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Abstract

Structure information is critical for understand-
ing the semantics of text-rich images, such as
documents, tables, and charts. Existing Multi-
modal Large Language Models (MLLMs) for
Visual Document Understanding are equipped
with text recognition ability but lack general
structure understanding abilities for text-rich
document images. In this work, we empha-
size the importance of structure information
in Visual Document Understanding and pro-
pose Unified Structure Learning to boost the
performance of MLLMs. Based on publicly
available text-rich images, we build a compre-
hensive training set DocStruct4M to support
structure-aware parsing tasks and multi-grained
text localization tasks across 5 domains: doc-
ument, webpage, table, chart, and natural im-
age. To better encode structure information,
we design a simple and effective vision-to-text
module H-Reducer, which can not only main-
tain the layout information but also reduce the
length of visual features by merging horizon-
tal adjacent patches through convolution, en-
abling the LLM to understand high-resolution
images more efficiently. Our model DocOwl
1.5 achieves state-of-the-art performance on
10 visual document understanding benchmarks.
All codes, models, and datasets are publicly
available at https://github.com/X-PLUG/
mPLUG-DocOwl/tree/main/DocOwl1.5.

1 Introduction

Textual information in images manifests with a
multitude of visual structures, spanning the sim-
plicity of plain text to the systematic grid layouts
of tables and incorporating a spectrum of graphical
representations such as pie, line, and bar charts.
These elements may appear in isolation or be intri-
cately interwoven within the framework of docu-
ments and webpages, reflecting a rich diversity of
informational architecture across posters, invoices,
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infographics, scientific reports, academic and news
websites, etc. As shown in Fig. 1, besides the basic
textual content, structure information also plays a
big role in Visual Document Understanding (Huang
et al., 2022; Tang et al., 2023b; Lee et al., 2023).

With basic abilities to understand general images
and comprehend structured texts through the LLM
decoder, MLLMs (Ye et al., 2023c,d; Liu et al.,
2023b,a; Zhu et al., 2023; Li et al., 2023a) have
the potential to achieve unified structure learning
on text-rich images. However, due to the visual
encoder and vision-to-text module being trained
on general image-text pairs and not specifically
optimized to represent the textual and structural
information in text-rich images, they still face great
challenges with images with rich text information.
For better Visual Document Understanding with
MLLMs, some works (Ye et al., 2023a,b; Bai et al.,
2023b; Feng et al., 2023; Wei et al., 2023) at-
tempt to design text-reading tasks to strengthen
the text recognition ability, but either ignore the
structure comprehension or only cover limited do-
mains, such as just webpages (Lee et al., 2023) or
documents (Feng et al., 2023). In this work, we
first perform unified structure learning on text-rich
images for MLLMs across 5 domains: document,
webpage, table, chart, and natural image.

For better structural understanding, we first de-
sign a simple and effective vision-to-text module,
namely H-Reducer. Unlike the Resampler (Alayrac
et al., 2022) or Q-former (Li et al., 2023a) which
fuses visual features with learnable queries but af-
fects spatial information, the H-Reducer accumu-
lates neighborhood visual features through convo-
lution to keep the relative positional relationships.
Compared with V2T modules with only linear lay-
ers (Liu et al., 2023b,a), it produces much fewer
visual features, which is more efficient for LLM
to understand high-resolution document images.
Considering texts in document images are most or-
ganized from left to right, H-Reducer merges visual
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(a) What is the assigned 
response code? W24

(b) which edition has unlimited remote desktop services and 
virtulization rights? Datacenter

(c) What is the forecast for the increase 
in customs duty revenue in 2030? 100

(d) What is the percentage of 
Iraqi dependents citizen? 0.19.

Figure 1: Illustrations of the importance of structure information in Visual Document Understanding.

features at the horizontal level.
Our Unified Structure Learning comprises

structure-aware parsing tasks and multi-grained
text localization tasks. To learn the organization of
text contents, the former mainly teaches the model
to parse the texts in the image in a structure-aware
style, such as using line feeds and spaces to repre-
sent the structure of documents or webpages, and
using extended Markdown syntax to represent the
structure of tables and charts. Multi-grained text
localization tasks further enhance the ability to cor-
relate visually situated texts and concrete positions
in the image. To support unified structure learning,
based on publicly available datasets, we carefully
build a comprehensive training set DocStruct4M by
constructing structure-aware sequences and multi-
grained pairs of text and bounding boxes. The
DocOwl 1.5 is first trained with the Unified Struc-
ture Learning and then followed by the Multi-task
Tuning among downstream tasks.

Our contributions in this work are three-fold:

• We first propose Unified Structure Learn-
ing on text-rich images for MLLMs and de-
sign both structure-aware parsing tasks and
multi-grained text localization tasks across
5 domains. A comprehensive dataset Doc-
Struct4M is carefully built to support Unified
Structure Learning.

• We design a simple and effective vision-to-
text module for structure learning and validate
its effectiveness with extensive experiments.

• DocOwl 1.5 achieves state-of-the-art OCR-
free performance on 10 Visual Document Un-

derstanding tasks.

2 Related Work

Visual Document Understanding (VDU) (Lee
et al., 2023; Ye et al., 2023b), aims to compre-
hend images with rich text information. Such
images range from documents (Mathew et al.,
2021, 2022; Svetlichnaya, 2020; Stanislawek et al.,
2021; Zhang et al., 2023a), tables (Pasupat and
Liang, 2015; Chen et al., 2020; Zhong et al., 2020),
charts (Masry et al., 2022; Kafle et al., 2018;
Methani et al., 2020; Kantharaj et al., 2022; Tang
et al., 2023a; Hu et al., 2023; Han et al., 2023;
Meng et al., 2024), natural images (Sidorov et al.,
2020; Singh et al., 2019; Hu et al., 2021) to web-
page screenshots (Tanaka et al., 2021; Chen et al.,
2021), where diverse composition of text and visual
objects contains a wealth of information. Accord-
ing to whether relying on an off-the-shelf OCR
system to recognize texts in the image, models
for Visual Document Understanding can be cate-
gorized into OCR-dependent models (Tang et al.,
2023b; Xu et al., 2021; Huang et al., 2022; Yang
et al., 2021) and OCR-free ones (Kim et al., 2022;
Lee et al., 2023). To leverage recognized texts
from an OCR system, OCR-dependent models are
always trained to align textual and visual inputs,
such as recovering masked text and layout informa-
tion given image and retained text as inputs (Tang
et al., 2023b). As for OCR-free methods, training
with tasks about text recognition is indispensable.
Dount (Kim et al., 2022) designs the text reading
task to output continuous text sequences that ig-
nore structure information. To leverage structure
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information, Pix2Struct (Lee et al., 2023) designs a
Screenshot Parsing Task to generate the HTML
DOM tree for webpage screenshots but is hard
to apply to other types of images. In this work,
we first propose Unified Structure Learning for all
image types and carefully build a comprehensive
dataset to support layout learning.
Multimodal Large Language Models (MLLM)
have shown strong vision understanding and open-
ended conversation abilities (Ye et al., 2023c,d;
Zhu et al., 2023; Dai et al., 2023; Bai et al., 2023b;
Hong et al., 2023; Zhang et al., 2024) for natural
images. They follow the architecture paradigm
of connecting a vision encoder,e.g. ViT (Doso-
vitskiy et al., 2021; Radford et al., 2021), with
a Large Language Model (LLM) (Touvron et al.,
2023; Vicuna, 2023; Bai et al., 2023a) by a Vision-
to-Text (V2T) module, such as simple linear lay-
ers (Liu et al., 2023b,a) or a Q-Former (Li et al.,
2023a)/Resampler (Alayrac et al., 2022)/Abstrac-
tor (Ye et al., 2023c,d) with learnable queries.
To enable MLLMs to comprehend images with
rich texts, there are major two challenges: how
to encode high-resolution images and how to un-
derstand visually-situated texts. To tackle high-
resolution images, most works choose to further
train (Bai et al., 2023b; Feng et al., 2023) or extraly
add a high-resolution vision encoder (Hong et al.,
2023). UReader (Ye et al., 2023b) first proposes
to keep the low-resolution vision encoder and use
a shape-adaptive cropping module to crop raw im-
ages into multiple sub-images with low resolution.
To enhance the visually-situated text understand-
ing, some work design tasks of reading texts from
top-left to bottom-right without taking into account
the importance of structure (Ye et al., 2023b; Bai
et al., 2023b). CogAgent (Hong et al., 2023) and
DocPedia (Feng et al., 2023) further try strengthen-
ing the layout understanding for documents, web-
pages, and natural images with text grounding tasks.
However, the comprehension of the overall struc-
ture is ignored, and tables and charts are not cov-
ered. In this work, to strengthen structure under-
standing, we design structure-aware praising and
multi-grained text localization tasks for all types of
images, covering documents, tables, charts, web-
pages, and natural images. Besides, we propose
a vision-to-text architecture H-Reducer to better
maintain spatial information of visual features by
convolution. Compared with MiniGPT-v2 (Chen
et al., 2023), H-Reducer merges adjacent tokens
with a convolution layer while MiniGPT-v2 con-

catenates 4 tokens and merges them with a linear
layer. The convolution layer is more convenient
for adjusting the merging scope, enabling us to per-
form an ablation study of different window sizes
to determine the most suitable one for document
understanding. The C-Abstractor (Cha et al., 2024)
comprises 18 convolution layers with 1x1 sliding
window and 1 mean pooling layer, showing that
it doesn’t reduce tokens with the convolution, but
average pooling. However, H-Reducer just applies
1 convolution layer with a 1x4 window size to re-
duce vision tokens, with much fewer parameters
and achieving comparable performance.

3 DocOwl 1.5

DocOwl 1.5 consists of a visual encoder, a large lan-
guage model, and a vision-to-text module, namely
H-Reducer to better keep the visual text and lay-
out information by ensembling horizontal visual
features. It’s first trained with Unified Structure
Learning to enhance text recognition and structure
understanding and then tuned on multiple down-
stream tasks of Visual Document understanding.

3.1 Model Architecture

High-resolution Image Encoding. Encoding high-
resolution images is critical to ensure that the de-
coder can use rich text information from document
images (Kim et al., 2022; Lee et al., 2023; Ye
et al., 2023b). As shown in Fig. 2, we utilize
a parameter-free Shape-adaptive Cropping Mod-
ule (Ye et al., 2023b) to crop a shape-variable
high-resolution image I into multiple fixed-size
sub-images (I1, I2, ..., IC), where C is the number
of crops. To keep the overall layout information,
the raw image is also resized to a low-resolution
one as the global image I0. Then, each image Ii
in (I0, I1, ..., IC) is independently encoded to a se-
quence of visual features Vi = (v1i , v

2
i , ..., v

L
i ), 0 ≤

i ≤ C by a transformer-based Visual Encoder,
where vji , 1 ≤ j ≤ L is a D-dimension vector,
L is the length of visual features for each image.
Spatial-aware V2T Module: H-Reducer. There
are two kinds of popular vision-to-text modules for
MLLMs: a MLP (Liu et al., 2023b,a; Zhu et al.,
2023) or a cross-attention module with learnable
queries (Ye et al., 2023c; Bai et al., 2023b; Alayrac
et al., 2022; Li et al., 2023a). Both two are not
quite suitable for representing high-resolution text-
rich images. The former projects complete visual
features into the language embedding space. It
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Twitter. According to the image, there are 560 million and 70 million active users for Twitter and Pinterest. Thus, 
Twitter has more active users.
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Figure 2: The overall architecture of DocOwl 1.5. The global image and cropped images are processed independently
by the Visual Encoder and H-Reducer. <rowx-coly> is the special textual token to indicate that the position of the
cropped image in the original image is the xth row and yth column.

maintains all spatial information in the document
image but keeps the sequence length of raw vi-
sual features, which is too long when processing
high-resolution images. For example, encoding a
1,344x1,344 image with the ViT/L-14 results in
9,216 visual tokens. The cross-attention module
could greatly reduce the length of the visual se-
quence to the number of learnable queries, but may
lose spatial information during semantic fusion.

In this work, we design a more suitable vision-to-
text module for Visual Document Understanding,
namely H-Reducer, which not only reduces visual
sequence length but also keeps the spatial informa-
tion. As shown in Fig. 2, the H-Reducer is com-
prised of a convolution layer to reduce sequence
length and a fully-connected layer to project visual
features to language embedding space. Since most
textual information in document images is arranged
from left to right, the horizontal text information
is usually semantically coherent. Thus, the kernel
size and stride size in the convolution layer are
set as 1x4 to ensemble horizontal 4 visual features.
The output channel is set equal to the input channel
D. The convolution calculation is as follows:

vji = f(v4j−3
i , v4j−2

i , v4j−1
i , v4ji ), 1 ≤ j ≤ L/4,

(1)

V i = (v1i , v
2
i , ..., v

L/4
i ), (2)

where f represents the dot product with kernel
weights on multiple channels. After the convo-
lution layer, the visual features Vi are converted to
the V i. Then, with a fully connected layer to align

visual features to the language embedding space,
the V i are transferred to V̂i = (v̂1i , v̂

2
i , ..., v̂

L/4
i ).

Multimodal Modeling with LLM. To better dis-
tinguish visual and textual inputs, we insert the
Modality-adaptive Module (MAM) (Ye et al.,
2023d) into the LLM, which utilizes two sets of
linear projection layers to separately perform the
key/value projection for visual features and tex-
tual features. To help the LLM correlate multiple
cropped sub-images, UReader (Ye et al., 2023b)
designs learnable crop position embeddings to de-
note the row and column position in the raw image.
In this work, we simply add special textual tokens
‘<rowx_coly>’ before the visual features of each
cropped image, where x and y refer to the row
and column index respectively. For the global im-
age, the textual indicator token is ‘<global_img>’.
This design eliminates the need to introduce addi-
tional parameters and is more friendly to the LLM
decoder. Our experiments validate that it achieves
comparable effects as the crop position embedding.
Overall, the decoding of the LLM is as follows:

Y = LLM([T0; V̂0,T1; V̂1, ...,TC; V̂C; X]) (3)

where [; ] means the concatenation operation, C is
the crop number of the image, Tj , 0 ≤ j ≤ C is the
textual embeddings of the special textual indicator
for the global image or positions of cropped images,
V̂j is the visual features of a global or cropped im-
age, X is the textual embeddings of the instruction,
Y is the predicted answer.
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LLM MAM

DocOwl 1.5

Read text in the image.

<doc> Universities and 
departments \n
Students are members of the \n
University, a department and a \n
College.\n
 •Course content \n
 •Lectures,…</doc>

Parse the table in Markdown style.

<md> | | <COLSPAN=2> Factors levels in actual values | | | |  
\n
| Formula | Pluronic to drug ratio | P123 percentage (%) | 
EE% + SD (%)a | PS + SD (nm)a | PDI + SDa | \n
 | --- | --- | --- | --- | --- | --- | \n 
| M1 | 10 | 10 | 7.27 ± 0.47 | 58.73 ± 1.56 | 0.23 ± 0.01 | \n
…
| M11 | 30 | 50 | 99.43 ± 0.73 | 23.74 ± 0.95 | 0.13 ± 0.03 | 
</md>

Convert the 
chart into 
Markdown 
format.

<md> | Country | 1960 | 1961 | 1962 | 1963 | \n
| --- | --- | --- | --- | --- | \n
| Ecuador | 45 | 44.1 | 43.4 | 43.4 | \n
…
| Iran | 45.2 | 44.3 | 43.7 | 43.8 | </md>

Describe the content and text 
within the image.

emotional players celebrate at the 
final whistle of their game against 
football team <ocr> QATAR 
AIRWAYS QATAR 15 CAP 
</ocr>

Identify the text 
within the 
bounding box 
<bbox>212, 52,
896, 418</bbox>

<ocr> September 15, 1972 \n
DATE BIOGRAPHICAL DATA \n
NAME Mr. Milovan Bosnjak \n
…
PROFESSIONAL EXPERIENCE (In decending 
chronological order; position </ocr>

Predict the bounding box of 
the text <ocr> 17. Loans 
Given 75.64 55.24 \n
18. Receipt towards Loan 
Repayment 64.11 4.64 0.13 
0.11 \n
19. Advances Given 26.27 
0.88 6.50 </ocr> <bbox>120, 538, 753, 584 </bbox>

Document Parsing Natural Image Parsing

Table Parsing

Chart Parsing

Text Recognition 
Text Grounding 

Figure 3: The illustration of Unified Structure Learning of DocOwl 1.5.

3.2 Unified Structure Learning

For comprehensive document understanding, we
design a Unified Structure Learning across 5 do-
mains, including natural images, documents, tables,
charts, and webpages. It involves both structure-
aware parsing tasks and multi-grained text localiza-
tion tasks, as shown in Fig. 3.

Document/Webpage Parsing. To represent the
structure information, Pix2Struct (Lee et al., 2023)
parses webpage screenshots with condensed HTML
DOM trees based on the HTML source codes but
not feasible for other formats of documents or web-
page screenshots, e.g. PDF. In documents or web-
pages, horizontal and vertical distances between
texts form the main layout information. Therefore,
to make the structure-aware parsing task applicable
to most documents and webpage screenshots, we
choose to add extra line feeds(‘\n’) and spaces
into the text sequence to denote different lines and
horizontal distances. The greater the horizontal
distance, the more space characters.

Table Parsing. Different from documents or web-
pages, tables are structured in a more standardized
way, where row and column correspondences repre-
sent key-value pairs. HTML and Markdown codes
are mainly two kinds of text sequences used to rep-
resent a table. HTML codes can represent all kinds
of tables, with or without cells spanning multiple
rows and grids, but they contain too many paired

labels (e.g. ‘<tr></tr>’ and ‘<td></td>’), caus-
ing text sequences to be too long. Markdown codes
can represent a table with concise text sequence,
but they cannot represent cells spanning multiple
rows and columns. To represent all tables with con-
cise text sequence, we follow the main grammar
of Markdown to represent table structure with ‘|’
and line feeds(‘\n’). To represent cells spanning
multiple rows and columns, we add special text to-
kens ‘<COLSPAN=x>’ and ‘<ROWSPAN=y>’ before
the value, as shown in Fig. 3.
Chart Parsing. Unlike documents and tables, or-
ganizing texts in reading order cannot represent the
structure of charts. Considering that the chart is
a visualization form of the table, parsing charts to
tables could best maintain the mathematical char-
acteristics of the chart. This requires the model
to understand the structure of the chart and the
alignment of the x/y axis. Besides, to keep con-
sistent with the Table Parsing task, we also use
Markdown codes to represent the data tables of
charts, as shown in Fig. 3.
Natural Image Parsing. Semantics of natural im-
ages is a combination of natural objects and scene
texts. Thus, parsing natural images is necessary to
organize scene texts and mention the main image
content. Manually annotating captions to describe
the relationship between objects and scene texts is
labour- and financial-intensive. Like TAP (Yang
et al., 2021), we concatenate the general caption
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with OCR texts to form the target parsing sequence.
Multi-grained Text Localization. For Visual
Document Understanding, structure-aware parsing
tasks mainly focus on organizing texts according
to the overall structure, while neglecting the cor-
respondence between specific texts and local posi-
tions. Correlating texts with the concrete position
in images is another basic structure understanding
ability for visual documents. To support text po-
sition learning, we design two symmetrical tasks,
namely Multi-grained Text Grounding and Multi-
grained Text Recognition. The former aims to pre-
dict the bounding box given the visually-situated
texts, while the latter does the opposite. We set
four granularities of texts for these two tasks: word,
phrase, line, and block, with progressively increas-
ing text lengths. More details about such four gran-
ularities can be found in Appendix A.5.

Overall, to support the unified structure learn-
ing for text-rich images, we build a Doc-
Struct4M dataset with 4M samples by ensembling
training sets of 17 publicly available datasets and
constructing structure-aware text sequences or text-
position pairs as the targets. The form of instruc-
tions for each task is very diverse for developing the
general instruction-following ability of the model.
The statistics of DocStruct4M and details of target
construction can be found in Appendix A.

3.3 Multi-task Fine-tuning
Through Unified Structure Learning, models could
well understand the structure of diverse document
images but cannot follow users’ instructions to do
different types of tasks, such as information extrac-
tion or image captioning. So, we further perform
multi-task fine-tuning to train a generalist of visual
document understanding as UReader.

3.4 Training Paradigm
DocOwl 1.5 is trained in a two-stage framework.
Considering the LLM has strong comprehension
abilities for structured text (Wang et al., 2023b;
Zhang et al., 2023b), we argue that the main limita-
tion of MLLM in visual document understanding is
the representation ability of the Visual Encoder and
Vision-to-Text module for visual text and structure
information. Thus, during the Unified Structure
Learning, we freeze the LLM and tune the Visual
Encoder and H-Reducer. The MAM is also opti-
mized to help the LLM better distinguish visual
features and texts parsed from the image. Dur-
ing the stage of Multi-task Fine-tuning, the model

mainly learns how to follow the user’s instructions
to give answers based on visually-situated text and
structure understanding capabilities acquired in the
first stage. Therefore, the Visual Encoder is frozen
and other modules are tuned. More implementation
details can be found in Appendix B.1.

4 Experiments

4.1 Main Results

We evaluate the Visual Document Understand-
ing performance on 10 text-rich image bench-
marks, covering documents (DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022),
DeepForm (Svetlichnaya, 2020), KLC (Stanis-
lawek et al., 2021)), tables (WTQ (Pasupat and
Liang, 2015), TabFact (Chen et al., 2020)), charts
(ChartQA (Masry et al., 2022)), natural images
(TextVQA (Singh et al., 2019), TextCaps (Sidorov
et al., 2020)), and webpage screenshots (Vi-
sualMRC (Tanaka et al., 2021)). We compare Do-
cOwl 1.5 with state-of-the-art OCR-free models,
including both Multimodal Large Language Mod-
els adapted for recognizing texts and much smaller
models trained only for document understanding.
The detailed comparison of model settings can be
found in Appendix B.2.

As shown in Table 1, previous MLLMs with
more than 7B parameters underperform domain-
specific models with less than 1B parameters, show-
ing that the document understanding is still a
shortcoming for existing MLLMs. Our DocOwl
1.5 outperforms both domain-specific models and
MLLMs with similar sizes on all 10 benchmarks.
This validates that DocOwl 1.5 is much stronger on
visual document understanding across 5 domains,
covering visual question answering, information re-
trieval, natural language inference, and image cap-
tioning tasks. Besides, with much fewer unnatural
data (3M vs 9M) and parameters (8.1B vs 17.3B),
DocOwl 1.5 outperforms CogAgent (Hong et al.,
2023) on InfoVQA and ChartQA, and achieves
comparable performance on DocVQA. This sug-
gests that our unified structure learning with Doc-
Struct4M is more efficient in learning printed text
recognition and how to analyze documents. How-
ever, our model still underperforms CogAgent on
TextVQA, which requires the ability of scene text
recognition and general knowledge about natural
objects. The primary reason is that scene texts are
more diverse in shapes than printed texts and CogA-
gent is trained on 98M samples of scene text recog-
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Table 1: Comparison with OCR-free methods on various types of text-rich image understanding tasks. The
superscript ‘∗’ refers to models separately fine-tuned on each downstream task, rather than generalists. The
underline means the best performance among models with <10B parameters.

Model Size Doc Info Deep KLC WTQ Tab Chart Text Text Visual
VQA VQA Form Fact QA VQA Caps MRC

Dessurt∗ <1B 63.2 - - - - - - - - -
Donut∗ <1B 67.5 11.6 61.6 30.0 18.8 54.6 41.8 43.5 74.4 93.91
Pix2Struct∗base <1B 72.1 38.2 - - - - 56.0 - 88.0 -
Pix2Struct∗large 1.3B 76.6 40.0 - - - - 58.6 - 95.5 -

DocPeida 7.0B 47.1 15.2 - - - - 46.9 60.2 - -
DocOwl 7.1B 62.2 38.2 42.6 30.3 26.9 60.2 57.4 52.6 111.9 188.8
QwenVL 9.6B 65.1 35.4 - - - - 65.7 63.8 - -
UReader 7.1B 65.4 42.2 49.5 32.8 29.4 67.6 59.3 57.6 118.4 221.7
Monkey 9.8B 66.5 36.1 40.6 32.8 25.3 - - 67.6 93.2 -
Vary 7.0B 76.3 - - - - - 66.1 - - -
CogAgent 17.3B 81.6 44.5 - - - - 68.4 76.1 - -

DocOwl-1.5 8.1B 81.6 50.4 68.8 37.9 39.8 80.4 70.5 68.8 132.0 239.5

nition from LAION-2B (Schuhmann et al., 2022)
and COYO-700M (Byeon et al., 2022), much more
than the natural images (1M) in DocStruct4M. In
this work, we mainly focus on improving the uni-
fied structure comprehension of visual documents
and leave further scaling up data on natural scenes
as future work.

4.2 Ablation Study
As shown in Table 2, we further perform a compre-
hensive ablation study to validate the effectiveness
of our H-Reducer and Unified Structure Learning.

Firstly, initializing from a stronger general
MLLMs brings better performance on text-rich
images (r2 vs r1), showing general vision-and-
language knowledge benefits visual document un-
derstanding. Tuning the visual encoder during
multi-task fine-tuning significantly improves the
document understanding performance (r3 vs r2).
This suggests that the visual representation of doc-
ument images may be the main shortcoming of
MLLMs and inspires us to design Unified Struc-
ture Learning to enhance the representation ability
of the visual encoder for visual texts and structure.
Effectiveness of H-Reducer. When using the
Shape-adaptive Cropping Module, the image res-
olution supported by the MLLM is the product of
the cropping number and basic resolution of each
crop. With the Abstractor as the vision-to-text mod-
ule, reducing the cropping number causes an obvi-
ous performance decrease (r4 vs r3) on documents.
However, with a smaller cropping number, the H-
Reducer achieves better performance than the Ab-
stractor (r6 vs r3), showing that 4482 × 9 ≈ 221 is
an acceptable resolution for existing benchmarks

and the H-Reducer is stronger on maintaining rich
text information during vision-and-language fea-
ture alignment. Compared with the CAbstrac-
tor (Cha et al., 2024), H-Reducer achieves similar
performance (r6 vs r5) while using 10% parameters
of C-Abstractor. This shows merging tokens with
1 learnable convolution layer is more parameter-
efficient than multiple 1x1 convolution layers with
mean pooling in document understanding. Besides,
we further compare different settings of the merg-
ing shape in the convolution layer. With the same
number of merged tokens, the model with the 1x4
merging shape achieves better performance than
the one with the 2x2 merging shape on document
and table datasets but slightly worse performance
on chart understanding (r7 vs r6). This is consis-
tent with the common sense that documents and ta-
bles mainly organize texts in the left-to-right order
while the semantic structures of charts are much
more flexible. A square merging shape is more
suited to encode visual features in the form of bars,
lines, or pies while the 1x4 merging shape is more
appropriate for general document understanding.
Further extending the 1x4 merging shape horizon-
tally and vertically decreases the length of visual
features but at the cost of performance degradation
(r8-r10). Considering the overall performance on
all text-rich images, we finally choose the 1x4 as
the merging shape in H-Reducer.

Besides proving the effectiveness of H-
Reducer through downstream text-rich image
understanding performance, we further directly
compare the text localization performance after
the Unified Structure Learning. Experiments
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Table 2: Ablation study of model setting. ‘Crop’ refers to the maximum number of cropped images. ‘CropPos’
means using learnable embeddings (‘Emb’) or textual tokens (‘Text’) to represent the position of cropped images.
‘Parsing’ and ‘MTL’ refer to structure-aware parsing tasks and the Multi-grained Text Location task, respectively.
‘Owl(224)’ and ‘Owl2(448)’ refer to mPLUG-Owl with 224 resolution and mPLUG-Owl2 with 448 resolution.

Model Architecture Structure Multi-task Tuning DocVQA TabFact ChartQAInit V2T Crop CropPos Learning ViT LLM

r1 Owl(224) Abstractor 20 Emb × × × 65.4 67.6 59.3
r2 Owl2(448) Abstractor 20 Emb × × × 66.3 69.8 60.6
r3 Owl2(448) Abstractor 20 Emb × ✓ × 71.4 70.3 64.2
r4 Owl2(448) Abstractor 9 Emb × ✓ × 68.0 70.0 64.2

r5 Owl2(448) CAbstractor 9 Emb × ✓ × 72.6 72.3 65.2
r6 Owl2(448) H-Reducer(1x4) 9 Emb × ✓ × 72.8 72.9 65.0
r7 Owl2(448) H-Reducer(2x2) 9 Emb × ✓ × 71.8 72.1 65.2
r8 Owl2(448) H-Reducer(2x4) 9 Emb × ✓ × 71.4 71.1 66.0
r9 Owl2(448) H-Reducer(1x8) 9 Emb × ✓ × 69.9 71.2 64.4

r10 Owl2(448) H-Reducer(2x8) 9 Emb × ✓ × 69.2 70.2 65.6

r11 Owl2(448) H-Reducer(1x4) 9 Emb Parsing × × 77.7 76.5 67.5
r12 Owl2(448) H-Reducer(1x4) 9 Emb Parsing × ✓ 78.9 78.1 68.1
r13 Owl2(448) H-Reducer(1x4) 9 Text Parsing × ✓ 79.8 77.7 69.1
r14 Owl2(448) H-Reducer(1x4) 9 Text Parsing+MTL × ✓ 81.6 80.4 70.5

on a carefully-built Multi-grained Text Localiza-
tion evaluation set DocLocal4K validate that H-
Reducer(1x4) is better than H-Reducer(2x2) and
Abstractor in preserving spatial features. More
details about DocLocal4K and localization perfor-
mance can be found in Appendix B.4.

Effectiveness of Unified Structure Learning. Af-
ter determining the vision-to-text module, we per-
form two-stage training with Unified Structure
Learning. With only the structure-aware parsing
tasks, there is significant improvement across dif-
ferent domains (r11 vs r6). This validates that
fine-tuning the visual encoder and H-Reducer with
structure-aware parsing tasks greatly helps MLLMs
understand text-rich images. Further tuning the pa-
rameters of LLM brings slight improvement (r12
vs r11), suggesting that general language knowl-
edge is not the main obstacle to visual document
understanding. By replacing the learnable crop po-
sition embeddings with special textual tokens, the
model achieves better performance (r13 vs r12),
showing that the LLM can well understand the rel-
ative positions of multiple cropped images with
just simple textual indicators. Finally, by intro-
ducing Multi-grained Text Localization tasks, Do-
cOwl 1.5 achieves the best performance, validating
that correlating visual texts with concrete positions
helps comprehend documents more accurately.

Effectiveness of the Two-stage Training. Besides
two-stage training, we also try one-stage joint train-
ing of the structure learning and downstream tasks
and gradually increase samples from DocStruct4M.
Our experiments validate that the two-stage train-
ing could better enhance basic text recognition and

structure parsing abilities and is more beneficial
and efficient for downstream document understand-
ing. More details can be found in Appendix B.5.

4.3 Qualitative Results

Besides quantitative results, we further present
some qualitative results of visual document under-
standing on different domains of images. As shown
in Fig. 4(a) and (b), both models answer the ques-
tion with texts in the image. DocOwl 1.5 can better
understand the structure of two documents and give
correct answers. In Fig. 4(c), due to the learning
of parsing chart with Markdown codes, DocOwl
1.5 can better understand the chart and success-
fully correlate the x/y axis. Fig. 4(d) shows that al-
though inconsistent with the ground truth, DocOwl
1.5 gives another correct answer with the help of
stronger structure understanding on tables. More
qualitative results can be found in Appendix B.6.

5 Conclusion

To enhance the Visual Document Understanding
performance of MLLMs, we first propose Uni-
fied Structure Learning across 5 domains of text-
rich images, including both structure-aware parsing
tasks and multi-grained text localization tasks. To
better maintain structure and spatial information
during vision-and-language feature alignment, we
design a simple and effective vision-to-text module,
named H-Reducer. It mainly utilizes a convolution
layer to aggregate horizontally neighboring visual
features. To support the Unified Structure Learning,
we build DocStruct4M by collecting publicly avail-
able images and carefully constructing structure-
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Human: What is the 
Dept.No?  
UReader: 76/77-142 (×) 
DocOwl 1.5: 218-12 (√) 

Human: which edition has unlimited 
remote desktop services and 
virtulization rights?
 
UReader: Enterprise edition (×)
DocOwl 1.5: Standard (×) 
Ground Truth: Datacenter

Human: What is the 
forecast for the 
increase in customs 
duty revenue in 2030?
UReader: 90.5 (×)
DocOwl 1.5: 100 (√)

Human: Who did clinical research?
UReader: Steve Haas / Art O‘Neal (×)
DocOwl 1.5: Steve peoples (√) 

（a） （b） （c）

（d）

Figure 4: Qualitative results of DocOwl 1.5 and UReader on different domains of images.

aware text sequences and multi-grained pairs of
texts and bounding boxes. With Unified Structure
Learning, our model DocOwl 1.5 achieves state-of-
the-art OCR-free performance on 10 visual docu-
ment understanding benchmarks.

6 Limitation

In this work, we mainly focus on enhancing the
OCR-free document understanding performance
of the Multimodal Large Langauge Model through
unified structure learning and pay less attention to
the efficiency of vision encoding. Our H-Reducer
could preserve spatial information and produce
fewer visual tokens than MLP. However, a high-
resolution image can still occupy a maximum of
2,560 tokens during the language modeling of the
LLM decoder. This is not efficient enough when un-
derstanding a document with multiple pages (e.g.,
20 pages will occupy a maximum of 51,200 tokens).
How to encode high-resolution images with fewer
tokens and maintain the document understanding
performance are left to future work.

7 Ethics Statement

Our DocOwl 1.5 is initialized from a general Mul-
timodal Large Language Model, which is trained
on massive vision-and-language data from the web.
Thus, it may also suffer from issues of LLMs such
as toxic language and bias (Bender et al., 2021).
However, the Unified Structure Learning proposed
in this work focuses on parsing texts in publicly
available images and introduces few biases relevant
to ethical issues.
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A DocStruct4M

A.1 Document/Webpage Parsing
We choose CCpdf (Turski et al., 2023), RVL-
CDIP (Harley et al., 2015), VisualMRC (Tanaka
et al., 2021) and datasets encapsulated
in DUE-Benchmark (Borchmann et al.,
2021) (DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), DeepForm (Svetlich-
naya, 2020), KLC (Stanislawek et al., 2021),
WTQ (Pasupat and Liang, 2015), TabFact (Chen
et al., 2020)) to support the Document/Webpage
Parsing task.

CCpdf (Turski et al., 2023) is a multi-lingual
PDF dataset built upon webpages from Common
Cramwl1, covering diverse domains of documents,
such as industry, academic, and medical. In this
work, we mainly focus on English Document Un-
derstanding and drop PDFs detected as other lan-
guages. RVL-CDIP contains 16 categories of in-
dustry documents, such as ‘letter’, ‘email’, and
‘scientific reports’. We further remove some cat-
egories with flipping and blurring texts, such as
‘handwritten’ and ‘form’. DUE-Benchmark is a
collection of available and reformulated datasets
over various document domains and layouts fea-
turing tables, graphs, lists, and infographics. Vi-
sualMRC is a webpage screenshot dataset across
35 websites. OCR annotations in VisualMRC are
aligned with local regions, thus, we follow them
to utilize crops of a screenshot as input for this
parsing task. For CCpdf and DUE-Benchmark, a
PDF-parsing tool pdfplumber2 can be directly used
to generate structure-aware text sequence with a
PDF page as the input. For RVL-CDIP and Vi-
sualMRC, there are no PDF files, just annotations
of bounding boxes of texts. As an alternative, akin
to the LATIN-Prompt (Wang et al., 2023b), we in-
sert the line feeds and spaces by calculating and
comparing the horizontal and vertical distances of
bounding boxes. To avoid too many space charac-
ters resulting in sparse texts, we further limit the
maximum number of consecutive spaces to 4. This
strategy allows us to construct structure-aware text
sequences in the same style as pdfplumber.

A.2 Table Parsing
We choose TURL (Deng et al., 2022) and Pub-
TabNet (Zhong et al., 2020) to do the structure-
aware table parsing task, where tables are col-

1https://commoncrawl.org
2https://github.com/jsvine/pdfplumber

lected from Wikipedia pages and scientific arti-
cles, respectively. Without cells across rows and
columns, tables in TURL can be directly repre-
sented with Markdown codes. Due to lacking
table images in TURL, we transfer tables into
HTML codes and render table images with vari-
ations in background color and font size. Pub-
TabNet contains pairs of table images and HTML
codes. We convert HTML codes into Markdown
style and add ‘<ROWSPAN=x>’ or ‘<COLSPAN=y>’
before the value when attributes ‘rowspan=x’ or
‘colspan=y’ are set in the ‘<td>’ label.

A.3 Chart Parsing

We adopt PlotQA (Methani et al., 2020), Fig-
ureQA (Kahou et al., 2018), DVQA (Kafle et al.,
2018), and ChartQA (Masry et al., 2022) to sup-
port the structure-aware chart parsing task. These
datasets cover charts on both synthetic (Kahou
et al., 2018; Kafle et al., 2018) data and data from
real-world sources (Methani et al., 2020; Masry
et al., 2022). Chart types include vertical bar, hori-
zontal bar, line, dot line, and pie chart. Source data
of the chart is provided in the JSON (Methani et al.,
2020; Kahou et al., 2018; Methani et al., 2020)
or CSV format (Masry et al., 2022), both can be
conveniently converted to Markdown codes. How-
ever, some raw values are not suitable as standard
answers for parsing because there are too many
significant digits to be represented on the chart.
Therefore, to reduce the difficulty of estimating val-
ues and make the model focus more on structural
understanding, we keep 4 significant digits for all
values.

A.4 Natural Image Parsing

We utilize OCR-CC (Yang et al., 2021) to support
the Natural Image Parsing task. OCR-CC is a sub-
set of Conceptual Caption (Sharma et al., 2018),
which contains images with scene texts detected by
the Microsoft Azure OCR system.

A.5 Multi-grained Text Localization

We set four granularities of texts for both Text
Grounding and Text Recognition tasks: word,
phrase, line, and block. The ‘word’ is the smallest
granularity of the bounding box, referring to only
1 word. To ensure that the word is visible and the
answer is unique, words that are too small (normal-
ized area < 0.001) and words that appear multiple
times in the same image are excluded from candi-
dates. The ‘line’ consists of texts that are judged to
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Figure 5: Detailed statistics of DocStruct4M.

Table 3: Different settings of OCR-free Visual Document Understanding models. ‘Open’ refers to whether all OCR
learning data is open-source.

Model Init Resolution OCR Learning
Text Bbox Size Domain Open

Donut (Kim et al., 2022) - 2560x1920 ✓ × 13M Synthetic, Doc ✓
Pix2Struct (Lee et al., 2023) - 219(shape variable) ✓ × 80M Web ×
QwenVL (Bai et al., 2023b) - 448x448 ✓ × 24.8M Synthetic, Doc, Web ×
Monkey (Li et al., 2023b) QwenVL (Bai et al., 2023b) 896x896 × × - - -
UReader (Ye et al., 2023b) Owl (Ye et al., 2023c) 224x224(x20 crops) ✓ × 0.1M Doc, Table, Chart, Web, Natural ✓
DocPedia (Feng et al., 2023) - 2560×2560 ✓ ✓ 0.9M Doc ×
CogAgent (Hong et al., 2023) CogVLM (Wang et al., 2023a) 1120×1120 ✓ ✓ 107M Synthetic, Nature, Doc, Web ×
DocOwl 1.5 Owl2 (Ye et al., 2023d) 448x448(x9 crops) ✓ ✓ 4M Doc, Table, Chart, Web, Natural ✓

Table 4: The detailed statistics of DocReason25K. The
‘Avg Length’ refers to the average token length of the
answer.

Dataset Image Sample Avg Length

DocVQA 1,491 5,119 79.2
InfoVQA 1,614 5,421 95.4

WTQ 850 5,994 77.7
VisualMRC 1,927 5,263 103.4

ChartQA 1,252 1,827 106.9
TextVQA 1,612 2,253 88.0

ALL 8,746 25,877 89.9

be horizontally parallel by vertical distance, and the
‘phrase’ is comprised of multiple adjacent words
within the same line. The ‘block’ is a combina-
tion of multiple successive lines, ranging from 2
to half of the total lines. The text sequences of
word-level and phrase-level question answering are
much shorter than the other two. Therefore, in
order to learn localization more efficiently, each
word-level or phrase-level sample consists of up to
5 question-answer pairs for the same image. As for
the representation of bounding boxes, we transfer
each continuous value in the normalized bounding

box into a discrete position token, ranging from 0
to 999.

The bounding box annotation is necessary for
constructing samples for Multi-grained Text Lo-
calization tasks. Therefore, we take DocVQA,
InfoVQA, WTQ, TabFact, DeepForm, KLC,
ChartQA, VisualMRC, and TextVQA (Singh et al.,
2019) for this task, across domains of the document,
table, chart, webpage, and natural image.

A.6 Detailed Statistic

DocStruct4M comprises 4M training samples to
support the learning of Struct-aware Document
Parsing, Table Parsing, Chart Parsing, Natural Im-
age Parsing, and Multi-grained Text Localization.
Fig. 5 shows the detailed statistics of DocStruct4M.

A.7 Data License

To build DocStruct4M, We collect 17 publicly
available datasets, whose licenses range from
MIT (Turski et al., 2023; Svetlichnaya, 2020; Chen
et al., 2020; Methani et al., 2020; Yang et al., 2021),
CC BY 4.0 (Singh et al., 2019), CC NC 4.0 (Kafle
et al., 2018), Apache License 2.0 (Deng et al., 2022)
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Table 5: Comparison with OCR-free methods on various types of text-rich image understanding tasks. The
underline means the best performance among models with <10B parameters.

Model Size Doc Info Deep KLC WTQ Tab Chart Text Text Visual
VQA VQA Form Fact QA VQA Caps MRC

Previous SOTA - 81.6 44.5 61.6 32.8 29.4 67.6 68.4 76.1 118.4 221.7

DocOwl-1.5 8.1B 81.6 50.4 68.8 37.9 39.8 80.4 70.5 68.8 132.0 239.5
DocOwl-1.5-Chat 8.1B 82.2 50.7 68.8 38.7 40.6 80.2 70.2 68.6 131.6 246.4

to GPL3.0 (Masry et al., 2022). There is no person-
ally identifying information or offensive content
in these datasets. We further produce struct-aware
text sequence as the annotation and will release
the DocStruct4M with the CC NC 4.0 for research
purposes.

B Experimtns

B.1 Implementation Details

DocOwl 1.5 is initialized from mPLUG-Owl2 (Ye
et al., 2023d), which utilizes the ViT/L-14 (Doso-
vitskiy et al., 2021) as the Visual Encoder and a 7B
Large Langauge Model with the Modality Adaptive
Module as the language decoder. According to the
aspect ratio and resolution, each image is cropped
into up to 9 sub-images with a fixed resolution
of 448x448. Each sub-image is encoded to 1,024
features by the ViT/L-14 and then reduced to 256
features by the H-Reducer. The model is trained
with 12,000 iterations on DocStruct4M, with the
learning rate and batch size set as 1e-4 and 1,024. It
costs about 128 A100 days. During the Multi-task
finetuning, the model is trained for 6,500 iterations
with the batch size set as 256 and the learning rate
set as 2e-5. This further costs about 24 A100 days.

B.2 Baselines

Table 3 shows the comparison of DocOwl 1.5and
state-of-the-art OCR-free methods on model initial-
ization, image resolution, and training data of OCR
learning.

B.3 DocOwl 1.5-Chat

Existing benchmarks mainly evaluate the docu-
ment understanding ability by answering the ques-
tion with simple phrases and neglect detailed
explanations. In this work, to better leverage
the strong language reasoning ability of Large
Language Models on Visual Document Under-
standing, we build a small instruction-tuning set
with detailed explanations on text-rich image un-
derstanding, namely DocReason25K. Based on

raw questions from DocVQA (Mathew et al.,
2021), InfoVQA (Mathew et al., 2022), WTQ (Pa-
supat and Liang, 2015), VisualMRC (Tanaka
et al., 2021), ChartQA (Masry et al., 2022) and
TextVQA (Singh et al., 2019), we collect detailed
explanations with ChatGPT3. Text contents are
dominant information on documents, tables or
webpage screenshots. Therefore, for DocVQA,
InfoVQA, WTQ, and VisualMRC, we take the
structure-aware text sequence of the image as
the input to gpt-3.5-turbo-0301 and prompt
it to answer the question with simple answers
and detailed explanations. As for ChartQA and
TextVQA, we take the image as the input and
utilize the gpt-4-vision-preview to answer the
question with detailed explanations. In order to
filter out samples where ChartGPT answers incor-
rectly, we further prompt gpt-3.5-turbo-0301
to judge whether the answer given by ChartGPT
is consistent with the concise human-annotated
ground-truth answer. Compared with raw ques-
tions in benchmark datasets, questions in DocRe-
ason25K are added with a prompt ‘Answer the
question with detailed explanation’. De-
tailed statistics of DocReason25K are presented in
Table 4. DocOwl 1.5-Chat is trained by combining
downstream datasets with DocReason25K and per-
forming multi-task tuning after Unified Structure
Learning.

By removing the prompt of detailed explana-
tion, DocOwl 1.5-Chat can also be evaluated on
concise-answer benchmarks. As shown in Table 5,
DocOwl 1.5-Chat achieves comparable or slightly
better performance than DocOwl 1.5, showing that
a small amount of detailed explanatory data may
better help the model understand the semantics of
text-rich images. Qualitative results of DocOwl
1.5-Chat on detailed explanation can be found in
Appendix B.6.

3https://openai.com/chatgpt
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Table 6: The detailed statistic of DocLocal4K.

Task Text Granularity Image Domain
Word Phrase Line Block Doc Table Chart Web Natural

Text Recognition 622 499 522 482 1,004 491 229 267 134
Text Grounding 595 542 503 485 1,011 524 240 242 108

Table 7: Multi-grained text localization performance of models with different vision-to-text modules.

Module Iter Text Grounding Text Recognition
Word Phrase Line Block ALL Word Phrase Line Block ALL

Abstractor 1,800 10.92 25.83 34.59 87.01 37.69 30.68 28.58 40.12 32.73 33.03
H-Reducer(2x2) 1,800 14.19 34.87 43.94 89.07 43.94 37.20 38.33 48.68 41.99 41.55
H-Reducer(1x4) 1,800 17.82 39.30 53.28 90.52 48.28 39.60 41.84 55.37 49.84 46.66

H-Reducer(1x4) 12,000 70.42 76.38 85.88 91.34 80.38 70.10 67.86 73.88 70.70 70.63

B.4 Text Localization Evaluation

Besides proving the effectiveness of H-
Reducer through downstream text-rich image
understanding performance in Table 2, we further
directly compare the text localization performance
after the Unified Structure Learning to validate its
superiority in preserving spatial features. We build
a text localization evaluation set DocLocal4K with
4,250 samples balanced on 4 granularities and
covering both text recognition and text grounding
tasks. The detailed statistics of DocLocal4K are
shown in Table 6. Considering that document
images are much more diverse and complex than
other images, there are more samples in this
domain than others. The IOU@0.5 is used to
evaluate the text grounding performance. As for
text recognition, the word, phrase, line, and block
granularity is evaluated with BLEU1, BLEU2,
BLEU3, and BLEU4 (Papineni et al., 2002),
respectively. As shown in Table 7, when trained
with the same iterations, the H-Reducer achieves
much better performance on both Text Recog-
nition and Text Grounding tasks, showing that
H-Reducer with the 1x4 merging shape helps
the LLM better understand concrete positions in
images.

B.5 Effectiveness of the Two-stage Training

Table 8 shows the performance comparison on
DocVQA of two-stage training and one-stage joint
training of the structure learning and downstream
tasks. The epoch is gradually reduced because
we didn’t observe performance improvements with
more iterations. For joint training, the model im-
proves significantly on DocVQA as the samples of
Unified Structure Learning increase when it is be-

low 1M. However, as the Unified Structure Learn-
ing samples are further increased, the improvement
of the model becomes subtle and its performance
is not as good as the one using two-stage training.
This shows that the two-stage training could better
enhance basic text recognition and structure pars-
ing abilities and is more beneficial and efficient for
downstream document understanding.

B.6 Qualitative Results

Question Answering with Detailed Explanations.
Fig. 6 and Fig. 7 present qualitative results of de-
tailed explanations. Through a small amount of
reasoning training, DocOwl 1.5-Chat can well in-
herit the reasoning ability of LLM and provide
detailed explanations about the answer. However,
as presented in Fig. 7(c), like most general Multi-
moal large Language Models (Ye et al., 2023c,d;
Bai et al., 2023b), DocOwl 1.5-Chat may also suf-
fer from the hallucination problem in Visual Docu-
ment Understanding. In this work, we mainly focus
on enhancing the unified structure understanding
ability of MLLMs and leave how to resolve the
hallucination problem in OCR-free document un-
derstanding as future work.
Structure-aware Parsing. As shown in Fig. 8,
DocOwl 1.5 could parse a document image by us-
ing line feeds and spaces to represent the struc-
ture of text contents. Besides parsing the whole
document, as shown in Fig. 9, it could also parse
texts from the middle of the image according to
human instruction. Fig. 10 presents qualitative
results of structure-aware table parsing through
extended Markdown syntax on tables with cells
spanning multiple columns or not. Furthermore,
Fig. 11 shows some cases of parsing different types
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Table 8: The comparison of two-stage training and one-stage joint training with increasing samples from Doc-
Struct4M. For a fair comparison, the LLM is frozen for both two-stage and one-stage training. The bath size of
one-stage training is always set as 256, the same as the Multi-task Tuning in two-stage training.

One-Stage Two-Stage

DocStruct4M samples 0.0M 0.5M 1.0M 2.0M 4.0M 4.0M
Benchmark samples 0.6M 0.6M 0.6M 0.6M 0.6M 0.6M
Epoch/iteration 7/18k 6/25k 6/37k 4/40k 3/54k 3/12k + 3/6.5k
Cost (A100 days) 60.0 83.3 123.3 133.3 180.0 144.8

DocVQA 72.8 75.5 78.6 78.8 78.9 79.9

of charts into Markdown codes, including verti-
cal bar, horizontal bar, pie, and line charts. When
all data points are presented in the chart, DocOwl
1.5 can accurately align statistic objects with cor-
responding numbers. It makes some mistakes in
Fig. 11(d) because estimating the concrete num-
bers is quite challenging when no data points are
provided. Finally, as shown in Fig. 12, DocOwl
1.5 can both describe the content of natural images
and read scene texts.
Multi-grained Text Localization. Fig. 13 and
Fig. 14 show qualitative results of text ground-
ing and text recognition at granularities of word,
phrase, line and block. The image domains range
from documents, webpages, charts, and tables to
natural images.
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SIS # 158120. 
The SIS # of L. MacWilliams is 158120, as stated in 
the text under the section "L. MacWilliams SIS # 
Direct Account Name Information Required PO #".

DocOwl 1.5-Chat:

What is the SIS # of L. 
MacWilliams? Answer the 
question with detailed 
explanation.

(a)

According to the text, 95% of teenagers 
ages 12-17 use the Internet. Therefore, 
the percentage of teenagers from the 
age group 12-17 who didn't use the 
Internet would be 100% - 95% = 5%.

DocOwl 1.5-Chat:

What percentage of teenagers 
from the age group 12-17 
didn't use the Internet? 
Answer the question with 
detailed explanation.

(b)

The last date and time on the chart is January 1, 2013 at 4:10 PM. The chart lists all the games played by a certain team, along with 
the date, time, opponent, rank, site, and result. The last game listed on the chart is against Stanford, which took place on January 1, 
2013 at 4:10 PM. Therefore, the last date and time on the chart is January 1, 2013 at 4:10 PM.

DocOwl 1.5-Chat:

what is the last date and time on the table? Answer the question with detailed explanation.

(c)

Figure 6: Qualitative results of question answering with detailed explanations. Some regions are enlarged for better
visualization.
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68%. 
In the image, which appears to be a chart from the Pew Research Center, the bar 
representing "Very well" for the age group 65 and older is marked at 68%. This 
indicates that 68% of Republicans and Republican leaners in this age group 
believe that Trump is fighting for their beliefs "Very well."

DocOwl 1.5-Chat:

What's the value of the Very well bar 
in the 65+ age group? Answer the 
question with detailed explanation.

(a)

Fly Emirates.
 The blue shirt on the left has the word "Fly Emirates" 
written across the chest. The logo is in white lettering 
against a blue background, which is the color scheme 
typically used for the airline's branding.

DocOwl 1.5-Chat:

what is written on the blue 
shirt on the left? Answer 
the question with detailed 
explanation.

(b)

South African rappers are lazy. The text in the image states that "South African rappers are lazy." This is a reference to a quote from 
an article titled "Rap Economix" in the magazine Hype, which is South Africa's No. 1 hip hop magazine. The article discusses the 
perception that South African rappers are lazy and that they rely on the success of Kool & the Gang's "Stayin' Alive" instead of 
creating their own music. The article also mentions that this perception is changing, with new artists emerging and breaking away 
from the stereotype. 

DocOwl 1.5-Chat:

what nationality of rappers are lazy? Answer the question with detailed explanation.

(c)

Figure 7: Qualitative results of question answering with detailed explanations. Hallucination in answers are marked
in red.
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<doc> Tropical Birding Trip Report NAMIBIA NOV DEC 2021
Tinkling Cisticola    Cisticola rufilatus
Seen near Kayova.
Chirping Cisticola    Cisticola pipiens
Seen at Kayova.
Piping Cisticola     Cisticola fulvicapilla
Seen near Kayova.
Zitting Cisticola    Cisticola juncidis
Seen at Etosha & Windhoek.
Desert Cisticola     Cistcola aridulus
Seen at Etosha.
Reed Warblers and Allies (Acrocephalidae)
Icterine Warbler     Hippolais icterina
Seen at Etosha & Windhoek.
Sedge Warbler      Acrocephalus schoenobaenus
Seen at Kayova.
African Reed Warbler   Acrocephalus baeticus
Seen at Walvis Bay & Windhoek.
Lesser Swamp Warbler   Acrocephalus gracilirostris
Seen at Kayova & Windhoek.
Swallows (Hirundinidae)
Plain Martin       Riparia paludicola
Seen at Kayova.
Bank Swallow       Riparia riparia
Seen at Caprivi.
www.tropicalbirding.com    +1-409-515-9110     info@tropicalbirding.com </doc>

Extract words from the graphic.

DocOwl 1.5:

Figure 8: A qualitative result of structure-aware document parsing.

Sluisjmans.
2009).
Figure 5-24: Learning with Tech trends31
Third emphasis is on skills development supported by evidence of improvement and awareness of
progress. The learning process in the e-learning environment can be designed in a range of activities in
authentic learning contexts. Rich evidence of improvement and productive failure is collected by
learners performance during the learning process; indications on applying 21st century skills for
processing real-life information, reflecting on problem-solving ways, articulating tacit knowledge and
31 Adapted from Olenka Villavicencio (2013): Learning with Tech trends
(Retrieved from http://olevilla.blogspot.gr/2013_07_01_archive.html) and Planning for
Personalization,(retrieved from http://education.vermont.gov/plo-working-group/main).
A guidance to Blended Learning                 79 </doc>

Continue reading the text: <doc> 5.4. Quality Criteria for a Blended Learning Platform
5.4.1. Introduction
Our objective is to create a list of absolutely necessary features for the eLearning platform (LMS) used
in a blended Learning course. These features are focused on the technical and pedagogical background
as well as on the learner’s situation. In addition, recommends for useful features and tools are defined
that used either inside the LCMS or as additional tools.
The target of the blended learning platform is the provision of high quality learning that will lead to the
development of the 21st century skills. These are characterized, according to Kong et al.(2014) by three
emphases:
First emphasis is on skills development in both formal and informal learning contexts (Cox, 2013; Huang,
Kinshuk. & Spector. 2013). The learners will be engaged in a seamless learning environment to
coherently apply various generic skills for in-school teacher-led learning process initiated in digital
classrooms and after-school learner-initiated learning process in social learning platforms/tools
according to individual needs (Milrad, Wong, Sharpies, Hwang, Looi, & Ogata. 2013; Otero, Milrad,
Rogers, Santos, Verissimo, & Tones. 2011; Wong & Looi. 2011).
Second emphasis is on skills development through both individualized and collaborative learning
approaches. On their own or with peers, learners take responsibilities to apply various generic skills to
plan goals, implement tasks, monitor progress and evaluate outcomes in their learning process (Kicken,
Brand-Gruwel, Merrienboer, & Slot. 2009; Norris & Soloway. 2009). The feedback for learners in a
minimal but sufficient amount identifies individual needs and directions for future improvement
(Caballero, van Riesen, Alvarez, Nussbaum, De Jong. 2014; Sims. 2003: Van Merrienboer. &

DocOwl 1.5:

Figure 9: A qualitative result of structure-aware document parsing from the middle of the image. The red dotted
box is only used to mark the location of the answers for better visualization and is not included in the input image.
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<md> |  | <COLSPAN=2> N (%)** | <COLSPAN=2> Crude results (n = 61,129) | <COLSPAN=2> Adjusted results** (n = 47,817) |
| LAN exposure | Cases | Referents | Odds ratios | 95% CI | Odds ratios | 95% CI |
| --- | --- | --- | --- | --- | --- | --- |
| Low | 27,121 (63) | 10,970 (60) |  | Ref. |  | Ref. |
| Medium | 5,974 (14) | 2,623 (14) | 1.13 | (1.07-1.19) | 1.06 | (0.97-1.16) |
| High | 9,659 (23) | 4,782 (26) | 1.22 | (1.18-1.28) | 1.12 | (1.04-1.20)† | </md>

DocOwl 1.5:

Convert the figure into Markdown language.

(a)

| sub-region of Banat |
| Pančevački Rit | Borča , Knjača | sub-region of Banat; part of Central Serbia |
| Pomorišje | Novi Kneževac , Srpski Krstur | today considered sub-region of Banat; partially in Hungary and Romania |
| Repište | Knjačanin | sub-region of Banat |
| Veliki Rit | north-west of Vršac | sub-region of Banat |
| Srem | Belgrade , Sremska Mitrovica | part of Vojvodina; partially in Central Serbia and Croatia (Srijem) |
| Crmi Lug | Progar , Boljevci | sub-region of Podlužje |
| Kupinovski Kut | Kupinovo | sub-region of Podlužje |
| Podlužje | Jakovo , Hrtkovci | sub-region of Srem; partially in Central Serbia | </md>

DocOwl 1.5:

Parse the picture content behind with markdown code: <md> | region | population centers | notes |
| --- | --- | --- |
| Bačka | Novi Sad , Subotica | part of Vojvodina ; partially in Hungary (Bácska) |
| Gornji Breg | Gornji Breg | sub-region of Bačka |
| Potisje | Bečej , Senta | sub-region of both Bačka and Banat |
| Šajkaška | Temerin , Žabalj | sub-region of Bačka |
| Telečka | Vrbas , Kula | sub-region of Bačka |
| Banat | Zrenjanin , Pančevo | part of Vojvodina ; partially in Romania , Hungary (Bánság) and Central Serbia |
| Gornje Livade |  | sub-region of Banat |
| Ilandžanski Rit | Ilandža , Lokve

(b)

Figure 10: Qualitative results of structure-aware table parsing on the table with cells spanning multiple columns (a)
and structure-aware table parsing from the middle of the image (b). The red dotted box is only used to mark the
location of the answers for better visualization and is not included in the input image.
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<md> | Age group | November 2010 | mid-December 2011 | mid-January 2012 |
| --- | --- | --- | --- |
| 18-29 | 6% | 7% | 18% |
| 30-49 | 5% | 12% | 24% |
| 50-64 | 9% | 11% | 19% |
| 65 and older | 4% | 8% | 12% | </md>

DocOwl 1.5:

Translate the chart into Markdown format.

(a)

<md> | Teal | Yellow Green | Light Salmon | Chartreuse | Chocolate |
| --- | --- | --- | --- | --- |
| 19.5% | 31.1% | 4.17% | 24.2% | 21.9% | </md>

DocOwl 1.5:

Convert the image into Markdown language.

(c)

| 2007 | 1 | 10 | 9.9 |
| 2010 | 3.47 | 4 | 6 |
| 2012 | 2 | 4 | 7 |
| 2014 | 3 | 4 | 4 | </md>

Parse the figure content behind with markdown code: 
<md> | Years | Dominican Republic | Kenya | Zambia |
| --- | --- | --- | --- |

DocOwl 1.5:

<md> | Entity | No confidence | Confidence |
| --- | --- | --- |
| U.S | 63 | 20 |
| Lebanon | 64 | 23 |
| Turkey | 68 | 14 |
| Tunisia | 69 | 18 |
| Israel | 83 | 6 | </md>

DocOwl 1.5:

Render the figure in Markdown format.

(b)

(d)

Figure 11: Qualitative results of structure-aware chart parsing on the charts of the vertical bar (a), horizontal bar (b),
pie (c), and line (d). Incorrect words in the answer are marked in red.
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the main street in the town <ocr> a a a alamy NIMA RESTAURANT & BAR Special TOURS & DEL PSTAIRS PERIA DORA GENERAL SHOP 
SONAR ENTERPRISE a a a a a a alamy photo stock E7BDR1 a www.alamy.com </ocr>

DocOwl 1.5:

Detail the information and textual components depicted in the image.

(a)

( NIMA RESTAURNT & BAR PARO TOWN 
Specialist in SHUTNIS DI SM PSTAIRS )

(PEMA  DORA GENERAL SHOP)

(a alamy stock photo E7BDR1  www.alamy.com)

(a a a)

a digger works to clear trees from the path of the railway line . <ocr> PORTERHIRE </ocr>

DocOwl 1.5:

Detail the information and textual components 
depicted in the image.

(PORTERHIRE)

(b)

Figure 12: Qualitative results of natural image parsing. For better visualization, some regions are enlarged and
labeled with corresponding scene texts. Incorrect words in the answer are marked in red.
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<bbox>329,341,371,381</bbox>

DocOwl 1.5:

Predict the bounding 
box of the text <ocr> 
54 </ocr>

(a)

(d)

<bbox>564,214,696,272</bbox>

DocOwl 1.5:

Give the bounding 
box of the text <ocr> 
Losing You" </ocr>

(b)

<bbox>71,437,761,658</bbox>

DocOwl 1.5:

Predict the bounding box of the text 
<ocr> particular to:
Nicholas Capaldi
• observe the Accounts Direction issued by the Accounting Officer
Secretary of State for Culture, Media and
Sport, including the relevant accounting and 7 July 2017
disclosure requirements, and apply suitable
accounting policies on a consistent basis; Endorsed on behalf of Council:
• make judgements and estimates on a
reasonable basis;
• state whether applicable accounting standards </ocr>

(c)

<bbox>569,172,949,182</bbox>

DocOwl 1.5:

Predict the bounding 
box of the text <ocr> 
networks in 2012 to 
find talent and 
potential </ocr>"

Figure 13: Qualitative results of Multi-grained Text Grounding. Some regions are enlarged for better visualization.
Bounding boxes predicted by DocOwl 1.5 are drawn in images as solid red boxes.
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<ocr> Emirates </ocr>

DocOwl 1.5:

Detect the text in the 
bounding box 
<bbox>859,2,962,36
</bbox>

(a)

(d)

<ocr> Produced capital </ocr>

DocOwl 1.5:

Detect the text in the bounding box 
<bbox>128,430,256,455</bbox>

(b)

<ocr> Ludwig   Wittgenstein   [edit] \n
Born 1889, died 1951. An Austrian born Cambridge scholar, Wittgenstein was involved in his early years with the Logical 
Positivists of the Vienna Circle. \n
Wittgenstein left Philosophy for a while but was persuaded to return in the 1920s. Wittgenstein's return prompted a different way 
of looking at religious \n
language, he no longer sought to prove "whether" language refers, but looked at the way in which language refers to things. \n
He decided that the best way to determine a word's meaning was to look at how it is used, and not to come up with a theoretical 
definition. Wittgenstein \n
said this was about: "Getting back to the rough ground". </ocr>

DocOwl 1.5:

Detect the text in the bounding box <bbox>14,532,981,850</bbox>

(c)

<ocr> SPOT 1:30:00AM- 2:35:00APMRPer week (M),Tu,We 02/14/20 
1:45AM (Mo) 01:00 DATELINE 1:35A MRBPBK6033EH $150.00 </ocr>

DocOwl 1.5:

Detect the text in the bounding box 
<bbox>76,674,833,682</bbox>

Figure 14: Qualitative results of Multi-grained Text Recognition. Some regions are enlarged for better visualization.
Input bounding boxes are drawn in images as solid blue boxes. Incorrect words in answers are marked in red.
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