting.

of drafted tokens at each step. This rate is influ-
enced by several factors, including the draft quality,
verification criteria, and the behavior alignment be-
tween the drafter and the target LLM. Additionally,
the intrinsic efficiency of the drafter itself also con-
tributes to the overall speedup. In subsequent sec-
tions, we will delve into these pivotal components
of Speculative Decoding, as depicted in Figure 3,
to systematically categorize recent research trends
within this promising paradigm.

5 Drafting

As a vital component of Speculative Decoding,
the drafting process has a crucial impact on the
speedup of the paradigm. The impact is determined
by two key factors: the speculation accuracy of
the drafterMp, measured by the average number
of accepted tokens per step, and the drafting la-
tency (Stern et al., 2018; Xia et al., 2023). How to
trade off high speculation accuracy and low draft-
ing latency presents a major challenge in this pro-
cess. In this section, we classify various drafting
strategies into two categories: independent draft-
ing (§5.1) and self-drafting (§5.2), and summarize
their formulations DRAFT (x≤t,Mp) in Table 1.

5.1 Independent Drafting

To strike a balance between speculation accuracy
and efficiency, SpecDec (Xia et al., 2023) first
proposed utilizing an independent model for draft-
ing. Specifically, it employed a specialized Non-
Autoregressive Transformer that drafts multiple to-
kens simultaneously per step. This model has a
deep-shallow encoder-decoder architecture to run
efficiently. Despite its strengths, SpecDec requires
training a draft model from scratch, which demands
an increased computational budget.

Considering the available models in existing
LLM series (e.g., OPT (Zhang et al., 2022) and
LLaMA (Touvron et al., 2023a,b)), a more straight-
forward and efficient approach is directly employ-
ing a small LM from the same series as the drafter

to accelerate the inference of its larger counter-
parts (Leviathan et al., 2023; Chen et al., 2023a;
Spector and Re, 2023; Sun et al., 2023; Chen et al.,
2023b). For instance, Leviathan et al. (2023) uti-
lized T5-small as the drafter, to accelerate the in-
ference of T5-XXL. These off-the-shelf small LMs
do not require additional training or any modifica-
tion on model architectures, facilitating the quick
adoption of Speculative Decoding. Moreover, since
models in the same series share tokenizers, pretrain-
ing corpora, and similar training processes, they
inherently have an alignment in prediction behav-
iors.

5.2 Self-Drafting
While leveraging an external draft model offers
considerable advantages, this approach necessitates
extra effort to either train or identify a draft model
that closely aligns with the target LLM. This chal-
lenge is intensified when no smaller counterparts
of the LLM are available, e.g., LLaMA-7B (Tou-
vron et al., 2023a,b). Furthermore, integrating two
distinct models within a single system introduces
additional computational complexity, particularly
in distributed settings (Cai et al., 2024).

To address the above issues, numerous studies
have suggested leveraging the target LLM itself
for efficient drafting (Stern et al., 2018; Santilli
et al., 2023; Hooper et al., 2023; Cai et al., 2024;
Fu et al., 2024; Du et al., 2024). Particularly, Block-
wise Decoding (Stern et al., 2018) and Medusa (Cai
et al., 2024) incorporated FFN heads atop the Trans-
former decoder, enabling the parallel token gener-
ation per step. Compared with external drafters,
these lightweight heads reduce extra computational
overhead and are friendly to distributed inference.
Another line of research has explored the potential
of early exiting and layer skipping within the target
LLM for drafting (Yang et al., 2023b; Zhang et al.,
2023a; Hooper et al., 2023). For instance, Yang
et al. (2023b) introduced additional subprocesses
that exit early during the current decoding step,
thereby initiating the drafting of future tokens in
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Methods VERIFY (x̃i, pi, qi) CORRECT (pc, qc) Representative Work

Greedy
Decoding x̃i = argmax qi xt+c ← argmax qc

Blockwise Decoding (Stern et al.,
2018), SpecDec (Xia et al., 2023)

Speculative
Sampling r < min

(
1, qi(x̃i)

pi(x̃i)

)
, r ∼ U [0, 1] xt+c ∼ norm(max (0, qc − pc))

Speculative Decoding (Leviathan
et al., 2023), SpS (Chen et al., 2023a)

Table 2: Summary of formulations for various verification strategies in Speculative Decoding.

advance. Similarly, Self-Speculative (Zhang et al.,
2023a) proposed to adaptively skip several interme-
diate layers during inference to draft efficiently.

In contrast to prior work that focused on extend-
ing model architectures or altering the inference
process, Santilli et al. (2023) introduced a sim-
ple drafting strategy that directly appends multiple
[PAD] tokens to the end of the input prompt to en-
able parallel generation. However, this approach
deviates from LLMs’ autoregressive pretraining
pattern, leading to suboptimal drafting quality. To
tackle this, Fu et al. (2024) proposed transforming
low-quality drafts into multiple n-grams to improve
the speculation accuracy; Monea et al. (2023) intro-
duced multiple learnable [LA] tokens and finetuned
these token embeddings on a small training dataset
to enhance the parallel decoding performance.

6 Verification

In each decoding step, the drafted tokens are ver-
ified in parallel to ensure the outputs align with
the target LLM. This process also determines the
number of tokens accepted per step, a vital factor
impacting the speedup. This section summarizes
various verification criteria VERIFY (x̃i, pi, qi) (as
shown in Table 2), encompassing those support-
ing greedy decoding (§6.1) and speculative sam-
pling (§6.2) in LLM inference. Besides, we in-
troduce token tree verification (§6.3), an effective
strategy to increase the token acceptance rate.

6.1 Greedy Decoding

Early attempts at Speculative Decoding focused on
the verification criterion supporting greedy decod-
ing, which guarantees that the outputs are exactly
the same as the greedy decoding results of the tar-
get LLM (Stern et al., 2019; Sun et al., 2021; Xia
et al., 2023). Formally, given the input sequence
x1, . . . , xt, the drafted tokens x̃1, . . . , x̃K , and
the computed probability distributions p1, . . . , pK ,
q1, . . . , qK as obtained from Eq. (2) and (3), respec-
tively, the verification criterion on the ith drafted

token is formulated as

x̃i = argmax qi, (4)

where i = 1, . . . ,K. The first position c that the
drafted token x̃c fails the verification denotes the
bifurcation position. The output token at this posi-
tion xt+c will be adjusted by the correction strategy,
which simply replaces the drafted token with the
LLM’s top-1 prediction:

xt+c ← argmax qc. (5)

The verification criterion of greedy decoding is
straightforward and clear. Thus, multiple subse-
quent studies have adopted this criterion to demon-
strate the efficacy of their methodologies (Santilli
et al., 2023; Yang et al., 2023b; Hooper et al., 2023;
Zhang et al., 2023a; Fu et al., 2024). However,
the strict matching requirement of this criterion of-
ten results in the rejection of high-quality drafted
tokens, simply because they differ from the top-1
predictions of the target LLM, thereby constraining
the speedup of the paradigm.

To tackle this problem, multiple studies have
proposed various approximate verification crite-
ria (Stern et al., 2018; Xia et al., 2023; Kim et al.,
2023). Compared with the lossless criterion, these
methods slightly relax the matching requirement
to trust the drafts more, leading to higher accep-
tance of drafted tokens. For instance, SpecDec (Xia
et al., 2023) only requires the drafted tokens to fall
in top-k candidates of the target LLM; BiLD (Kim
et al., 2023) proposed a rollback criterion that only
rejects drafted tokens when the number of consecu-
tive mismatch tokens exceeds a fixed threshold.

6.2 Speculative Sampling

Following Stern et al. (2019), subsequent work ex-
tended Speculative Decoding to support various
sampling methods (Leviathan et al., 2023; Chen
et al., 2023a), accelerating the target LLM’s in-
ference without changing its output distribution.
Formally, given the initial sequence x1, . . . , xt, the
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Methods Drafting Verification Target LLM Speedup
(reported)

Approach Alignment Tuning-free Greedy Sampling Token Tree

In
de

pe
nd

en
t-

D

SpecDec (Xia et al., 2023) Non-Auto LM Seq-KD ✗ ✓ ✗ ✗ Transformer-base (65M) 3.9× ∼ 5.1×
SpS (Chen et al., 2023a) Small LM - ✓ ✓ ✓ ✗ Chinchilla (70B) 1.9× ∼ 2.5×
SpecInfer (Miao et al., 2024) Boost-tuned LMs Col-BT ✗ ✓ ✓ ✓ LLaMA (30B-65B) 2.0× ∼ 2.4×
DistillSpec (Zhou et al., 2023) Small LM KD ✗ ✓ ✓ ✗ T5-XL (3B) -
Online Speculative (Liu et al., 2023) Small LM Online-KD ✗ ✓ ✓ ✗ Vicuna (7B) -
CS. Drafting (Chen et al., 2023b) Cascaded LMs - ✓ ✓ ✓ ✗ FLAN-T5-xxl (11B) -
REST (He et al., 2023) Context Retrieval - ✓ ✓ ✓ ✓ Vicuna (7B-13B) 1.6× ∼ 1.8×

Se
lf-

D

Blockwise Decoding (Stern et al., 2018) FFN Heads Seq-KD ✗ ✓ ✗ ✗ Transformer-big (213M) 1.7× ∼ 3.0×
Medusa (Cai et al., 2024) FFN Heads Seq-KD ✗ ✓ ✓ ✓ Vicuna (7B-13B) 2.2× ∼ 2.3×
PPD (Yang et al., 2023b) Early Exiting - ✗ ✓ ✗ ✗ Vicuna (13B) 1.1× ∼ 1.5×
Self-Speculative (Zhang et al., 2023a) Layer Skipping - ✓ ✓ ✓ ✗ LLaMA-2 (13B-70B) 1.4× ∼ 1.7×
Parallel Decoding (Santilli et al., 2023) Mask-Predict - ✓ ✓ ✗ ✗ MBart50 (610M) 1.0× ∼ 1.1×
Lookahead Decoding (Fu et al., 2024) Mask-P & N-grams - ✓ ✓ ✗ ✗ LLaMA-2 (7B-70B) 1.5× ∼ 2.3×
EAGLE (Li et al., 2024) Auto-regression Head KD ✗ ✓ ✓ ✓ Vicuna (7B-33B) 2.9× ∼ 3.1×

Table 3: Summary of Speculative Decoding methods. “Independent-D” and “Self-D” denote independent drafting
and self-drafting, respectively. “Greedy”, “Sampling”, and “Token Tree” denote whether the method supports greedy
decoding, speculative sampling, and token tree verification, respectively. We list the most representative target
LLMs for each method and the speedups in the original paper (if reported), which is obtained with a batch size of 1.

drafted tokens x̃1, . . . , x̃K and the computed dis-
tributions p1, . . . , pK , q1, . . . , qK , the verification
criterion on the ith drafted token is

r < min

(
1,

qi(x̃i)

pi(x̃i)

)
, r ∼ U [0, 1] , (6)

where r denotes a random number drawn from a
uniform distribution U [0, 1]; qi(x̃i) and pi(x̃i) are
the probability of x̃i according toMq andMp, re-
spectively; and i = 1, . . . ,K. In other words, this
criterion accepts the token x̃i if qi(x̃i) ≥ pi(x̃i),
and in case qi(x̃i) < pi(x̃i) it rejects the token with
probability 1− qi(x̃i)

pi(x̃i)
. The correction strategy re-

samples the output token at the bifurcation position
c from an adjusted distribution:

xt+c ∼ norm(max (0, qc − pc)). (7)

Leviathan et al. (2023) and Chen et al. (2023a)
have theoretically proved that this criterion main-
tains identical output distributions to the target
LLM. Thus, it has been widely adopted in subse-
quent research (Liu et al., 2023; Zhou et al., 2023;
Monea et al., 2023; Chen et al., 2023b). In addition
to the strict requirement, some work has also ex-
plored approximate strategies to improve the token
acceptance rate (Leviathan et al., 2023; Zhou et al.,
2023). For instance, Leviathan et al. (2023) pro-
posed multiplying pi(x̃i) in Eq. (6) by a lenience
parameter l ∈ [0, 1] to slightly relax the criterion.

6.3 Token Tree Verification
Contrary to prior verification strategies that focused
on a single draft sequence, SpecInfer (Miao et al.,
2024) proposed token tree verification, an effective
strategy enabling the target LLM to verify multi-
ple draft sequences in parallel. As illustrated in

Root
It

I the

a

very

be

like

am

will
✔

✔ ✔

✔ ✔

✔ ✔ ✔

I am like very

I

am

like

very

Figure 4: Illustration of the token tree sequences (left)
and tree attention mask (right). For simplicity, we only
visualize the attention mask of tokens in white colors.

Figure 4, this method first merges multiple candi-
date draft sequences into a token tree by sharing
prefixes. It then utilizes a specially designed tree
attention mask to facilitate the LLM verifying the
whole structure in parallel. Recent research has ex-
plored various approaches to obtain these candidate
draft sequences (Miao et al., 2024; Cai et al., 2024;
He et al., 2023; Li et al., 2024). For instance, Miao
et al. (2024) generated diverse draft sequences from
different boost-tuned LMs; Cai et al. (2024) con-
sidered the top-k predictions from each FFN head
to obtain multiple candidate sequences.

7 Alignment

As illustrated in Section 5, the speedup of Specula-
tive Decoding primarily depends on the speculation
accuracy, which in turn is influenced by the behav-
ior similarity between the drafter and the target
LLM. To enhance this, existing research has ex-
plored various knowledge distillation (KD) strate-
gies to align the drafter’s outputs with those of the
target LLM (Stern et al., 2018; Xia et al., 2023;
Miao et al., 2024; Liu et al., 2023; Kim et al., 2023;
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Zhou et al., 2023). Particularly, Blockwise Decod-
ing adopted sequence-level knowledge distillation
(Seq-KD) (Kim and Rush, 2016) for alignment,
which trained the drafter on the sentences gener-
ated by the target LLM. Miao et al. (2024) proposed
a collective boost-tuning (Col-BT) strategy, apply-
ing Seq-KD to finetune multiple small LMs on the
training data and utilizing their aggregated output
as drafts to improve the speculation accuracy.

Although Seq-KD is effective, it ignores the
probability distributions of the target LLM, leading
to performance degradation with sampling methods.
To rectify this, recent studies have explored other
KD strategies for Speculative Decoding (Zhou
et al., 2023; Liu et al., 2023). Notably, Distill-
Spec (Zhou et al., 2023) conducted a comprehen-
sive comparison of different KD strategies on Spec-
ulative Decoding across various downstream tasks.
Liu et al. (2023) proposed an online KD strategy
that dynamically aligns the drafter with the target
LLM on the fly using the query data.

We summarize the main features of existing
Speculative Decoding methods in Table 3, includ-
ing the drafter type or the drafting strategy, the
alignment approach, supported verification strate-
gies, and the reported speedup, etc.

8 Spec-Bench

With the rapid research progress in Speculative De-
coding, there is an increasing demand for compara-
tive analysis of leading methods. However, existing
approaches are tested using disparate benchmarks,
devices, and environments, making fair compar-
isons impractical. To address this gap, we intro-
duce Spec-Bench – a comprehensive benchmark
for Speculative Decoding covering diverse applica-
tion scenarios. Based on Spec-Bench, we present a
systematic comparison of open-source approaches
under third-party testing conditions. Experiments
were executed on the same device and testing envi-
ronment to ensure a fair comparison.

8.1 Benchmark Construction

To assess Speculative Decoding methods across
various scenarios, Spec-Bench encompasses six
distinct subtasks: multi-turn conversation, trans-
lation, summarization, question answering, math-
ematical reasoning, and retrieval-augmented gen-
eration. We composed Spec-Bench by randomly
selecting 80 instances from each of six widely
used datasets, including MT-bench (Zheng et al.,

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Multi-turn
Conversation

Translation

Summarization

Question
Answering

Mathematical
Reasoning

Retrieval-
augmented
Generation

EAGLE SpS Medusa
PLD REST Lookahead

Figure 5: Speedup comparison of various Speculative
Decoding methods on Spec-Bench with greedy settings
(T = 0). Evaluations were conducted on Vicuna-7B
with a batch size of 1. We present the mean speedup over
3 runs. The detailed results are shown in Appendix C.

2023), WMT14 DE-EN, CNN/Daily Mail (Nallap-
ati et al., 2016), Natural Questions (Kwiatkowski
et al., 2019), GSM8K (Cobbe et al., 2021), and
DPR (Karpukhin et al., 2020). For details on Spec-
Bench and the specific experimental setup, please
refer to Appendix B.

8.2 Comparative Evaluation

Our main evaluations were conducted on Vicuna-
7B at FP16 precision using a single consumer-
grade 3090 GPU4. As depicted in Figure 5, under
greedy settings, EAGLE (Li et al., 2024) achieves
the highest speedup ratio (1.8×∼2.4×) over autore-
gressive decoding across most subtasks, especially
in mathematical reasoning (with a∼2.4× speedup).
EAGLE’s success is mainly due to two factors: 1)
it reuses the KV cache of LLMs to predict drafted
tokens, substantially reducing the drafting compu-
tational overhead; 2) compared with Medusa (Cai
et al., 2024), EAGLE drafts in an autoregressive
way, providing more stable and accurate specula-
tion results. PLD (Saxena, 2023) excels in subtasks
with high similarities between input and output,
such as summarization (with a ∼2.4× speedup).
However, its performance diminishes in other sub-
tasks like translation and question answering, with
speedup ratios falling between 1.1×∼1.3×.

We also compare the speedups of Speculative
Decoding methods at different sampling tempera-
tures. As illustrated in Figure 6, EAGLE consis-

4For comparative analysis on a more powerful A100 GPU,
please refer to Appendix D.
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Figure 6: Speedup comparison of various methods on
Spec-Bench at different temperatures. The speedup
effect diminishes as the sampling temperature increases.

tently outperforms other methods across various
settings, achieving a speedup ratio ranging from
1.7× to 2.1×. Besides, it is observed that the ac-
celeration effect of all methods decreases with an
increase in sampling temperature. This is attributed
to the increased computational complexity of the
speculative sampling criterion at higher tempera-
tures, as revealed in prior research (Joao Gante,
2023; Spector and Re, 2023).

9 Challenges and Future Directions

How to trade off speculation accuracy and draft-
ing efficiency? As discussed in Sections 5, scal-
ing up the drafter can effectively enhance specu-
lation accuracy, yet it largely reduces the drafting
efficiency and even the overall speedup. Therefore,
it is essential to strike a balance between specula-
tion accuracy and drafting latency. Among existing
strategies, behavior alignment is a promising ap-
proach to address this issue, as it improves specula-
tion accuracy without increasing latency. However,
despite recent advancements (Miao et al., 2024;
Zhou et al., 2023; Liu et al., 2023), there is still
considerable room for improvement to align the
drafter with the target LLM. For example, given
that the drafted tokens after the bifurcation posi-
tion are all discarded, one potential direction could
involve encouraging the drafter to prioritize the
generation quality of early-position tokens. Be-
yond alignment, other factors such as the quality of
drafting (Fu et al., 2024) and the determination of
speculation length (Su et al., 2023) also influence
speculation accuracy and merit further exploration.

How to apply Speculative Decoding in batched
inference scenarios? Currently, only a few Spec-
ulative Decoding implementations have supported
batched inference, such as EAGLE5 and SpS6.

5https://github.com/SafeAILab/EAGLE
6https://github.com/lucidrains/

speculative-decoding

However, batched inference is a crucial technique
for efficiently managing user inputs in LLM real-
time services. The primary challenges in batched
Speculative Decoding lie in two aspects: (1) Each
decoded sentence in Speculative Decoding varies
in decoding steps due to different speculation accu-
racy. Thus, the inference latency of a batch depends
on the slowest sample in the batch; (2) The extra
computational complexity introduced by Specu-
lative Decoding, especially in sampling settings,
increases with larger batch sizes. How to maintain
a promising speedup of Speculative Decoding in
batched inference, and combine it with advanced
techniques such as continuous batching (Yu et al.,
2022), warrants further investigation.

How to integrate Speculative Decoding with
other leading techniques? As a general decod-
ing paradigm, Speculative Decoding has already
demonstrated its potential in conjunction with other
advanced techniques (Yang et al., 2023a; Zhang
et al., 2023b; Li et al., 2023). For instance, Yuan
et al. (2023) combined Speculative Decoding with
Contrastive Decoding (Li et al., 2023), which not
only speeds up the inference but also substan-
tially improves the generation quality. In addi-
tion to the acceleration of text-only LLMs, ap-
plying Speculative Decoding in multimodal infer-
ence, such as image synthesis, text-to-speech syn-
thesis, and video generation, is also an intriguing
and valuable direction for future research. Another
promising research direction is to integrate Specu-
lative Decoding with other efficient methods such
as vLLM (Kwon et al., 2023), Non-Auregressive
Generation (Du et al., 2021, 2022) and Flash-
Attention (Dao et al., 2022; Dao, 2023), further
boosting the inference efficiency of LLM services.

10 Conclusion

This paper presents a comprehensive survey of
Speculative Decoding, including the evolution of
this promising paradigm, its formal definition and
formulation, a systematic categorization of exist-
ing methods, and an in-depth review of leading
techniques. Moreover, we introduce Spec-Bench,
an extensive evaluation benchmark for Speculative
Decoding methods, and present a comparative eval-
uation of prominent methods. To our knowledge,
this is the first survey dedicated to Speculative De-
coding. Our aim for this paper is to clarify the
current research landscape and provide insights
into future research directions.
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Limitations

This paper provides a thorough examination and
categorization of current methodologies and emerg-
ing trends in Speculative Decoding. We have also
conducted a comparative analysis of leading open-
source methods to offer researchers deeper insights
into the advantages and limitations of different
models. Beyond Speculative Decoding, we ac-
knowledge additional efficient NLP strategies such
as vLLM (Kwon et al., 2023) and continuous batch-
ing (Yu et al., 2022). In the future, we intend to
expand the discussion to encompass the integration
of Speculative Decoding with these advanced tech-
niques. Moreover, due to the absence of an avail-
able implementation of batched Speculative De-
coding, our evaluations could not cover this aspect.
We plan to undertake subsequent experiments to as-
sess the speedup of Speculative Decoding methods
across various batch sizes.
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Appendix

A Applications

In addition to serving as a general paradigm, recent
work has revealed that some variants of Specula-
tive Decoding demonstrate extraordinary effective-
ness in specific tasks. Furthermore, other research
has applied this paradigm to address latency issues
unique to certain application scenarios, achieving
inference acceleration. Below, we will provide a
detailed introduction to these promising works.

Recent studies have highlighted Speculative De-
coding is particularly well suited for tasks where
model inputs and outputs are highly similar (Sun
et al., 2021; Ge et al., 2022; Yang et al., 2023a),
such as Grammatical Error Correction (Wang et al.,
2021; Bryant et al., 2023) and Retrieval-augmented
Generation (Cai et al., 2022). These methods intro-
duced a specialized form of Speculative Decoding,
where the initial user input or the retrieved con-
text is directly employed as drafts. For instance,
SAD (Sun et al., 2021), an early attempt at Specu-
lative Decoding on Grammatical Error Correction,
utilized the input sentence with grammatical er-
rors as a draft and leveraged the LLM to verify the
whole sentence in parallel, achieving a 9×∼12×
speedup. Similarly, LLMA (Yang et al., 2023a)
selected text spans from the reference as drafts,
demonstrating a 2×∼3× speedup across various
practical application scenarios including Retrieval-
augmented Generation, Cache-assisted Generation,
and Multi-turn Conversations.

Beyond these works, RaLMSpec (Zhang et al.,
2023b) adopted Speculative Decoding to acceler-
ate retrieval-augmented language models (RaLMs).
It pointed out that the main latency bottleneck of
iterative RaLMs is the frequent retrieval from a
vast knowledge base. To accelerate inference, this
method proposed to maintain a local cache for spec-
ulative retrieval, achieving around 2× speedup with
identical model outputs. LLMCad (Xu et al., 2023)
applied Speculative Decoding to on-device LLM in-
ference. Concretely, it proposed to generate drafts
with a smaller real-time LM that can be hosted in
device memory, and only utilize the target LLM
for parallel verification. This approach effectively
reduces repetitive releasing and loading of model
weights, achieving a 9.3× speedup compared to
existing inference engines.

B Experimental Details

B.1 Details of Spec-Bench

To assess the acceleration performance of Specu-
lative Decoding methods in various scenarios, we
developed Spec-Bench, a comprehensive bench-
mark encompassing six distinct tasks. Spec-Bench
integrates MT-bench (Zheng et al., 2023), a multi-
turn conversation benchmark previously adopted
in research (Cai et al., 2024; Li et al., 2024), to
provide a basis for comparison with earlier studies.
Additionally, it includes two input-guided tasks:
summarization and retrieval-augmented generation
(RAG), both of which exhibit a significant over-
lap between the input prompts and the target out-
puts. We selected CNN/Daily Mail (Nallapati et al.,
2016) and Natural Questions (Kwiatkowski et al.,
2019) as the dataset for these two tasks, respec-
tively. Specifically, in the RAG subtask, the top-5
documents retrieved from DPR (Karpukhin et al.,
2020) were concatenated with each question to con-
struct the input prompt.

Moreover, Spec-Bench incorporates three fur-
ther subtasks – translation, question answering, and
mathematical reasoning – to provide a thorough
evaluation of Speculative Decoding’s speedup ca-
pabilities in diverse contexts. We utilized WMT14
DE-EN, Natural Questions, and GSM8K (Cobbe
et al., 2021) as the primary datasets for these tasks,
respectively. We randomly selected 80 instances
from each subtask’s test set for evaluation. The
detailed composition is summarized in Table 4.

Subtask Dataset #Samples

Multi-turn Conversation MT-bench 80
Retrieval-aug. Generation Natural Questions 80
Summarization CNN/Daily Mail 80
Translation WMT14 DE-EN 80
Question Answering Natural Questions 80
Mathematical Reasoning GSM8K 80

Overall - 480

Table 4: Detailed Composition of Spec-Bench. Spec-
Bench includes 6 distinct subtasks to encompass diverse
application scenarios.

B.2 Implementation Details

We have selected six representative Speculative De-
coding methods for our comparative analysis on
Spec-Bench. These methods are open-source and
free of bugs. Specifically, SpS (Chen et al., 2023a)
stands as the pioneering work in this field, utilizing
a smaller LM from the same model series as the
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Models Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation #tokens/s Avg.
T

=
0

Autoregressive Decoding 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 36.74±0.31 1.00×
Lookahead (Fu et al., 2024) 1.15×±0.01 0.98×±0.02 1.07×±0.02 1.06×±0.02 1.32×±0.02 1.03×±0.02 40.64±0.26 1.11×
REST (He et al., 2023) 1.49×±0.02 1.23×±0.04 1.26×±0.03 1.39×±0.04 1.34×±0.03 1.71×±0.05 51.12±0.78 1.39×
PLD (Saxena, 2023) 1.63×±0.02 1.11×±0.02 2.41×±0.04 1.27×±0.03 1.70×±0.03 1.66×±0.04 59.42±0.55 1.62×
SpS (Leviathan et al., 2023) 1.92×±0.04 1.33×±0.02 1.93×±0.01 1.81×±0.04 1.84×±0.00 1.76×±0.01 64.85±0.70 1.77×
Medusa (Cai et al., 2024) 1.65×±0.03 1.41×±0.02 1.33×±0.01 1.44×±0.03 1.69×±0.01 1.29×±0.02 54.30±0.34 1.48×
EAGLE (Li et al., 2024) 2.35×±0.03 1.79×±0.03 2.04×±0.02 1.96×±0.03 2.44×±0.02 1.80×±0.03 76.30±0.36 2.08×

T
=

1 Autoregressive Decoding 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 36.24±0.43 1.00×
REST (He et al., 2023) 1.43×±0.01 1.19×±0.02 1.24×±0.00 1.36×±0.02 1.34×±0.02 1.61×±0.02 49.04±0.30 1.35×
SpS (Leviathan et al., 2023) 1.55×±0.01 1.20×±0.01 1.57×±0.01 1.54×±0.03 1.56×±0.03 1.52×±0.02 53.94±0.43 1.49×
EAGLE (Li et al., 2024) 1.79×±0.02 1.61×±0.03 1.74×±0.03 1.66×±0.04 1.95×±0.06 1.63×±0.03 62.88±0.54 1.74×

Table 5: Speedup comparison of various Speculative Decoding methods on Spec-Bench. The results were obtained
using Vicuna-7B-v1.3 at FP16 precision. Evaluations were conducted on a single NVIDIA 3090 GPU with a batch
size of 1. We report the mean speedup ratio over 3 different runs. We show the best results in boldface.

drafter to accelerate LLM inference. Medusa (Cai
et al., 2024) and EAGLE (Li et al., 2024) integrate
additional lightweight heads into the target LLM
to facilitate efficient drafting. Lookahead (Fu
et al., 2024) introduces multiple special tokens to
the end of the input prompt for parallel drafting
and transforms the drafts into n-gram candidates.
PLD (Saxena, 2023) is the code implementation7

of LLMA (Yang et al., 2023a), which selects text
spans from the input as drafts. REST (He et al.,
2023) retrieves relevant drafts from text corpora
based on the input prompt.

We conducted our experimental evaluations us-
ing the Vicuna-v1.3 model series (Zheng et al.,
2023). For SpS, we employed the Huggingface im-
plementation8 and utilized the vicuna-68m-v1.3
model provided by Yang et al. (2024) as the drafter.
We followed the default parameters of Lookahead9

and PLD for our evaluations. The main experi-
ments were conducted using Pytorch 2.0.1 with
a single consumer-grade NVIDIA GeForce RTX
3090 GPU (24GB) of 12 CPU cores under CUDA
11.8. Further analysis was performed on a more
powerful NVIDIA A100 GPU (80GB) of 64 CPU
cores under CUDA 11.4.

C Details of Main Experimental Results

The detailed results of our main analysis are shown
in Table 5, including the experimental settings of
greedy decoding (T = 0) and speculative sampling
(T = 1). The findings indicate that EAGLE (Li
et al., 2024) excels across various Spec-Bench sub-
tasks, achieving an overall speedup ranging from

7https://github.com/apoorvumang/
prompt-lookup-decoding

8https://huggingface.co/blog/
assisted-generation

9https://github.com/hao-ai-lab/
LookaheadDecoding
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Figure 7: Speedup comparison of various methods on
Spec-Bench with different computational devices.

1.6× to 2.4×. PLD (Saxena, 2023) shows notable
efficiency in scenarios where the input and out-
put have a significant overlap. For instance, the
speedup ratio of PLD increases from 1.27× in
the question answering subtask to 1.66× in the
retrieval-augmented generation subtask, highlight-
ing its effectiveness when the input includes rele-
vant documents. Notably, most methods achieve
a suboptimal speedup on the translation subtask.
We suspect that it is due to the potential lack of
multilingual data in the pretraining corpora.

D Further Analysis on A100

This section presents a comprehensive analysis of
leading Speculative Decoding methods on Spec-
Bench, utilizing a single NVIDIA A100 GPU. The
discussion delves into the influence of computa-
tional hardware, model scale, and computational
precision on the performance of Speculative Decod-
ing. All experiments were performed on the same
device and environment to ensure fair comparison.

D.1 Computational Devices

We first discuss the impact of evolving computa-
tional devices on Speculative Decoding. As de-
picted in Figure 7, the acceleration effect of most
Speculative Decoding methods is notably enhanced
when employed on high-performance GPUs, such
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Models Multi-turn
Conversation Translation Summarization Question

Answering
Mathematical

Reasoning
Retrieval-aug.

Generation #tokens/s Avg.
Vi

cu
na

-7
B

Autoregressive Decoding 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 40.24±0.30 1.00×
Lookahead (Fu et al., 2024) 1.95×±0.01 1.61×±0.05 1.63×±0.02 1.73×±0.04 2.16×±0.04 1.50×±0.00 71.20±1.30 1.77×
REST (He et al., 2023) 1.72×±0.06 1.38×±0.05 1.46×±0.04 1.80×±0.04 1.31×±0.03 1.87×±0.06 63.81±1.00 1.59×
PLD (Saxena, 2023) 1.67×±0.03 1.06×±0.03 2.59×±0.06 1.16×±0.03 1.63×±0.03 1.83×±0.02 66.61±1.15 1.66×
SpS (Leviathan et al., 2023) 1.78×±0.03 1.19×±0.02 1.78×±0.03 1.58×±0.03 1.54×±0.02 1.69×±0.02 64.07±0.41 1.59×
Medusa (Cai et al., 2024) 2.79×±0.07 2.36×±0.07 2.14×±0.04 2.36×±0.08 2.77×±0.08 2.05×±0.01 97.27±2.04 2.42×
EAGLE (Li et al., 2024) 2.75×±0.05 2.08×±0.05 2.32×±0.05 2.23×±0.03 2.79×±0.04 2.15×±0.01 96.23±1.15 2.39×

Vi
cu

na
-1

3B

Autoregressive Decoding 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 31.38±0.22 1.00×
Lookahead (Fu et al., 2024) 1.57×±0.01 1.34×±0.01 1.39×±0.00 1.40×±0.01 1.82×±0.02 1.32×±0.01 46.42±0.12 1.48×
REST (He et al., 2023) 1.68×±0.01 1.31×±0.05 1.51×±0.01 1.67×±0.02 1.29×±0.00 1.96×±0.01 48.89±0.26 1.56×
PLD (Saxena, 2023) 1.53×±0.02 1.08×±0.01 2.25×±0.00 1.09×±0.02 1.65×±0.03 1.72×±0.00 48.42±0.17 1.54×
SpS (Leviathan et al., 2023) 1.73×±0.02 1.25×±0.02 1.76×±0.00 1.53×±0.01 1.68×±0.00 1.73×±0.00 50.48±0.28 1.61×
Medusa (Cai et al., 2024) 2.39×±0.02 2.12×±0.02 1.92×±0.00 2.07×±0.02 2.49×±0.02 1.88×±0.00 67.64±0.07 2.16×
EAGLE (Li et al., 2024) 2.88×±0.05 2.24×±0.04 2.52×±0.03 2.24×±0.04 2.90×±0.03 2.34×±0.01 79.35±1.18 2.53×

Vi
cu

na
-3

3B

Autoregressive Decoding 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 1.00×±0.00 16.34±0.01 1.00×
Lookahead (Fu et al., 2024) 1.46×±0.00 1.21×±0.00 1.32×±0.00 1.29×±0.00 1.71×±0.00 1.28×±0.00 22.58±0.08 1.38×
REST (He et al., 2023) 1.71×±0.01 1.39×±0.00 1.57×±0.00 1.69×±0.01 1.34×±0.01 1.89×±0.00 25.98±0.07 1.59×
PLD (Saxena, 2023) 1.45×±0.00 1.06×±0.00 1.98×±0.00 1.07×±0.00 1.54×±0.00 1.43×±0.00 23.07±0.01 1.41×
SpS (Leviathan et al., 2023) 1.79×±0.00 1.31×±0.00 1.80×±0.00 1.57×±0.00 1.73×±0.00 1.69×±0.00 26.89±0.03 1.65×
Medusa (Cai et al., 2024) 2.22×±0.00 1.95×±0.00 1.85×±0.00 1.87×±0.01 2.32×±0.01 1.84×±0.00 32.92±0.06 2.01×
EAGLE (Li et al., 2024) 2.81×±0.00 2.14×±0.00 2.53×±0.00 2.19×±0.00 3.01×±0.00 2.31×±0.00 40.91±0.03 2.50×

Table 6: Speedup comparison of Speculative Decoding methods across various model scales on Spec-Bench. The
results were obtained using Vicuna-v1.3 at FP16 precision with greedy settings (T = 0). Evaluations were
conducted on a single NVIDIA A100 GPU with a batch size of 1. We report the mean speedup over 3 different runs.
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Figure 8: Speedup comparison of various Speculative
Decoding methods on a single A100 GPU with greedy
settings (T = 0). Evaluations were conducted on Spec-
Bench using Vicuna-7B at FP16 precision.

as NVIDIA A100s. This enhancement is primar-
ily due to the increased availability of idle com-
putational resources on more advanced computa-
tional devices, which Speculative Decoding can
leverage to accelerate inference processes. Among
the methods evaluated, Medusa (Cai et al., 2024)
and Lookahead (Fu et al., 2024) demonstrate the
most significant improvements. Specifically, the
speedup ratio for Medusa escalates from 1.48× to
2.42×, and for Lookahead, it rises from 1.11× to
1.77×. This finding underscores that Speculative
Decoding methods will benefit more from evolving
computational hardware, such as H100 GPUs.
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Figure 9: Speedup comparison of various methods on
Spec-Bench at different model scales.

We illustrate the comparison of various Specu-
lative Decoding methods evaluated with a single
A100 GPU in Figure 8. The detailed experimental
results are shown in Table 6. The results indicate
that Medusa (Cai et al., 2024) and EAGLE (Li et al.,
2024) excel in this experimental setting, achieving
an overall speedup of 2.4×. These two methods
perform particularly well on the multi-turn conver-
sation and mathematical reasoning subtasks, with
a ∼2.8× speedup.

D.2 Model Scale

We present the speedup comparison of Speculative
Decoding methods across various model scales in
Figure 9. The detailed experimental results are
shown in Table 6. Among all the evaluated meth-
ods, EAGLE (Li et al., 2024) maintains a high
speedup ratio over autoregressive decoding across
all model scales, achieving a speedup ratio rang-
ing from 2.4× to 2.5×. While Medusa (Cai et al.,
2024) demonstrates superior acceleration perfor-
mance on Vicuna-7B, its speedup ratio degrades
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Figure 10: Speedup comparison of various methods on
Spec-Bench with different computational precision.

from 2.4× to 2.0× as the model scale increases.

D.3 Computational Precision
It is noteworthy that most Speculative Decoding ap-
proaches are predominantly evaluated using FP16
precision (Fu et al., 2024; Cai et al., 2024; Li et al.,
2024; He et al., 2023). However, it is critical to un-
derscore that the outputs generated by Speculative
Decoding in FP16 precision may not consistently
align with those derived from autoregressive decod-
ing. This divergence stems from the accumulation
of floating-point errors inherent in FP16 computa-
tions, which can result in discrepancies between
the outputs of the two decoding methods, particu-
larly in the context of longer sequences. In FP32
precision, the outputs of Speculative Decoding are
guaranteed to be exactly the same as autoregressive
decoding.

We compare the speedup performance of Specu-
lative Decoding methods with FP16/FP32 precision
in Figure 10. The experimental results reveal a no-
ticeable reduction in speedup for all methods under
FP32 precision. Specifically, PLD (Saxena, 2023)
achieves merely 1.01× speedup in FP32 precision,
and the acceleration effect of EAGLE (Li et al.,
2024) also diminishes, with its speedup falling
from 2.39× to 1.74×. To furnish the research com-
munity with a comprehensive understanding of the
acceleration impact, we advocate for future stud-
ies to report speedup metrics across both precision
settings.

7671


