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Abstract

In recent years, the rapid increase in scien-
tific papers has overwhelmed traditional re-
view mechanisms, resulting in varying qual-
ity of publications. Although existing methods
have explored the capabilities of Large Lan-
guage Models (LLMs) for automated scientific
reviewing, their generated contents are often
generic or partial. To address the issues above,
we introduce an automated paper reviewing
framework SEA. It comprises of three mod-
ules: Standardization, Evaluation, and Anal-
ysis, which are represented by models SEA-
S, SEA-E, and SEA-A, respectively. Initially,
SEA-S distills data standardization capabilities
of GPT-4 for integrating multiple reviews for
a paper. Then, SEA-E utilizes standardized
data for fine-tuning, enabling it to generate con-
structive reviews. Finally, SEA-A introduces a
new evaluation metric called mismatch score
to assess the consistency between paper con-
tents and reviews. Moreover, we design a self-
correction strategy to enhance the consistency.
Extensive experimental results on datasets col-
lected from eight venues show that SEA can
generate valuable insights for authors to im-
prove their papers.

1 Introduction

With the rapid pace of scientific advancement, there
has been a significant increase in the volume of re-
search publications (Bornmann and Mutz, 2015;
Gao et al., 2024; Lin et al., 2023a). Nevertheless,
it poses considerable challenges for traditional sci-
entific feedback mechanisms (Liang et al., 2023).
On one hand, it exacerbates the pressure on the
peer review process (Lee et al., 2013; Björk and
Solomon, 2013); on the other hand, the disparate
quality of these numerous publications can nega-
tively affect the scientific research milieu (Kelly
et al., 2014; Liu and Shah, 2023). Consequently,
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Figure 1: Multiple reviews of a paper often provide help-
ful but partial opinions on certain aspects. Integrating
these reviews can offer more comprehensive feedback
on the paper.

there is a need for an automated scientific review-
ing framework designed to generate constructive
reviews with strong evidence supports to help au-
thors improve the caliber of their works (Yuan et al.,
2022).

However, the task of delivering timely, thor-
ough, and perceptive feedback on research pa-
pers is inherently intricate and cognitively demand-
ing (Horbach and Halffman, 2018). Traditional
language models typically struggle to handle such
lengthy texts, let alone provide valuable review
insights (Cohan et al., 2020; Wang et al., 2020).
Fortunately, Large Language Models (LLMs) have
demonstrated emergent capabilities (Wei et al.,
2022), which have shown state-of-the-art perfor-
mance in a wide range of tasks (Brown et al., 2020;
Touvron et al., 2023; Tan et al., 2024; Sun et al.,
2024). Further, they have also been strengthened
to handle increasingly longer contexts (Jiang et al.,
2023), facilitating the possibility for automated re-
viewing (Liang et al., 2023; Gao et al., 2024).

Currently, some efforts have been made to ex-
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plore the capabilities of LLMs for automated pa-
per reviewing. For example, Liu and Shah (2023)
and Liang et al. (2023) investigate the potential
reliability and credibility of paper reviews gener-
ated by LLMs with specially designed prompts.
Yet most of these LLMs are tailored for broad and
general-purpose applications (Wei et al., 2023), so
simply prompting LLMs in reviewing papers could
output generic comments of less value (Liang et al.,
2023). Further, certain studies have developed peer
review datasets and fine-tuned LLMs to learn the
paradigm of paper reviewing (Wei et al., 2023;
Gao et al., 2024). However, in the supervised fine-
tuning (SFT) process, these methods simply utilize
a review for a paper that can be biased, partial (see
Figure 1) and often formalized in various formats
and criteria, which could hinder the potential of
LLMs for automated paper reviewing (Lin et al.,
2023b; Gao et al., 2024). Also, they lack a self-
correction mechanism when the generated reviews
are less appealing.

To tackle the issues, in this paper, we propose
a novel automated paper reviewing framework,
namely, SEA, which consists of three modules:
Standardization, Evaluation, and Analysis, as
shown in Fig. 2. We next summarize the details of
each module.

In the Standardization module, we develop a
model SEA-S, which aims to standardize reviews.
Specifically, we first utilize GPT-4 to integrate mul-
tiple reviews of a paper into one that is in a unified
format and criterion with constructive contents, and
form an instruction dataset for SFT. After that, we
fine-tune an open-source LLM Mistral-7B to distill
the knowledge of GPT-4.

In the Evaluation module, we fine-tune another
Mistral-7B to derive the SEA-E model, which
can comprehensively analyze papers and gener-
ate high-quality reviews. Given papers that are
in PDF format, we parse them into text and La-
TeX codes, and input their corresponding multiple
reviews into SEA-S to generate standardized re-
views. The parsed papers, standardized reviews
and human-crafted prompts constitute another in-
struction dataset for SFT, leading to SEA-E.

In the Analysis module, we further introduce
a self-correction strategy that promotes SEA to
rethink and regenerate more constructive reviews,
when the generated reviews are inconsistent with
the parsed papers. To measure the inconsistency,
we put forward a metric, namely, mismatch score.
We also train a regression model SEA-A to estimate

scores for the generated reviews.
Extensive experiments on eight diverse datasets

show that the reviews generated by the SEA frame-
work significantly outperform existing methods in
terms of quality, comprehensiveness, and consis-
tency. To sum up, we highlight our contributions
as follows:
• We propose a novel framework SEA for auto-

mated paper reviewing.
• We present an effective model SEA-S for stan-

dardizing reviews from various academic venues
in different formats and criteria.

• We devise a self-correction strategy to improve
the consistency between papers and reviews.

• We conduct extensive experiments to show the
superiority of SEA over other competitors.
Finally, it is important to emphasize that the pur-

pose of this paper is not to directly recommend the
acceptance/rejection on papers. We anticipate our
framework SEA can facilitate timely feedback for
researchers, thereby enhancing the quality of their
work and enabling them to transition efficiently to
subsequent projects.

2 Related Works

2.1 Long-context Large Language Models

LLMs have recently achieved substantial progress
in accommodating lengthy contexts. For exam-
ple, LongLLaMA (Tworkowski et al., 2024) and
LongLoRA (Chen et al., 2023b) support long con-
texts processing by modifying the attention mech-
anism. There are also some positional encoding
methods proposed, including ALiBi (Press et al.,
2021), xPOS (Sun et al., 2022) and RoPE vari-
ants (Chen et al., 2023a; Xiong et al., 2023).

Assessing the capability of LLMs in handling
long contexts has also attracted significant atten-
tion. The needle-in-a-Haystack (NIAH) test (Kam-
radt, 2023) has been widely adopted to evaluate
long-context LLMs. Further, RULER (Hsieh et al.,
2024) extends the vanilla NIAH test to provide a
more thorough assessment. Based on the RULER
evaluation results, we select Mistral-7B (Jiang
et al., 2023) as the base model in our paper. Mistral-
7B is a compact LLM that has been shown to han-
dle at least 16K tokens, sufficient to meet the input
requirements of most academic papers.

2.2 Automated Scientific Reviewing

Automating scientific reviewing began its investiga-
tion in the era of small language models. The early
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Figure 2: The overall framework of SEA consists of three modules: Standardization, Evaluation and Analysis.

work (Zhang et al., 2022) utilizes RoBERTa (Liu
et al., 2019) to assess the textual fluency of papers
and fairness disparity in peer review. In peer grad-
ing, Morris et al. (2023) fine-tune distilBERT (Sanh
et al., 2019) using course grading data from mas-
sive open online courses to examine the reliability
of peer grading scores. However, due to the re-
stricted capability of language models in handling
lengthy contexts, automating scientific reviewing
of a full paper has not been studied before the ad-
vent of LLMs.

Recently, since LLMs exhibit advancements in
various NLP tasks, some studies are exploring the
capabilities of LLMs in automated paper review-
ing. For example, Liu and Shah (2023) and Liang
et al. (2023) customize prompts to guide GPT-4 in
generating scientific feedbacks. Wei et al. (2023)
conduct continuous training of LLaMA2-70B (Tou-
vron et al., 2023) on academic data, resulting in
an academically enhanced model AcademicGPT.
Further, Gao et al. (2024) collect a large-scale peer
review dataset, and propose a two-stage review
generation framework REVIEWER2 with question-
guided prompts.

3 SEA

This section details three major modules (i.e., Stan-
dardization, Evaluation and Analysis) of SEA, and
the overall framework is illustrated in Figure 2.

3.1 SEA-S: Standardization
To explore the potential of LLMs in automated sci-
entific reviewing, a high-quality labeled dataset is
generally needed for supervised fine-tuning (SFT).

This process feeds LLMs with more peer reviews,
thereby enhancing the quality of its generated ones.
However, in the peer review datasets, each paper is
often associated with multiple peer reviews, with
each review offering a limited perspective based
on the reviewer’s field and expertise. On the other
hand, the review formats and criteria could vary
across different academic venues, and directly per-
forming SFT on existing peer review datasets can
lead to inconsistencies. Therefore, we first have to
standardize reviews in a unified format and crite-
rion with comprehensive contents before SFT. For
each paper, we integrate all the reviews into one,
which can eliminate redundancy and error in multi-
ple reviews. The integrated review is expected to
focus on the major advantages and disadvantages
of the paper, thereby enhancing its quality.

To perform data standardization, we attempt sev-
eral representative open-source and closed-source
models, such as Mistral-7B, GPT-3.5 and GPT-4.
We empirically observe that Mistral-7B and GPT-
3.5 tend to simply concatenate the original con-
tents. In contrast, GPT-4 leads them by integrating
reviews in an unified format and providing detailed
evidence for each argument (The comparative ex-
amples are given in Figure 6 of Appendix A.1).
However, the API for GPT-4 is costly and inflex-
ible. Inspired by Alpaca (Taori et al., 2023), we
distill GPT-4’s excellent data standardization capa-
bilities into open-source models.

Specifically, we first randomly select 20% of
the papers from the training set along with their
reviews {[rorigin

i1 , r
origin
i2 , . . . , r

origin
im ]}ni=1, where n

is the number of selected papers and m is the
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number of reviews corresponding to paper pi.
Next, for each paper pi, we input all its reviews
along with the customized instruction insts into
GPT-4, which in turn yields the standardized re-
view rGPT-4

i . In this way, we can construct the
instruction dataset for the data standardization
model SEA-S that takes Mistral-7B as the base
model. Formally, the triplet in the dataset is
<insts, [r

origin
i1 , r

origin
i2 , . . . , r

origin
im ], rGPT-4

i >, which
is further served for SFT. After fine-tuning SEA-S,
we feed all the reviews in the training set into SEA-
S for data standardization, which outputs the inte-
grated reviews {rSEA-S

i }Ni=1. Here, N denotes the
number of papers in the training set. In summary,
SEA-S provides a novel paradigm for integrating
peer review data in an unified format across various
conferences.

3.2 SEA-E: Evaluation
In the Evaluation module, we aim to construct a
talented LLM that can deeply understand papers
and generate constructive reviews. Notably, since
raw crawled papers are in PDF format, we first
apply Nougat (Blecher et al., 2023) as the parser,
which is a model based on Visual Transformer and
is specially designed for parsing academic docu-
ments. In particular, Nougat can parse formulas
into LaTeX codes instead of corrupted text encod-
ing, enabling LLMs to gain a deeper understanding
of papers’ contents. Further, due to the long-text
characteristic of papers, we choose the open-source
model Mistral-7B as the backbone model, which
has demonstrated its ability in effectively handling
up to 16K tokens for the long-context benchmark
RULER (Hsieh et al., 2024).

Based on the outputs of the SEA-S model, we
next construct the instruction dataset for the eval-
uation model SEA-E. Each triplet in the dataset is
denoted as <inste, p̂i, rSEA-S

i >, where inste is the
specially designed instruction for evaluation, p̂i is
the parsed paper, and rSEA-S

i is the standardized re-
view. Note that rSEA-S

i contains solid evidence for
each argument in the review. This endows SEA-E
with the capability to generate comprehensive and
constructive reviews after SFT.

3.3 SEA-A: Analysis
Now, we step into the Analysis module, where a
mismatch score is proposed to measure the con-
sistency between papers and their generated re-
views. Given a paper p with m raw reviews,
let us denote its ground-truth paper ratings as

Sp = {spr1 , spr2 , . . . , sprm} and confidence scores
as Cp = {cpr1 , cpr2 , . . . , cprm}, where each spri
and cpri indicate the rating and confidence score
given by the i-th reviewer. We next use the confi-
dence scores as weights and calculate the weighted
average rating of paper p, which is further sub-
tracted from the reviewer’s rating to serve as the
ground truth mismatch score. Formally, we have:

ypritrue = spri −
∑m

j=1 cprj ∗ sprj∑m
j=1 cprj

. (1)

From the equation, we see that, when a reviewer’s
rating is greater than the weighted average, the
review may tend to emphasize the paper’s strengths;
otherwise, the review may be preferably critical of
the paper. Generally, the greater the difference,
the lower the review quality. When ypritrue = 0,
we consider the review to be relatively neutral and
consistent with the paper content. For example,
when the review ratings of a paper are {2, 6, 6, 6}
and all are given with full confidence, the quality of
the review rated 2 is considered to be lower because
it deviates significantly from the weighted average
rating of 5.

To estimate the mismatch score, we train a
lightweight regression model SEA-A. Specifically,
each parsed paper p̂ and its corresponding review r
generated from SEA-E form a pair <p̂, r>, which
serves as the input. We first utilize the pre-trained
sentence representation model SFR-Embedding-
Mistral (Rui Meng, 2024) that is designed for long
contexts to transform the texts of papers and re-
views into representations hp̂ and hr, respectively.
Then, we compute the query and key vectors for
both the paper and the review separately:

qp̂ = W qhp̂, qr = W qhr,

kp̂ = W khp̂, kr = W khr.
(2)

Here, W q and W k are learnable weight matrices.
Based on the query and key vectors, we calculate
the estimated mismatch score yprpred by:

yprpred = w(qp̂kr
T + qrkp̂

T ) + b. (3)

Finally, we use the mismatch score yprtrue as the
ground truth and the Mean Squared Error (MSE)
loss as the objective to train the regression model
SEA-A. The smaller the absolute value of the mis-
match score, the higher the consistency between
the review and the paper.
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Table 1: Dataset Statistics

CONLL-16 ACL-17 COLING-20 ARR-22 NeurIPS-16-22 ICLR-17-23 NeurIPS-23 ICLR-24 Total

# papers 22 136 88 364 1,048 1,617 3,368 5,653 12,296
# tokens per paper 8,163 8,400 7,571 8,229 10,499 9,586 11,205 9,815 10,142

# reviews 39 272 112 684 3,847 5,779 15,027 21,839 47,602
# tokens per review 532 558 539 539 527 602 642 594 603

% accepted 50% 67% 93% 100% 97% 30% 95% 37% 60%
domain NLP/CL NLP/CL NLP/CL NLP/CL ML ML ML ML multi

Table 2: The overall performance (%) on four cross-domain datasets: CONLL-16, ACL-17, COLING-20, ARR-22,
and four in-domain datasets: NeurIPS-16-22, ICLR-17-22, NeurIPS-23, ICLR-24. We highlight the best score on
each dataset in bold and the runner-up score with an underline.

Method BLEU
ROUGE (Recall) ROUGE (F1-score)

BERTScore TokensR-1 R-2 R-L R-1 R-2 R-L

CONLL-16
M-7B 18.92 20.81 4.81 10.30 28.66 6.81 14.18 82.49 554
M-7B-R 18.16 21.96 5.17 10.62 29.56 7.18 14.31 82.57 357
M-7B-3.5 19.70 26.51 5.58 13.96 30.19 6.45 15.37 82.01 627
SEA-E 29.07 34.91 7.79 15.29 38.64 8.67 16.73 82.85 793
SEA-EA 31.01 36.96 8.91 16.34 40.49 9.68 17.57 82.94 798

ACL-17
M-7B 18.92 21.53 5.23 10.50 27.99 6.93 13.54 82.75 569
M-7B-R 18.15 21.84 5.19 10.76 27.71 6.87 13.55 82.56 357
M-7B-3.5 16.73 27.27 6.26 14.47 26.09 6.19 13.19 82.37 636
SEA-E 25.67 33.13 7.71 14.94 35.52 8.45 15.62 83.08 772
SEA-EA 27.90 35.83 8.84 15.83 38.03 9.48 16.36 83.19 806

COLING-20
M-7B 21.97 29.11 6.42 14.80 31.91 7.01 15.83 82.76 579
M-7B-R 19.49 29.21 6.69 15.20 30.23 6.80 15.25 82.27 361
M-7B-3.5 18.13 34.03 7.56 18.43 28.49 6.10 14.77 82.12 617
SEA-E 22.93 40.62 9.23 20.05 34.37 7.65 16.15 82.85 774
SEA-EA 24.85 42.97 10.57 20.89 36.67 8.76 16.96 83.09 782

ARR-22
M-7B 22.07 25.28 6.96 12.46 32.60 9.16 15.99 83.25 575
M-7B-R 20.27 24.89 6.70 12.60 31.22 8.66 15.71 82.70 357
M-7B-3.5 20.18 31.70 7.90 16.38 30.82 7.86 15.33 82.65 650
SEA-E 27.92 37.64 9.37 17.18 38.94 9.84 17.35 83.38 787
SEA-EA 30.05 40.34 10.82 18.17 41.37 11.19 18.20 83.59 818

Method BLEU
ROUGE (Recall) ROUGE (F1-score)

BERTScore TokensR-1 R-2 R-L R-1 R-2 R-L

NeurIPS-16-22
M-7B 14.91 14.47 4.89 7.15 23.31 7.94 11.56 83.10 612
M-7B-R 13.94 14.47 4.79 7.29 22.70 7.67 11.44 82.73 362
M-7B-3.5 16.95 20.41 6.02 10.72 26.45 8.13 13.45 82.56 629
SEA-E 24.83 24.12 7.31 10.66 34.06 10.44 15.11 83.35 782
SEA-EA 27.08 26.76 8.38 11.55 36.91 11.69 15.99 83.52 838

ICLR-17-23
M-7B 13.75 13.10 4.42 6.51 21.65 7.36 10.80 83.26 607
M-7B-R 12.98 13.38 4.45 6.85 21.36 7.26 10.91 82.80 359
M-7B-3.5 17.85 18.26 5.70 9.27 27.37 8.69 13.94 82.87 637
SEA-E 23.34 22.38 6.84 9.93 32.50 10.07 14.49 83.58 783
SEA-EA 25.47 24.80 7.87 10.81 35.23 11.32 15.43 83.73 841

NeurIPS-23
M-7B 12.42 11.96 4.96 6.13 20.55 8.55 10.55 83.86 617
M-7B-R 11.92 11.88 4.87 6.16 20.14 8.31 10.49 83.44 366
M-7B-3.5 16.71 16.80 6.12 8.53 26.51 9.74 13.50 83.20 650
SEA-E 21.34 20.32 7.27 9.14 31.34 11.26 14.14 84.02 794
SEA-EA 23.32 22.49 8.38 9.91 34.03 12.73 15.03 84.20 844

ICLR-24
M-7B 13.93 13.48 5.29 6.73 22.55 8.89 11.28 83.79 614
M-7B-R 13.91 14.17 5.41 7.21 22.94 8.85 11.69 83.81 380
M-7B-3.5 18.72 19.40 6.52 9.64 29.26 9.93 14.58 83.29 649
SEA-E 23.88 23.28 7.90 10.13 34.29 11.71 14.98 84.04 793
SEA-EA 25.96 25.62 8.97 10.97 36.97 13.02 15.88 84.15 852

After SEA-A is trained, we further introduce a
self-correction strategy to analyze each review gen-
erated by SEA-E. When the estimated mismatch
score yprpred is larger than a pre-set threshold θ, we
regenerate the review by adding the current mis-
match score as additional prompt to ensure the
consistency between the paper and the review.

4 Experiments

4.1 Experimental Details
Datasets. We crawl the latest papers and their
corresponding reviews from OpenReview 1, includ-
ing NeurIPS-2023 and ICLR-2024. We randomly
sample 90% of the data according to the distribu-
tion of “Rating” to serve as the training set, with
the remaining 10% used as the test set for evalua-
tion. Our test set also includes subsets from RE-
VIEWER2 (Gao et al., 2024) for NeurIPS (2016-
2022) and ICLR (2017-2023). Additionally, we
conduct evaluations on cross-domain datasets from
Natural Language Processing (NLP) and Compu-
tational Linguistics (CL) fields, incorporating data

1https://openreview.net/

from PeerRead (Kang et al., 2018) for CONLL-
2016 and ACL-2017, and from NLPeer (Dycke
et al., 2022) for COLING-2020 and ARR-2022.
All the datasets include the original PDF files of
the papers and structurally formatted reviews. Dif-
ferent review data exhibits format difference across
various conferences and years. The statistics of our
datasets are summarized in Table 1.

Setup. We use Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023) with a context length of 32k as our
backbone model. In the Evaluation module, the
reviews that our methods generate consists of three
parts: a textual part with “Summary”, “Strengths”,
“Weaknesses”, and “Questions”; a quantitative part
that includes “Soundness”, “Presentation”, “Con-
tribution”, and “Rating”; and finally, the paper de-
cision (Accept/Reject) with corresponding reasons.
In the Analysis module, we utilize 80% of the en-
tire training set for training and the remaining 20%
for validation. We set the threshold θ to the average
mismatch score in the validation set. In our frame-
work, there are two methods for generating reviews:
SEA-E and SEA-EA, where SEA-EA is an en-
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hanced model that combines the Analysis module
with SEA-E. For SEA-EA, if the mismatch score
between generated reviews and papers surpasses θ,
this score will be incorporated into the prompts to
improve the quality of generated reviews. More-
over, if the mismatch score consistently exceeds θ
across 10 successive trials, the generation process
will be terminated. The review with the smallest
score will be selected as the final output.

Baselines. We compare the following baseline
methods, which are divided into two categories:
(1) Direct inference with LLMs: We directly use
Mistral-7B (M-7B) for inference, guided by inste
to generate reviews in the specified format. (2) SFT
methods: From all reviews for each paper in the
training set, we randomly select one review as the
output for SFT, referred to as Mistral-7B-Random
(M-7B-R). Mistral-7B-GPT-3.5 (M-7B-3.5) refers
to the method where reviews for each paper are
standardized using gpt-3.5-turbo, and these stan-
dardized outputs are then applied in the SFT stage.
Moreover, REVIEWER2 (Gao et al., 2024) is a
two-stage review generation framework. Due to
time-consuming, we use a smaller test set and com-
pare it with REVIEWER2. The detailed experi-
mental results are provided in the Appendix B.

We unify the instruction inste and input p̂ across
all the baseline methods and our framework. Here,
inste is the instruction for SEA-E, and p̂ represents
the parsed paper. Detailed information about inste
can be found in Table 10 in Appendix A.1.

4.2 Main Results

We use BLEU (Papineni et al., 2002), ROUGE
(Recall), ROUGE (F1-score) (Lin, 2004), and
BERTScore (Zhang et al., 2019) as metrics to eval-
uate the quality of generated reviews across eight
datasets. Specifically, BLEU and ROUGE measure
the similarity between papers and reviews based on
n-grams, while BERTScore focuses on semantic
similarity in the embedding space. For the ROUGE
metric, recall measures how comprehensively the
generated reviews capture the key information from
raw papers, while the F1 score assesses the balance
between precision and recall in the generated con-
tents. To measure the completeness and compre-
hensiveness of the generated reviews, we simply
concatenate all the reviews of each paper to serve
as a benchmark for evaluation. Moreover, we have
also counted the average number of tokens in the
generated reviews.

The results in Table 2 show that SEA outper-
forms other baseline models across all the testing
scenarios, with particularly notable gains on the
ROUGE (Recall) metric. This confirms that our
proposed framework SEA is capable of generating
comprehensive and constructive reviews. Further,
SEA not only performs excellently on in-domain
tasks but also shows strong performance on cross-
domain datasets, demonstrating its robust gener-
alizability. It is also worth noting that SEA-EA
surpasses SEA-E in all cases, underscoring the ef-
fectiveness of the self-correction strategy in gen-
erating well-grounded reviews consistent with raw
papers. However, for M-7B-R, we notice that ran-
domly selecting a review as the output of SFT often
leads to shorter texts. To some extent, the quality
of a review is positively correlated with its length,
which explains its poor performance. Although
directly inferring with M-7B can generate longer
text, it fails to align with human reviews, result-
ing in lower evaluation scores. For M-7B-3.5, its
performance is poorer than SEA-E, which further
indicates the effectiveness of SEA-S. Consequently,
using high-quality standardized data generated by
SEA-S can effectively improve the performance of
SFT. In Appendix A.2 we give concrete examples
of reviews generated by different models.

4.3 Comparison of Standardized Results

We show the standardized results on papers in the
training set of NeurIPS-2023 and ICLR-2024 that
have different rating criteria. In addition, reviews
are organized in various formats.

Content analysis. We first compare SEA-S with
Mistral-7B, GPT-3.5, and GPT-4 to evaluate their
review standardization performance. All the mod-
els are fed with the same inputs, including the in-
struction insts and multiple reviews. Since there is
no ground-truth text for this standardized task, we
utilize reviews generated by SEA-S as references,
while reviews generated by other models serve as
candidates. Next, we calculate recall and preci-
sion values of ROUGE for candidates compared to
references. Based on the content intersection of ref-
erence and candidate, recall and precision refer to
the percentage of intersection in reference and can-
didate, respectively. From the two metrics, we can
deduce the percentages of overlapping and exclu-
sive semantic information in both reviews, whose
results are shown in Figure 3. We compare the
model performance w.r.t. different ROUGE met-

10169



rics, including ROUGE-1 (R1), ROUGE-2 (R2),
and ROUGE-L (RL). The light blue area in the fig-
ure indicates the overlapping contents, while the
dark blue and light grey areas represent the ex-
clusive contents by SEA-S (reference) and other
models (candidate), respectively.

From the figure, we see that, SEA-S can gener-
ate a significantly larger percentage of exclusive
contents than both Mistral-7B and GPT-3.5. This
further verifies that SEA-S can better standardize
reviews with richer information. We also surpris-
ingly observe that SEA-S can output slightly more
exclusive contents in standardized reviews than
GPT-4. The reason could be that the instruction
dataset for SFT in SEA-S is derived from GPT-4.
Considering the high cost of GPT-4, this demon-
strates the effectiveness of small models for review
standardization. On the other hand, recap that the
difference between M-7B-3.5 and SEA-E only lies
in the data standardization step. The advantage
of SEA-E over M-7B-3.5 in Table 2 shows that
SEA-S has better data standardization capability.

0.0 0.2 0.4 0.6 0.8 1.0
% Percentages of semantic information
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R1_GPT-4

RL_GPT-3.5

R2_GPT-3.5

R1_GPT-3.5

RL-Mistral-7B

R2_Mistral-7B

R1_Mistral-7B

40.2% 20.4% 39.4%

41.9% 16.9% 41.1%

27.3% 46.3% 26.4%

43.5% 24.7% 31.8%

44.4% 22.0% 33.6%
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61.4% 18.2% 20.5%
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56.2% 32.7% 11.1%
SEA-S
Overlapping
Other models

Figure 3: Content analysis results.

Format analysis. Standardized data formats can
help LLMs better understand the correspondence
between the instruction and generated content dur-
ing SFT. To perform format analysis, we utilize
regular expression matching based on instruction
formats to calculate the proportion of correctly for-
matted reviews integrated by different models. The
results given in Figure 4 demonstrate that SEA-S
is capable of generating 100% correctly formatted
data. In contrast, Mistral-7B and GPT-3.5 show
poor performance, particularly the former, which
generates a large amount of data that does not meet
the format requirements. Also, we observe that
around 10% of the data integrated by GPT-4 does
not fully comply with the instruction. Compared to
GPT-4, SEA-S benefits from SFT and thus shows

superior instruction adherence. Overall, SEA-S
demonstrates excellent effectiveness in handling re-
views of various formats and criteria. Details of the
instruction for standardizing reviews and specific
examples are given in Appendix A.1.
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Figure 4: Format analysis of different models.

4.4 Mismatch Score in SEA-A

To analyse the consistency between the reviews
generated by different models and the correspond-
ing papers, we input the reviews and their respec-
tive papers in the test set into the trained SEA-A
model to calculate the average mismatch score for
each model across different datasets. As illustrated
in Figure 5, SEA-EA, due to its self-correction strat-
egy, consistently outperforms others across all the
datasets. Further, SEA-E is the runner-up method.
This verifies that the reviews generated by both
methods have a higher consistency with their corre-
sponding papers. Mistral-7B, which has not under-
gone fine-tuning, fails to learn the correspondence
between papers and reviews, resulting in higher
mismatch scores. Although M-7B-R and M-7B-
3.5 are fine-tuned, they are still worse than our
methods. This can be explained by the insufficient
model standardization capability.
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Figure 5: The performance of different models on mis-
match scores across various datasets.

To further study mismatch score, for each pa-
per, we randomly select a review from other pa-
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pers in the test set as the “negative” review. The
negative review is expected to derive a larger mis-
match score than the generated review, which is
empirically observed from our results given in Ap-
pendix A.3. This again confirms that our regres-
sion model is capable of quantitatively assessing
the consistency across reviews and papers.

4.5 Quantitative Score Analysis
We conduct a further quantitative analysis on the
four scores in the generated reviews on two datasets
with actual scores, NeurlPS-2023 and ICLR-2024.
The four scores include “Soundness”, “Presen-
tation”, and “Contribution”, which are integers
from [1, 4], and “Rating”, which is an integer from
[1, 10]. The rating criterion is given in the instruc-
tion of SEA-E in Table 11. In practice, each pa-
per has multiple reviews and each review has the
above four scores. Therefore, given a paper, for
each score, we use the “Confidence” score in each
review as the weight and calculate the weighted
average as the reference score.

Table 3: Quantitative Score Analysis.

Method Soundness Presentation Contribution Rating

N
eu

rI
PS

-2
3 M-7B N/A N/A N/A 8.51 (10%)

M-7B-R 0.20 (99%) 0.26 (99%) 0.32 (99%) 1.44 (99%)
M-7B-3.5 0.15 (99%) 0.16 (99%) 0.27 (99%) 1.14 (99%)
SEA-E 0.12 (100%) 0.14 (100%) 0.18 (100%) 0.80 (100%)
SEA-EA 0.11 (100%) 0.15 (100%) 0.17 (100%) 0.73 (100%)

IC
L

R
-2

4

M-7B N/A N/A N/A 12.96 (13%)
M-7B-R 0.32 (99%) 0.39 (99%) 0.42 (99%) 2.12 (99%)
M-7B-3.5 0.32 (86%) 0.28 (86%) 0.45 (86%) 2.50 (86%)
SEA-E 0.28 (100%) 0.30 (100%) 0.38 (100%) 2.11 (100%)
SEA-EA 0.27 (100%) 0.24 (100%) 0.34 (100%) 1.72 (100%)

To assess the discrepancy between the generated
scores and the reference scores, we use the Mean
Squared Error (MSE) metric. The lower the MSE
value, the more accurate the generated results. In
Table 3, the percentages in parentheses indicate the
proportions of generated reviews with valid scores,
while “N/A” denotes those with unsuccessful gen-
erations (e.g. text is generated instead of scores). It
can be seen that our proposed method ensures the
validity of the output format, whereas other models
tend to generate content that does not comply with
the instruction to varying degrees, especially M-7B
that has not undergone SFT. The MSE metric shows
that our proposed methods outperform the baseline
models in practically all cases. Although SEA-E
scores larger than M-7B-3.5 by 0.02 in the “Pre-
sentation” on ICLR-2024, SEA-E achieves 100%
valid scores in generation, whereas M-7B-3.5 only
reaches 86%. Additionally, SEA-EA demonstrates

improvements over SEA-E in most cases, further
validating that a self-correcting strategy allows for
high consistency between generated results and hu-
man feedback on quantitative evaluation results.

4.6 Qualitative Decision Analysis

In this part, we analyze “Decision” and “Reason”
of the generated review, i.e., the final decision (ac-
cept or reject) of the paper and the corresponding
reasons. Typically, the Area Chair (AC) gives the
final decision and meta-reviews. We calculate the
accuracy, precision, recall, and F1-score of the gen-
erated results compared to the final decisions, and
use BERTScore to measure the semantic similarity
between the reasons and meta-reviews. The model
M-7B-R randomly selects a review for SFT that
does not include the decision or the meta reviews,
hence we do not take it as baseline.

Table 4: Qualitative Decision Analysis. The symbol (*)
indicates that there are incompleteness or errors in the
generated content; only valid generations are counted.

Method Accuracy Precision Recall F1-score BERTScore

N
eu

rI
PS

-2
3 M-7B* 93.18 94.01 99.05 96.47 84.27

M-7B-3.5* 81.01 95.34 83.91 89.26 84.04
SEA-E 99.41 99.37 100.0 99.69 84.21
SEA-EA 99.70 99.69 100.0 99.84 85.22

IC
L

R
-2

4 M-7B* 36.81 37.14 97.65 53.82 84.19
M-7B-3.5* 50.27 39.63 61.03 48.06 84.61
SEA-E 54.16 43.31 69.95 53.50 85.07
SEA-EA 58.23 46.48 71.36 56.30 86.08

From Table 4, it can be seen that SEA-EA leads
to the largest accuracy and BERTScore values,
where the latter shows the model’s effectiveness in
generating reasons semantically aligned with meta-
reviews. Due to the acceptance rate of 95% in the
NeurIPS-2023 test set (see Table 1), the overall
results are large. For ICLR-2024, the accuracy of
SEA-EA surpasses that of SEA-E over 4%, further
indicating the effectiveness of the self-correction
strategy. Additionally, we note that M-7B exhibits
high recall about 97%, but poor precision, suggest-
ing a tendency to cater to human preferences by
accepting most papers. In contrast, our method per-
forms better in both Precision and F1-score, which
indicates that ours can identify papers of different
quality more effectively. Overall, SEA aligns more
closely with actual AC decisions and refrains from
favoring decisions that lean towards acceptance.

4.7 Human and GPT evaluation

To further validate the performance of SEA, we
supplemented the study with a questionnaire ex-
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periment for SEA-E and SEA-S, evaluated by both
humans and GPT. The specific content of the ques-
tionnaire can be found in Appendix C.

4.7.1 Review Quality (SEA-E)
Referring to previous review quality instru-
ments (Van Rooyen et al., 1999), we design 10
questions across different aspects, with each ques-
tion rated on a scale of 1 to 10, where a higher score
indicates better review quality. We then randomly
sample 20 papers and evaluate the review quality
generated by different models.

Human evaluation. We invite 20 qualified ex-
perts to evaluate reviews generated by various mod-
els, with each expert randomly assigned to assess 5
papers. Additionally, we include an extra question
in the evaluation process: after anonymizing the
model names, experts are asked to select the best
review for each paper. The evaluation results from
each expert were then aggregated, and the mean
scores were calculated.

GPT evaluation. Given the inherent subjectivity
in human evaluations and inspired by the work of
Zheng et al. (2023), we employ gpt-4o-2024-05-13
to score the reviews generated by different models
using the same set of 10 questions. Due to the lim-
itation of context length, GPT-4o did not perform
the top-1 ranking evaluation.

Table 5: Review quality evaluation by humans and
GPT. (‘R2’ refers to REVIEWER2.)

Human Evaluation GPT Evaluation
M-7B-R M-7B-3.5 R2 SEA-E M-7B-R M-7B-3.5 R2 SEA-E

Q1 5.1 6.2 3.8 7.9 5.0 6.5 4.5 7.2
Q2 4.6 5.6 3.9 7.8 4.5 6.3 3.9 7.2
Q3 4.5 5.3 3.6 8.0 5.6 6.6 5.1 7.9
Q4 4.3 5.5 3.5 7.8 2.8 3.8 2.7 5.5
Q5 4.4 5.6 4.0 8.0 4.5 5.4 4.2 7.2
Q6 4.0 5.2 3.5 8.2 3.3 4.0 3.1 6.2
Q7 4.4 5.3 3.8 7.4 3.2 4.4 3.1 5.6
Q8 4.5 5.6 3.8 7.7 6.9 7.7 6.3 8.3
Q9 4.6 5.6 3.6 7.8 8.2 8.5 7.0 9.2

Q10 4.5 5.4 3.6 7.9 4.9 5.9 4.4 7.3
Top-1 0.0 0.1 0.0 0.9 -

From the Table 5, it can be seen that SEA-E per-
forms exceptionally well in both GPT-4o and hu-
man evaluations, significantly outperforming other
models on ten questions. Additionally, in 90% of
the cases, SEA-E was preferred by the experts.

4.7.2 Standardized Content Quality (SEA-S)
We design seven questions to assess the standard-
ized content across different models, using the
same scoring criteria for evaluating review quality.
Then, we randomly select 10 papers for evaluation.

Human evaluation. We invite 10 experts to eval-
uate the standardized content generated by different
models, with each expert being randomly assigned
5 papers for assessment.

GPT evaluation. We adopt the GPT-4o to score
the standardised content generated by the different
models based on the same questionnaire.

Table 6: Standardized content evaluation by humans
and GPT.

Human Evaluation GPT Evaluation
M-7B GPT-3.5 GPT-4 SEA-S M-7B GPT-3.5 GPT-4 SEA-S

Q1 6.0 5.6 8.2 9.2 8.4 9.0 9.0 9.1
Q2 6.7 7.5 7.6 8.3 8.9 8.8 8.7 9.3
Q3 5.3 5.9 7.8 9.1 8.5 8.8 9.1 9.3
Q4 7.3 3.7 7.3 9.0 8.7 7.1 8.0 8.9
Q5 7.5 5.0 7.7 9.1 9.6 9.7 9.4 9.9
Q6 6.7 6.8 6.9 8.1 9.3 9.6 9.4 9.9
Q7 5.1 5.2 8.1 8.8 8.5 9.0 9.0 9.2

Table 6 presents the results from two distinct
evaluation methods. The human evaluation empha-
sizes SEA-S’s strengths, especially in Q4, Q5, and
Q6, where it excels in content relevance, logical
coherence, and conciseness. While GPT-4o gener-
ally assigns higher scores across the board, SEA-S
consistently stands out compared to other models.

Based on the results of the questionnaire, the
effectiveness of the SEA framework is further con-
firmed. It demonstrates the ability to generate stan-
dardized content, leading to comprehensive and
high-quality review feedback.

5 Conclusion

In this paper, we present SEA, a novel framework
for automated paper reviewing. Specifically, we
propose a new paradigm for constructing a stan-
dardized review dataset. Based on this dataset, we
fine-tune an LLM to generate high-quality reviews.
Moreover, we propose a new evaluation metric to
measure the consistency between papers and gener-
ated reviews. Comprehensive experimental results
demonstrate that the SEA framework can generate
feedback that aligns with human reviews. In sum-
mary, we emphasize that the initial motivation for
the field of automated paper review stems from the
time-consuming and labor-intensive nature of tra-
ditional peer reviewing. Automated peer reviewing
can provide timely feedback, enhancing research
quality and accelerate the progress of scientific de-
velopment. Therefore, we anticipate that the SEA
framework will help researchers improve the qual-
ity of their work and shed light on the field of
automated scientific reviewing.
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Limitations

Despite these notable achievements, it is crucial
to acknowledge the limitations of SEA, particu-
larly its limited expansion into various academic
disciplines and insufficient alignment with human
standards. Here we elaborate on some of these con-
straints, along with intriguing future explorations.

Domain Expansion. Although the SEA frame-
work has been successful in automating paper re-
view generation within the machine learning field,
it has not yet been expanded to other academic dis-
ciplines, such as physics and mathematics. As a
universal automated paper review framework, SEA
is able to generalize across any field. Thus, it would
be exhilarating to investigate whether SEA can
yield high-quality review feedback when applied
to other academic disciplines.

Enhanced Consistency-Guided Training. Al-
though optimizing the output of SEA-E by calcu-
lating mismatch scores between review and the
original paper can generate review that are more
consistent in content, we did not enhance SEA-E
using natural language guidance based on scores
during the training phase. To improve SEA-E in
following instructions during the self-correction
phase, we plan to collect relevant natural language
guided self-correction dataset. By training on this
dataset, we will further enhance SEA-E in content
preference, enabling it to generate review feedback
that aligns more accurately with the original paper.

Rebuttal Exploration. In the academic peer re-
view process, the rebuttal stage is a critical com-
ponent. During this stage, authors have the oppor-
tunity to correct potential misunderstandings by
reviewers, clarify specific parts of their paper, or
provide additional data and information to enhance
the support for their research findings. Therefore,
in our future research, we will explore methods to
assist authors in making effective rebuttals.

Ethical Considerations

This paper proposes an automated paper review-
ing framework that utilizes advanced long-context
LLMs and supervised fine-tuning to align with hu-
man reviews and generate comprehensive reviews.
This assists authors in improving the quality of
their papers. As we explore the extensive potential
of automated paper reviewing, it is essential to con-
sider potential consequences associated with this

technology. A significant concern is the misuse of
the model. In the formal review processes of aca-
demic conferences, authors may receive reviews
generated by the model without their knowledge.
This situation could not only impact the fairness
and transparency of the review process but also
raise issues of trust and authenticity. To mitigate
these risks, we will incorporate specific clauses
in our usage license that strictly prohibit any mis-
use of the system, thereby ensuring it serves as a
beneficial tool in academia.
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A More Detailed Description of the
Framework SEA

A.1 SEA-S
We further analyse the performance of SEA-S,
the open-source model Mistral-7B, and the closed-
source models GPT-3.5 and GPT-4 in standardised
review experiments.

Instruction. In Table 10, we demonstrate our in-
structions for generating standardized review based
on multiple reviews for each paper. We specify in
the instruction that the model should integrate mul-
tiple reviews into three parts: textual descriptions,
quantitative scores, and review results. The tex-
tual descriptions include “Summary”, “Strengths”,
“Weaknesses”, and “Questions”, while the quanti-
tative scores cover “Soundness”, “Presentation”,
“Contribution”, and “Rating”. These elements are
formatted in alignment with the original review
template. Additionally, we incorporate the Area
Chair’s (AC) decision into the generated content,
and instruct the model to generate corresponding
acceptance or rejection reasons.

Standardization Examples. Figure 6 shows
standardization examples from Mistral-7B, GPT-
3.5, and SEA-S, which incorporate multiple re-
views for the same paper. We can observe from
the figure that the output of SEA-S is both rich and
concise without redundant information. In contrast,
the output from Mistral-7B not only lacks complete
format but also has sparse content, with the miss-
ing parts highlighted in orange in the figure. As for
the review generated by GPT-3.5, a significant por-
tion consists merely of straightforwardly extracting
original review content, failing to eliminate redun-
dant information as instructed, such as the overuse
of the phrase “Lack of”, which is indicated in red
to show the excessive repetition.

A.2 SEA-E
In Table 11, we present the instruction designed
to generate reviews that conform to the specified
format based on the content of the paper. In Fig-
ures 7 and 8, we display the reviews generated by
different models for a particular paper, including
Mistral-7B (M-7B), Mistral-7B-Random (M-7B-
R), Mistral-7B-GPT-3.5 (M-7B-3.5), SEA-E, and
SEA-EA. We can observe the following points: (1)
Mistral-7B raises broad and general issues, tend-
ing to please humans. In the “Strengths” part, it
splits the complexity issue into two points, which

is not concise, and the content of the “Weaknesses”
part does not match the paper decision. (2) Mistral-
7B-Random visibly generates shorter texts with
reduced detail. (3) Mistral-7B-GPT-3.5 generates
duplicates due to insufficient standardization of the
instruction dataset at the SFT stage, resulting in
lower-quality reviews. (4) SEA-E and SEA-EA
generate clearer viewpoints and ensure extensive
coverage of content. (5) SEA-EA focuses more
on the details within the paper. These comparisons
demonstrate the superiority of SEA-E and SEA-EA
in generating reviews.

A.3 SEA-A

To demonstrate the effectiveness of the regression
model SEA-A, we randomly select a review for
each paper from each dataset to form a paper-
review pair. Then, we use SEA-A to calculate mis-
match score, which is displayed in Table 7. Since
SEA-A is trained with a majority of low-scoring
samples, the values of the mismatch scores are not
substantial. To enhance the intuitiveness of the
main text, we present the results as Figure 5, and
here Table 8 demonstrates the specific values in-
stead. By comparing Table 7 with Table 8, each
element of the former is larger than the correspond-
ing item of the latter. Therefore, our regression
model has the ability to discern the consistency
between different reviewers and papers.

Table 7: Performance of mismatch scores in random
pairs of papers and reviews.

Datasets M-7B M-7B-3.5 M-7B-R SEA-E SEA-EA

CONLL-16 1.1974 1.0118 0.5904 0.5832 0.5057
ACL-17 1.0146 0.6658 0.5784 0.4855 0.5006
COLING-20 0.9731 0.5553 0.4699 0.4733 0.4420
ARR-22 0.8285 0.5656 0.5262 0.4452 0.4043

NeurIPS-16-22 0.9640 0.8343 0.6974 0.5792 0.5536
ICLR-17-23 0.9850 0.6169 0.6551 0.4755 0.4474
NeurIPS-23 0.9451 0.7252 0.7022 0.5964 0.5513
ICLR-24 0.9348 0.6037 0.5935 0.4256 0.3999

Table 8: Performance of mismatch score in pairs of
papers and corresponding reviews.

Datasets M-7B M-7B-R M-7B-3.5 SEA-E SEA-EA

C
ro

ss
-d

om
ai

n CONLL-16 1.0503 0.8416 0.5665 0.5595 0.3926
ACL-17 0.9309 0.6608 0.5257 0.4529 0.4359
COLING-20 0.8642 0.5235 0.4446 0.3931 0.3888
ARR-22 0.7095 0.5136 0.4964 0.3953 0.3926

In
-d

om
ai

n NeurIPS-16-22 0.8409 0.7282 0.6271 0.5098 0.4733
ICLR-17-23 0.8630 0.5759 0.5924 0.4358 0.4227
NeurIPS-23 0.7638 0.6511 0.6388 0.5109 0.4541
ICLR-24 0.7746 0.5203 0.5396 0.4063 0.3788
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Table 9: The overall performance (%) on the smaller test set.

Method BLEU
ROUGE (Recall) ROUGE (F1-score)

BERTScoreR-1 R-2 R-L R-1 R-2 R-L

CONLL-16
R2 15.21 17.15 4.27 8.63 25.24 6.40 12.67 83.00
M-7B 18.92 20.81 4.81 10.30 28.66 6.81 14.18 82.49
M-7B-R 18.16 21.96 5.17 10.62 29.56 7.18 14.31 82.57
M-7B-3.5 19.70 26.51 5.58 13.96 30.19 6.45 15.37 82.01
SEA-E 29.07 34.91 7.79 15.29 38.64 8.67 16.73 82.91
SEA-EA 31.01 36.96 8.91 16.34 40.49 9.68 17.57 82.94

ACL-17
R2 14.20 17.66 4.42 8.89 23.86 6.25 12.07 82.26
M-7B 18.37 21.32 4.92 10.50 27.39 6.47 13.38 82.56
M-7B-R 17.93 22.14 5.15 10.84 27.50 6.72 13.34 82.47
M-7B-3.5 16.23 27.35 6.13 14.68 25.87 5.99 13.15 82.23
SEA-E 24.86 33.02 7.51 14.97 34.97 8.15 15.38 82.87
SEA-EA 27.02 35.66 8.61 15.85 37.48 9.16 16.11 83.05

COLING-20
R2 18.08 23.71 5.49 12.14 28.57 6.75 14.60 82.04
M-7B 21.97 29.11 6.42 14.80 31.91 7.01 15.83 82.76
M-7B-R 19.49 29.21 6.69 15.20 30.23 6.80 15.25 82.27
M-7B-3.5 18.13 34.03 7.56 18.43 28.49 6.10 14.77 82.12
SEA-E 22.93 40.62 9.23 20.05 34.37 7.65 16.15 82.84
SEA-EA 24.85 42.97 10.57 20.89 36.67 8.76 16.96 83.09

ARR-22
R2 17.87 22.62 6.20 11.83 28.62 8.13 15.03 79.29
M-7B 23.74 28.81 7.99 14.56 34.31 9.71 17.26 83.41
M-7B-R 21.77 28.49 7.66 14.86 32.60 8.98 16.84 82.72
M-7B-3.5 18.55 34.27 8.55 18.47 29.47 7.64 15.20 82.65
SEA-E 25.27 40.40 10.24 19.40 37.68 9.70 17.50 83.46
SEA-EA 27.16 43.02 11.93 20.27 39.94 11.21 18.30 83.66

Method BLEU
ROUGE (Recall) ROUGE (F1-score)

BERTScoreR-1 R-2 R-L R-1 R-2 R-L

NeurIPS-16-22
R2 10.41 11.00 3.94 5.95 18.23 6.64 9.88 83.30
M-7B 14.94 14.85 5.08 7.44 23.47 8.05 11.73 82.91
M-7B-R 12.86 14.14 4.78 7.46 21.65 7.52 11.22 82.56
M-7B-3.5 16.48 21.43 6.33 11.34 26.36 8.12 13.49 82.34
SEA-E 25.03 24.82 7.38 10.98 34.59 10.41 15.30 83.14
SEA-EA 27.16 27.43 8.60 11.98 37.32 11.77 16.26 83.28

ICLR-17-23
R2 9.19 9.25 3.51 5.06 15.94 6.09 8.78 83.39
M-7B 13.53 12.93 4.54 6.46 21.50 7.59 10.78 83.22
M-7B-R 12.83 12.95 4.32 6.60 21.02 7.13 10.74 82.66
M-7B-3.5 16.22 19.10 5.75 10.14 25.71 7.98 13.16 82.73
SEA-E 23.21 22.17 6.88 9.89 32.31 10.14 14.47 83.48
SEA-EA 25.29 24.70 7.95 10.75 35.17 11.45 15.37 83.62

NeurIPS-23
R2 7.84 8.29 3.33 4.63 14.68 5.91 8.23 83.19
M-7B 12.84 12.35 5.13 6.36 21.17 8.81 10.92 84.00
M-7B-R 12.34 12.18 4.93 6.27 20.57 8.36 10.65 83.68
M-7B-3.5 16.33 17.39 6.33 8.89 26.29 9.73 13.29 83.28
SEA-E 21.86 20.81 7.46 9.38 31.98 11.49 14.45 84.13
SEA-EA 23.78 22.91 8.60 10.12 34.59 13.02 15.31 84.31

ICLR-24
R2 8.91 9.26 3.61 5.06 16.16 6.34 8.88 83.30
M-7B 13.25 12.74 4.90 6.37 21.50 8.30 10.78 83.98
M-7B-R 13.47 13.69 5.23 6.96 22.16 8.57 11.28 83.89
M-7B-3.5 16.88 20.21 6.68 10.56 27.32 9.34 13.79 83.44
SEA-E 23.06 22.58 7.62 9.84 33.57 11.38 14.68 84.05
SEA-EA 25.44 25.19 8.81 10.70 36.62 12.88 15.61 84.23

Interestingly, we apply the SEA framework to
this paper and compare its generated review with
the official feedback we receive. We find that the
SEA framework aligns with some aspects of the ac-
tual review in terms of “Strengths,” “Weaknesses,”
and “Questions.” In addition, SEA provides further
constructive suggestions for improvement, demon-
strating its ability to generate comprehensive and
high-quality review comments. The specific gener-
ated reviews are shown in Figure 9.

B Compare with REVIEWER2

To further validate the effectiveness of our frame-
work SEA, we compare its performance with the
open-source model of REVIEWER2 (Gao et al.,
2024). Given that using two LLMs for inference
process of REVIEWER2 is more time-consuming,
we sample a smaller test set which is a subset of
the test set used in this paper. Specifically, we ran-
domly choose 100 samples from each dataset (or
use all samples if the dataset contains fewer than
100). When inferring the model of REVIEWER22,
we follow the settings described in the original
paper. Table 9 lists the results for REVIEWER2
(abbreviated as R2), other baseline models, and
our proposed framework. The results show that
both SEA-EA and SEA-E exhibit excellent perfor-
mance. In contrast, the results for REVIEWER2

2https://github.com/ZhaolinGao/Reviewer2

are not ideal in the ROUGE metric and are un-
stable in the BERTScore metric. This is because
REVIEWER2 often generates contents that are rel-
atively short and lack valuable information. In con-
trast, our methods which fine-tune on a high-quality
instruction dataset can generate more comprehen-
sive reviews, demonstrating the superiority of our
framework.
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C Human and GPT evaluation

In order to evaluate the review quality generated by
SEA-E and the standardized content quality gener-
ated by SEA-S, we design a questionnaire consist-
ing of 10 questions and 7 questions, respectively.
For the review quality, we add an additional ques-
tion during the human evaluation phase: selecting
the best review from those generated by different
models. The specific questionnaire contents are as
follows:

SEA-E.
1. Did the reviewer discuss the importance of the

research question?
2. Did the reviewer discuss the originality of the

paper?
3. Did the reviewer clearly identify the strengths

and weaknesses of the method (study design,
data collection and data analysis)?

4. Did the reviewer make specific useful comments
on the writing, organization, tables and figures
of the manuscript?

5. Were the reviewer’s comments constructive?
6. Did the reviewer supply appropriate evidence

using examples from the paper to substantiate
their comments?

7. Did the reviewer comment on the author’s inter-
pretation of the results?

8. Did the reviewer maintain objectivity and avoid
bias in the review?

9. Was the language used by the reviewer profes-
sional and appropriate?

10. How would you rate the quality of this review
overall?

11. Please select what you consider to be the best
review. (The question only in the human evalua-
tion)

SEA-S.
1. Did this review effectively consolidate similar

points from the original reviews?
2. Did the review maintain objectivity and avoid

bias?
3. Did this review contain a lot of useful informa-

tion?
4. Did this review contain a lot of repetitive con-

tent?
5. Is there any contradiction in this review?
6. Was the language used by the review profes-

sional and appropriate?
7. How would you rate the quality of this review

overall?
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**Summary:**
The paper introduces XXX, a method that utilizes 3D CNN 
(C3D) as the encoder backbone for video stylization, with a 
focus on separating motion and appearance using appearance 
subnets and XXX. This separation is intended to enhance the 
stylization stability by ensuring that motion and appearance are 
not entangled, which is a significant challenge in traditional 2D 
CNN-based methods. Results are demonstrated on the 
sports1M dataset, highlighting the superior performance of the 
proposed method compared to existing baseline methods. 
Despite the methodological advancements, the paper is 
criticized for its limited evaluation scope and unclear 
motivations for using 3D CNNs.

**Strengths:**
- The paper is the first to apply 3D CNNs to video stylization, 
which is a significant technical contribution.
- The use of a novel framework including an appearance subnet 
and Entangle network demonstrates innovative approaches in 
handling the stylization process.
- The proposed method has been trained in multiple phases, 
which ensures that the network effectively learns its 
functionalities.
- The results show significant improvements over baseline 
methods, indicating the effectiveness of the proposed 
approach.
- The paper introduces a large-scale dataset specifically curated 
for video stylization, enhancing the reproducibility and 
applicability of the research.

**Weaknesses:**
- The motivation and advantages of using 3D CNNs for video 
stylization are not well articulated, making the technical 
contributions seem weaker.
- The paper lacks a clear explanation of why four appearance 
subnets are necessary, and the role of the Entangle Subnet is 
unclear.
- The description of the network structure and its 
functionalities is confusing, particularly in Section 3 of the 
paper.
- The computational cost associated with using 3D CNNs 
compared to 2D CNNs is not addressed, raising concerns about 
the scalability and efficiency of the proposed method.
- Comparisons with state-of-the-art (SOTA) methods are not 
comprehensive, focusing only on optical flow metrics which 
might not adequately capture the quality of style transfer.
- There is a lack of user studies, which are critical for evaluating 
the subjective quality of the stylization results.

**Questions:**
- Can the authors clarify the necessity and role of the multiple 
appearance subnets and the Entangle Subnet in the proposed 
method?
- How would the performance of the model be affected if the 
number of appearance subnets were reduced?
- Why is a 3D CNN necessary when a 2D CNN could potentially 
suffice for extracting style features?
- Could the authors elaborate on how the proposed method 
disentangles motion and appearance, particularly in the context 
of the training phases?
- In the context of stylization, what are the advantages of using 
a 3D CNN over a 2D CNN with optical flow motion 
compensation?
- Could the authors provide more detailed comparisons with 
other SOTA methods, including qualitative and quantitative 
assessments across a broader range of metrics?

...

**Paper Decision:**
- Decision: Accept
- Reasons: Despite initial skepticism about the novelty of the 
approach, the paper managed to convince reviewers during the 
discussion phase that using 2D CNNs for the task introduces 
artifacts, which justifies the use of 3D CNNs. The introduction 
of a large-scale dataset for video stylization is seen as a 
significant contribution that will encourage further research in 
this domain. However, concerns about the clarity of the paper 
and the need for a more comprehensive evaluation were noted. 
The decision to accept is based on the overall strengths of the 
paper, the technical soundness, and the potential impact on the 
field, even though the evaluation scope and presentation clarity 
need improvement.

**Summary:**
This paper introduces XXX, a method for video stylization using 3D CNNs and XXX to 
disentangle motion and appearance. The proposed method achieves state-of-the-art 
results on XXX datasets. While reviewers acknowledge the novelty and effectiveness of 
the approach, there are concerns about the motivation for using 3D CNN, model 
complexity, and the need for more comprehensive comparisons.

**Strengths:**
- This paper is the first to use 3D CNN for video stylization.
- The temporal and intra-loss improve the stylization stability.
- The proposed framework using 3D CNN for stylization is novel.
- Results are significantly better compared to baseline methods.
- The paper expands XXX to XXX.
- The quality of stylization results is good.

**Weaknesses:**
- The usage of 3D CNN is not well motivated.
- The technical contributions are weak.
- Extra computational cost compared with 2D CNN-based methods.
- The model needs to be trained with four cascaded phases.
- Lack of comprehensive comparison with state-of-the-art methods.
- Unclear necessity of four appearance subnets and Entangle Subnet.
- Lack of detailed network structure description.
- Weak paper writing and confusing logic in Section 3.
- Lack of analysis in ablation study.
- Limited comparison with related works.
- Lack of user study for subjective assessment.
- Lack of obvious improvement in quantitative comparison.
- Lack of comparison to single image stylization with optical flow motion compensation.

**Questions:**
- Why is 3D CNN used for stylization and what are the motivations for its usage?
- Why are four appearance subnets and the Entangle Subnet necessary?
- How does reducing the number of appearance subnets affect performance?
- How does the model training in different stages enforce network functionalities?
- How to disentangle motion and appearance using four appearance subnets?

...

**Paper Decision:**
- Decision: Accept
- Reasons: The paper presents a novel method for video stylization with 3D CNNs and 
XXX, achieving state-of-the-art results. While there are concerns about the motivation for 
using 3D CNN and the need for more comprehensive comparisons, the reviewers agree 
that the technical soundness and contributions of the paper warrant acceptance. Further 
improvements in addressing the reviewers' feedback could enhance the paper's impact.

**Summary:**
This paper proposes XXX, a method for video stylization using a 3D CNN encoder 
backbone and XXX for separating motion and appearance features. The authors 
demonstrate the effectiveness of the proposed method on the XXX dataset.

**Strengths:**
- First to use 3D CNN for video stylization
- Temporally consistent results
- Quantitative evaluations of optical flow

**Weaknesses:**
- Motivations for using 3D CNN not well explained
- Usage of 3D CNN brings extra computational cost
- Style clip could be processed using a 2D CNN
- Intra-clip consistency measurement could be improved
- Model could be less elegant with multiple training phases
- Comparison with SOTAs not comprehensive

(Lack of Questions)

...

**Paper Decision:**
- Decision: Accept
- Reasons: The paper presents a novel approach to video stylization using a 3D CNN 
encoder and XXX for motion and appearance separation. While there are some 
weaknesses, such as the lack of clear motivations for using 3D CNN and the need for 
comprehensive comparison with SOTAs, the results demonstrate state-of-the-art 
performance. The authors are encouraged to address the weaknesses in future work.

GPT-3.5

SEA-SMistral-7BMistral-7B

Figure 6: Examples of standardization for Mistral-7B, GPT-3.5 and SEA-S.
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**Summary:**
This paper introduces a novel XXX algorithm for risk-sensitive 
reinforcement learning in low-rank Markov Decision Processes 
(MDPs) with nonlinear function approximation. The algorithm aims 
to maximize the Conditional Value at Risk (CVaR) with a fixed risk 
tolerance. The paper addresses the challenge of extending CVaR RL 
to settings with large state spaces and proposes a computationally 
efficient planning oracle. Theoretical analyses provide insights into 
the algorithm's sample complexity and computational complexity.

**Strengths:**
- This paper extends the CVaR RL algorithm to the low-rank MDP 
setting with nonlinear function approximation, which is a significant 
advancement.
- The paper provides a comprehensive theoretical analysis of the 
algorithm, demonstrating its sample efficiency.
- The authors introduce a computationally efficient planning oracle, 
improving the computational complexity of the algorithm.
- The paper is well-structured and clearly written, making it easy to 
follow.
- The authors provide a comprehensive theoretical analysis of the 
algorithm, demonstrating its sample efficiency.
- The paper addresses the challenge of extending CVaR RL to 
settings where the state space is large, which is a significant 
limitation of existing methods.
- The authors propose a novel discretized Least-Squares Value 
Iteration (LSVI) algorithm for the CVaR objective, which is 
computationally efficient.
- The paper provides theoretical guarantees on the sample 
complexity and computational complexity of the proposed algorithm.
- The paper is well-written and easy to follow.
- The paper is the first to study CVaR RL in low-rank MDPs with 
nonlinear function approximation.
- The paper provides a thorough discussion of the theoretical 
properties of the proposed algorithm.

**Weaknesses:**
- The paper does not provide a comparison of its algorithm with 
existing methods in the field.
- The paper does not provide empirical results to demonstrate the 
performance of the proposed algorithm.
- The paper does not discuss the limitations of the proposed 
algorithm.
- The paper does not provide a comprehensive comparison of its 
results with existing methods in the field.
- The paper does not provide empirical evaluation of the algorithm.
- The paper does not provide a comparison of the proposed 
algorithm with existing methods in the field.
- The paper does not discuss the limitations of the proposed 
algorithm.
- The paper does not provide empirical evaluation of the algorithm.
- The paper does not provide empirical evaluation of the algorithm.
- The paper does not provide empirical evaluation of the algorithm.

**Questions:**
- Could you provide a comparison of your algorithm with existing 
methods in the field?
- Could you provide empirical results to demonstrate the 
performance of your proposed algorithm?
- Could you discuss the limitations of your proposed algorithm?
- Could you provide a comprehensive comparison of your results 
with existing methods in the field?
- Could you provide empirical evaluation of your algorithm?
- Could you provide empirical evaluation of your algorithm?
- Could you provide empirical evaluation of your algorithm?
- Could you provide empirical evaluation of your algorithm?

**Soundness:**
3 good

**Presentation:**
3 good

**Contribution:**
3 good

**Rating:**
7 accept, but needs minor improvements

**Paper Decision:**
- Decision: Accept
- Reasons: The paper makes a significant contribution by extending 
CVaR RL to low-rank MDPs with nonlinear function approximation. 
The proposed algorithm is theoretically sound and computationally 
efficient. While the paper lacks empirical evaluations and 
comparisons with existing methods, the thorough theoretical analysis 
and well-structured presentation support its acceptance.

**Summary:**

The paper proposes XXX and XXX, two algorithms for risk-sensitive reinforcement learning (RL) in 
low-rank Markov Decision Processes (MDPs) with nonlinear function approximation. XXX is a 
representation learning algorithm that optimizes the CVaR metric using an MLE oracle and UCB-type 
bonuses, while XXX is a computationally efficient planning oracle that improves the computational 
complexity of XXX. Both algorithms are shown to be the first provably efficient algorithms for CVaR 
RL in low-rank MDPs.

**Strengths:**

* The paper extends the application of risk-sensitive RL to low-rank MDPs with nonlinear function 
approximation, which is an important step towards applying risk-sensitive RL to real-world problems 
where the state space is large and function approximation is necessary.
* The proposed XXX algorithm is the first provably sample-efficient algorithm for CVaR RL in low-rank 
MDPs, and the theoretical analysis of the algorithm demonstrates that it would provide an \(\
epsilon\)-optimal CVaR with \(\tilde{O}(1/\epsilon^{2})\) samples.
* The introduction of the XXX algorithm improves the computational complexity of XXX planning, 
making it only require polynomial running time with an MLE oracle.

**Weaknesses:**

* The paper assumes the underlying model transitions admit a low-rank decomposition, but it does 
not provide a method for estimating the rank of the underlying transition kernel.
* The paper assumes the availability of an MLE oracle, which may not be practical in all real-world 
applications.

**Questions:**

* How can we estimate the rank of the underlying transition kernel in low-rank MDPs without 
assuming it is known?
* Are there practical methods for implementing an MLE oracle in real-world applications?

**Soundness:**

The paper's soundness is good, as the algorithms proposed are based on solid theoretical foundations 
and the theoretical guarantees provided demonstrate the sample complexity and computational 
efficiency of the algorithms.

**Presentation:**

The paper's presentation is excellent, as it is well-written, clear, and easy to follow. The use of 
mathematical notation is clear and concise, and the results are presented in a logical and organized 
manner.

**Contribution:**

The paper's contribution is excellent, as it proposes the first provably efficient algorithms for risk-
sensitive RL in low-rank MDPs, filling a gap in the existing body of knowledge.

**Rating:**

The paper's rating is strong accept, as it makes a significant contribution to the field of risk-sensitive 
RL and provides theoretical guarantees for the sample complexity and computational efficiency of the 
proposed algorithms.

**Paper Decision:**

Accept. The paper makes a significant contribution to the field of risk-sensitive RL and provides 
theoretical guarantees for the sample complexity and computational efficiency of the proposed 
algorithms. The weaknesses and questions identified can be addressed through future work.

Summary: This paper studies risk-sensitive RL in low-rank MDPs with nonlinear function approximation. A UCB-

bonus driven algorithm is proposed and proved to have a sample complexity of O(H2A2d4τ2ϵ2) to achieve an ϵ-

optimal CVaR. To improve the computational efficiency, the authors also propose a computationally efficient 

planning oracle, which has a polynomial computational cost with respect to the dimension of representations.

Strengths: 1. This paper is well-motivated. The proposed algorithm is the first provably efficient CVaR RL 

algorithm in low-rank MDPs.   2. The algorithm and the theoretical analysis are sound.   3. The paper is well-

written and easy to follow.

Weaknesses: 1. In Theorem 4.1, the sample complexity has a dependency of H7. It would be helpful if the authors 

could explain the reason for this.   2. In the related work section, the authors claim that "Unlike linear MDPs, since 

the underlying ψ and ϕ are unknown, we need to carefully balance representation learning, exploration, and worst-

case failure stakes in low-rank MDPs." It seems that the only difference is that the parameters are unknown in low-

rank MDPs. Does this mean that the theoretical analysis is non-trivial?

Questions: See weaknesses.

Soundness: 3 good

Presentation: 3 good

Contribution: 3 good

Rating: 6: marginally above the acceptance threshold

Mistral-7B-3.5Mistral-7B

Mistral-7B-Random

Figure 7: Examples of generated reviews for Mistral-7B, Mistral-7B-Random and Mistral-7B-GPT-3.5.
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**Summary:**
The paper investigates the application of Conditional Value at Risk 
(CVaR) in low-rank Markov Decision Processes (MDPs), specifically 
focusing on the integration of exploration bonuses and risk-sensitive 
policies. The authors propose an algorithm called ELA (ELLA in the 
appendix), which leverages an MLE oracle to optimize CVaR and achieve 
near-optimal policies with polynomial sample complexity. The algorithm 
is further refined by introducing a computationally efficient planning 
oracle, ELLA, which enhances computational efficiency. The theoretical 
framework provided includes proofs of sample complexity and regret 
bounds, although these are critiqued for their clarity and the 
assumptions made.

**Strengths:**
- The paper introduces a novel algorithm for CVaR RL in low-rank MDPs, 
which is the first of its kind to address this specific setting.
- The algorithm is designed to be computationally efficient, with 
theoretical guarantees for both regret and sample complexity.
- The paper is well-written, with clear presentation of the algorithm and 
its theoretical underpinnings, making it accessible to readers.
- The authors provide a comprehensive discussion on the computational 
complexity of their algorithms, which is a significant contribution to the 
field.
- The paper addresses a relevant problem in risk-sensitive RL, which is 
crucial for practical applications in finance and risk management.

**Weaknesses:**
- The paper's theoretical analysis, particularly the proofs of regret and 
sample complexity, is not well-explained, leading to potential 
misunderstandings about the assumptions and the implications of the 
results.
- There is a lack of clarity in the definitions and theorems, which could 
hinder understanding and reproducibility of the results.
- The paper does not sufficiently discuss the limitations of its approach, 
particularly in terms of computational efficiency and the practical 
applicability of the assumptions made.
- The paper does not provide empirical evidence or simulations to 
support the claims made about the algorithm's performance, which could 
undermine the credibility of the results.
- The paper's reliance on a low-rank assumption and the need for a 
strong realizability assumption could limit the generalizability of the 
results.

**Questions:**
- Can the authors clarify the assumptions and implications of the regret 
and sample complexity results, particularly in terms of the assumptions 
made and the conditions under which the results hold?
- How does the algorithm handle the computational efficiency issues, 
especially in large-scale MDPs?
- Is there a possibility to extend the algorithm to handle non-discrete 
reward distributions, and if so, what are the challenges involved?
- How does the algorithm compare to existing algorithms in terms of 
computational efficiency and sample complexity?
- Could the authors provide more details on the computational efficiency 
of the algorithm, particularly in scenarios where the state space is large?
- What are the practical implications of the assumptions made in the 
paper, and how do these assumptions affect the generalizability of the 
results?

**Soundness:**
3 good

**Presentation:**
3 good

**Contribution:**
3 good

**Rating:**
5 marginally below the acceptance threshold

**Paper Decision:**
- Decision: Reject
- Reasons: The paper, while introducing a novel algorithm for CVaR RL in 
low-rank MDPs, suffers from several critical issues that led to its 
rejection. The primary concerns include the lack of clarity in the 
theoretical analysis, particularly the proofs of regret and sample 
complexity, which are not well-explained and rely on strong assumptions 
that may not hold in practical scenarios. Additionally, the paper does not 
provide empirical evidence to support the claims made about the 
algorithm's performance, which is essential for validating the theoretical 
results. Furthermore, the paper's assumptions, such as the realizability 
assumption and the low-rank assumption, are not adequately discussed, 
which raises concerns about the generalizability of the results. The 
decision to reject is supported by the metareview, which highlights these 
issues and suggests that the paper needs significant revisions to address 
these concerns before it can be considered for acceptance.

**Summary:**
The paper investigates risk-sensitive reinforcement learning (RL) in the 
context of low-rank Markov Decision Processes (MDPs), focusing on the 
Conditional Value at Risk (CVaR) objective. The authors introduce an 
algorithm called ELA (ELLA in the appendix), which employs an Upper 
Confidence Bound (UCB) bonus-driven approach to manage exploration, 
exploitation, and representation learning. The algorithm leverages a 
discretized Least-Squares Value Iteration (LSVI) for computational 
efficiency. The paper provides theoretical analysis on the sample 
complexity and computational efficiency of the algorithm, showing that it 
achieves a sample complexity of O~(H^TAD^4/τ^2ε^2) and a 
computational complexity that depends on the dimension of 
representations rather than the state space size.

**Strengths:**
- The paper is the first to study risk-sensitive RL with CVaR in low-rank 
MDPs, providing a novel theoretical analysis that is relevant and 
interesting.
- The algorithm is well-explained and easy to follow, with clear 
mathematical notation and a comprehensive analysis of the algorithm's 
theoretical properties.
- The paper introduces a novel discretized Least-Squares Value Iteration 
(LSVI) algorithm for the CVaR objective, which is computationally 
efficient and achieves a polynomial running time with a Maximum 
Likelihood Estimation (MLE) oracle.
- The authors provide a comprehensive theoretical analysis of the 
algorithm, demonstrating that it would provide an ε-optimal CVaR with 
O(1/ε^2) samples, and show that the ELA algorithm is the first provably 
sample-efficient algorithm for CVaR RL in low-rank MDPs.
- The paper is well-written, with a clear structure and logical flow, and 
the mathematical notation is well-defined and easy to follow.

**Weaknesses:**
- The paper's assumption of access to exact Value Iteration (VI) is strong 
and not justified, especially considering the computational challenges in 
real-world applications.
- The paper lacks empirical validation of the algorithm, which could help 
in understanding its practical performance and limitations.
- The computational complexity of the algorithm, particularly in terms of 
the dependence on the number of episodes H, is not thoroughly 
discussed or justified.
- The paper does not adequately discuss the scalability of the algorithm 
with increasing state space size, which is a critical factor in practical 
applications.
- The paper does not compare its results with other state-of-the-art 
algorithms, which could help in understanding the relative performance 
and effectiveness of the proposed method.

**Questions:**
- Can the authors justify the assumption of access to exact Value 
Iteration (VI) and discuss the implications of this assumption on the 
practical applicability of the algorithm?
- How does the computational complexity of the algorithm scale with the 
number of episodes H, and what are the practical implications of this 
dependence?
- Could the authors provide empirical validation of the algorithm to 
demonstrate its practical performance and limitations?
- How does the proposed algorithm compare with other state-of-the-art 
algorithms in terms of computational efficiency and sample complexity?
- Could the authors discuss the potential applications of the algorithm in 
practical scenarios, such as finance or healthcare, and how it might be 
adapted to different MDP settings?

**Soundness:**
3 good

**Presentation:**
3 good

**Contribution:**
3 good

**Rating:**
7 accept, but needs minor improvements

**Paper Decision:**
- Decision: Accept
- Reasons: The paper presents a novel algorithm for risk-sensitive RL in 
low-rank MDPs, which is both theoretically sound and computationally 
efficient. The algorithm introduces a discretized Least-Squares Value 
Iteration (LSVI) for computational efficiency and achieves a sample 
complexity of O~(H^TAD^4/τ^2ε^2). The paper is well-written, with 
clear mathematical notation and a comprehensive analysis of the 
algorithm's theoretical properties. However, the paper lacks empirical 
validation of the algorithm, which could help in understanding its 
practical performance and limitations. The decision to accept is based on 
the paper's theoretical contributions and the computational efficiency of 
the proposed algorithm, but it is recommended that the authors address 
the missing empirical validation in future work.

SEA-E SEA-EA

Figure 8: Examples of generated reviews for SEA-E and SEA-EA.
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SEA

**Summary:**
The paper introduces the SEA framework for automated peer 
reviewing in academic conferences, designed to streamline the 
rev iew process by integrat ing mult ip le rev iews into a 
standardized format. The framework consists of three modules: 
Standardization, Evaluation, and Analysis. The Standardization 
module distills data standardization capabilities of GPT-4 to 
integrate reviews into a unified format, the Evaluation module 
fine-tunes Mistral-7B to generate constructive reviews, and the 
Analysis module introduces a new evaluation metric called the 
mismatch score to assess consistency between paper contents 
and rev iews .  Extens ive exper iments  are conducted to 
demonstrate the effectiveness of the SEA framework, showing 
improvements in consistency and review quality compared to 
existing methods.

**Paper Decision:**
- Decision: Accept
- Reasons: The paper presents a well-structured framework for 
automated peer reviewing, demonstrating its effectiveness 
through extensive experiments. The introduction of the mismatch 
score as a new evaluation metric adds a valuable contribution to 
the field. Despite some concerns about the novelty and potential 
biases of the LLMs used, the paper is well-written and the 
experimental results are robust, showing improvements over 
existing methods. The decision to accept is supported by the 
review content, which highlights the paper's contribution and the 
overall positive reception. The decision also aligns with the 
suggestions for minor improvements to enhance clarity and 
address some of the identified limitations.

**Weaknesses:**
- The novelty of the framework is somewhat limited as it 
primarily represents an application of existing LLM capabilities to 
a specif ic task, without introducing fundamental ly new 
methodologies.
- The paper does not adequately address the potential biases and 
limitations of the LLMs used, which could impact the fairness and 
accuracy of the generated reviews.
- The methodology of the framework, particularly the use of self-
correction strategy and the evaluation of consistency, is not 
suff ic ient ly deta i led or expla ined,  which could hinder 
understanding and replication of the results.
- The paper does not provide sufficient qualitative analysis or 
examples  o f  genera ted  rev iews ,  wh i ch  cou ld  he lp  in 
understanding the specific improvements and limitations of the 
SEA framework.

**Strengths:**
- The paper is well-written and easy to follow, making complex 
concepts accessible to a broad audience.
- The introduction of the SEA framework represents a significant 
advancement in the automation of peer reviewing, offering a 
more efficient and standardized approach to the review process.
- The SEA framework is innovative in its use of large language 
models (LLMs) for automated reviewing, showcasing the potential 
of these models to improve the quality and consistency of 
reviews.
- The proposed evaluation metric, the mismatch score, is a novel 
and effective method for assessing the consistency between 
paper contents and reviews, providing a valuable tool for 
ensuring the accuracy and reliability of generated reviews.
- The framework demonstrates a clear improvement in the 
consistency and quality of reviews generated by LLMs, as 
evidenced by experimental results and comparisons with baseline 
models.

**Questions:**
- Could the authors provide more details on the specific LLMs 
used in the SEA framework, including their capabilities and 
limitations in the context of academic reviewing?
- How does the SEA framework handle the potential biases and 
limitations of the LLMs used, and what measures are in place to 
ensure fairness and accuracy in the generated reviews?
- In the self-correction strategy, how is the threshold for review 
regeneration determined, and what are the implications of this 
decision on the quality and consistency of the generated reviews?
- How does the SEA framework ensure that the generated 
reviews are not simply rephrased versions of existing reviews, 
which could undermine the novelty and usefulness of the 
reviews?
- Could the authors provide more detailed examples or case 
studies of the generated reviews, along with human evaluations 
or comparisons with existing reviews to better understand the 
impact and effectiveness of the SEA framework?

**Soundness:**
3 good

**Presentation:**
3 good

**Contribution:**
3 good

**Rating:**
7 accept, but needs minor improvements

Figure 9: The review generated by applying the SEA framework to this paper.
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Table 10: Instruction for generating standardized review based on multiple reviews for each paper.

INSTRUCTION:
As an experienced academic paper reviewer, you are presented with different review contents for

the same paper. Please analyze these contents carefully and consolidate them into a single review.
The review should be organized into nine sections: Summary, Strengths, Weaknesses, Questions,
Soundness, Presentation, Contribution, Rating and Paper Decision. Below is a description of each
section:
1. Summary: Combine the ‘Summary’ sections from all reviews into a cohesive summary, aiming
for a length of about 100-150 words.
2. Strengths/Weaknesses/Questions: Combine the Strengths/Weaknesses/Questions sections from
all reviews into a unified, cohesive bullet-point list that avoids redundancy while preserving the
specific details and depth of each point.
3. Soundness/Presentation/Contribution: Aggregate the Contribution/Soundness/Presentation score
from each review to determine a suitable overall score (the score must be an **integer**), then,
match this integer score to the corresponding criterion from the list below and provide the result.
For example, if the score is 3, the result should be ‘3 good’. The possible scores and their criteria
are:

1 poor \n 2 fair \n 3 good \n 4 excellent
4. Rating: Aggregate the ‘Rating’ from each review to determine a suitable overall Rating (the
Rating must be an **integer**), then, match this integer Rating to the corresponding criterion from
the list below and provide the result. For example, if the Rating is 1, the result should be ‘1 strong
reject’. The possible Ratings and their criteria are:

1 strong reject
2 reject, significant issues present
3 reject, not good enough
4 possibly reject, but has redeeming facets
5 marginally below the acceptance threshold
6 marginally above the acceptance threshold
7 accept, but needs minor improvements
8 accept, good paper
9 strong accept, excellent work
10 strong accept, should be highlighted at the conference

5. Paper Decision: It must include the Decision itself (Accept or Reject) and the reasons for this
decision which is based on Meta-review, the criteria of originality, methodological soundness,
significance of results, and clarity and logic of presentation, etc. Please ensure your Decision
(Accept/Reject) matches the value of the ‘Decision’ key in the JSON, if present.

Here is the template for a review format, you must follow this format to output your review result:
**Summary:** \n <Summary content> \n

**Strengths:** \n <Strengths result> \n
**Weaknesses:** \n <Weaknesses result> \n
**Questions:** \n <Questions result> \n

**Soundness:** \n <Soundness result> \n
**Presentation:** \n <Presentation result> \n
**Contribution:** \n <Contribution result> \n
**Rating:** \n <Rating result> \n

**Paper Decision:**
- Decision: Accept/Reject
- Reasons: reasons content
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Table 11: Instructions for generating review comments based on the content of the paper.

INSTRUCTION:
You are a highly experienced, conscientious, and fair academic reviewer. Please help me review

this paper. The review should be organized into nine sections:
1. Summary: A summary of the paper in 100-150 words.
2. Strengths/Weaknesses/Questions: The Strengths/Weaknesses/Questions of paper, which should
be listed in bullet points, with each point supported by specific examples from the article where
possible.
3. Soundness/Contribution/Presentation: Rate the paper’s Soundness/Contribution/Presentation,
and match this score to the corresponding criterion from the list below and provide the result. The
possible scores and their criteria are:

1 poor
2 fair
3 good
4 excellent

4. Rating: Give this paper an appropriate rating, match this rating to the corresponding criterion
from the list below and provide the result. The possible Ratings and their criteria are:

1 strong reject
2 reject, significant issues present
3 reject, not good enough
4 possibly reject, but has redeeming facets
5 marginally below the acceptance threshold
6 marginally above the acceptance threshold
7 accept, but needs minor improvements
8 accept, good paper
9 strong accept, excellent work
10 strong accept, should be highlighted at the conference

5. Paper Decision: It must include the Decision itself (Accept or Reject) and the reasons for this
decision which is based on the criteria of originality, methodological soundness, significance of
results, and clarity and logic of presentation.

Here is the template for a review format, you must follow this format to output your review result:
**Summary:** \n <Summary content> \n

**Strengths:** \n <Strengths result> \n
**Weaknesses:** \n <Weaknesses result> \n
**Questions:** \n <Questions result> \n

**Soundness:** \n <Soundness result> \n
**Presentation:** \n <Presentation result> \n
**Contribution:** \n <Contribution result> \n
**Rating:** \n <Rating result> \n

**Paper Decision:**
- Decision: Accept/Reject
- Reasons: reasons content

Please ensure your feedback is objective and constructive. The paper is as follows: <paper content>
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