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Abstract

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods have gained significant popularity for
adapting pre-trained Large Language Models
(LLMs) to downstream tasks, primarily due
to their potential to significantly reduce mem-
ory and computational overheads. However, a
common limitation in most PEFT approaches
is their application of a uniform architectural
design across all layers. This uniformity in-
volves identical trainable modules and ignores
the varying importance of each layer, leading
to sub-optimal fine-tuning results. To over-
come the above limitation and obtain better
performance, we develop a novel approach,
Importance-aware Sparse Tuning (IST), to fully
utilize the inherent sparsity and select the most
important subset of full layers with effective
layer-wise importance scoring. The proposed
IST is a versatile and plug-and-play technique
compatible with various PEFT methods that
operate on a per-layer basis. By leveraging
the estimated importance scores, IST dynam-
ically updates these selected layers in PEFT
modules, leading to reduced memory demands.
We further provide theoretical proof of con-
vergence and empirical evidence of superior
performance to demonstrate the advantages of
IST over uniform updating strategies. Exten-
sive experiments on a range of LLMs, PEFTs,
and downstream tasks substantiate the effec-
tiveness of our proposed method, showcas-
ing IST’s capacity to enhance existing layer-
based PEFT methods. Our code is available at
https://github.com/Kaiseem/IST

1 Introduction

Significant achievements in natural language pro-
cessing (NLP) have been achieved this year from
the use of large language models (LLMs) that are
pre-trained on extensive general datasets (Zhuang
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Figure 1: (Left) Memory consumption of tuning a
LLaMA 7B model with a token batch size of 1024 on a
single device. Details refer to Sec. 4.1. (Right) In com-
parison to the vanilla tuning of all 32 and random tuning
of 8 LoRA layers, IST achieves a better validation loss.

et al., 2024; Brown et al., 2020). These LLMs typ-
ically require full fine-tuning (FFT) (Howard and
Ruder, 2018) to adapt them for specialized down-
stream tasks, an approach that necessitates retrain-
ing all model parameters. Nevertheless, as the size
of these models and the volume of data increase,
FFT becomes increasingly costly and impracti-
cal. Aiming to reduce the cost, parameter-efficient
fine-tuning (PEFT) methods, involving adapter-
based (Houlsby et al., 2019; Wang et al., 2022; Lei
et al., 2024; He et al., 2022a), reparameterization-
based (Hu et al., 2021; Edalati et al., 2022; Liu
et al., 2024), and prompt-based methods (Li and
Liang, 2021; Liu et al., 2022; Lester et al., 2021),
have been proposed to reduce the number of train-
able parameters in fine-tuning for the downstream
tasks. However, most existing PEFT methods em-
ploy a uniform approach that indiscriminately as-
signs trainable parameters to identical positions
across all layers, which could be unnecessary. This
strategy relies heavily on human heuristics and
overlooks task-specific domain gaps and charac-
teristics, limiting their performance across various
downstream tasks. Although some PEFT methods
have improved the efficiency of fine-tuning LLMs,
such as dynamic rank (Zhang et al., 2023b, 2024),
they are tailored specifically for LoRA-based mod-
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els and do not extend their benefits to the additional
learnable module-based methods, i.e., Series and
Parallel configurations. This limitation creates a
clear necessity for a more generalized algorithm
to enhance model performance across various do-
mains.

Inspired by LISA (Pan et al., 2024), we empiri-
cally found that training a small fraction of the full
layers in PEFT can yield comparably promising
results to those achieved with FFT. The existing
PEFT methods exhibit markedly redundancy in
layer updating during the training process, leading
us to investigate the differences among the layers of
varying importance from the perspective of layer-
wise sparsity. Motivated by these inherent insights,
we propose a novel PEFT-compatible plug-and-
play approach, Importance-aware Sparse Tuning
(IST), that estimates the task-specific importance
score of each layer and fine-tunes the most im-
portant ones. As shown in Figure 1, our method
substantially lowers memory demands during train-
ing by reducing the number of layers that require
updates. Furthermore, by integrating layer-wise
sparsity into our methodology, we enhance the con-
vergence of layer-based PEFT methods, thereby
achieving improved performance. The experimen-
tal results show that IST consistently improves ex-
isting layer-wise PEFT methods without sacrificing
performance and inference efficiency across a wide
range of models.

In summary, our contributions are as follows:

• Based on the empirical insight that sparse pat-
terns markedly enhance the convergence of PEFT
models, we propose an importance-aware sparse
tuning method that prioritizes the most impor-
tant layers for updating, making PEFT memory
efficient and more powerful.

• We provide theoretical proof of convergence for
the IST approach and present empirical evidence
showing that it outperforms traditional uniform
update strategies for PEFT.

• Extensive experiments in various LLMs, PEFT
methods, and downstream tasks demonstrate the
effectiveness and capacity of IST to enhance ex-
isting PEFT without sacrificing performance.

2 Related Work

2.1 Parameter-efficient Fine-tuning
As models grow in size and complexity, pre-trained
Large Language Models (LLMs) have shown im-
pressive performance across a range of natural lan-

guage processing (NLP) tasks. However, efficiently
adapting these LLMs to specific downstream tasks
poses increasing challenges. Parameter-efficient
fine-tuning (PEFT) addresses this dilemma by fine-
tuning a few additional parameters or a subset of
the pre-trained parameters. The existing PEFT
approaches can be roughly categorized into three
main types: adapter-based (Houlsby et al., 2019;
Wang et al., 2022; Lei et al., 2024; He et al., 2022a),
reparameterization-based (Hu et al., 2021; Edalati
et al., 2022; Liu et al., 2024), and prompt-based
methods (Li and Liang, 2021; Liu et al., 2022;
Lester et al., 2021). Adapter-based methods focus
on adding extra tunable parameters by introducing
new layers within the original model. For example,
Series Adapters (Houlsby et al., 2019) incorporate
linear modules in a sequential manner, whereas
Parallel Adapters (He et al., 2022a) add learnable
modules in parallel with the model’s existing sub-
layers. Meanwhile, reparameterization-based meth-
ods aim to reduce the total number of trainable pa-
rameters by employing low-rank representations.
LoRA (Hu et al., 2021), a notably effective and
popular method, breaks down the delta parameter
matrix into two lower-rank matrices. Yet, most
current PEFT methods apply a uniform architec-
tural approach across all layers, utilizing the same
trainable modules for each layer. In this study, we
present a novel approach that dynamically tunes
a subset of full layers through PEFT, significantly
enhancing both training efficiency and the perfor-
mance of the fine-tuned models.

2.2 Layer-wise Sparse Tuning

Many previous works have uncovered the phe-
nomenon of layer redundancy in pre-trained mod-
els, as evidenced by methods such as LayerSkip (El-
houshi et al., 2024), LayerDrop (Sajjad et al., 2023),
LayerSharing (Zhang et al., 2023a; Lan et al.,
2020), and structured pruning (Fan et al., 2021;
Zhang and He, 2020). This indicates that the im-
portance of each layer could be different, and not
all layers need fine-tuning. However, selecting the
appropriate layers for fine-tuning downstream tasks
remains a significant challenge. Lee et al. (2023)
suggests selectively fine-tuning a subset of layers
depending on the type of domain shift. Similarly,
Kaplun et al. (2023) deploys a greedy search to find
the most suitable layers for fine-tuning, demanding
considerable computational resources and time for
initiation. Recently, layer-wise sparse training for
large language models has become a popular topic.
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Figure 2: Illustration of layer redundancy in PEFT training on the OPT-1.3B. (a) A greedy selection strategy is
employed to iteratively remove the trained LoRA modules from the model. (b) Specific layers of the model are
selectively fine-tuned using LoRA. The importance of layers depends on their contribution to the performance.

For example, LISA (Pan et al., 2024) randomly se-
lects a subset of layers to be optimized during train-
ing, leading to promising faster convergence and
better performance. LIFT (Zhu et al., 2024) selects
one layer to fine-tune LLMs with different selection
strategies such as front-to-end, end-to-front, or ran-
dom, obtaining comparable performance while re-
ducing the computational load. Although effective,
these methods require substantial storage equiva-
lent to the full model since all parameters are being
updated. Furthermore, these approaches do not
deeply explore joint use with PEFT and have em-
ployed relatively simple selection strategies, limit-
ing their performance. Unlike these previous meth-
ods, we focus on integrating existing layer-based
PEFT and propose an importance-aware layer se-
lection strategy that significantly enhances perfor-
mance while increasing efficiency.

3 Method

3.1 Motivation

To showcase the excessive layer redundancy in
training PEFT, we conducted empirical evaluations
on the OPT 1.3B (Zhang et al., 2023c) model fine-
tuned on the WikiText (Merity et al., 2016) dataset.
Initially, we adopted LoRA on all model’s layers
and trained it on this dataset. After training, we
employed a greedy selection strategy to remove
the least or the most important layers individu-
ally according to their contribution to the model’s
performance. On the one hand, as illustrated in
Figure 2(a), removing 50% of the least important
LoRA layers did not substantially elevate perplex-
ity. On the other hand, removing the most im-
portant LoRA layers resulted in a rapid decline in
performance. These preliminary findings indicate
inherent layer-wise sparsity during PEFT training,
leading to the phenomenon that not all layers are
effectively trained with PEFT.

This observation prompts us to question: what
causes the layer-wise sparsity? To answer this
question, we utilized the outcome of the greedy
search to rank the layers according to their con-
tribution to the model’s performance. Next, we
performed PEFT fine-tuning on the most and least
important layers. As shown in Figure 2(b), even
when only a small portion of the layers (or merely a
single one) are trained using LoRA, it is possible to
attain comparable results to those obtained through
full fine-tuning (FFT). This suggests that the ob-
served sparsity is not due to the unimportant layers
of the original network. Instead, it implies that the
layer-wise sparsity observed in PEFT is an inherent
characteristic, naturally emerging throughout the
network’s training process. Furthermore, training
more important layers yields better outcomes con-
sistently than focusing on the less important ones,
emphasizing the beneficial role of importance in
layer-wise sparsity.

3.2 Convergence of Layer-wise Sparse Tuning

In the following, we will demonstrate why layer-
wise sparse tuning is efficient and effective during
fine-tuning. In particular, we develop proof that if
we randomly select a subset of full layers in the
layer-based PEFT method and only update these
selected parameters, the risk bond of the subsets
can be tighter than updating the whole layers.

Given a pretrained Large Language Model
(LLM) M = {m1,m2, . . . ,mNL

}, comprising
NL layers and parameterized by Θ, alongside a
downstream dataset D = {(xi, yi)}i∈[|D|], full fine-
tuning (FFT) this model on the downstream dataset
achieve MΘ → MΘ+∆, ∆ = argmin∆ L(Θ +
∆,D). PEFT introduces a learnable module A
with a significantly smaller number of trainable
parameters, denoted as M′ = [MΘ,A], where
|θA| ≪ |∆|, aiming to achieve performance com-

1979



parable to the fully fine-tuned modelMΘ+∆. The
empirical loss over the training set D is defined
as L(θA; (x, y)) = 1

|D|
∑

i∈[|D|] ℓ(yi, f(xi; θ
A)),

where ℓ denotes a suitable loss function, such as
cross-entropy.

The learnable module A in most existing
PEFT methods can be represented as A =
{a1, a2, . . . , aNL

}. According to the sparse tun-
ing strategy, the total layers of the given adapter
module can be divided into two groups: S and
S̄ represent a set of randomly selected layers that
are updated and a set of remaining layers that are
frozen during fine-tuning respectively. The total
parameter vector θA is then partitioned into θAS and
θA
S̄

. The loss function can conceptually be decom-
posed as follows:

L(θA; (x, y)) = L(θAS , θAS̄ ; (x, y)). (1)

Corollary 3.1 Consider the Taylor expansion of
the loss function L(θAS , θAS̄ ) around θA

S̄
:

L(θAS , θAS̄ ) = L(θAS , θAS̄0)

+∇θA
S̄
L(θAS , θAS̄0)⊤(θAS̄ − θAS̄0)

+O((θAS )2),
(2)

where θA
S̄0 represents the fixed parameters before

any fine-tuning. Since θA
S̄

does not change during
fine-tuning process, we can set θA

S̄
= θA

S̄0 . The
first-order term of Eq. 2 can be eliminated and we
can have the approximate loss:

L(θAS , θAS̄ ) ≈ L(θAS , θAS̄0) ∝ L(θAS ). (3)

This estimation shows that the loss function mainly
depends on the updates of θAS , supporting the deci-
sion to focus updates on the subset of full layers.

In Vapnik–Chervonenkis (VC) theory (Devroye
et al., 1996), the VC-dimension denoted as
V Cdim(H) is a measure of the size, i.e., capacity,
complexity, expressive power, richness, or flexi-
bility, of a class of sets H. For neural networks,
including LLMs, the VC-dimension typically in-
creases with the number of trainable parameters.
Let dS be the VC-dimension of subset HS and d
be the VC-dimension of full set H. By updating
only a subset of parameters θAS , the effective VC-
dimension dS of the hypothesis class correspond-
ing to these parameters is reduced, which leads to
a tighter generalization bound:

Lemma 3.2 With a probability at least 1− δ over
the choice of a training set of size n, the following

bound holds forHS ⊆ H:

|R(H)− R̂n(H)| ≈ |R(HS)− R̂n(HS)|

≤
√

CdSlog(n/dS) + log(1/δ)

n
,

(4)

whereR(HS) = E(x,y)∼DL(θAS ;x, y) denotes the
expected risk under the data distribution D and
R̂n(HS) =

1
n

∑n
i=1 L(θAS ;xi, yi) denotes the gen-

eralization risk on the specific dataset. C is a con-
stant related to the model and data distribution.
Since dS ≤ d, the generalization bound becomes
tighter, implying that models with fewer updating
layers generalize better assuming the same number
of training samples.

Based on Eq. 3, the generalization error of the
model can be formally estimated as |R(H) −
R̂n(H)| ≈ |R(HS)− R̂n(HS)|.

When θAS is updated and θA
S̄

remains fixed, the
model effectively reduces the dimensionality of the
optimization problem. This can potentially lead to
a more focused and efficient parameter search:

Corollary 3.3 The derivative of L(θA) with re-
spect to θAS can be obtained as:

∂L(θA)
∂θAS

=
1

|D|
∑

i∈[|D|]

∂ℓ((yi, f(xi; θ
A)))

∂θAS
. (5)

The magnitude and direction of this gradient tell
us how sensitive the empirical risk is to changes in
θAS and hence guide the updates during training.

From the above analysis, we found that notice-
able patterns of sparsity combined with the smooth-
ness of the objective function, can markedly im-
prove the rate of convergence, potentially leading
to a linear speed-up. To achieve improved error
bounds and convergence rates, the crucial strategy
lies in selecting the most important layers of the full
model that are particularly pertinent to the specific
task. This selection process involves identifying
which layers contribute the most to task-specific
performance, enabling a more focused and efficient
training regimen.

3.3 Importance-aware Sparse Tuning
In the previous section, we proved that sparse tun-
ing leads to a better convergence for downstream
task fine-tuning. In this section, we will intro-
duce our method, Importance-aware Sparse Tun-
ing (IST), aiming to enhance the performance of
layer-wise sparse tuning motivated by empirical
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Figure 3: Workflow of Importance-aware Sparse Tuning
(IST): IST consists of two main loops: a fine-tuning
loop, which selects a subset of layers for updating PEFT
modules, and an importance updating loop, which esti-
mates layer-wise importance by assessing the response
suppression of the selected PEFT modules.

observations. IST involves two loops: the fine-
tuning loop, which selects a subset of full layers
to update the PEFT modules, and the importance
updating loop, which updates the importance score
of each layer. To estimate layer-wise importance
more accurately, we dynamically select the subsets
of all layers for PEFT response suppression during
the importance updating process. Drawing inspira-
tion from reinforcement learning, which explores
the best structure based on rewards (Zoph and Le,
2017; Pham et al., 2018; Liu et al., 2017), we treat
the layer selection process as a multi-armed bandit
problem and use reinforcement learning to obtain
the importance score of each layer.

Fine-tuning Loop Formally, given a PEFT-
equipped LLM for downstream data fine-tuning,
M′ = [M,A] = {mi, ai}NL

i=1, where mi is frozen
and ai is trainable, our goal is to generate a subset
S of full layers to update, and keep the remain-
ing set S̄ unchanged. To this end, we first define
the degree of importance as I ∈ RNL , which is
zero-initialized and updated through fine-tuning
process simultaneously. In each training iteration,
we choose Nu layers to update based on I. For t-th
step, the action policy πi for i-th layer follows the
uniform distribution:

πi ∼ U(0,Sigmoid(Ii)). (6)

We randomly sample probability score pi for each
layer, i.e., pi ∼ πi. The subset S can be determined
with the score pi:

S = {i|pi > pNu}, S̄ = {i|pi ≤ pNu}, (7)

where pNu is the Nu largest values in the sampled
probabilities. Then, the chosen PEFT modules are
updated by θai,i∈S ← ∇θAL(θA)

Importance Updating Loop To update the im-
portance score, we suppress the response of ai to
measure its contribution to the result. If ai is rela-
tively important, reducing its response will signifi-
cantly increase the loss, and vice versa. We sample
Nc candidate sets {S1

c , . . . , S
Nc
c }, each containing

Nv layers. For the j-th sampling, we reduce the
response of ai for the layers that were not selected:

oji+1 =

{
mi(o

j
i ) + ai(o

j
i ) if i ∈ Sj

c

mi(o
j
i ) + β ∗ ai(o

j
i ) otherwise

, (8)

where β ∈ [0, 1] is the response suppression factor.
Then, for the j-th sampled set Sj

c , we calculate the
rewards according to their loss:

rj = e−Lj − 1

Nc

∑Nc

k=1
e−Lk . (9)

Due to the smaller contributions of PEFT compared
to the original network, the response suppression
of PEFT may lead to relatively small reward values.
Therefore, we employed a large updating rate µ to
accelerate the convergence of importance, ensuring
it matches the fine-tuning process:

Ii =

{
Ii + µ ∗ rj if i ∈ Sj

c

Ii otherwise , (10)

where µ controls the convergence of importance.

Joint Training We propose jointly training IST
with PEFT to avoid the costly greedy search ob-
served in prior studies (Kaplun et al., 2023), as
shown in Figure 3. Specifically, to align with the
training dynamics of PEFT, we execute the im-
portance updating loop every Tc fine-tuning loop.
While our method reduces the time required for the
fine-tuning loop slightly, it introduces additional
forward time within the importance updating loop.
Consequently, we set Tc = 10 and Nc = 3 to keep
the training time efficient.

4 Experimental Results

In this section, we conduct a series of experiments
to validate the effectiveness of our proposed IST.
We integrate IST into the Series Adapter, Parallel
Adapter, and LoRA, and then compare them with
their original counterparts across various tasks.
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Model Weight Mem. Full Fint-tuning PEFT PEFT + IST
Series Parallel LoRA Series Parallel LoRA

GPT2-Small120M 0.4G 3.4G 2.5G 2.8G 2.9G 2.0G 2.1G 2.2G
TinyLLaMA1.1B 2.2G 15.9G 9.6G 10.3G 10.5G 8.0G 8.3G 8.5G
LLaMA7B 14G 60G 22G 23G 24G 19G 20G 20G
LLaMA13B 27G OOM 38G 41G 42G 35G 36G 36G

Table 1: Comparison of memory consumption for various LLMs and PEFT methods.

Baselines We included the following widely used
layer-based fine-tuning methods.

• Full Fine-tuning (Howard and Ruder, 2018) -
All parameters within the pre-trained model are
optimized during training.

• Series Adapter (Houlsby et al., 2019) - Addi-
tional learnable modules are introduced into a
specific sublayer in a sequential manner.

• Parallel Adapter (He et al., 2022a) - Additional
learnable modules are integrated in parallel with
distinct sublayers within the backbone model.

• LoRA (Hu et al., 2021) - Parameter efficiency
is enhanced by decomposing the learnable delta
parameter matrix into two low-rank matrices.

For the optimal configuration and placement of
PEFT methods, we adhere to the settings estab-
lished by Hu et al. (2023). Specifically, Series and
Parallel Adapters are seamlessly integrated into the
MLP layers with a bottleneck size of 256. Simi-
larly, LoRA is seamlessly incorporated into both
the Multi-head Self-attention layers and the MLP
layers, with a rank of 32. Across all PEFT meth-
ods, we maintain the same tunable parameter bud-
gets, adjusting only the learning rate. For IST, we
consistently set Nu to 25% of the layers for the
fine-tuning loop, Nv to 50% of the layers for the
importance updating loop, and β to 0.25. Further
details on the experimental settings are available in
the Appendix.

4.1 Memory Efficiency

We conducted experiments on maximum GPU
memory to demonstrate the efficiency of IST in
terms of memory usage, revealing that it requires
less memory compared to standard PEFT methods.

Settings To obtain an accurate estimation of the
memory, we randomly sampled prompts from the
Alpaca (Peng et al., 2023) dataset and restricted
the maximum output token length to 1024. We uni-
formly employed a mini-batch size of 1 across four
LLMs, ranging from 120M to 13B parameters, and

three types of PEFT methods. We presented the
overall memory consumption, consisting of weight
memory, activation memory, optimizer memory,
and gradient memory. Additionally, we separately
demonstrated weight memory to highlight the sig-
nificant role of IST in reducing training memory.
To isolate the impact of the evaluated variables, we
excluded GPU memory-saving techniques, such
as gradient checkpointing (Chen et al., 2016), of-
floading (Ren et al., 2021), and flash attention (Dao
et al., 2022).

Results We list the memory consumption for var-
ious LLMs and PEFT methods in Table 1. The
overall results show that training LLMs with our
proposed IST strategy could significantly reduce
memory consumption in all the widely used LLMs
compared to full fine-tuning and standalone PEFT
configurations. Combining PEFT modules and our
proposed IST could save a lot of training memory
including activation memory, optimizer memory,
and gradient memory on the three popular adapters.
As for the LLaMA 7B model, training with IST
could almost reduce the average 36% training mem-
ory for all the PEFT methods. This trend of reduced
memory usage with IST integration is consistent
across other models as well. These results highlight
the effectiveness of IST in enhancing the memory
efficiency of fine-tuning LLMs, which makes IST
a valuable strategy in deploying more resource-
efficient fine-tuning practices, especially important
for scenarios where computational resources are a
limiting factor.

4.2 Commonsense Reasoning

Settings To validate the effectiveness of IST, we
evaluated three PEFT methods across five LLMs
on the commonsense reasoning tasks. Specifically,
the adaptability of PEFT was verified using Se-
ries, Parallel Adapter, and LoRA methods on the
LLaMA 7/13B (Touvron et al., 2023) models, and
the adaptability of LLM was tested on three mod-
els: GPT-J 6B (Wang and Komatsuzaki, 2021),
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Model PEFT BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA7B

Series 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Series + IST 66.2 78.3 74.9 72.2 75.9 75.8 59.0 72.2 71.8
Parallel 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
Parallel + IST 68.4 79.1 77.9 70.0 78.9 81.2 62.3 77.6 74.4
LoRA 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRA + IST 68.7 81.7 77.3 82.7 78.7 80.6 62.4 80.0 76.5

LLaMA13B

Series 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
Series + IST 72.9 82.2 81.4 87.9 84.0 82.7 69.1 81.1 80.2
Parallel 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.4
Parallel + IST 72.6 86.0 79.2 89.1 83.5 84.8 70.6 82.8 81.1
LoRA 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
LoRA + IST 71.5 85.0 81.2 89.1 84.2 84.0 70.1 81.8 80.9

GPT-J6B
LoRA 62.4 68.6 49.5 43.1 57.3 43.4 31.0 46.6 50.2
LoRA + IST 63.0 63.2 62.9 35.8 39.1 56.8 39.1 51.2 51.4

BLOOMz7B
LoRA 65.9 75.3 74.5 57.3 72.5 74.6 57.8 73.4 68.9
LoRA + IST 67.0 74.4 74.4 51.4 68.7 77.9 58.9 74.4 68.4

LLaMA38B
LoRA 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
LoRA + IST 72.7 88.3 80.5 94.7 84.4 89.8 79.9 86.6 84.6

Table 2: Accuracy comparison of multiple LLMs with various PEFT methods on eight commonsense reasoning
datasets. Results of all the baseline methods on GPT-J, BLOOMZ and LLaMA are taken from Hu et al. (2023).

BLOOMZ 7B (Muennighoff et al., 2022), and
LLaMA3 8B (AI@Meta, 2024). We also report
ChatGPT’s accuracy obtained with gpt-3.5-turbo
API using a zero-shot Chain of Thought (Wei et al.,
2022). The commonsense reasoning tasks con-
sisted of 8 sub-tasks, each with a predefined train-
ing and testing set, including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC (Clark et al.,
2018) and OBQA (Mihaylov et al., 2018). Aligning
with the setting of Hu et al. (2023), we aggregated
the training data from all eight tasks to form the
training dataset and conducted evaluations on the
individual testing dataset for each task.

Results The quantitative results in Table 2 offer
a comprehensive view of the performance improve-
ments brought by the proposed IST method across
various LLMs and PEFT configurations. We can
see that IST consistently shows an enhancement in
model performance on the commonsense reason-
ing task. Analyzed from the LLaMA 7B model,
IST shows significant performance gains across
multiple tasks compared to its PEFT-only counter-
parts in all three PEFT configurations. Notably,
in tasks HellaSwag and QBQA, there’s a notice-
able improvement, demonstrating how IST can re-
fine the model’s response to more complex queries.
Moreover, the impact of IST is not limited to one

Method GSM8K AQuA MAWPS SVAMP Avg.
ChatGPT 56.4 38.9 87.4 69.9 63.2

LoRA 61.0 26.4 91.6 74.4 63.4
LoRA + IST 62.8 31.5 89.9 76.3 64.7

Table 3: Accuracy comparison of LLaMA3 8B on four
math reasoning datasets.

model or configuration. For example, in GPT-J 6B
and BLOOMZ 7B, the IST enhancements lead to
better outcomes in almost all tasks compared to
LoRA configurations without IST. This across-the-
board improvement underscores IST’s robustness
and general applicability. IST’s ability to focus on
the most impactful layers makes the fine-tuning pro-
cess not only more memory efficient but also strate-
gically adaptable to various reasoning tasks. This
is particularly beneficial in scenarios where model
responsiveness and accuracy are critical. The ag-
gregation of training data across different tasks and
the subsequent application of IST likely helps in
developing a more generalized understanding of
commonsense reasoning, making IST a valuable
addition to the PEFT techniques.

4.3 Arithmetic Reasoning

Settings To further demonstrate IST’s scalabil-
ity on different tasks, we conduct additional fine-
tuning experiments on arithmetic reasoning. We
utilized LoRA to fine-tune the LLaMA 3 8B model.
Similarly, we included the results from ChatGPT
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Method # Layers Results

Vanilla Tuning 32 74.7
Random Sparse Tuning 4 67.1 (-7.6)

Importance-aware Sparse Tuning 4 73.7 (-1.0)
Random Sparse Tuning 8 75.8 (+1.1)

Importance-aware Sparse Tuning 8 76.5 (+1.8)

Table 4: Ablation studies on key components of IST.

Method LoRA LISA AdaLoRA LoRA
+IST

AdaLORA
+IST

Results 74.7 75.3 76.2 76.5 77.1

Table 5: Comparison with other adaptive methods.

3.5 as a reference, obtained using Zero-shot Chain-
of-Thought (Wei et al., 2022). The fine-tuning
process was conducted on the Math10K dataset,
comprising math reasoning samples collected by
Hu et al. (2023). Following the completion of train-
ing, we evaluated the model’s performance on pre-
defined test sets from several datasets, including
GSM8K (Cobbe et al., 2021), AQuA (Ling et al.,
2017), MAWPS (Koncel-Kedziorski et al., 2016),
and SVAMP (Patel et al., 2021).

Results Table 3 shows the results of the arith-
metic reasoning task. The accuracy on GSM8K and
SVAMP datasets shows a consistent improvement
from ChatGPT to LoRA, and further enhancement
when IST is applied alongside LoRA, indicating
the effectiveness of fine-tuning and IST in improv-
ing model performance for these datasets. The
results of the AQuA dataset indicate a decrease in
accuracy for LoRA compared to ChatGPT, but the
application of IST helps to recover some of the lost
performance. This suggests that while LoRA alone
may not be as effective for AQuA, IST can mitigate
some issues. Overall, combining IST and existing
PEFT methods presents a robust approach for fine-
tuning LLMs, leading to better generalization and
accuracy in arithmetic reasoning tasks.

4.4 Analytical Study

Effect of Importance-aware Sparse Tuning We
conducted experiments to evaluate the effects of
importance-aware sparse tuning by training the
LLaMA 7B model with LoRA on a commonsense
task, reporting the average accuracy. As shown
in Table 4, using sparse tuning with randomly se-
lected layers, particularly with only four layers,
does not yield satisfactory results. This outcome
contrasts with findings from LISA (Pan et al., 2024)
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Figure 4: Layer-wise importance on different tasks.

and LIFT (Zhu et al., 2024), where training very
few layers (1-2 layers) resulted in a good perfor-
mance. The discrepancy arises because, in LISA
and LIFT, training entire transformer layers encom-
passes a substantial number of trainable parameters.
Conversely, PEFT involves relatively fewer param-
eters, necessitating the fine-tuning of more layers
to achieve better results. When we increased the
number of sparse tuning layers to 8, we observed a
considerable improvement of 1.1, aligning with the-
oretical expectations that sparse tuning enhances
convergence. Finally, incorporating importance-
aware tuning yielded the best results, underscoring
the effectiveness of IST.

Comparison with Adaptive Methods We com-
pared our proposed IST method with other adap-
tive methods, such as LISA (Pan et al., 2024) and
AdaLoRA (Zhang et al., 2023b), with LLaMa 7B
on the commonsense task to demonstrate our effec-
tiveness. Notably, LISA is a PEFT method that fo-
cuses on sparsely tuning a single transformer layer,
while AdaLoRA uses adaptive rank allocation and
can widely adapt to reparameterization-based meth-
ods. As shown in the Table 5, compared to LoRA,
LISA improved the average accuracy by 0.6, val-
idating the concept of sparse training. AdaLoRA
improved accuracy by 1.5, highlighting the impor-
tance of rank-level sparsity. Finally, our method
can be combined with LoRA and AdaLoRA to fur-
ther enhance performance, showcasing the broad
applicability and practicality of IST.

Layer-wise Importance Learning We visualize
the layer-wise importance of the two tasks with IST
in Figure 4. The importance scores converge as the
training iterations increase. The observed varia-
tion in the importance scores of each layer across
different tasks indicates distinct levels of signifi-
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cance. For instance, ‘Layer 2’ and ‘Layer 32’ sig-
nificantly contribute to the commonsense reasoning
task, whereas they are less important for the arith-
metic reasoning task. Conversely, ‘Layer 6’ and
‘Layer 18’ exhibit contrasting importance levels
across these tasks as well. This layer-wise differen-
tiation underscores the effectiveness of our method,
similar to curriculum learning, where the model
progressively focuses on the most pertinent layers
at each stage of training. By dynamically adjusting
the importance of different layers, our approach
allows for a more refined and task-specific tuning
process, thereby enhancing the model’s adaptabil-
ity and performance across diverse tasks.

5 Conclusion

In this study, we proposed a novel Importance-
aware Sparse Tuning (IST) approach for PEFT of
LLMs. By dynamically selecting the most impor-
tant layers in the fine-tuning loop, IST achieves a
significant reduction in memory usage and compu-
tational overhead. The importance updating loop
refines the selection of layers using a reinforcement
learning approach, ensuring that the most impactful
layers are prioritized during training. This innova-
tive method leverages the inherent sparsity of layer-
wise importance, leading to more efficient and ef-
fective fine-tuning through extensive experiments
across various LLMs, PEFT methods, and down-
stream tasks. The proposed method holds promise
for future applications where resource constraints
and performance are critical considerations.
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Limitations

There are three limitations in this work. First, since
IST employs reinforcement learning, tuning six
related hyperparameters is required. Even after
fixing three of these parameters, the search space
for the remaining three remains large, possibly
leading to increased trial-and-error costs during
usage. Second, due to limited resources, we were
unable to validate larger language models such as
the LLaMA3 70B. These larger models exhibit
stronger language comprehension capabilities and,
consequently, yield better performance. Third, we
did not thoroughly explore the variants or combina-
tions of each PEFT method. Given the substantial

computational demands and extensive hyperparam-
eter search space, we leave this as future work.
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A Appendix

A.1 Code and Reproducibility

Algorithm 1: IST, PyTorch-like
import peft, transformers
from ist import IST
# initialize the pre-trained model and PEFT
modules

peft_model = get_peft_model()
# initialize IST as callback function
ist_callback = IST()
# adopt IST in Trainer with one modification
trainer = transformers.Trainer(model=peft_model,
callbacks=[ist_callback]))

trainer.fit()

Our code is based on the LLM-Adapter li-
brary* (Hu et al., 2023), a benchmark library for
parameter-efficient fine-tuning (PEFT). To facil-
itate reproducibility, we have included the code,
along with training scripts and instructions, in the
supplementary material. Notably, our IST method
is orthogonal to most PEFT methods and can be
readily incorporated into the training process. As
demonstrated in algorithm 1, our method requires
only a single line of modification to the trainer
based on the Hugging Face Transformers library†

and Peft library‡. Please refer to the code for more
details.

A.2 PEFT Overview

Method Prompt Repara Series Parallel
Prompt Tuning (Lester et al., 2021)

√

Prefix-Tuning (Li and Liang, 2021)
√

LoRA (Hu et al., 2021)
√

KronA (Edalati et al., 2022)
√

DoRA (Liu et al., 2024)
√

Adapters (Houlsby et al., 2019)
√

AdaMix (Wang et al., 2022)
√

SparseAdapter (He et al., 2022b)
√

LeTS (Fu et al., 2021)
√

Parallel Adapter (He et al., 2022a)
√

LST (Sung et al., 2022)
√

MAM Adapter (He et al., 2021)
√ √ √

UniPELT (Mao et al., 2021)
√ √ √

Compacter (Henderson et al., 2021)
√ √

S4-model (Chen et al., 2023)
√ √

Table 6: The PEFT methods are categorized based
on the four common basic methods. "Prompt" repre-
sents prompt-based learning methods, "Repara" denotes
reparametrization-based methods, "Series" is Series
Adapters, and "Parallel" represents Parallel Adapters.

According to Hu et al. (2023) and Han et al.
(2024), existing parameter-efficient fine-tuning

*https://github.com/AGI-Edgerunners/LLM-Adapters
†https://github.com/huggingface/transformers
‡https://github.com/huggingface/peft
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Figure 5: Most existing PEFT approaches employ a
layer-based design, consistently adding learnable mod-
ules or parameters to each layer of the transformer mod-
ules, including the Multi-Head Self-Attention (MHSA)
and Feed-Forward Network (FFN).

(PEFT) methods can be roughly categorised into
four types as shown in Table 6. In the fol-
lowing, we provide a brief overview of three
layer-based PEFT methods used in our study:
reparametrization-based methods, series adapters,
and parallel adapters.

Parallel Adapters. Parallel adapters focus on in-
corporating additional learnable modules in parallel
with distinct sublayers within the backbone model.
The Parallel Adapter can be formulated as follows:

Ho → Ho + f(HiWdown)Wup. (11)

Reparametrization-based method. This type of
method aims to transform network weights using
a low-rank technique. We take LoRA (Hu et al.,
2021) as an example of Reparametrization-based
learning, which can be formulated below:

Ho = HiW0 +Hi∆W = HiW0 +HiBA, (12)

where Hi and Ho are the input and output of a sub-
layer module (e.g., Linear), W0 ∈ Rd×d can be any
linear weight in the pre-trained LLM, B ∈ Rr×d

and B ∈ Rd×r are lower-rank learnable matrix to
approximate ∆W . r ≪ d is the pre-defined rank
for LoRA.

Series Adapters. Series adapters involve incor-
porating additional learnable modules in a sequen-
tial manner within a specific sublayer. Series
Adapter can be formulated as follows:

Ho → Ho + f(HoWdown)Wup, (13)

where Ho is the output of a specific layer like
MLP layer, f(·) is a non-linear function like ReLU,
Wdown ∈ Rd×r and Wup ∈ Rr×d form a bottle-
neck MLP to save learnable parameters.
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Dataset # Train # Test Answer

Commonsense 170K - -
BoolQ 9.4K 3,270 Yes/No
PIQA 16.1K 1,830 Option
SIQA 33.4K 1,954 Option
HellaSwag 39.9K 10,042 Option
WinoGrande 63.2K 1,267 Option
ARC-e 1.1K 2,376 Option
ARC-c 2.3K 1,172 Option
OBQA 5.0K 500 Option

Math10K 10K - -
GSM8K 8.8K 1,319 Number
AQuA 100K 254 Option
MAWPS - 238 Number
SVAMP - 1,000 Number

Table 7: The statistics of datasets for evaluation. # Train
and # Test denote the number of training and test sam-
ples respectively.

As shown in the Figure 5, the three PEFT meth-
ods mentioned above all utilize the layer-based
design, i.e., adding identical learnable modules or
parameters to each layer of the pre-trained LLM.

It is important to note that we did not include
the prompt-based method in our comparison be-
cause original prompt tuning (Lester et al., 2021)
is not a layer-based method; rather, it adds learn-
able soft prompts at the input layer. Furthermore,
while some advancements in prompt tuning are
layer-based, such as Prefix Tuning (Li and Liang,
2021), which independently adds soft prompts to
the hidden states at all layers, they do not align
with our design. This misalignment occurs because
our proposed response suppression operates on the
output of a PEFT method conditioned on the input,
whereas prompt-based methods produce an output
that is not conditioned on the input.

A.3 Experimental Details

A.3.1 Dataset Statistics
Detailed dataset statistics can be referred to Ta-
ble 7. Note that we trained on Commonsense and
Math10K for commonsense reasoning and arith-
metic reasoning, respectively. During testing, we
evaluated the predefined test sets of each dataset.

A.3.2 Hyperparameters
Detailed hyperparameter settings are provided in
Table 8 and Table 9. For PEFT training, we ad-
here to the settings outlined by LLM-Adapter Li-

brary (Hu et al., 2023), with the exception of the
learning rate. For IST, we consistently set Nu to
25% of the layers for the fine-tuning loop, Nv to
50% of the layers for the importance updating loop,
and β to 0.25. Additionally, µ is set to 10 and
100 for the Commonsense Reasoning task and the
Arithmetic Reasoning task, respectively.

A.4 Additional Experiments

A.4.1 Importance Updating Rate µ

The updating rate of importance is associated with
several hyperparameters, such as Tc, Nc, Nv, and
µ. To narrow the hyperparameter search space and
reduce the complexity of using IST, we fixed most
hyperparameters, setting Tc to 10, Nc to 3, and
Nv to half the number of layers. We then adjusted
the importance updating rate µ to match with the
dynamics of PEFT fine-tuning. This parameter
is largely dependent on the maximum number of
training iterations. If µ is too small, the method
will approximate a random strategy. Conversely, if
µ is too large, the method will tend to train only
a fixed set of layers. As shown in Table 10, we
consider µ values of [0.1, 1, 10, 100, 1000]. µ is a
parameter that exhibits insensitivity, indicating the
robustness of our method.

A.4.2 Response Suppression Factor β

Table 11 illustrates the effect of varying the re-
sponse suppression factor β on training a LLaMA
7B model using the commonsense dataset. We eval-
uated among four values: [0, 0.1, 0.25, 0.5]. When
the factor is set to 0, which is equivalent to drop-
ping the PEFT modules within the layer, it does
not adequately reflect the importance of PEFT. In-
creasing the factor enhances performance, peaking
at 0.25. This indicates that compared to removing
the PEFT modules, suppressing its output better
captures its influence on the loss. However, further
increasing the factor to 0.5 results in diminished ef-
fectiveness, likely due to reduced variation in loss.
These findings suggest that a relatively small, non-
zero factor is optimal for accurately estimating the
PEFT module’s impact on loss.

A.4.3 Adaptability to SoTA PEFT method
To demonstrate the versatility of the IST method,
we integrated IST into a recent LoRA variant called
DORA (Liu et al., 2024), which decouples the
low-rank component into direction and magnitude,
yielding better performance. As shown in Table 12,
our method can enhance the DoRA method in
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Hyperparameters
(LoRA + IST)

Commonsense Reasoning Arithmetic Reasoning
LLaMA7B LLaMA13B GPT-J6B BLOOMz7B LLAMA38B LLAMA38B

Rank r 32 32
α 64 64

Dropout 0.05 0.05
Optimizer AdamW AdamW

LR 2e-4 1e-4
LR Scheduler Warmup Steps Warmup Steps

Batch size 16 16
Warmup Steps 100 100

Epochs 3 3
Where {Q, K, V, Up, Down} {Q, K, V, Up, Down}

µ 10 100
β 0.25 0.25

NL, Nu, Nv {32, 8, 16} {40, 10, 20} {28, 7, 14} {30, 8, 15} {32, 8, 16} {32, 8, 16}

Table 8: Hyperparameter configurations of IST for LLaMA-7B/13B, GPT-J 6B, BLOOMz 7B, and LLaMA3-8B
with LoRA.

Hyperparameters Series Adapter + IST Parallel Adapter + IST
LLaMA7B LLaMA13B LLaMA7B LLaMA13B

Bottleneck Size 256
Optimizer AdamW

LR 2e-4
LR Scheduler Warmup Steps

Batch size 16
Warmup Steps 100

Epochs 3
Where {Up, Down} {Up, Gate}

µ 10
β 0.25

NL, Nu, Nv {32, 8, 16} {40, 10, 20} {32, 8, 16} {40, 10, 20}

Table 9: Hyperparameter configurations of IST for
LLaMA-7B/13B on commonsense reasoning tasks with
series and parallel adapters.

Random
IST

µ=0.1 µ=1 µ=10 µ=100 µ=1000
75.8 75.7 75.9 76.5 74.8 73.9

Table 10: Sensitivity of importance updating rate µ.

Commonsense Reasoning tasks without any loss
of performance, while also requiring less memory
and computational resources. This efficiency is
achieved by explicitly training only a subset of all
layers, highlighting the general applicability of our
proposed IST.

A.5 Time Consumption

To accurately estimate the training time, we ran-
domly sampled prompts from the Alpaca dataset
and limited the maximum output token length to
1024. We used LoRA on LLaMA-7B with a rank of
32 as our baseline. Additionally, we employed the
LISA (Pan et al., 2024) method, which randomly
selects two transformer layers for updating. We
conducted 140 iterations and averaged the forward

Method Results

Baseline 74.7
IST with β = 0 75.0
IST with β = 0.1 76.3
IST with β = 0.25 76.5
IST with β = 0.5 75.3

Table 11: Effect of response suppression factor β within
IST for LLaMA-7B on commonsense reasoning tasks
with LoRA.

and backward times of the middle 100 iterations
to obtain a stable time estimate during training.
As shown in Table 13, LISA reduces the forward
time compared to LoRA due to the absence of addi-
tional parameters for inference, while it increases
the backward time. Conversely, IST maintains
the forward pass time but reduces the backward
time by approximately 10%. Despite this, IST re-
quires an additional three forward passes every 10
fine-tuning loops for importance updating. Con-
sequently, after 100 iterations, the total time con-
sumption for IST becomes comparable to that of
LISA and slightly higher than LoRA.
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Model PEFT BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA38B
DoRAICML2024 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
DoRA + IST 74.0 89.2 80.2 95.0 86.2 90.3 81.2 85.6 85.2

Table 12: Adaptability to the latest LoRA-variant method called DoRA (Liu et al., 2024). Our approach can reduce
memory consumption without compromising accuracy.

LoRA LISA LoRA + IST

Forward time
per iter. (ms) 135 101 135

Backward time
per iter. (ms) 184 225 150

Time consumption
per 100 iter. (s) 31.9 32.6 32.6

Table 13: Comparison of Training Times. All results
were obtained using one Nvidia GTX 4090 GPU.
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