
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 5991–6002
November 12-16, 2024 ©2024 Association for Computational Linguistics

Llama SLayer 8B: Shallow Layers Hold the Key to Knowledge Injection

Tianxiang Chen1,2,3,4*, Zhentao Tan1,2,3,4, Tao Gong1,2,3†, Yue Wu4, Qi Chu1,2,3, Bin Liu1,2,3

Jieping Ye4, Nenghai Yu 1,2,3

1School of Cyber Science and Technology, University of Science and Technology of China
2Anhui Province Key Laboratory of Digital Security

3CAS Key Laboratory of Electromagnetic Space Information
4Alibaba Cloud

Correspondence: tgong@ustc.edu.cn

Abstract

As a manner to augment pre-trained large lan-
guage models (LLM), knowledge injection is
critical to develop vertical domain large mod-
els and has been widely studied. Although
most current approaches, including parameter-
efficient fine-tuning (PEFT) and block expan-
sion methods, uniformly apply knowledge
across all LLM layers, it raises the question:
are all layers equally crucial for knowledge
injection? We begin by evaluating the impor-
tance of each layer in finding the optimal layer
range for knowledge injection. Intuitively, the
more important layers should play a more crit-
ical role in knowledge injection and deserve
a denser injection. We observe performance
dips in question-answering benchmarks after
the removal or expansion of the shallow lay-
ers, and the degradation shrinks as the layer
gets deeper, indicating that the shallow layers
hold the key to knowledge injection. This in-
sight leads us to propose the S strategy, a post-
pretraining strategy of selectively enhancing
shallow layers while pruning the less effective
deep ones. Based on this strategy, we introduce
Llama Slayer-8B and Llama Slayer-8B-Instruct.
We experimented on the corpus of code &
math and demonstrated the effectiveness of
our strategy. Further experiments across differ-
ent LLM, Mistral-7B, and a legal corpus con-
firmed the general applicability of the approach,
underscoring its wide-ranging efficacy. Our
code is available at: https://github.com/txchen-
USTC/Llama-Slayer.

1 Introduction

Large Language Models (LLMs) have significantly
revolutionized the natural language processing area,
showcasing unparalleled abilities across various
tasks (Achiam et al., 2023). Despite their versatil-
ity, LLMs exhibit limitations in specialized areas
such as mathematics, programming, etc., which

*Work done during an internship at Alibaba Cloud.
†Tao Gong is the corresponding author.

30

35

40

45

50

55

60

65

70

75

80

Avg (General
Tasks)

Hellaswag MMLU Truthfulqa Winogrande

Llama Pro-INSTRUCT (8.3B) Llama2-7B-Chat

CodeLLaMA-7B-Instruct Llama SLayer-8B-INSTRUCT

5

15

25

35

45

55

65

GSM8k

Llama Pro-INSTRUCT (8.3B) Llama2-7B-Chat

CodeLLaMA-7B-Instruct Llama SLayer-8B-INSTRUCT

14

19

24

29

34

Humaneval

Llama Pro-INSTRUCT (8.3B) Llama2-7B-Chat

CodeLLaMA-7B-Instruct Llama SLayer-8B-INSTRUCT

Figure 1: Llama SLayer-8B-INSTRUCT achieves state-
of-the-art performance across several tasks, spanning
from general language tasks to specific domain tasks
(programming and mathematics), outperforming its
LLaMA series predecessors.

hinder the potential of wide-ranging applications.
To address these gaps, existing work (Liu et al.,
2023; Wang et al., 2023) has sought to enhance the
diverse skills of pre-trained LLMs through cus-
tomized data strategies. However, they require
extensive computational efforts and massive data
volumes, challenging the widespread accessibility
of LLM research. Furthermore, while Parameter-
Efficient Fine-Tuning (PEFT) techniques offer a
reduction in training requirements, their effective-
ness tends to diminish (Biderman et al., 2024; Wu
et al., 2024) compared to traditional fine-tuning
methods, especially as the size of the model and
the dataset grows.

Subsequently, another line of research emerged,
focusing on methods such as model merging (Ak-
iba et al., 2024) and model expansion (Wu et al.,
2024; Choi and Gazeley, 2024; Kim et al., 2023).
Model merging methods strive to synthesize a mul-
tifaceted model that amalgamates insights from
various pre-trained domain-specific LLMs, poten-
tially crafting a model adept at addressing a mul-
titude of tasks concurrently. However, the pro-
cess of training multiple domain-specific LLMs is
resource-intensive. On the other hand, model ex-
pansion methods, exemplified by Llama Pro, seek

5991

mailto:email@domain
https://github.com/txchen-USTC/Llama-Slayer
https://github.com/txchen-USTC/Llama-Slayer

to refine pre-trained models for domain-specific
applications in the post-pretraining phase by only
fine-tuning the expanded layers. Therefore, it can
employ significantly fewer trainable parameters
than full model fine-tuning.

However, present model expansion methods gen-
erally treat each part of LLMs equally, although
different layers may exhibit varying sensitivity to
incorporated knowledge. This lack of differentia-
tion can result in less-than-ideal knowledge injec-
tion results. An intuitive idea is to inject knowledge
into the most important layers so that the LLM can
more sufficiently leverage the new knowledge with-
out the overhead of redundant adjustments across
all layers. To this end, we select three different
metrics to evaluate the importance of each layer to
find which part of the LLM is more important to
knowledge injection. Our findings suggest that the
shallow layers are more important compared to the
last few layers, as the drop in precision - whether
through the removal or addition of the last few lay-
ers - is markedly less significant than the drops in-
duced by manipulating the shallow layers. Drawing
on this insight, we propose S strategy, a novel strat-
egy to knowledge injection that concentrates on en-
riching the shallow layers while deleting the least
important deepest layers. Based on the proposed
strategy, we further introduce Llama SLayer-8B
and Llama SLayer-8B-INSTRUCT, versatile LLMs
that excelling in programming, and mathematics
and general language tasks. Figure 2 displays the
superiority of Llama SLayer-8B-INSTRUCT.

The main contributions of this paper can be sum-
marized to three aspects:

• We propose a novel post-pretraining strategy
for LLMs, namely S strategy, that focuses
knowledge injection to the important layers
while pruning the ineffective layers.

• Based on our S strategy, we introduce
Llama SLayer-8B and Llama SLayer-8B-
INSTRUCT, versatile LLMs that excelling in
programming, and mathematics and general
language tasks.

• We benchmark the family of Llama SLayer
on extensive datasets, demonstrating its excep-
tional performance and significant promise for
diverse and complex applications.

2 Related Works

Here we introduce four prevalent types of methods
for injecting domain-specific knowledge, includ-
ing full fine-tuning, parameter-efficient fine-tuning,
model merging, and model expansion.

2.1 Full Fine-tuning Methods

Full fine-tuning of Pretrained Language Models
(PLMs) involves retraining all parameters for a par-
ticular task with domain-specific knowledge (Tou-
vron et al., 2023a; Liu et al., 2019). Initially trained
on vast unsupervised datasets to learn broad lan-
guage representations, these PLMs may underper-
form on specialized tasks due to lack of domain-
specific expertise (Xu and Wang, 2023; Dabre et al.,
2019). Full fine-tuning addresses this by adapt-
ing models such as HuaTuo (Wang et al., 2023),
a Chinese biomedical LLM based on LLaMA-7B,
and programming-focused LLMs such as CodeL-
Lama (Roziere et al., 2023) and Code-Qwen (Li
et al., 2023), for targeted applications. Despite its
effectiveness, this approach requires extensive com-
putational resources and substantial labeled data,
which pose challenges like overfitting on small task-
specific datasets, particularly as PLMs increase in
size and complexity (Pfeiffer et al., 2020).

2.2 Parameter-Efficient Fine-Tuning Methods

To reduce computational demands, Parameter-
Efficient Fine-Tuning (PEFT) techniques modify
only trivial parts of PLMs, maintaining perfor-
mance comparable to full fine-tuning. LoRA (Hu
et al., 2021) uses trainable low-rank matrices to up-
date weights with the original weights of the PLM
remaining unchanged, while AdaLoRA (Zhang
et al., 2023) adjusts the rank of these matrices
for optimized performance. Adapter-based Fine-
tuning (Houlsby et al., 2019; Lei et al., 2024) in-
troduces adapters into the transformer architecture,
allowing fine-tuning with minimal alteration to pre-
trained parameters. However, as the size of models
and datasets increases significantly, PEFT methods
tend to fall behind in performance compared to full
fine-tuning approaches (Biderman et al., 2024; Wu
et al., 2024).

2.3 Model Merging Method

Model merging methods aim to create a compre-
hensive model by integrating knowledge from sev-
eral pre-trained domain-specific LLMs. Task Arith-
metic (Yadav et al., 2024) construct task vectors

5992

by differentiating pre-trained and fine-tuned model
weights, allowing for model behavior adjustments
through arithmetic operations. DARE (Yu et al.,
2023a) further refines this by focusing on and en-
hancing the critical disparities between models.
Evolutionary algorithms proposed by Takuya et
al. (Akiba et al., 2024) streamline the merging
process without necessitating fine-tuning, although
this method’s reliance on multiple pre-trained mod-
els and the subjective nature of the merging strategy
may complicate its broad use. However, generat-
ing multiple domain-specific LLMs still requires
substantial computational resources.

2.4 Model Expansion Method
To reach a better trade-off between computational
resources and domain-specific performance, the
model expansion method has been introduced.
These techniques typically incorporate a more train-
able parameters than PEFT methods, albeit signif-
icantly fewer than what is employed in full fine-
tuning, and have been shown to yield impressive
results. SOLAR 10.7B (Kim et al., 2023) features
an innovative approach that involves merging the
initial 24 layers with the final 24 layers of the same
model in depth as its continuous pre-training strat-
egy. However, its superior performance comes
at the cost of training all 48 layers after expan-
sion. Llama Pro (Wu et al., 2024) adopts a method
of evenly distributing expansion blocks across all
layers of the model. These expansion blocks are
initialized by duplicating the weights of the pre-
ceding block and zeroing out specific weights to
guarantee the same initial output as the original
base model. During the subsequent phase of con-
tinual pre-training, only these expanded blocks get
trained.

However, present model expansion methods lack
exploration on which part of layers is more suit-
able for merging, since different layers may not
be equally sensitive to the injected knowledge. To
explore which parts of LLMs are pivotal for knowl-
edge injection, we evaluated different LLMs based
on layer importance and discovered that shallow
layers wield greater importance than deep layers.
Based on this, we propose a novel knowledge in-
jection strategy, namely the S strategy, that targets
the knowledge injection to the important layers via
block expansion and dispenses with the ineffective
last few layers. We implement this strategy and pro-
pose Llama Slayer 8B to validate its effectiveness-
enabling LLMs to better specialize in specific tasks

while preserving general abilities.

3 Method

3.1 Evaluation Metrics of Layer Importance

3.1.1 Angular Distance
We first try to evaluate layer importance from the
feature transition aspect. To this end, we adopt
the angular distance (AD) metric to evaluate the
significance of each block. The angular distance
Ai,i+1 between the input features of block i and
block i+ 1 is calculated as follows:

Ai,i+1 =
1

π
arccos(

xTi xi+1

||xi||||xi+1||
) (1)

where ||.|| denotes the L2-norm. This metric helps
identify blocks where significant data processing
shifts occur when exposed to new data, indicating
their pivotal role in adapting to new knowledge. We
calculate AD using the MMLU test benchmark to
get a low-fluctuation estimate. Higher AD denotes
higher difference between between inputs and out-
puts of each block, therefore the areas with higher
angular distance are earmarked for modifications,
such as layer expansion, to augment the model’s
adaptability and improve its performance on the
specific domain dataset.

3.1.2 Performance Drop after Layer Removal
We can also locate the important layer areas by
comparing the overall model performance drop on
general question-answering benchmarks when re-
moving different layers. We consider the layers that
exhibit the most significant drop in performance
once they are deleted as the most critical. Through
experiments on Llama2 7B and Mistral 7B on two
general QA benchmarks (MMLU (Hendrycks et al.,
2020) and ARC (Clark et al., 2018)), we find the
shallow layers as the important ones, so we locate
the first half of all layers as the core area for knowl-
edge injection. The choice of these two bench-
marks stems from observing that the LLM after
layer deletion or insertion has lost logic inference
ability (evidenced by zero accuracy on GSM8k
(Cobbe et al., 2021) and Humaneval (Chen et al.,
2021)), so we select the two multi-choice QA gen-
eral benchmarks to measure performance drops.

Our intuition for layer removal comes from
thinking about the representations as slowly chang-
ing the function of layer index. In particular, the
layer-to-layer evolution of representations for a

5993

A
ng

ul
ar

 D
is

ta
nc

e

Layer ID

A
cc

ur
ac

y

Deleted Layer ID

Llama2 7B

Block Added After Layer ID

Llama2 7B

A
cc

ur
ac

y
(a)

(b)

(c)

Mistral 7B

Deleted Layer ID

Block Added After Layer ID

Mistral 7B

Baseline on MMLU Baseline on ARC_ChallengeRandom

Figure 2: (a) Angular distance between inputs and out-
puts of each block vs. the layer number; (b) Accuracy of
Llama2-7B and Mistral 7B dropping one layer on two
general QA benchmarks; (c) Accuracy of Llama2-7B
and Mistral 7B with one more inserted block on the
same two QA benchmarks. The initialization of the
expanded blocks includes identity copy and averaging
the adjacent block weights.

transformer is given by a residual iteration equation

xi+1 = xi + F (xi, θi) (2)

where xi and θi are the input and parameter vectors
for layer i, respectively, and F (xi, θi) describes the
transformation of one multi-head self-attention and
MLP layer block. If we remove layer i, then we
must now connect the old input to that layer, xi−1,
into the block function of layer i+ 1 as

xi+1 = xi−1 + F (xi−1, θi−1) (3)

Comparing Equation 2 with Equation 3 we can
find a mismatch between the original input and
new input, which should be very damaging for the
network and cause a performance drop.

3.1.3 Performance Drop after Layer Insertion
Layer insertion is the reverse process of layer re-
moval. In particular, the layers that suffer the most
pronounced performance drop when testing on
MMLU (Hendrycks et al., 2020) and ARC (Clark
et al., 2018) when inserting a new block after it are
deemed the most crucial.

Two different initialization methods can be em-
ployed for the insertion. The first is the identity

copy of the weights from the preceding block. If we
expand a block between layer i and i+1, the layer-
to-layer evolution of representations from layer i
to i+ 1, initiated by identity copy, can be depicted
as

xi+1 = xi+F (xi, θi)+F (xi+F (xi, θi), θi) (4)

In addition, we also employs weight averaging as
the second method for the inserted block by aver-
aging the weights of the adjacent two blocks. The
reason for this initialization is that we think identity
copy may be not smooth enough and we hope to
start the later continual pre-training from a more
smooth initialization state. In this way, the repre-
sentation evolution from layer i to i+ 1 is

xi+1 = xi+F (xi, θi)+F (xi+F (xi, θi),
θi + θi+1

2
)

(5)

3.2 Evaluation Analysis
We illustrate the layer importance evaluation results
in Figure 2. Observing the angular distances across
the layers (Figure 2 (a)), we note that the first half
and the final layer exhibit higher angular distances.
The performance impact of removing the layers
(Figure 2 (b)) shows a more noticeable drop in the
initial half than in the last half of the layers. Sim-
ilarly, observing the performance drop after layer
insertion (Figure 2 (c)), we find that layer insertion
mirrors this trend of performance drop. Addition-
ally, initializing with the weight-averaging method
has demonstrated less impact on performance com-
pared to the identity copy method.

According to the above observations, we con-
clude that the shallow layers play a more crucial
role in knowledge injection compared to the deeper
layers. This is evidenced by (1) the angular dis-
tances are generally higher in shallow layers, indi-
cating a more significant shift in features in these
areas, and (2) the elimination or inserting of shal-
low layers poses more severe impacts on the overall
performance of LLM in two QA benchmarks, un-
derscoring the pivotal role of shallow layers and
the relative ineffectiveness of deep layers. Given
the ineffectiveness of the deepest layers, we opt to
prune them prior to post-pretraining to assess the
impact on final performance. We also observe a
more modest decline in performance when layers
inserted via weight averaging initialization are com-
pared to those initialized with an identity copy, sug-
gesting that weight averaging introduces additional

5994

Original Layer 0

Original Layer 30

Original Layer 2

Expanded Layer 1

Original Layer 31

LM Head

Embedding

Updated Layer 29

Original Layer 1

Original Layer 3

Original Layer 4

Expanded Layer 2

Original Layer 5

Output text

Input text

…
…

O
n

ly
 E

xp
an

d
 t

h
e

 F
ir

st
 H

al
f

La
ye

rs

Delete Last
2 Layers

Original Layer 16

Expanded Layer 8

Original Layer 0

Original Layer 30

Original Layer 2

Original Layer 31

LM Head

Embedding

Original Layer 29

Original Layer 1

Original Layer 3

Original Layer 4

Original Layer 5

Output text

Input text

…
…Original Layer 16

Our
Strategy

Original Model (Llama2-7B)
32 Layers Llama Slayer-8B->38 Layers

Trained Frozen Average Init Blocks

Figure 3: Our strategy focuses on infusing domain-
specific knowledge to the first half of the model layers
(shallow layers) and the final layer. This is achieved
by augmenting the model via block expansion after the
deletion of layers deemed non-essential. The expanded
blocks are initialized using a linear interpolation tech-
nique to ensure a coherent knowledge structure, and
only the expanded blocks are fine-tuned.

coherence to the expanded LLM. This prompts fur-
ther exploration into the potential benefits of using
weight averaging as an initialization strategy for
post-pretraining.

3.3 S Strategy

Based on the above analyses, our S strategy in-
volves expanding the blocks in the areas of the first
half (important) of the layer and removing the last
few unimportant layers before post-pre-training,
as shown in Figure 3. Only the expanded blocks
and final pruned layers get fine-tuned, designated
in purple. The block expansion is adopted from
Llama Pro (Wu et al., 2024), but the main differ-
ences of our strategy with Llama Pro (Wu et al.,
2024) lie in three aspects: (1) we expand blocks
at intervals within the shallow (first half) layers
based on importance, rather than equally expand-
ing across all layers; (2) We employ a weight aver-
aging method to initialize these expanded blocks,
which adds layer coherence and is better than the
identity copy used by Llama Pro (Wu et al., 2024).
(3) We remove the less critical final to make the
LLM lighter.

Specifically, given an LLM with L blocks, the

block expansion incorporates an identity block after
each block in the original model, ensuring that the
expanded model maintains the same output after
expansion. Suppose that we have an initial model
with L blocks. Since we regard the shallow layers
as more important, we divide the first half (L/2) of
the original L blocks into N segments, with each
segment consisting of LN blocks. To expand these
segments, we replicate the foremost block of each
and place it atop the respective segment. The ex-
panded N blocks are then initialized by averaging
the weights of two neighboring blocks. Consider-
ing the limited impact of the deep few LLM blocks,
we proceed to delete the last few D layers and the
final expanded LLM has L + N −D blocks. To
maintain continuity, the final block is reinitialized
for training using the combined average weights of
the discarded D blocks.

4 Experiments

In this section, we detail our key experimental find-
ings. Initially, we discuss our experimental settings
(described in Sec. 4.1), and then provide our post-
pretraining results (CPT+SFT) (described in Sec.
4.2). Finally, ablation studies of the different block
expansion mode, different LLM and data corpus
are presented (described in Sec. 4.3).

4.1 Experimental Settings.

4.1.1 CPT details.
We construct a dataset that concentrates on code
and math. For the math component, we opt for the
Proof-pile-2 dataset1, a 55-billion-token amalga-
mation of scientific papers, web data containing
mathematical content, and mathematical code. As
for the code component, the code fragment of our
dataset, we draw upon the Stack-dedup dataset2,
a vast repository of openly licensed source codes
aggregated from GitHub. Among all the program-
ming languages in Stack-dedup, we only select
the 22-billion-token Python division. Notably, due
to constraints on our computational resources, we
only sample a smaller subset totaling 30 billion
tokens from both datasets, maintaining a Math to
Code ratio of 5:2, for continued pretraining. In
the ablation study section, we further downsize
our dataset selection to a 5-billion-token extract,
equally distributed following a Math:Code ratio of
5:2, again, to improve experiment efficiency.

1https://huggingface.co/datasets/EleutherAI/proof-pile-2
2https://huggingface.co/datasets/bigcode/the-stack-dedup

5995

Properties
CPT datasets (30B token) SFT datasets (1.2M samples)

Stack-dedup-Python Proof-pile-2 WizardLM evol instruct SlimOrca MetaMath Evol-CodeAlpaca

Total # Samples 22B token 55B token 0.143M 0.518M 0.395M 0.113M
Used # Samples 8.6B token 21.4B token 0.143M 0.518M 0.395M 0.113M

Open Source ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Training datasets used for the continued pretraining (CPT) and supervised fine-tuning (SFT) stages,
respectively. The ‘Total # Samples‘ indicates the total number of samples in the entire dataset. The ‘Used # Samples‘
indicates the actual number of samples that were used in training, which could be no more than the total number of
samples in a given dataset. ‘Open Source‘ indicates whether the dataset is open-sourced.

Our main experiments are conducted on Llama2-
7B. Specifically, we expand the block number from
32 to 38 using an interleaved approach. In the
block expansion process, we only expand the first
half 16 layers, setting the parameters to LN = 2
and N = 8. This configuration leads to the for-
mation of 8 groups, with each group expanding
from 2 blocks to 3 blocks. For the code and math
corpus pretraining, we adopt a batch size of 1024
and a sequence length of 4096, combined with a
2% warmup ratio. The learning rate is set at 2e-4,
utilizing a Cosine learning rate decay strategy. To
enhance efficiency, we use bf16 mixed precision
training, apply a weight decay factor of 0.1, and
institute a gradient clipping threshold of 1.0, and
apply the flash-attention mechanism during train-
ing. Our 30B token experiments were conducted
on 256 NVIDIA A100 GPUs to save the training
time and our 5B token ablation experiments were
conducted on 32 NVIDIA A100 GPUs, all trained
for 2 epochs.

4.1.2 SFT details
During the instruction fine-tuning phase, we follow
(Wu et al., 2024) and amalgamate four distinct data
sources (WizardLM evolution instruction dataset
(Xu et al., 2023), evolution CodeAlpaca dataset
(Luo et al., 2023), MetaMath (Yu et al., 2023b) and
SlimOrca (?)) to forge the final SFT dataset of our
Llama Slayer-8B-Instruct. The final SFT dataset
comprises upwards of 1.2M samples. To fine-tune
the basic models, we employ specific configura-
tions, including a batch size of 128, a sequence
length of 4096, 0.02 warmup ratio, a learning rate
of 1e-5, a Cosine learning rate scheduler, and bf16
mixed precision.

4.1.3 Evaluation Metrics
We conduct a comparative analysis of Llama2-
7B expanded with our proposed S strategy with
the latest state-of-the-art (SOTA) LLMs. We
adopt seven datasets as benchmarks for evalu-

ation: ARC (25-shot)(Clark et al., 2018), Hel-
laSWAG (10-shot)(Zellers et al., 2019), MMLU
(5-shot)(Hendrycks et al., 2020), TruthfulQA (0-
shot) (Lin et al., 2021), Winogrande (5-shot) (Sak-
aguchi et al., 2021), GSM8K (5-shot) (Cobbe et al.,
2021) and HumanEval (0-shot)(Chen et al., 2021).
Also, the average scores for the seven tasks are
given. Among these benchmarks, the first five
are employed to test the basic knowledge abilities,
and GSM8K (Cobbe et al., 2021) and HumanEval
(Chen et al., 2021) are used to test math and cod-
ing abilities, respectively. We employ the BigCode
Evaluation Harness3 to evaluate HumanEval and
the Eleuther AI Language Model Evaluation Har-
ness4 to evaluate the other six benchmarks.

4.2 CPT & SFT Results

We evaluated the performance of our SLayer-
8B model against a series of state-of-the-art pre-
trained models of similar size. This compari-
son encompassed both general purpose models,
such as LLaMA Pro 8.3B (Wu et al., 2024),
LLaMA2-7B (Touvron et al., 2023b), and Falcon-
7B (Almazrouei et al., 2023), as well as coding-
specialized models, such as CodeLLaMA (Roziere
et al., 2023) and math-specialized models, such as
Mammoth-7B (Yue et al.). The results are detailed
in Table 2.

The results highlight that SLayer-8B effectively
balances natural language processing and math and
coding capabilities. Not only retains the general
capabilities of its base model, LLaMA2-7B (Tou-
vron et al., 2023b), more effectively than Llama
Pro, it excels in mathematical and coding tasks. In
contrast, CodeLLaMA-7B (Roziere et al., 2023)
opts to compromise its overall performance to im-
prove its coding proficiency. This enhancement is
credited to our expansion strategy, which was de-

3https://github.com/bigcode-project/bigcode-evaluation-
harness

4https://github.com/EleutherAI/lm-evaluation-harness

5996

Model Language Tasks Math & Code Tasks Avg.
ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K HumanEval

Pretrained Comparison
LLaMA2-7B (Touvron et al., 2023b) ♢ 54.18 78.59 45.87 38.76 74.03 13.12 12.83 45.34

LLaMA-7B (Touvron et al., 2023a) 50.94 77.81 35.69 34.33 71.43 8.04 10.61 41.26
CrystalCoder (7B) (Liu et al., 2023) 47.01 71.97 48.78 35.91 67.17 10.77 28.38 44.28

CodeLLaMA-7B (Roziere et al., 2023) 39.93 60.80 31.12 37.82 64.01 5.16 33.50 38.91
StarCoder-15B (Li et al., 2023) 30.38 47.93 29.96 41.28 56.12 9.48 15.32 32.92

OpenLLaMA-v2-7B (Geng and Liu, 2023) 43.69 72.20 41.29 35.54 69.38 3.49 15.32 40.13
Falcon-7B (Almazrouei et al., 2023) 47.87 78.13 27.79 34.26 72.38 4.62 9.62 39.24

Llama Pro (8.3B) ♣ (Wu et al., 2024) 53.67 77.83 47.17 37.37 72.30 17.02 (+3.9%) 20.95 (+8.1%) 46.62(+1.3%)

Llama SLayer-8B 54.35 77.46 48.25 36.13 73.88 19.03 (+5.9%) 22.62 (+9.8%) 47.39(+2.1%)

SFT Comparison
LLaMA2-7B-Chat (Touvron et al., 2023b) 52.90 78.55 48.32 45.57 71.74 23.95 14.63 47.95

CodeLLaMA-7B-Instruct (Roziere et al., 2023) 36.52 55.44 34.54 41.25 64.56 7.96 34.80 39.30
Mammoth-7B (Yue et al.) 49.15 75.72 42.29 38.98 70.88 53.6 10.98 48.94

Falcon-7B-Instruct (Almazrouei et al., 2023) 45.82 70.78 25.66 44.07 68.03 4.70 − −
LLAMA PRO-INSTRUCT (8.3B) ♣ (Wu et al., 2024) 51.21 76.62 50.12 41.13 71.53 50.18(+26.2%) 32.92(+18.3%) 53.39(+5.4%)

Llama Slayer-8B-INSTRUCT 48.98 76.91 50.34 44.65 71.12 56.25(+32.3%) 35.15(+20.5%) 54.77(+6.8%)

Table 2: Comparison of evaluation results among several prominent code and language models. The figures in bold
mark the highest ones in each column. The Llama Pro (8.3B) ♣ means that this is our self-continually pre-trained
version on our 30B token training corpus. The red percentage increases in parentheses are relative to Llama2-7B.
The evaluation results of other pre-trained and chat models are adopted from the Open LLM Leaderboard.

veloped based on empirical research. By directing
specific knowledge to the crucial layers, freezing
the initial blocks of LLaMA, and training the expan-
sion blocks initialized via interpolation, we achieve
more effective knowledge injection while preserv-
ing the model’s general strengths. SFT often leads
to more significant improvements in the evaluation
metrics compared to CPT. This is because the eval-
uation of an LLM assesses its understanding of
questions, response standardization, and general
knowledge. Although the CPT process helps the
model acquire a broad range of knowledge, it may
not enhance response standardization as effectively.
In contrast, SFT specifically trains the model to
follow instructions more accurately and generate
more standardized and precise responses, leading
to greater improvements in evaluation metrics.

4.3 Efficiency Comparison

We have compared in Table 4 the cost of our Llama
Slayer 8.3B and Llama Pro 8B in terms of parame-
ters and training time in our 30B token CPT dataset.
The training time is fairly compared to the same
settings on 8 NVIDIA A100 GPUs. Although our
model’s trainable parameters are slightly higher,
our model still saves 5.5% training time cost com-
pared to Llama Pro. In addition, since our model
requires less parameters, it is more efficient in stor-
age and inference.

4.4 Ablation Studies

The ablation study of different block expansion
mode is shown in Table 3. In particular, here the
data set for ablation is the version of the 5B token

extract, which is different from the 30B CPT data
set used in Table 2 to improve the efficiency of the
experiment. To clarify, the notation (2 + 1)× 8|16
means that we expand the model by adding one
block for every two blocks of the head eight times,
and only the eight expanded blocks marked red will
be fine-tuned.

For fair comparison, we first set the trainable pa-
rameter number to the same and explored varying
densities of block expansion throughout the layers.
This strategy aims to identify the most advanta-
geous segments for expansion within the LLM dur-
ing continued pre-training. Our findings highlight
a preference for expanding the shallow layers over
a uniform distribution across the entire network.

We also explored the impact of expanding range
by comparing with expanding within the first 1/3 of
the layer range, rather than the first 1/2, to reduce
computational costs. The results of this approach
are presented in Table 2. Specifically, since the
range is limited to the first 1/3 of the layers (ap-
proximately 12 layers), we expanded 1 layer for
every 2 consecutive layers, repeating this process
6 times starting from the first layer. We then re-
moved the last 2 layers and performed a weighted
average on the final layer. This method is denoted
as (2+1)×6|17|1♢, where the number ’1’ marked
in red indicates that only the red colored layers (the
expanded 6 layers and the final 1 layer) get tuned.
The result is that the overall performance of ex-
panding within the first 1/3 of the layers is lower
compared to expanding within the first 1/2 of the
layers. This can be attributed to the observations
in Figure 2(a), which shows a significant drop in

5997

Block Expansion Mode (5B token data) Language Tasks Math & Code Tasks Avg.
ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K HumanEval

LLaMA2-7B (Touvron et al., 2023b) 54.18 78.59 45.87 38.76 74.03 13.12 12.83 45.34
(4 + 1)× 8 (Llama Pro) 51.37 78.12 44.36 37.42 72.69 14.73 18.08 45.25

(2 + 1)× 3|(4 + 1)× 3|(7 + 1)× 2 52.05 78.06 44.88 37.09 73.32 15.19 18.23 45.55
(2 + 1)× 3|(7 + 1)× 2|(4 + 1)× 3 52.13 77.85 45.37 37.07 73.48 14.86 18.02 45.54
(4 + 1)× 3|(2 + 1)× 3|(7 + 1)× 2 52.47 78.16 45.46 38.32 73.70 15.54 18.69 46.05
(4 + 1)× 3|(7 + 1)× 2|(2 + 1)× 3 52.22 78.02 44.55 38.42 73.01 15.39 18.20 45.77
(7 + 1)× 2|(4 + 1)× 3|(2 + 1)× 3 52.13 79.23 45.44 35.61 74.74 14.71 17.68 45.65
(7 + 1)× 2|(2 + 1)× 3|(4 + 1)× 3 51.02 77.88 45.66 36.37 74.27 15.01 17.59 45.40

16|(2 + 1)× 8 52.88 78.01 44.54 37.28 73.48 14.72 16.68 45.37
(2 + 1)× 8|16 53.05 77.10 44.52 37.98 73.11 15.96 19.50 45.89
(2 + 1)× 8|16♢ 53.16 77.25 44.95 38.28 73.48 16.09 19.52 46.10
(2 + 1)× 6|17|1♢ 51.16 77.20 45.89 37.18 72.96 15.52 18.51 45.49

(2 + 1)× 8|11|1♢ (delete 4 blocks, Ours) 49.83 75.52 45.06 37.33 73.24 13.72 16.08 44.40
(2 + 1)× 8|12|1♢ (delete 3 blocks, Ours) 50.15 76.02 45.22 37.64 73.30 15.13 17.96 45.06
(2 + 1)× 8|13|1♢ (delete 2 blocks, Ours) 51.45 77.73 46.26 37.91 73.56 16.37 19.73 46.14

Table 3: Comparison of evaluation results among several prominent code and language models. The numbers in red
denote that the expanded blocks and only these blocks get fine-tuned at the continued pre-training stage. Methods
marked with ♢ indicate that the expanded blocks use weight averaging for initialization. In contrast, other methods
use identity copy-for initialization.

Table 4: Comparison of parameters and training time.

Method Trainable Parameters (B) Total Parameters (B) CPT Time Cost (h)

Llama Pro 1.75 8.3 740
Llama Slayer-8B 1.95 7.9 700

angular distance from the middle (16th) layer. This
suggests that the layers beyond the first 1/3 play
a crucial role in maintaining or improving model
performance.

To further demonstrate the importance of shal-
low layers, we fine-tune Llama2-7B on our 5B to-
ken math code dataset with AdaLoRA (Zhang et al.,
2023), which can dynamically allocate parameter
budgets to weight matrices based on importance
ratings. We display the resulting rank distribution
and the average ranks of each incremental matrix
during AdaLoRA fintuing in Fig. 4. As shown
in Fig. 4, AdaLoRA predominantly enriches the
weight matrices in the shallow layers, corroborat-
ing our insight that these layers are more crucial
for infusing new knowledge. Furthermore, we also
calculate the angular distances for Llama Slayer
(13.60) and Llama Pro (13.17) after training on
our compiled 30B token math+code dataset and
observe that the former surpasses the latter, again
proving the effectiveness of our approach.

Furthermore, we evaluate the impact of initial-
ization methods and the acceptable limits for layer
reduction in Table 3. We find that weight averag-
ing is a superior method for initializing expanded
blocks, since this adds coherence to the expanded
LLM. Additionally, we discern that eliminating
up to two of the deepest layers is feasible without

Figure 4: The resulting rank of each incremental ma-
trix when fine-tuning Llama2-7B on our 5B token
math+code dataset with AdaLoRA.

severely degrading model performance. However,
a more aggressive approach to layer deletion has
been found to adversely affect the effectiveness of
the LLM.

Apart from the aspect of code and math corpus,
we also explore our training strategy on a differ-
ent LLM type, Mistral-7B, and another knowledge
domain: law, with the free-law subset of the Pile
dataset as our pre-training corpus (Gao et al., 2020).
To assess our model’s proficiency in legal language,
we leveraged the Unfair ToS dataset, which is com-
posed of Terms of Service (ToS) agreements from
various online platforms—a critical resource in
evaluating legal document comprehension. Our
evaluation was carried out using the UNFAIR-ToS
benchmark (Lippi et al., 2019) within LexGLUE
(Chalkidis et al., 2021), employing a 5-shot learn-
ing scenario. The evaluation was also implemented
through the Eleuther AI Language Model Evalua-
tion Harness.

In Fig. 5, we detail a comparative analysis of

5998

-2

-1

0

1

2

3

ARC Hellaswag MMLU Truthfulqa Winogrande UnFair-Tos

Mistral Pro-8.3B Mistral Slayer-8B

(a) (b)-4

-3

-2

-1

0

1

2

3

ARC Hellaswag MMLU Truthfulqa Winogrande UnFair-Tos

LLAMA Pro-8.3B LLAMA Slayer-8B

Figure 5: Comparative analysis of performance varia-
tions of different training strategies relative to the base
model (a) Llama2-7B and (b) Mistral-7B, on both gen-
eral and law-specific tasks.

performance variations between our Llama/Mistral
Slayer-8B models and the self-post pretrained
Llama/Mistral Pro, benchmarked against the cor-
responding foundational models. It is evident
from our findings that our tailored strategy sig-
nificantly enhances domain-specific knowledge in-
jection while more effectively mitigating the issue
of catastrophic forgetting compared to the Llama
Pro’s even block expansion. This improvement
can be largely attributed to our idea of expand-
ing LLM blocks based on their layer importance.
Such an approach ensures that our knowledge aug-
mentation efforts are concentrated on the most cru-
cial blocks, thereby enhancing the efficiency of
post-pretraining. In addition, our utilization of
the weight-averaging technique for initializing the
expanded blocks provides a smoother approach
compared to the direct identity copy employed in
Llama Pro. This ensures better layer coherence in
the model, as opposed to the abrupt identity copy
method. Therefore, our proposed strategy not only
fosters smoother integration and adaptation of new
knowledge, but also contributes to the refined per-
formance and learning capabilities of our models
within domain-specific contexts.

5 Conclusion

We propose S strategy to inject domain-specific
knowledge into LLMs via block expansion based
on layer importance in the post-pretraining phase.
This strategy prioritizes knowledge injection to the
important shallow layers while pruning the inef-
fective deep layers, and can not only bolster the
model’s specific-domain capabilities but also main-
tain its general proficiency. Based on the proposed
strategy, we introduce LLAMA SLayer-8B and
LLAMA SLayer-8B-INSTRUCT, LLMs that de-
rive from the base model LLaMA2-7B. The two
models surpass various predecessors in the LLaMA
series across a wide array of benchmarks, evidenc-

ing the superior performance of our strategy.

6 Limitations

While we introduces an effective strategy based on
layer importance to post-pretrain Large Language
Models (LLMs) to achieve a balance between gen-
eral and domain-specific abilities, its applicability
is primarily within the realm of language. Future in-
vestigations could aim to broaden the utility of our
knowledge injection strategy across various fields.
This expansion might include adapting the tech-
nique to enhance the native language capabilities
of multimodal LLMs (Ge et al., 2023), as well as its
application in multilingual settings. Furthermore,
the adaptability of our proposed strategy to larger
LLMs and the feasibility of removing an increased
number of deeper layers as the model size escalates
are promising avenues for future research.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and
David Ha. 2024. Evolutionary optimization of model
merging recipes. arXiv preprint arXiv:2403.13187.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, et al. 2024. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael
Bommarito, Ion Androutsopoulos, Daniel Martin
Katz, and Nikolaos Aletras. 2021. Lexglue: A bench-
mark dataset for legal language understanding in en-
glish. arXiv preprint arXiv:2110.00976.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Stephen Choi and William Gazeley. 2024. When life
gives you llms, make llm-ade: Large language mod-
els with adaptive data engineering. arXiv preprint
arXiv:2404.13028.

5999

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve
math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Raj Dabre, Atsushi Fujita, and Chenhui Chu. 2019.
Exploiting multilingualism through multistage fine-
tuning for low-resource neural machine translation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1410–1416.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li,
Xintao Wang, and Ying Shan. 2023. Making llama
see and draw with seed tokenizer. arXiv preprint
arXiv:2310.01218.

Xinyang Geng and Hao Liu. 2023. Openllama: An
open reproduction of llama. URL: https://github.
com/openlm-research/open_llama.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung
Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim,
Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. 2023.
Solar 10.7 b: Scaling large language models with
simple yet effective depth up-scaling. arXiv preprint
arXiv:2312.15166.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua
Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
Zhao, Yuexin Wu, Bo Li, et al. 2024. Conditional
adapters: Parameter-efficient transfer learning with
fast inference. Advances in Neural Information Pro-
cessing Systems, 36.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Marco Lippi, Przemysław Pałka, Giuseppe Contissa,
Francesca Lagioia, Hans-Wolfgang Micklitz, Gio-
vanni Sartor, and Paolo Torroni. 2019. Claudette: an
automated detector of potentially unfair clauses in
online terms of service. Artificial Intelligence and
Law, 27:117–139.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, et al. 2023.
Llm360: Towards fully transparent open-source llms.
arXiv preprint arXiv:2312.06550.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

6000

Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang,
Sendong Zhao, Bing Qin, and Ting Liu. 2023. Hu-
atuo: Tuning llama model with chinese medical
knowledge. arXiv preprint arXiv:2304.06975.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao
Wang, Ye Feng, Ping Luo, and Ying Shan. 2024.
Llama pro: Progressive llama with block expansion.
arXiv preprint arXiv:2401.02415.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Lingling Xu and Weiming Wang. 2023. Improving
aspect-based sentiment analysis with contrastive
learning. Natural Language Processing Journal,
3:100009.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging: Re-
solving interference when merging models. Ad-
vances in Neural Information Processing Systems,
36.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023a. Language models are super mario: Ab-
sorbing abilities from homologous models as a free
lunch. arXiv preprint arXiv:2311.03099.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023b.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. Mam-
moth: Building math generalist models through hy-
brid instruction tuning. In The Twelfth International
Conference on Learning Representations.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview.

A Evaluation Benchmark

The benchmarks used for evaluation include:

• AI2 Reasoning Challenge (Clark et al.,
2018)(25-shot): a set of grade-school science
questions.

Table 5: Hyper-parameters of pretraining on the domain
of law.

HYPER-PARAMETERS ASSIGNMENT
BATCH SIZE 1024

MAXIMUM SEQUENCE LENGTH 2,048
MAXIMUM LEARNING RATE 2E-4

OPTIMIZER ADAM
ADAM BETA WEIGHTS 0.9, 0.95

LEARNING RATE SCHEDULER COSINE
WARMUP RATIO 0.02

GRADIENT CLIPPING 1.0
EPOCH 2

• HellaSwag (10-shot) (Zellers et al., 2019): a
test of commonsense inference, which is easy
for humans (approximately 95%) but challeng-
ing for SOTA models.

• TruthfulQA (0-shot) (Lin et al., 2021): a test
to measure a model’s propensity to reproduce
falsehoods commonly found online.

• MMLU (5-shot) (Hendrycks et al., 2020): a
test to measure a text model’s multitask accu-
racy. The test covers 57 tasks including ele-
mentary mathematics, US history, computer
science, law, and more.

• Winogrande (5-shot) (Sakaguchi et al., 2021):
an adversarial and difficult Winograd bench-
mark at scale, for commonsense reasoning.

• GSM8k (5-shot) (Cobbe et al., 2021): diverse
grade school math word problems to measure
a model’s ability to solve multi-step mathe-
matical reasoning problems.

• HumanEval (0-shot) (Chen et al., 2021): 164
handwritten Python programming problems
with a function signature, docstring, body, and
several unit tests.

B Hyper-parameters of pretraining on
the domain of law.

We list the detailed settings of our pretraining on
the domain of law in Table 5.

C More detailed explanation of Figure 4.

Figure 4 shows the resulting rank of each increme-
nal matrix when fine-tuning Llama2-7B on our 5B
toke nmath+dode data with AdaLoRA. The y axis
has six weight items, Wq,Wk,Wv,Wup,Wdown

6001

and the average weight value. From the last aver-
age line we can see that AdaLoRA allocates more
parameter budget to the weight matrices in shallow
layers, since the color gradually becomes lighter
as the layer gets deeper. Such behavior aligns with
our conclusion that the shallow layers are more im-
portant to knowledge injection and should be paid
more attention during post-pretraining.

6002

