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Abstract
Metaphor interpretation is a difficult task in
natural language understanding. The develop-
ment of relevant techniques in this domain is
slow, mostly because of the lack of large an-
notated datasets and effective pre-trained lan-
guage models (PLMs) for metaphor learning.
Thus, we propose a large annotated dataset
and a PLM for the metaphor interpretation
task. Our foundation model is based on a
novel anomalous language modeling (ALM)
method, which we benchmark with compara-
ble PLM baselines on the new dataset, finding
that it largely improves model performance on
metaphor identification and interpretation.

1 Introduction

A metaphor is defined as using one (a Single-
Word Expression, SWE) or several words (a Multi-
Word Expression, MWE) to represent a different
meaning, rather than its literal meaning (Lagerwerf
and Meijers, 2008). Interpreting the meanings of
metaphors in contexts is particularly challenging
for machines (Stowe et al., 2022). There are two im-
portant tasks in linguistic metaphor processing, i.e.,
metaphor identification and interpretation. The for-
mer task is normally defined as a classification task,
detecting metaphors on a sentence level (Heintz
et al., 2013), a word-pair level (Ge et al., 2022),
or a token level (Stowe et al., 2019). The latter
task is normally defined as a property extraction
task (Su et al., 2020), a paraphrasing task (Mao
et al., 2018), or an explanation pairing task (Mao
et al., 2022). Token-level metaphor identification,
and paraphrasing-based metaphor interpretation are
more supportive for natural language processing
(NLP) downstream tasks, because metaphors can
be paraphrased into their literal counterparts with-
out breaking the coherence and general syntax of
the original sentences, e.g., “I don’t buy1 your story”
vs “I don’t believe your story”.

1Italics denote metaphors.

Machines can directly use paraphrased se-
quences to improve metaphor understanding in
downstream tasks. Steen et al. (2010) have devel-
oped the largest token-level metaphor identification
dataset, VU Amsterdam Metaphor Corpus (VMC).
Many previous metaphor identification models
were developed upon it (Choi et al., 2021; Mao
and Li, 2021; Li et al., 2023a,b), advancing the task
significantly. In contrast, the progress of metaphor
interpretation has been falling behind. This is likely
because of the lack of a large paraphrasing-based
metaphor interpretation dataset and an effective
pre-trained language model (PLM) for the learning
of metaphor interpretation. We are motivated to de-
velop a metaphor interpretation-orientated dataset,
VU Amsterdam Metaphor Corpus with Paraphrases
(VMC-P)2, and a new PLM with a novel anomalous
language modeling (ALM)3 pre-training paradigm.

We aim to develop a dataset for training end-to-
end (E2E) metaphor interpretation systems. We
believe that a good metaphor paraphrase dataset
should contain sufficient reliable training data;
Metaphors in the dataset should be used in a
manner similar to everyday language. Compared
to the latest metaphor interpretation dataset (IM-
PLI) (Stowe et al., 2022) (to the best of our knowl-
edge, it may be also the largest) which contains 920
manually paraphrased metaphors and idioms and
17,027 automatically paired paraphrases, our VMC-
P dataset has more manually annotated metaphor
paraphrases, accounting for 11,880 units, covering
both SWEs and MWEs. Besides, each sentence
in IMPLI only has a paraphrase for a single target
metaphor, which is dissimilar to the real-world dis-
tribution. In contrast, the sentences in our dataset
can have multiple metaphors and corresponding
paraphrases (2.2 metaphor units per metaphorical
sentence on average).

2
https://huggingface.co/datasets/RuiMao1988/VMC-P

3
https://huggingface.co/RuiMao1988/ALM

9891

https://huggingface.co/datasets/RuiMao1988/VMC-P
https://huggingface.co/RuiMao1988/ALM


In real-world texts, it is common for a sentence
to have multiple metaphors (see the example in
Figure 4). Thus, our dataset is closer to real-world
scenarios. There is another metaphor paraphrase
dataset (Bizzoni and Lappin, 2018), while it just
contains 200 gold paraphrases. Our proposed pre-
training paradigm, ALM, is metaphor processing-
tailored and linguistics-informed, compared to cur-
rent masked word prediction (MWP)-based PLMs,
e.g., BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), language modeling-based PLMs, e.g.,
GPTs (Radford et al., 2018, 2019; Brown et al.,
2020), and sequence-to-sequence-based PLMs,
e.g., T5 (Raffel et al., 2020). ALM is motivated
by the fact that metaphors do not take their lit-
eral meanings in contexts. We hypothesize that
the literal meanings of metaphoric words are likely
contextually anomalous. For example, given “my
car drinks gasoline”, literally, neither a car can
drink, nor can gasoline be drinkable. Wilks (1975,
1978) explained this as Selectional Preference Vi-
olation (SPV) – metaphors violate the selectional
preference of their contexts. We hypothesize that
a randomly replaced word also likely violates the
selectional preference of its context. Thus, we can
develop a pre-training corpus with randomly re-
placed words to simulate the SPV of metaphors.

ALM aims to detect anomalous replacements
and retrieve original words to simulate metaphor
identification and interpretation tasks, respectively.
The pre-training corpus is free of human annota-
tion as we can automatically replace an SWE/MWE
with a random one, achieving a large pre-training
corpus with many anomalies. We use contrastive
learning to simulate a human Metaphor Identifica-
tion Procedure (MIP) (see Appendix B, Pragglejaz,
2007): A metaphor is identified based on the seman-
tic contrast between its contextual and basic mean-
ings. Contrastive learning of positive and hard neg-
ative samples also helps ALM to learn the bound-
ary between them, which is an important human
knowledge acquisition process (NASEM, 2018).

We re-train RoBERTa-large with pre-processed
WIKIPEDIA that contains hard anomalous SWEs
and MWEs. We compare the re-trained model,
also termed ALM, with parameter size-comparable
PLMs, e.g., large BERT, RoBERTa, medium GPT2,
and T5-base, finding that ALM exceeds the best
PLM by 3.20% and 3.60% averaged F1 in metaphor
identification and E2E interpretation tasks, based
on VMC-P dataset. The fine-tuned ALM for
metaphor processing is termed MetaPro 2.0.

We hope the preliminary success of our pre-
training paradigm in a small PLM may inspire
future large language model (LLM) development,
although our model may not be able to exceed them
in the same fine-tuning setups. Our contribution
is twofold: (1) We propose a new dataset for train-
ing E2E metaphor interpretation systems. To our
knowledge, this is the largest manually developed,
token-level metaphor paraphrase dataset. (2) We
propose a PLM with a novel ALM paradigm for
metaphor interpretation, which outperforms previ-
ous PLMs with similar parameter sizes.

2 Related Work

Metaphor identification is a well-studied area,
because of rich annotated data resources (Birke and
Sarkar, 2006; Steen et al., 2010; Mohammad et al.,
2016; Xu et al., 2022). Currently, the token-level
metaphor identification task is likely formulated as
a sequence tagging task (Stowe et al., 2019; Chen
et al., 2021; Li et al., 2021), using PLMs, e.g.,
BERT and RoBERTa. Thus, an effective PLM is
important for the success of metaphor detection.
Metaphor interpretation is underdeveloped. Su
et al. (2020) interpreted metaphors by extracting
properties that were shared by source and tar-
get domains. Bizzoni and Lappin (2018) paired
metaphoric sentences with handwritten paraphrases
on the sentence-level. Mao et al. (2018) para-
phrased metaphors on the token level without test-
ing MWEs. Mao et al. (2022) proposed an E2E
model for identifying and interpreting metaphoric
SWEs and MWEs. The SWE interpretation was
given by the original RoBERTa-based MWP with-
out fine-tuning, due to the lack of labeled data.
They introduced a metaphoric MWE dictionary to
explain a metaphor via a clause after an original
sentence. Mao et al. (2023b) integrated a concept
mapping method, based on metaphor and its para-
phrase (Mao et al., 2022), showing the utility of
such a metaphor processing paradigm in cogni-
tive analysis (Han et al., 2022; Mao et al., 2023a,
2024b). However, Mao et al. (2022) have some
limitations including gaps between the probability
distributions of the raw RoBERTa MWP and the
distributions of metaphor paraphrases in contexts.
Metaphor interpretation datasets were built
for tasks such as definition-pairing (Zayed et al.,
2020), sentence-level paraphrases (Bizzoni and
Lappin, 2018), and natural language inference
(NLI) testing (constitution-level) (Stowe et al.,
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2022; Chakrabarty et al., 2022). The definition-
pairing-based dataset includes metaphor definitions
from dictionaries, which are independent of con-
texts. Unlike sentence-level interpretation datasets
that paraphrase the meaning of a metaphoric
sentence as a whole, finer-grained interpretation
datasets (Stowe et al., 2022; Chakrabarty et al.,
2022) paraphrase metaphoric SWEs and MWEs
within contexts, and does not break up the general
syntactical structures of original sentences, because
the literal context words are not changed after para-
phrasing. Thus, finer-grained interpretation likely
yields more context-consistent paraphrases and re-
duces the uncertainty of the learning for machines.
Since Stowe et al. (2022); Chakrabarty et al. (2022)
aimed to study figurative NLI, each target sentence
contains just an in-context SWE/MWE paraphrase,
which does not link well with everyday language
where a sentence can have multiple metaphors. Be-
sides, these datasets include clear-cut figurative
examples for NLI testing, thus, they may be sub-
optimal for training a metaphor processing model
for paraphrasing real-world texts (Shutova, 2015).
PLMs are critical for metaphor identification and
interpretation. Researchers developed different pre-
training tasks and architectures to achieve con-
textualized representations for input sequences,
e.g., MWP tasks (BERT and RoBERTa), language
modeling tasks (GPT family), and sequence-to-
sequence learning tasks (T5). These PLMs were
trained for general learning purposes, whereas the
pre-training task setups were not tailored by the
linguistic intuition of metaphors. For example, lan-
guage modeling and sequence-to-sequence learn-
ing methods did not take bi-directional contexts
into account. MWP methods used a special token
“[MASK]” to replace one or several original tokens
to learn their representations from bi-directional
contexts, whereas, MWP ignored the semantics
of the original masked-out words, simply learning
from their contexts. These setups are sub-optimal
for the learning of metaphor processing because
metaphors provide necessary semantic informa-
tion in the context for their interpretation; both
the forward and backward contexts help to identify
metaphors and interpret their intended meanings.

3 VMC-P Dataset Development

We aim to develop a metaphor interpretation dataset
that helps to yield E2E systems for real-world appli-
cation scenarios. We define the interpretation task

as metaphoric SWE and MWE paraphrasing (token-
level interpretation). Our dataset contains 10,716
sequences, where 50.12% of them are non-literal.
We have paraphrased 11,880 metaphor units (SWEs
and MWEs). The detailed statistics and an example
of our dataset can be viewed in Appendix C.

We source data from VMC, as it is the largest
all-word annotated metaphor identification dataset.
The VMC data were sourced from the everyday
language with academic, fiction, news, and con-
versation genres. We focus on labeling open-class
metaphors as they deliver richer semantic informa-
tion. Their paraphrases will benefit more down-
stream tasks. If a metaphoric MWE unit includes
words with other Parts-of-Speech (PoS), we para-
phrase the MWE as a whole. Metaphor identi-
fication serves interpretation in our dataset. If a
metaphor cannot be paraphrased within its context
without breaking the precision and conciseness of
language, it is not labeled as a metaphor. We cancel
8,503 (40.2%) original metaphor labels from VMC,
including 6,895 (32.6%) closed-class metaphors.

Metaphor interpretation is subjective and cre-
ative (Indurkhya, 2007), which is the key annota-
tion challenge. To improve labeling consistency,
we took the following measures: First, we em-
ployed an English-speaking expert with a linguistic
education background to annotate the full dataset4.
Thus, the only annotator can generate consistent
paraphrases for metaphors5. Second, we used
WordNet (Fellbaum, 1998) hypernyms and syn-
onyms as annotation references6. We developed
a dictionary (D) that allows a user to query hy-
pernyms and synonyms of semantic units. The
annotator was asked to choose the most appropri-
ate paraphrase lemma with the same PoS as the
original metaphor from D. If a suitable option was
not available, the annotator then wrote a paraphrase
by his/her own understanding. The references from
the dictionary help the annotator generate consis-
tent paraphrases. Besides, using the dictionary as a
knowledge base is computation-friendly.

4The Singaporean annotator and evaluators noticed the task
is a part-time job for NLP research, paying $9 per hour (local
part-time rate is $9: https://www.mom.gov.sg/employment-
practices/progressive-wage-model/local-qualifying-salary).
They were asked to take a break every 30 minutes.

5Introducing multi-annotators may lead to increased vari-
ability in our annotation task, making it more difficult to es-
tablish definitive ground truth. Thus, we use an annotate-then-
evaluate process. The rationality is discussed in Appendix A.

6When it comes to the annotation and machine learning of
non-English metaphors, one can use BabelNet (Navigli and
Ponzetto, 2012) as a structured resource of synonyms.
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3.1 Metaphor interpretation annotation

The annotator was trained with MIP (see Ap-
pendix B) first. After achieving at least 90% correct
metaphoric paraphrases (including correctly identi-
fying metaphors) out of 50 instances, the annotator
started to annotate the paraphrases in VMC-P.

First, the annotator would read a text from VMC,
and understand the overall meaning. Then, the an-
notator would interpret the contextual meaning and
basic meaning of a given metaphor in the text. If the
contextual meaning contrasts with the basic mean-
ing, and the contextual meaning can be understood
in a comparable way, the annotator would generate
a paraphrase whose basic meaning can represent
the contextual meaning of the metaphor as the gold
paraphrase. The generated paraphrase should be
coherent with the context and use the same word
form as the original metaphor. If the contextual and
basic meanings are not contrastive, or there is no
better paraphrase to represent the metaphor, the an-
notator would mute the original metaphoricity label.
Such a case likely appears in dead metaphors, e.g.,
“falling in love”. Cognitively, the metaphoricity
of “falling in” is given by the fact that the source
and target concepts are from different domains,
e.g., LOVE IS SPACE. However, it is hard to find
a paraphrase whose basic meaning represents the
contextual meaning of “falling in” and keep the
language concise and precise. Paraphrasing these
metaphors is sub-optimal for using metaphor pro-
cessing for downstream task pre-processing, so we
did not paraphrase them. We also canceled the
metaphoricity of scientific words, e.g., “sausage in-
stability” and “electric field”, because these words
have been widely recognized and accepted by the
public. We cannot find better paraphrases for them.

The annotator was advised to generate a single-
word replacement as a paraphrase for easier com-
puting. If a single-word replacement loses the emo-
tional connotation of the original metaphor, an ad-
ditional modifier is added, e.g., paraphrasing a ver-
bal metaphor with an adverb-verb phrase (“Adam
snarled” → “Adam angrily said”). If a metaphor
is an MWE, e.g., idioms and prepositional phrases,
the annotator would consider the consecutive words
in the text as a whole for paraphrasing (“shaken a
large fist” → “demonstrated the anger”; “filtering
out” → “separating”). A simile would be para-
phrased as another simile, while the paraphrase
would be closer to the intended meaning of the
original simile (“like a snake” → “like a bad per-

son”). The annotator was advised to sparingly gen-
erate WordNet uncovered paraphrases to maintain
annotation consistency. Any newly generated para-
phrases were automatically added to the reference
dictionary D for later references.

After obtaining the gold paraphrase (positive
sample) of a metaphor, the corresponding negative
samples are also included in our dataset, which
are the WordNet hypernyms and synonyms of the
original metaphor that were not selected by the an-
notator. They are sub-optimal paraphrases for the
annotator. Negative samples of WordNet uncov-
ered SWEs or MWEs were sourced from Google
by searching their synonyms. Negative samples
also include annotator-generated paraphrases for
other metaphors with the same lemma as the cur-
rent metaphor, while the paraphrases differ from
the current gold paraphrase. Thus, one can use
those samples in contrastive learning and evalu-
ate a metaphor interpretation model by measuring
if the model can select the gold paraphrase from
the collection of positive and negative samples.
Given a PoS, if the number of negative samples
is lower than three, negative samples will addition-
ally include the hypernyms and synonyms of the
metaphor from other PoS, so that we can collect suf-
ficient hard negative samples for contrastive learn-
ing. The negative samples are hard samples as they
are semantically similar to the original metaphor in
different senses, and most of them have the same
PoS and word forms as the original metaphor.

3.2 Quality control

We invited two native English speakers from Sin-
gapore to evaluate all the expert-annotated 11,880
gold paraphrases. They evaluated if a given para-
phrase of a metaphor is acceptable in the context by
the annotation criteria. The average accuracy voted
by the two raters is 99.79%. 99.64% paraphrases
were rated as “acceptable” by both raters (agreed
by the three participants); 0.30% were “acceptable”
for one of the raters (agreed by the two partici-
pants); 0.07% were “unacceptable” for both raters.
We re-evaluated the paraphrases disagreed by both
raters and corrected the corresponding errors.

4 ALM Pre-training and Fine-tuning

A new PLM is also proposed in this work, based on
a novel ALM paradigm. ALM-based pre-training is
inspired by two linguistic findings about metaphors:
(1) the literal meaning of a metaphor violates the
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selectional preference of its context (SPV); (2) a
metaphor can be identified if there is a semantic
contrast between its contextual and basic meanings
(MIP). Finding 1 motivates us to develop a pre-
training corpus with anomalous word replacements
that violate the selectional preference of contexts.
Then, a PLM learns to detect anomalies. Finding 2
motivates us to use contrastive learning to learn the
semantic contrast between the real meaning of a
word and its other meanings. Then, the PLM learns
to retrieve the original words by pulling the repre-
sentation of a replaced word close to the represen-
tation of the original word (real meaning) and push-
ing the representation of the replaced word distant
to the representations of its other synonyms (other
meanings). We use the synonym of an original
word instead of [MASK] to represent the anomaly,
because we assume that the synonym replacement
has necessary semantic information in the con-
text, which is similar to a metaphor. The above
setups simulate metaphor identification and inter-
pretation tasks, respectively. Thus, a PLM can learn
more useful task-specific knowledge for computa-
tional metaphor processing via the ALM paradigm,
as opposed to the MWP, language modeling, and
sequence-to-sequence learning paradigms.

To support both metaphor identification and
interpretation tasks, our pre-training employs a
multi-task learning (MTL) framework to learn the
anomaly detection task (a sequence tagging task
corresponding to metaphor identification in fine-
tuning) and contrastive learning task (a word clas-
sification task corresponding to metaphor interpre-
tation in fine-tuning) together.

4.1 Pre-training corpus preparation
We use English WIKIPEDIA as the pre-training data
source. We aim to develop a pre-training corpus
that simulates the SPV of metaphors and supports
the learning of semantic contrasts between the real
meaning of a word and its other meanings within a
context. WIKIPEDIA is used because it likely uses
literal expressions to introduce scientific knowl-
edge with formal language. It was also used by
other PLMs (Devlin et al., 2019; Liu et al., 2019).
Thus, aside from implementing a novel pre-training
paradigm, we did not incorporate additional cor-
pora to enhance the pre-training outcomes.

We hypothesize that the meaning of a word can
be symbolically represented by one of its synonyms
and hypernyms under a specific sense. For exam-
ple, the verb “buy” has several senses in WordNet,

e.g., “obtaining by purchase”, “accepting as true”,
etc. Given the first sense, “buy” equals “purchase”,
e.g., “I will buy/purchase a new laptop”. Given the
second sense, “buy” equals “believe”, e.g., “I can’t
buy/believe this story”. Thus, the sense of “buy”
should be closer to the sense of “believe” than “pur-
chase” in the context of “I can’t buy your story”.
Given “I can’t believe your story”, “believe” sat-
isfies the selectional preference in the context. If
we replace “believe” with another word, the word
likely violates the selectional preference.

We randomly select a synonym of an original
word from WordNet to replace the original word,
where the replacement is defined as an anomalous
word in a context7. Synonyms are mutual, e.g.,
“buy” is the synonym of “believe”, and vice versa.
Then, in the later fine-tuning stage, the real mean-
ing of a metaphor can also be retrieved from one of
its candidates8. The original word is considered as
the positive meaning of the anomalous word. Next,
we sample n (a hyperparameter) synonyms of the
anomalous word, excluding the original word, as
negative meanings.

Our pre-training task is to detect the anomalous
word and retrieve the original word (the real mean-
ing; a positive sample) out of other synonyms of the
anomalous word (other meanings; negative sam-
ples). We randomly select 35% open-class words
of a sentence to replace them to develop a pre-
training sequence. The criterion of selecting the
original word for replacing is that the frequency of
the lemma of a selected word is above the median
within WIKIPEDIA so that we can collect sufficient
positive samples with different contexts for con-
trastive learning. The anomalous words, positive
and negative words can also be MWEs because
WordNet contains MWEs. If there is no word sat-
isfying the criterion, the sentence is not included
in the pre-training corpus. To obtain hard negative
samples and anomalous words, their word forms
are aligned to the original word. The word form

7For non-English pre-training, one can also use word em-
beddings for semantically similar replacement acquisition.

8We include synonyms and hypernyms as candidates for
VMC-P dataset development and fine-tuning, because hyper-
nyms also have similar meanings as their covered words, al-
though the hypernym meanings are relatively more abstract
than synonyms. More candidates (using both synonyms and
hypernyms) yield more annotation references and negative
samples for fine-tuning. We do not include hypernyms as
negative samples for pre-training, because we can achieve
sufficient pre-training data with synonyms only. Furthermore,
synonyms may be harder negative samples than hypernyms
for more effective contrastive learning-based pre-training.

9895



𝐂𝐋𝐒 	𝒘𝟏	𝒘𝟐…𝒂𝒊
𝒘𝒊 …𝒂𝒋

𝒘𝒋 …	𝒘𝒍	 𝐒𝐄𝐏 	𝒓𝟏	 𝐒𝐄𝐏 	𝒓𝟐	 𝑺𝑬𝑷 … 𝑺𝑬𝑷 	𝒘𝒊	 𝐒𝐄𝐏 … 𝐒𝐄𝐏 	𝒓𝒏	[𝐒𝐄𝐏]

ALM

𝒉𝒄𝒍𝒔					𝒉𝟏					𝒉𝟐 			…			𝒉𝒊 		…		𝒉𝒋 	…		𝒉𝒍					𝒉𝒔𝒆𝒑																									𝒉,𝟏 			…			𝒉,𝟐 			…			𝒉,𝒊 			…			𝒉,𝒏 			…

Linear

… … … … …

…………… … …

… … …

𝐎							𝐎							𝐎				 … 				𝐁		 … 		𝐁			 … 			𝐎							𝐎
… … …

<s> </s> </s> </s> </s> </s> </s></s>

Figure 1: The MTL framework of our model for ALM-
based pre-training and fine-tuning. O denotes a negative
label, e.g., the label of a non-anomalous word or a literal
word; B denotes a positive label, e.g., the label of an
anomalous word or a metaphoric word. h is a hidden
state of ALM outputs. a denotes an anomalous word
or a metaphor. The red wi in the prompt denotes an
original word or a gold paraphrase, corresponding to
awi
i . r denotes a negative sample, corresponding to awi

i .

alignment method is from Mao et al. (2022). To
obtain the frequency statistics and the word forms
of anomalous words and negative samples, we run
PoS tagging and lemmatization on full WIKIPEDIA.

4.2 ALM-based pre-training

Our pre-training is upon RoBERTa-large9 and
Byte-Pair Encoding (BPE) tokenizer (Radford
et al., 2019), due to its effectiveness in metaphor de-
tection (Leong et al., 2020). Given a text sequence
with m anomalous words (a), l original words (w),
and n randomly sampled negative words (r) of
awi
i , a pre-training input (s) is organized as s =

<s>w1w2...a
wi
i ...a

wj

j ...wl</s>r1</s>r2</s>...</s>
wi</s>...</s>rn</s>, where awi

i denotes the word
or MWE at Position i is anomalous, corresponding
to the original word or MWE wi. <s> and </s>
are special tokens. An input sequence can have
multiple anomalous words and a prompt. We
define the sequence after the first </s> as a prompt
(the blue input tokens in Figure 1), including a
positive sample (wi) and n negative samples of
awi
i . The position of wi is random in the prompt.
An MTL framework is used for pre-training (Fig-

ure 1). For each training step, ALM learns to detect
all anomalous words via a sequence tagging task
and retrieve the original word (wi) of an anomalous
word (awi

i ) out of n + 1 candidates via a prompt
and contrastive learning. Learning the next original
word (wj) of the sequence is in a different train-
ing step with another prompt. awi

i is an anchor,
pulling its representation close to the representa-
tion of wi and pushing its representation distant
to the representations of negative samples via con-

9
https://huggingface.co/FacebookAI/roberta-large

trastive learning. Thus, the model can learn the
semantic contrast between the real meaning and
other meanings within a context. If awi

i , wi or r
has multi-tokens, we average the hidden states (h
in Figure 1) of all the tokens for contrastive learn-
ing. Upon ALM, we use a linear layer to identify
all anomalous words. We use a cross-entropy loss
to learn the sequence tagging task (L(seq))

L(seq) = CrossEntropy(Ŷ (seq), Y (seq)).

The contrastive learning loss (L(con)) is from He
et al. (2020) with an Euclidean distance measure

L(con)=−
∑

i

log
exp(E(hi, h

′
i)/τ)∑

j∈{1,...,n} exp(E(hi, h′j)/τ)
,

where E(·) denotes Euclidean distance. h and h′

denote the hidden states of anomalous sentences
and prompts from the ALM output, respectively. τ
denotes a temperature hyperparameter. The overall
loss (L) is the weighted sum of the learning tasks

L = αL(seq) + βL(con),

where α and β are hyperparameters for pre-training
ALM on WIKIPEDIA.

Compared to MWP-based pre-training, the ad-
vantages of ALM are summarized as follows: (1)
ALM incorporates the semantics of an anomalous
word (a synonym of the original word) to infer the
original word, while MWP uses a unified [MASK]
to predict the original word, although both meth-
ods use bi-directional contexts. (2) The contrastive
learning allows ALM to take the semantics of the
inferred positive and negative samples into account
via an additional input prompt, while MWP con-
siders the original word (a positive sample) as an
output label. Taking the semantics of the predicted
label words into account is helpful for learning
MWEs because different word combinations may
have similar or different meanings, e.g., “take”,
“take in”, “take in charge” and “take in water”.
(3) The predicted probability distributions of con-
trastive learning narrow down to the scope of lim-
ited candidates in a prompt, while MWP probabil-
ity distributions cover the whole vocabulary. The
complexity of ALM reasoning is greatly reduced.

4.3 Fine-tuning and testing
During the fine-tuning stage, ALM learns to iden-
tify metaphors (a sequence tagging task) and re-
trieve the gold paraphrase of a metaphor out of
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ALM
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… … … … …

…………… … …

(a) Metaphor identification module.

(b) Metaphor paraphrase module.

</s><s>

</s></s><s> </s> </s> </s> </s> </s>

Figure 2: The STL framework of MetaPro 2.0.

k+1 candidates (a contrastive learning-based word
classification task). Then, in Figure 1, awi

i is a
metaphor whose gold paraphrase is wi. r is a nega-
tive sample. We select k negative samples for each
fine-tuning step from the reference dictionary D.
We examine single-task learning (STL) and MTL
frameworks, respectively, because STL is the most
popular framework for metaphor identification (Ge
et al., 2023); MTL is our pre-training framework.

For STL (see Figure 2), we use two ALMs to
learn metaphor identification and paraphrase tasks,
separately, with separated loss functions (a cross-
entropy loss L(seq) for sequential metaphor iden-
tification, and a contrastive learning loss L(con)

for metaphor paraphrase detection). The metaphor
identification module learns a sequence without
a prompt, while the metaphor paraphrase mod-
ule learns a sequence with a prompt and a target
metaphor. For MTL, we use ALM to learn both
tasks together, which is similar to the pre-training
framework and input sequence structure in Figure 1.
The MTL overall loss for fine-tuning is defined as

L′ = α′L(seq) + β′L(con).

During the MTL testing stage, we first feed a
text with a prompt containing k + 1 <pad> tokens
for querying a metaphor identification output. The
<pad> tokens are separated by </s>. Next, we lem-
matize an identified metaphor and sample its k + 1
candidate paraphrases from the reference dictio-
nary D. The word forms of the selected candidates
are aligned with the target metaphor by universal
dependencies (Nivre et al., 2016), then fed into
the model via a prompt. Since the k + 1 sampled
words may be less than the total number of can-
didates of the target metaphor in D, we sample
multiple times and compare them until finding the
winner that is the most similar to the metaphor in
vector space among all the candidates. The winner

is the predicted paraphrase of the target metaphor.
If multiple metaphors are identified, the model pre-
dicts multiple times until each metaphor has a para-
phrase. Testing the STL models is similar. The
only difference is we directly feed testing data into
the metaphor identification model without concate-
nating a prompt to query an identification output.

5 Experiments

Baselines. ALM has 355M parameters. We bench-
mark ALM to other parameter size-comparable
PLMs, e.g., BERT-large-cased (340M), RoBERTa-
large (355M), GPT2-medium (345M), and T5-base
(220M), based on the MTL and STL frameworks
in Figures 1 and 2. Baseline hyperparameters are
tuned by the results of the validation set.

State-of-the-art metaphor processing models are
not our direct baselines, because a) their technical
novelties are irrelevant to pre-training paradigms;
b) they are not foundation models for computa-
tional metaphor processing; c) our work focuses on
E2E metaphor interpretation rather than metaphor
identification; d) the only E2E metaphor para-
phrase baseline (Mao et al., 2022) cannot para-
phrase metaphoric MWEs in context and was not
fine-tuned with metaphor interpretation datasets10,
whereas these are the advancement of the proposed
ALM and VMC-P. LLMs are also not comparable
to ALM because of their huge amount of parame-
ters, significant training, and inference costs. How-
ever, due to the absence of evaluating LLMs on
E2E metaphor interpretation, we test GPT-3.5/4 on
VMC-P in Appendix E.
Pre-training Setups. ALM is pre-trained on 4
NVIDIA RTX A6000 GPUs for 21 days. The batch
size is 512. The number (n) of negative samples is
5. We use Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 1e-5. The contrastive learn-
ing loss temperature (τ ) is 0.05. The pre-training
loss weights (α and β) are 10 and 1, respectively.
Fine-tuning Setups. ALM is fine-tuned on an
NVIDIA V100 GPU. The batch size is 4. The num-
ber (k) of negative samples is 3. We use Adam
optimizer with a learning rate of 1e-5. The con-
trastive learning loss temperature (τ ) is 0.05. The
fine-tuning loss weights (α′ and β′) are 10 and 1,
respectively. Fine-tuning early stops by 5 epochs,
examined on the validation set. The reported re-
sults are averaged over 5 runs.

10The fine-tuned metaphor paraphrase module of Mao et al.
(2022) equals to the RoBERTa-large baseline.
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Setup Task Model P R F1

STL

Identification

BERT 66.98 64.85 65.88
RoBERTa 69.87 65.98 67.83
GPT2 52.17 63.21 57.14
T5 62.70 61.25 61.94
MetaPro2.0 72.41 68.25 70.23*

Interpretation
(gold idnt.
label-based)

BERT-G 26.70 100 42.13
RoBERTa-G 28.02 100 43.76
GPT2-G 24.51 100 39.35
T5-G 25.87 100 41.09
MetaPro2.0-G 30.28 100 46.46*

Interpretation
(predicted
idnt. label
-based)

BERT-P 23.26 66.91 34.51
RoBERTa-P 24.45 65.72 35.62
GPT2-P 19.18 63.84 29.46
T5-P 21.94 58.73 31.92
MetaPro2.0-P 27.63 69.73 39.55*

MTL

Identification

BERT 65.72 65.40 65.53
RoBERTa 67.25 65.23 66.20
GPT2 57.45 57.94 57.68
T5 63.49 63.02 63.24
MetaPro2.0 70.28 70.17 70.20*

Interpretation
(gold idnt.
label-based)

BERT-G 26.11 100 41.39
RoBERTa-G 26.94 100 42.43
GPT2-G 23.56 100 38.11
T5-G 24.49 100 39.32
MetaPro2.0-G 29.02 100 44.97*

Interpretation
(predicted
idnt. label
-based)

BERT-P 22.57 63.69 33.30
RoBERTa-P 24.18 63.72 35.02
GPT2-P 19.47 50.27 28.05
T5-P 21.41 57.76 31.21
MetaPro2.0-P 26.49 69.11 38.28*

Table 1: Overall performance, evaluated on a unit level.
Precision (P), Recall (R) and F1 scores are averaged
over 5 runs separately. * denotes the improvement is
statistically significant (p < 0.001) on a two-tailed test.

Label schema. We use BIO schema for metaphor
identification labels. B denotes the beginning token
of a BPE tokenized metaphor (SWE or MWE); I de-
notes inside the metaphor; O denotes a literal. We
use F1 as the main measure for identification and
interpretation tasks (see Appendix D for evaluation
metrics and computational details).

6 Results

We evaluate fine-tuned ALM, termed MetaPro 2.0,
with STL and MTL, based on VMC-P. More se-
quence tagging evaluation tasks can be viewed in
Appendix F. We show the metaphor interpretation
results with gold (G) and predicted (P) identifica-
tion labels. Since we aim to offer useful resources
for E2E metaphor interpretation, metaphor interpre-
tation performance with predicted metaphor identi-
fication labels is the primary concern.

6.1 Overall performance

As shown in Table 1, MetaPro 2.0-P achieves
large gains in F1 scores over the strongest base-
line (RoBERTa-P) on the E2E metaphor interpre-
tation task with predicted metaphor identification
labels, under STL (+3.93%) and MTL (+3.26%)
setups. This indicates the effectiveness of ALM
pre-training paradigm, because we did not use addi-

PoS Model STL MTL
Accid Accin Accid Accin

VB

BERT 86.47 23.29 86.69 24.76
RoBERTa 87.94 26.56 87.12 27.28
GPT2 81.91 23.10 79.42 20.41
T5 85.05 25.66 84.85 22.82
MetaPro2.0 89.58 29.35 89.33 28.58

NN

BERT 91.23 29.99 91.24 28.19
RoBERTa 92.14 30.78 91.93 31.30
GPT2 89.76 26.14 88.47 26.72
T5 91.18 28.42 91.36 26.36
MetaPro2.0 92.73 32.00 93.21 31.72

ADJ

BERT 84.33 32.07 86.11 28.90
RoBERTa 86.19 35.50 85.49 35.01
GPT2 82.27 26.41 79.94 26.78
T5 84.81 30.74 85.28 30.30
MetaPro2.0 87.89 39.68 87.45 37.71

ADV

BERT 94.69 28.30 94.80 29.56
RoBERTa 95.00 35.22 94.15 33.10
GPT2 93.71 26.75 92.79 23.57
T5 93.77 24.19 94.24 30.65
MetaPro2.0 95.55 35.28 95.39 33.21

Table 2: Breakdown analysis on a token level and the
testing set. Metaphor interpretation (in.) is based on
gold metaphor identification (id.) labels.

tional pre-training corpora compared to RoBERTa.
Compared to non-MWP-based PLMs, the improve-
ments over GPT2 (STL: +10.09; MTL: +10.23%)
and T5 (STL: 7.63%; MTL: 7.07%) are larger, in-
dicating the utility of bi-directional context learn-
ing in our pre-training. The improvements under
the E2E setup can also be attributed to the accu-
racy gains of MetaPro 2.0 in metaphor identifica-
tion and gold identification label-based metaphor
interpretation. For example, MetaPro 2.0 outper-
forms RoBERTa by 2.4% (STL) and 4.0% (MTL)
in metaphor identification. MetaPro 2.0-G outper-
forms RoBERTa-G by 2.70% (STL) and 2.54%
(MTL) in gold identification label-based metaphor
interpretation. STL models often outperform MTL
models due to the absence of sophisticated en-
coders and soft-parameter sharing mechanisms that
optimize the learning of task-specific features in
MTL. Finally, there is a huge performance gap be-
tween metaphor identification and interpretation
tasks across all the models, showing that the latter
task deserves more research efforts in computa-
tional metaphor processing.

6.2 Breakdown analysis

We compare different models by open-class break-
downs in Table 2, finding that MetaPro 2.0 exceeds
the baselines across all setups on both detection
and interpretation tasks. Additionally, 36.88% and
36.11% of metaphoric MWEs can be correctly para-
phrased by MetaPro2.0-STL-G and MetaPro2.0-
MTL-G, respectively, exceeding BERT-G (STL:
28.46%; MTL: 26.21%), RoBERTa-G (STL:
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Measure & Task No. of candidates in a prompt
4 6 8 10

Train.
min./ep.

STL 119.21 84.98 58.93 46.22
MTL 95.92 75.43 52.21 45.70

Valid.
min.

STL 118.19 49.32 38.23 26.32
MTL 92.32 44.25 37.22 23.20

Valid.
F1
score

Idnt.-STL 72.87 73.29 71.72 70.07
Intp.-STL 56.80 55.90 56.00 55.92
Idnt.-MTL 73.04 70.98 70.75 71.14
Intp.-MTL 55.45 54.32 54.82 55.78

Table 3: MetaPro 2.0 hyperparameter analysis on the
unit level. Metaphor interpretation uses gold metaphor
identification labels. Min./ep. means minutes per epoch.

33.21%; MTL: 34.63%), GPT2-G (STL: 24.64%;
MTL: 24.64%), and T5-G (STL: 28.93%; MTL:
26.07%). This supports our argued advantage of
ALM that taking the semantics of the predicted pos-
itive and negative samples into account is helpful
for the learning of MWEs.

6.3 Hyperparameter analysis

As shown in Table 3, including more candi-
dates largely reduces training and inferring time
costs. However, more candidates decrease F1 for
metaphor identification and interpretation some-
what, because the longer prompt may impact the
semantic representations of the original sentence.
More candidates in a prompt also result in lengthy
inputs. The longest input sequence of MetaPro
2.0 is 512 tokens after BPE. In practice, one can
balance the sequence lengths and model utilities.
Using an additional light classifier to recall more
likely paraphrase candidates out of the full candi-
date list, then retrieving the best paraphrase via the
main model may reduce inference time costs.

7 Conclusion

We proposed a novel PLM, ALM, for computa-
tional metaphor processing. We also created a large
metaphor interpretation dataset (VMC-P) focusing
on token-level metaphor paraphrases. By fine-
tuning ALM and other parameter-size comparable
PLMs with VMC-P, we found that fine-tuned ALM
(MetaPro 2.0) outperforms the baselines in both
metaphor identification and interpretation tasks.

According to the survey of Ge et al. (2023),
extensive research works in metaphor processing
focused on metaphor identification. Although it
is a foundation task, the advancement of relevant
tasks, e.g., linguistic and conceptual metaphor un-
derstandings have more practical values in down-
stream applications, e.g., enhancing machine un-
derstanding of metaphorical language (Mao et al.,

2018, 2022), analyzing cognitive patterns of sub-
jects through conceptual metaphor understand-
ing (Han et al., 2022; Mao et al., 2023a, 2024b),
and fostering language creativity (Yu and Wan,
2019; Stowe et al., 2021). Meeting the demands
of these downstream applications necessitates the
development of more functional metaphor process-
ing systems beyond mere metaphor identification.
Accurately paraphrasing metaphors plays a crucial
role in bridging the gap between linguistic and con-
ceptual metaphor interpretation, thereby providing
an interpretable layer for text analysis (Wu et al.,
2023, 2024; Cambria et al., 2024). We hope that
the proposed ALM and VMC-P can inspire further
research in this area and make a substantial contri-
bution to the broader expansion of computational
metaphor processing into downstream tasks.

Limitations

MetaPro 2.0 is a metaphor processing system, fine-
tuned upon ALM and VMC-P dataset. It can iden-
tify and interpret English metaphors in a text pre-
processing fashion. However, the current version
does not support other languages besides English.
Next, we did not consider metaphoric dependency
between instances when we annotated the dataset
(an instance is a short text with one or several sen-
tences). The identification and interpretation of
metaphors in one instance are independent of the
metaphors from other instances. Thus, our system
trained with the dataset is incapable of process-
ing document-level dependent metaphors. Next,
MetaPro 2.0 is a knowledge-based neurosymbolic
system. If the paraphrase of a metaphor is out of the
coverage of our developed knowledge base (the ref-
erence dictionary D), MetaPro 2.0 cannot yield an
accurate interpretation for it. Finally, MetaPro 2.0
cannot directly process very long texts, e.g., more
than 512 tokens after BPE (the maximum of 512
tokens includes the tokens of the concatenated
prompt). In practice, we will segment very long
texts first, then feed them into our system.

Ethics Statement

This article follows the ACL Code of Ethics. The
annotations are based on a public dataset that does
not contain private data. The tool we developed is a
data preprocessing technique for improving human
and machine understanding of metaphorical lan-
guage. To the best of our knowledge, there are no
foreseeable potential risks of using this technique.
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A Rationality of the Annotation Method

Metaphor interpretation is a highly subjective and
creative process, influenced by individuals’ intu-
itions and personal experiences (Indurkhya, 2007).
Despite this, there is a lack of theoretical research
providing practical guidance for humans to para-
phrase metaphors with minimal divergence. Con-
sequently, achieving independent metaphor para-
phrase annotations with high-level agreement is
challenging, as there can be multiple valid interpre-
tations for the same metaphor. For instance, the
metaphorical expression “she devoured his novels”,
could be paraphrased as “she avidly enjoyed his
novels” or “she eagerly read his novels”.

Considering the purpose of developing VMC-P

dataset is to train E2E metaphor processing sys-
tems that can be used in real-world applications (as
we argued at the beginning of Section 3), our anno-
tation method involves an annotate-then-evaluate
process. Initially, an expert annotates metaphor
paraphrases, which are then evaluated by two inde-
pendent raters to determine their acceptability.

This annotation process is rational for sev-
eral reasons: (1) An E2E metaphor processing
system trained on our VMC-P dataset is sup-
posed to produce human-acceptable metaphor para-
phrases, making the dataset unnecessary to exhaus-
tively gather all possible paraphrases of the same
metaphor from human annotators. (2) Due to the
subjective nature of metaphor interpretation, obtain-
ing majority-agreed paraphrases from independent
annotations is challenging, as the selected annota-
tors may not represent the preference of a wider
population. Different annotation groups likely pro-
duce varying majority-agreed paraphrases in this
domain. (3) Utilizing an expert with profound lin-
guistic knowledge and responsibility to annotate
metaphor paraphrases can ensure the annotation ac-
curacy. A single expert annotator can provide more
consistent annotations across various tasks com-
pared to distributing the tasks among multiple an-
notators in a crowd-sourcing approach. Consistent
annotations are particularly beneficial for machine
learning models in understanding data patterns. (4)
The high agreement rate among the two indepen-
dent raters (see Section 3.2) can further validate the
expert’s annotations, ensuring the dataset’s quality.

Therefore, the annotate-then-evaluate process
enhances the utility (e.g., obtaining more human-
annotated data within specific cost constraints) and
reliability (scientific validation by external raters)

Metaphor Identification Procedure:

1. Read the entire text–discourse to establish a gen-
eral understanding of the meaning.

2. Determine the lexical units in the text–discourse.

3. (a) For each lexical unit in the text, establish
its meaning in context, that is, how it ap-
plies to an entity, relation, or attribute in
the situation evoked by the text (contextual
meaning). Take into account what comes
before and after the lexical unit.

(b) For each lexical unit, determine if it has a
more basic contemporary meaning in other
contexts than the one in the given context.
For our purposes, basic meanings tend to be

• More concrete; what they evoke is eas-
ier to imagine, see, hear, feel, smell,
and taste.

• Related to bodily action.
• More precise (as opposed to vague).
• Historically older.

Basic meanings are not necessarily the most
frequent meanings of the lexical unit.

(c) If the lexical unit has a more basic cur-
rent–contemporary meaning in other con-
texts than the given context, decide whether
the contextual meaning contrasts with the
basic meaning but can be understood in
comparison with it.

4. If yes, mark the lexical unit as metaphorical.

Figure 3: Metaphor Identification Procedure.

of the developed VMC-P dataset for training E2E
metaphor processing systems.

B Metaphor Identification Procedure

The content (Metaphor Identification Procedure,
MIP) in Figure 3 is from the work of Praggle-
jaz (2007), which is part of the material we used
to train the annotator and raters for the metaphor
interpretation annotation task. It is also one of
the linguistic foundations that inspired the design
of our anomalous language modeling-based pre-
training paradigm and the following fine-tuning.
Specifically, the contextual meaning of an original
word/a metaphor contrasts with the basic meaning
of the anomalous lexical substitution/metaphor in
pre-training/fine-tuning. Thus, (1) both anomalous
words and metaphors are distinguishable from con-
text words; (2) the contextual meanings of anoma-
lous words/metaphors should be closer to the mean-
ings of original words/literal counterparts of the
metaphors and further from other candidates that
represent different meanings to make sense of a

9903



sentence in semantic space.

C Dataset Information

{‘ID’: ‘trn_976’,

‘doc_ID’: ‘ac2-fragment06’,

‘sent_ID’: ‘1465’,

‘sent’: “‘ Do n’t they realise they ’re playing with

political dynamite ?”,

‘metaphor_index_list’: [[7, 8], [10]],

‘pos_list’: [‘underestimating’, ‘risks’],

‘neg_list’: [[‘exploiting’, ‘trifling’, ..., ‘taking on’,

‘making for’], [‘explosive compound’, ‘explode’]],

‘lemma’: “‘ do not they realise they be play with political

dynamite ?”,

‘pos_tags’: [“‘’, ‘VB’, ‘RB’, ‘PRP’, ‘VB’, ‘PRP’, ‘VBP’,

‘VBG’, ‘IN’, ‘JJ’, ‘NN’, ‘.’],

‘open_class’: [‘O’, ‘VERB’, ‘ADV’, ‘O’, ‘VERB’, ‘O’,

‘VERB’, ‘VERB’, ‘O’, ‘ADJ’, ‘NOUN’, ‘O’],

‘genre’: ‘fiction’}

Figure 4: An example of data in our VMC-P dataset.

In line with VMC dataset11, our VMC-P dataset
is also licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License12.
An example of data in our dataset can be viewed
in Figure 4. ‘ID’ is the index of an instance in our
dataset. The ‘doc_ID’ and ‘sent_ID’ are inherited
from the original VMC dataset. ‘sent’ is the original
sentence with tokenization. ‘metaphor_index_list’
denotes the position of a metaphor. If a sub-
list has more than 1 element, it means the words
corresponding to the indices within the sub-list
are metaphoric MWEs, e.g., “play with” at In-
dices 7 and 8, respectively. ‘pos_list’ denotes
the gold paraphrases. ‘neg_list’ denotes negative
samples. The elements of ‘metaphor_index_list’,
‘pos_list’, and ‘neg_list’ are aligned by indices.
‘lemma’ and ‘pos_tags’ were generated by spaCy
‘en_core_web_sm’ (Honnibal et al., 2020), indi-
cating the lemmatized sequence and the PoS se-
quence, respectively. The PoS tags follow the Uni-
versal Dependencies scheme (Nivre et al., 2016).
‘open_class’ denotes if a token at the same position
is a verb, a noun, an adjective, an adverb, or others
(O). In order to ensure that future evaluations can
be maintained at the same statistical standard, we
tokenize the original sentences and include the PoS

11
https://www.vismet.org/metcor/license.html

12
https://creativecommons.org/licenses/by-sa/3.0/

labels. ‘genre’ denotes the genre of the text, which
is inherited from the original VMC dataset, includ-
ing academic texts, news, fiction and conversation.

The distributions of sequence lengths can be
viewed in Figure 5. The detailed statistics of our
VMC-P dataset can be viewed in Table 4.
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Figure 5: The distributions of sequence lengths.

Train Valid Test All
# seq 6,653 2,063 2,000 10,716
Min len 1 1 1 1
Max len 110 86 107 110
Avg len 17 15 23 18
% LS 59.10% 56.62% 12.25% 49.88%
% news 15.84% 14.69% 37.40% 19.64%
% fictions 20.94% 31.60% 29.85% 24.65%
% academic 22.34% 14.01% 18.80% 20.07%
% conversation 40.88% 39.70% 13.95% 35.63%
# tokens 111,718 30,170 46,129 188,017
% LT 94.67% 94.07% 91.02% 93.68%
% MT 5.33% 5.93% 8.98% 6.32%
# MU 5,950 1,789 4,141 11,880
% VB 44.22% 44.77% 43.71% 44.12%
% NN 34.30% 31.64% 34.15% 33.85%
% ADJ 14.52% 15.71% 14.75% 14.78%
% ADV 2.25% 2.57% 2.49% 2.38%
% MWE 4.64% 5.31% 4.71% 4.76%
% other 0.07% 0.00% 0.19% 0.10%
Avg # C/MU 31.47 32.30 30.23 31.16

Table 4: Dataset statistics. # seq denotes the number
of sequences. Min len denotes the minimum length of
the sequences, while max len and avg len denote the
maximum and the average sequence lengths, respec-
tively. % LS denotes the percentage of literal sequences
among all sequences. # tokens denotes the number of
tokens. % LT denotes the percentage of literal tokens
among all tokens, while % MT denotes the percentage
of metaphoric tokens. # MU denotes the number of
metaphoric units. A metaphor unit is a metaphoric SWE
or a metaphoric MWE. % VB denotes the percentage
of verbs among all metaphoric units. NN, ADJ, ADV,
and MWE denote nouns, adjectives, adverbs, and multi-
word expressions, respectively. Avg # C/MU denotes
the average number of candidates (positive and negative
samples) per metaphoric unit.
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D Evaluation Metrics

We use F1 scores as the main metric for metaphor
identification and interpretation overall evaluation.

F1 =
2× precision× recall

precision+ recall
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

The metaphor identification overall evaluation is
evaluated on the unit level. True Positive (TP) is de-
fined as a predicted metaphoric unit whose ground
truth label is also metaphoric. A metaphor unit is
a metaphoric SWE or MWE. A metaphoric MWE
prediction is correct only if all the B and I labels
of it are correctly predicted. False Positive (FP)
is defined as a predicted metaphoric unit whose
ground truth label is literal. False Negative (FN)
is defined as a predicted literal unit whose ground
truth label is metaphoric. In metaphor identification
breakdown analysis, we evaluate the performance
of different open-class PoS on the token level (the
tokens in ‘sent’ in the VMC-P dataset), because we
did not annotate literal MWEs. We use accuracy
as the breakdown evaluation metric. The accuracy
of a PoS breakdown of metaphor identification is
defined as the number of correct predictions on
the token level above the total number of tokens
within the PoS. A metaphor identification predic-
tion is correct if the predicted label is the same as
the ground truth label on the token level.

The metaphor interpretation overall evaluation is
evaluated on the unit level. TP is defined as both the
metaphor identification and paraphrase predictions
are the same as the ground truth metaphoric identi-
fication and paraphrase labels. FP is defined as a
predicted metaphoric unit whose ground truth label
is literal, and a predicted metaphoric unit whose
ground truth label is metaphoric, while the pre-
dicted paraphrase of the identified metaphoric unit
is different from the ground truth paraphrase. FN
is defined as a predicted literal unit whose ground
truth label is metaphoric. In metaphor interpreta-
tion breakdown analysis, we evaluate the perfor-
mance of different open-class PoS on the token
level and use accuracy as the breakdown evaluation
metric. We use ground truth metaphor identifica-
tion labels for metaphor interpretation breakdown
analysis. The accuracy of a PoS breakdown of
metaphor interpretation is defined as the number of

correct paraphrased tokens above the total number
of tokens that should be paraphrased within the
PoS. A metaphor interpretation prediction is cor-
rect if the predicted paraphrase is the exact same
as the ground truth paraphrase. If the predicted
paraphrase of an MWE is correct, all words within
the MWE are considered as correctly paraphrased.

Our evaluation method is conservative because
we consider a prediction is correct, only if it is the
exact same as its gold label. We do not use ranking-
based metrics, e.g., Hits @ K, because a metaphor
processing system that only yields a paraphrased
sequence for an input sequence is more supportive
in downstream tasks, compared to a system that
yields several candidate paraphrases. Besides, we
cannot evaluate the quality of other high-ranking
predictions by our dataset, although a metaphor can
have multi-paraphrases in real-world texts.

E LLM performance on VMC-P

Currently, a wide range of LLM evaluations have
been conducted across various domains (Mao et al.,
2024a). To the best of our knowledge, the as-
sessments focusing on metaphor identification and
interpretation by LLMs have not yet been thor-
oughly explored. This gap exists due to the lack of
extensive annotated datasets that encompass both
the identification and interpretation of metaphors.
Thus, we demonstrate the preliminary performance
of GPT-3.5-turbo and GPT-4 (OpenAI, 2023) on
our developed VMC-P testing set. While the re-
sults of GPTs and ALM are presented together in
Table 5, it does not mean that the two types of
models are objectively comparable for the follow-
ing reasons: a) GPT-3.5-turbo and GPT-4 were not
explicitly fine-tuned for computational metaphor
processing tasks; b) The parameter sizes of GPT-
3.5-turbo (175 billion) and GPT-4 (1.76 trillion)
are much larger than ALM (355 million); c) GPT-
3.5-turbo and GPT-4, designed for generation, and
MetaPro 2.0, developed for E2E metaphor interpre-
tation, serve distinct purposes and entail varying
deployment and inference costs. The inclusion of
results from these models in the same table serves
the purpose of illustrating the disparity between
a small expert system (MetaPro 2.0) and robust
generative AI (GPT-3.5-turbo and GPT-4) in terms
of their strengths and weaknesses on our newly
developed VMC-P dataset.

We used OpenAI API to access GPT-3.5-turbo
(model name: gpt-3.5-turbo; temperature: 0; top_p:
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1) and GPT-4 (model name: gpt-4; tempera-
ture: 0; top_p: 1) on 8th February 2024. There
were two prompts employed in our large GPT-
based metaphor identification evaluation, namely
direct prompting (GPTDP) and Chain-of-Thought
prompting (GPTCOT). The direct prompt is de-
signed as follows:

You are a linguistic expert in metaphor analysis. Given

the text below, the task is to identify metaphors from the

text. Please tokenize the textual string by whitespace

and return the identified metaphorical tokens only. If

there is no metaphor in the text, return NA. Use concise

language to present the result.

Text: [a testing instance]

The text is a testing instance from VMC-P (e.g.,
joining tokens in the ‘sent’ list of Figure 4 with
whitespaces). In order to augment the logical rea-
soning capabilities of the large GPTs, we incorpo-
rate a Chain-of-Thought methodology (Wei et al.,
2022) into our prompts. Recognizing the theoreti-
cal robustness of MIP (Pragglejaz, 2007) in guiding
human annotation of metaphors, we concatenate
the direct prompts with the content of MIP (refer
to Figure 3) as the Chain-of-Thought prompt.

For evaluating large GPTs in the metaphor inter-
pretation task, the prompt is designed as follows:

You are a linguistic expert in metaphor analysis. Given

the text below and a candidate list, which one is the best

literal counterpart for the metaphor “[a metaphor]” among

the candidate list? Only return a choice with concise

language in the answer. Do not explain why.

Text: [a testing instance]

Candidates: [the combination of a gold paraphrase and the

corresponding negative samples]

The text is also a testing instance from the proposed
VMC-P dataset. Each evaluation iteration only fo-
cuses on a target metaphor (a gold identification
label-based, or predicted identification label-based
metaphor). The candidates are the combination
of the gold paraphrase of the target metaphor and
its corresponding negative samples. The position
of the gold paraphrase is randomized among the
candidates. There are also two evaluation tasks,
namely gold metaphor identification label-based,
and predicted metaphor identification label-based
paraphrase evaluation. The metaphor identification
predictions are from the former prompting models,
e.g., GPTDP and GPTCOT.

In Table 5, we can observe that both GPT-3.5-
turbo and GPT-4 yield very weak performance in

Task Model P R F1

Identification

GPT-3.5DP 14.98 12.10 13.39
GPT-3.5COT 19.44 6.33 9.55
GPT-4DP 13.92 7.44 9.69
GPT-4COT 32.18 27.34 29.56
MetaPro2.0STL 72.41 68.25 70.23*
MetaPro2.0MTL 70.28 70.17 70.20*

Interpretation
(gold idnt. label
-based)

GPT-3.5-G 36.32 100 53.29
GPT-4-G 36.15 100 53.10
MetaPro2.0-GSTL 30.28 100 46.46
MetaPro2.0-GMTL 29.02 100 44.97

Interpretation
(predicted idnt.
label-based)

GPT-3.5-PDP 4.23 3.40 3.77
GPT-3.5-PCOT 6.16 2.00 3.02
GPT-4-PDP 4.34 2.32 3.02
GPT-4-PCOT 9.84 8.36 9.04
MetaPro2.0-PSTL 27.63 69.73 39.55*
MetaPro2.0-PMTL 26.49 69.11 38.28*

Table 5: GPT-3.5-turbo and GPT-4 performance on the
VMC-P testing set. COT denotes Chain-of-Thought,
based on MIP. * denotes the improvement is statistically
significant (p < 0.001) on a two-tailed test.

the metaphor identification task under the direct
prompting and Chain-of-Thought prompting se-
tups. This is because of their very frequent false
positive errors. The large GPTs encounter difficulty
in identifying fine-grained metaphorical words, be-
cause many large GPT-identified metaphors are
long phrases. Such coarse-grained metaphor iden-
tification predictions do not benefit conceptual
metaphor interpretation, because it would be dif-
ficult and ambiguous to abstract target and source
concepts from long phrases with complicated syn-
tactic structures (see Conceptual Metaphor The-
ory (Lakoff and Johnson, 1980) for the relevant con-
cepts and examples). On the other hand, the GPTs
also exhibit shortcomings in identifying metaphors,
such as false negative errors, which underscores
their limited proficiency in professional linguistic
analysis of metaphorical language.

With MIP-informed Chain-of-Thought prompt-
ing, GPT-4COT yields significant improvements
in the evaluation metrics, compared to other large
GPT models. This suggests that professional lin-
guistic knowledge, e.g., MIP, can enhance the
performance of GPT-4 in accurately predicting
metaphor identification tasks, although this im-
provement is not observed in the earlier version,
GPT-3.5-turbo. This phenomenon raises a prac-
tical question regarding the use of prompt-based
LLMs for computational linguistics tasks resem-
bling metaphor identification: How can the effec-
tiveness of prompts, originally devised for earlier or
limited LLMs, be preserved across different or fu-
ture versions? Examples where prompts succeeded
in earlier versions of LLMs but failed in later ver-
sions can also be observed in financial sentiment
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Task Labels

Aspect
Extraction

B: the beginning word of an aspect unit;
I: the inside word of an aspect unit;
O: the outside word of an aspect unit.

Opinion
Extraction

B: the beginning word of an opinion unit;
I: the inside word of an opinion unit;
O: the outside word of an opinion unit.

Aspect
-based
Sentiment
Analysis

Background: A background word without sentiment;
Positive: an aspect word with positive sentiment;
Negative: an aspect word with negative sentiment;
Neutral: an aspect word with neutral sentiment;
Conflict: an aspect word with conflict sentiment.

Named
Entity
Recognition

O, B-PER, I-PER, B-ORG, I-ORG, B-LOC, I-LOC,
B-MISC, I-MISC, where PER, ORG, LOC and MICS
denote persons, organizations, locations and miscell-
aneous names, respectively. B, I, O denote the
beginning, inside and outside of a named entity.

Table 6: The label sets of aspect extraction, opinion
extraction, aspect-based sentiment analysis and named
entity recognition tasks.

analysis tasks (Du et al., 2024). Determining a
robust and effective prompt for a specific task is
challenging due to the heuristic nature of many
current approaches to prompt engineering (Mao
et al., 2023c) and the unpredictable preferences of
fast-evolved LLMs in the future. The prompting
approaches, which include considerations such as
phrasing, linguistic structures, as well as prompting
knowledge and logic, lack a systematic methodol-
ogy for identifying the optimal and robust prompt
for different foundation models.

Finally, GPT-3.5/4-G outperforms MetaPro 2.0-
G in interpreting metaphors when utilizing gold
metaphor identification labels. This outcome is un-
surprising due to the extensive pre-training data and
larger parameter size of GPT-4. However, in pur-
suit of achieving E2E metaphor interpretation (the
main goal of this work), GPT-3.5/4-PDP and GPT-
3.5/4-PCOT lag behind MetaPro 2.0-P in metaphor
interpretation tasks, based on predicted metaphor
identification labels. Considering the costs of em-
ploying large GPTs and the challenges in pars-
ing structured data from their generated text13,
MetaPro 2.0 retains advantages in E2E metaphor
interpretation tasks in real-world application sce-
narios. The E2E processing gaps between the GPTs
and MetaPro 2.0 also highlight the value of VMC-P

for training expert systems in the domain of compu-
tational metaphor processing, because the relevant
linguistic knowledge can not be easily learned from
general corpora by pre-training.

13Although we have instructed GPT-3.5 and GPT-4 to pro-
duce only the required results, it is inevitable that the outputs
may exhibit varied linguistic structures and include extraneous
contextual information. Thus, it is difficult to parse the desired
predictions, e.g., metaphor tokens, and the interpretation of
the specific metaphor tokens from GPT-3.5/4 generated text.

Task Model Micro F1 Acc

Aspect Extraction

BERT 72.05 68.63
RoBERTa 89.76 88.37
GPT2 67.22 64.81
T5 89.10 88.15
ALM 90.59 89.87

Opinion Extraction

BERT 78.26 75.94
RoBERTa 85.13 87.81
GPT2 71.42 69.08
T5 81.48 86.28
ALM 86.42 88.77

Aspect-based
Sentiment Analysis

BERT 60.11 59.32
RoBERTa 79.36 77.11
GPT2 53.05 52.09
T5 73.89 73.06
ALM 80.36 78.70

Named Entity
Recognition

BERT 79.38 77.30
RoBERTa 90.81 92.38
GPT2 65.93 64.70
T5 91.33 92.56
ALM 92.04 93.29

Average

BERT 72.45 70.30
RoBERTa 86.26 86.42
GPT2 64.40 62.67
T5 83.95 85.01
ALM 87.35 87.66

Table 7: ALM and other PLM benchmarking results
on aspect extraction, opinion extraction, aspect-based
sentiment analysis and named entity recognition tasks,
averaged over 5 runs.

F Testing ALM on Other Tasks

We aim to propose useful resources, e.g., a dataset
and a PLM for the learning of E2E metaphor inter-
pretation in this work. However, since sequence
tagging (e.g., detecting anomalous words from a
sequence) is one of the pre-training tasks of ALM,
we also test its performance on other sequence tag-
ging tasks such as aspect extraction, opinion extrac-
tion, aspect-based sentiment analysis, and named
entity recognition. The first three tasks are evalu-
ated with the restaurant dataset from Pontiki et al.
(2014), following the training, validation, and test-
ing set splits of Chen and Qian (2020). Named en-
tity recognition is evaluated with the CoNLL 2003
NER dataset from Tjong Kim Sang and De Meul-
der (2003), following the splits of huggingface
datasets14. The label set of each task can be viewed
in Table 6. As seen in the table, different tasks
have different label sets and annotation paradigms,
indicating the fact that the learning of those tasks
needs to model different dependency relationships
between words within a textual sequence.

We test the same baselines that are introduced
in Section 5 on the sequence tagging tasks. As
seen in Table 7, our metaphor processing-tailored
PLM also has advantages in processing those non-
metaphor tasks because ALM exceeds them across
all the tasks. It shows that a PLM can also gain gen-

14
https://https://huggingface.co/datasets/conll2003
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eral knowledge by the ALM pre-training paradigm.
While the gains in non-metaphor tasks (+1.09%

F1 on average) are not as substantial as those
observed in sequential metaphor identification
(+3.20% F1 on average), it is important to con-
sider the holistic utility of our PLM – excelling in
metaphor processing while maintaining competi-
tive performance in other tasks. Besides, it also
shows that a task-oriented PLM can achieve better
pre-training utilities than general PLMs on specific
tasks. Probably, the “divide-and-conquer” strat-
egy, e.g., using different pre-training paradigms to
handle very different reasoning tasks, may be also
applicable to LLMs in enhancing their performance
in different domains (Cambria et al., 2023).
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