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Abstract

Existing research predominantly focuses on
developing powerful large language models
(LLMs) for mathematical reasoning within
monolingual languages, with few explorations
in preserving efficacy in a multilingual con-
text. To bridge this gap, this paper pioneers
exploring and training powerful Multilingual
Math Reasoning (xMR) LLMs. Firstly, by uti-
lizing translation, we construct the first mul-
tilingual math reasoning instruction dataset,
MGSM8KInstruct, encompassing ten distinct
languages, thus addressing the issue of train-
ing data scarcity in xMR tasks. Based on the
collected dataset, we propose different training
strategies to build powerful xMR LLMs, named
MathOctopus, which notably outperform con-
ventional open-source LLMs and exhibit su-
periority over ChatGPT in few-shot scenar-
ios. Notably, MathOctopus-13B reaches 47.6%
accuracy which exceeds ChatGPT 46.3% on
MGSM testset. Beyond remarkable results,
we unearth several pivotal observations and in-
sights: (1) When extending the rejection sam-
pling strategy to the multilingual context, it
proves effective for model performances, al-
beit limited. (2) Employing parallel corpora
for math Supervised Fine-Tuning (SFT) across
multiple languages not only significantly en-
hances model performance multilingually and
elevates their monolingual performance. This
indicates that crafting multilingual corpora can
be regarded as a vital strategy for enhancing
model performance in a specific language, es-
pecially in mathematical reasoning tasks. For
instance, MathOctopus-7B improves its coun-
terparts that trained on English from 42.4% to
50.8% on the GSM8K test set.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Hu et al., 2021; Zeng et al., 2022; OpenAI,
2023; Scao et al., 2022; You et al., 2022) such

∗Corresponding author.

MGSM MSVAMP
0

5

10

15

20

25

30

35

40

A
cc

ur
ac

y 
(%

)

Base RFT MAmmoTH WizardMath Ours

Figure 1: Different LLMs performances in MSGM and
MSVAMP datasets, which all are built on LLaMA 2-7B.

as Bloom (Scao et al., 2022) and GPT4 (OpenAI,
2023) have exhibited remarkable performances
across a wide array of downstream tasks. Notwith-
standing these significant advancements, even the
most extensive LLMs are confronted with chal-
lenges when faced with mathematical reasoning
tasks that necessitate multiple reasoning steps (Gao
et al., 2023).

Many recent works focus on using different
prompting methods like chain-of-thought (CoT)
to solve mathematical problems based on close-
sourced LLMs such as ChatGPT and GPT-4. Sig-
nificantly, LLaMA-Family models (Touvron et al.,
2023a,c) have ignited an open-source movement
and rapidly reduced the disparity with these closed-
source LLMs. Following this line, Yuan et al.
(2023a) apply rejection sampling fine-tuning (RFT)
for math reasoning LLMs. WizardMath (Luo
et al., 2023) advances mathematical reasoning in
LLMs through Reinforcement Learning from Evol-
Instruct (RLEIF). However, current efforts are pri-
marily focusing on improving the performance of
LLMs in English. Although, Shi et al. (2022)
propose MGSM testset to explore multilingual
math reasoning through in-context learning, train-
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ing a powerful multilingual mathematical reason-
ing LLM remains under-explored.

To this end, this paper empirically investigates
and enhances the multilingual mathematical reason-
ing abilities of current open-source LLMs such as
LLaMA through instruction tuning. We aim to train
a single model capable of correctly answering math-
ematical problems in multiple target languages,
not just English. However, the main challenge in
multilingual mathematical reasoning (xMR) is the
scarcity of training data in low-resource languages.
To tackle this challenge, we begin by using Chat-
GPT to translate the English GSM8K math training
dataset into 9 various languages. Concurrently, we
employ specific rules and human verification to
calibrate and align the translated corpora, ensuring
the quality of data.

The resulting data are used to construct our
multilingual math instruction training dataset:
MGSM8KInstruct, which encompasses instruc-
tional data within two distinct settings: Parallel-
training and Cross-training. The Parallel-training
setting denotes that both the mathematical queries
and the CoT answers derive from the same lan-
guage. Conversely, the Cross-training setting indi-
cates that the questions are in English, while the
corresponding answers are in other languages. The
objective of these settings is to develop LLMs are
capable of solving mathematical problems coher-
ently, whether presented in English or other target
languages, while ensuring adaptability and main-
taining rigorous mathematical reasoning across
multiple languages. One step further, to conduct a
more exhaustive and comprehensive evaluation of
the model’s multilingual mathematical capabilities,
we additionally develop an out-of-domain xMR
testset: MSVAMP, incorporating 10 languages,
based on SVAMP (Patel et al., 2021).

We then use MGSM8KInstruct to supervise fine-
tune (SFT) current open-source LLMs including
LLaMA-Families ranging from 7B to 33B. Fol-
lowing the training, the models demonstrate ex-
emplary abilities in xMR tasks. We name the re-
sulting models as MathOctopus, attributing their
adaptability and extensive proficiency in xMR tasks
across a variety of languages, as shown in Figure 1.
Surprisingly, compared with LLMs trained on the
monolingual corpus, MathOctopus also shows su-
perior performances when tested in their respective
training languages. For instance, MathOctopus-7B
elevate the accuracy of LLaMA2-7B on the En-
glish GSM8K from 42.4% to 50.8%. We posit

that this improvement is attributable to the model’s
enhanced generalization capability acquired dur-
ing multilingual training, as well as the reasoning
knowledge learned from other languages feeding
back into in English.

Subsequently, we delve into an exploration
of the influences of SFT data volumes and di-
verse reasoning paths on the efficacy of the SFT
model in multilingual context. Inspired by (Yuan
et al., 2023a), we apply multilingual rejection sam-
pling on MathOctopus to generate different cor-
rect reasoning paths as an augmented training cor-
pus. By incorporating this data into our prior
MGSM8KInstruct for fine-tuning LLMs, we ob-
serve limited enhanced multilingual mathemati-
cal reasoning outcomes. We term this training
approach Multilingual Rejection Sampling Fine-
tuning (xRFT). Experimentally, xRFT can further
elevate the LLM’s xMR outcomes, but it may po-
tentially compromise the model’s generalization
ability as the data amount increases.

In summary, our contributions are as follows:

• We construct MGSM8KInstruct, a first mul-
tilingual math reasoning instruction dataset.
Subsequently, MSVAMP, an out-of-domain
multilingual mathematical reasoning dataset,
is collected, serving as a robust test bed to
further assess the robustness of LLMs.

• Based on collected data and different train-
ing strategies, we build a series of power-
ful LLMs, called MathOctopus in xMR tasks.
Our model not only significantly improves
its reasoning capabilities in low-resource lan-
guages compared to LLaMA but also greatly
enhances its performance in English.

• We explore the relationship between model
performance and data volume, as well as the
impact of different training strategies. One of
the most surprising observation is that mul-
tilingual SFT could be regarded as a crucial
strategy for enhancing mathematical reason-
ing proficiency in LLMs.

2 Methodology

In this section, we aim to illustrate our method in
detail. We first review the problem formulation of
multilingual mathematical reasoning. Then we de-
scribe the collection process of MGSM8KInstruct.
Subsequently, we present training strategies of our
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James decides to run 3 sprints 3 times a week. He runs 60 

meters each sprint. How many total meters does he run a 

week?

English

詹姆斯决定每周跑 3 次 3 段冲刺，每段冲刺跑 60 米。他
每周一共跑多少米？

Chinese

James beschließt, 3-mal pro Woche 3 Kurzstreckenläufe 

zu absolvieren. Pro Kurzstreckenlauf läuft er 60 Meter. 

Wie viele Meter insgesamt läuft er pro Woche?

German

French Japanese……

He sprints 3*3=<<3*3=9>>9 time. So he runs 9*60=<<9*60

=540>>540 meters.

English

Chinese

German

French Japanese……

MathOctopus

Question Answer

詹姆斯一共冲刺 3*3=<<3*3=9>>9 次。 所以他每周一共跑
9*60=<<9*60=540>>540米。

James sprintet 3*3=<<3*3=9>>9 Mal. Also läuft er 9*60=

<<9*60=540>>540 Meter.

Figure 2: Multilingual Math Instruction Tuning of MathOctopus.

MathOctopus and multilingual rejection sampling
methods, sequentially.

2.1 Problem Formulation

Commonly, the mathematical reasoning problem-
solving task can be defined as D = {Qi, Oi, Ai},
where Qi is the target math question, O =
{O1, O2, ..., Ok} are answer options if Qi is a K-
way multiple choice problem, Ai is the correspond-
ing ground-truth answer. Given Qi as inputs, LLMs
can directly output answers or a sequence of tokens
as intermediate reasoning steps Ri via CoT. Then
we can obtain the answer in Ri through regular
expression matching.

In this work, we extend mathematical reason-
ing tasks from monolingual to multilingual con-
texts: Den to Den...Dzh. We aspire to enable only
one model to successfully solve mathematical prob-
lems presented in various languages. That is, given
Qi(zh,es,...) in a target language like Chinese, Span-
ish and etc, the model can furnish correct CoT
responses Ri(zh,es,...) in the specific language, even
when the problems are solely presented in English.

2.2 MGSM8KInstruct

Source Data Prior to going further, the main
concern in xMR is data scarcity of the multilin-
gual training corpus. We employ GSM8K (Cobbe
et al., 2021), an English dataset comprised of mid-
dle grade-school mathematical problems annotated
by humans, as our fundamental data source. Ac-
cording to the officially provided solutions, each
problem in GSM8K necessitates a resolution pro-
cess involving between two to eight steps.

Target Languages As for target languages in
translation, we choose a set of ten languages that
are typologically varied from English (En), cov-
ering different language families. Similar with
(Shi et al., 2022), the ensemble of languages in-

corporated in this study comprises Bengali (Bn),
Chinese (Zh), French (Fr), German (De), Japanese
(Ja), Russian (Ru), Spanish (Es), Swahili (Sw), and
Thai (Th). This diverse conglomerate facilitates
an exhaustive exploration into the model’s adapt-
ability and proficiency amidst divergent linguistic
architectures and typologies.

Translation Process Given the reliability and ap-
plicability of ChatGPT for translation tasks, we
utilize ChatGPT to translate 7473 problems and
CoT responses from the English GSM8K training
set and their corresponding CoT answers into the
target languages. To ensure the quality and consis-
tency of the translations, we adopt the following
strategies within the translation prompts:

1. Maintain consistent translations for names of
people and places within the sentences.

2. Preserve the mathematical formulas during
translation.

3. All numbers must be represented using Arabic
numerals to facilitate cross-lingual prediction.

4. To ensure more accurate translations, we pro-
vide two translation examples in the prompts
for each language.

Verify Strategy Upon inspection of our ran-
domly sampled translations, we find that ChatGPT
generally maintains semantic accuracy in transla-
tions; however, discrepancies in formula transla-
tions may arise. Thus, to uphold consistency and
accuracy across multiple languages, we addition-
ally extract all formulas present in the translated
answers. If all formulas are calculated correctly
and are consistent with those in English, we deem
the translation to be accurate and error-free. Note
that if errors persist across 5 consecutive transla-
tions, we discard that particular case.
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Dataset En Sw Zh Bn De Es Fr Ja Ru Th Overall

MGSM8KInstruct 7473 7472 7466 6539 7466 7470 7469 7471 7361 7473 73.6k
MSVAMP 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10k

Table 1: Data statistics of our MGSM8KInstruct and MSVAMP.

Lang. Sw Zh Bn De Es Fr Ja Ru Th

Agree. 88.2 90.2 90.6 90.9 94.9 94.7 91.3 90.4 90.3

Table 2: Human agreement rate of each language.

Times En Sw Zh Bn De Es Fr Ja Ru Th

10 1.5 2.1 1.6 1.2 1.6 1.4 1.2 0.8 1.3 1.4
30 2.5 3.5 2.7 1.9 2.6 2.3 2.0 1.3 2.2 2.3
50 3.8 5.2 4.0 2.9 3.9 3.5 3.0 1.9 3.3 3.4

Table 3: Distinct reasoning paths of each language with
different sampling times.

This approach ensures a coherent and accurate
translation process, allowing for comprehensive
evaluation and application in xMR tasks while
maintaining linguistic and mathematical integrity.
Upon acquiring the translated data, by pairing it
with the alpaca-format prompts, we are able to for-
mulate our final training dataset MGSM8KInstruct,
with about 73.6k samples, its statistics is shown
in Table 1. Translation and training prompts are
displayed in the Appendix, Table 9 and 11.

Crowdsourcing Verification Although, it is
common to employ machine translation to gener-
ate multilingual datasets, as seen in widely-used
datasets like Xtreme (Hu et al., 2020). To further
verify the translation quality in our datasets, we
conduct a rigorous quality check process. We ran-
domly sample 500 samples from each language and
evaluate them for consistency (Microsoft UHRS
Platform) by native speakers. The overall 91.2%
agreement rate in Table 2 indicates reliable transla-
tion quality.

2.3 MathOctopus

Training Strategies We then use multilingual
query-response pairs in MGSM8KInstruct to super-
vise fine-tune LLMs, resulting in MathOctopus, as
shown in Figure 2. Let us delve into a detailed
exposition of our diverse training strategies:

• Parallel-training, involves filling in the input
prompts with questions and answers in the
same native language during training. This
strategy is akin to teaching the model to com-
municate clearly in one language at a time. It
helps the model get better at answering ques-
tions accurately within the same language,
making it more reliable and effective.

• Cross-training, refers to our approach during
training where we insert English questions
and answers in one native language into the
input prompts. This approach is like mixing
languages in teaching, using English ques-
tions and native language answers. It helps
the model understand and connect different
languages better, making it more versatile and
capable of handling multilingual scenarios.

Multilingual Rejection Sampling Prior work
(Yuan et al., 2023a) has demonstrated that LLM’s
performance can be further enhanced by augment-
ing data through rejection sampling (RFT). Conse-
quently, in this paper, we explore whether the gains
imparted by RFT persist in multilingual scenarios.
After obtaining the preliminary SFT model, we per-
form multiple inferences with the SFT model in the
MGSM8KInstruct dataset, sampling more diverse
and accurate reasoning paths from different lan-
guages to integrate into the original dataset. More
specifically, we first eliminate samples with incor-
rect final answers. Subsequently, we extract all
the formulas in each reasoning path and validate
their accuracy; if all are correct, we consider that
reasoning path as correct. We then follow the strate-
gies from (Yuan et al., 2023a) to acquire different
correct reasoning paths: a reasoning path is only
collected as augmented data if no previously col-
lected path contains identical formulas.

However, the reasoning paths sampled from a
single SFT model can be logically non-diverse.
Consequently, we anticipate further enhancing the
mathematical reasoning performance by leveraging
reasoning paths aggregated from different models
via multilingual rejection sampling. Considering
the cost of prolonged inference, we currently per-
form 25 inferences for each language from the ba-
sic MathOctopus 7B and 13B models respectively,
meaning we sample answers for each question in
every language 50 times. In our experiments, we
fuse all the different reasoning paths generated by
the two models to obtain our final xRFT augmented
data. We set the temperature to 0.9 and with differ-
ent seeds to expect the model to generate diverse
solutions. The Table 3 displays the number of dif-
ferent reasoning paths per question produced in
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Models En De Es Fr Sw Zh Bn Ja Ru Th Avg.

Close-Source LLMs
ChatGPT-Zero shot 52.0 46.8 52.0 45.6 30.0 44.4 4.4 38.8 37.2 8.0 35.9
ChatGPT-En 2shot 67.2 62.0 61.2 59.2 40.0 52.8 7.6 46.8 50.4 15.6 46.3
GPT4-En 2shot 80.0 73.6 71.2 72.0 64.4 70.0 17.6 71.6 64.0 40.4 62.5

Open-Source LLMs (7B Model)
LLaMA 2 43.2 37.2 32.4 34.4 5.2 22.4 3.2 15.2 28.0 4.8 22.6
RFT 44.8 33.6 34.0 34.0 2.8 16.8 2.4 6.8 29.2 2.0 20.6
MAmmoTH 49.6 33.2 32.4 32.8 2.4 17.2 3.6 10.8 26.0 4.8 21.3
WizardMath 47.6 30.4 34.8 30.4 3.4 22.4 2.0 24.0 30.8 4.0 23.0

MathOctopusC 52.0 38.0 39.2 36.4 23.6 31.6 18.8 27.2 33.6 21.6 32.2
xRFT-MathOctopusC 51.2 36.0 41.2 37.6 24.0 33.2 18.8 29.6 36.4 25.2 33.3

MathOctopusP 52.4 44.8 42.4 43.6 39.2 38.4 28.8 36.0 39.6 34.4 40.0
xRFT-MathOctopusP 54.8 43.6 45.2 38.0 38.4 45.2 33.2 35.6 48.4 36.4 41.9

Open-Source LLMs (13B Model)
LLaMA 2 50.4 42.8 45.2 40.8 7.6 32.8 6.0 25.2 39.2 6.8 29.7
RFT 52.0 38.4 46.8 44.8 3.6 33.6 3.2 26.4 41.6 4.4 29.5
MAmmoth 56.4 45.6 50.0 39.6 1.6 31.2 3.6 19.2 36.8 5.2 28.9
WizardMATH 52.8 40.4 45.6 42.0 5.6 28.0 6.4 22.0 34.4 5.6 28.3

MathOctopusC 56.4 47.6 49.6 47.6 27.2 39.2 24.0 40.4 42.0 24.8 39.9
xRFT-MathOctopusC 53.6 48.0 46.4 46.0 28.0 45.2 21.2 35.2 45.6 28.8 39.8

MathOctopusP 53.2 44.4 48.0 48.4 42.8 48.8 35.2 43.2 47.6 46.8 45.8
xRFT-MathOctopusP 51.6 49.2 53.2 49.6 46.0 51.2 42.0 39.6 47.6 46.0 47.6

Open-Source LLMs (30-34B Model)
LLaMA 1 50.8 42.4 44.4 42.4 3.6 27.6 3.2 11.6 38.4 1.2 26.6
RFT 57.6 45.6 46.4 44.8 2.4 26.0 4.8 9.2 46.4 4.4 28.8

MathOctopusC 55.6 40.4 51.2 44.4 24.4 36.0 19.2 27.2 37.2 21.6 35.7
xRFT-MathOctopusC 53.6 47.2 47.6 44.8 27.6 34.4 19.2 30.8 38.8 22.8 36.7

MathOctopusP 56.4 47.2 53.2 48.0 46.8 52.0 35.2 39.2 45.6 41.2 46.5
xRFT-MathOctopusP 51.6 51.2 52.8 44.4 47.2 52.4 37.6 41.6 50.0 47.6 47.6

Table 4: Model Performances on MGSM testset. MathOctopusP and MathOctopusC refer to models trained on
parallel-training and cross-training, separately. We highlight the best results in each language of the same backbone.

each language over 50 samples.

3 Experiments

In this section, we first review our in-domain eval-
uation dataset: MGSM, and the collection of the
out-of-domain testset: MSVAMP. Subsequently,
we present the main results and findings of our ex-
periments. We illustrate our experimental setup for
training and testing in Appendix B.

3.1 Evaluation Datasets

MGSM The source data of MGSM (Shi et al.,
2022) is collected from a subset from GSM8K test-
set, and then native annotators translate the subset
in English into other 10 languages. Each language
branch consists of 250 test samples.

MSVAMP Following (Yue et al., 2024), we
choose SVAMP as our out-of-domain source data.
Given that the answers in the SVAMP only contain

the numerical results, we focus solely on translat-
ing the questions. To ensure high-quality transla-
tions, we use Google Translate System to convert
1,000 samples from the SVAMP into ten languages,
matching the same languages in our training set.
We further verify translation fidelity through crowd-
sourced native speaker reviews in Appendix C.

3.2 Baselines

Close-Source LLMs In this paper, We con-
sider two OpenAI’s LLMs: GPT-4 and ChatGPT
(gpt3.5-turbo) for comparison: (1) We test Chat-
GPT with zero-shot prompting where none exem-
plars are given, but we add “Let’s think step by
step.” at the end of the inputs. (2) As Shi et al.
(2022) proves including EN-CoT examples could
result in better performances in xMR tasks, we ad-
ditionally test them with 2 shot EN-coT examples,
which are shown in Appendix Table 12.
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Models En De Es Fr Sw Zh Bn Ja Ru Th Avg.

Close-Source LLMs
ChatGPT-Zero shot 76.1 66.7 69.5 71.9 63.2 72.4 3.1 63.3 62.3 24.4 57.3
ChatGPT-En 2 shot 81.2 73.9 74.6 78.2 68.4 78.4 14.4 74.0 70.9 46.0 66.0
GPT4-En 2shot 80.1 78.1 81.5 83.9 75.7 78.9 31.2 74.8 77.9 68.1 73.0

Open-Source LLMs (7B ModeLs)
LLaMA 2 38.8 39.0 39.2 39.1 17.2 35.2 11.5 31.6 39.1 18.2 30.9
RFT 42.7 40.8 42.5 41.5 14.9 34.9 7.7 33.9 39.5 16.9 31.5
MAmmoTH 45.1 39.6 42.9 39.9 4.2 26.8 4.3 26.7 33.7 6.3 27.0
WizardMath 48.5 39.2 44.8 37.7 10.3 36.3 16.1 37.9 37.4 17.0 32.5

MathOctopusC 49.2 48.6 46.8 46.4 36.6 43.6 30.2 42.5 46.7 34.0 42.5
xRFT-MathOctopusC 49.9 46.5 47.6 47.3 37.7 43.3 32.9 42.7 46.6 36.2 43.1

MathOctopusP 46.5 43.5 45.4 46.0 40.1 42.5 29.1 42.5 45.4 35.7 41.7
xRFT-MathOctopusP 46.8 43.1 44.5 45.3 42.3 43.2 32.8 43.2 42.1 40.5 42.4

Open-Source LLMs (13B Models)
LLaMA 2 50.9 46.2 46.1 47.8 19.8 43.3 13.9 41.8 47.8 23.4 38.1
RFT 47.1 45.1 45.6 45.2 19.4 42.3 12.2 42.4 46.5 24.8 37.1
MAmmoth 53.4 52.3 53.9 53.8 12.9 47.7 5.0 42.2 50.7 13.7 38.6
WizardMATH 56.3 48.7 50.4 49.4 12.5 37.0 13.7 29.5 43.8 16.3 35.8

MathOctopusC 56.6 50.9 54.2 54.7 40.4 49.0 30.3 46.3 52.4 35.7 47.1
xRFT-MathOctopusC 52.9 50.5 52.8 51.5 41.9 49.2 34.1 45.8 50.2 35.7 46.5

MathOctopusP 50.7 48.4 49.4 50.6 43.4 42.6 31.8 41.1 46.9 39.3 44.4
xRFT-MathOctopusP 44.6 47.7 48.2 49.9 43.4 46.4 34.2 43.1 48.2 39.5 44.5

Open-Source LLMs (30-34B Models)
LLaMA 1 49.0 44.1 45.6 44.3 9.3 37.5 3.7 27.0 43.1 8.4 31.2
RFT 46.8 46.1 46.8 46.7 11.5 36.6 6.0 31.1 44.9 9.9 32.6

MathOctopusC 51.5 50.5 52.1 52.9 42.1 46.2 23.2 42.2 50.5 33.4 44.5
xRFT-MathOctopusC 48.1 48.7 50.0 48.9 42.8 43.6 23.3 43.4 44.6 35.5 42.9

MathOctopusP 56.4 47.2 53.2 48.0 46.8 52.0 35.2 39.2 45.6 41.2 46.5
xRFT-MathOctopusP 48.0 47.5 48.5 48.3 42.3 46.1 36.2 45.8 47.2 41.2 45.1

Table 5: Model Performances on MSVAMP testset. MathOctopusP and MathOctopusC refer to models trained on
parallel-training and cross-training, separately.

Open-Source LLMs For fairness, we primarily
compare MathOctopus with several LLaMA-based
models, including LLaMA base, RFT, MAm-
moTH and WizardMath. In this work, LLaMA
base denotes models trained on GSM8K English
corpus; RFT utilizes rejection sampling on English
instruction tuning; MAmmoTH (Yue et al., 2024)
is trained based on a variety of math instruction
datasets; WizardMath (Luo et al., 2023) is built
on Reinforcement Learning from Evol-Instruct
(RLEIF) in math reasoning. As we only consider
CoT solutions in this work, we don’t use the code
version of these models.

3.3 Main Results

Table 4 and Table 5 show the in-domain and out-of-
domain test results of different LLMs. We run the
evaluation three times and report average results.
We can draw the key observations and insights:

Cross-Test

Models MGSM8K MSVAMP

MathOctopusP -7B 44.4 47.8
MathOctopusC-7B 47.0 54.2

MathOctopusP -13B 47.8 45.2
MathOctopusC-13B 54.2 51.5

MathOctopusP -33B 46.5 46.6
MathOctopusC-33B 53.3 49.4

Table 6: Average performances of MathOctopusC and
MathOctopusP under the Cross-Test settings.

LLMs struggle in xMR tasks, especially in low-
resource languages. From the tables, current
open-source LLMs still suffer in xMR in terms of
in-domain and out-of-domain testing. For instance,
LLMs with 7B-level only achieve about 20%-23%
accuracy in MGSM. Another conspicuous observa-
tion is the stark performance contrast of existing
models when dealing with high-resource versus
low-resource languages. This discrepancy can be
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largely attributed to the diminutive representation
of low-resource languages in their foundational cor-
pus. In contrast, our model adeptly rectifies this
shortcoming, as evidenced by its enhanced perfor-
mance in languages like Thai and Swahili.

Performance Superiority of MathOctopus. The
proposed MathOctopus, whether in cross-training
or parallel-training, both significantly outperforms
other open-source LLMs by a large margin. For
instance, when operating at the 7B-level, our
model can boost the LLaMA model’s efficacy
from a mere 22.6% to a commendable 41.9%
on MGSM. Furthermore, this superiority still
remains as the model size escalates. Surpris-
ingly, MathOctopusP -13B even surpasses Chat-
GPT on MGSM. Another interesting finding is
that MathOctopusP performs better in the in-
domain test while MathOctopusC shows better
generalization ability in the out-of-domain test,
proving their unique advantages, separately. Delv-
ing deeper, we observe that cross-training setups
could generally benefits the performances in the
languages that are similar with English, like Span-
ish.

Models GSM8K SVAMP

LLaMA 2-7B 42.4 38.3
MathOctopusP -7B 49.3 46.8
MathOctopusC-7B 50.8 49.3

LLaMA 2-13B 51.0 50.9
MathOctopusP -13B 55.5 52.1
MathOctopusC-13B 56.6 56.6

LLaMA 1-33B 50.0 49.0
MathOctopusP -33B 56.0 52.5
MathOctopusC-33B 53.7 51.5

Table 7: Model performances on English datasets.

Marginal Impact of xRFT. The xRFT’s con-
tribution to model enhancement appears to be
somewhat limited. Its effectiveness diminishes,
particularly in out-of-domain test scenarios. In
tests within MGSM, the xRFT’s contribution to
MathOctopusP hovers around a modest 1%-2% av-
erage uplift. However, this figure dips below 1% in
MSVAMP testset. More intriguingly, the augmen-
tative effect of xRFT on MathOctopusC appears
even more subdued, with potential performance
deterioration observable on the MGSM.

3.3.1 Training-Testing Consistencies
As shown in the tables, there is a clear
performance difference between models using

Es Zh Th
Languages

30

32

34

36

38

40

42

44

Re
su

lt
s

42.4

38.4

34.4

37.6

35.2

32.4

Models
MathOctopusP

Es-LLaMA
Zh-LLaMA
Th-LLaMA

Figure 3: Performances of 7B-models on three language
subsets from MGSM.

MathOctopusC vs. MathOctopusP , even when
trained with the same amount of data in in-domain
testing. A deeper look into this phenomenon re-
vealed a mismatch between the training and test-
ing environments. Specifically, in the MGSM and
MSVAMP test sets, the data follows a parallel struc-
ture where both the question and answer are in the
same language—what we call parallel-test. This
matches the parallel-training settings.

However, as presented in Table 6, in our de-
tailed experiments, when the testing environment
mimics the cross-training format, called cross-test,
MathOctopusC shows better performance com-
pared to MathOctopusP as model sizes increase
from 7B to 33B. This highlights the critical impor-
tance of ensuring a consistent alignment between
training and testing data formats to optimize
LLMs’ multilingual reasoning capabilities.

3.3.2 Multilingual SFT can generally benefit
Monolingual SFT

One significant observation in our experiments is
that MathOctopus could significantly improve
the performances in English. Table 7 presents the
results of LLaMA and MathOctopus on English
GSM8K and SVAMP. Both MathOctopusP and
MathOctopusC substantially enhance the per-
formance of LLaMA2 across the two datasets.
MathOctopusC emerges as the superior performer
(e.g., 50.8% vs. 49.3%, 49.3% vs. 46.8% with 7B-
level). We surmise that this can be attributed to the
cross-training paradigm, intensifying the model’s
proficiency in English comprehension.

More broadly, does this situation persist in other
languages as well? To explore this, we randomly
select training sets for three languages from the
training dataset: Spanish and Chinese, as well as
the low-resource language Thai, and used their re-
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(a) Performances with Data Volume on MGSM (b) Performances with Data Volume on MSVAMP

Figure 4: Model performances of MathOctopus with different xRFT data volume.

spective corpora to train three models, which we
named Es-LLaMA, Zh-LLaMA, and Th-LLaMA,
respectively. Figure 3 separately illustrates the test
results of several models in their respective train-
ing languages. We observe that our model still sur-
passes the results of the monolingual SFT models
in their respective training languages. This sug-
gests that, at least in the task of math reasoning,
multilingual SFT can be considered a superior
training strategy to monolingual SFT, signifi-
cantly elevating the model’s performance in its
native language.

4 Discussion

In this section, we delve deeper through a series
of meticulous experiments designed to address the
following inquiries:

• Q1: The impact of xRFT: The implications
of varying xRFT data quantities?

• Q2: Transferability of MathOctopus: When
solely utilizing corpora of specific languages
from MGSM8KInstruct for model training,
can we still observe enhancements in unseen
languages? (See Answer in Appendix D)

• Q3: Variations of the training strategy:
Rather than strictly restricting the questions
to English, we can propose forming pairings
from the available corpus of 10 languages
in MGSM8KInstruct, thus allowing both the
questions and answers to span diverse combi-
nations. How does the model perform under
such conditions? (See Answer in Appendix
D)

4.1 RQ1: Influence of xRFT Data Volume

In this component, we probe the impact of varying
xRFT data quantities on model performance. Fig-
ures 4 (a) and (b) respectively illustrate the perfor-
mances of models across two datasets under xRFT
with sampling counts k set to {10, 30, 50}. From
the visuals, it’s discernible that for MathOctopusP ,

employing larger training corpus generally aug-
ments performance in most cases, a trend partic-
ularly pronounced in the MGSM dataset. How-
ever, these gains remain modest, especially when
the backbone model becomes more performant. In
contrast, MathOctopusC demonstrates marginal im-
provements attributable to xRFT, and intriguingly,
its efficacy on the MSVAMP dataset seems to wane
as the k value increases.

This suggests that while xRFT introduces var-
ious reasoning paths, its contribution to tasks
like multilingual math reasoning remains lim-
ited. A plausible rationale is that during the mul-
tilingual SFT phase, distinct linguistic versions of
the same solution might already be construed as di-
verse reasoning paths. Hence, multilingual SFT can
be viewed as a variant of the monolingual SFT’s
RFT. Building upon the foundation of multilingual
SFT, supplementary benefits conferred by xRFT
appear to be limited and might lead to model over-
fitting.

5 Conclusion

In this paper, we pioneer the exploration of train-
ing multilingual mathematical LLMs. To address
data scarcity in low-resource languages, we first
collect the first multilingual math reasoning in-
struction dataset, named MGSM8KInstruct, con-
sisting of ten various languages. The models,
trained on MGSM8KInstruct with different train-
ing strategies, named MathOctopus, show supe-
rior performances compared to other open-source
LLMs. We prove that MathOctopus with parallel-
training could achieve better in-domain test results
while MathOctopus with cross-training presents
better robustness in the collected out-of-domain
test set, MSVAMP. We also investigate the impact
of the multilingual rejection sampling strategy, find-
ing it has a limited effect on xMR tasks. Our ex-
tensive experiments reveal that creating aligned
bilingual question-answer corpora significantly im-
proves the model’s mathematical capabilities in its
native language. In future work, we will explore
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additional methodologies and diverse parallel cor-
pora for training xMR LLMs, potentially involving
RLHF.

Limitations

In this work, we still leave several underexplored
parts, which may also contribute to building effec-
tive xMR LLMs:

• Developing MathOctopus based on larger size
LLMs, including LLaMA 2-70B and LLaMA-
Coders, which is a future work in our follow-
ing experiments.

• Currently, we only apply xRFT to 7B and 13B
models due to the high cost of inferencing. We
also will conduct xRFT to more performant
models, further investigating its efficiency.

• We are still not very clear whether including
more languages in MGSM8KInstruct could
benefit current models, which will discussed
in our next version.
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A Related Works

Math Reasoning with LLMs A pivotal metric
for assessing the efficacy of LLMs is their capa-
bility in addressing intricate reasoning challenges,
exemplified by mathematical reasoning tasks (Scao
et al., 2022; Cobbe et al., 2021; Zhou et al., 2022;
Weng et al., 2022; Chen et al., 2023c, 2024a).
Rather than yielding direct, definitive answers,
prior research has illustrated that by employing a
variety of prompting techniques, such as Chain-of-
Thought (CoT) prompting (Wei et al., 2022), LLMs
can be guided through step-by-step reasoning, re-
sulting in significant improvements in performance
across an array of diverse reasoning tasks. Imani
et al. (2023) propose the generation of multiple
algebraic expressions or Python functions to solve
the same mathematical problem, aiming to explore
a broader spectrum of potential solutions. Addi-
tionally, Li et al. (2023) introduce a step-aware
verifier to scrutinize the reasoning steps in COT,
thereby enhancing the model’s reasoning capabili-
ties. Another effective approach, Self-Consistency
(Wang et al., 2022), combines a wider range of so-
lutions and derives a final answer by aggregating
them to obtain the most consistent response. Mean-
while, several scholarly works have incorporated
the concept of rejection sampling, in conjunction
with various other techniques, to curate a more
diverse set of sampled reasoning paths for the pur-
pose of fine-tuning data augmentation (Huang et al.,
2022; Zelikman et al., 2022; Ni et al., 2023; Zhu
et al., 2023; Bai et al., 2022; Yuan et al., 2023b;
Dong et al., 2023; Touvron et al., 2023b; Song
et al., 2023; Chen et al., 2024b). Following the
line, Yuan et al. (2023a) utilize rejection sampling
to augment the data volume for fine-tuning math
reasoning LLMs.

Instruction Tuning with LLMs Instruction tun-
ing serves as a pivotal component within the devel-
opmental frameworks of language models, with its
primary function being to orient LLMs towards ob-
jectives that are more congruent with human pref-
erences and functional applications (Chen et al.,
2023b, 2024c). The academic discourse on instruc-
tion tuning is notably concentrated on amplifying
the versatile instructional capabilities of LLMs.
This discourse is particularly exemplified by pi-
oneering studies such as UnifiedQA (Khashabi
et al., 2020), Zero-Prompt (Xu et al., 2022), FLAN
(Chung et al., 2022), and T0 (Sanh et al., 2022).
These studies have embarked on an exploration

into the generalization capabilities of LLMs. Fol-
lowing these, FLAN-v2 (Longpre et al., 2023) fur-
ther investigated the impact of scaling instructional
datasets on model performance. Recent innova-
tions in this domain are veering towards employ-
ing synthetic instruction following data, distilled
from models like GPT-3/4 (OpenAI, 2023), to align
open-source LLMs. Recently, several works have
utilized instruction tuning for training math LLMs.
Yuan et al. (2023a); Chen et al. (2022) propose RFT
in math reasoning, and WizardMath (Luo et al.,
2023) implements the "evol-instruct reinforcement
learning" methodology (RLEIF), which is directed
towards the refinement of prevailing math instruc-
tion data. Recently, several works (Chen et al.,
2023d) extend instruction tuning from monolingual
to multilingual. Chen et al. (2023d) directly trans-
late the Aplaca-GPT4 corpus to other languages
and achieve great performances in MMLU tasks
through multilingual instruction tuning. Zhang
et al. (2023) further boost small MLLMs through
interactive instruction tuning translation task. How-
ever, almost all of them aim to improve mathemat-
ical reasoning in English or general multilingual
generation abilities, leaving multilingual mathe-
matical reasoning less explored. This paper aims
to fill this gap by exploring effective methods for
training robust LLMs in multilingual mathematical
reasoning.

B Experimental Setup

Training and Testing In this work, we use
open-source LLaMA-2 7B to 13B and LLaMA-
1 33B as backbone models, allowing us to build
MathOctopus in multiple scales. Our codes are
based on DeepSpeed and Huggingface Library. For
all models, we set the learning rate, epochs and
max length as 2e-5, 3 and 512. The batch sizes
are set to 8, 4, 2 when models scale from 7B to
33B. During testing, we set the maximum output
token as 512 with temperature as 0.0 to keep stable
performances. We keep the same prompt in Table
9 for testing MathOctopus. Please refer to Section
3.3 for xRFT settings.

C CrowdSourcing Verification of
MSVAMP

Similarly, we further verify the translation qual-
ity of MSVAMP. we sample 500 samples from
each language and employ native speakers from
Microsoft UHRS Platform to check the semantic
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Lang. Sw Zh Bn De Es Fr Ja Ru Th

Agree. 93.4 94.3 93.8 92.7 93.8 96.9 92.4 93.2 92.9

Table 8: Human agreement rate of each language in
MSVAMP.

consistency. We report the human agreement rates
in Table 8 . The high agreement rates prove the
reliable translation quality.

D Discussion

D.1 RQ2: Targeted Language Training:
Limited Broader Linguistic Reasoning
Gains

Our exploration into model training with select
languages posits a notable inquiry: Can training
with a subset of languages enhance mathemati-
cal reasoning across all languages? Engaging two
high-resource languages, Spanish and Chinese, and
two low-resource languages, Thai and Swahili, for
mixed training sessions reveals pivotal insights.
Seen in Table 10, while stark performance enhance-
ments are witnessed in trained languages, notably
in low-resource ones like Thai (surging from 4%
to 36.8%), the model’s efficacy varies in languages
that are unseen in training: While there are im-
proved outcomes in certain languages like Japanese
and French, a corresponding decline is witnessed
in others, such as German and Russian. This phe-
nomenon might predominantly stem from the dis-
parities in grammatical structures across different
languages (Chen et al., 2023a).

D.2 RQ3: Training Variability: Beyond
English-centric Questions

Beyond the two training strategies explored in Sec-
tion 3.3, we further probe alternative approaches
to discern their influence on model performance.
Hence, we examine two additional strategies: 1) A
Mix-Training approach, where cross-training and
parallel-training data are amalgamated for train-
ing; 2) An expansive Mix-All method that not
only extends cross-training but also randomly pairs
two languages from the MGSM8KInstrucT, thereby
permitting questions and answers in the training
data to traverse various linguistic combinations,
effectively amplifying the original training data
volume tenfold. The resulting models obtained by
the above strategies are called MathOctopusM and
MathOctopusM-All, separately.

From the right-side Figure 5, it is evident that de-
spite these two new training strategies respectively

En Sw Zh Bn De Es Fr Ja Ru Th Avg
Test Languages
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Figure 5: Performances of MathOctopus-7B with dif-
ferent strategy on MGSM.

doubling and amplifying training volumes tenfold
compared to original parallel-training and cross-
training strategies, they do not surpass the results
of MathOctopusP . Furthermore, the outcomes
from MathOctopusM-All slightly underperform
MathOctopusM. Such a phenomenon may arise
because, although “mix-all” and “mix-training” ex-
pand the original data, the pre-existing data vol-
ume already suffices for the model to learn align-
ment and reasoning capabilities across different
languages. An additional, rudimentary data expan-
sion potentially induces overfitting, subsequently
diminishing model performance.

D.3 Prompts for ChatGPT Translation
Table 11 shows the translation prompt when we
utilize ChatGPT to translate the data from English
to other languages. When applying this prompt,
we just need to replace the placeholder symbol
lang with the specific language. Here, we use the
Spanish translation examples in the prompt.

D.4 Generated Cases by MathOctopus

Table 13 and Table 14 presens several generated
examples in various languages by LLaMA and our
models.
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Input Prompts
Below is an instruction that describes a task. \n Write a response that appropriately completes the
request in { language }. Please answer in { language }.\n \n ### Instruction: \n {query}\n\n ###
Response:

Table 9: Training and testing prompts in our experiments.

Models En Sw Zh Bn De Es Fr JA Ru Th Avg.

LLaMA 2 (En) 43.2 5.2 22.4 3.2 37.2 32.4 34.4 15.2 28.0 4.8 22.6
MathOctopusP (En-Zh-Es) 44.0 3.6 34.4 3.2 33.6 41.2 36.8 25.2 30.4 4.0 25.6
MathOctopusP (En-Sw-Th) 46.0 34.4 27.6 2.4 31.2 35.2 32.4 22.4 27.2 36.8 29.6

Table 10: Model Performances on MGSM test set. MathOctopusP (En-Zh-Es) refers to we only train MathOctopusP

in three languages: English, Chinese and Spanish. Similarly, MathOctopusP (En-Sw-Th) means the MathOctopusP

trained in English, Swahili and Thai.

Prompts: You are a professional {lang} translator and spelling corrector. Please translate the given math question and its
reasoning path into {lang}.
Below are examples:
Q: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
P: Babysitting is $12/hour = $12/60 minutes = $«12/60=0.2»0.2 per minute. Weng did babysitting for 50 minutes, so she
earned $0.2 x 50 = $«0.2*50=10»10.
T-Q: Weng gana 12 dólares la hora por cuidar niños. Ayer cuidó niños durante 50 minutos. ¿Cuánto ganó?
T-P: Cuidar niños cuesta $12/hora = $12/60 minutos = $«12/60=0.2»0.2 por minute. Weng cuidó niños durante 50 minutos,
por lo que ganó $0.2 x 50 = $«0.2*50=10»10.
Q: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice as many pages as
yesterday. If she wants to read half of the remaining pages tomorrow, how many pages should she read?
P: Since today is the last day of the month, Julie would like to finish an entire book before tomorrow. She has read a total
of 12 + 24 = «12+24=36»36 pages in two days. There are 120 - 36 = «120-36=84»84 pages left to be read. Hence, Julie
should read 84/2 = «84/2=42»42 pages tomorrow.
T-Q: Julie está leyendo un libro de 120 páginas. Ayer pudo leer 12 páginas y hoy leyó el doble que ayer. Si quiere leer la
mitad de las páginas restantes mañana, ¿cuántas páginas debería leer?
T-P: Como hoy es el último día del mes, a Julie le gustaría terminar un libro completo antes de mañana. Ha leído un total
de 12 + 24 = «12+24=36»36 páginas en dos días. Quedan 120 - 36 = «120-36=84»84 páginas por leer. Por lo tanto , Julie
debería leer 84/2 = «84/2=42»42 páginas mañana.
Please Keep in mind that:
(1) keep the translations consistent for names of people and places within the sentences.
(2) Preserve the mathematical formula within the “« »” brackets when translating.
(3) You must translate the text into {lang}.
(4) You must follow the output format with: "T-Q:... T-P:..."

Table 11: Translation prompts in our experiments.

Prompts: Answer the following math probelm step by step in {lang}.
Below are examples:
Q: Julia played tag with 18 kids on Monday. She played tag with 10 kids on Tuesday. how many more kids did she play
with on Monday than on Tuesday?
A: Let’s think step by step. Julia playsed tag with 18 kids on Monday and 10 kids Tuesday, separately. So the amount of
kids that she played with on Monday than on Tuesday is 18-10=8. So the answer is 8.
Q: Jack had 9 action figures and 10 books on a shelf in his room. later he added 7 more action figures to the shelf. how
many more action figures than books were on his shelf ?
A: Let’s think step by step. The amount of action figures that Jack had is 9+7=16. And Jack had 10 books. So the amount
of action figures than books on his shelf is 16-10=6. So the answer is 7.

Table 12: 2-shot prompts of ChatGPT and GPT-4 in our experiments.
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Generated Cases in Chinese

Query
珍妮特的鸭子每天下16颗蛋。她每天早上早餐时吃3颗，每天用4颗为自己的朋友做松饼。剩下的
鸭蛋她每天拿去农贸市场卖，每颗新鲜鸭蛋卖2美元。她每天在农贸市场赚多少钱？

LLaMA 2
珍妮特每天吃早餐3颗鸭蛋，剩下的鸭蛋用于做松饼4颗，剩下的鸭蛋卖在农贸市场2颗，珍
妮特每天在农贸市场赚2*2=«2*2=4»4美元。珍妮特每天卖4 颗鸭蛋，所以她每天在农贸市场
赚4*4=«4*4=16»16美元。✗

MathOctopus
珍妮特每天吃掉3 + 4 = «3+4=7»7颗鸭蛋。鸭子每天下16颗蛋，所以剩下16 - 7 = «16-7=9»9颗蛋。
珍妮特每天卖掉9颗蛋，每颗蛋卖2美元，所以她每天赚9 * 2 = «9*2=18»18。✓

Answer 18

Query 图卢兹的绵羊数量是查尔斯顿的两倍。查尔斯顿的绵羊数量是西雅图的4倍。如果西雅图有20只绵
羊，图卢兹、查尔斯顿和西雅图一共有多少只绵羊？

LLaMA 2
查尔斯顿有2 * 20 = «2*20=40»40只绵羊。图卢兹有40 * 2 = «40*2=80»80只绵羊。西雅图和查尔斯
顿和图卢兹一共有20 + 40 + 80 = «20+40+80=140»140只绵羊。✗

MathOctopus
查尔斯顿有4 * 20 = «4*20=80»80只绵羊。图卢兹有2 * 80 = «2*80=160»160只绵羊。总共，三个城
市有20 + 80 + 160 = «20+80+160=260»260只绵羊。✓

Answer 260

Generated Cases in Japanese

Query リチャドは15建てのマンションに住んでいる。各には8部屋あり、建物の3/4が入居されている。
建物で未入居の部屋は全部で何室あるか？

LLaMA 2
15建てのマンションに8部屋ある各は15*8=«15*8=120»120部屋になる。建物の3/4が入居されてい
るので、入居されている部屋数は120*3/4=«120*3/4=90»90部屋になる。未入居の部屋は90-8=«90-
8=82»82部屋である。✗

MathOctopus
15 建 て の マ ン シ ョ ン に8部 屋 あ る た め 、 リ チ ャ ド 住 む15 建 て マ ン シ ョ ン の 部
屋 数 は8*15=«8*15=120»120部 屋 建 物 の3/4が 入 居 さ れ て い る た め 、 未 入 居 の 部 屋
は120*1/4=«120*1/4=30»30部屋。✓

Answer 30

Query
トゥルズはチャルストンに比べ2倍の数の羊をっています。チャルストンはシアトルに比べ4倍
の数の羊をっています。シアトルがっている羊の数が20だったとしたら、トゥルズ、チャルス
トン、シアトルがっている羊の数は何でしょうか？

LLaMA 2

トゥルズはチャルストンに比べ2倍の数の羊をっているので、トゥルズがっている羊の数
は2*4=«2*4=8»8です。チャルストンはシアトルに比べ4倍の数の羊をっているので、チャルス
トンがっている羊の数は4*20=«4*20=80»80です。シアトルがっている羊の数が20だったとした
ら、トゥルズ、チャルストン、シアトルがっている羊の数は80+8+20=«80+8+20=118»118です。✗

MathOctopus

シアトルが20の羊をっているなら、チャルストンは4*20 = «4*20=80»80の羊をっています。トゥ
ルズはチャルストンの2倍の数の羊をっているので、160の羊をっています。合すると、トゥル
ズ、チャルストン、シアトルは20+80+160 = «20+80+160=260»260の羊をっています。✓

Answer 260

Table 13: Generated responses compared between LLaMA and ours within 7B-level on MGSM.
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Generated Cases in German

Query

Toula ging in die Bäckerei und kaufte verschiedene Arten von Gebäck. Sie kaufte 3 Dutzend Donuts, die
68 US-Dollar pro Dutzend kosten, 2 Dutzend Mini-Cupcakes, die 80 US-Dollar pro Dutzend kosten und 6
Dutzend Mini-Cheesecakes für 55 US-Dollar pro Dutzend. Wie hoch waren die Gesamtkosten?

LLaMA 2

3 Dutzend Donuts kosteten 3 × 68 = «3*68=204»204 US-Dollar.2 Dutzend Mini-Cupcakes kosteten 2 × 80 =
«2*80=160»160 US-Dollar.6 Dutzend Mini-Cheesecakes kosteten 6 × 55 = «6*55=330»330 US-Dollar.Die
Gesamtkosten für alle drei Arten von Gebäck waren 204 + 160 + 330 = «204+160+330=794»794 US-Dollar.
✗

MathOctopus

Toula kaufte 3 Dutzend Donuts für 68 US-Dollar pro Dutzend, also kosten sie 3 * 68 = 204 US-Dollar.Toula
kaufte 2 Dutzend Mini-Cupcakes für 80 US-Dollar pro Dutzend, also kosten sie 2 * 80 = 160 US-Dollar.Toula
kaufte 6 Dutzend Mini-Cheesecakes für 55 US-Dollar pro Dutzend, also kosten sie 6 * 55 = 330 US-Dollar.Die
Gesamtkosten betragen 204 + 160 + 330 = 694 US-Dollar. ✓

Answer 694

Generated Cases in French

Query Jacques fait des séries de 3 sprints 3 fois par semaine. Il court 60 mètres à chaque sprint. Au total, combien
de mètres court-il par semaine ?

LLaMA 2 Jacques fait 3 * 3 = «3*3=9»9 séries de sprints par semaine.Par série, il court 9 * 60 = «9*60=540»540
mètres.Par semaine, il court donc 540 * 9 = «540*9=4800»4800 mètres. ✗

MathOctopus
Jacques fait des séries de 3 sprints 3 fois par semaine.Chaque série est de 3 sprints, donc il court 3*3=«3*3=9»9
sprints par semaine.Chaque sprint est de 60 mètres, donc il court 60*9=«60*9=540»540 mètres par semaine.
✓

Answer 540

Generated Cases in Spanish

Query

Los patos de Janet ponen 16 huevos por día. Ella come tres en el desayuno todas las mañanas y usa cuatro
para hornear magdalenas para sus amigos todos los días. Vende lo que sobra en el mercado de productores
diariamente a $2 el huevo fresco de pato. ¿Cuánto gana en dólares todos los días en el mercado de productores?

LLaMA 2

Janet comienza con 16 huevos frescos por día - 3 huevos frescos que come para desayuno = «16-3=13»13
huevos frescos que no se comen.Janet usa 13 huevos frescos - 4 huevos frescos para hornear magdalenas =
«13-4=9»9 huevos frescos que no se comen.Janet vende 9 huevos frescos - 2 huevos frescos que se venden en
el mercado de productores = «9-2=7»7 huevos frescos que se venden en el mercado de productores.Janet
gana 7 huevos frescos * $2/huevo fresco = $«7*2=14»14 en el mercado de productores todos los días. ✗

MathOctopus

Janet come 3 huevos por día y usa 4 huevos por día, por lo que tiene 3 + 4 = «3+4=7»7 huevos que no
usa para nada.Los patos de Janet ponen 16 huevos por día, por lo que tiene 16 - 7 = «16-7=9»9 huevos
excedentes.Vende los 9 huevos excedentes por $2 cada uno, por lo que gana 9 * 2 = $«9*2=18»18 todos los
días en el mercado de productores.✓

Answer 18

Table 14: Generated responses compared between LLaMA and ours within 7B-level on MGSM.
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