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Abstract

Previous research on radiology report genera-
tion has made significant progress in terms of
increasing the clinical accuracy of generated
reports. In this paper, we emphasize another
crucial quality that it should possess, i.e., inter-
report consistency, which refers to the capa-
bility of generating consistent reports for se-
mantically equivalent radiographs. This quality
is even of greater significance than the over-
all report accuracy in terms of ensuring the
system’s credibility, as a system prone to pro-
viding conflicting results would severely erode
users’ trust. Regrettably, existing approaches
struggle to maintain inter-report consistency,
exhibiting biases towards common patterns and
susceptibility to lesion variants. To address this
issue, we propose ICON, which Improves the
inter-report CONsistency of radiology report
generation. Aiming to enhance the system’s
ability to capture similarities in semantically
equivalent lesions, our approach first involves
extracting lesions from input images and exam-
ining their characteristics. Then, we introduce a
lesion-aware mixup technique to ensure that the
representations of the semantically equivalent
lesions align with the same attributes, achieved
through a linear combination during the train-
ing phase. Extensive experiments on three pub-
licly available chest X-ray datasets verify the
effectiveness of our approach, both in terms of
improving the consistency and accuracy of the
generated reports1.

1 Introduction

Being part of the diagnostic process, radiology re-
port generation (Shin et al., 2016; Zhang et al.,
2017; Jing et al., 2018) has garnered significant
attention within the research community, due to

∗Equal Contribution.
†Corresponding authors.
1Our codes and model checkpoints are available at https:

//github.com/wjhou/ICon
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Figure 1: Given two semantically equivalent cases (i.e.,
Case A and Case B), an example to illustrate the differ-
ence between three radiology report generation systems:
a consistent and accurate system (i.e., System α) and a
consistently inaccurate system (i.e., System β), and an
inconsistent system (i.e., System γ).

its large potential to alleviate the heavy strain of
radiologists. Recent research (Nishino et al., 2022;
Tanida et al., 2023; Hou et al., 2023b) has made
noteworthy progress in enhancing the clinical ac-
curacy of the generated reports.

However, constructing a credible report gener-
ation system goes beyond the overall accuracy.
There is another crucial quality for report genera-
tion systems that has been largely overlooked in
the existing literature of medical report generation,
which is, inter-report consistency (Elazar et al.,
2021). To illustrate the disparity between accuracy
and inter-report consistency, we exemplify two se-
mantically equivalent cases as shown in Figure 1,
where they share similar observations and reports.
Specifically, System α demonstrates the ability to
maintain both inter-report consistency and factual
accuracy for two similar cases (i.e., "small bilat-
eral pleural effusions" for positive Pleural Effu-
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sion), whereas other systems (i.e., β and γ) fail
to meet these criteria. These systems might have
overfitted to ordinary cases and could be vulnera-
ble to noise or attack. In terms of enhancing the
system’s credibility, inter-report consistency might
even hold greater significance than the overall ac-
curacy, since a system prone to providing conflict-
ing results would severely undermine users’ trust
(Qayyum et al., 2020; Asan et al., 2020). Regret-
tably, existing report generation systems struggle
to maintain this important quality. They tend to
exhibit biases towards common patterns, primarily
describing normal observations and are susceptible
to lesion variants and context noise (Chen et al.,
2020; Qin and Song, 2022; Ma et al., 2021; Ka-
viani et al., 2022). We argue that this is largely
due to their limited capability of capturing shared
attributes of similar patterns, which arises from the
data scarcity of distributed lesions and their seman-
tically equivalent variants, rendering it challenging
for neural models to accurately locate and describe
abnormalities.

In this paper, we propose ICON, which aims to
Improves inter-report CONsistency of radiology re-
port generation. Our proposed method involves
first extracting lesions from given input images,
followed by examining the attributes of these le-
sions. Subsequently, both the radiographs and their
associated attributes are utilized as inputs for re-
port generation. To further enhance the inter-report
consistency, we introduce a lesion-aware mixup
technique by learning from linearly combined le-
sions and synthesized attributes that belong to the
same observation. In summary, the contributions
of this paper are as follows:

• To the best of our knowledge, we are the first
to introduce inter-report consistency in radiol-
ogy report generation. To this end, we devise
two metrics (CON and R-CON) to measure
such consistency.

• We propose ICON, which improves both the
consistency and accuracy in radiology report
generation by capturing abnormalities at the
region level. ICON only requires coarse-
grained labels (i.e., image labels) for train-
ing to extract lesions2, in contrast to previous

2In this context, the term "lesion" generally refers to a spe-
cific abnormality. It encompasses most observation categories,
excluding Support Devices, Cardiomegaly, and Enlarged Car-
diomediastinum. For simplicity, we consider all corresponding
regions as lesions.

methods that require fine-grained labels (i.e.,
bounding boxes).

• Extensive experiments are conducted on three
publicly available datasets, and the results
demonstrate the effectiveness of ICON in
terms of improving both the consistency and
accuracy of the generated reports.

2 Preliminaries

2.1 Problem Formulation
Given a set of radiographs X = {X1, . . . , XL}
in one study, along with its historical records
X p = {Xp

1 , . . . , X
p
|p|} (or X p = ∅ if no histori-

cal records are available), and its report Y , the task
of radiology report generation (RRG) is to generate
the report Y based on X and X p. We elaborate
on the justification for using historical records as
context in Appendix A.6. Our proposed method,
denoted as ICON, decomposes the RRG task into
two stages: Lesion Extraction (Stage 1) and Report
Generation (Stage 2). Specifically, given the input
images X , ICON first extracts M region candidates
R = {R1, . . . , RM} and then classifies regions
as lesions Z = {Z1, . . . , Z|O|}, where O denotes
the observations. Subsequently, in Stage 2, ICON

generates a report based on the input images X ,
historical records X p, and the extracted lesions Z .

2.2 Observation and Attribute Annotation
Observations for Lesion Extraction. Lesion ex-
traction requires report-level labels, and we adopt
CheXbert (Smit et al., 2020) for this purpose.
Specifically, CheXbert annotates a report with 14
observation categories O = {o1, . . . , o14}, with
data statistics provided in Appendix A.1. Each ob-
servation is assigned one of four statuses: Present,
Absent, Uncertain, and Blank. During training and
evaluation, Present and Uncertain are merged into
the Positive category, which represents abnormal
observations. Note that for the observation No
Finding, only two statuses, Present or Absent, are
applicable. Finally, observation information is uti-
lized for lesion extraction as described in §3.2.
Attributes for Lesion-Attribute Alignment. Af-
ter extracting observations, we further extract en-
tities that represent their characteristics. Specifi-
cally, we adopt the attributes released by Hou et al.
(2023a)3, which are entities (with a relation mod-
ify or located_at) extracted from RadGraph (Jain

3The attributes are available at https://github.com/
wjhou/Recap.
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et al., 2021) using PMI (Church and Hanks, 1990).
We select the top 30 attributes for each observation
and list some of them in Appendix A.2 for a better
understanding. These attributes are then utilized
for lesion-attribute alignment as described in §3.3.

2.3 Inter-Report Consistency Metrics

To assess the inter-report consistency of a model,
we introduce two metrics, CON and R-CON,
inspired by Elazar et al. (2021). Semanti-
cally equivalent samples should have high ob-
servation and entity similarity, which we cal-
culate using the Overlap Coefficient (Simpson,
1943): Overlap(A,B) = |A∩B|

min(|A|,|B|) . For
a report Qi and its relevant reports Ki =
{Ki,1, . . . ,Ki,N}, when the observation similarity
satisfies Overlap(OQi , OKi,j ) ≥ 0.75 and the en-
tity similarity satisfies Overlap(Qi,Ki,j) ≥ 0.5,
we regard them as semantically equivalent samples.
We then collect the corresponding outputs of Ki

from a model, denoted as K̂i = {K̂i,1, . . . , K̂i,N}.
The similarity between two outputs Q̂i and K̂i,j is:

Overlap(Q̂i, K̂i,j) =
|êi ∩ êj |

min(|êi|, |êj |)
,

where êi and êj are entities and attributes in Q̂i and
K̂i,j , respectively. The inter-report consistency is
then defined as:

CON(Q̂i, K̂i) =
1

N

N∑

j=1

Overlap(Q̂i, K̂i,j).

Since CON only considers inter-report consistency
without accounting for reference quality, we intro-
duce R-CON, which considers both consistency
and accuracy:

R-CON(Q̂i, K̂i) = τi · CON(Q̂i, K̂i),

where τi = Overlap(Q̂i, Qi) is the similarity be-
tween the hypothesis and its reference.

3 Methodology

3.1 Visual Encoding

Given an image Xl, an image processor is first uti-
lized to split Xl into N patches. Then, a visual en-
coder fθ, e.g., Swin Transformer (Liu et al., 2021d),
is employed to extract visual representations Xl

and the pooler output Pl ∈ Rh:

[Pl,Xl] = fθ(Xl),

where Xl = {xl,i, . . . ,xl,N} and xl,i ∈ Rh is the
i-th visual representation.

3.2 Stage 1: Extracting Lesions via
Observation Classification (ZOOMER)

Observation Classification. A ZOOMER is a vi-
sual encoder parameterized by θZ and trained to
classify a given input X into abnormal observa-
tions as mentioned in §2.2:

p(oi) = ZOOMER(X ).

Specifically, ZOOMER first encodes images X =
{X1, . . . , XL} as outlined in §3.1, and then takes
the averaged pooler output for classification, fol-
lowing these steps:

[Pl,Xl] = fθZ(Xl),

P =
1

L

∑
Pl,

p(oi) = σ(WiP + bi),

where Wi ∈ Rh is the weight for the i-th obser-
vation, bi ∈ R is its bias, and σ is the Sigmoid
function.
Zooming In for Lesion Extraction. Upon com-
pleting training ZOOMER, we can use it to extract
lesions without the need for object detectors (Ren
et al., 2015). It is worth noting that our method
does not require fine-grained labels, such as bound-
ing boxes (Tanida et al., 2023).

For an image Xl, a sliding window with a 0.375
ratio of Xl is applied to extract M region candi-
dates Rl = {Rl,1, . . . , Rl,M} from Xl, as shown
in the left side of Figure 2. These regions are then
sequentially fed into ZOOMER for classification.
Further details on the extraction of these regions
can be found in Appendix A.5. The probability
of a region Rl,j being classified as an abnormal
observation oi is:

pl,j(oi) = ZOOMER(Rl,j).

For each study, all images in X are iterated, and
only the region with the highest pl,j(oi) is chosen
as a lesion Zi corresponding to the observation
oi. Finally, the set of lesions is denoted as Z =
{Z1, . . . , Z|O|}.
Training ZOOMER. ZOOMER is optimized using
the binary cross-entropy (BCE) loss. To handle
the class-imbalanced issue (refer to Appendix A.1
for details), a weight factor αj is applied for each
abnormal observation, and the loss function LS1 is:

BCE(p(oj), oj) = − 1

|O|
∑

j

[αj · oj · log p(oj)

+(1− oj) · log(1− p(oj))] ,

where oj ∈ {0, 1} is the label, αj = 1 +
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Figure 2: Overview of the ICON framework, which first extracts lesions and then generates reports. Attributes are
extracted from RadGraph (Jain et al., 2021).

log
(
|Dtrain|−wj

wj

)
, and |Dtrain| and wj are the num-

ber of samples and the number of j-th observations
in the training set, respectively.

3.3 Stage 2: Inspecting Lesions (INSPECTOR)

Inspecting Lesions with Attributes. Given that le-
sions of the same observation can exhibit different
characteristics, it is crucial to inspect each lesion
and match it with corresponding attributes (§2.2)
to differentiate it from other variations. Specifi-
cally, an INSPECTOR is a visual encoder parameter-
ized by θI , similar to §3.2. INSPECTOR(P p,P , Zj)
takes prior and current visit chest X-rays as context,
along with a lesion region as input:

[PZj ,Zj ] = fθI (Zj),

pj(ak) = σ(MLP(P p,P ,PZj )),

where MLP is a two-layer perceptron with non-
linear activation, and P p,P ,PZj ∈ Rh are pooler
outputs of prior images, current images, and the
lesion, respectively. Concurrently, the lesion fea-
tures Z = {Z1, . . . ,Z|O|} are collected for report
generation. For image encoding, we use another vi-
sual encoder fθV to encode X into X and X p into
X p. By inspecting lesion-level features, ICON can
capture fine-grained details which are beneficial for
generating consistent outputs.
Lesion-aware Mixup. To further improve the con-
sistency of the generated outputs, we adopt the
mixup augmentation method (Zhang et al., 2018)
and devise a lesion-aware mixup during the train-
ing phase. Specifically, for a lesion-attribute pair
(Zj , Aj), we retrieve a similar pair (Zk, Ak) with
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Figure 3: Overview of our proposed lesion-aware mixup
augmentation.

the same observation from the training data based
on report similarity. These lesions are synthesized
by a linear combination, as illustrated in Figure 3:

Z∗
j = λZj + (1− λ)Zk,

where λ is set to 0.75. Note that during training,
Z∗
j is used for both INSPECTOR and GENERATOR.

Training INSPECTOR. Similar to §3.2, we adopt
a linearly combined BCE loss to optimize INSPEC-
TOR:

LI = λBCEj + (1− λ)BCEk,

where BCEj and BCEk take Aj and Ak as their re-
spective labels. Notably, only the attributes that
are shared between Zj and Zk are fully optimized.
Consequently, our lesion-aware mixup technique
facilitates the improvement of output consistency
for two semantically equivalent lesions.
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Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-ABN

R2GEN 0.290 0.157 0.093 0.061 0.105 0.208 0.266 0.320 0.272
R2GENCMN 0.264 0.140 0.085 0.056 0.098 0.212 0.290 0.319 0.280
ORGAN 0.314 0.180 0.114 0.078 0.120 0.234 0.271 0.342 0.293
RECAP 0.321 0.182 0.116 0.080 0.120 0.223 0.300 0.363 0.305
ICON (Ours) 0.337 0.195 0.126 0.086 0.129 0.236 0.332 0.430 0.360

MIMIC
-CXR

R2GEN 0.353 0.218 0.145 0.103 0.142 0.270 0.333 0.273 0.276
R2GENCMN 0.353 0.218 0.148 0.106 0.142 0.278 0.344 0.275 0.278
M2TR 0.378 0.232 0.154 0.107 0.145 0.272 0.240 0.428 0.308
KNOWMAT 0.363 0.228 0.156 0.115 − 0.284 0.458 0.348 0.371
CMM-RL 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
CMCA 0.360 0.227 0.156 0.117 0.148 0.287 0.444 0.297 0.356
KiUT 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
DCL − − − 0.109 0.150 0.284 0.471 0.352 0.373
METrans 0.386 0.250 0.169 0.124 0.152 0.291 0.364 0.309 0.311
RGRG 0.373 0.249 0.175 0.126 0.168 0.264 0.380 0.319 0.305
ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 0.389 0.443 0.393
ICON (Ours) 0.429 0.266 0.178 0.126 0.170 0.287 0.445 0.505 0.464

Table 1: Experimental results of our model and baselines on the MIMIC-ABN and MIMIC-CXR datasets. The
best results are in boldface, and the underlined are the second-best results.

3.4 Stage 2: Generating Reports
(GENERATOR)

Lesion-Attribute Alignment. To bridge the
modality gap between lesion representations and
attributes, we leverage a BART (Lewis et al., 2020)
encoder to extract attribute representations. The at-
tributes associated with each lesion are formulated
as a prompt: <s> oj </s> Aj </s>, as depicted in
Figure 2. Then, a cross-attention module (Vaswani
et al., 2017) is inserted after every self-attention
module. This module aligns the lesion representa-
tions with the attribute representations by querying
visual representations using attribute representa-
tions, similar to Q-Former (Li et al., 2023a):

Ha
j = CrossAttention(Hs

j ,Zj ,Zj),

where Ha
j ,H

s
j ∈ Rh are the aligned attribute rep-

resentation and the self-attended representation of
Aj , respectively. All prompts are encoded, and the
attribute representations of Z are denoted as Ha.

Report Generation. Given the input images X ,
images of prior visits X p, the lesions Z , and at-
tribute Ha, we utilize a BART decoder in conjunc-
tion with the Fusion-in-Decoder (FiD; (Izacard and
Grave, 2021)) that simply concatenates multiple
context sequences for report generation. Then, the
probability of the t-th step is expressed as:

ht = FiD([X ;X p;Z;Ha],h<t),

p(yt|X ,X p,Z,Y<t) = Softmax(Wght + bg),

where ht ∈ Rh is the t-th hidden representation,
Wg ∈ R|V|×h is the weight matrix, bg ∈ R|V| is
the bias vector, and V is the vocabulary.
Training GENERATOR. The generation pro-
cess is optimized using the negative log-
likelihood loss, given each token’s probability
p(yt|X ,X p,Z,Y<t):

LG = −
T∑

t=1

log p(yt|X ,X p,Z,Y<t).

The loss function of Stage 2 is: LS2 = LI + LG.

4 Experiments

4.1 Datasets

Three public datasets are used to evaluate our
models, i.e., IU X-RAY4 (Demner-Fushman et al.,
2016), MIMIC-CXR5 (Johnson et al., 2019), and
MIMIC-ABN (Ni et al., 2020). We follow previ-
ous research (Chen et al., 2020) to preprocess these
datasets, and provide other details in Appendix A.3.

• IU X-RAY consists of 3,955 reports. We fol-
low previous research (Chen et al., 2020) and
split the dataset into train/validation/test sets
with a ratio of 7:1:2.

• MIMIC-CXR consists of 377,110 chest X-
ray images and 227,827 reports.

4https://openi.nlm.nih.gov/
5https://physionet.org/content/mimic-cxr-jpg/

2.0.0/
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Dataset Model NLG Metrics RadGraph
B-4 R-L RGE RGER RGER

IU
X-RAY

R2GEN 0.120 0.298 − − −
M2TR 0.121 0.288 − − −
TNLL 0.114 − 0.230 0.202 0.153
ICON 0.098 0.320 0.342 0.312 0.246

MIMIC
-CXR

TNLL 0.105 0.253 0.230 0.202 0.153
ORGAN 0.123 0.293 0.303 0.275 0.199
RECAP 0.125 0.288 0.307 0.276 0.205
ICON 0.126 0.287 0.312 0.278 0.197

Table 2: Radgraph evaluation results on the IU X-RAY
and MIMIC-CXR datasets. Results of TNLL are cited
from Delbrouck et al. (2022).

• MIMIC-ABN is modified from the MIMIC-
CXR dataset and its reports only contain ab-
normal part. We adopt the data-split as used
in Hou et al. (2023a), and the data-split is
71,786/546/806 for train/validation/test sets.

Unlike previous research (Chen et al., 2020) which
only used one view for report generation on
MIMIC-CXR and MIMIC-ABN, we collect all
views for each visit in experiments. The justifica-
tion is provided in Appendix A.6.

4.2 Evaluation Metrics and Baselines

NLG Metrics. To assess the quality of generated
reports, we adopt several natural language gener-
ation (NLG) metrics for evaluation. BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ROUGE (Lin, 2004) are selected as
NLG Metrics, and we use the MS-COCO caption
evaluation tool6 to compute the results.
CE Metrics. Following previous research (Chen
et al., 2020, 2021), we adopt clinical efficacy (CE)
metrics to evaluate the observation-level factual
accuracy, and CheXbert (Smit et al., 2020) is used
in this paper. To measure the entity-level factual
accuracy, we leverage the RadGraph (Jain et al.,
2021; Delbrouck et al., 2022) and temporal entity
matching (TEM) scores proposed by Bannur et al.
(2023) for evaluation.
Consistency Metrics. CON and R-CON (§2.3)
are utilized to measure the inter-report consistency.
Note that entities used in measuring consistency
are adopted from RadGraph (Jain et al., 2021). A
MAJORITY baseline which outputs the same report
for all inputs, is included.
Baselines. We compare our models with the fol-
lowing state-of-the-art (SOTA) baselines: R2GEN

(Chen et al., 2020), R2GENCMN (Chen et al.,
2021), KNOWMAT (Yang et al., 2021), M2TR

(Nooralahzadeh et al., 2021), CMM-RL (Qin and
6https://github.com/tylin/coco-caption

Model MIMIC-ABN MIMIC-CXR
CON R-CON CON R-CON

MAJORITY 1.000 − 1.000 −
R2GEN 0.280 0.072 0.137 0.042
R2GENCMN 0.302 0.091 0.155 0.049
ORGAN 0.338 0.127 0.345 0.126
RECAP 0.311 0.108 0.345 0.114

ICON (Ours) 0.316 0.140 0.351 0.163
ICON w/o ZOOM 0.183 0.073 0.175 0.066
ICON w/o INSPECT 0.253 0.100 0.245 0.090
ICON w/o MIXUP 0.286 0.119 0.334 0.156

Table 3: The CON score and the R-CON score. MAJOR-
ITY: outputs the same report for all inputs.

Song, 2022), CMCA (Song et al., 2022), CXR-
RePaiR-Sel/2 (Endo et al., 2021), BioViL-T (Ban-
nur et al., 2023), DCL (Li et al., 2023b), METrans
(Wang et al., 2023c), KiUT (Huang et al., 2023),
RGRG (Tanida et al., 2023), ORGAN (Hou et al.,
2023b), and RECAP (Hou et al., 2023a).

4.3 Implementation Details

The small and tiny versions of Swin Transformer
V2 (Liu et al., 2022) are used as the visual back-
bone for ZOOMER and INSPECTOR, respectively.
The GENERATOR is initialized with the base ver-
sion of BART (Lewis et al., 2020) pretrained on
biomedical corpus (Yuan et al., 2022). Other pa-
rameters are randomly initialized. For Stage 2 train-
ing, the learning rate is 5e − 5 with linear decay,
the batch size is 32, and the models are trained for
20 and 5 epochs on MIMIC-ABN and MIMIC-
CXR with early stopping, respectively. Since the
number of samples in IU X-RAY is too small to
train a multimodal model, we only provide results
produced by models trained on MIMIC-CXR as a
reference, similar to (Delbrouck et al., 2022). For
other training details, and the resources used in this
paper, we list them in Appendix A.4.

5 Results

5.1 Quantitative Analysis

Inter-Report Consistency Analysis. Table 3 pro-
vides CON and R-CON scores of baselines, our
model, and its ablated variants. ICON achieves the
highest R-CON on both datasets, indicating the best
inter-report consistency. In terms of the CON score,
ICON demonstrates competitive performance when
compared with the best baseline, i.e., ORGAN. We
also observe that introducing mixup augmentation
leads to a moderate improvement in CON, demon-
strating the effectiveness of lesion-aware mixup.
NLG and Temporal Modeling Results. The NLG
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Dataset Model Components NLG Metrics CE Metrics
ZOOM INSPECT MIXUP B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-ABN

ICON ! ! ! 0.337 0.195 0.126 0.086 0.129 0.236 0.332 0.430 0.360

ICON w/o ZOOM % % % 0.310 0.181 0.119 0.084 0.120 0.243 0.306 0.353 0.306

ICON w/o INSPECT ! % % 0.315 0.182 0.117 0.081 0.121 0.236 0.338 0.401 0.352

ICON w/o MIXUP ! ! % 0.335 0.192 0.124 0.085 0.129 0.239 0.332 0.413 0.356

MIMIC
-CXR

ICON ! ! ! 0.429 0.266 0.178 0.126 0.170 0.287 0.445 0.505 0.464

ICON w/o ZOOM % % % 0.377 0.237 0.162 0.119 0.149 0.288 0.363 0.280 0.278

ICON w/o INSPECT ! % % 0.399 0.248 0.168 0.122 0.157 0.287 0.444 0.447 0.423

ICON w/o MIXUP ! ! % 0.427 0.264 0.176 0.124 0.169 0.285 0.444 0.502 0.462

Table 4: Ablation results of our model and its variants on the MIMIC-ABN and MIMIC-CXR datasets. A
!indicates that the component is included, while an%denotes that it is removed.

Model B-4 R-L CE-F1 TEM
CXR-RePaiR-2 0.021 0.143 0.281 0.125
BioViL-NN 0.037 0.200 0.283 0.111
BioViL-T-NN 0.045 0.205 0.290 0.130
BioViL-AR 0.075 0.279 0.293 0.138
BioViL-T-AR 0.092 0.296 0.317 0.175
RECAP 0.118 0.279 0.400 0.304
ICON (Ours) 0.120 0.279 0.468 0.335

Table 5: Progression modeling results on the MIMIC-
CXR dataset. Results of BioViL-* are cited from Ban-
nur et al. (2023).

results are presented in Table 1 and the temporal
modeling results are listed in Table 5. Among all
models, ICON achieves SOTA performance on the
NLG and temporal metrics. As shown in Table 1,
our model demonstrates significant improvements
on the MIMIC-ABN dataset and achieves com-
petitive performance on the MIMIC-CXR dataset.
Additionally, we provide experimental results on
the IU X-RAY dataset as a reference in Table
2. Regarding temporal modeling, ICON exhibits
significant improvements over other baselines in
terms of BLEU score, clinical accuracy, and TEM
score while maintaining competitive performance
on ROUGE, indicating its enhanced capacity to
utilize historical records effectively.
Clinical Efficacy Results. In the right section of
Table 1, we observe that ICON achieves SOTA
clinical efficacy, increasing the macro CE F1 score
from 0.393 to 0.464 on the MIMIC-CXR dataset
and rising by 5.5% on the MIMIC-ABN dataset.
These results indicate that our model is capable of
generating accurate radiology reports. Furthermore,
Table 2 presents the RadGraph F1 score on both the
IU X-RAY and MIMIC-CXR datasets. Our model
achieves competitive performance compared with
the non-RL-optimized baselines. We also provide
per-observation CE results in Table 8, example-
based CE results in Table 9, and the performance
of ZOOMER in Table 10 for reference.

Ablation Results. The ablation results for MIMIC-
ABN and MIMIC-CXR are listed in Table 3 and
Table 4. We study three variants: (1) w/o ZOOM,
where all components are removed, (2) w/o IN-
SPECT, where both the INSPECTOR and MIXUP are
removed, and (3) w/o MIXUP, where only MIXUP

is removed. The performance of the variant w/o
ZOOM drops significantly for both datasets, while
the variant w/o INSPECT achieves competitive re-
sults in terms of CE scores. This suggests that the
ZOOMER effectively extracts lesions and provides
relevant abnormal information for report genera-
tion. In addition, the variant w/o MIXUP further
improves performance, demonstrating the effec-
tiveness of the INSPECTOR in transforming con-
cise lesion information into precise reports. More-
over, introducing lesion-aware mixup augmenta-
tion strengthens the consistency of generated out-
puts, indicating the overall effectiveness of ICON.

5.2 Qualitative Analysis

Case Study. Figure 4 showcases two semanti-
cally equivalent cases, i.e., Case A and Case B, ex-
tracted from the test set of MIMIC-CXR. In both
instances, ICON successfully identifies abnormal
observations (e.g., Cardiomegaly, Pleural Effusion,
and Atelectasis) and generates consistent phrases
including "pulmonary vascular congestion", "bilat-
eral pleural effusions", and "compressive atelec-
tasis." Conversely, the variant w/o ZOOM fails to
produce these descriptions in Case A. This demon-
strates that ZOOMER plays a crucial role in identify-
ing lesions and highlights the ability of the mixup
augmentation to ensure the alignment of lesions
with their corresponding attributes.
Error Analysis. Figure 5 presents an error case
produced by ICON. Although ZOOMER success-
fully identifies Pneumonia in the given radiographs,
the GENERATOR fails to realize it into descriptions
like "multifocal pneumonia" (i.e., a false negative
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Ca
se
 A

Cardiomegaly

Pleural
Effusion

Atelectasis

Reference A: in comparison with the study of there is little overall change. continued enlarge-
ment of the cardiac silhouette with pulmonary vascular congestion and bilateral pleural effusions

with compressive atelectasis. central catheter remains in place.

ICON w/o ZOOM: as compared to the previous radiograph the patient has received a right-sided
picc line. the course of the line is unremarkable the tip of the line projects over the mid svc.
there is no evidence of complications notably no pneumothorax. otherwise the radiograph is
unchanged.

ICON: in comparison with the study of there is little overall change. continued enlargement of
the cardiac silhouette with pulmonary vascular congestion and mild to moderate cardiomegaly.

small bilateral pleural effusions with areas of compressive atelectasis. the right picc line has been
removed. nasogastric tube remains in place.

Ca
se
 B

Cardiomegaly

Atelectasis

Pleural
Effusion

Reference B: in comparison with the study of there is again enlargement of the cardiac sil-
houette with extensive bilateral pleural effusions and compressive atelectasis combined with

pulmonary vascular congestion.

ICON w/o ZOOM: as compared to the previous radiograph there is no relevant change. moder-
ate cardiomegaly with bilateral pleural effusions and subsequent areas of atelectasis. moderate
pulmonary edema. no newly appeared focal parenchymal opacity suggesting pneumonia.

ICON: as compared to the previous radiograph there is unchanged evidence of moderate car-
diomegaly with pulmonary vascular congestion and moderate pulmonary edema. unchanged

moderate bilateral pleural effusions with areas of compressive atelectasis at the lung bases. no
new parenchymal opacities. no pneumothorax.

Figure 4: A case study of ICON on two semantically equivalent cases (i.e., Case A and Case B), given their
radiographs and lesions. Spans with the same color (Cardiomegaly, Pleural Effusion, Atelectasis, and Edema)
represent the same positive observation. Consistent and accurate outputs are highlighted with underline.

Lung	Opacity Pneumonia

1⃝ Pneumonia/False Neg
2⃝ Lung Opacity/False POS

Reference: pa and lateral views of the chest.
there are new opacities in the superior seg-
ment of the left lower lobe and in the right
lower lobe most consistent with 1⃝ multifo-
cal pneumonia. no pleural effusion or pneu-
mothorax. cardiomediastinal and hilar con-
tours are normal.

ICON: . . . . . . the heart size remains un-
changed and is within normal limits. . . . the
pulmonary vasculature is not congested. no
signs of acute or chronic parenchymal infil-
trates are present and the lateral and poste-
rior pleural sinuses are free. no pneumotho-
rax in the apical area on frontal view. when
comparison is made with the next preceding
study there is a new area of 2⃝ increased
opacity in the left.

Figure 5: An error case produced by ICON. The span
and the span denote false negative and false positive
observations, respectively.

observation). We notice that the region of this ob-
servation is inaccurately identified. Additionally,
ZOOMER outputs a false positive observation Lung
Opacity, leading to an inaccurate phrase "increased
opacity". To mitigate this issue, a better ZOOMER

trained with larger datasets could be beneficial.

6 Related Works

Radiology report generation (Jing et al., 2018; Li
et al., 2018; Jing et al., 2019) has gained much
attention. Prior research has either devised vari-
ous memory mechanisms to record key informa-
tion (Chen et al., 2020, 2021; Qin and Song, 2022;
Wang et al., 2023c; Zhao et al., 2023) or proposed
different learning methods to enhance performance
(Liu et al., 2021c,a,b). In addition, Yang et al.
(2021); Li et al. (2023b); Huang et al. (2023); Yan
et al. (2023) proposed utilizing knowledge graphs

for report generation. Liu et al. (2019); Lovelace
and Mortazavi (2020); Miura et al. (2021); Nishino
et al. (2022); Delbrouck et al. (2022) designed var-
ious rewards for reinforcement learning to improve
clinical accuracy. Tanida et al. (2023) proposed an
explainable framework for report generation. Hou
et al. (2023b) introduced observations to improve
factual accuracy. Kale et al. (2023) proposed a
template-based approach to improve the quality
and accuracy of radiology reports. Additionally,
Ramesh et al. (2022); Bannur et al. (2023); Hou
et al. (2023a); Dalla Serra et al. (2023) focused
on exploring the temporal structure. Wang et al.
(2023b,a) utilized CLIP (Radford et al., 2021) to
bridge the modality gap. Mixup is also closely
related to this research (Zhang et al., 2018), and
this method has been extensively adopted in NLP
research (Sun et al., 2020; Yoon et al., 2021; Yang
et al., 2022). Although consistency has been stud-
ied in many domains (Thimm, 2013; Ribeiro et al.,
2019; Camburu et al., 2019; Elazar et al., 2021), it
remains unexplored in medical report generation.

7 Conclusion and Future Works

In this paper, we propose ICON, comprising three
components to improve both accuracy and inter-
report consistency. ICON first extracts lesions
and then matches fine-grained attributes for report
generation. A lesion-aware mixup method is de-
vised for attribute alignment. Experimental results
on three datasets demonstrate the effectiveness of
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ICON. In the future, we plan to explore incor-
porating large language models (LLMs) into our
framework, given their advanced capabilities in
planning and generation, to further enhance the
performance of radiology report generation. Lever-
aging the strengths of LLMs could provide more re-
fined signals to enhance the performance of ICON.

Limitations

Although ICON can improve the consistency of
radiology report generation, it still exhibits some
limitations. Since our lesion extraction method is
based on image labels, training such a model re-
quires annotations for images. However, obtaining
these annotations can be challenging in some med-
ical settings. Recent advances in foundation vision
models (Kirillov et al., 2023) and open-set learning
(Zara et al., 2023) could be a potential direction
to address this issue. Additionally, image labels
are coarse-grained, so the overall accuracy is likely
to be lower than when using fine-grained labels
(e.g., bounding boxes). Moreover, since our frame-
work consists of two stages, prediction errors can
propagate through the pipeline, making the final
performance of our framework largely dependent
on Stage 1. Reinforcement learning (Nishino et al.,
2022) that takes factual improvement as a reward
could be a solution to optimize the framework in
an end-to-end manner.

Ethics Statement

The IU X-RAY (Demner-Fushman et al., 2016),
MIMIC-ABN (Ni et al., 2020), and MIMIC-
CXR (Johnson et al., 2019) datasets are publicly
available and have been automatically de-identified
to protect patient privacy. Our goal is to enhance
the inter-report consistency of radiology report
generation systems. Despite the substantial im-
provement of our framework over SOTA baselines,
the performance still lags behind the requirements
for real-world deployment and could lead to unex-
pected failures in untested environments. Thus, we
urge readers of this paper and potential users of this
system to cautiously check the generated outputs
and seek expert advice when using it.
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A Appendix

A.1 Abnormal Observation Statistics
The abnormal observation statistics of MIMIC-
ABN, MIMIC-CXR, and IU X-RAY are listed in
Table 6.

#Observation MIMIC-ABN MIMIC-CXR IU X-RAY
No Finding 5002/32/22 64,677/514/229 744/108/318
Cardiomegaly 16,312/118/244 70,561/514/1,602 244/38/61
Pleural Effusion 10,502/80/186 56,972/477/1,379 60/13/15
Pneumothorax 1,452/24/4 8,707/62/106 9/2/5
Enlarged Card. 5,202/40/90 49,806/413/1,140 159/29/28
Consolidation 4,104/36/96 14,449/119/384 17/1/3
Lung Opacity 22,598/166/356 67,714/497/1,448 295/35/57
Fracture 4,458/32/76 11,070/59/232 84/6/15
Lung Lesion 5,612/54/112 11,717/123/300 85/14/17
Edema 8,704/76/168 33,034/257/899 28/2/7
Atelectasis 19,132/134/220 68,273/515/1,210 143/15/37
Support Devices 9,886/58/196 60,455/450/1,358 89/20/16
Pneumonia 17,826/138/260 23,945/184/503 20/2/1
Pleural Other 2,850/30/62 7,296/70/184 32/4/7

Table 6: Observation distribution in train/valid/test split
of three datasets. Enlarged Card. refers to Enlarged
Cardiomediastinum.

A.2 Attributes of Observations
We list top-5 attributes for each observation for a
better understanding in Table 7.

A.3 Other Preprocessing Details
We adopt the same preprocessing setup used in
Chen et al. (2020), and the minimum count of
each token is set to 3/3/10 for IU X-RAY/MIMIC-
ABN/MIMIC-CXR, respectively. Other tokens
are replaced with a special token <unk>.

Observation Top-5 Attributes
Cardiomegaly cardiomegaly, borderline, moderately, severely, mildly
Pleural Effusion layering, subpulmonic, thoracentesis, trace, small
Pneumothorax hydropneumothorax, apical, tiny, tension, component
Enlarged Card. mediastinum, widening, contour, widened, lymphadenopathy
Consolidation consolidative, collapse, underlying, developing, consolidations
Lung Opacity opacification, opacifications, patchy, heterogeneous, scarring
Fracture healed, fractured, healing, nondisplaced, posterolateral
Lung Lesion nodular, nodule, mass, nodules, mm
Edema indistinctness, asymmetrical, haziness, asymmetric, interstitial
Atelectasis atelectatic, atelectasis, collapsed, subsegmental, collapse
Support Devices sidehole, carina, coiled, tunneled, duodenum
Pneumonia infectious, infection, atypical, supervening, developing
Pleural Other fibrosis, thickening, biapical, blunting, scarring

Table 7: Top-5 attributes for each observation.

A.4 Additional Implementation Details
For Stage 1, all three datasets use the same hyper-
parameters for training ZOOMER, with a learning
rate of 1e− 4, batch size of 128, and dropout rate
of 0.1, and the number of training epochs is ad-
justed accordingly. We train ZOOMER for 5, 10,
and 15 epochs on MIMIC-CXR, MIMIC-ABN,
and IU X-RAY, respectively. During training, sev-
eral data augmentation methods are applied. The
input resolution of Swin Transformer is 256× 256,
and we first resize an image to 288× 288, and then
randomly crop it to 256 × 256 with random hori-
zontal flip. All experiments are conducted using
one NVIDIA-3090 GTX GPU. For Stage 2, no data
augmentation is applied, and we conduct experi-
ments on MIMIC-ABN and IU X-RAY using two
NVIDIA-3090 GTX GPUs, and on MIMIC-CXR
using four NVIDIA-V100 GPUs, both with half
precision. Our model has 328.38M trainable pa-
rameters, and the implementations are based on the
HuggingFace’s Transformers (Wolf et al., 2020).
Here are the pretrained models we used:

• Small version of Swin Transformer V2:
https://huggingface.co/microsoft/
swinv2-small-patch4-window8-256

• Tiny version of Swin Transformer V2:
https://huggingface.co/microsoft/
swinv2-tiny-patch4-window8-256

• Base Version of Biomedical BART:
https://huggingface.co/GanjinZero/
biobart-v2-base

A.5 Lesion Extraction
There are two steps in extraction lesions: candidate
generation and candidate classification. Given an
image with a resolution of 1024×1024, padding if
needed, we apply a sliding window of 384×384,
with a step size of 128 to extract candidates for
classification. This operation results in 36 regions.
Then, each region is fed into the ZOOMER for clas-
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Observation Image Classification Report Classification
P R F1 P R F1

Enlarged Card. 0.426 0.540 0.476 0.442 0.525 0.428
Cardiomegaly 0.635 0.838 0.722 0.630 0.822 0.714
Lung Opacity 0.535 0.725 0.616 0.542 0.563 0.552
Lung Lesion 0.318 0.187 0.235 0.321 0.177 0.228
Edema 0.471 0.851 0.607 0.464 0.784 0.583
Consolidation 0.283 0.227 0.251 0.275 0.162 0.204
Pneumonia 0.367 0.396 0.381 0.341 0.350 0.345
Atelectasis 0.541 0.660 0.595 0.539 0.620 0.577
Pneumothorax 0.392 0.481 0.432 0.400 0.444 0.421
Pleural Effusion 0.719 0.842 0.776 0.721 0.827 0.770
Pleural Other 0.289 0.440 0.349 0.295 0.315 0.304
Fracture 0.266 0.198 0.227 0.225 0.164 0.190
Support Devices 0.747 0.850 0.795 0.785 0.784 0.785
No Finding 0.366 0.459 0.407 0.263 0.535 0.352

Macro Average 0.454 0.550 0.491 0.445 0.505 0.464

Table 8: Experimental results of each observation on
the MIMIC-CXR dataset.

Model MIMIC-ABN MIMIC-CXR
P R F1 P R F1

R2GEN 0.340 0.413 0.348 0.390 0.336 0.337
R2GENCMN 0.360 0.363 0.336 0.358 0.276 0.290
RGRG − − − 0.461 0.475 0.447
ORGAN 0.418 0.471 0.412 0.493 0.560 0.493
RECAP 0.366 0.468 0.382 0.447 0.558 0.464

ICON 0.512 0.428 0.436 0.513 0.597 0.522
ICON w/o ZOOM 0.397 0.406 0.372 0.440 0.362 0.373
ICON w/o INSPECT 0.430 0.479 0.424 0.506 0.553 0.500
ICON w/o MIX-UP 0.433 0.509 0.438 0.507 0.590 0.517

Table 9: Example-based CE results on the MIMIC-ABN
and MIMIC-CXR datasets.

sification, and only the top-1 region is selected for
each observation. Note that before extracting le-
sions, each input case is first assigned with their
observations by ZOOMER, and as a result, the num-
ber of lesions corresponds to the number of obser-
vations.

The No Finding observation is excluded for le-
sion extraction, as it estimates the overall condi-
tions of a patient, which makes it difficult to locate
at specific regions.

A.6 Justifications for Additional Data
Processing

Justification for Using Historical Records. As
stated in Bannur et al. (2023); Hou et al. (2023a),
without historical information, it is unreasonable
to generate reports with comparisons between two
consecutive visits and will lead to hallucinations
(Ramesh et al., 2022). As a result, we include
historical records as context information for report
generation.
Justification for Using All Views. Prior research
(Chen et al., 2020, 2021; Hou et al., 2023b,a)
treated different views of radiographs in one visit
as different samples. However, this is unreasonable

Dataset P R F1

IU X-RAY 0.223 0.243 0.225
MIMIC-ABN 0.379 0.472 0.411
MIMIC-CXR 0.454 0.550 0.491

Table 10: Abnormal observation prediction results of
ZOOMER at Stage 1. Results on the IU X-RAY dataset
are only provided for reference.

to generate a report with only one view position,
since different diseases could be observed from dif-
ferent view positions. For example, most of the
devices can not be observed from a Lateral view.
Given a lateral view radiograph, writing a sentence
of "A right chest tube is in unchanged position." is
unreasonable.

In addition, some reports describe how many
views are provided at the beginning, e.g., "PA and
lateral views are provided." Above all, we have
justified reasons to use all the views in one visit
of a patient to generate the target report. Note that
previous work treated each image as a sample and
their settings have more samples than ours. For a
fair comparison, each generated output of a study
with L images is duplicated L times so that the
number of samples in evaluation is consistent with
previous research.
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