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Abstract

One strength of modern language models is
their ability to incorporate information from
a user-input context when answering queries.
However, they are not equally sensitive to the
subtle changes to that context. To quantify
this, Du et al. (2024) gives an information-
theoretic metric to measure such sensitivity.
Their metric, susceptibility, is defined as the de-
gree to which contexts can influence a model’s
response to a query at a distributional level.
However, exactly computing susceptibility is
difficult and, thus, Du et al. (2024) fall back
on a Monte Carlo approximation. Due to the
large number of samples required, the Monte
Carlo approximation is inefficient in practice.
As a faster alternative, we propose Fisher sus-
ceptibility, an efficient method to estimate the
susceptibility based on Fisher information. Em-
pirically, we validate that Fisher susceptibility
is comparable to Monte Carlo estimated suscep-
tibility across a diverse set of query domains
despite its being 70× faster. Exploiting the im-
proved efficiency, we apply Fisher susceptibil-
ity to analyze factors affecting the susceptibil-
ity of language models. We observe that larger
models are as susceptible as smaller ones.1

1 Introduction

Much of current language models’ (LM) capabil-
ities and success are due to their responsiveness
to different user-input contexts, e.g., prompts, and
ability to integrate those contexts with prior knowl-
edge (Brown et al., 2020; Bubeck et al., 2023, in-
ter alia). Given this ability, it is natural for us to
wonder how easily a model’s prior belief can be
changed by an input context. For example, a lan-
guage model might correctly complete the prompt
Here Comes the Sun is performed by with The Bea-
tles, but wrongly when this prompt is prepended
with a random context such as Falafel wraps make

1Our code is available at https://github.com/lyuty
uh/susceptibility.

ostriches burp.; such a context might distract the
model away from its original behavior.

Recently, Du et al. (2024) studied how easily
input contexts can skew language models to give
answers to queries that are different than the an-
swers stored in their prior knowledge from an
information-theoretic point of view. They propose
a metric, termed susceptibility, to quantify the dis-
crepancy between a model’s prior belief and up-
dated belief after seeing the input contexts as the
mutual information between input contexts and an-
swers from a specific language model. This metric
makes use of the language model’s distribution
over answers rather than relying on an approximate
argmax, as is common in previously proposed met-
rics (Shi et al., 2023; Wang et al., 2024). Suscepti-
bility, as an information-theoretic metric, captures
changes in model behavior that might not necessar-
ily surface while decoding an answer.

Computing susceptibility requires, in principle,
summing over all possible answers, a countably
infinite set. In the general case, the authors know
of no efficient algorithm to perform such a sum-
mation; Du et al. (2024) propose a Monte Carlo
approximation. Such a sampling approximation,
however, is computationally expensive: to compute
the susceptibility for one query, one needs to
execute a forward pass of the neural language
model for each context in the sample set, making
it inefficient to be applied to large-scale datasets.
For example, Du et al. (2024) consider sampling
600 contexts for every individual query, and thus
require 600 forward passes. In light of the compu-
tation required for the Monte Carlo approximation
to susceptibility, we propose a more efficient ap-
proximation based on Fisher information that does
not require sampling to estimate the susceptibility;
we term this approximation Fisher susceptibility.

We conduct experiments across queries from
122 relation domains (e.g., alumniOf or capitalOf )
in the YAGO knowledge graph (Suchanek et al.,
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2007) with a variety of model sizes (e.g., from 70
million to 8 billion parameters), language model
families (e.g., Pythia (Biderman et al., 2023),
LLaMA (Touvron et al., 2023), and GPT-2 (Brown
et al., 2020)), and fine-tuning schemes (e.g.,
instruction-tuning). First, to empirically validate
Fisher susceptibility, we show that it is tightly
correlated with Du et al.’s (2024) Monte Carlo ap-
proximation to susceptibility across domains while
also benchmarking its speed. In these experiments,
we find that compared to the Monte Carlo estima-
tion with a sample size of 256, Fisher susceptibility
exhibits a 70× improvement in runtime. Then, we
use the increased efficiency of Fisher susceptibility
to investigate further initial questions like the one
posed in the first paragraph: how susceptible are
language models across different sizes and model
families, and what factors influence a model’s
Fisher susceptibility for a query? We find that
larger models are not less susceptible than smaller
ones and that instruction-tuning does not help
reduce susceptibility. We further find that queries
about well-known entities are equally susceptible
as less frequent ones under Fisher susceptibility,
which contrasts with the finding from Du et al.
(2024) that susceptibility is negatively related
with expected familiarity when contexts might be
relevant. To the extent that this is not an approx-
imation error, this finding suggests that, regardless
of how much prior knowledge it has about a query,
a language model is still susceptible to contexts
and can integrate new information from them.

2 Susceptibility to Context in LMs

Language models are capable of answering a wide
range of queries formulated in natural language,
including code auto-completion, text generation,
and factual question answering (Kwiatkowski et al.,
2019; Brown et al., 2020; Kasai et al., 2023, inter
alia). When responding to a query, language mod-
els need to synthesize the prior knowledge they
learned during pretraining with the new informa-
tion provided in the input context (Kwiatkowski
et al., 2019; Joshi et al., 2017; Berant et al., 2013;
Kasai et al., 2023). For example, in the knowledge
conflict setting proposed by Longpre et al. (2021)
given the query What’s the capital of Ireland? and
context The capital of Ireland is Rome., the model
must decide between whether to agree with its prior
knowledge (Dublin) or the context (Rome).

How easily large language models are affected

by contexts is a well-studied problem (Liang et al.,
2023; Yoran et al., 2024; Wang et al., 2024; Wu
et al., 2024a,b, inter alia). Many studies, including
Longpre et al. (2021); Chen et al. (2022); Xie et al.
(2024), measure how easily context influences a
model by computing the memorization ratio: the
proportion of examples for which the model main-
tains from before the context was introduced. How-
ever, memorization rate may not fully capture the
strength of this influence. For example, adding a
context could take a model’s probability of answer-
ing a token from 95% to 51%, but the 1-best answer
would remain the same, and the context’s influence
would not be detectable by memorization rate. To
solve this issue, Du et al. (2024) provide a metric
that measures the influence of context on a model’s
answer to a query using a more fine-grained metric
based on the model’s full answer distribution, the
susceptibility, which we describe in detail in §4.3.
To compute susceptibility, Du et al. (2024) pro-
poses a Monte Carlo approximation. However, it re-
quires running one forward pass, which is computa-
tionally expensive, per sampled answer; this limits
the scale of analysis. Thus, we aim to find a method
that is more efficient, general, and interpretable.

3 Measuring Susceptibility

Let Σ be an alphabet, i.e., a finite, non-empty
set. A language model pM over an alphabet Σ is
a distribution over Σ∗, the set of all strings with
tokens drawn from Σ. We denote a query by
q ∈ Σ∗, and the answer to the query by a ∈ Σ∗.
When querying a language model, a context
c ∈ Σ∗ is provided together with the query q in
one input sequence c⊕ q where ⊕ denotes string
concatenation. In practice, querying a language
model is the process of generating an answer a
from the distribution pM(· | c⊕ q).

3.1 Susceptibility as Mutual Information

For a pretrained language model, Du et al. (2024)
gives a metric that quantifies how easily a language
model’s distribution given a query is altered by a
context. To investigate how the answer distribu-
tions of a language model respond to a class of
contexts, they consider three Σ∗-valued random
variables, C, Q and A, standing for context, query,
and answer. For a specific query q, C and A are
jointly distributed according to the distribution

p(C = c, A = a | Q = q)
△∝ pM(a | c⊕ q) (1)
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Based on the joint distribution in Eq. (1), Du et al.
(2024) defines the susceptibility of a query q as the
conditional mutual information between C and A:

χ(q) ≜ I(C;A | Q = q) (2)

= E
C
[DKL(p(A | C = c,Q = q) ∥ p(A | Q = q))]

See Du et al. (§3.2, 2024) for additional details.
Intuitively, the susceptibility measures how

much the answer distribution differs before and
after being prompted with additional contexts on
average. By taking the expectation over all pos-
sible contexts, we arrive at the susceptibility. If the
model is not susceptible, the Kullback–Leibler di-
vergence DKL(p(A | C,Q = q) ∥ p(A | Q = q))
should be 0 in expectation, meaning that
p(A | C, q) and p(A | Q = q) are the same,
regardless of the value of C.

3.2 Computational Cost
Du et al. (2024) gives a practical algorithm to es-
timate susceptibility based on Monte Carlo estima-
tion. We call susceptibility estimated in this manner
Monte Carlo susceptibility. However, computing
Monte Carlo susceptibility requires sampling a
large number of input–output pairs from a language
model. Indeed, we first sample contexts from a
distribution p(C), and then evaluate the conditional
distribution over answer p(A | C = c,Q = q) for
all answers a in the answer space, which requires
one forward pass per sample. Because the answer
space is typically all of Σ∗, p(A | C = c,Q = q)
is additionally approximated by considering the
next-token distribution (Du et al., 2024). Thus,
the runtime of such a scheme, with the next-token
approximation, is still O (nc × |Σ|) where nc is
the number of context samples; for reference, Du
et al. (2024) takes 600 Monte Carlo samples.

4 Fisher Susceptibility

To alleviate the cost of the Monte Carlo approx-
imation discussed in §3.2, we derive an efficient
approximation based on Fisher information.

4.1 A Simple Reparameterization
First, we give a simple reparameterization that ap-
plies to any neural pM. Given a query q, each con-
text c ∈ Σ∗ defines a probability distribution over
Σ∗, viewed as answers to the query q. Now, let
θ : Σ∗ → RD be an injective embedding function
that maps strings to unique real vectors. We can
view θ as an index and, thus, consider the language

model as a parameterized family of distributions
with a real-valued index:

pM(A = a | C = c,Q = q) ≜ fq(a;θ(c⊕q)), (3)

On this view, the conditional language model is pa-
rameterized by a real-vector rather than by a string
that encodes the context. In our experiments, we
define the embedding function to map its argument
c ⊕ q to be the concatenation of the real-valued
embedding vectors of q and the c given by the pre-
trained language model.

4.2 The Fisher Information Matrix

The reparameterization given in §4.1 opens up a
new type of approximation. Specifically, we can
now define the following Fisher information

J (θ(q)) ≜ (4)

E
a∼fq(·;θ(q))

[
∂ log fq(a;θ(q))

∂θ

∂ log fq(a;θ(q))

∂θ⊤

]

as a measure of how much influence a context has
on the distribution over answers. The Fisher infor-
mation matrix can be interpreted as a quantification
of the amount of information that an observable
random variable carries about an unknown parame-
ter (Lehmann and Casella, 1998): The higher the
Fisher information is, the easier we can estimate
the unknown parameters of the distribution from
samples. In our context, we are interested in how
language models react to the change in the con-
text rather than the pretrained parameters of the
model. Thus, we treat the parameters of the lan-
guage model itself as constants and investigate the
Fisher information of fq with respect to the embed-
ding vector θ(q) of query q.

More relevant to susceptibility, there is a formal
relationship between the Fisher information matrix
and the KL divergence. Performing a second-order
Taylor expansion of the KL divergence, we arrive at

DKL(fq(· | θ(q) + δ) ∥ fq(· | θ(q)))

=
1

2
δ⊤J (θ(q))δ +O

(
||δ||3

)
,

(5)

where δ ∈ RD is a perturbation of the distribution
parameter. When the perturbation is small, i.e.,
when ||δ||3 is small, we expect Eq. (5) to be
dominated by its first term. This view invites a
simple approximation of the KL divergence.
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Figure 1: This plot shows the average susceptibility on 122 relation domains (e.g., alumniOf ) in the YAGO
dataset. Each point represents the average score of queries on a relation domain. The x-coordinate represents
Monte Carlo susceptibility and y-coordinate represents Fisher susceptibility. The scores are computed with
LLaMA-3-8B-Instruct. For both query types, the two metrics are strongly correlated.

4.3 Fisher and Mutual Information
In Eq. (2), the susceptibility χ(q) is defined as
the mutual information between the context and
answer random variables, conditioned on a fixed
query about an entity. Using the identity given in
Eq. (5), the susceptibility can be rewritten as

χ(q) ≜ I(C;A | Q = q) (6a)

=
1

2
E
C

[
δ(c, q)⊤J (θ(q))δ(c, q)

]
(6b)

+O
(
E
C

[
||δ(c, q)||3

])

≈ 1

2
E
C

[
δ(c, q)⊤J (θ(q))δ(c, q)

]
, (6c)

where we define the context-specific perturbation

δ(c, q) ≜ θ(c⊕ q)− θ(q). (7)

The full derivation is given in App. A.
To derive an approximation to susceptibility that

does not require sampling, we need to remove the
terms in Eq. (6) that depend on the random variable
C. If we assume that

E
C
[δ(c, q)] = m (8a)

V
C
[δ(c, q)] = S, (8b)

we arrive at the following closed-form solution

E
C

[
δ(c, q)⊤J (θ(q))δ(c, q)

]

= Tr(SJ (θ(q))) +m⊤J (θ(q))m
(9)

by means of a well-known identity (Petersen and
Pedersen, 2008). If we take, for instance, m = 0
and S = I, Eq. (9) simplifies to

χ∗(q) ≜ Tr(J (θ(q))), (10)

which we term Fisher susceptibility.
To the extent that Eq. (10) is a good approxima-

tion of Eq. (6), Fisher susceptibility χ∗(q) should
strongly correlate with Du et al.’s (2024) Monte
Carlo approximation to χ(q). We remark again that
Fisher susceptibility χ∗(q) does not require com-
putation of the distribution over contexts because,
in Eqs. (8a) and (8b), we made an assumption
about the mean and variance of the perturbation
vector δ. However, this additional assumption is
not theoretically motivated, and, thus, we appeal
to experimentation to vet the approximation.

4.4 Efficient Computation

Recall that the Fisher information J (θ(q)) is a
matrix of shape RD×D, where D is the dimension
of input embedding θ(q). Directly computing
Fisher information matrix J (θ(q)) using Eq. (4)
takes O(D2); it has D2 ≈ 1012 entries that need
to be computed. Thus, we apply the following
approximation (Du et al., 2024) by truncating the
distribution over answers:

J (θ(q)) =
K∑

k=1

fq(ak;θ(q)) (11)

∂ log fq(ak;θ(q))

∂θ

∂ log fq(ak;θ(q))

∂θ⊤ ,

where {ak}Kk=1 are the top-K highest-probability
tokens. This approximation reduces the number
of entries to be computed from O(D2) to O(KD).
The individual gradients ∂ log fq(ak;θ)

∂θ can be
efficiently computed with auto-differentiation in
the same time complexity that it takes to compute
a single forward pass of the language model.
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Open Closed Overall

Model Pearson Spearman Pearson Spearman Pearson Spearman

gpt2 0.55 0.58 0.21 0.18 0.63 0.56
gpt2-large 0.27 0.37 0.24 0.32 0.43 0.64
gpt2-medium 0.42 0.47 0.29 0.28 0.57 0.68
gpt2-xl 0.38 0.50 0.31 0.36 0.54 0.71

LLaMA-3-8B 0.46 0.66 0.31 0.35 0.47 0.65
LLaMA-3-8B-Instruct 0.51 0.76 0.38 0.47 0.53 0.68
LLaMA-2-7B 0.46 0.71 0.25 0.27 0.52 0.69
LLaMA-2-7B-chat 0.55 0.78 0.40 0.47 0.47 0.65

Pythia-70m-deduped 0.66 0.68 0.32 0.39 0.64 0.57
Pythia-160m-deduped 0.44 0.53 0.26 0.32 0.51 0.63
Pythia-410m-deduped 0.59 0.64 0.36 0.35 0.70 0.77
Pythia-1.4b-deduped 0.45 0.55 0.20 0.19 0.52 0.69
Pythia-2.8b-deduped 0.37 0.43 0.25 0.29 0.55 0.69
Pythia-6.9b-deduped 0.34 0.42 0.26 0.28 0.56 0.72

Table 1: Correlations between Monte Carlo susceptibility and Fisher susceptibility across different models. For
each model, we compute Monte Carlo susceptibility and Fisher susceptibility. Then, we evaluate the Pearson’s and
Spearman’s correlation between them on open, closed, and all queries from YAGO.

5 Experiments

Experimentally, we first aim to show that Fisher
susceptibility correlates well with Monte Carlo
susceptibility. Then, we investigate what factors
influence higher susceptibility, across models,
queries, and entities, accelerated by the use of
Fisher susceptibility. Finally, we apply Fisher
susceptibility to evaluate language models’
susceptibility to contexts.

5.1 Experiment Setup

For all of our experiments, we use the same frame-
work and dataset provided by Du et al. (2024).2 For
each of the relations from the YAGO knowledge
graph (Suchanek et al., 2007), we have two closed
query forms (yes–no questions) and two open query
forms. For each relation, we subsample 100 enti-
ties, half of which are real entities extracted from
YAGO, and half of which are fake entity names
generated by GPT-4, from their dataset of 1000 en-
tities. In total, we construct a collection of 48,800
queries. For each of these queries, we compute
Monte Carlo susceptibility as a point of compari-
son. We take a sample of 256 contexts, 8 of which
directly mention the queried entity, per query for
Pythia and GPT-2 models, and 128 contexts, 4 of
which directly mention the queried entity, per query
for LLaMA models.

We also compute Fisher susceptibility for each

2https://github.com/kdu4108/measureLM

of these entities according to Eq. (10). We repeat
these for models of different families (i.e., Pythia
(Biderman et al., 2023), GPT-2 (Brown et al., 2020),
and LLaMA (Touvron et al., 2023)), model sizes,3

and training types (e.g., pretrained vs instruction-
tuned) when applicable. A full list of models can
be found in Tab. 1

Dataset. Following Du et al. (2024), we use
122 relations from the YAGO knowledge graph
(Suchanek et al., 2007), such as birthPlace,
leader, and homeLocation. For each relation, we
sample 50 real entities from YAGO and 50 fake
entities generated by GPT-4 (OpenAI, 2023).4

Our open and closed queries are constructed
from templates of both question-answering and
sentence-completion forms, e.g., (closed, question-
answering) Q: Is {answer} the capital of {entity}?
A:, (open, question-answering) Q: What is the capi-
tal of {entity}? A:, and (open, sentence-completion)
The capital of {entity} is. We parameterize the
templates with entities (both real and fake entities)
and answers in their respective slots in the tem-
plates. For instantiating contexts, we use the base
template from Du et al. (2024), e.g., The capital
of {entity} is {answer}.. We parameterize these
context templates with both real and fake entities
(and answers to the queries, when applicable).
For each relation domain, we randomly sample

3We choose 70m, 410m, 1.4b, 2.8b, 6.9b for
Pythia-deduped, and small, medium, large, xl for GPT-2.

4gpt-4-1106-preview, January 2024.
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Figure 2: For both open and closed queries, Fisher sus-
ceptibility y strongly correlates with Monte Carlo sus-
ceptibility (x-axis). Monte Carlo susceptibility are di-
vided into 5 bins from 0 to 1 on LLaMA-3-8B-Instruct.

2000 contexts. For the Monte Carlo estimate of
susceptibility, we further subsample 256 contexts
for Pythia and GPT-2 and 128 contexts for LLaMA.

Models. In our experiments, we use the pre-
trained language models (Pythia, GPT-2, LLaMA)
from Huggingface.5

Computational Resources. All experiments pre-
sented were conducted on two NVIDIA GeForce
RTX 4090 GPUs with 24GB memory. LLaMA mod-
els are stored and run in bfloat16 precision. The
other models are stored and run in float32 precision.

5.2 Comparing Susceptibility

We now demonstrate that Fisher susceptibility is
a good approximation to susceptibility.

Experiment Setup. We use the setup from
§5.1 to compute Fisher susceptibility. For each
query, we compute the Pearson’s correlation and
Spearman’s correlation between Monte Carlo
susceptibility and Fisher susceptibility.

Results. We compare Monte Carlo susceptibility
and Fisher susceptibility. In Fig. 2 and Tab. 1,
we observe strong correlation between Fisher
susceptibility and Monte Carlo susceptibility
across all models. Across queries, we find a
Pearson’s correlation of r = 0.51 and a Spear-
man’s correlation of ρ = 0.76 on open queries,
r = 0.38 and ρ = 0.47 on closed queries using

5We use Pythia (https://huggingface.co/colle
ctions/EleutherAI/pythia-scaling-suite-64fb5df
a8c21ebb3db7ad2e1), GPT-2 (https://huggingface.co
/openai-community/gpt2), LLaMA-2 (https://huggin
gface.co/collections/meta-llama/llama-2-famil
y-661da1f90a9d678b6f55773b), and LLaMA-3 (https:
//huggingface.co/collections/meta-llama/meta-lla
ma-3-66214712577ca38149ebb2b6).

Query Type

Model Overall Closed Open

Pythia-70m-deduped 0.30 0.03 0.54
Pythia-160m-deduped 0.31 0.03 0.57
Pythia-410m-deduped 0.31 0.04 0.56
Pythia-1.4b-deduped 0.35 0.06 0.62
Pythia-2.8b-deduped 0.33 0.03 0.58
Pythia-6.9b-deduped 0.34 0.04 0.61

gpt2-small 0.34 0.08 0.57
gpt2-medium 0.31 0.05 0.55
gpt2-large 0.32 0.04 0.57
gpt2-xl 0.29 0.04 0.51

LLaMA-2-7B 0.34 0.07 0.59
LLaMA-2-7B-chat 0.57 0.23 0.61
LLaMA-3-8B 0.37 0.13 0.58
LLaMA-3-8B-instruct 0.39 0.10 0.66

Table 2: Mean Monte Carlo susceptibility of different
models on YAGO on different query types (open, closed,
and overall).

LLaMA-3-8B-instruct. We also evaluate average
susceptibility on the corpus level by averaging the
susceptibility of queries in each domain in Fig. 1.
We measure a Pearson’s correlation of r = 0.65
and a Spearman’s correlation of ρ = 0.76 on
open queries and r = 0.51, ρ = 0.60 on closed
queries using LLaMA-3-8B-instruct. We take
these results as validation that Fisher susceptibility
correlates with Monte Carlo susceptibility and is,
thus, a good approximation. Moreover, the large
Pearson’s correlation coefficient indicates the re-
lationship is linear. We refer the readers to App. B
for full evaluation results on all sizes of models.

Runtime Comparison. We conduct an empirical
analysis on the runtime of Fisher susceptibility and
Monte Carlo susceptibility. We find computing
Fisher susceptibility is 70× faster when the number
of samples for Monte Carlo susceptibility is chosen
to be 256 and 30× faster when the number of sam-
ples is 128. Specifically, for LLaMA-3-8B models,
evaluating Monte Carlo susceptibility for all 48800
queries on YAGO costs 10 hours, while computing
Fisher susceptibility only costs 20 minutes.

5.3 Factors Affecting Fisher susceptibility

We now aim to understand what factors could cause
a language model to have higher susceptibility.
We investigate three aspects, namely the size and
training method of language models, the format
of the query, and the type of the entity.
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Figure 4: Susceptibility comparisons between (a) question-answering and (b) sentence-completion queries. Con-
sistently, question-answering formats are less susceptible for both susceptibility metrics. (Top) Monte Carlo
susceptibility. (Bottom) Fisher susceptibility.

Models. From Tab. 2, we see that the sus-
ceptibility of the models of Pythia and GPT-2
families do not decrease as the number of trainable
parameters in the model increases. This finding
indicates that susceptibility can not be offset
by the amount of prior knowledge stored in the
language model about a query. We also see that
LLaMA models do not have lower susceptibility
compared with the other two model families,
despite their better performance on many down-
stream tasks (Touvron et al., 2023). By comparing
instruction-tuned models and base models (i.e.,
LLaMA-2-7B vs. LLaMA-2-7B-chat, LLaMA-3-8B
vs. LLaMA-3-8B-Instruct), we find instruction
tuning increases the susceptibility of language
models. These comparisons is in alignment with
the empirical observation that instruction-tuned
models are better at integrating the information in
the input context and responding to queries.

Queries. We also investigate whether language
models are more susceptible for some particular
types of queries. Similar to the findings of Du

et al. (2024), Tab. 2 shows that closed queries
(e.g., Q: Is Here Comes the Sun performed by
The Beatles? A:) are less susceptible than open
queries (e.g., Q: Who performed Here Comes the
Sun? A:). In addition, we investigate two forms
of open queries: question-answering (e.g., Q: Is
Here Comes the Sun performed by The Beatles?
A:) and sentence-completion (e.g., Here Comes the
Sun is performed by). On LLaMA-3-8B-Instruct,
we found that queries in question-answering form
have an average Monte Carlo susceptibility of
0.27 and Fisher susceptibility of 0.04, while the
sentence-completion form has 1.05 and 0.14.
Both of the susceptibility metrics show that
question-answering queries are less easily affected
by context than sentence-completion queries. This
finding supports our claim on the comparability of
Fisher susceptibility to Monte Carlo susceptibility.
The full results are given in Fig. 4.

Entity Familiarity. Du et al. (2024) found,
across different models, that real entities tend to be
less susceptible than fake ones. However, we find
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this pattern does not hold for Fisher susceptibility.
We show the susceptibility comparison for 6
models in Fig. 3. The Monte Carlo susceptibility
of real entities are slightly but consistently lower
than that of fake entities. Meanwhile, the Fisher
susceptibility of all models remains similar
regardless of whether the entity is real or not. This
could suggest a limitation of Fisher susceptibility
as an approximation for susceptibility, which could
be due to the assumptions made in Eq. (8a).

6 Conclusion

To efficiently measure a language model’s sus-
ceptibility, we have proposed Fisher susceptibility,
which uses the Fisher information of a language
model with regard to its input to measure the
scale of distributional changes as the input varies.
Through experiments, we find strong correlation
between a language model’s Monte Carlo suscep-
tibility and Fisher susceptibility, which we take to
validate our approximation. Compared to methods
which requires many context samples and language
model forward passes, our method is significantly
faster. Our study contributes to the exploration for
interpretable and efficient evaluation metrics for
language models.

Limitations

One technical limitation of this work is that we
compute an approximation of the Fisher informa-
tion J (θ(q)) using Eq. (11) by taking the top K
answers. Second, computing Fisher susceptibility
requires automatic differentiation on the language
model, which is more memory intensive (by a fac-
tor of 2) than simply performing a forward pass.

Ethics Statement

This paper provides a novel language evaluation
metric and experimental analysis on publicly avail-
able models and data. Our ultimate goal in this
paper is to contribute to the research on language
model interpretability and evaluation. By investi-
gating the robustness of language models to con-
texts, we aim to contribute to a research effort of
developing more reliable, interpretable models. We
foresee no particular ethical concerns and hope this
paper contributes to developing tools that can iden-
tify and mitigate ethical concerns in the future.
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A Derivation of Eq. (6)

Proposition A.1.

χ(q) ≜ I(C;A | Q = q) =
1

2
E
C

[
δ(c, q)⊤J (θ(q))δ(c, q)

]
+O

(
||δ(c, q)||3

)
(12)

where δ(c, q) ≜ θ(c⊕ q)− θ(q).

Proof. Consider the following manipulation

χ(q) ≜ I(C;A | Q = q) (13a)

= E
C
[DKL(p(A | C = c,Q = q) ∥ p(A | Q = q))] (13b)

= E
C
[DKL(fq(· | θ(q) + (−θ(q) + θ(c⊕ q)) ∥ fq(· | θ(q)))] (13c)

=
1

2
E
C

[
(θ(c)− θ(q))⊤J (θ(q))(θ(c⊕ q)− θ(q)) +O

(
||θ(c⊕ q)− θ(q)||3

)]
(13d)

=
1

2
E
C

[
(θ(c)− θ(q))⊤J (θ(q))(θ(c⊕ q)− θ(q))

]
+ E

C

[
O
(
||θ(c⊕ q)− θ(q)||3

)]
(13e)

=
1

2
E
C

[
(θ(c)− θ(q))⊤J (θ(q))(θ(c⊕ q)− θ(q))

]
+O


E

C

[
||θ(c⊕ q)− θ(q)||3

]

︸ ︷︷ ︸
expected approximation error


 (13f)

=
1

2
E
C

[
δ(c, q)⊤J (θ(q))δ(c, q)

]
+O


 E

C

[
||δ(c, q)||3

]

︸ ︷︷ ︸
expected approximation error


 , (13g)

which proves the result. ■

B Additional Experimental Results

We plot the comparison between Fisher susceptibility and Monte Carlo susceptibility in Fig. 5 and Fig. 6.
Across all models, Fisher susceptibility exhibits strong correlation with Monte Carlo susceptibility, which
we take to mean that Fisher susceptibility is a good approximation to Monte Carlo susceptibility.
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Figure 5: Fisher susceptibility plotted against Monte Carlo susceptibility for different models.
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Figure 6: This plot shows the average susceptibility on 122 relation domains in the YAGO dataset for all models.
Each point represents the average score of queries on a relation domain. The x-coordinate represents Monte Carlo
susceptibility and y-coordinate represents Fisher susceptibility.
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