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Abstract

Work on instruction-tuned Large Language
Models (LLMs) has used automatic methods
based on text overlap and LLM judgments as
cost-effective alternatives to human evaluation.
In this paper, we perform a meta-evaluation
of such methods and assess their reliability
across a broad range of tasks. In evaluating
how well automatic methods align with human
evaluations, correlation metrics are the most
commonly employed method despite their in-
herent limitations when dealing with ties and
different scales. To address these shortcom-
ings, we use Pairwise Accuracy as an alternat-
ive to standard correlation measures. We ob-
serve that while automatic evaluation methods
can approximate human ratings under specific
conditions, their validity is highly context-de-
pendent. Specifically, the simple ROUGE-L
metric correlates very well with human ratings
for short-answer English tasks but is unreli-
able in free-form generation tasks and cross-lin-
gual scenarios. The effectiveness of the more
advanced method of using GPT-4 as a judge
diminishes significantly if reference answers
are not included in the prompt, which is the
scenario where this method has the potential to
provide the most value compared to other met-
rics. Our findings enhance the understanding
of how automatic methods should be applied
and interpreted when developing and evaluat-
ing instruction-tuned LLMs.

1 Introduction

A key strength of the current generation of Large
Language Models (LLMs) is their capacity to
learn new tasks from instructions, either in-con-
text (Mishra et al., 2022; Sanh et al., 2022; Wei
et al., 2022) or in a dedicated fine-tuning phase
(Wang et al., 2022). The field has also seen the
development of methods to adapt LLMs to new lan-
guages, for example, through continued fine-tuning
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(Muennighoff et al., 2023), alignment with trans-
lation pairs (Ranaldi et al., 2024), and instruction
tuning on additional languages (Chen et al., 2024;
Kew et al., 2023).

The gold standard for evaluating generative tasks
is human annotation, but this scales poorly due to
high costs and time constraints. Consequently, the
most common approach for assessing generative
LLMs is using automated evaluation techniques.
Among these, two popular methods are measuring
text overlap with ROUGE-L (Lin, 2004) and util-
izing existing LLMs as automatic judges (Zheng
et al., 2023); however, these methods only approx-
imate human judgment, prompting questions about
their reliability. While previous research has found
that automatic evaluation methods correlate well
with human assessments (Wang et al., 2022; Zheng
et al., 2023), it is important to recognize that these
findings generalize over tasks of very different
types and in different languages. Additionally, cor-
relation measures may not provide reliable estim-
ates of alignment with human ratings, as they are
limited in their ability to deal with ties and constant
scores, which are common in human annotations
(Deutsch et al., 2023).

In this paper, we provide a thorough analysis
of two widely-used automatic methods for approx-
imating human judgments, ROUGE-L and LLM-
as-a-judge. Additionally, we experiment with
BERTSCORE, a semantic text similarity measure, to
assess its potential utility. We study the reliability
of the three measures across a broad range of Eng-
lish-language tasks. We also perform experiments
on Swedish as an initial study on the reliability of
these metrics across languages. Instead of using
correlation measures, we employ Pairwise Accur-
acy (Deutsch et al., 2023) to quantify the alignment
with human ratings. Our overall goal is to increase
our understanding of the reliability of automatic
evaluation methods and to establish guidelines re-
garding their appropriate usage.
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Our contributions can be summarized as follows:

• We adopt Pairwise Accuracy (PA) with tie cal-
ibration (Deutsch et al., 2023) to enable robust
comparisons between metrics, as we observe a
high prevalence of tied ratings which renders
common metrics, such as Kendall’s τ and Spear-
man’s ρ, unreliable.

• We show that GPT-4 aligns well with human
judgments when gold reference answers are
available. However, its reliability diminishes in
the absence of these references, where it shows
an overly positive bias. This is especially prob-
lematic for free-form tasks, since GPT-4 is com-
monly used in such settings.

• We find that GPT-4, while being the best tool for
evaluating generations, can be replaced by faster
and far less costly alternatives under certain con-
ditions. In particular, we show that ROUGE-L
offers a cost-effective alternative to GPT-4 for
short-answer tasks, while BERTSCORE shows
promising results in long-answer tasks.

• We observe a decrease in alignment with humans
in non-English tasks for ROUGE-L and GPT-4
in situations where it does not have access to
gold references. This suggests that it could be
challenging to use automatic evaluation methods
for lesser-resourced languages.

2 Related Work

We start by reviewing the research on the automatic
evaluation of generated text, the use of LLMs as
evaluators, and the methods applied to assess the
alignment of metrics with human preferences.

2.1 Automatic Evaluation
For short-form tasks such as multiple-choice ques-
tion answering, assessing the quality of model out-
puts appears feasible through standard classifica-
tion metrics like accuracy and F1-score (Li et al.,
2023a; Lai et al., 2023). While such an evalu-
ation can be precise, it is rather strict and can only
provide a fair performance assessment if the model
does not deviate from the instructed format. How-
ever, this easily happens as the tasks diverge from
the training data or get more complex. Surface-
level similarity measures such as ROUGE-L (Hon-
ovich et al., 2023; Wang et al., 2023; Mishra et al.,
2022; Yin et al., 2023; Lai et al., 2023; Li et al.,
2023b) are more forgiving regarding formatting

inconsistencies, but still lack the sophistication to
be effective in tasks where free-from answers are
expected.

2.2 Evaluation Using LLMs

An increasingly common method for evaluating
instruction fine-tuned models is to use powerful
LLMs as automatic judges (Peng et al., 2023; Gil-
ardi et al., 2023; Chen et al., 2024; Kew et al.,
2023). Zheng et al. (2023) propose three different
variations: (1) pairwise comparison, which asks
the LLM to choose its preferred answer or declare
a tie; (2) single-answer grading, in which the LLM
is asked to assign a score to an answer; and (3)
reference-guided grading, in which the model is
provided with a reference solution (if available).
An approach similar to the second one is used by
M3IT (Li et al., 2023b) to evaluate the accuracy,
relevance, and naturalness using GPT-4 in a mul-
timodal scenario.

2.3 Meta-Evaluation

Human evaluation is the gold standard of assess-
ment in natural language processing, but is not
widely used in the literature due to its high costs. In-
stead, authors have turned to automatic evaluation
measures that correlate well with human judgments.
Wang et al. (2022) find a consistently strong cor-
relation between ROUGE-L scores with accuracy
across different models and task types, indicating
that it is a good proxy for accuracy in classification
tasks with short outputs. For machine translation,
Zhang* et al. (2020) show that BERTSCORE is bet-
ter correlated to human judgments than previous
metrics, but Hanna and Bojar (2021) also identify
setups where it fails.

The recent work on automating evaluation pro-
cesses and leveraging LLMs has demonstrated sub-
stantial agreement with human ratings. Zheng et al.
(2023) show that GPT-4’s judgments align with
human evaluations at over 80% agreement, reach-
ing levels comparable to human–human agreement.
Zhou et al. (2023) also report agreement levels
between GPT-4 and human annotators on a par with
human–human agreements. There is also work on
the meta-evaluation of automatic metrics for chat
and summarization (Shen et al., 2023; Chiang and
Lee, 2023) using different criteria, and on align-
ing language model evaluations better with human
preferences, such as Liu et al. (2024) and Chan
et al. (2024).
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3 Methodology

In this section, we present the data and instruction-
tuned models used in our study. We provide an
overview of the automatic metrics we employed to
assess model performance and detail our approach
to conducting a meta-evaluation of these metrics.

3.1 Data

As our training data, we use the Cleaned Alpaca
Dataset1, which corrects errors found in the ori-
ginal Alpaca (Taori et al., 2023). For testing, we
use Natural Instructions v2 (NIv2) (Mishra et al.,
2022; Wang et al., 2022), which spans a diverse
range of tasks, including classification, question an-
swering, free-form text generation, and reasoning.
This enables fine-grained testing.

Sample Selection Because of our limited annota-
tion budget (cf. §3.3), we select 20 from the 119
(English-language) tasks available in NIv2. We
aim to find tasks that (a) cover a range of difficulty
levels, (b) involve both short and long free-form
answers, and (c) are diverse in task types while
leaving some type overlap for control purposes.
For a full description of the selected tasks, we refer
to Appendix A. From each task, we pick 15 random
samples, leaving us with 300 samples in total.

Translation To study the metrics’ reliability
across the language dimension, we translate both
our training and our test data to Swedish using
GPT-3.5-turbo. The prompt template and hyper-
parameters used for translation can be found in
Appendix B. Previous work has shown that the
automatic translation of the Alpaca dataset pro-
duces high-quality results with low noise levels
(Holmström and Doostmohammadi, 2023; Li et al.,
2023a). In addition to the two monolingual
train datasets, we create an equally-sized English–
Swedish bilingual train set by replacing a random
50% of the samples in the Cleaned Alpaca Dataset
with their Swedish translations. Our purpose with
this bilingual training set is to conduct a controlled
study with more diverse bilingual data.

3.2 Instruction Tuning

We instruction-tune three base models in this study:
LLaMA2-7b, LLaMA2-13b and GPT-SW3-6.7b. Our
selection accounts for different model sizes, pre-
training languages, and performance.

1https://github.com/gururise/AlpacaDataCleaned

• LLaMa2 (Touvron et al., 2023) is trained on
mainly English data; only 0.15% of the pretrain-
ing data is Swedish. We use both the 7B and the
13B parameter versions of the model.

• GPT-SW3 (Ekgren et al., 2024) is a GPT-2-based
language model mainly trained on North Ger-
manic languages and English, where 26% is
Swedish, and 40% is English. GPT-SW3 exhib-
its the lowest perplexity on Swedish (see Ap-
pendix C.1), which is unsurprising as LLaMA2
models have seen vastly fewer Swedish tokens
during pretraining.

For instruction tuning, we use the same training
settings, hyperparameters, and prompts as Alpaca,
and use DeepSpeed (Rasley et al., 2020) with the
same configuration for all models. For more details
regarding the implementation, see Appendix D.

Naming Scheme We instruction-tune each of our
three base models on the three training datasets
(English, Swedish, and bilingual) and test it on
either the single training language (for monolin-
gual models) or both languages (for bilingual mod-
els). This gives us a combined total of 12 different
configurations for our experiments. Throughout
the paper, we refer to these by the name of the
base model, model size, training dataset, and test-
ing language, all separated by underscores. For
example, SW3_6.7b_ENSV_SV identifies the exper-
iment where we train the GPT-SW3 model with
6.7 billion parameters on the bilingual English–
Swedish data and test on Swedish.

3.3 Evaluation Methods
Human Assessment To establish the gold stand-
ard for our evaluation, we hire three bilingual (Eng-
lish and Swedish) evaluators to assess model out-
puts based on three criteria: naturalness (how nat-
ural and fluent the generated response is), related-
ness (whether the response is related to the prompt
and follows the required format), and correctness
(whether the response is correct, which is our main
criterion). While there are some tasks for which
these criteria may not be applicable (especially cor-
rectness), they are well-suited for our chosen set of
tasks. We ask each annotator to rate each criterion
on a Likert scale ranging from 1 (significantly defi-
cient) to 3 (completely proficient). For a detailed
description of the annotation process and instruc-
tions, see Appendix E. The Kendall’s τ is 0.74
(averaged over pairs of annotators) and the Fleiss’
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κ (Fleiss and Cohen, 1973) is 0.63, indicating a
substantial agreement between human annotators.

Majority Vote To compare human ratings to
other metrics, we use a variant of the majority vote.
More specifically, we compress the three ratings
into that score which is assigned by at least two
raters, and fall back to a neutral score of 2 in cases
where all raters have given different scores. We
prefer our method over the obvious alternative of
taking an average because it reduces the impact of
outlier ratings. For reference, among the human
ratings of correctness (our main criterion), there is
a majority vote for 93.5% of samples, providing a
robust foundation for our comparisons. We treat
the human majority vote as the gold standard and
compare other metrics against it.

Performance Metrics Our selection of perform-
ance metrics is motivated by the desire to cover
commonly used methods on a spectrum from sur-
face-based semantics-based methods. On one end
of this spectrum, we use ROUGE-L (Lin, 2004),
which measures the textual overlap between a gen-
erated response and a reference output as the length
of the longest common subsequence. On the other
end of the spectrum, we use GPT-4 as a judge
(Zheng et al., 2023).2 Similar to previous work
(Zhou et al., 2023; Kew et al., 2023), we prompt
GPT-4 with the same instructions that we give to
human evaluators and ask it to rate based on the
same criteria on the same Likert scale. We also
prompt GPT-4 to provide its reasoning before rat-
ing, similarly to Kew et al. (2023), whose frame-
work we use for LLM-as-a-judge evaluations. The
prompt template used for evaluations is found in
Appendix B. In the standard evaluation setting, the
gold labels are included in the prompt as a refer-
ence for the model; we mark this setting with the
suffix -gold. To ablate the effects of the access
to gold labels, we perform additional experiments
with these labels excluded; we mark these with the
suffix -no-gold. Finally, as a point in-between
a purely surface-based and a powerful semantics-
based performance metric, we use BERTSCORE

(Zhang* et al., 2020), which quantifies semantic
overlap in terms of the cosine similarity between
contextual embeddings obtained from pretrained
language models.

2Running an evaluation (across all models, tasks, and lan-
guages) costs around USD 100 and typically takes 15–20
minutes. Though not significantly cheaper than human evalu-
ations, it certainly surpasses it in terms of time efficiency.

Metric Tie Proportion ϵ

Human Ratings 0.557 ± 0.162 0.000
GPT-4-gold 0.524 ± 0.154 0.000
ROUGE-L 0.355 ± 0.252 0.061
BERTSCORE 0.104 ± 0.141 0.133

Table 1: The average tie proportion per metric for Eng-
lish-language tasks.

3.4 Meta-Evaluation Method

Pairwise Accuracy with Tie Calibration In this
study, we perform a meta-evaluation of both met-
rics that produce continuous and ordinal ratings.
While Spearman’s ρ and Kendall’s τ are commonly
used for such purposes, these metrics fail to handle
tasks with constant score vectors or with differ-
ent rating scales, and they do not reward correct
predictions of ties. Ties are especially frequent in
Likert-scale human ratings, which the automatic
metrics are benchmarked against.

In response, we have chosen to use Pairwise
Accuracy with Tie Calibration (PA) for meta-eval-
uating metrics. Proposed by Deutsch et al. (2023),
PA addresses the shortcomings of traditional met-
rics by including mechanisms to explicitly account
for the prevalence of ties, thus providing a fairer
assessment of metrics.

PA measures the proportion of correctly ranked
pairs, including accurately predicted ties. With val-
ues ranging from 0 to 1, the metric is more easily
interpreted than traditional correlation metrics such
as Spearman’s ρ and Kendall’s τ . PA includes a tie
calibration process by defining a threshold value,
ϵ, which specifies what is considered a significant
difference between scores. A pair of scores with a
difference smaller than ϵ is considered a tie. This is
crucial as some metrics are more likely to produce
tied values, as can be seen in Table 1. Tie calib-
ration ensures that comparisons between different
metrics are fair, regardless of their inclination to
predict ties or having different rating scales.

We study the distribution of ties in our data and
observe significant variation for different metrics,
as shown in Table 1. The average tie proportion
for human ratings is 0.557, serving as our bench-
mark. In contrast, metrics such as GPT-4, ROUGE-
L, BERTSCORE exhibit varying degrees of tie pro-
portions. GPT-4 has a similar degree of ties com-
pared to human ratings, while BERTSCORE has
considerably lower tie proportions. The significant
amount of ties and a constant score vector validate
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Experiment Natural Related Correct

LLaMA2_13b
EN_EN 99 (95) 73 (80) 47 (51)

SV_SV 99 (94) 76 (76) 36 (37)

ENSV_EN 99 (92) 80 (79) 47 (47)

ENSV_SV 99 (92) 80 (76) 39 (40)

LLaMA2_7b
EN_EN 99 (91) 72 (76) 40 (44)

SV_SV 99 (88) 65 (68) 35 (34)

ENSV_EN 99 (92) 74 (75) 41 (43)

ENSV_SV 98 (89) 66 (68) 32 (33)

SW3_6.7b
EN_EN 99 (91) 79 (70) 35 (36)

SV_SV 99 (92) 66 (67) 37 (37)

ENSV_EN 99 (92) 81 (68) 35 (35)

ENSV_SV 99 (85) 68 (63) 35 (36)

Avg. diff. 7.8 4.2 1.3

Table 2: Human evaluation results per model scaled to
0 to 100. For comparison, GPT-4 ratings are included in
parentheses for each model and criterion.

the use of PA to enable a reliable meta-evaluation
of our metrics. As an example of a constant vector
in our case, in Task 034 (cf. §4), there is a constant
score of 1 from human raters, illustrating a scenario
that could commonly occur in instruction tuning.

Unlike Deutsch et al. (2023), who calculate ϵ for
each task, we calculate the optimal ϵ for each metric
using data from all tasks. We find that this produces
a PA that better reflects the true correlation between
human and metric scores, especially for tasks with
only ties or mostly ties. Otherwise, for tasks with
only ties, the ϵ could be as large as the value range
for the metric and treat every pair of scores as ties.
As shown in Table 1, our metric-level ϵ correlates
well with the number of ties for the metric. With
our pre-calculated ϵ values, we compute PA over
all models per task, aligning with the No-Grouping
setting in Deutsch et al. (2023).

4 Results and Analysis

In this section, we present a comparative analysis of
the evaluation methods in terms of their alignment
with human assessments.

4.1 Human Evaluation
We present the human evaluation results for each
model in Table 2. All models demonstrate the cap-
ability to generate natural-sounding text (99% on
average) and also perform fairly well in generat-
ing relevant responses that adhere to the required
format (73% on average). The correctness scores
demonstrate that the models are capable of gen-

erating largely accurate answers. There is also a
notable diversity among the models regarding cor-
rectness. This diversity is crucial because we seek
a range of models with varied problem-solving abil-
ities, rather than just strong models that produce
highly accurate results.

The ratings of GPT-4 closely align with human
ratings for correctness, showing slightly more dis-
tance in relatedness, and even more in natural-
ness. (The average differences between human
and GPT-4 ratings are summarized in the final row
of Table 2.) Based on these results, in the rest of
the paper, we focus solely on correctness. We pri-
oritize correctness since it is the most important
criterion for determining the usefulness of LLMs.
Moreover, comparing our metrics using the other
criteria could be problematic. For instance, while
ROUGE-L scores serve as a reasonable proxy for
correctness, they are less suited for evaluating nat-
uralness or relatedness.

4.2 Meta-Evaluation of Metrics

The metric with the highest alignment with human
ratings is GPT-4-gold which achieves an average
PA of 0.81 for English short- and long-answer tasks,
followed by ROUGE-L with 0.75, BERTSCORE

with 0.66, and GPT-4-no-gold with 0.62. For a
comparison of all the results across different task
types, languages, and metrics, see Table A3. Non-
etheless, a more fine-grained analysis shows a dif-
ferent pattern, which we will discuss in this section.

Finding 1: All metrics struggle to assess model
performance on long-answer tasks.

As presented in Figures 1, 2, and 4, the align-
ment with humans drops for long-answer tasks
compared to short-answer tasks. On average, for
English long-answer tasks, GPT-4-gold at 0.58
is the highest, followed by 0.54 for BERTSCORE,
0.50 for GPT-4-no-gold, and 0.48 for ROUGE-L.

For Tasks 613, 677 and 1659 where the models
must generate free-form text, ROUGE-L scores are
lower than human ratings accompanied with low to
medium PAs. This is due to the large set of possible
solutions and the small set of gold label answers,
often consisting of a single sentence, that the out-
put should match to receive a high ROUGE-L score.
For some of these tasks, e.g., title generation, it
is impossible to cover the set of conceivable solu-
tions which makes ROUGE-L unreliable for these
types of tasks. The same trend is present for GPT-4,
which could be explained by this model’s relying
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Figure 1: Human ratings and ROUGE-L scores per task and test language at the bottom and their PA at the top.
Human scores are normalized to a range between 0 and 1. Short-answer tasks are on the left and long-answer ones
are on the right.

on the gold labels during evaluation, which may
make it overly critical of responses that show less
conformity with the provided reference answers.

In contrast, for Tasks 1562 and 1622, where mod-
els are tasked with modifying sentences, GPT-4 as-
signs higher ratings compared to humans. GPT-4
struggles to reliably assess whether our models
have met the instructional criteria in such tasks.
For instance, in Task 1562, the objective is to gen-
erate paraphrases of questions while making as
many alterations as possible. When models only
introduce minor changes, such as changing bring
to take in the sentence “Can I bring my mountain
bike with me to this national park?”, GPT-4 often
rates this 3 on correctness.

Finding 2: GPT-4 needs reference answers in the
prompt.

When we remove the gold answers from the
prompt, GPT-4’s alignment with human ratings de-
creases significantly, from 0.81 PA to 0.62 PA on
English. Full results are presented in Table A3. For
short-answer tasks in English, the reduction is 0.25,
and for long-answer tasks, it is 0.09, which under-
scores GPT-4’s struggle when it lacks a reference
for exact matching. We attribute this reduction to
the increased complexity of both solving and rating
the task, which is more pronounced in Swedish,
where there is a higher incidence of models over-
generating. While such over-generation may lead
to lower human ratings, it could be favored by
GPT-4 due to its bias towards longer and more verb-
ose outputs (Zheng et al., 2023).

A notable observation is that without gold la-
bel references, GPT-4-no-gold is generally more
prone to higher ratings, as seen in Figure 4’s lower
plot. While GPT-4-gold closely aligns with hu-
man judgments for incorrect outputs (88% for 1’s
and 81% for 3’s), GPT-4-no-gold shows an align-
ment of 65% for 1’s and 84% for 3’s, indicating an
opposite trend. This demonstrates the excessively
positive stance of GPT-4-no-gold, also noted by
Hada et al. (2024) in a different scenario. The posit-
ive bias is particularly evident in long-answer tasks
and challenging short-answer tasks, such as Tasks
190 and 401. This tendency underscores the im-
portance of gold labels as references to help align
the GPT-4’s judgments with humans in most tasks.

However, we note that for some long generation
tasks (Tasks 613, 677, and 1659) the scores of
human raters are lower than for other tasks even
when gold labels are present, as seen in Figure
2. Gold references can therefore be restricting for
these types of long generation tasks, where models
can have correct answers that diverge from the gold
label. This is problematic as it is to these types of
tasks that LLM-as-a-judge is often applied, and
where it could bring the most value compared to
other metrics, particularly due to the multitude of
potential correct answers.

Finding 3: For short-answer tasks, ROUGE-L is
as effective as GPT-4-gold.

With a PA at 0.90 for English short-answer tasks,
ROUGE-L is nearly as well-aligned with human rat-
ings as GPT-4-gold, which has a PA at 0.93. Our
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Figure 3: Pairwise accuracy between GPT-4-gold and
BERTSCORE for long-answer English tasks.

strong results for ROUGE-L are in line with findings
by Wang et al. (2022), who report a high correlation
with humans for classification tasks. With that said,
there are instances where ROUGE-L has low align-
ment with human majority rating for short-answer
tasks, for example when there is high word overlap
between possible answer choices. For example, in
Task 1615 the labels are “B entails A”, “B contra-
dicts A”, or “B neutral A”. A wrong answer for this
task yields a ROUGE-L score of 0.66, as long as
the answer is in the possible answers space. The
same issue is observed for Task 392 where the label
space is “Plausible” and “Not Plausible”.

These types of issues also make it problem-
atic to report average ROUGE-L scores across
tasks since a baseline model that always makes
wrong predictions could inflate its score beyond
its actual performance level. However, as previ-
ously discussed, ROUGE-L correlation with hu-
mans and GPT-4-gold does not carry over to long-

answer tasks, which makes it only suitable as a re-
placement for GPT-4 when evaluating short-answer
tasks. It is important to note that while ROUGE-
L demonstrates strong agreement with humans,
GPT-4-gold scores are more interpretable as they
better align with human judgments, as illustrated
at the bottom of Figures 1 and 2.

Finding 4: BERTSCORE demonstrates strong
performance in long-answer tasks.

With a PA of 0.54 for long-answer tasks,
BERTSCORE shows a alignment with humans com-
parable with GPT-4-gold, which scores 0.58. A
comparison of BERTSCORE and GPT-4-gold’s
PAs are shown in Figure 3. For complete results
of BERTSCORE see Appendix C.3. BERTSCORE

achieves comparable results to GPT-4-gold on all
long-answer tasks, only underperforming on some
of them, particularly Task 1622, where it captures
the first criterion which requires a high semantic
similarity between the two, but fails to take into
account whether enough words have been changed,
such as in cases involving synonyms, which is ex-
plicitly mentioned in the instructions.

Finding 5: Swedish presents a challenge for cer-
tain metrics.

For ROUGE-L, a reduction of 0.074 in PA is
observed for Swedish compared to English. In
contrast, GPT-4-gold experiences no significant
reduction when switching from English to Swedish.
However, GPT-4-no-gold is less consistent, show-
ing a reduction of 0.044. GPT-4’s decrease in per-
formance when it does not have access to gold
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Figure 4: Human and GPT-4-no-gold’s ratings per task and test language on the bottom and their PA on top.
Ratings are normalized to a range of 0 to 1. Short-answer tasks are on left and long-answer ones on right.

references for Swedish outputs suggests that the
model has more difficulties solving the task when
it is in another language. We believe the effect
could be even more pronounced for languages with
less training data than Swedish or less typologic-
ally similar to English. Further studies would be
necessary to investigate this hypothesis.

While ROUGE-L does not take language into ac-
count, it may be less reliable a measurement for
languages other than English due to models’ fail-
ing to adhere to the required format. For instance,
we observe that Swedish models have difficulties
following instructions, even for short-answer tasks.
They sometimes generate synonyms to the true la-
bels, e.g., sannolikt “probable” instead of troligt
“likely”, an effect that could stem from seeing less
data in Swedish and therefore having less reliable
instruction-following capabilities. This is partic-
ularly concerning given the prevalence of work
utilizing automatic evaluation measures across dif-
ferent languages.

5 Conclusions and Future Work

This study provides insights into the methods we
use to evaluate language model generations, focus-
ing on when automatic metrics align with human
annotators and what the best metric is under dif-
ferent scenarios. We are the first to do a broader
meta-evaluation study where we compare GPT-4-
as-a-judge and traditional metrics with a methodo-
logy that allows for reliable comparisons between
metrics. We recommend using Pairwise Accuracy
(PA) with Tie Calibration for meta-evaluation. This

method effectively handles ties, which are preval-
ent when using human and GPT-4 ratings, making
it a reliable tool for assessing metric performance
against human ratings.

Our main finding is that GPT-4 shows strong
alignment with human judgments for short-answer
tasks, but only when gold references are provided.
The reliability drops significantly without gold ref-
erences, as the model is overly positive compared
to human evaluations. The issue is particularly evid-
ent in free-form tasks, which are tasks where LLM-
as-a-judge could be the most valuable and where
gold labels are typically not available. When gold
references are available, we observe that GPT-4 is
too strict compared to humans, relying to much on
the gold label. For these type of tasks, even though
LLM-as-a-judge is often applied to them, human
evaluations still remain the gold standard.

ROUGE-L performs comparably to GPT-4-gold
for short-answer tasks, offering a cost-effective al-
ternative in scenarios where the use of GPT-4 is lim-
ited by cost or time constraints. For long-answer
tasks, while BERTSCORE demonstrates strong per-
formance, it does not fully replace the need for
GPT-4-gold. These metrics provide valuable in-
sights but vary in effectiveness depending on the
specific task.

Evaluating non-English outputs, such as
Swedish, presents additional challenges. There is a
significant drop in alignment for GPT-4-no-gold,
which highlights that GPT-4 as a judge is less reli-
able for languages other than English. While this
is true for Swedish, we expect these findings to
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be more sever for lesser-resourced languages and
those less similar to English. Future work should
focus on expanding this study to more languages.

As we have observed, there is a large variation in
alignment with human ratings for all metrics across
task types. Previous research identifies strong cor-
relations with human annotators, but that is often
the average over tasks. Our findings underscores
the necessity of task-specific evaluation metrics
rather than relying on general averages which can
obscure important nuances in metric alignment
with human annotators. Furthermore, while GPT-4
is a valuable tool for evaluation short-answer tasks
when gold references are available, alternatives
like ROUGE-L and BERTSCORE can be effective
for most tasks types, offering cost-efficient and
reliable evaluations.

Limitations

We choose to report our results using pairwise ac-
curacy which we believe provides more robust and
reliable alignment statistics compared to common
correlation metrics. With that said, PA has its short-
comings, such as when it faces constant or close-to-
constant scores. For example, when the reference
vector is 1⃗, a metric vector of 1⃗ or 3⃗ both result in
very high PAs, due to the lack of prior knowledge
about the metric range. However, this issue is not
unique to PA; common correlation metrics also face
the same challenge in the case of close-to-constant
vectors.

Our study primarily focuses on the evaluation of
tasks across English and Swedish. Consequently,
the findings may not be applicable to languages that
have syntax and structure significantly different
from English. We deliberately made this choice to
enable a broader examination of tasks and tap into
expert knowledge for deeper analyses. Essentially,
we prioritized expanding the range of tasks and
delving deeper into analysis rather than focusing on
additional languages. Furthermore, our evaluation
exclusively uses GPT-4 as the language model for
assessment. The rapidly evolving landscape of
language models suggests the existence of other
models that may yield different results or exhibit
different patterns.

Ethical Considerations

Our annotators, residents of Sweden, were selected
for their proficiency in both English and Swedish,
ensuring precise interpretation and annotation of

content. We ensured their fair compensation in line
with prevailing norms for similar tasks in Sweden.
Furthermore, they completed their assignments
within a reasonable timeframe, enabling them to
work without undue pressure. Prior to acceptance,
annotators were briefed on the purpose of their
annotations ensuring that they understood the ob-
jectives and context behind the tasks assigned to
them.
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A Task Descriptions

Task033: Winogrande Answer Generation A
fill-in-the-blank task with some restriction, such
as that the answer should be chosen from the two
objects in the question. "I planted more tomato
seeds than I planted cucumber seeds since I hated
eating the _ ."Gold answer: "cucumber".

Task034: Winogrande Question Modification
Object Similar to task033, but this time the task
is to change the question so that the answer, which
is given in the input, changes to the other object
present in the input.

Task036: QASC Topic Word to Generate Re-
lated Fact Write a topic word for the given fact
with at least one word overlap with the fact. Ex-
ample: "Fact: a seismograph is used for measuring
the size of an earthquake."One possible gold an-
swer: "seismograph earthquake."

Task133: Winowhy Reason Plausibility Detec-
tion Indicate the plausibility of reasoning for the
pronoun coreference relations. Example: "Sen-
tence: Although they ran at about the same speed,
Sue beat Sally because she had such a bad start.\n
Reason: The ’she’ refers to sally because Sue won,
sally lost. \n Question: Is the above reasoning
correct or wrong? "Gold answer: "Correct".

Task190: SNLI Classification Given two sen-
tences, classify their agreement: entailment, con-
tradiction, or neutral.

Task200: MNLI Entailment Classification
From three options, choose the one that can be
inferred from the given sentence.

Task202: MNLI Contradiction Classification
From three options, choose the one that disagrees
with the given sentence.

Task329: GAP Classification Given a text, a
pronoun, and two candidate names, determine
which of the names the pronoun refers to. The
answer should be either A, B, or neither.

Task349: SQuAD2.0: Answerable Unanswer-
able Question Classification Determine whether
or not the given question is answerable by the
provided passage.

Task392: Inverse Causal Relationship Given
two sentences separated by the word "because",
determine whether the second sentence can be the

result of the first one (is there a cause and effect
relationship?)

Task401: Numeric Fused Head Reference Us-
ing your knowledge about language and common-
sense, determine what element the marked number
refers to. Example: "Jim Bronson: What ’s your
name ?\nTemple Brooks: I do n’t have _ one _
!\nJim Bronson: Well everyone I have ever know
had a name , that ’s really weird . My name is Jim
incase your interested .\nTemple Brooks: Well I ’m
not !"Gold answer: "name".

Task520: AQuaMuSe Answer Given in Passage
Is the answer to the given question contained in the
provided passage?

Task613: PolitiFact Text Generation Generate
the subject of a speech by a politician.

Task677: Ollie Sentence Answer Generation
Given two noun phrases (arguments) and the re-
lationship between them, write a sentence that ex-
presses theses arguments with the given relation-
ship.

Task891: GAP Coreference Resolution Given
a passage, find the corresponding person for the
provided pronoun.

Task1152: BARD Analogical Reasoning Caus-
ation Replace question mark with a verb which
is the appropriate consequence of the given action.
For example: "ignite : burn. hit : ?". Gold answer:
"shatter".

Task1562: ZEST Text Modification Paraphrase
the given questions to have different wording.
Change it as much as possible using synonyms,
etc. Example: "Does this dog breed always have
spots?".

Task1615: SICK Classify b Relation a Classify
the relation between two sentences: B_entails_A,
B_contradicts_A, or B_neutral_A.

Task1622: Disfl-QA: Text Modification Con-
vert a disfluent question to a proper question. Ex-
ample: "Who were uh instead tell me how many
quadrangles does the Main Quadrangles have?"

Task1659: Title Generation Generate a title un-
der forty words which mentions the purpose of the
text.
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Figure A1: Human and BERTSCORE ratings per task and test language on the bottom and their PA on top. The
human ratings are normalized to a range of 0 to 1. Short-answer tasks are on left and long-answer ones on right.

B Prompt Templates

B.1 Translation
We use the following prompt for translating
our datasets from English to Swedish using
GPT-3.5-turbo:

Translate the following text from
English to Swedish:
{English text}

B.2 LLM-as-a-judge
The prompt used for GPT-4 could be found in Table
A2. The prompt for GPT-4-no-gold is the same,
but without the following part:

[Gold Answer] (If there are several gold
answers then they are all correct

alternatives): {gold_answer}
***

C Supplementary Results

C.1 How Good Are Our Language Models at
Swedish?

To assess the effectiveness of the models described
in Section 3.2, we measure their perplexity. To
ensure the generated texts meet high standards
and to avoid assessing the models on data used
during their pretraining, we use a custom dataset
consisting of current news articles from SVT3, the
Swedish national public television broadcaster. The
dataset comprises 268 articles spanning various top-
ics, published between June 1st, 2023, and October

3svt.se

Model Perplexity

LLaMA2_13b 1.96
LLaMA2_13b_EN 2.03
LLaMA2_13b_SV 2.27
LLaMA2_13b_ENSV 2.24

LLaMA2_7b 2.09
LLaMA2_7b_EN 2.22
LLaMA2_7b_SV 2.51
LLaMA2_7b_ENSV 2.49

SW3_6.7b 1.62
SW3_6.7b_EN 1.65
SW3_6.7b_SV 1.72
SW3_6.7b_ENSV 1.69

Table A1: The perplexity of our models on the SVT
dataset. The abbreviations are the training language(s).

16th, 2023. To address the variability caused by
different tokenizers across various models, we use
character length normalization when calculating
perplexity (Liang et al., 2022; Yong et al., 2023).

The perplexity for Swedish consistently remains
lower in models prior to instruction tuning. How-
ever, after tuning, the poorest outcomes are noted
in the SV models trained solely on Swedish data.
Interestingly, the ENSV models exhibit improved
performance, with the EN models showing even bet-
ter results. This variation could be ascribed to the
Swedish-specific model weights being less affected
due to their lower exposure to Swedish data, but
requires further investigations. Notably, the incre-
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ments in perplexity are less pronounced for the SW3
models.

C.2 Pairwise Accuracy per Model
Pairwise accuracy per model is shown in Table A2.

C.3 BERTSCORE Results
Detailed results of BERTSCORE are shown in Fig-
ure A1.

D Implementation Details

Following Taori et al. (2023), we finetune
LLAMA2_7b and SW3_6.7b, which is roughly the
same size, for 3 epochs and with a learning rate
of 2e− 5, and the larger LLAMA2_13b model for 5
epochs and with a learning rate of 1e−5. The batch
size is set to 128 for both cases. Unlike Taori et al.
(2023), we allow for a longer maximum length of
2048 and truncate longer samples. For the sake
of reducing computational costs we opt for using
bf16 and tf32 precision formats. We distribute the
training across multiple GPUs using DeepSpeed
(Rasley et al., 2020) stage 3 without offloading.

E Human Evaluations

Our evaluators are not crowd-sourced workers; in-
stead, they are individuals with some experience
and expertise in the field. They were carefully se-
lected for their familiarity with the subject matter
and were hired specifically for this evaluation task.
While they were instructed to use their own judg-
ment in the assessment, they also had access to the
gold standard answers to guide their evaluations.
The instructions given to human evaluators were
similar to those given to GPT-4, as presented in
Figure 3.
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Model GPT-4-gold GPT-4-no-gold ROUGE-L BERTSCORE

LLAMA2_13b_EN_EN 0.779 0.590 0.601 0.512
LLAMA2_13b_SV_SV 0.816 0.559 0.547 -
LLAMA2_13b_ENSV_EN 0.782 0.594 0.639 0.545
LLAMA2_13b_ENSV_SV 0.828 0.565 0.634 -

LLAMA2_7b_EN_EN 0.766 0.581 0.578 0.454
LLAMA2_7b_SV_SV 0.794 0.578 0.526 -
LLAMA2_7b_ENSV_EN 0.794 0.609 0.607 0.447
LLAMA2_7b_ENSV_SV 0.804 0.577 0.550 -

SW3_6.7b_EN_EN 0.789 0.612 0.604 0.482
SW3_6.7b_SV_SV 0.843 0.645 0.505 -
SW3_6.7b_ENSV_EN 0.830 0.606 0.622 0.491
SW3_6.7b_ENSV_SV 0.828 0.576 0.600 -

Table A2: Pairwise accuracy per model for all metrics.

Model Name Task Type Language τ ρ PA ϵ

ROUGE-L all EN 0.667 0.712 0.752 0.061
ROUGE-L long EN 0.308 0.368 0.484 0.061
ROUGE-L short EN 0.833 0.871 0.896 0.061
ROUGE-L all SV 0.584 0.631 0.699 0.095
ROUGE-L long SV 0.325 0.389 0.477 0.095
ROUGE-L short SV 0.704 0.743 0.818 0.095

GPT-4-gold all EN 0.781 0.801 0.811 0.000
GPT-4-gold long EN 0.481 0.521 0.584 0.000
GPT-4-gold short EN 0.920 0.930 0.934 0.000
GPT-4-gold all SV 0.792 0.811 0.817 0.000
GPT-4-gold long SV 0.538 0.575 0.601 0.000
GPT-4-gold short SV 0.909 0.920 0.934 0.000

GPT-4-no-gold all EN 0.517 0.535 0.622 0.000
GPT-4-no-gold long EN 0.309 0.338 0.499 0.000
GPT-4-no-gold short EN 0.613 0.625 0.688 0.000
GPT-4-no-gold all SV 0.496 0.514 0.620 0.000
GPT-4-no-gold long SV 0.393 0.425 0.569 0.000
GPT-4-no-gold short SV 0.544 0.556 0.648 0.000

BERTSCORE all EN 0.419 0.482 0.658 0.133
BERTSCORE long EN 0.367 0.452 0.542 0.133
BERTSCORE short EN 0.443 0.495 0.720 0.133

Table A3: Comparison of metrics across different task types for English and Swedish. τ stands for Kendall’s and ρ
for Spearman’s rank correlation coefficient.

6335



system\_message = """You are an expert language evaluator ."""

user\_message = """You are evaluating a response that has been submitted for a
particular task , using a specific set of standards. Below is the data:

[BEGIN DATA]
***
[Task]: {prompt}
***
[Submission ]: {response}
***
[Gold Answer] (If there are several gold answers then they are all correct

alternatives): {gold_answer}
***
[Criterion ]: Evaluation Criteria

Naturalness:
1: "Not at all natural - The generated text is grammatically incorrect or sounds

unnatural , including awkward phrasing or inappropriate vocabulary ."
2: "Somewhat natural - The generated text has minor grammatical errors or slightly

awkward phrasing but is mostly understandable and natural ."
3: "Completely natural - The generated text is grammatically correct , well -phrased ,

and uses appropriate vocabulary , sounding completely natural ."

Relatedness:
1: "Not at all related - The model ’s answer does not relate to the question , fails

to follow the required format , or is outside the scope of possible answers ."
2: "Somewhat related - The model ’s answer is related to the question to some extent

and mostly follows the required format , staying generally within the scope of
possible answers ."

3: "Completely related - The model ’s answer is directly related to the question ,
follows the required format accurately , and fits within the scope of possible
answers ."

Correctness:
1: "Not at all correct - The answer is completely incorrect or irrelevant to the

question posed."
2: "Somewhat correct - The answer is partially correct but includes some

inaccuracies or incomplete information ."
3: "Completely correct - The answer is fully correct , accurate , and provides a

complete response to the question ."

***
[END DATA]

Does the submission meet the criterion? First , write out in a step by step manner
your reasoning about the criterion to be sure that your conclusion is correct.
Avoid simply stating the correct answers at the outset.

Your response must be RFC8259 compliant JSON following this schema:

{{" reasoning ": str , "naturalness ": int , "relatedness ": int , "correctness ": int}}
"""

Figure A2: The prompt for GPT-4 as evaluator. For GPT-4-no-gold the gold answer is removed.
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