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Abstract

Definition bias is a negative phenomenon that
can mislead models. Definition bias in informa-
tion extraction appears not only across datasets
from different domains but also within datasets
sharing the same domain. We identify two
types of definition bias in IE: bias among in-
formation extraction datasets and bias between
information extraction datasets and instruction
tuning datasets. To systematically investigate
definition bias, we conduct three probing exper-
iments to quantitatively analyze it and discover
the limitations of unified information extraction
and large language models in solving definition
bias. To mitigate definition bias in information
extraction, we propose a multi-stage framework
consisting of definition bias measurement, bias-
aware fine-tuning, and task-specific bias miti-
gation. Experimental results demonstrate the
effectiveness of our framework in addressing
definition bias. 1.

1 Introduction

Bias in machine learning refers to systematic errors
in predictions in the machine learning process, such
as annotator bias, measurement bias, etc (Hellström
et al., 2020). In the era of large language mod-
els (LLMs), these issues are addressed by filtering
low-quality corpora (Kojima et al., 2022) and train-
ing with human preferences (Ouyang et al., 2022).
However, performance remains subpar in handling
information extraction (IE) tasks (Wadhwa et al.,
2023), which we believe is due to definition bias.

Definition bias in IE refers to the tendency of
an information extraction system to favour certain
interpretations of data over others, often due to
the way concepts, entities, or relationships are de-
fined within the system. As the fast development
of Unified Information Extraction (UIE) (Lu et al.,

†Corresponding authors.
1Resources of this paper can be found at https://

github.com/EZ-hwh/definition-bias
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Figure 1: Definition bias among different datasets and
LLMs even when they share the same entity type (for
NER) or the same relation type (for RE).

2022) and Large Language Models (LLMs) (Ope-
nAI, 2022, 2023; Team et al., 2023) in recent years,
two novel definition bias emerge, which are: Bias
among IE datasets and Bias between IE and instruc-
tion tuning (IFT) datasets. Regarding Bias among
IE datasets, it refers to the definition differences
between different data sets under the same annota-
tion schema. As illustrated in Figure 1, different
datasets have different annotations to the same in-
put for both Named Entity Recognition (NER) and
Relation Extraction (RE) tasks. Regarding Bias
between IE and instruction tuning datasets, it high-
lights the mismatch between the information ex-
traction task and the general task. As depicted in
Figure 1, although GPT-4 (OpenAI, 2023) is ca-
pable of extracting entities or relational triples in
accordance with the specified task description with-
out providing extra examples, its prediction differs
from those in the existing datasets.

To systematically investigate definition bias in
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IE, we devise a series of probing experiments. First,
we analyze whether definition bias exists and how
it varies among datasets sharing the same tasks.
By conducting cross-validation experiments among
various datasets in the NER and RE, we observe
a significant decrease in performance, indicating
that definition bias negatively impacts the transfer-
ability of a fully-supervised model. An intuitive
way to alleviate definition bias is unified informa-
tion extraction, which is trained across multiple
IE datasets. Therefore, we analyze in the unified
information extraction setting, does definition bias
still exist? By introducing source prompt (Li et al.,
2022) that applies true or fake source names for the
UIE models, we discover the inconsistency of the
UIE for extraction, which indicates that UIE suffers
from definition bias among IE datasets. The other
way to mitigate definition bias is LLMs, which
can understand a wide range of human instructions.
Thereupon, we analyze Can LLMs address the chal-
lenge of definition bias? By conducting experi-
ments on few-shot settings on NER and RE tasks
with in-context learning, we find that it’s difficult
for LLMs without parameter updates to attain sat-
isfactory performance, which indicates that LLMs
still suffer from definition bias between IE and in-
struction fine-tuning datasets.

According to our probing experiments, it is im-
perative to address definition bias by proposing a
universal solution for IE tasks. However, mitigat-
ing definition bias is non-trivial, primarily owing to
the following three challenges. (1) Enhancing the
capacity of LLMs in general information extraction
tasks is vital to reduce the definition bias between
information extraction datasets and instruction tun-
ing datasets; (2) Mitigating the definition bias dur-
ing the tuning of LLMs with different IE datasets;
(3) Learning from new data over time, adapting to
new tasks while ensuring the model remains good
performance on existing tasks, is a significant chal-
lenge.

To address these challenges, we propose a frame-
work to alleviate definition bias, which consists
of definition bias measurement, bias-aware fine-
tuning and task-specific bias mitigation. Using
Fleiss’s Kappa (Fleiss, 1971), we measure the two
types of definition bias above. Then we conduct
bias-aware fine-tuning with multiple information
extraction instructions to enhance the extraction
capabilities with less definition bias. Ultimately,
we conduct the task-specific bias mitigation, with

low-rank adaptation technique (LoRA) (Hu et al.,
2021) for specific information extraction tasks to
further align the LLMs with annotations.

Our paper is organized as follows: In Section 3,
we present three probing experiments designed to
explore the presence of definition bias and assess
the ability of existing frameworks to address this is-
sue in IE. Section 4 details the results and analysis
of these experiments, concluding that frameworks
based on either one-stage processing or parameter-
free updates are insufficient to tackle definition bias
in IE. Consequently, we propose a novel framework
featuring two-stage fine-tuning, specifically devel-
oped to mitigate the identified definition bias, as
introduced in Section 5. Ultimately, in Section 6,
we compare the performance of our framework
with state-of-the-art methods in universal informa-
tion extraction, demonstrating its effectiveness in
reducing definition bias.

2 Related Work

2.1 LLMs for information extraction

Large language models have shown remarkable per-
formance in instruction following (OpenAI, 2023).
To better align the natural instruction task from
pre-trained and instruction tuning task, Wei et al.
(2023); Wadhwa et al. (2023); Zhang et al. (2023)
convert the structural information extraction task
into natural instruction task such as question an-
swering, multi-choice, etc. While Li et al. (2023);
Guo et al. (2023) recast the structured output in the
form of code to better leverage the LLMs of code
to address the complex structure. Although LLMs
show impressive performance in various informa-
tion extraction tasks by designing fine-grained in-
struction, they still fail to address definition bias
without further tuning.

2.2 Universal information extraction

Unified Information extraction, proposed by Lu
et al. (2022), uniformly encodes various informa-
tion extraction tasks with a predefined structured
extraction language (SEL) and enhances the com-
mon IE abilities via a large-scale pre-trained gen-
eration model. Lou et al. (2023) further introduce
USM to model different IE tasks, while Wang et al.
(2023b) unified tasks into natural language instruc-
tion. GoLLIE converts the IE schema into the code-
style structural description and adds guidelines to
improve zero-shot results (Sainz et al., 2023). How-
ever, they mainly focus on how to encode different
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Answer: person: reporter; person: reporter Jingcai Wu

Source: WikiANN en (Fake source)
Task: Please list all ‘person’ entity words in the text.
Sentence: Xinhua News Agency , Beijing , September 1st , by 
reporter Jingcai Wu.
Answer: person: Jingcai Wu

Definition Bias 
in Information 
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Definition 
Bias Exist ?

Definition 
Bias Type ?

Figure 2: Three settings for the probing tasks on definition bias across datasets, including (a) fully supervised, (b)
source prompt and (c) LLMs zero/few-shot.

extraction tasks into a uniform structure but fail to
notice and detect the definition bias among various
datasets.

3 Definition Bias Probing Experiment

We initially propose an experiment employing
cross-validation to investigate the presence of defi-
nition bias in the IE tasks. Subsequently, we design
two specific detection tasks: source prompt detec-
tion and few-shot prompting in LLMs, to examine
two categories of definition bias: bias within IE
datasets and bias between IE and instruction fine-
tuning datasets. These experiments aim to explore
the effectiveness of the UIE and LLM frameworks
in addressing the definition bias issue.

3.1 Whether definition bias exists?

To better illustrate the definition bias among dif-
ferent information extraction tasks, we design a
cross-extraction task. As shown in Figure 2(a), we
train multiple fully-supervised models with differ-
ent datasets on the same task (NER and RE) respec-
tively, and test them on other datasets to evaluate

whether definition bias exists.
We first introduce two BERT-based extraction

frameworks to handle the NER and RE tasks, re-
spectively.

Named Entity Recognition We adopt Global-
Pointer (Su et al., 2022), an efficient span-based
approach that models the beginning and end posi-
tions to predict entities using a two-dimensional
scoring matrix. By incorporating extended softmax
and cross-entropy, GlobalPointer is better equipped
to learn from scenarios involving class imbalance.

Relation Extraction We adopt RERE (Xie et al.,
2021) as the basic model for relation extraction.
RERE is a pipeline approach that first performs
sentence-level relation detection, followed by sub-
ject/object extraction. Specifically, the RERE

model treats the former as a multi-class classifi-
cation task and the latter as a span detection task.

During the cross-validation process, we encoun-
tered label-type biases across different datasets. For
instance, the ACE 2004 dataset requires the extrac-
tion of the weapon entity, which is not a require-

10276



ment in the CoNLL 2003 dataset. Consequently,
we focus exclusively on the types of labels (such as
entity types in NER and relationship types in RE)
that are annotated in both the training and testing
datasets. An example is the person label, which
is common for both ACE 2004 and CoNLL 2003.

To mitigate the impact of text distribution shift
on the experimental results, we sample a subset
of sentences with similar semantics as a cross-
validation set. Specifically, we measure the seman-
tic similarity between two sentences by calculating
the cosine similarity of their sentence embeddings.
We define the semantic similarity of the sentence
senti to the dataset D. Finally, we filter out all
sentences that fall below threshold(D).

sim(senti,D) = max
refj∈D

cosine(Vsenti , Vrefj ) (1)

threshold(D) = σ · 1

|D|
∑

si∈D
sim(si,D \ {si}) (2)

Where VS denotes the embedding vector of a
sentence S encoded by a sentence model2, and σ
denotes the hyperparameters that adjust the thresh-
old, empirically set to 0.7.

3.2 Can UIE address definition bias?

Unified information extraction, which employs a
pre-defined structured extraction language to en-
code different extraction structures, can accurately
recognize extraction instructions. Inspired by Li
et al. (2022), which introduces a novel prompt-
based method in a transferable setting for text
generation tasks, we adopt source prompt settings
for probing. Briefly, in our experiment setting, a
source can be denoted as the name of the dataset
(e.g., ACE 2004). By presenting UIE with vari-
ous sources—indicating which dataset the instance
is from—we can guide it to yield different extrac-
tion results. This approach allows us to assess
whether it can maintain consistent results with dif-
ferent source prompts.

As Figure 2(b) shows, the probing experiment
consists of two parts: source prompt tuning and
source prompt inference. Initially, we undertake a
source prompt tuning process to enhance the UIE
model’s ability to recognize different sources. Sub-
sequently, we examine the definition bias within
the UIE model by introducing various sources.

2We adopt MPNet (Song et al., 2020) as our sentence
embedding encoder, which is commonly used for retrieval.

Source Prompt Tuning The source prompt pro-
cess can be regarded as a general multi-task learn-
ing framework. First, we define a set of source
information extraction tasks S = {S1, ...,Sn},
where the k-th task Sk = {(xki , yki )}Nk

i=1 contains
Nk tuples of the input text xki ∈ Xk and its corre-
sponding output text yki ∈ Yk. For a target informa-
tion extraction task T , the goal of multi-task learn-
ing is to leverage previously learned task-specific
knowledge of the source tasks S to improve the
prediction of the extraction result. Unlike the tra-
ditional multitask fine-tuning scenario, in source
prompt tuning, we learn an independent source
prompt pk for each source information extraction
task Sk in source prompt tuning, where xki consists
of extraction task source name sk, information ex-
traction task description tk, and the sentence sentki .
For example, a single instance "Here’s a dataset
from ACE 2004, please list all ’person’ entity words
in the text. Input sentence: Xinhua News Agency,
Beijing, September 1st, by reporter Jingcai Wu."
contains the components that are described above.

To demonstrate that UIE with instruction tun-
ing can implicitly learn the definitions of a dataset
through source prompt, we assign a nickname p′k
for every dataset and randomly replace pk with
p′k. For simplicity, we merely reverse the order
of the original dataset names, thereby generating
non-natural language nicknames. For example, the
dataset name "ACE 2004" is replaced with "4002
ECA". This procedure is designed to eliminate the
influence caused by the differences in learning var-
ious source names in the UIE and to ensure that
the discrepancies in results between true and fake
settings are solely due to dataset definition bias.

Specifically, we adopt Llama-v2-13B (Touvron
et al., 2023) and FlanT5-11B (Chung et al., 2022)
as our backbone models in source prompt tuning
settings because of their powerful instruction un-
derstanding and instruction-following capabilities.
Based on multiple datasets in NER and RE, we
add an additional source prompt to every extrac-
tion instance to indicate the dataset to which it
belongs. Further details on source prompt tuning
are described in the Appendix A.2.

Source Prompt Inference In reference, we pro-
vide different source prompts with the same extrac-
tion instance to our UIE models that have been fine-
tuned on the dataset with source prompts. To probe
the definition bias in universal generative informa-
tion extraction, UIE predicts the extraction result
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with True source (the extraction case with the orig-
inal source name), Nickname source (a nickname
of the original source name) and Fake source (the
extraction case with a fake source name). With
different source names, UIE generates different
extraction results following different definitions
learned from source prompt tuning.

3.3 Can LLMs address definition bias?

Large language models exhibit remarkable instruc-
tion understanding capabilities, which help them
achieve extraordinary performance on various tasks.
However, due to the definition bias between IE
datasets and IFT datasets, there is a significant
performance gap in LLMs when it comes to the
information extraction task (Wadhwa et al., 2023).
In-context learning, where LLMs make predictions
based solely on contexts augmented with a few ex-
amples, is a training-free learning framework that
enables models to adapt to new tasks (Dong et al.,
2023). It is considered a solution to address the
definition bias between IE datasets and instruction
tuning datasets.

As shown in Figure 2(c), we conduct the probing
experiment with multiple LLMs in both zero-shot
and few-shot settings.

Specifically, we utilize open-source LLMs such
as Llama-v2-chat-70B (Touvron et al., 2023),
and close-source LLMs GPT-3.5-Turbo (OpenAI,
2022), GPT-4 (OpenAI, 2023) as our backbone
models. In zero-shot settings, we prompt LLMs
with a task description, which probes the definition
bias between IE and IFT datasets. Meanwhile, in
few-shot settings, we prompt LLMs with a task
description and an additional four cases randomly
sampled from the corresponding training set to ex-
amine whether in-context learning can address the
definition bias. For a fair comparison, we sample
200 cases from each dataset and test them in both
zero-shot and few-shot settings, respectively.

4 Empirical Study of Definition Bias

4.1 Whether definition bias exists?

Following the cross-validation setting described in
Section 3.1, we experiment separately on NER and
RE tasks in the general domain. Table 1,2 show the
validation result in fully-supervised settings.

Briefly, we define the model trained and tested
on the same dataset as the reference model. The
numbers in the table cells represent the F1 scores
when compared to the golden label. Additionally,

A041 A052 C033 Ont4 Wie5 TN76 WiN7 PoN8

A041 85.10 82.19 35.77 28.89 49.89 28.06 30.54 17.64

A052 83.44 84.45 37.80 26.43 46.53 26.94 29.09 18.23

C033 24.10 16.57 92.19 55.82 55.10 78.26 92.08 53.67

Ont4 32.53 21.20 60.60 89.69 49.76 34.75 61.23 37.58

Wie5 23.09 8.42 67.10 41.14 86.60 61.99 70.96 44.13

TN76 25.60 21.07 76.16 56.15 73.95 63.39 82.70 54.45

WiN7 25.48 20.61 80.10 58.69 57.33 63.44 95.21 51.96

PoN8 14.58 10.84 44.36 35.28 40.26 32.65 69.66 77.77

1 ACE 2004
2 ACE 2005

3 CoNLL 2003
4 Ontonotes

5 WikiANN en
6 TweetNER 7

7 WikiNeural
8 PolyglotNER

Table 1: Definition bias among different NER tasks.

CoNLL 04 NYT10 NYT11 GIDs WikiKBP

CoNLL 04 61.12 10.20 12.07 - 26.98

NYT10 14.36 89.68 52.29 14.33 30.32

NYT11 8.78 83.32 56.82 10.70 32.64

GIDs - 7.77 6.45 65.12 55.65

WikiKBP 0.00 15.05 2.53 26.49 36.57

Table 2: Definition bias among different RE tasks. Cells
with (-) indicates that there are no same relation types
between the two datasets.

the depth of colour in each cell indicates the relative
quality of extraction in comparison to the reference
model. In other words, the darker the cell colour,
the closer the extraction results are to those of the
reference model. The rows of the table represent
the training dataset, while the columns represent
the test dataset.

Intuitively, the deepest red cells are distributed
along the diagonal of the entire table, illustrating
that definition bias exists among different datasets,
even though they share the same types. This is
particularly evident in NER tasks, where several
datasets focus on common entity types such as
person, location, and date. Despite these
similarities, definition bias can lead to significant
variations in the model’s extraction capabilities.

4.2 Can UIE address definition bias?

Following the source prompt setting described in
Section 3.2, we tuned Llama-13b and Flan-T5 with
source prompt instructions and prompted them with
three source settings.

Table 3 displays the extraction results evaluated
by F1 scores. Replacing the true source names with
fake ones results in a drop in F1 scores across all
NER and RE tasks, with an average decrease of
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Model Llama-13b Flan-T5

Source True Nickname Fake True Nickname Fake

Named Entity Recognition

ACE 04 84.93 84.89 60.85 77.82 78.41 45.79
ACE 05 84.85 85.16 61.56 79.20 79.59 44.10
CoNLL 03 81.02 80.87 73.34 78.94 78.84 69.23
Ontonotes 91.85 91.81 81.79 91.03 91.04 78.71
WikiANN en 89.54 89.65 81.43 76.26 76.07 66.08
TweetNER 7 68.92 69.11 66.19 68.35 68.45 60.44
WikiNeural 96.03 95.93 83.51 94.03 94.03 74.30
PolyglotNER 80.21 80.41 68.34 74.00 74.03 54.24

avg - - -12.6 - - -18.4

Relation Extraction

CoNLL 04 69.88 69.51 61.73 67.09 67.00 57.34
NYT10 97.80 97.78 94.82 96.20 96.20 90.54
NYT11 76.14 76.24 72.82 76.14 76.41 71.94
GIDs 80.49 80.15 78.69 76.41 76.34 74.26
WikiKBP 64.68 65.67 63.50 63.78 63.94 59.64

avg - - -3.5 - - -5.2

Table 3: Different extraction results obtained by prompt-
ing the source prompt tuning UIE with true, nickname
and fake source name.

Dataset Llama-chat-70B GPT-3.5-Turbo GPT-4

ACE04 8.56 | 30.42 19.68 | 32.81 13.70 | 35.16
ACE05 17.64 | 33.48 20.83 | 34.32 16.13 | 45.30
CoNLL 03 33.89 | 49.36 39.70 | 55.90 46.66 | 64.99
Ontonotes 11.86 | 27.56 22.14 | 28.83 31.70 | 40.57
WikiANN en 32.87 | 50.00 50.83 | 57.90 51.57 | 59.03
TweetNER 7 31.77 | 35.68 32.98 | 38.13 36.62 | 47.88
WikiNeural 42.98 | 57.03 50.00 | 59.83 65.23 | 70.66
PolyglotNER 21.44 | 30.91 42.20 | 44.88 45.14 | 43.23

CoNLL 04 3.36 | 18.77 9.22 | 23.86 24.62 | 29.86
NYT10 2.97 | 13.17 2.13 | 13.64 16.67 | 20.13
NYT11 2.03 | 5.33 1.93 | 6.50 8.00 | 12.00
GIDs 11.36 | 7.92 7.89 | 19.45 6.82 | 24.54
WikiKBP 18.55 | 29.56 17.25 | 32.41 25.00 | 45.85

Table 4: Performance of Open-source LLM and closed-
source LLM on various information extraction tasks in
(zero-shot | few-shot) settings.

12.6/3.5 and 18.4/5.2, respectively. However, when
true source names are replaced with nicknames,
the results show virtually no difference. This sig-
nificant performance gap highlights that UIE is
unable to mitigate definition bias during the multi-
task learning process. The implicit definition bias
permeates the model, leading to inconsistent ex-
traction results, even when the same extraction task
instructions are given.

4.3 Can LLM address definition bias?

The performance of various models on different
tasks is presented in Table 4. Among the evalu-
ated models, GPT-4 stands out by achieving the
best performance across almost all datasets in both

zero-shot and few-shot settings. Furthermore, the
few-shot settings, which incorporate similar cases
from the same dataset into the context, enhance
performance by an average of 9.82 compared to the
zero-shot settings. This improvement underscores
the capacity of in-context learning to partially miti-
gate definition bias.

Despite these advances, it remains challenging
for conventional, off-the-shelf methods to reach the
performance levels of fully supervised approaches.
This discrepancy underscores the presence of a sig-
nificant definition bias between datasets used for in-
formation extraction and those used for instruction
fine-tuning. Additionally, applying LLMs to in-
formation extraction faces two primary limitations.
First, the constraint on context length prevents the
inclusion of all annotated cases within the context.
Second, the definition bias across different infor-
mation extraction datasets complicates the creation
of comprehensive prompts that accurately describe
the extraction tasks.

5 Alleviate Definition Bias

In this section, we explore methods to enhance the
information extraction capabilities of LLMs.

Based on the probing experiments and conclu-
sions outlined in Sections 3 and 4, we find that def-
inition bias across different datasets significantly
impacts the performance of UIE and LLMs. This
indicates that a framework relying solely on a one-
stage, parameter-free update is inadequate for ad-
dressing definition bias. To tackle this challenge,
we introduce a two-stage fine-tuning framework.
Moreover, by identifying and explicitly quantifying
the two types of definition biases we have discov-
ered, we can integrate these measurements into
our fine-tuning framework, effectively reducing the
influence of definition bias.

5.1 Definition bias measurement

First, we introduce Fleiss’ Kappa, a statistical
measure used to assess the reliability of agreement
among multiple raters when they assign categorical
ratings to a set of items. This tool is valuable in
identifying and mitigating definition bias.

κ = 1− 1− p0
1− pe

=
p0 − pe
1− pe

(3)

Where po denotes the Observed Agreement, the
proportion of times that the raters actually agree,
and pe denotes the Expected Agreement, which
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GPT-4 Dataset definition bias
𝜿𝜿𝑫𝑫

CoNLL 
2003

Type definition bias
𝜿𝜿𝑻𝑻

ACE 04

Onto
notes

Person

×  0.2

×  0.7

×  0.4

Definition bias measurement Two stage fine-tuning

Weighted instruction fine-tuning Dataset-specific LoRA fine-tuning

Entity / Person ACE 
04

CoNLL 
2003

Ontonotes …

John Weir 1 1 1 …

US Minister Brown 1 0 1 …

president of the Weir Group 1 0 0 …

who 1 0 0 …

John Weir , president of the Weir Group who visited China with US 
Minister Brown and signed this agreement for …

Type definition bias

𝜅𝜅𝑇𝑇

𝒓𝒓𝒄𝒄(𝜿𝜿𝑫𝑫,𝜿𝜿𝑻𝑻)

Dataset definition bias
In Japan , the foreign women who are victims of trafficking end up 
working everywhere from Tokyo 's sprawling red-light districts to rural 
areas unfamiliar to most foreigners .

Relation Triple NYT10 GPT-4

Japan, location contains, Tokyo 1 1

Tokyo, place lived, Japan 0 1

Japan, country of administrative divisions, Tokyo 1 0

Japan, country of capital, Tokyo 1 0

Tokyo, administrative division of country, Japan 1 0

𝜅𝜅𝐷𝐷

Input Text Input Text 

AnnotationAnnotation

Figure 3: Our two-stage framework for alleviating definition bias. Left: we measure two kinds of definition bias
with Fleiss’ Kappa; Right: we first full-parameter fine-tune LLMs with measurement and then fine-tune with LoRA
on a specific dataset.

represents the agreement that could be expected
purely by chance. Suppose there are N cases for
a task, and each data is labelled n times, and k is
the number of categories. These can be calculated
using the following formula.

pe =

k∑

j=1

p2j , pj =
1

Nn

N∑

i=1

nij (4)

po =
1

N

N∑

i=1

pi, pi =
1

n(n− 1)

k∑

j=1

nij(nij − 1)

(5)
where nij denotes the number of annotator that
label case i as category j.

Specifically, we focus on the definition bias in
information extraction and divide the definition
bias into two types: dataset definition bias and
type definition bias.

Dataset Definition Bias κD recognized as the
agreement between GPT4 and the annotation of
the dataset, serving as a measure of reliability for
transforming information extraction into instruc-
tion tuning dataset. It is carried out by calculating
Fleiss’s Kappa between the GPT4 extraction results
and the golden annotation of the dataset.

Type Definition Bias κT considered as the agree-
ment among information extraction datasets with
the same type either entity or relationship, and
serves as a metric to evaluate the reliability of these
types in terms of consistent annotation.

5.2 Bias-aware fine-tuning

Based on the probing experiments, inconsistencies
in definitions across various datasets significantly
impact the training process. However, the diversity
among these datasets, including annotation types
and text sources, helps to improve the performance
of LLMs for IE tasks. Therefore, it is essential
to adopt a precise method to assess the quality of
different datasets to effectively guide the training
process.

We fine-tune the LLMs with information extrac-
tion dataset through C-RLFT (Wang et al., 2023a),
which enables leveraging mixed-quality training
data. We define the quality of the training samples
as metrics based on κD and κT . Suppose there are
N entity or relation triples in a case, we calculate
the coarse-grained rewards of each case rc(xi, yi)
by the formula below.

rc(xi, yi) = (1 + κD)
1

N

N∑

i=1

κTi (6)

5.3 Task-specific bias mitigation

To further enhance the performance of LLMs on
specific information extraction datasets, we em-
ploy Low-Rank Adaptation (LoRA) for additional
instruction tuning. We hypothesize that updates
to the weights for a dataset possess a low intrinsic
rank. This low intrinsic dimension adaptation can
help mitigate the definition bias between a multi-
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Figure 4: Ablation study on 12 information extraction datasets (NER and RE)

Dataset UIE USM InstructUIE Ours

ACE 04 86.89 87.62 - 86.68
ACE 05 85.78 87.14 86.66 87.05
CoNLL 03 92.99 93.16 92.94 92.47
Ontonotes - - 90.19 90.52
WikiANN en - - 85.13 86.24
TweetNER 7 - - 64.97 65.70
WikiNeural - - 91.36 94.59
PolyglotNER - - 70.15 71.34

CoNLL 04 75.00 78.84 78.48 57.46
NYT10 - - 90.47 89.35
NYT11 - - 56.06 57.38
GIDs - - 81.98 81.83

Table 5: Main result for comparing with other models
on NER and RE tasks.

task learning model and the dataset. Specifically,
for a pre-trained weight matrix W0 ∈ Rd×k, we
constrain its update with a low-rank decomposition.

h = W0x+∆Wx = W0x+BAx (7)

where ∆Wx denotes the updatable parameters of
W0, and it can be constrained with a low-rank de-
composition ∆W = BA, where B ∈ Rd×r, A ∈
Rr×k, and the rank r ≪ min(d, r). W0 is frozen
and does not receive gradient updates while A and
B contain trainable parameters during training.

In this stage, the model updates its parameter
through further fine-tuning on a specific dataset to
align the annotation.

6 Experiments of Two-stage Framework

This section conducts experiments to validate the
effectiveness of our two-stage fine-tuning frame-
work. We select 11B Flan-T5 (Chung et al., 2022)
as our backbone model. The details of the ex-
perimental setup and comparison methods are de-
scribed in the following parts.

6.1 Experimental setup

In bias-aware fine-tuning, we apply a sampling
strategy to balance the dataset. In specific, we sam-
ple 10,000 cases from each dataset for training. In
task-specific bias mitigation, we apply all exam-
ples for training. Further details can be found in
Appendix B.2.

Our baseline models contain: UIE (Lu et al.,
2022), USM (Lou et al., 2023), and Instruc-
tUIE (Wang et al., 2023b).

6.2 Results

Table 5 presents the result on different datasets with
baselines. Although our framework was trained on
several information extraction datasets in the gen-
eral domain, which might be considered unfair for
comparing with baselines trained on other datasets,
it achieves state-of-the-art on many datasets. It is
worth noting that in datasets focusing exclusively
on person, location, organization (as
listed in Table 16), our framework achieves the
best performance on WikiANN en, WikiNeural
and PolyglotNER. This demonstrates the effective-
ness of our framework in mitigating definition bias
across different datasets.

6.3 Experiment with two-stage fine-tuning

To better improve the effectiveness of our two-
stage fine-tuning framework, we conduct an ab-
lation study comparing with the following base-
line: 1. Fine-tuning: fine-tuning the model
with information extraction; 2. Bias-aware fine-
tuning: first stage fine-tuning in Section 5.2;
3. Fine-tuning+LoRA: data-specific instruction-
tuning with LoRA on the weight of baseline 1;
4. Ours: our two-stage fine-tuning framework.

The results are shown in Figure 4. In general, our
framework nearly achieves the best performance
compared to the baseline, demonstrating its effec-
tiveness. By comparing baselines 1 and 2, it is
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proven that our bias-aware fine-tuning can alle-
viate definition bias among IE datasets and help
models better align with GPT-4. It is also notable
that two-stage fine-tuning consistently improves
performance on specific datasets, attributed to task-
specific bias mitigation.

7 Conclusion

In the paper, we propose the definition bias prob-
lem in information extraction tasks. We conduct
several probing experiments to comprehensively
demonstrate that existing methods cannot address
definition bias. We then propose a multi-stage tun-
ing framework, which consists of bias-aware fine-
tuning and task-specific bias mitigation, to alleviate
the definition bias in a specific dataset. Experimen-
tal results show that our framework is efficient in
mitigating definition bias.
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Limitation

We systematically investigate definition bias in IE
with devising a series of probing experiments. And
we propose a multi-stage framework to mitigate
definition bias in IE. However, there are still some
limits of our probing experiment and the solution
framework.

First, our probing experiment only focus on the
definition bias among NER and RE tasks, which
does not cover all the task in information extraction,
which remains improvement for the future work.

Second, the performance of our solution frame-
work is restricted by two main reason: 1) more
diverse dataset can be used for the bias-aware fine-
tuning dataset; 2) the choice on backbone model
also plays an important role in model performance.
More experiments can more effectively validate the
effectiveness of the proposed framework.
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A041 A052 C033 Ont4 Wie5 TN76 WiN7 PoN8

A041 451 1299 3404 1886 121 2104 1260

A052 489 1112 4649 3552 204 1954 1752

C033 71 67 409 2576 22 1128 550

Ont4 569 770 1149 4194 180 2880 2504

Wie5 248 310 2338 2086 279 7752 6957

TN76 222 328 1486 1736 3016 2397 1648

WiN7 387 407 2239 2843 8230 229 7624

PoN8 558 669 2795 4918 9597 387 10869

#Tot 812 1060 3453 8262 10000 576 11597 10000

1 ACE 2004
2 ACE 2005
3 CoNLL 2003

4 Ontonotes
5 WikiANN en
6 TweetNER 7

7 WikiNeural
8 PolyglotNER

Table 6: Filter result in NER task.

CoNLL 04 NYT10 NYT11 GIDs WikiKBP

CoNLL 04 1935 150 1879 72

NYT10 242 344 3977 160

NYT11 189 4032 3608 150

GIDs 52 887 83 79

WikiKBP 3 71 8 70

#Tot 288 5000 369 4307 182

Table 7: Filter result in NER task.

A Further Details about Probing
Experiments

In this section, we further introduce the details of
three probing experiments, including experiment
settings and additional experiment results.

A.1 Fully supervised settings
In fully supervised settings, we trained Global-
Pointer (Su et al., 2022) and RERE (Xie et al.,
2021) for each task in 20 epochs, with a learning
rate of 2e-5 and a batch size of 32.

Table 6 and Table 7 show the filter result with a
similar semantic filtering process. While the cross-
validation result without the semantic similarity
filter process is demonstrated in Table 8 and 9.

A.2 Source prompt settings
To eliminate the instruction bias that different
datasets focus on different types of entity or re-
lation, we employ a task decomposition approach,
which involves constructing separate instructions
for every entity type or relationship type. It helps
decompose a task instruction with many types
into atomic task instructions, which can be shared
across different datasets. Such a setting compels
the UIE model to focus solely on the source name
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A041 A052 C033 Ont4 Wie5 TN76 WiN7 PoN8

A041 85.10 81.54 39.36 31.15 41.70 35.65 29.70 21.10

A052 82.87 84.45 40.31 30.05 40.25 34.72 29.18 20.61

C033 25.63 19.53 92.19 61.11 55.06 68.26 88.89 51.48

Ont4 35.04 25.89 59.49 89.69 45.16 37.88 62.20 37.42

Wie5 19.18 14.11 64.56 39.22 86.60 59.52 64.52 39.28

TN76 24.78 19.10 71.61 46.84 58.62 63.39 74.17 47.04

WiN7 24.10 18.77 78.76 58.69 55.41 64.51 95.21 51.36

PoN8 14.49 10.17 46.30 38.18 40.26 34.45 69.45 77.77

1 ACE 2004
2 ACE 2005

3 CoNLL 2003
4 Ontonotes

5 WikiANN en
6 TweetNER 7

7 WikiNeural
8 PolyglotNER

Table 8: Definition bias between different NER tasks
without similar semantic filtering.

CoNLL 04 NYT10 NYT11 GIDs WikiKBP

CoNLL 04 61.12 9.17 7.54 - 24.37

NYT10 14.36 89.68 53.16 15.17 30.30

NYT11 8.78 83.13 56.82 12.50 31.40

GIDs - 7.44 3.17 65.12 51.67

WikiKBP 0.00 7.95 2.53 18.78 36.57

Table 9: Definition bias between different RE tasks
without similar semantic filtering.

and apply the distinct extraction principle for dif-
ferent source prompts. Table 10 shows a case of
task decomposition on NER.

A.3 Large language model zero/few-shot
settings

We use the prompt in Table 11 for probing experi-
ments and multi-stage fine-tuning, which consists
of the task description, output format, in-context
learning cases and input text.

B Further Details about Two-stage
Instruction Fine-tuning

B.1 Fleiss’ Kappa
Table 12 and 13 show the κT and κD that measure
the type definition bias and dataset definition bias
in several IE datasets.

B.2 Two-stage training settings
The training hyperparameters of our multi-stage
framework are listed in Table 14.

C Detail Statistic on Training Datasets

We use 13 datasets in named entity recogni-
tion and relation extraction. For NER task, the
dataset include ACE04 (Mitchell et al., 2005),
ACE05 (Walker et al., 2006), CoNLL2003 (Sang

Original Extraction Instruction

Instruction: Please list all entity words in the text that fit
the category. Here’s the category list:

[person,organization,location]

And then output the result in the format of “‘type1: entity1;
type2: entity2; ...“‘

Input: [Input text for NER]

Output:

Decomposed Extraction Instruction

Instruction: Please list all entity words in the text that fit
the category. Here’s the category list:

[person]

And then output the result in the format of “‘type1: entity1;
type2: entity2; ...“‘

Input: [Input text for NER]

Output:

Instruction: Please list all entity words in the text that fit
the category. Here’s the category list:

[organization]

And then output the result in the format of “‘type1: entity1;
type2: entity2; ...“‘

/*Input text*/

Input: [Input text for NER]

Output:

Instruction: Please list all entity words in the text that fit
the category. Here’s the category list:

[location]

And then output the result in the format of “‘type1: entity1;
type2: entity2; ...“‘

Input: [Input text for NER]

Output:

Table 10: A case for decomposing NER tasks in-
struction which focuses on the entity type: person,
organization and location.

and De Meulder, 2003), Ontonotes (Hovy et al.,
2006), PolyglotNER (Al-Rfou et al., 2015), Tweet-
NER (Ushio et al., 2022), WikiNeural (Tedeschi
et al., 2021) and WikiANN (Pan et al., 2017).
For RE task, the datasets include CoNLL
2004 (Roth and Yih, 2004), GIDS (Jat et al.,
2018), NYT10 (Riedel et al., 2010), NYT11-
HRL (Takanobu et al., 2019) and Wiki-KBP (Ellis
et al., 2012).

The statistics of datasets are listed in Table 15.
The pre-defined entity or relation types for each
dataset are shown in Table 16.
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Prompt for Named Entity Recognition

/*Task prompt*/

Instruction: Please list all entity words in the text that fit
the category. Here’s the category list:

/*Entity type List*/

[List of the entity type]

/*Output Format*/

And then output the result in the format of “‘type1: entity1;
type2: entity2; ...“‘

/*In-context learning cases*/

/*Input text*/

Input: [Input text for NER]

Output:

Prompt for Relation Extraction

/*Task prompt*/

Instruction: Given a sentence or paragraph, and a given
relationship set that describe the relation between entities.
Here’s the relation set:

/*Relation type List*/

[List of the relationship type]

/*Output Format*/

Output the result in the format of “‘(subject1, relation1,
object1), (subject2, relation2, object2), ...“‘

/*In-context learning cases*/

/*Input text*/

Input: [Input text for RE]

Output:

Table 11: Prompts for two type of information extraction
task: NER and RE.

Type Fleiss’ Kappa

Entity Type of Named Entity Recognition
person 0.414
location 0.428
organization 0.364
facility 0.021

Relation Type of Relation Extraction
place lived 0.473
place of birth 0.467
place of death 0.408
children 0.333
location contains 0.150
person of company 0.359

Table 12: κT measured with dataset annotation

Dataset Fleiss’ Kappa

ACE 2004 -0.648
ACE 2005 -0.546
CoNLL 2003 -0.350
Ontonotes -0.594
PolyglotNER -0.567
TweetNER7 -0.521
WikiANN en -0.409
WikiNeural -0.293

conll04 -0.701
GIDS -0.748
NYT10 -0.799
NYT11 -0.879
WikiKBP -0.541

Table 13: κD measured with dataset annotation and
GPT-4

Hyperparameters Settings

Bias-aware fine-tuning
Learning rate 1e-5

Epoch 5
Batch size 384

Dataset-specific Mitigation
Learning rate 1e-5
LoRA rank 8
LoRA_key q,v

Epoch 10/30
Batch size 256

Table 14: Hyper-parameters for two-stage training with
Flan-T5.

Dataset #Train #Valid #Test

Named Entity Recognition
ACE 2004 6202 745 812
ACE 2005 7299 971 1060
CoNLL 03 14041 3250 3453
Ontonotes 59924 8528 8262
PolyglotNER 393982 10000 10000
TweetNER 7 7111 886 576
WikiANN en 20000 10000 10000
WikiNeural 92720 11590 11597

Relation Extraction
CoNLL 04 922 231 288
GIDs 8526 1417 4307
NYT10 56196 5000 5000
NYT11 62648 149 369
WikiKBP 79934 20 182

Table 15: Detailed datasets statistic.
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Dataset Annotation type

Named Entity Recognition
ACE 2004 geographical social political, organization, person, location, facility, vehicle, weapon

ACE 2005 organization, person, geographical social political, vehicle, location, weapon, facility

CoNLL 03 location, else, organization, person

Ontonotes date, organization, person, geographical social political, national religious political, facility, cardinal,
location, work of art, law, event, product, ordinal, percent, time, quantity, money, language

PolyglotNER location, person, organization

TweetNER 7 group, creative work, person, event, product, location, corporation

WikiANN en location, person, organization

WikiNeural location, person, organization

Relation Extraction
CoNLL 04 company founded place, location contains, place lived, person of company, kill

GIDs place of death, place of birth, education degree, education institution

NYT10 ethnicity, place lived, geographic distribution, company industry, country of administrative divisions,
administrative division of country, location contains, person of company, profession, ethnicity of people,
company shareholder among major shareholders, sports team of location, religion, neighborhood of,
company major shareholders, place of death, nationality, children, company founders, company founded
place, country of capital, company advisors, sports team location of teams, place of birth

NYT11 nationality, country capital, place of death, children, location contains, place of birt, place lived, administra-
tive division of country, country of administrative divisions, company, neighborhood of, company founders

WikiKBP parent, children, person of company, place of birth, place of death, place lived, religion

Table 16: The type of entity or relationship in each dataset.
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