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Abstract

Visual programs are executable code generated
by large language models to address visual rea-
soning problems. They decompose complex
questions into multiple reasoning steps and in-
voke specialized models for each step to solve
the problems. However, these programs are
prone to logic errors, with our preliminary eval-
uation showing that 58% of the total errors are
caused by program logic errors. Debugging
complex visual programs remains a major bot-
tleneck for visual reasoning. To address this,
we introduce VDebugger, a novel critic-refiner
framework trained to localize and debug vi-
sual programs by tracking execution step by
step. VDebugger identifies and corrects pro-
gram errors leveraging detailed execution feed-
back, improving interpretability and accuracy.
The training data is generated through an auto-
mated pipeline that injects errors into correct
visual programs using a novel mask-best de-
coding technique. Evaluations on six datasets
demonstrate VDebugger’s effectiveness, show-
ing performance improvements of up to 3.2%
in downstream task accuracy. Further studies
show VDebugger’s ability to generalize to un-
seen tasks, bringing a notable improvement of
2.3% on the unseen COVR task. Code, data and
models are made publicly available at https:
//github.com/shirley-wu/vdebugger/.

1 Introduction

Complex visual reasoning is a crucial yet challeng-
ing problem that often requires compositionally
synthesizing multiple reasoning steps before draw-
ing the final conclusion. For example, to answer
the visual question in Figure 1: “Do the skiers wear
jackets of the same color?”, one must identify all
skiers, determine the colors of their jackets, and
assess whether the colors are the same. End-to-end
vision-language models (VLMs) excel at individ-
ual tasks such as object detection (Li et al., 2022b)
and visual instruction following (Liu et al., 2023).

However, they struggle to generalize to complex
tasks requiring compositional reasoning and inher-
ently lack interpretability (Surís et al., 2023; Yük-
sekgönül et al., 2023; Kamath et al., 2023, 2024).

To devise a more interpretable and generalizable
reasoning process, a recent approach leverages the
code generation capabilities of large language mod-
els (LLMs) to generate “visual programs” (Surís
et al., 2023; Gupta and Kembhavi, 2023). As shown
in Figure 1, the visual program decomposes a com-
plex question into a sequence of programmatically
executable steps. During execution, the visual pro-
gram invokes foundational specialist models to per-
form visual perception and synthesize the results
of each reasoning step into the final answer. The
inherent compositionality of programs allows this
approach to perform compositional reasoning while
ensuring generalization and interpretability.

Nonetheless, program errors become a bottle-
neck for this approach, accounting for 58% of total
errors as shown in our evaluation. Following the
advancement of LLM self-refinement in general-
domain code generation (Chen et al., 2023) and
LLM agents (Madaan et al., 2023; Shinn et al.,
2023), recent work leverages zero-shot prompt-
ing of LLMs to debug visual programs based on
some given feedback (Stanic et al., 2024; Gao et al.,
2023). However, their feedback typically focuses
on limited aspects such as compilation errors. Fur-
thermore, the zero-shot prompting technique is less
effective for self-critique and self-correction of pro-
grams, especially for smaller LLMs, as shown in
recent work (Luo et al., 2023; Tian et al., 2024; Lan
et al., 2024; Jiang et al., 2024).

In this work, we propose VDebugger, a tool
trained to debug visual programs by tracking their
execution step by step. As shown in Figure 1, VDe-
bugger takes as input the execution states at each
step, including the code being executed and the
resulting change of variable values. Based on such
information, the critic identifies fine-grain program
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Figure 1: Overview of visual programming and VDebugger. Above: the visual program invokes APIs to answer
the input question. Each involved API (e.g. find) is implemented with a specialized foundation VLM (e.g. object
detection model). Below: VDebugger debugs the visual program by inspecting the execution process. In this
example, the colors variable represents the colors of all skier’s jackets and contains two values, but the return value
"yes" suggests that all skiers wear jackets of the same color. Catching this discrepancy, the critique identifies that
the last line of the program is incorrect, and the refiner rewrites that line into the correct code.

errors down to the line, and the refiner rewrites the
error-inducing line to correct the program.

To train the VDebugger, we devise an automated
pipeline to collect training data at scale. For visual
question answering task, speficially, we prompt
an LLM to generate visual programs for the input
questions from existing datasets. The programs
whose execution results match the ground truth an-
swers are taken as correct programs. In order to
create incorrect programs, we inject errors by re-
sampling parts of these originally correct programs
and thereby generating modifications that affect the
execution results. The VDebugger thus learns to
identify and correct visual program errors utilizing
these automatically curated positive and negative
program pairs. In particular, we propose a mask-
best sampling algorithm that increases the success
rate of error injection by up to 10 times compared
to greedy decoding. Eventually, we generate a total
of 47.7k program pairs for VDebugger training.

We evaluate VDebugger on a total of 6 datasets
covering various forms of visual question answer-
ing (Hudson and Manning, 2019; Acharya et al.,
2019; Suhr et al., 2019) and visual grounding
(Yu et al., 2016). Based on both CodeLlama-7B
and CodeLlama-13B, VDebugger consistently im-
proves the performance by up to 3.2% accuracy.
VDebugger can also be employed to debug visual
programs generated by proprietary code genera-
tion models such as GPT-3.5 and brings notable
gains of up to 4.9% accuracy. By jointly training
VDebugger on all six datasets with different task
forms, VDebugger demonstrates generalization ca-
pability capable of handling unseen tasks such as

question answering based on variable number of
images (Bogin et al., 2021).

In summary, our contributions are three-folds:
(1) We propose VDebugger, a novel framework
for debugging visual programs capable of reason-
ing over execution process and performing explain-
able debugging; (2) We develop a pipeline to au-
tomatically generate large-scale training datasets
including 47.7k program pairs; (3) Our VDebug-
ger trained on top of 7B and 13B LLMs achieves
significant improvements across 6 datasets and can
generalize to unseen scenarios.

2 Related Work

Visual reasoning. The large-scale pre-training of
VLMs has demonstrated significant success (Rad-
ford et al., 2021). When fine-tuned, these models
can effectively adapt to specific tasks such as in-
struction following (Liu et al., 2023; Bai et al.,
2023), visual question answering (Li et al., 2022a,
2023), and object detection (Li et al., 2022b). De-
spite their impressive performance on these individ-
ual tasks, VLMs still struggle with compositional
reasoning that requires composing multiple reason-
ing steps (Hudson and Manning, 2019; Suhr et al.,
2019; Bogin et al., 2021). Visual programming
addresses this problem (Surís et al., 2023; Gupta
and Kembhavi, 2023) by generating executable pro-
grams that decompose the question into multiple
reasoning steps and invoke specialized VLMs for
each step. However, the program errors in the gen-
erated code become a bottleneck of this approach.

Self-debugging and self-refinement. We present
a comprehensive comparison between this work
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Method Feedback TrainingError Unit-test Execution states

LLM self-refinement
SelfRefine (Madaan et al., 2023) N/A N/A ✗ ✗
Reflexion (Shinn et al., 2023) N/A N/A ✗ ✗
Refiner (Paul et al., 2024) N/A N/A Per step ✓

General-domain code debugging
SelfDebug (Chen et al., 2023) ✓ ✓ ✗ ✗
Jiang et al. (2024) ✓ ✓ ✗ ✓
LDB (Zhong et al., 2024) ✓ ✓ Per block ✗

Visual program debugging
Stanic et al. (2024) ✓ N/A ✗ ✗
Define (Gao et al., 2023) ✓ N/A Per block ✗
VDebugger (Ours) ✓ N/A Per step ✓

Table 1: Comparison against existing work. The distinction of our VDebugger against existing work are mainly
two-folds: (1) we utilize a more fine-grained feedback information of step-wise execution states, and (2) we
automatically collect large-scale training data for model training.

and existing work for self-debugging and self-
refinement in Table 1. Existing techniques have ex-
plored LLM self-refinement for reasoning, decision
making, and language generation tasks (Madaan
et al., 2023; Shinn et al., 2023). These work largely
relies on self-generated feedback, which is less ef-
fective especially for code-related tasks (Huang
et al., 2023). Paul et al. (2024) tracks the interme-
diate states step-by-step during mathematical rea-
soning, which is shown to be more beneficial. For
general-domain code generation, self-debugging
can leverage more reliable feedback information
such as execution error and pass/fail results of unit-
tests (Chen et al., 2023). Zhong et al. (2024) further
divides a program into multiple code blocks and
takes the execution states before and after each
block as feedback. However, visual programs do
not have unit-tests available. Existing work for de-
bugging visual programs either use execution error
(Stanic et al., 2024) or block-wise execution states
(Gao et al., 2023) as feedback, which may not be
fine-grained enough to cover all potential errors.
Our feedback is more informative by tracking exe-
cution states step-by-step. Another trend of recent
work is to generate synthetic data for training self-
debugging models, which is particularly helpful for
smaller LLMs (Paul et al., 2024; Jiang et al., 2024).
We follow this trend to collect large-scale training
sets for training VDebugger.

3 VDebugger Framework

VDebugger consists of two components, a critic
and a refiner. The debugging process is illustrated
in Alg. 1. Starting with an initial program P0 and
its execution feedback, the critic model C detects
and localizes potential errors. Subsequently, the
refiner R corrects these identified errors. This it-
erative process continues until the critic model C

Algorithm 1 VDebugger algorithm
Require: Critic C, refiner R, score threshold th, max step T ,

initial program P0

1: P = P0

2: for i = 1 to T do
3: fb = EXECUTE(P ) ▷ Collect feedback
4: score, loc = C(P, fb) ▷ Identify and localize error
5: if score > th then ▷ Correct program
6: return P
7: end if
8: Pnew = R(P, fb, loc) ▷ Refine program
9: P = Pnew

10: end for
11: return P

deems the program satisfactory.1

Execution feedback. In contrast to previous ap-
proaches that focus on execution errors and block-
wise execution states (Stanic et al., 2024; Gao et al.,
2023), our objective is to develop a general and
comprehensive feedback mechanism that can cover
a wider range of errors. Drawing inspiration from
the stepping debugging strategy2 of human pro-
grammers, we track the execution process step by
step and document each executed program line,
the resulting changes in the intermediate variables,
and any errors encountered during execution. This
feedback information is fed to VDebugger in text
format as in Figure 8 in the Appendix.

Critic. Critic C jointly detects and localizes the
error in the program. Formally, given the input
program P and its feedback information collected
through execution (denoted as EXECUTE(P )),

score, loc = C(P, EXECUTE(P )),

where score represents how likely the program P
is correct. P is considered correct when score ex-

1While this is a general framework applicable to various
programming languages, this work focuses on Python.

2https://en.wikipedia.org/wiki/Stepping_
(debugging)
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Figure 2: Training data collection pipeline. Given an existing dataset of question-anwswer pairs, we prompt LLM
to generate correct programs, inject error to generate incorrect programs, and use the paired data for SFT training.

ceeds a threshold th (0.5 in this work). The critic
classify the program P into either correct or incor-
rect. Concretely, C first generates a correctness
token chosen from {t✓, t✗} representing whether
the program is correct or incorrect, so the probabil-
ity assigned to token t✓ can serve as score. If the
token t✗ is generated, C further generates the error
location loc. Here, the location loc is a span within
program P defined by its start and end positions,
which can be a word, a line, multiple lines, or any
continuous segment.

Refiner. Conditioned on the error location loc,
refiner R rewrites location loc to fix the program.
Formally,

Pnew = R(P, EXECUTE(P ), loc),

where the output program Pnew only differs with
the input program P at location loc.

4 Training of VDebugger

With the critic-refiner framework introduced above,
now we design an automated pipeline to collect
training data tailored for our framework. Our goal
is to obtain tuples {(P✓, P✗, loc)} where in each
tuple, the correct program P✓ and incorrect one
P✗ only differ at location loc. As in Figure 2, our
pipeline consists of two steps: (1) generating cor-
rect programs, and (2) generating incorrect pro-
grams with error locations.

Correct program generation. Given pairs of
questions and ground truth answers from existing
datasets, we prompt LLM to generate an initial
pool of visual programs denoted as P(0). The sub-
set of programs whose execution results match the
ground truth labels (denoted as P(0)

✓ ) will be kept
for the next step, while the rest of the programs
(denoted as P(0)

✗ ) will be discarded.

Incorrect program generation. For each correct
program P ∈ P(0)

✓ , we obtain a potentially incor-
rect program P ′ by resampling part of the program
P at a random location loc. We then execute pro-
gram P ′ and select those whose execution results
do not match ground truth labels, denoted as P(1)

✗ .
Concretely, we first parse the correct program

P into a abstract syntax tree and randomly sample
a subtree as location loc. We then mask out the
selected location and prompt LLM to recover the
masked content. To more effectively inject errors
to the location, we propose a mask-best sampling
strategy. At each decoding step, given the proba-
bility distribution p predicted by LLM, we mask
out the token i∗ with highest probability and only
sample from the tail distribution p(tail):

i∗ = argmax
i

pi

p
(tail)
i =

{
0 i = i∗

pi/ (1− pi∗) i ̸= i∗.

To ensure output quality, we only apply mask-best
sampling to tokens with low confidence, deter-
mined as follows:

pi∗ − pi(2) < th, i(2) = argmax
i ̸=i∗

pi,

and we apply mask-best sampling to at most N
tokens. The threshold th is set as 0.9 in this work.
The formal algorithm is in Alg. 2. As shown in
Table 2, mask-best dramatically increases the rate
at which an error is successfully injected by up to
10 times (from 3.7% to 38.9%). We manually ana-
lyze and categorize 200 errors injected into GQA
dataset. As shown in Figure 3, greedy sampling
generates a large number of superficial errors refer-
encing variables before their creation. In contrast,
mask-best sampling produces a broader range of
more complex and diverse errors.
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|P(0)
✗ | |P(0)

✓ | Greedy Mask-best Final
|P(1)

✗ | Error Rate |P(1)
✗ | Error Rate

GQA 21,874 18,126 3,927 21.7% 7,758 42.8% 11,188
TallyQA 17,310 22,690 842 3.7% 8,843 38.9% 9,593
NLVRv2 19,415 25,085 3,803 15.2% 10,263 40.9% 13,948
RefCOCO 21,013 18,987 4,710 24.8% 8,635 45.5% 12,949

Table 2: Statistics of collected training data. We report the number of correct and incorrect programs in the initial
pool (denoted as |P(0)

✗ | and |P(0)
✓ |), the number of incorrect programs generated via greedy decoding and mask-best

decoding (denoted as |P(1)
✗ |), and the rate at which an error is successfully injected computed as |P(1)

✗ |/|P(0)
✓ |

(denoted as Error Rate). In total, we collect 47,678 paired training data.

Algorithm 2 Mask-best sampling
Require: LLM, prompt, confidence threshold th, maximum

numbers for mask-best sampling N , maximum number
of tokens T

1: P = [] ▷ Empty string for sampling
2: n = 0 ▷ Mask-best sampling counter
3: for i = 1 to T do
4: p = LLM(prompt, P )
5: if n < N and pi∗ − pi(2) < th then
6: p = p(tail) ▷ Sample from the tail
7: n = n+ 1
8: end if
9: P = [P ; SAMPLE(p)]

10: if EOS is sampled then
11: break
12: end if
13: end for
14: return P

Training. Pairing programs from P(0)
✓ and P(1)

✗ ,
we obtain a training set {(P✓, P✗, loc)} for training
the critic C and refiner R. Our training objectives
are as follows:

LC =
∑

L (t✗, loc|P✗, EXECUTE(P✗))+

L (t✓|P✓, EXECUTE(P✓))),

LR =
∑

L(P✓|P✗, EXECUTE(P✗), loc).

where L represents autoregressive language mod-
eling objective. However, training C only on pro-
grams with injected errors limits its ability to detect
errors in naturally generated programs due to the
distribution shift. Leveraging the large pool of in-
correct programs P(0)

✗ generated in the first step,
we introduce an additional objective to address the
distribution shift:

LC′ =
∑

P✓∈P(0)
✓

L(t✓|P✓, EXECUTE(P✓))+

∑

P✗∈P(0)
✗

L(t✗|P✗, EXECUTE(P✗)),

and the final training objective for C is LC,final =
LC + LC′ . The mixed objective enables C to de-

Figure 3: Categorization of synthetic errors generated by
greedy decoding and mask-best decoding respectively.

tect and localize errors in naturally generated pro-
grams without requiring error location annotations
for these programs.

5 Experiments

In this section, we aim to: (1) evaluate the effective-
ness of VDebugger by comparing against existing
self-debugging methods; (2) analyze the benefits
brought by each individual component; and (3)
demonstrate its generalization capability by debug-
ging programs generated by other LLMs and by
evaluating on unseen tasks.

Dataset. We experiment on three forms of tasks
including 6 datasets: (1) Visual question answering
with one image, including GQA dataset (Hudson
and Manning, 2019) targeting compositional ques-
tion answering and TallyQA dataset (Acharya et al.,
2019) targeting counting; (1) Visual question an-
swering with multiple images, including NLVRv2
dataset (Suhr et al., 2019) where each question is
accompanied by two images; (3) Visual grounding
including three variants of RefCOCO dataset (Yu
et al., 2016): the original RefCOCO dataset, Ref-
COCO+ that disallows location descriptions, and
RefCOCOg that involves longer and more complex
text descriptions. We report accuracy for question
answering tasks and IoU for visual grounding tasks.
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GQA TallyQA NLVRv2 RefCOCO RefCOCO+ RefCOCOg Mean
Base VLM 44.7 29.9 55.4 55.0 52.2 50.1 47.9
CodeLlama-7B as code generator
No Debugging (Surís et al., 2023) 43.1 45.4 59.7 56.2 51.6 53.9 51.7
SelfDebug (Chen et al., 2023) 42.7 44.4 61.4 55.9 51.4 52.3 51.4
LDB (Zhong et al., 2024) 41.8 39.4 56.4 50.4 51.8 52.2 48.7
VDebugger (Ours) 46.3 (+3.2) 46.4 (+1.0) 61.4 (+1.7) 58.7 (+2.5) 52.3 (+0.7) 56.3 (+2.4) 53.6 (+1.9)

VDebugger w/ Gen (Ours) 46.0 (+2.9) 46.3 (+0.9) 61.8 (+2.1) 58.3 (+2.1) 51.8 (+0.2) 55.9 (+2.0) 53.3 (+1.6)

CodeLlama-13B as code generator
No Debugging (Surís et al., 2023) 45.4 47.7 64.8 56.7 54.7 55.1 54.1
SelfDebug (Chen et al., 2023) 41.6 42.8 62.5 41.2 39.2 46.2 45.6
LDB (Zhong et al., 2024) 42.7 37.4 57.1 51.0 51.1 50.8 48.3
VDebugger (Ours) 48.1 (+2.7) 48.3 (+0.6) 65.0 (+0.2) 58.1 (+1.4) 55.5 (+0.8) 58.3 (+3.2) 55.5 (+1.4)

VDebugger w/ Gen (Ours) 48.1 (+2.7) 48.6 (+0.9) 65.8 (+1.0) 58.5 (+1.0) 55.0 (+0.3) 58.2 (+3.1) 55.7 (+1.6)

Table 3: Main results. We report accuracy for GQA, TallyQA, NLVRv2, and IoU for RefCOCO datasets.
We compare the performance of two debugging baselines and our VDebugger (highlighted in the table). Here,
VDebugger w/ Gen denotes the generalist model trained on all datasets. For comparison, we also report the
performance of the base VLMs.

For training data collection, we generate 4 train-
ing sets for the GQA, TallyQA, NLVRv2 and Ref-
COCO datasets respectively. We use CodeLlama-
7B-Python (Rozière et al., 2024) to generate the
initial program pool P(0), and use CodeLlama-7B-
Instruct to generate incorrect programs P(1)

✗ with
both greedy decoding and mask-best sampling. We
collect 9∼14k training data for each dataset and in
total 47.7k data. Detailed statistics are in Table 2.

Evaluated models. We use ViperGPT (Surís et al.,
2023) as our base visual program generator be-
fore any debugging. We train VDebugger on
each dataset based on CodeLlama-7B-Python and
CodeLlama-13B-Python. We further train a gen-
eralized variant on the mix of all datasets denoted
as VDebugger w/ Gen. During inference, we use a
maximum iteration step of T = 3 unless otherwise
noted. We compare our method against two code
debugging methods: SelfDebug (Chen et al., 2023)
and LDB (Zhong et al., 2024). SelfDebug debugs
the program based on unit-test feedback. Since
visual programs do not have unit tests available, we
replace it with our execution feedback. LDB uses
execution states per program block to iteratively
rewrite each block, making it more expensive than
our strategy. Both SelfDebug and LDB relies on
zero-shot prompting without any training.

5.1 Results
Table 3 shows our main results on all six datasets.
Both SelfDebug and LDB slightly hurt the perfor-
mance, likely due to the limited self-debugging
capability of small LLMs as noted by recent stud-
ies (Luo et al., 2023; Tian et al., 2024; Lan et al.,

2024; Jiang et al., 2024). The challenge is exac-
erbated by the absense of visual programs during
the pre-training stage of LLMs, highlighting the
necessity of training debugging models for visual
programs. In contrast, our VDebugger consistently
improves the performance in every dataset, achiev-
ing improvements of up to 3.2% accuracy.

Ablation study. We investigate the contribution of
each component as shown in Table 4. Specifically,
we aim to: (1) assess the individual contributions
of critic and refiner components, and (2) evaluate
the benefits of execution feedback. We report the
critic’s binary accuracy in predicting overall pro-
gram correctness, as well as the percentage of incor-
rect programs successfully fixed by refiner, denoted
as refiner success rate. The critic demonstrates con-
sistently strong performance, with high binary ac-
curacy ranging from 67% to 80% across different
datasets. Our manual evaluation of 59 examples
from GQA shows the predicted error-inducing er-
rors are correct in 74% of the cases. However, the
refiner success rate is less reliable, varying dramat-
ically from 10% to 57% across datasets. When en-
hanced with execution feedback, the critic achieves
more performance gains while the benefits to re-
finer performance are minimal. When reflected in
the final performance on the downstream tasks, ex-
ecution feedback consistently brings benefits on all
datasets. In general, VDebugger can reliably per-
form self-critique utilizing execution feedback, and
the remaining challenges mainly lie in correcting
the program after the errors are identified.

Performance by iteration. VDebugger can per-
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Critic Acc. Refiner SR Task Performance
Dataset w/o FB w/ FB w/o FB w/ FB No Debug Ours w/o FB Ours w/ FB

GQA 69.6 73.9 (+4.3) 47.7 47.7 (+0.0) 43.1 45.7 (+2.6) 46.3 (+3.2)

TallyQA 56.3 72.1 (+15.8) 10.7 10.3 (-0.4) 45.4 45.9 (+0.5) 46.4 (+1.0)

NLVRv2 66.1 67.3 (+1.2) 10.8 15.1 (+4.3) 59.7 60.4 (+0.7) 61.4 (+1.7)

RefCOCO 71.9 80.9 (+9.0) 26.7 27.2 (+0.5) 56.2 58.3 (+2.1) 58.7 (+2.5)

RefCOCO+ 70.4 77.4 (+7.0) 56.3 57.1 (+0.8) 51.6 51.3 (-0.3) 53.9 (+2.3)

RefCOCOg 64.5 73.1 (+8.6) 32.2 33.1 (+0.9) 53.9 55.7 (+1.8) 56.3 (+2.4)

Mean 66.5 74.1 (+7.7) 30.7 31.8 (+1.0) 51.6 52.9 (+1.2) 53.8 (+2.2)

Table 4: Ablation study. We report the critic accuracy (Acc.), the refiner success rate (SR), and final task
performance on downstream tasks. For each component, we report the performance either without or with execution
feedback (denoted as w/o FB and w/ FB). We also report downstream task performance before any debugging.
Results are evaluated on 7B-level VDebugger models.

(a) Performance on GQA. (b) Performance on NLVR. (c) Performance on RefCOCOg.

Figure 4: Performance on GQA, NLVRv2 and RefCOCOg datasets by the number of debugging iterations.

GQA TallyQA NLVRv2 RefCOCO RefCOCO+ RefCOCOg Mean
CodeLlama-70b as code generator
No Debugging 46.1 45.2 68.1 54.0 49.6 53.3 52.7
VDebugger 7b 48.8 (+2.7) 47.9 (+2.7) 68.9 (+0.8) 57.4 (+3.4) 50.9 (+1.3) 56.7 (+3.4) 55.1 (+2.4)

VDebugger 13b 48.9 (+2.8) 48.5 (+3.3) 68.6 (+0.5) 56.9 (+2.9) 50.9 (+1.3) 56.4 (+3.1) 55.0 (+2.3)

DeepSeek-Coder-33B as code generator
No Debugging 47.3 46.2 67.9 59.6 51.8 55.4 54.7
VDebugger 7b 48.9 (+1.6) 46.9 (+0.7) 67.8 (-0.1) 60.5 (+0.9) 52.4 (+0.6) 57.1 (+1.7) 55.6 (+1.9)

VDebugger 13b 48.9 (+1.6) 46.2 (+0.0) 67.4 (-0.5) 60.5 (+0.9) 52.8 (+1.0) 57.7 (+2.3) 55.6 (+1.9)

GPT-3.5 as code generator
No Debugging 45.9 43.6 63.9 60.6 54.0 57.5 54.3
VDebugger 7b 49.3 (+3.4) 46.4 (+2.8) 68.8 (+4.9) 61.2 (+0.6) 54.7 (+0.7) 58.8 (+1.3) 56.5 (+2.2)

VDebugger 13b 49.6 (+3.7) 46.4 (+2.8) 68.7 (+4.8) 61.3 (+0.7) 54.1 (+0.6) 58.8 (+1.3) 56.5 (+2.2)

Table 5: VDebugger can debug visual programs generated by larger LLMs, including CodeLlama-70b, DeepSeek-
Coder-33B and GPT-3.5.

form iterative debugging until the critic determines
the program as correct. Figure 4 demonstrates
the performance curve by the number of iterations
on three representative datasets for the three task
forms, GQA, NLVRv2, and RefCOCOg. We find
that most performance gains occur in the first one
or two iterations, after which performance plateaus
and may slightly decline. Qualitative analysis
shows that more iterations are beneficial for com-

plex problems, where the initial debugging attempt
often fails, so VDebugger need to iteratively re-
fines the program in a trial-and-error manner. An
example is shown in Figure 10 in the Appendix.

Generalization to other code generators. While
VDebugger is trained on programs generated by
CodeLlama models, it can be employed to debug
programs generated by LLMs with larger number
of parameters. As shown in Table 5, we experi-
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RSVG COVR
Base VLM 18.1 41.2
CodeLlama-7b as code generator
No Debugging 17.9 41.5
VDebugger 18.7 (+0.8) 43.8 (+2.3)

CodeLlama-13b as code generator
No Debugging 18.3 46.9
VDebugger 18.8 (+0.5) 47.9 (+1.0)

Table 6: VDebugger can generalize to unseen tasks,
including visual grounding for remote sensing images
(RSVG) and visual question answering over variable
number of images (COVR). We report IoU for RSVG
and accuracy for COVR.

ment with two open LLMs, CodeLlama-70b and
DeepSeek-Coder-33B (Guo et al., 2024), and the
proprietary LLM GPT-3.5. Despite these models
being up to ten times larger than our base mod-
els and achieving higher performance without any
debugging, VDebugger’s debugging process still
consistently brings improvements, demonstrating
its generalization capability. Thus, employing zero-
shot large-scale LLMs debugged by a small VDe-
bugger can be a good strategy to enhance perfor-
mance at a reasonable cost.

Generalization to unseen tasks. We evaluate the
generalist variant VDebugger w/ Gen, which is
trained on all six datasets, on two unseen datasets:
(1) RSVG (Zhan et al., 2023), a visual grounding
dataset for remote sensing images, a challenging
task due to the dense objects and complex spatial
relationships in remote sensing images; and (2)
COVR (Chen et al., 2022), a novel task form re-
quiring the model to answer questions based on
a variable number of images. Table 6 shows that
VDebugger consistently improves performance on
both datasets, demonstrating its ability to general-
ize to unseen domains and task formulations.

Data quality. To verify the quality of automati-
cally generated data, we manually examine 100
programs from each training set. We evaluate the
proportions of incorrect programs, or "false pos-
itives", among the programs considered correct.
Most datasets have relatively low false positive ra-
tio: 16% for GQA, 13% for TallyQA, and 19% for
RefCOCO. Due to the answer format, including
free-form strings, numbers and bounding boxes, an
exact match in the final answer ensures the pro-
gram has a high probability to be correct. On the
other hand, NLVRv2 dataset has a higher false

Figure 5: Sources of errors on GQA, NLVRv2 and Ref-
COCOg datasets. We categorize the predictions into four
categories: correct, multiple correct answers (where the predic-
tion is correct but does not match the ground truth annotation),
foundation VLM errors, and program errors.

positive ratio (40%) due to its binary label format.
However, its effect can be mitigated by training on
multiple datasets, as shown by the generalist VDe-
bugger outperforming the specialist VDebugger on
NLVRv2 dataset. While another concern over data
quality is the program optimality, we observe that
visual programs tend to have straightforward code
structures, and thus have limited potential for al-
gorithmic optimization. For example, 68% of the
programs do not contain loop structures.

Qualitative analysis. We analyze the sources of
errors by examining 100 examples from each of the
three datasets: GQA, NLVRv2, and RefCOCOg.
As shown in Figure 5, program errors significantly
affect the end performance, accounting for 49% to
62% of total errors varying by dataset. VDebugger
consistently reduces program errors on all datasets,
especially on GQA. An example of VDebugger fix-
ing program error is in Figure 6. Interestingly, we
observe that VDebugger can also help recover from
foundation VLM errors especially on RefCOCOg
dataset. While errors incurred by foundation VLMs
remain a crucial bottleneck for visual programs,
VDebugger can invoke foundation VLMs in an al-
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Figure 6: Example where VDebugger fixes program error.

Figure 7: Example where VDebugger recovers from foundation model error. The question answering model yields incorrect
answer “vanity” in the original program. By detecting this error, VDebugger invokes the foundation VLMs in an alternative way
and thus obtains the correct answer.

Cost (s/it) Compared with Compared with
No Debugging last iteration

T = 0 3.08 - -
T = 1 4.44 + 44% +44%
T = 2 4.72 + 53% +6%
T = 3 4.81 + 56% +2%

Component Cost (s/it)
Initial program generation 1.42
Program execution 1.66
Critic inference 0.09
Refiner inference 0.08

Table 7: Computational cost of VDebugger, measured by seconds per item (s/it). Left: Computational cost by iteration step
T . T = 0 represents the no debugging baseline. Right: Breakdown of the computational cost of each component.

ternative way to avoid the identified errors. An
example is shown in Figure 7.

Computational complexity. To measure the ad-
ditional computational overhead brought by the
critic-refiner framework and the iterative process,
we measure the computational cost by iteration step
T as well as a breakdown of the cost of each com-
ponent in the framework. The detailed statistics
are reported in Table 7. While VDebugger mod-
erately increases the computational cost by 56%
compared to the no debugging baseline, the major
computational overhead arises from program exe-
cution, rather than the inference of critic and refiner
models. Additionally, increasing the number of de-
bugging iterations only marginally increases the
inference cost, since most debugging is addressed
within the first round.

6 Conclusion

VDebugger is a critic-refiner framework fine-tuned
to detect, localize, and correct errors in visual pro-

grams leveraging fine-grained execution feedback.
The training data is collected through an automated
pipeline that first generates correct programs and
then effectively injects errors using mask-best sam-
pling. Experiments on six datasets demonstrate that
VDebugger consistently brings improvements, and
further studies verifies VDebugger’s generalization
to unseen tasks. A future direction is to allow the
visual program debugger to access visual informa-
tion in addition to relying on textual information,
and to jointly train it with foundation VLMs.

7 Limitations

We hereby discuss the potential limitations of our
work:

(1) In this work, our critic model can provide ba-
sic explanations of identified errors by predicting
errors locations. However, human programmers
may benefit from more detailed explanations in nat-
ural language. The automatic collection of such
text-rich description is very challenging. There-
fore, obtaining expert annotations would be a valu-
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able though costly future step to enhance the inter-
pretability of the debugging process.

(2) Our work mainly focuses on established
tasks such as visual question answering and vi-
sual grounding. While these tasks demonstrate the
effectiveness of our framework, real-world applica-
tions often require systems to interact dynamically
with humans, respond to open-ended questions,
and perform on-demand reasoning. Although our
current work does not directly address these com-
plex, real-world scenarios, we believe our method
is generic framework that can be adapted for such
applications. Exploring the application of our self-
debugging method to more in-the-wild and diverse
scenarios is an exciting direction for future re-
search.

(3) Following prior work (Gupta and Kembhavi,
2023; Surís et al., 2023), our method utilizes a
text-only language model (LLM) to generate vi-
sual programs, which may introduce limitations
to its capabilities. Incorporating visual informa-
tion and/or jointly training the debugger with foun-
dational VLMs could be a valuable direction for
future research, potentially further enhancing its
self-critic capabilities.
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A Artifacts

This work involves the following artifacts:
Datasets: GQA (Hudson and Manning, 2019)

distributed under CC-BY-4.0 license, TallyQA
(Acharya et al., 2019) distributed under Apache-
2.0 license license, NLVRv2 (Suhr et al., 2019)
distributed under CC-BY-4.0 license, RefCOCO
(Yu et al., 2016) (including RefCOCO, RefCOCO+
and RefCOCOg variants) distributed under Apache-
2.0 license, RSVG (Zhan et al., 2023) without li-
cense specified, and COVR (Bogin et al., 2021)
distributed under MIT license.

Software: We use transformers (Wolf et al.,
2020) and deepspeed (https://github.com/
microsoft/DeepSpeed) for model training, both

distributed under Apache-2.0 license. We col-
lect execution feedback of visual programs using
pysnooper (Rachum et al., 2019) distributed under
MIT license.

Models: We use CodeLlama (Rozière et al.,
2024) distributed under Llama’s own license3 and
DeepSeek-Coder (Guo et al., 2024) distributed un-
der MIT License.

This work creates the following artifacts:
Datasets: We collect training data for our VDe-

bugger based on GQA (Hudson and Manning,
2019), TallyQA (Acharya et al., 2019), NLVRv2
(Suhr et al., 2019) and RefCOCO (Yu et al., 2016)
datasets. Detailed statistics are in Table 2.

Software: The code for training and inference
of VDebugger and training data collection.

Models: The VDebugger 7B and 13B models,
trained on each individual dataset as well as the
generalist model trained on all datasets.

In summary, all the artifacts involved permit re-
search use. Our use is consistent with their intended
use. We plan to release our software, datasets and
models with license Apache-2.0 license, which is
compatible with the original access conditions. All
our artifacts are limited to English and do not cover
multilingual scenarios.

B Implementation Details of VDebugger

Since VDebugger is implemented based on LLMs,
we need to effectively represent execution feedback
Execute(P ) and error location loc with text. The
execution feedback is tracked and formatted via
pysnooper (Rachum et al., 2019). An example
is shown in Figure 8: the feedback representation
covers the final return value, each code line be-
ing executed, their resulted change in intermediate
variable values, and execution errors if any. To
represent a local span loc with text, instead of di-
rectly generating the starting and ending location,
we represent it by repeating the original program
and wrapping location loc with some special to-
kens. An example is shown in 9.

C Experimental Details

Base VLM: We use the same set of base VLMs as
in Surís et al. (2023). To report the performance of
base VLMs, we use the question answering model

3https://github.com/meta-llama/llama/blob/
main/LICENSE
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Question: What item of furniture is not large?
Program:
def execute_command(image) -> str:

image_patch = ImagePatch(image)
image_patch = best_image_match(list_patches=[ImagePatch(image)], content=[’item’], return_index=True)
return image_patch.simple_query(’What item of furniture is not large?’)

Execution feedback:

-> None

call 1 def execute_command(image) -> str:
line 2 image_patch = ImagePatch(image)
New var:....... image_patch = ImagePatch(left=0, right=500, upper=375, lower=0, height=375, width=500, horizon-
tal_center=250.0, vertical_center=187.5)
line 3 image_patch = best_image_match(list_patches=[ImagePatch(image)], content=[’item’], return_index=True)
Modified var:.. image_patch = 0
line 4 return image_patch.simple_query(’What item of furniture is not large?’)
exception 4 return image_patch.simple_query(’What item of furniture is not large?’)
Exception:..... AttributeError: ’int’ object has no attribute ’simple_query’
Call ended by exception

Figure 8: Text representation of feedback information. The feedback incorporates the final return value, each
code line being executed, their resulted change in intermediate variable values, and execution errors if any.

loc: return image_patch.simple_query(’What item of furniture is not large?’)
Representation:

def execute_command(image) -> str:
image_patch = ImagePatch(image)
image_patch = best_image_match(list_patches=[ImagePatch(image)], content=[’item’], return_index=True)
<BUG>return image_patch.simple_query(’What item of furniture is not large?’)<BUG/>

Figure 9: Text representation of location loc. In this example, special tokens <BUG> and <BUG/> wraps the
location of interests.

BLIP-2 (Li et al., 2023) for visual question answer-
ing tasks, and the object detection model GLIP (Li
et al., 2022b) for visual grounding tasks. Since
BLIP-2 can only take one image as input, we con-
catenate all images into one when handling mul-
tiple images, such as in the NLVRv2 and COVR
datasets.

VDebugger: For fine-tuning VDebugger, we
use CodeLlama-7B-Python and CodeLlama-13B-
Python as the base model. We truncate the context
length into within 1024 tokens. We use a total
batch size of 128 sentences per batch (including
), a learning rate of 2e − 5, a linear scheduler for
learning rate, and a warmup ratio of 0.03. We
train the CodeLlama-7B-Python for 3 epochs and
CodeLlama-13B-Python for 1 epoch on all datasets.
With 4 A6000 GPU, the training of refiner takes
∼4 hours and the training of critic takes ∼12 hours.
In inference, we use greedy decoding with 256 as
the maximum number of tokens.

Evaluation: We evaluate the models on the
testdev split of GQA, the Test-Complex split

BLIP InstructBLIP
End-to-end VLMs 43.1 48.3
Visual programming 45.4 48.4
VDebugger 48.1 51.1

Table 8: Performance of end-to-end VLMs, vanilla vi-
sual programming approach (Surís et al., 2023) with-
out debugging, and our VDebugger evaluated on GQA
dataset. We experiment with BLIP (Li et al., 2022a) fol-
lowing Surís et al. (2023) as well as the more powerful
VLM InstructBLIP (Gupta et al., 2022).

of TallyQA, the test1 split of NLVRv2, the
testA split by UNC of RefCOCO and RefCOCO+,
and the standard test set split by UMD for Ref-
COCOg. We report accuracy for GQA, TallyQA
and NLVRv2, and IoU for RefCOCO, RefCOCO+
and RefCOCOg. For accuracy, following the set-
ting of Surís et al. (2023), we first preprocess the
answer produced by our method by removing stop-
words and then use exact matching.
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D Visual Programming v.s. End-to-End
VLMs

Visual programming and end-to-end VLMs are two
different approaches to visual reasoning. Visual
programming invokes multiple foundation VLMs
through code, while end-to-end VLMs directly take
an image as input and generate texts as output. De-
spite their seemingly different methodologies, vi-
sual programming is a complementary technique
that can be combined with end-to-end VLMs to
offer additional benefits. Firstly, visual program-
ming can integrate with more powerful VLMs to
further enhance performance as shown in Table 8.
Secondly, despite the rapid development of end-
to-end VLMs, they still have difficulty reasoning
with compositional concepts such as counting and
spatial relationship. Visual programming offer ben-
efits in tasks like such as compositional reasoning,
counting, and enhancing interpretability.

E Qualitative Examples

Figure 10 shows an example where more iterations
of VDebugger bring benefits.

F Prompts

Figure 11 shows the prompt we use for generating
incorrect programs.
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Figure 10: Example where more iterations of VDebugger bring benefits. The original program results in
incorrect answer “bookcase or bed” because the object detection model incorrectly identifies a bed. VDebugger
detects the error through the unreasonable return value and attempts the first round of debugging. Although the
program structure is significantly changed in this round, the execution still leads to the incorrect answer due to the
same issue. In the second round, VDebugger successfully resolves the problem.

9859



[INST] I am writing code to handle visual question answering tasks by calling computer vision APIs. Some content from the
code is masked (represented as "<MASKED>". Please recover the original code.
My code:
```python
# {QUESTION}
{CODE}
```

Your code should be wrapped in ```python and ```. The code should be exactly the same as my code, except recovering the
masked content.

—

Below are the available APIs and some example usages:

```python
{API_DEFINITION}
```[/INST] Here’s the original code with the `<MASKED> `section replaced:
```python
# {QUESTION}
{PROGRAM_SIGNATURE}

Figure 11: Prompt for generating incorrect program. Here, the blue texts are the prompt, the orange text are the
fixed prefix for model generation, and {QUESTION}, {CODE}, {API_DEFINITION}, and {PROGRAM_SIGNATURE} are
placeholders to be filled in during actual generation.
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