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Abstract

The alignment of large language models
(LLMs) is crucial not only for unlocking their
potential in specific tasks but also for ensuring
that responses meet human expectations and ad-
here to safety and ethical principles. To address
the challenges of current alignment methodolo-
gies, we introduce self-evolution fine-tuning
(SEFT) for LLM alignment, aiming to elim-
inate the need for annotated samples while
retaining the stability and efficiency of SFT.
SEFT first trains an adaptive reviser to elevate
low-quality responses while maintaining high-
quality ones. The reviser then gradually guides
the policy’s optimization by fine-tuning it with
enhanced responses. The method excels in uti-
lizing unlimited unannotated data to optimize
policies via supervised fine-tuning. Our ex-
periments on AlpacaEval 2.0 and MT-Bench
demonstrate the effectiveness of SEFT and its
advantages over existing alignment techniques.

1 Introduction

Recent years have showcased the remarkable ca-
pabilities and performance of large language mod-
els (LLMs) across a broad range of tasks. These
capabilities are attributed not only to their vast pa-
rameter sizes and the extensive text corpora used
for pre-training (Kaplan et al., 2020) but also to
the critical process of aligning these models with
human expectations (Ouyang et al., 2022). Such
alignment is essential to ensure that the outputs of
LLMs are helpful, honest, and harmless (Askell
et al., 2021) across various tasks and applications.

The pursuit of aligning LLMs with human pref-
erences has led to three main methodologies: su-
pervised fine-tuning (SFT), reinforcement learning
from human feedback (RLHF) (Christiano et al.,
2017), and offline RLHF. SFT fine-tunes LLMs
on downstream tasks using instruction-following
data to guide them in producing responses that
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Figure 1: Reward scores of initial and revised responses
on the Nectar test set. OpenChat-3.5-7B serves as the
base model for training the reviser, and Starling-RM-7B-
alpha is used to score each response. Each point plots
the initial response score (x-axis) against the revised
response score (y-axis). The red dashed line shows
where each pair of scores is equal, while the green line
indicates the trend of score changes after revision.

match the dataset’s ground truth (Chung et al.,
2024). RLHF employs a sophisticated approach
by first training a reward model that assigns higher
rewards to responses aligning better with human
preferences, and then optimizing the LLM policy
using policy-gradient methods such as proximal
policy optimization (PPO) (Schulman et al., 2017).
In offline RLHF, exemplified by direct preference
optimization (DPO) (Rafailov et al., 2024), the pol-
icy is directly optimized using pre-collected pref-
erence data, omitting the need for a reward model.
This aims to maximize the probability of producing
chosen responses and minimize rejected ones.

Each of these methods comes with its strengths
and weaknesses. SFT, while efficient, is hindered
by the scarcity of high-quality human-annotated
data and tends to suffer from poor adaptability
to out-of-distribution samples (Kirk et al., 2023).
RLHF demands substantial computational over-
head for training an additional reward model
(Casper et al., 2023) and faces optimization chal-
lenges such as inefficiency and instability. Of-
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fline RLHF methods, which are directly optimized
on preference data without the need for a reward
model, tend to suffer from distribution drift issues
and may lead to biased policies that favor out-of-
distribution responses (Xu et al., 2024).

In response to these challenges, this paper in-
troduces a novel self-evolution fine-tuning (SEFT)
method for policy optimization. SEFT first trains
a preliminary reviser on preference data, which
takes a prompt and the raw response of an LLM as
input and aims to output a higher-quality response.
However, our initial experiments suggest that the
preliminary reviser tends to revise the original re-
sponses indiscriminately, regardless of its capabili-
ties, which may degrade the quality of high-quality
responses. As illustrated in Figure 1, the reviser
generally enhances low-quality responses but oc-
casionally degrades high-quality ones. Therefore,
we continue to train an adaptive reviser that learns
to assign a revision label based on the difficulty
of revising the initial response: [Major Revise]
indicates a substantial revision, [Minor Revise]
signifies a minor revision, and [No Revise] means
that no revision is needed. The revision labels guide
the reviser to make feasible revisions and refrain
from attempting those beyond its capability, ensur-
ing the overall quality of revised responses. The
adaptive reviser then assesses the policy’s outputs
and improves low-quality responses to high-quality
ones, which supports the subsequent fine-tuning of
the policy.

This adaptive mechanism aligns the policy with
human preferences without the need for exhaus-
tive annotated data or complex explorations. The
rationale behind SEFT is that it utilizes the pseudo-
labels generated by powerful LLMs for fine-tuning.
Studies (Burns et al., 2023) have demonstrated ef-
fective fine-tuning of models with high-quality syn-
thetic labels from robust LLMs like GPT-4, align-
ing the policy with human-like responses afford-
ably through approximate human annotations.

To evaluate the proposed SEFT, we implemented
the adaptive reviser on Nectar (Zhu et al., 2023a)
using renowned LLMs of various scales. We then
performed policy optimization with Zephyr-7B-
SFT-full (Tunstall et al., 2023) as the base model
on UltraFeedback (Cui et al., 2023), where only
the prompts were used. The optimized policy was
evaluated on the AlpacaEval 2.0 (Dubois et al.,
2024) and MT-Bench (Zheng et al., 2024) bench-
marks. Experimental results demonstrate the effec-
tiveness of SEFT and highlight its superiority over

traditional alignment methods such as SFT, DPO
(Rafailov et al., 2024), and ORPO (Hong et al.,
2024). The results also reveal that the adaptive re-
viser can effectively assess the difficulty of revising
responses and enhance the overall quality of model
outputs. Furthermore, experiments with additional
unlabeled data show that incorporating more unla-
beled data consistently enhances the performance
of SEFT.

2 Related Work

This section reviews mainstream LLM alignment
methods and shows how our approach diverges.

2.1 Alignment Methods

SFT Supervised fine-tuning (SFT) bridges the
gap between the pre-training objective of language
modeling in LLMs and the adaptation objective of
making LLMs follow human instructions (Zhang
et al., 2023). Vicuna (Chiang et al., 2023) utilizes
a dataset of 70K user-ChatGPT dialogues from
ShareGPT1 and is built on the Llama-1-13B model
(Touvron et al., 2023a). It was claimed to achieve
performance comparable to larger and powerful
LLMs. UltraLM (Cui et al., 2023) fine-tunes the
Llama2-13b model (Touvron et al., 2023b) with
UltraChat 200K instances (Ding et al., 2023), once
achieved the top-1 rank on the AlpacaEval leader-
board (Li et al., 2023). These works illustrate the
efficacy of using annotated instruction-tuning data
to fine-tune LLMs for alignment.

RLHF Reinforcement learning from human feed-
back (RLHF) has emerged as a powerful method
for effectively aligning LLMs by incorporating hu-
man feedback into the learning process. This ap-
proach relies on substantial datasets of human pref-
erences to train a reward model, which evaluates
policy responses and guides the optimization pro-
cess. As a pioneering work, the integration of prox-
imal policy optimization (PPO) (Schulman et al.,
2017) for RLHF has led to notable successes in
advanced models like InstructGPT (Ouyang et al.,
2022). Moreover, initiatives like RLAIF (Lee et al.,
2023) aim to address the scarcity of human pref-
erence data by generating synthetic datasets (e.g.,
UltraFeedback (Cui et al., 2023) and Nectar (Zhu
et al., 2023a)) using super models like GPT-4. Be-
sides, APA (Zhu et al., 2023b) employs a squared
error loss function that incorporates estimated ad-

1https://sharegpt.com/
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vantages, providing stable control over policy devi-
ations and preventing mode collapse.

Offline RLHF Offline RLHF methods like DPO
(Rafailov et al., 2024) employ the idea of con-
trastive learning to avoid the construction of reward
models as well as the complex process of reinforce-
ment learning. Representative works in this line
also include SLiC-HF (Zhao et al., 2023), which
aligns model outputs with human preferences by in-
corporating two losses: calibration loss adjusts the
model by increasing the likelihood of generating
positive responses relative to negative ones, while
regularization loss discourages the model from de-
viating too far from the reference model. IPO (Azar
et al., 2024), as part of a general framework that
includes RLHF and DPO, directly optimizes a pair-
wise preference objective with KL regularization to
maintain policy alignment with a reference policy,
thereby avoiding overfitting associated with models
that rely on pointwise reward substitution.

2.2 Discussions

The proposed SEFT method optimizes the policy
through progressively revised responses, leverag-
ing an adaptive reviser trained on existing pref-
erence data. Unlike SFT or RLHF, SEFT aligns
LLMs without requiring extensive data annotations
or complex explorations. The adaptive reviser en-
ables fine-tuning the policy with unlimited unanno-
tated data and ensures both efficiency and stability.

Recently, Ji et al. (2024a) introduced a method
called Aligner, which employs a smaller LLM
to refine the outputs of a primary LLM, mainly
aiming to enhance the responses’ usefulness and
safety. In contrast, SEFT optimizes policy models
through supervised fine-tuning with progressively
improved responses. Moreover, Aligner relies on
GPT-4 for training data annotation, whereas SEFT
uses existing preference or supervised data. Lastly,
Aligner mandates response revision, while SEFT
introduces an adaptive strategy that first evaluates
the difficulty before deciding to revise.

3 SEFT: Self-Evolution Fine-Tuning

Self-Evolution Fine-Tuning (SEFT) aims to pro-
vide a robust and efficient solution for policy opti-
mization. As shown in Figure 2, we first train an
adaptive reviser that evaluates the initial responses
generated by the policy and makes adaptive revi-
sions to enhance the overall quality. Then, the pol-
icy is fine-tuned using these enhanced responses.

3.1 Overview

The proposed SEFT first trains an adaptive reviser
R using prompts (instructions) and responses of
varying quality, as depicted in Figure 3. For each
prompt, a pair of responses is provided, one denot-
ing a low-quality response and the other a high-
quality response. Such training data is widely
available in various preference datasets (Cui et al.,
2023) and can be generated easily from supervised
fine-tuning data as well. In preference datasets,
for example, the low-quality response and high-
quality response correspond to reject and chosen
responses, respectively. The training of the reviser
starts from a strong base model M and involves
an initial warm-up phase to create a preliminary
reviser, followed by adaptive training to continu-
ally refine the reviser. This enables the reviser to
adaptively revise a response based on the difficulty
of the revision and minimize misrevisions.

We then apply the reviser twice for policy op-
timization on unlabeled prompts. First, initial re-
sponses for these prompts are sampled from the pol-
icy P , and the reviser is applied to refine these re-
sponses. These revised responses serve as pseudo-
labels to fine-tune the policy. Next, the base model
M is employed to generate another set of initial
responses for these prompts, which are also refined
by the reviser R to enhance their quality. These
enhanced responses are then used to fine-tune the
policy once more. This internal-external evolu-
tion path allows us to first fine-tune P within its
own response space before expanding to a more
challenging response space, promoting progressive
improvements. This process also follows the idea
of curriculum learning (Wang et al., 2022).

One might naturally expect an iterative applica-
tion of the reviser to optimize the policy, but this
proves to be infeasible. The reviser is trained to
generate the best possible responses from the ini-
tial input rather than performing gradual improve-
ments across multiple iterations. This behavior
aligns with observations from Kumar et al. (2024),
where models trained in a supervised fine-tuning
(SFT) setting tend to output the best possible re-
sponse on the first attempt, reducing the need for
self-correction in subsequent iterations. Our exper-
iments also confirm that the policy does not benefit
from iterative optimization.

3.2 Reviser Training
Given a revision dataset Dr = {Xr, Y l, Y h},
where Xr = {Xr

i }|Ni=1 stands for a set of prompts,
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Figure 2: Overview of SEFT. The reviser processes prompts and initial responses of varying quality, evaluates their
revision difficulty, and assigns revision labels to ensure high-quality outputs. During policy optimization, the policy
first undergoes internal evolution: the reviser fine-tunes the policy by revising its generated responses. Then, the
policy goes through external evolution with a stronger model, guiding the policy to generate better responses.

LLM

Reviser

Prompt+[EOS]+ Response

Prompt N: Generate a list of random words.

Prompt 2: What are the three primary colors 
for light? …

Response N: I'm sorry, but I can't assist with that. 
…

…
Revision N:                               Here is a list of ten random words: 1. Quibble 2. Avarice  3.Echo 4. 
Resonance 5. Mercurial 6. Melody 7. Orbit 8. Embellish  9. Delineate 10. Paragon.

Response 2: The three primary colors are red, blue, and yellow. 

Response 1: The capital of France is Paris. 

Revision 1:                         The capital of France is Paris.  No Revise

Revision 2:                               The three primary colors are red, blue, and green.

Major Revise 

Minor Revise 

Prompt 1: What is the capital of France?

Prompts Initial Responses

Revised Responses

Figure 3: Illustrative training examples for the adaptive reviser. The revision labels [Major Revise], [Minor Revise],
and [No Revise] are generated by the adaptive reviser, which learns to make revisions where feasible and avoid
attempting those beyond its capabilities.

Y l = {Y l
i }|Ni=1 denotes the original low-quality

responses for these prompts, and Y h = {Y h
i }|Ni=1

are the corresponding responses of higher quality.
For simplicity, this work leverages an existing pref-
erence dataset for Dr, where rejected responses
correspond to Y l and chosen responses correspond
to Y h. We partition Dr into two distinct splits
Dr = {Dr

1,Dr
2} for warm-up training and adaptive

training, respectively. The training objective of the
reviser R is to assess the level of difficulty in revis-
ing Y l to Y h and implement adaptive revisions.

Warm-up Training We begin with warm-up
training on Dr

1 to obtain a preliminary reviser R̂,
aiming to transform the low-quality responses into
high-quality responses. This process can be rep-
resented as R̂ : Xr × Y l → Y h. Specifically,
the training objective is to minimize the negative

log-likelihood (NLL) of high-quality responses Y h

given prompts Xr and low-quality responses Y l:

Lr=−E(Xr
i ,Y

l
i ,Y

h
i )∼Dr

1

[
logPθ(Y

h
i |Xr

i , Y
l
i )
]
, (1)

where θ refers to the parameters of the reviser R̂
initialized from the base model M. Note that this
training process enables the reviser to utilize infor-
mation from both the prompts in Xr and the initial
responses in Y l to generate the final responses Y h.

Adaptive Training The above preliminary re-
viser R̂ tends to revise the original responses in-
discriminately, regardless of its capabilities, which
may lead to the deterioration of high-quality re-
sponses, as illustrated in Figure 1. Ideally, we
want the reviser to make revisions where feasible
and avoid attempting those beyond its capability.
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To achieve this, we define three labels based on
the difficulty of revising the initial responses as
evaluated by the preliminary reviser R̂: [Major
Revise], [Minor Revise], and [No Revise].
[Major Revise] indicates a substantial revision,
[Minor Revise] signifies a minor revision, and
[No Revise] means no revision is needed.

Since the original training dataset lacks revision
labels and to automatically obtain revision labels,
we apply the preliminary reviser R̂ on Dr

2 and eval-
uate its revisions as follows. For each sample in
Dr

2 consisting of a prompt Xr
i and the original re-

sponse Y l
i , we first apply R̂ to revise Y l

i . We then
use an off-the-shelf critic model C to assess the
revised response Ŷ l

i against the original response
Y l
i , assigning a benefit score si for the revision to

measure the extent of improvement achieved by the
preliminary reviser. We compare the reward si with
two thresholds, δl and δh, to assign an appropriate
revision label ri for the prompt Xr

i . If the reward
si is higher than δh, it indicates that the current
sample is easy for the reviser R̂ to revise, allow-
ing for a major revision of Y l

i . If the reward si is
between δl and δh, it suggests that the reviser can
improve the original response moderately, so a mi-
nor revision is appropriate. Otherwise, it indicates
that the reviser struggles to improve the response,
and the original response should remain unchanged.
Moreover, considering that the reviser’s ability may
improve with further training on Dr

2, we further use
a probability p to control the proportion of revision
labels for samples in the latter two categories.

After assigning each prompt a revision label, we
use the updated Dr

2 to continually train the prelimi-
nary reviser using the NLL objective:

L=−E(Xr
i ,Y

l
i ,ri,Y

h
i )∼Dr

2

[
logPθ(ri,Y

h
i |Xr

i , Y
l
i )
]
.

(2)
Unlike warm-up training, the adaptive reviser R
learns to predict the revised response as well as the
revision label based on the difficulty of revising the
initial response, thus implementing adaptive revi-
sions. The overall training process of the adaptive
reviser is illustrated in Algorithm 1.

3.3 Alignment

In this section, we elaborate on the details of the
proposed SEFT for policy optimization. The SEFT
process can be generally defined as follows:

P = SEFT(Xp,P,G,R), (3)

where Xp = {Xp
j }|Mj=1 denotes the set of unanno-

tated prompts for the optimization of policy P , G
is the generator used to generate an initial response
Ŷ p
j for each prompt Xp

j , and R is the adaptive re-
viser used to revise the initial response to obtain an
enhanced response Y p

j . The prompts Xp and the
enhanced responses Y p = {Y p

j }|Mj=1 will be used
to fine-tune the policy P as follows:

P = argmin
ϕ

−E(Xp
j ,Y

p
j )

[
logPϕ(Y

p
j |X

p
j )
]
, (4)

where ϕ refers to the parameters of the policy, typi-
cally initialized from an SFT model.

The policy optimization with SEFT involves
both internal and external evolution phases:

Internal Evolution This phase focuses on im-
proving the policy within its own response space.
Therefore, the policy P is optimized using its own
generated responses, which are revised by the adap-
tive reviser R. Acting as the generator G in Eq.(3),
the policy P first generates initial responses for
the prompts Xp. These initial responses are then
refined by the reviser R to produce a set of high-
quality responses. Finally, the policy P is fine-
tuned using the prompts and the revised responses
as outlined in Eq.(4), resulting in policy PI .

External Evolution In this phase, the policy PI

is further fine-tuned using revised responses from
an external robust generator, which is the base
model M of the reviser in this study. This phase
aims to enhance the policy’s capabilities by ex-
posing it to a higher-quality and more challeng-
ing response space, facilitating significant improve-
ments. Similar to the internal evolution phase, the
prompts Xp and the revised responses generated
by the adaptive reviser from the initial responses
of the external generator M are used to further
fine-tune PI , resulting in the final policy PE .

Note that while the external evolution phase en-
sures that the policy benefits from superior exam-
ples, the integration of both phases enables the
policy to progressively enhance its performance.

4 Experiments

We conduct extensive experiments to evaluate
SEFT’s effectiveness in enhancing initial response
quality and optimizing the policy, while also an-
alyzing the benefits of integrating unlabeled data
and the impacts of progressive policy optimization.
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4.1 Experimental Setup

Training Datasets We employ Nectar (Zhu et al.,
2023a) for training the reviser. Nectar is a high-
quality dataset comprising 183K diverse dialogues,
each prompt containing seven responses generated
from various models and ranked by GPT-4. To
prevent data contamination, prompts appearing in
subsequent evaluation benchmarks were filtered
out. Then, we set aside 1.8K samples as the test
set for reviser evaluation. The remaining data is
divided in a 3:7 ratio, with one partition used for
training the preliminary reviser and the other for
the adaptive reviser described in Section 3.2. In
the Nectar dataset, Rank 0 represents the highest-
quality response, whereas Rank 6 represents the
lowest-quality response. Our initial responses are
constructed by randomly selecting from responses
ranked 1 to 6, with responses ranked 0 represent-
ing the final high-quality responses. This ensures
the training data covers a wide range of initial re-
sponses and the reviser develops versatile skills.

For policy optimization, we utilize UltraFeed-
back2 (Cui et al., 2023), which comprises 64K
prompts collected from diverse sources. To validate
that integrating more unannotated data consistently
enhances the performance of SEFT, we additionally
sample subsets of 30K and 60K prompts respec-
tively from OpenHermes-2.53 (Teknium, 2023) as
supplementary training data.

Training Details During training the reviser
model, we first explore implementing it with
OpenChat-3.5-7B (Wang et al., 2023). Then,
we compare the performance with different base
models, including OpenChat-3.5-7B (Wang et al.,
2023), Qwen1.5-32B-Chat (Bai et al., 2023), and
Yi-34B-Chat (Young et al., 2024). Striving for a
balance between efficiency and performance, we ul-
timately opt for Qwen1.5-32B-Chat to implement
the reviser. To obtain the revision labels, we utilize
Starling-RM-7B-alpha (Zhu et al., 2023a) as the
critic model C. The hyperparameters δl, δh, and
p are set to 0.3, 1.0, and 0.8, respectively. The
adaptive reviser is initialized using the preliminary
reviser and then trained continuously.

For the training of the policy model, we opt for
Phi-24, Mistral-7b-sft-α and Zephyr-7B-SFT-full

2https://huggingface.co/datasets/openbmb/
UltraFeedback

3https://huggingface.co/datasets/teknium/
OpenHermes-2.5

4https://huggingface.co/microsoft/phi-2

(Tunstall et al., 2023) as the backbones. The pol-
icy model and Qwen1.5-32B-Chat are respectively
employed as the generators for the internal evolu-
tion and external evolution phases, as mentioned in
Section 3.3.

Evaluation To assess the reviser’s effectiveness
in enhancing response quality, we adopt method-
ologies from prior research (Kirk et al., 2023; Ji
et al., 2024b) and utilize established reward models
to evaluate both the initial and revised responses
across the Nectar test set. Specifically, we employ
four robust reward models: FsfairX-LLaMA3-RM-
v0.1 (Dong et al., 2023), Eurus-RM-7B (Yuan et al.,
2024), Starling-RM-7B-alpha (Zhu et al., 2023a),
and RM-Mistral-7B (Xiong et al., 2023). The as-
sessments generated by these reward models are
then aggregated to determine the reviser’s perfor-
mance and overall success rate.

For the policy evaluation, we employ AlpacaE-
val 2.0 (Dubois et al., 2024) and MT-Bench (Zheng
et al., 2024). AlpacaEval 2.0 includes 805 instruc-
tions and assesses the model’s success rate against
GPT-4, using an evaluator based on GPT-4. MT-
Bench (Zheng et al., 2024) consists of 80 multi-turn
dialogues spanning eight domains, with GPT-4 rat-
ing the model’s responses on a scale from 1 to 10.

Baselines We first compare the performance of
our adaptive reviser with the following methods:
(i) Aligner (Ji et al., 2024a) primarily aims to en-
hance the usefulness and safety of a primary LLM
by training a smaller LLM to refine the outputs.
For a fair comparison, we implement Aligner on
the same training set as our reviser. (ii) Label re-
viser is similar to our adaptive reviser but assigns
revision labels based on the disparity in rank be-
tween the initial response and the target response in
the Nectar training set, whereas our revision labels
are determined by the performance of the prelimi-
nary reviser. For more details, refer to Appendix D.
(iii) Preliminary reviser, as described in Section
3.2, is trained using only 30% of the training data
and tries to revise all low-quality initial responses.
(iv) Original response denotes the original input
responses to a reviser, serving as a naive baseline.

Next, we compare the proposed SEFT with other
policy optimization methods: (i) SFT directly op-
timizes the policy model using prompts and cho-
sen responses from the UltraFeedback dataset. (ii)
DPO (Rafailov et al., 2024) optimizes the policy
model by applying a reward modeling objective to
preference data. (iii) ORPO (Hong et al., 2024)
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limit of space, we only present the results for responses ranked 0, 3, and 6.
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presents a reference model-free method that inte-
grates the odds ratio of the chosen response over the
rejected response into the SFT objective function.
This integration serves to penalize the probability
of generating the rejected response directly.

4.2 Results of Reviser Evaluation
In this section, we present the evaluation results
of our adaptive reviser. We first compare its per-
formance against several baseline methods. Figure
4 depicts the win rates of pairwise comparisons
between the responses generated by our adaptive
reviser and those by the baselines. Due to the limit
of space, we only present the results for responses
ranked 0, 3, and 6 on the Nectar test set. More
results for other ranks are given in Appendix B.1.

We make four key observations from the results.
First, the proposed adaptive reviser outperforms
the baseline methods in revising original responses
across ranks 0 to 6, particularly for high-quality re-
sponses like those at Rank 0. The success can
be attributed to its adaptive strategy, which se-
lectively revises responses it can effectively im-
prove while avoiding those it cannot. Second, for
high-quality responses, the adaptive reviser’s im-
provements over the original responses are modest,
because high-quality responses already approach
an optimal state. Conversely, the adaptive reviser

shows significant improvement for low-quality re-
sponses. Fourth, although the adaptive reviser
generally excels, it performs slightly worse than
the baselines for some low-quality responses (e.g.,
Rank 6). This is because the reviser often applies
the [No Revise] label to certain low-quality re-
sponses, choosing not to revise them and therefore
impacting the overall performance. More results
on the reviser can be found in Appendix B.

To demonstrate the adaptive reviser’s effective-
ness in improving response quality while preserv-
ing high-quality responses, we introduce the im-
provement rate. This metric measures the propor-
tion of revised instances that exhibit enhanced qual-
ity across different ranks on the Nectar test set.
As shown in Figure 5, the adaptive reviser con-
sistently outperforms the baseline revisers across
all ranks. Specifically, for lower-quality responses
(e.g., Ranks 5 and 6), all methods show high im-
provement rates. However, as initial response qual-
ity increases, baseline revisers sharply decrease in
improvement rates, potentially over-revising and
lowering quality. In contrast, the adaptive reviser
maintains strong improvement rates across all re-
sponse qualities, indicating its ability to avoid un-
necessary revisions that could degrade quality.
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Model Stage AlpacaEval 2.0 MT-Bench
LC Win Rate Win Rate Score

GPT-4 0613† - 30.2% 15.8% 9.18
GPT-3.5 Turbo 0613† - 22.7% 14.1% 8.39

Phi-2† - 4.4% 2.4% 6.01
Phi-2-SFT∗ SFT 6.8% 5.2% 6.62
Phi-2-DPO∗ SFT + DPO 9.6 % 9.1% 6.78
Phi-2-ORPO† ORPO - 6.4% -

Phi-2-SEFT (ours)
UltraFeedback SFT + SEFT 9.7% 9.1% 6.93

+30K additional data SFT + SEFT 10.5% 9.8% 6.93
+60K additional data SFT + SEFT 12.6% 10.9% 6.87

Zephyr-7B-α† SFT + DPO 10.3 % 8.4% 6.88
Mistral-ORPO-α† ORPO - 11.3% 7.23

Zephyr-7B-α-SEFT (ours)
UltraFeedback SFT + SEFT 15.7% 12.5% 7.32

+30K additional data SFT + SEFT 16.6% 13.0% 7.39
+60K additional data SFT + SEFT 17.7% 14.1% 7.36

Zephyr-7B-SFT-full∗ SFT 6.4% 4.4% 6.33
Zephyr-7B-SFT-full-SFT∗ SFT + SFT 8.7% 6.7% 6.99
Zephyr-7B-β† SFT + DPO 13.2 % 11.0% 7.34
Mistral-ORPO-β† ORPO 14.7% 12.6% 7.32

Zephyr-7B-SEFT (ours)
UltraFeedback SFT + SEFT 15.6% 11.8% 7.32

+30K additional data SFT + SEFT 15.2% 12.0% 7.35
+60K additional data SFT + SEFT 16.6% 13.7% 7.47

Table 1: Results of policy optimization on MT-Bench and AlpacaEval 2.0. A dash “-” signifies results not publicly
available, “†” denotes results from the leaderboard, and “∗” indicates results from our reproduction. “Zephyr-7B-
SFT-full-SFT” refers to the further fine-tuned Zephyr-7B-SFT-full with chosen samples from UltraFeedback. “+30K
additional data” and “+60K additional data” denote using extra 30K and 60K unannotated prompts, respectively.

4.3 Results of Policy Evaluation

Table 1 presents the results of policy models op-
timized with different alignment methods on Al-
pacaEval 2.0 and MT-Bench. The proposed SEFT
shows superior performance to the DPO (Zephyr-
7B-β) and ORPO (Mistral-ORPO-β) methods, uti-
lizing solely unannotated prompts from UltraFeed-
back for policy optimization. Specifically, the
Zephyr-7B-SEFT model achieves an LC Win Rate
of 15.6%, a Win Rate of 11.8%, and an MT-Bench
Score of 7.32. These results are competitive with
other methods that use supervised prompts, such
as Zephyr-7B-β (13.2%, 11.0%, 7.34) and Mistral-
ORPO-β (14.7%, 12.6%, 7.32). Moreover, when
additional unannotated prompts are incorporated,
the performance of SEFT further improves, high-
lighting its effectiveness and scalability with unan-

notated samples. These findings emphasize the
effectiveness of SEFT in leveraging unannotated
data to enhance response quality while maintaining
stability and efficiency in policy optimization.

4.4 Ablation Studies
We conduct ablation studies for SEFT on MT-
Bench, particularly focusing on the progressive
strategy of internal and external evolution. As
shown in Table 2, directly fine-tuning the policy
with chosen responses (SFT-Chosen) from Ultra-
Feedback improves the score from 6.33 to 6.99.
Utilizing responses generated by Qwen1.5-32B-
Chat (SFT-External Generator) leads to a slightly
higher score of 7.06. These results underscore the
benefits of using high-quality responses. Moreover,
revising the responses from the external generator
with our reviser (External Evolution) results in an
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Model Extra Data MT-Bench

Zephyr-7B-SFT-full - 6.33

+ SFT-Chosen

-

6.99
+ SFT-External Generator 7.06
+ External Evolution 7.11
+ Internal Evolution 6.89

+ External Evolution 7.32

+ External Evolution
30K

7.12
+ Internal Evolution 6.83

+ External Evolution 7.35

+ External Evolution
60K

7.14
+ Internal Evolution 6.83

+ External Evolution 7.47

Table 2: Results of ablation studies for SEFT on MT-
Bench. “SFT-Chosen” and “SFT-External Generator”
refer to using the chosen responses from UltralFeedback
and the responses from the external generator (Qwen1.5-
32B-Chat) to fine-tune the policy, respectively.

even higher score of 7.11, confirming the role of
adaptive revision in ensuring model performance.

Interestingly, fine-tuning with internal evolution
yields a score of 6.89, which is less effective than di-
rectly using high-quality generated responses (SFT-
External Generator). However, the most significant
improvement is observed when combining internal
and external evolution, achieving a score of 7.32.
Moreover, the progressive policy optimization strat-
egy demonstrates superior performance over indi-
vidual internal or external strategies when various
amounts of additional data are utilized, demonstrat-
ing the scalability of our SEFT framework.

5 Conclusion

In this paper, we introduce self-evolution fine-
tuning (SEFT) for alignment of large language
models (LLMs). SEFT employs an adaptive reviser
to enhance the overall quality of initial responses
by making revisions only when improvements are
feasible. Our experiments show that the adaptive
reviser consistently enhances response quality and
outperforms baseline methods. The effectiveness
of SEFT in policy optimization is validated through
extensive experiments on benchmarks such as Al-
pacaEval 2.0 and MT-Bench. Notably, we highlight
SEFT’s capability to leverage unannotated data to
improve response quality while maintaining stabil-
ity and efficiency in policy optimization.

Limitations

While SEFT shows promising results, it has some
limitations. Firstly, SEFT relies on external evolu-
tion and doesn’t achieve fully self-evolving policy

optimization. Future research could focus on using
an adaptive reviser for iterative internal evolution
to enhance the policy. Moreover, due to its train-
ing strategy, the adaptive reviser can sometimes
be overly conservative, occasionally not correcting
low-quality responses even when it could. This
may hinder further quality improvements.
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A Reviser Training Algorithm

The process of training the adaptive reviser is illus-
trated in Algorithm 1.

In the Warm-up Training phase, for each train-
ing sample that includes prompts Xr

i , initial low-
quality responses Y l

i , and target high-quality re-
sponses Y h

i , the sample format is constructed as fol-
lows: [system role special token] + system prompt
+[user role special token] + "Human:" + Xr

i + "As-
sistant:" + Y l

i + [assistant role special token] + Y h
i ,

where the system prompt is: "You are a helpful
assistant. The following is a conversation between
a human and an assistant. Please revise the assis-
tant’s last answer to make it of higher quality."

In the Adaptive Training phase, we do not use
additional special tokens for the revision label ri.
Instead, we aim for the model to predict the revi-
sion label directly as text. For example: [system
role special token] + system prompt +[user role
special token] + "Human:" + Xr

i + "Assistant:" +
Y l
i + [assistant role special token] + <minor revise

response> + Y h
i .

B Performance of Adaptive Reviser
B.1 Results of Reviser Evaluation
Figure 6 shows the performance comparison of
the adaptive reviser and baseline methods on the
Nectar test set for responses ranked 1, 2, 4, and 5.

B.2 Results of Different Reviser Backbones
We trained the adaptive revisers of three different
sizes based on various backbones and tested their
performance on our Nectar test set. The benefit
score is defined as: si = Score(Ŷ l

i )− Score(Y l
i ),

where Score(Y l
i ) and Score(Ŷ l

i ) are the reward
scores of the original response and revised response
evaluated by reward model, respectively. We uti-
lized the four reward models mentioned above to
obtain the benefit scores. Additionally, we ana-
lyzed the distribution of revision labels when revis-
ers corrected the original responses.
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Algorithm 1 Reviser Training
Require: base model M, dataset Dr = {Dr

1,Dr
2} = {Xr

i , Y
l
i , Y

h
i }, critic model C, hyperparameters δl,

δh, and p for revision label classification.
1: Fine-tune M on dataset Dr

1 according to Eq.(1) to obtain the preliminary reviser R̂.
2: for (Xr

i , Y
l
i , Y

h
i ) in Dr

2 do
3: Use R̂ to generate the revised response Ŷ l

i .
4: Use C to score Y l

i and Ŷ l
i , and calculate the benefit score si = Score(Ŷ l

i )− Score(Y l
i ).

5: if si > δh then
6: Revision label ri = [Major Revise].
7: else if δh > si > δl then
8: With probability p, revision label ri = [Minor Revise].
9: With probability 1− p, revision label ri = [No Revise], Y h

i = Y l
i .

10: else if si < δl then
11: With probability p, revision label ri = [No Revise], , Y h

i = Y l
i .

12: With probability 1− p, revision label ri = [Minor Revise].
13: end if
14: Update Dr

2 with (Xr
i , Y

l
i , ri, Y

h
i )

15: end for
16: Continually fine-tune R̂ on dataset Dr

2 according to Eq.(2) to obtain the adaptive reviser R.
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Figure 6: Performance comparison of the adaptive reviser and baseline methods on the Nectar test set. Subfigures
(a), (b), (c), and (d) illustrate the original responses are at rank 1, 2, 4, and 5, respectively.

As shown in Table 3, all revisers exhibit con-
sistently superior performance when handling re-
sponses of varying quality. Specifically, when
the original response quality is low, the reviser’s
improvement yields a significantly high benefit.
For instance, the reviser based on Qwen1.5-32B-
Chat achieves benefit scores of +4.01, +383.56,
+3.76, and +3.62 across the four RMs when re-
vising Rank 6 responses. Conversely, when the
initial response quality is high (GPT-4 level), the
reviser still manages to bring about stable quality

enhancements. Furthermore, we observed that even
the 7B reviser (OpenChat-3.5-7B) could improve
high-quality original responses, despite the original
responses being generated by models larger than
7B. The distribution of revision labels indicates
that as the original response quality increases, the
proportion of [No Revise] labels output by the
reviser also increases. This aligns with our primary
goal for implementing revision labels: to ensure
that revisions are made only when necessary, pre-
serving high-quality responses as they are. On the
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Reviser Backbone Original Response Benefit Score Proportion of Revision Label

RM1 RM2 RM3 RM4 No Revise Major Revise Minor Revise

OpenChat-3.5-7B

Rank 0 +0.07 +9.64 +0.09 +0.10 75.72% 15.18% 9.11%
Rank 1 +0.15 +19.58 +0.16 +0.23 65.87% 22.74% 11.40%
Rank 2 +0.33 +38.03 +0.33 +0.48 54.95% 32.32% 12.73%
Rank 3 +0.61 +64.28 +0.62 +0.78 43.66% 43.61% 12.73%
Rank 4 +1.07 +107.05 +1.08 +1.26 29.77% 58.68% 11.55%
Rank 5 +2.06 +207.61 +2.03 +2.26 18.74% 71.78% 9.37%
Rank 6 +3.20 +314.23 +3.09 +3.28 9.74% 85.30% 4.95%
Average +1.07 +108.63 +1.06 +1.20 42.64% 47.09% 10.26%

Qwen1.5-32B-Chat

Rank 0 +0.18 +18.20 +0.17 +0.09 83.33% 14.06% 2.61%
Rank 1 +0.30 +30.57 +0.27 +0.25 74.71% 22.79% 2.50%
Rank 2 +0.54 +53.92 +0.48 +0.52 63.79% 33.87% 2.29%
Rank 3 +0.87 +87.00 +0.82 +0.86 50.21% 46.96% 2.82%
Rank 4 +1.51 +145.62 +1.43 +1.42 36.16% 61.40% 2.45%
Rank 5 +2.63 +255.75 +2.49 +2.48 24.44% 74.44% 1.12%
Rank 6 +4.01 +383.56 +3.76 +3.62 11.66% 87.49% 0.85%
Average +1.43 +139.23 +1.35 +1.32 49.19% 48.72% 2.09%

Yi-34B-Chat

Rank 0 +0.19 +17.92 +0.18 +0.10 75.40% 13.26% 11.34%
Rank 1 +0.32 +30.07 +0.30 +0.27 65.87% 21.30% 12.83%
Rank 2 +0.55 +55.96 +0.50 +0.55 52.82% 32.11% 15.07%
Rank 3 +0.90 +90.93 +0.86 +0.91 40.58% 43.56% 15.87%
Rank 4 +1.52 +146.53 +1.46 +1.43 27.00% 59.42% 13.58%
Rank 5 +2.59 +254.44 +2.49 +2.48 16.67% 73.43% 9.90%
Rank 6 +3.88 +374.36 +3.67 +3.61 8.52% 86.42% 5.06%
Average +1.42 +138.60 +1.35 +1.34 40.98% 47.07% 11.95%

Table 3: Performance of the adaptive reviser with various backbones on the Nectar test set. Four different reward
models (RMs) are used for scoring: RM1-RM4, specifically FsfairX-LLaMA3-RM-v0.1, Eurus-RM-7b, RM-
Mistral-7B, and Starling-RM-7B-alpha. The highest score for each rank is highlighted in bold. The columns under
“Benefit Score” reflect the improvements of revised responses compared to original responses, while those under
“Proportion of Revision Label” show the distribution of different revision labels applied to the original responses.
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Figure 7: Reward distributions of original responses generated by Zephyr-7B-SFT-full and revised responses
produced by adaptive revisers based on various models, including Openchat-3.5-7B, Yi-34B-Chat, and Qwen1.5-
32B-Chat. This comparison is conducted across three test sets: Nectar, UltraFeedback, and OpenHermes-2.5. The
x-axis denotes the reward scores generated by Starling-RM-7B-alpha, while the y-axis indicates the number of
instances that fall within each reward range.

other hand, as the quality of the initial response
decreases, the proportion of [Major Revise] la-
bels increases, signaling a more extensive revision
effort by the reviser. The [Minor Revise] label
appears more frequently for responses of moder-
ate quality. This is expected because the [Minor

Revise] label acts as a middle ground between
[No Revise] and [Major Revise].

B.3 Reward Distribution of Different Revisers

We analyze the reward distributions of the orig-
inal responses generated by Zephyr-7B-SFT-full
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Reviser Original Response RM1 RM2 RM3 RM4

Score Benefit Score Benefit Score Benefit Score Benefit

Original Response

Rank 0 -1.52 - 64.81 - 5.08 - 3.42 -
Rank 1 -1.85 - 35.98 - 4.79 - 3.04 -
Rank 2 -2.24 - -6.08 - 4.42 - 2.61 -
Rank 3 -2.73 - -50.74 - 3.94 - 2.16 -
Rank 4 -3.41 - -110.68 - 3.30 - 1.59 -
Rank 5 -4.60 - -227.37 - 2.18 - 0.50 -
Rank 6 -5.95 - -351.74 - 0.93 - -0.64 -
Average -3.19 - -92.26 - 3.52 - 1.81 -

Adaptive Reviser

Rank 0 -1.45 +0.07 74.44 +9.64 5.17 +0.09 3.51 +0.10
Rank 1 -1.70 +0.15 55.55 +19.58 4.95 +0.16 3.27 +0.23
Rank 2 -1.92 +0.33 31.95 +38.03 4.75 +0.33 3.08 +0.48
Rank 3 -2.12 +0.61 13.55 +64.28 4.56 +0.62 2.94 +0.78
Rank 4 -2.35 +1.07 -3.63 +107.05 4.38 +1.08 2.85 +1.26
Rank 5 -2.54 +2.06 -19.76 +207.61 4.22 +2.03 2.76 +2.26
Rank 6 -2.75 +3.20 -37.50 +314.23 4.02 +3.09 2.64 +3.28
Average -2.12 +1.07 16.37 +108.63 4.58 +1.06 3.01 +1.20

Preliminary Reviser

Rank 0 -2.04 -0.52 29.33 -35.48 4.68 -0.39 3.09 -0.33
Rank 1 -2.11 -0.26 24.15 -11.82 4.61 -0.18 3.05 +0.01
Rank 2 -2.17 +0.07 15.62 +21.70 4.54 +0.12 2.98 +0.37
Rank 3 -2.26 +0.47 8.54 +59.27 4.48 +0.53 2.93 +0.77
Rank 4 -2.41 +1.00 -1.59 +109.09 4.35 +1.05 2.88 +1.29
Rank 5 -2.52 +2.08 -9.62 +217.75 4.26 +2.08 2.83 +2.32
Rank 6 -2.66 +3.28 -25.45 +326.29 4.11 +3.19 2.73 +3.36
Average -2.31 +0.88 5.85 +98.11 4.43 +0.91 2.93 +1.11

Aligner

Rank 0 -2.04 -0.52 27.18 -37.63 4.66 -0.42 3.09 -0.33
Rank 1 -2.10 -0.25 17.71 -18.26 4.60 -0.19 3.02 -0.02
Rank 2 -2.10 +0.15 16.89 +22.96 4.58 +0.16 3.02 +0.41
Rank 3 -2.14 +0.59 15.71 +66.45 4.57 +0.63 2.98 +0.82
Rank 4 -2.28 +1.14 6.44 +117.12 4.46 +1.16 2.92 +1.33
Rank 5 -2.40 +2.20 -5.00 +222.36 4.37 +2.18 2.86 +2.36
Rank 6 -2.48 +3.47 -12.04 +339.70 4.29 +3.36 2.82 +3.46
Average -2.22 +0.97 9.55 +101.81 4.50 +0.98 2.96 +1.15

Label Reviser

Rank 0 -2.03 -0.52 29.38 -35.42 4.68 -0.40 3.16 -0.26
Rank 1 -2.10 -0.24 24.53 -11.44 4.61 -0.18 3.06 +0.02
Rank 2 -2.11 +0.14 20.29 +26.37 4.59 +0.17 3.03 +0.43
Rank 3 -2.20 +0.53 10.30 +61.04 4.49 +0.55 2.99 +0.83
Rank 4 -2.33 +1.08 1.09 +111.77 4.42 +1.11 2.92 +1.33
Rank 5 -2.41 +2.19 -5.82 +221.55 4.35 +2.17 2.89 +2.39
Rank 6 -2.55 +3.40 -18.12 +333.61 4.24 +3.32 2.79 +3.43
Average -2.25 +0.77 8.81 +85.06 4.48 +0.80 2.98 +1.02

Table 4: Performance comparison between our adaptive reviser and baseline methods, with Openchat-3.5-7B serving
as the backbone where applicable. The highest score for each response is highlighted in bold. The specifications
of RM1-RM4 are the same as in Table 3. The results show that our adaptive reviser consistently outperforms the
baseline methods, especially for the top-ranked responses.

with those of the revised responses produced
by adaptive revisers based on various models,
including Openchat-3.5-7B, Yi-34B-Chat, and
Qwen1.5-32B-Chat. This comparison is conducted
across three test sets: Nectar, UltraFeedback, and
OpenHermes-2.5. The results in Figure 7 reveal
a consistent improvement in the reward distribu-
tions for revised responses across these test sets.
Furthermore, the magnitude of this shift tends to
correlate with the scale of the reviser models, in-
dicating that larger models are more effective at

enhancing response quality.

B.4 Results of Different Reviser Baselines

The experimental results in Table 4 highlight the ex-
ceptional performance of the adaptive reviser com-
pared to baseline methods. Across all reward mod-
els (RM1-RM4), the adaptive reviser achieves the
highest average benefit scores, indicating its overall
superiority. Notably, the adaptive reviser shows sig-
nificant improvements over the original responses,
particularly for lower-quality inputs, with greater
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Figure 8: Comparison between Zephyr-7B-SFT-full and
Zephyr-7B-SEFT on MT-Bench with varying amounts
of additional data.

benefit scores as the initial response quality de-
clines. Furthermore, for high-quality original re-
sponses, the adaptive reviser consistently outper-
forms other revisers. For instance, under RM2, the
adaptive reviser achieves benefit scores of +9.64
and +19.58 for Rank 0 and 1, respectively, while
other methods show considerably lower or even
negative scores. These results demonstrate that the
adaptive reviser excels in refining both high and
low-quality responses.

C Policy Evaluation on MT-Bench

Figure 8 shows consistent improvements in Zephyr-
7B-SEFT’s scores across various categories on MT-
Bench as the volume of additional data increases.
Specifically, the model with the 60K additional
prompts demonstrates significant enhancements in
categories such as Extraction and STEM, highlight-
ing its improved capability to manage complex and
diverse language tasks. The results clearly indicate
that as more unannotated data is integrated, the
model’s performance not only becomes more ro-
bust across all categories but also significantly out-
performs the baseline Zephyr-7B-SFT-full model.

D Implementation Details

The hyperparameters for our implementations are
listed in Table 5. For the label reviser, we uti-
lize three revision labels: [No Revise], [Major
Revise], and [Minor Revise]. Specifically, 10%
of the Nectar training samples with original re-

Hyperparameters
Preliminary Adaptive Internal (External)

Reviser Reviser Evolution

epochs 3 3 3
max-length 2048 2048 2048

per-device-train-batch-size 2 2 4
gradient-accumulation-steps 8 8 4

learning-rate 2e-5 2e-5 5e-7
LR-scheduler-type cosine cosine linear
LR-warmup-ratio 0.03 0.03 0.03

weight-decay 0.0 0.0 0.0
gradient-checkpointing TRUE TRUE TRUE

seed 42 42 42
zero-stage 3 3 3
optimizer AdamW AdamW AdamW

bf16 TRUE TRUE TRUE
tf32 TRUE TRUE TRUE

dataset-size 53K 124K 61K, 91K, 121K

Table 5: Hyperparameters of our training in different
stages.

sponses ranked at 0 are labeled as [No Revise].
For the remaining samples, those with original
response rankings between 1 and 3 receive the
[Minor Revise] label, while all other samples
are assigned the [Major Revise] label.

E Case Study

In this subsection, we provide examples of prompts
and original responses from the Nectar training set.
We illustrate how revision labels are assigned by
comparing the scores given by the Starling RM to
the original responses and those revised by our pre-
liminary reviser. This comparison highlights the
differences in response quality that guide the as-
signment of [No Revise], [Minor Revise], and
[Major Revise] labels for the adaptive reviser.
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Prompt Human: Been listening to a lot of Aretha Franklin lately and really enjoying it. Do
you know any female singing artists that are like her?\n \n Assistant: I’ve heard people
mention Nina Simone, Ella Fitzgerald, and Patsy Cline.\n \n Human: Nina and Ella
seem like good suggestions. Isn’t Patsy Cline a bit country and western though?\n \n
Assistant:

Original Response She was known as a Country singer, but she also did some more traditional standards.

Revised Response Yes, you’re correct. Patsy Cline is often associated with country and western music.
However, she did have a powerful and soulful voice, which might be similar to Aretha
Franklin’s in terms of emotional depth. If you’re specifically looking for female
singers with a soul and R&B style similar to Aretha Franklin, you might also enjoy
artists like Etta James, Dionne Warwick, and Gladys Knight.

Scored by Starling RM Original Response: -0.5859375; Revised Response: 5.84375

Revision Label [Major Revise]

Table 6: A prompt and the original response from the Nectar test set, along with a revised response by our preliminary
reviser. The revised response receives a significantly higher score (si > 1.0) than the original response, as evaluated
by Starling RM. This substantial improvement demonstrates that the original response was easy for the preliminary
reviser to enhance significantly. As a result, the revision label for this instance is assigned as [Major Revise],
demanding a substantial revision.
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Prompt Human: How do I tell my kid not to lie? \n \n Assistant:

Original Response Here are a few tips for talking to your child about lying: \n \n 1. Explain the
consequences: Let your child know that lying can have serious consequences, such
as losing trust and damaging relationships. \n \n 2. Be a role model: Children often
learn by example, so make sure you are setting a good example by being honest and
truthful yourself. \n \n 3. Encourage honesty: Praise your child when they tell the
truth, even if it’s something you don’t want to hear. This will reinforce the importance
of honesty. \n \n 4. Talk about the difference between truth and lies: Help your child
understand that there is a difference between telling the truth and telling a lie. Explain
that telling the truth is always the right thing to do. \n \n 5. Discuss the reasons behind
lying: Sometimes children lie because they are afraid of getting in trouble or they
want to avoid disappointing someone. Talk to your child about these reasons and help
them find alternative ways to handle these situations. \n \n 6. Set clear expectations:
Let your child know that lying is not acceptable and that there will be consequences
if they are caught lying. \n \n 7. Listen to your child: If your child does lie, try to
understand why they did it. Listen to their side of the story and use it as an opportunity
to teach them about honesty and trust. \n \n Remember to be patient and consistent
when talking to your child about lying. It may take time for them to understand the
importance of honesty, but with your guidance, they will learn to value the truth.

Revised Response 1. Lead by example: Children learn by observing their parents and caregivers. Make
sure you are honest and truthful in your own actions and words. \n \n 2. Explain the
consequences: Talk to your child about the negative consequences of lying, such as
losing trust and damaging relationships. \n \n 3. Encourage open communication:
Create a safe and open environment for your child to talk to you about anything
without fear of punishment or judgment. \n \n 4. Teach the difference between right
and wrong: Help your child understand the difference between telling the truth and
telling a lie. \n \n 5. Praise honesty: When your child tells the truth, acknowledge and
praise their honesty to reinforce positive behavior. \n \n 6. Address the root cause: If
your child is lying, try to understand the reason behind it. Are they afraid of getting in
trouble? Are they trying to impress others? Addressing the underlying issue can help
prevent future lying. \n \n 7. Set clear expectations: Make it clear that lying is not
acceptable and there will be consequences for doing so. \n \n 8. Use age-appropriate
examples: Use stories or examples that your child can relate to in order to illustrate the
importance of honesty. \n \n 9. Be a good listener: Sometimes, children lie because
they feel unheard or ignored. Make sure to actively listen to your child and give them
a chance to express themselves. \n \n 10. Seek professional help if needed: If your
child continues to struggle with lying despite your efforts, it may be helpful to seek
guidance from a child psychologist or therapist.

Scored by Starling RM Original Response: 3.453125; Revised Response: 3.984375

Revision Label [Minor Revise]

Table 7: A prompt and the original response from the Nectar test set, along with a revised response by our preliminary
reviser. The revised response receives a slightly higher score (1.0 > si = 0.53125 > 0.3) than the original response,
as evaluated by Starling RM. This improvement indicates that the preliminary reviser can enhance the original
response, although with a little bit of difficulty. Therefore, with a probability of 0.8, the revision label is assigned as
[Minor Revise], signifying a minor revision.
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Prompt Human: What’s a Greek mythology that is about evil parents creating a good child
(like NAME_1?)\n \n Assistant:

Original Response There are several Greek myths involving evil parents creating a good child. Here are
a few examples: \n \n 1. The story of Persephone: In this myth, Hades, the god of
the underworld, falls in love with Persephone, the daughter of Demeter, the goddess
of agriculture. Hades kidnaps Persephone and takes her to the underworld, where
she becomes his queen. Demeter is grief-stricken and refuses to let the earth produce
any crops until her daughter is returned. Eventually, a deal is made between Hades
and Demeter that allows Persephone to return to the world above, but she must spend
part of each year in the underworld with Hades, which is why the seasons change. \n
2. The story of Dionysus: In this myth, the goddess Semele, who is the mother of
Dionysus, is killed by her husband, King Cadmus, after he becomes jealous of her
affair with Zeus. Zeus, who is the father of Dionysus, saves his son by placing him in
his thigh, where he grows to maturity. Dionysus is known for his role in promoting
fertility and the growth of crops, and his birth is seen as a symbol of the cycle of life
and death. \n 3. The story of Hercules: In this myth, Hercules’ parents, Zeus and
Alcmene, are not evil, but Hercules’ stepfather, Hera, is often depicted as a villainous
figure. Hera is jealous of Hercules’ divine parentage and seeks to harm him throughout
his life. Despite this, Hercules is known for his heroism and his role in protecting the
world from various monsters and evils. \n These are just a few examples of Greek
myths involving evil parents creating a good child. There are many other myths that
explore similar themes, and the specific details of each myth can vary depending on
the source and interpretation.

Revised Response One Greek myth that fits this description is the story of Persephone. In this myth,
Persephone was the daughter of Demeter, the goddess of agriculture, and Zeus, the
king of the gods. Despite her divine heritage, Persephone was kidnapped by Hades,
the god of the underworld, and forced to become his wife. However, Persephone was
able to maintain her innocence and purity, and she eventually became a beloved figure
in Greek mythology known for her kindness and compassion.

Scored by Starling RM Original Response: 4.25; Revised Response: 2.1875

Revision Label [No Revise]

Table 8: A prompt and the original response from the Nectar test set, along with a revised response by our preliminary
reviser. The revised response receives a much lower score (si < 0.3) than the original response, as evaluated by
Starling RM. This means that the original response is of high quality and is difficult for the preliminary reviser
to enhance. Therefore, with a probability of 0.8, the revision label for this instance is assigned as [No Revise],
indicating that no revision is needed.
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