
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 1794–1809
November 12-16, 2024 ©2024 Association for Computational Linguistics

PaCoST: Paired Confidence Significance Testing for Benchmark
Contamination Detection in Large Language Models

Huixuan Zhang1,∗ Yun Lin1,2,∗ Xiaojun Wan1

1 Wangxuan Institute of Computer Technology, Peking University
2 School of Foreign Languages, Peking University

{zhanghuixuan,linyun}@stu.pku.edu.cn,wanxiaojun@pku.edu.cn

Abstract

Large language models (LLMs) are known to
be trained on vast amounts of data, which may
unintentionally or intentionally include data
from commonly used benchmarks. This in-
clusion can lead to cheatingly high scores on
model leaderboards, yet result in disappoint-
ing performance in real-world applications. To
address this benchmark contamination prob-
lem, we first propose a set of requirements
that practical contamination detection methods
should follow. Following these proposed re-
quirements, we introduce PaCoST, a Paired
Confidence Significance Testing to effectively
detect benchmark contamination in LLMs. Our
method constructs a counterpart for each piece
of data with the same distribution, and performs
statistical analysis of the corresponding confi-
dence to test whether the model is significantly
more confident under the original benchmark.
We validate the effectiveness of PaCoST and
apply it on popular open-source models and
benchmarks. We find that almost all models
and benchmarks we tested are suspected con-
taminated more or less. We finally call for new
LLM evaluation methods. 1

1 Introduction

Large Language Models (LLMs) have brought
about a paradigm shift in the domain of natural
language processing, yielding notable enhance-
ments across various evaluation benchmarks (Wang
et al., 2019) and demonstrating proficiency in pro-
fessional examinations(OpenAI, 2023). These ad-
vancements primarily stem from extensive training
on vast and diverse datasets sourced from multiple
origins. However, the substantial volume of data
has given rise to significant concerns regarding
benchmark contamination, where benchmarks for
∗ Both authors contributed equally to this research.
1 Our code will be released at https://github.com/
lleozhang/PaCoST.

LLM evaluation are inadvertently or deliberately
included in model training. This contamination
presents considerable obstacles in accurately gaug-
ing the capabilities of LLMs.

While efforts are being made to address this is-
sue by removing benchmarks from training datasets
and conducting contamination studies, these en-
deavors face numerous limitations (Brown et al.,
2020a; Zhang et al., 2024; Wei et al., 2022; Chowd-
hery et al., 2022). These limitations include narrow
focus on specific benchmarks and reliance on the
trustworthiness of vendors. Moreover, the com-
petitive dynamics within the field, coupled with
copyright considerations, have resulted in recent
model releases lacking accompanying contamina-
tion studies (OpenAI, 2023). Hence, there is an
urgent necessity for independent methods to au-
dit LLMs for the presence of benchmark datasets,
eliminating the dependence on model providers’
cooperation.

Simultaneously, there has been a growing inter-
est in heuristic membership inference algorithms
designed to reverse-engineer aspects of the training
dataset (Carlini et al., 2021a; Mattern et al., 2023),
thereby providing insights into potential test set
contamination (Sainz et al., 2023a; Golchin and
Surdeanu, 2023b). Despite their promise, these
heuristic approaches often lack definitive proof of
contamination and tend to rely on assumptions that
may be too stringent. Moreover, the majority of
these methods concentrate less on detecting bench-
mark contamination. As elaborated in Section 3.1,
inherent challenges, such as the need for lengthy
trained segments and the necessity of establishing
thresholds, impede the adaptation of previous meth-
ods for detecting benchmark contamination.

In this study, we introduce a novel approach
named PaCoST (Paired Confidence Significance
Testing) designed for the detection of benchmark
contamination in open-source LLMs. Our method
entails a three-step statistical analysis, capable of
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identifying benchmarks within the model’s training
data. Specifically, our approach involves construct-
ing counterparts for each data instance with similar
distribution, followed by statistical analysis of cor-
responding confidence scores to ascertain whether
the model exhibits significantly higher confidence
when presented with original benchmarks. We op-
erate under the assumption that the model tends to
demonstrate greater confidence when responding
to questions it has been trained on. To validate
our method rigorously, we conduct a series of con-
trolled experiments.

Subsequently, we employ PaCoST across a di-
verse array of publicly accessible LLMs, scrutiniz-
ing various benchmarks to reveal contamination
outcomes. Our experimental observations indicate
that, across the board, there are suspicions of con-
tamination to varying degrees in both models and
benchmarks. Consequently, we advocate for the
adoption of a benchmark-free evaluation approach
as a means to mitigate this contamination issue.

Our contributions can be summarized as follows:

• We propose several properties which a good
benchmark contamination detection method
should satisfy.

• We introduce a simple yet effective method
PaCoST to detect benchmark contamination
in LLMs and validate its effectiveness and
stability.

• We conduct experiments on popular open-
source LLMs and benchmarks and find sus-
pected contamination on almost all tested
models and benchmarks.

2 Related Works

2.1 Data Contamination Detection

The issue of data contamination in large language
models has been increasingly recognized as a sig-
nificant concern (Sainz et al., 2023a). Many LLM
providers use string-matching to report contamina-
tion, such as GPT-2 (Radford et al., 2019), GPT-3
(Brown et al., 2020b), PaLM (Chowdhery et al.,
2023), GPT-4 (OpenAI, 2023), and Llama 2 (Tou-
vron et al., 2023). However, in most cases, the
model’s training data is not publicly available, ne-
cessitating alternative detection methods.

Several methods have been developed to detect
data contamination in LLMs. Nasr et al. (2023)
and Sainz et al. (2023b) explore the regeneration

of initial dataset instances. Golchin and Surdeanu
(2023b) introduces guided prompting to replicated
trained data. Golchin and Surdeanu (2023a) devel-
ops a Data Contamination Quiz (DCQ) framework.

Beyond prompt-based methods, there are also
methods based on likelihood such as the Min-K%
Prob (Shi et al., 2024), Oren et al. (2023) and Li
(2023). Additionally, methodologies like CDD and
TED (Dong et al., 2024) focus on the LLM’s output
distribution. But these methods do not pay enough
attention to benchmark contamination detection.

Membership Inference Attack (MIA) is closely
related to data contamination, aiming to identify
whether a given sample is in a model’s training data
(Shokri et al., 2017; Yeom et al., 2018). These at-
tacks pose significant privacy risks and can lead to
severe breaches (Carlini et al., 2021b; Gupta et al.,
2022; Cummings et al., 2023). MIA is crucial
for assessing privacy vulnerabilities and validat-
ing privacy-preserving measures in machine learn-
ing models (Jayaraman and Evans, 2019; Jagielski
et al., 2020; Nasr et al., 2023). Initially applied to
tabular and computer vision data, MIA has recently
been extended to language-based tasks (Song and
Shmatikov, 2019; Shejwalkar et al., 2021; Mahlou-
jifar et al., 2021; Mireshghallah et al., 2022).

2.2 Confidence Estimation

Estimating the confidence of a model in its output is
a critical challenge in the research of LLMs. Kuhn
et al. (2023) aggregates probabilities of semanti-
cally equivalent answers to determine confidence.
Other methods include directly querying the model
for its confidence (Lin et al., 2022; Tian et al., 2023)
and calculating self-consistency scores (Wang et al.,
2022; Lin et al., 2023). Some techniques for confi-
dence calibration involve modifying prompts and
paraphrasing instructions to fine-tune the proba-
bility distribution (Zhao et al., 2023; Jiang et al.,
2023b), or using the probability that the model
agrees with its own answers, such as in P(True)
(Kadavath et al., 2022). Combined approaches fur-
ther enhance calibration accuracy (Xiong et al.,
2023; Chen and Mueller, 2023).

3 Problem Formulation

3.1 Benchmark Contamination

In this study, we focus on detecting benchmark
contamination. The problem is formulated as: con-
sider a benchmark D = {(x1, y1), ..., (xn, yn)},
where xi denotes an instruction and yi represents
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Method TDA Free CT Free TDL Free SP T Free

String-match (OpenAI, 2023) ✗ ✓ ✓ ✓ ✓
Min-k% Prob (Shi et al., 2024) ✓ ✗ ✗ ✓ ✗
Guided-Prompting (Golchin and Surdeanu, 2023b) ✓ ✗ ✗ ✗ ✓
Sharded-Likelihood (Oren et al., 2023) ✓ ✗ ✗ ✓ ✗
CDD (Dong et al., 2024) ✓ ✗ ✗ ✗ ✗
DCQ (Golchin and Surdeanu, 2023a) ✓ ✓ ✓ ✗ ✓

PaCoST (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing methods and PaCoST. ✓ means the method satisfies the corresponding property
and ✗ refers to methods not satisfying the corresponding property. The name of properties are abbreviated for
presentation and their full contents can be found in Section 3.2.

the ground truth answer. We define benchmark con-
tamination as the model has been trained to maxi-
mize P(yi|xi) (or to minimize − logP(yi|xi)).

There are two contamination types that align
with this objective. For a given data instance (x, y),
the first contamination type performs next-token
prediction on both the instruction x and the answer
y, which aims at minimizing:

− logP(x, y) = − logP(y|x)P(x)
= −(logP(y|x) + logP(x))

The second contamination type only performs next-
token prediction on the answer y, which aims at
minimizing − logP(y|x). The only difference be-
tween the two contamination types lies in whether
− logP(x) is part of the optimizing objective.

3.2 Detection Requirements
Building upon the formulation outlined earlier and
taking into account the features of existing method-
ologies for detecting data contamination, we pro-
pose several key criteria that a robust benchmark
contamination detection method should satisfy.

I. Training Data Access Free (TDA Free)
While String-Match might offer high accuracy in
detecting data contamination, it is frequently im-
practical due to LLM providers’ reluctance to dis-
close training datasets. Even if training datasets
were accessible, the sheer volume of data makes
pinpointing specific instances nearly impossible.
Hence, reliance on access to original training data
for contamination detection is neither feasible nor
practical. Effective benchmark contamination de-
tection methods must be engineered to operate in-
dependently of training data access.

II. Contamination Type Free (CT Free) Many
conventional contamination detection methods pri-
marily target the first type of contamination, where

both the instruction and answer parts are trained.
This focus is reasonable for detecting contamina-
tion in unlabeled data. However, benchmark con-
tamination can also manifest in the second type,
where only the answer part undergoes training, ren-
dering many existing methods unsuitable for ad-
dressing this issue. For example, techniques like
Min-k% Prob (Shi et al., 2024), which entails com-
puting the minimum k% probabilities of the entire
input, may fail to function accurately if the instruc-
tion part remains untrained. Hence, an effective
detection method should not be constrained by con-
tamination type.

III. Training Data Length Free (TDL Free)
Building on the preceding discussion, since most
data contamination detection methods focus on the
first type of contamination, they naturally presume
relatively lengthy trained parts. However, bench-
mark contamination can also occur with only a
very short answer part y trained (e.g., merely an
option or a word). This renders assumptions about
training length invalid, making methods reliant on
such assumptions ineffectual. Still taking Min-k%
Prob (Shi et al., 2024) as an example, if we solely
compute the minimum k% probabilities on the re-
sponse part, it will introduce excessive noise due
to the brevity of the response part. Hence, a robust
benchmark contamination detection method should
not be constrained by training length. This will be
further discussed in Appendix B.

IV. Stable Performance (SP) Certain methods
exhibit sensitivity to prompts or settings, neces-
sitating specific prompts for proper functionality.
Guided-Prompting (Golchin and Surdeanu, 2023b)
mandates knowledge of the dataset’s name and split
to construct the guided prompt, which may not
always be attainable. Moreover, the disparity be-
tween general and guided prompts, even without
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considering dataset metadata, casts doubt on the
method’s stability. Similarly, DCQ (Golchin and
Surdeanu, 2023a) mandates the model to choose
from five options, and altering the order of options
yields disparate results, rendering its detection out-
comes meaningless. Therefore, a robust detection
method should yield stable results despite reason-
able changes in settings.

V. Threshold Free (T Free) Some methods ne-
cessitate the selection of a threshold for detection,
such as Min-k% Prob (Shi et al., 2024). However,
datasets and models exhibit varying distributions,
rendering a universal threshold impractical. While
some threshold-sensitive methods resort to report-
ing Area Under the Curve (AUC) for quantitative
comparison to circumvent this issue, in real-world
scenarios, employing a specific threshold for de-
tection is unavoidable. Therefore, we contend that
a threshold-based method should provide a fixed
threshold and demonstrate its effectiveness across
all datasets rather than relying on AUC. A superior
detection method should not entail flexible thresh-
olds; all hyperparameters should be predefined.

We examine the most popular data contamina-
tion detection methods and compare them in Table
1. As evident, all methods, except our proposed
one, fail to satisfy all properties. This observation
underscores the advantages of our method.

4 Method

We introduce PaCoST, a novel benchmark contam-
ination detection method that emphasizes the dis-
tinction between contaminated and clean data with-
out relying on thresholds. Our approach leverages
the disparity in model behavior between original
and rephrased instances, focusing on confidence
rather than traditional performance metrics like ac-
curacy (Yang et al., 2023). By conducting statisti-
cal analysis on confidence, we can robustly iden-
tify contamination. PaCoST comprises three key
steps: rephrasing preparation, confidence estima-
tion, and significance testing. Through this method,
we provide a clear and unique approach to detect-
ing benchmark contamination in models.

4.1 Rephrase Preparation

Our key idea involves comparing confidence be-
tween original and rephrased instances. We opt
for rephrasing for several reasons. First, to ensure
a fair comparison, the trained and untrained data
should share similar distributions and levels of dif-

ficulty. Otherwise, comparing confidence would
be meaningless. Creating questions with the same
distribution and difficulty but different meanings
is challenging. Second, rephrasing is a fundamen-
tal capability of most common LLMs, making it
straightforward to implement.

Given an instance (x, y), we use a model Mp

to rephrase x into x′ = Mp(x) while y remain
unchanged. We select Llama2-Chat-7B (Touvron
et al., 2023) as the rephrase model for all the tested
models (The rephrase prompt is provided in Ap-
pendix D). To validate the quality of the rephrasing,
we employ both BERT-Score (Zhang* et al., 2020)
and human annotation. Additionally, we compare
the performance of different models for rephras-
ing and demonstrate that using various paraphras-
ing models does not impact performance, provided
they are sufficiently powerful. Further details can
be found in Appendix C.

4.2 Confidence Estimation
There are various ways to estimate a model’s con-
fidence in its answers, as previously discussed. In
this study, we select the method P(True) (Kadavath
et al., 2022) for confidence estimation.

We briefly introduce this method. Consider an
instance (x, y), where x is an instruction and y is
the ground truth answer. For an LLM M and its
corresponding output M(x), P(True) queries the
model M whether M(x) is a correct answer to
x. Denote the output probability distribution of
querying as P(·|x,M(x),M), the confidence can
be then denoted as P(True|x,M(x),M) where
True represents model M supporting M(x). Ac-
cording to our setting and prompt, we are actually
calculating P(Y es|x,M(x),M).

We opt for using P(True) for confidence estima-
tion for several reasons. First, using probability
distribution of the original output (P(M(x)|x,M)
to estimate confidence often leads to overconfi-
dence issues, resulting in unnaturally high con-
fidence scores (Xiong et al., 2023). This prob-
lem also partly explains why methods like Min-k%
Prob are ineffective on relatively short training seg-
ments. We will further explore this observation in
Appendix B.

Second, Verbalized confidence estimation meth-
ods, which involve directly querying the model to
provide a confidence score, often yield discrete con-
fidence values. This makes them unsuitable for our
purposes. Other confidence estimation methods are
generally either inappropriate or overly complex.
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Confidence Estimation

Significance Testing

### Instruction: You should choose the right 
answer for the following question. 

### Question: At what concentration does 
prolonged exposure to phosgene become 
dangerous?

A. 100 ppm    B. 25 ppm    C. 1 ppm   D. 10 ppm

paraphrase

Question 𝑥" Question 𝑥′"

Response 𝑎" Response 𝑎!"

Is this answer
correct?

Is this answer
correct?

no### Instruction: You should choose the right 
answer for the following question. 

### Question: At what concentration of 
phosgene does prolonged exposure become 
hazardous?

A. 100 ppm    B. 25 ppm    C. 1 ppm   D. 10 ppm

Question 𝑥" …  Answer 𝑦" …

Paired Sample T-test

𝑝 < 0.05 𝑝 ≥ 0.05❌ ✅Contaminated Clean!

Figure 1: Overview of our method. xi represents a question, yi represents its corresponding ground truth answer, x
′
i

represents a rephrased question and ai, a
′
i represent model responses to original and rephrased question correspond-

ingly.

Therefore, we ultimately choose P(True) for its
simplicity and effectiveness. Details of our prompt
and an example can be found in Appendix D.

4.3 Significance Testing
Consider a benchmark D = {(x1, y1), ...,
(xn, yn)} and its rephrased benchmark D

′
=

{(x′
1, y1), ..., (x

′
n, yn)} we have calculated the

paired confidence set {(c1, c′1), ..., (cn, c
′
n)}, where

ci = P(Y es|xi,M(xi),M)

and

c
′
i = P(Y es|x′

i,M(x
′
i),M)

We use Paired Samples T-test to perform sta-
tistical analysis. Denote di = ci − c

′
i, assuming

di ∼ N (µ, σ2), we would like to test whether
µ > 0. Then the null hypothesis H0 and the al-
ternative hypothesis can be denoted as

H0 : µ ≤ 0←→ H1 : µ > 0

We have:

d̄ =
1

n

n∑

i=1

(ci − c
′
i)

and

sd =

√√√√ 1

n− 1

n∑

i=1

(di − d̄)2

the corresponding t-value is

t =
d̄
sd√
n

.
After calculating this t-value, we can calculate

a probability p (following the setting of T-test),
which represents the probability of mis-rejecting
the null hypothesis. If p < 0.05, we can confidently
reject null hypothesis and choose the alternative
hypothesis, which means the model is statistically
significantly more confident when answering the
original questions and this provides evidence for
potential contamination.

In short, if the calculated p < 0.05, we say the
model M is contaminated on benchmark D, oth-
erwise we say there is no statistically significant
evidence of contamination.

The whole process of our method is shown in
Algorithm 1.
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Algorithm 1 PaCoST

1: Input benchmark D = {(x1, y1), ..., (xn, yn)}
and model to test M , model used to rephrase
Mp.

2: for i = 1, 2..., n do
3: x

′
i ←Mp(xi)

4: ci ← P(Y es|xi,M(xi),M)
5: c

′
i ← P(Y es|x′

i,M(x
′
i),M)

6: end for

7: d̄←
∑n

i=1 ci − c
′
i

n

8: sd ←
√

1

n− 1

∑n
i=1(di − d̄)2

9: t← d̄
sd√
n

, Calculate p according to t and n

10: if p < 0.05 (Significant) then
11: Return: D is Contaminated
12: else
13: Return: D is not Contaminated
14: end if

5 Experiments

5.1 Intentional Contamination Experiments
First, to validate the effectiveness of our method,
we conduct intentional contamination experiments.

Experiment Settings For these experiments, we
select Mistral-7B-Instruct-v0.2(Jiang et al., 2023a)
and Llama-2-7B-Chat(Touvron et al., 2023) as the
target models and utilize a newly released dataset
WMDP (Li et al., 2024) for intentional contamina-
tion. This dataset, including 3,668 multiple-choice
questions about knowledge in biology, chemistry
and cyber, is released in May 2024, ensuring that
the selected models have not been contaminated on
this data before.

We conduct supervised fine-tuning (following
the second contamination type) on two models.
Though there are two contamination types as we
introduced in Section 3.2, we mainly conduct inten-
tional contamination experiments following the sec-
ond contamination type because it is less discussed
and somehow more difficult to detect because it
has less trained parts. It is worth mentioning that
our method works properly under the first contami-
nation type, as is shown in Appendix C.

We sample 1000 samples from biology split from
the WMDP dataset to produce contaminated ver-
sions of Llama and Mistral. 400 samples are sam-
pled from the remaining data in the WMDP dataset
to form "clean" (untrained) data. The choice of

number of samples are just for simplicity and does
not affect the final results as we will show later.

For baseline comparisons, given the limited
availability of benchmark-level contamination de-
tection methods, we selected Guided-Prompting
(Golchin and Surdeanu, 2023b) as our baseline.
Since Guided-Prompting also utilizes p-values as
an indicator of contamination, this allows for a fair
comparison between our method and theirs.

We also compare the performance of our method
with a simplified version that directly uses ground
truth answer to calculate confidence instead of the
model’s generated reponse. Details of the simpli-
fied version will be discussed in Appendix A.

Additionally, we conduct experiments to eval-
uate the performance of DCQ (Golchin and Sur-
deanu, 2023a) and Min-k% Prob (Shi et al., 2024)
and find that they do not perform well for detecting
benchmark contamination. A detailed discussion
of these findings can be found in Appendix B.

Results and Analysis The results are presented
in Table 2. Our method successfully identifies con-
taminated datasets in contaminated models, demon-
strated by significant results on trained data in these
models. Importantly, our method avoids false pos-
itives, as it does not return significant results on
uncontaminated datasets, even when applied to con-
taminated models. For original models, which are
free from contamination, all results are insignifi-
cant. These findings underscore the effectiveness
of our method in accurately detecting data contam-
ination.

In contrast, Guided-Prompting fails to identify
contamination in contaminated models, likely be-
cause the instruction part was not included in the
training parts, preventing Guided-Prompting from
replicating the original data accurately. Similarly,
the simplified version of our method performs
much better than Guided-Prompting, but it still suf-
fers from false negative problems. These compar-
isons further reveal the effectiveness of our method.
Some detailed discussions about this result can be
found in Appendix A.

Stability under Different Number of Samples
Different datasets vary in the amount of data they
contain, and for very large datasets, it is more prac-
tical to sample a subset for contamination detection.
Therefore, it is crucial to validate that our method
performs well with varying sample sizes. To test
this, we conducted experiments under the same
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Model Method Trained Data Untrained Data

Llama
(Contaminated)

Guided-Prompting 0.99 0.62
PaCoST(simplified) 0.94 0.99

PaCoST(ours) 6e-8 0.92

Mistral
(Contaminated)

Guided-Prompting 0.99 0.99
PaCoST(simplified) 0.02 0.36

PaCoST(ours) 2e-4 0.75

Llama
(Original)

Guided-Prompting 1e-10 1e-9
PaCoST(simplified) 0.78 0.87

PaCoST(ours) 0.12 0.92

Mistral
(Original)

Guided-Prompting 7e-5 1e-3
PaCoST(simplified) 0.18 0.46

PaCoST(ours) 0.46 0.72

Table 2: Main results of intentional contamination. The values are p-value of the methods, where p < 0.05
represents statistically significant and probably contaminated and p ≥ 0.05 represents un-contaminated. The bold
p-values represents significant results. The underlined values represent false positive or false negative results.

settings as above but with different numbers of
samples. The results are presented in Table 3.

Data #Sample Llama / Mistral
(Contaminated)

Llama / Mistral
(Original)

Trained
Data

1000 6e-8 / 2e-4 0.12 / 0.46
500 1e-5 / 7e-8 0.41 / 0.55
100 0.02 / 1e-3 0.81 / 0.38

Untrained
Data

400 0.92 / 0.75 0.92 / 0.72
200 0.54 / 0.84 0.83 / 0.56
100 0.88 / 0.62 0.59 / 0.27

Table 3: p-value of different number of samples. The
significant results are in bold.

As indicated by the results, our method works
properly with sample sizes ranging from 100 to
1000, without generating any false positives or false
negatives. This demonstrates the stability of our
method across different sample sizes and highlights
that it only requires a subset of the dataset to effec-
tively detect contamination, thereby reducing the
cost of processing entire datasets.

We do not discuss samples with fewer than
100 instances for two reasons. First, because our
method relies on statistical analysis, a small sample
size can introduce significant randomness, which
could interfere with accurate contamination detec-
tion. Second, datasets with fewer than 100 samples
are rare, making the analysis of such scenarios less
relevant and meaningful.

We also conducted additional studies to assess
the behavior of our method under various condi-
tions. We demonstrated that our method maintains
stable performance when using different rephrase
models Mp. It is also robust to reasonable random-
ness, as it delivers consistent performance under

different random seeds. Furthermore, our method
effectively handles various types of contamination.
These findings collectively highlight the superiority
of our method. Detailed discussions can be found
in Appendix C.

5.2 Tests on Existing LLMs and Benchmarks
After showing the feasibility of our proposed
method, we apply it to a variety of existing popular
LLMs and benchmarks to assess their contamina-
tion status. In this section, we introduce the tested
benchmarks, models, and present the experimental
results and discussions. Since some benchmarks
are extremely large, we randomly sample 400 sam-
ples in each benchmark for detection.

Datasets We conduct benchmark contamination
detection experiments on some popular bench-
marks, including MMLU (Hendrycks et al., 2020),
HellaSwag (Zellers et al., 2019), Arc-E, Arc-C
(Clark et al., 2018), TruthfulQA (Lin et al., 2021),
WinoGrande (Sakaguchi et al., 2021).

Models We select the following open-source
LLMs for experiments: Llama-2-Chat (7B, 13B)
(Touvron et al., 2023), Llama-3-Instruct (8B)
(AI@Meta, 2024), Mistral-Instruct (7B) (Jiang
et al., 2023a), Phi-3 (3.8B) (Abdin et al., 2024),
Qwen1.5 (0.5B, 7B), Qwen2 (7B) (Bai et al.,
2023), Yi (6B) (AI et al., 2024), DeepSeek (7B)
(DeepSeek-AI, 2024).

Evaluation Results We show the evaluation re-
sults in Table 4. To avoid potential harmful effects,
we do not show the names of the models in the
results and represent them as Model I to Model X.
Some observations can be drawn from the results.
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Model Arc-c Arc-e MMLU HellaS WinoG T-QA

Model I 0.46 0.53 2e-3 3e-8 0.78 0.57
Model II 0.18 0.30 3e-7 7e-3 0.59 0.82
Model III 1e-3 1e-3 0.30 0.37 2e-3 0.04
Model IV 0.02 0.28 0.09 0.59 0.25 2e-3
Model V 4e-4 7e-4 0.71 0.63 0.10 0.20
Model VI 1e-3 0.01 0.02 0.15 3e-8 0.24
Model VII 0.11 5e-3 0.73 0.03 0.11 0.82
Model VIII 0.09 0.04 0.02 0.10 0.26 0.44
Model IX 0.44 0.02 0.54 3e-13 4e-3 2e-8
Model X 0.95 0.38 0.17 0.61 0.65 0.46

Table 4: p-values of open-source models on widely tested benchmarks. (HellaS: HellaSwag, WinoG: WinoGrande,
T-QA: TruthfulQA)

First of all, all benchmarks are suspected con-
taminated more or less on different models. Some
benchmarks, like Arc-e, is suspected severely con-
taminated. Other benchmarks are are also sus-
pected contaminated and we do not find a bench-
mark that is "clean" on all models.

Secondly, almost all models are suspected con-
taminated more or less on different benchmarks.
Some models, like Model VI, Model IX, are sus-
pected contaminated on 4 benchmarks out of 6 we
tested. Other models are also suspected contam-
inated on 2 or 3 benchmarks out of 6 we tested.
Model X is perhaps the "cleanest" model as we do
not find significant evidence of contamination.

5.3 Discussion
This result further underscores the urgency of ad-
dressing the benchmark contamination problem in
LLM evaluation. As evidenced, almost all models
and benchmarks exhibit varying degrees of sus-
pected contamination. This contamination under-
mines the trustworthiness of evaluation results on
popular benchmarks, posing significant challenges
for both users and developers.

It is important to note that we do not intend to
accuse any LLM provider of intentional contam-
ination. As previously discussed, given the vast
amount of data required to train LLMs, excluding
or even simply detecting benchmark data within
training datasets is an exceedingly difficult task.
We must acknowledge that benchmark contamina-
tion may be inevitable due to these constraints.

Instead, we would like to propose two key in-
sights. First, detecting benchmark contamination
is crucial because it allows us to assess whether
evaluation results are trustworthy. While contam-
ination does not inherently imply that a model is
ineffective, recognizing its presence can prompt us
to seek alternative evaluation metrics. This ensures

that we are not misled by artificially high scores,
and helps maintain the integrity and reliability of
model evaluations.

Secondly, using specific benchmarks for eval-
uation may not be suitable. As our findings re-
veal, all benchmarks are suspected contaminated
to some degree. As soon as a new benchmark is
made public, it quickly becomes susceptible to con-
tamination because LLMs require large-scale, high-
quality data for training, and benchmarks naturally
fit this criterion. However, if a benchmark is not
released publicly, its quality and the evaluation re-
sults derived from it cannot be fully trusted, leading
to a dilemma.

Therefore, we advocate for a new LLM evalua-
tion approach that does not rely on static bench-
marks but rather on flexible and dynamic data
sources. For instance, evaluating LLMs based on
user feedback data, could provide a dynamic and
resilient measure of model performance. Further,
quantitative LLM evaluation can also be made pub-
lic - everyone can build his own benchmark for
evaluation. If the results of this large-scale bench-
marks could be combined, the evaluation of LLMs
will be more trustworthy and comprehensive.

6 Conclusion

In this work, we introduce the issue of benchmark
contamination in LLMs and propose several essen-
tial criteria that an effective benchmark contami-
nation detection method should meet. We high-
light that all existing detection methods fall short
of satisfying all of these requirements. We then pro-
pose a benchmark contamination detection method
named PaCoST, which uses significantly higher
confidence scores as an indicator of contamination.
We conduct various experiments to demonstrate the
effectiveness of our method. Additionally, we ap-
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ply our method to popular LLMs and benchmarks
and reveal a significant problem of benchmark con-
tamination across almost all benchmarks and LLMs
we examined.

Limitations

Our method focuses on detecting benchmark-level
contamination and is not suitable for identifying
instance-level contamination. Additionally, our
method involves multiple interactions with the
LLM, including one for paraphrasing, two for an-
swer generation, and two for confidence estimation.
This can result in lower efficiency compared to
other approaches.

Moreover, our method requires access to the
probability distribution for confidence estimation,
which is not available in black-box LLMs. As a
result, our approach cannot be used to detect bench-
mark contamination in black-box LLMs where in-
ternal outputs like probability distributions are not
accessible.

Ethics Statement

We honestly report the p-values for various open-
source LLMs and benchmarks without any alter-
ation to enhance or detract from the results. The
intentionally contaminated checkpoints used in our
research are for academic purposes only and will
not be released because WMDP is a "dangerous"
dataset that should be forgotten instead of memo-
rized by models. The aim of this work is to high-
light and address the issue of benchmark contam-
ination, not to promote contamination or criticize
any parties involved. We deeply respect the con-
tributions of LLM and benchmark providers and
believe that the problem of benchmark contami-
nation will be effectively addressed in due course.
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A Discussions about Intentional
Contamination Experiment

Details about Simplified Version of Our Method
We briefly introduce the simplified version of our
method. Recall that our method calculate confi-
dence ci = P(Y es|xi,M(xi),M) for a given in-
stance (xi, yi). But it is natural to question whether
it is possible to use c̃i = P(Y es|xi, yi,M), that is,
to directly calculate model’s "confidence" towards
the ground truth answer. So we design a simplified
version of our method in Algorithm 2.

Algorithm 2 PaCoST(Simplified)
1: Input benchmark

D = {(x1, y1), ..., (xn, yn)} and model to test
M , model used to rephrase Mp.

2: for i = 1, 2..., n do
3: x

′ ←Mp(xi)
4: c̃i ← P(Y es|xi, yi,M)
5: c̃

′
i ← P(Y es|x′

i, yi,M)
6: end for

7: d̄←
∑n

i=1 c̃i − c̃
′
i

n

8: sd ←
√

1

n− 1

∑n
i=1(di − d̄)2

9: t← d̄
sd√
n

, Calculate p according to t and n

10: if p < 0.05 (Significant) then
11: Return: D is Contaminated
12: else
13: Return: D is not Contaminated
14: end if

Discussion about Guided-Prompting Surpris-
ingly, we find that Guided-Prompting generates
numerous false-positive results on uncontaminated
models. Since the WMDP dataset was released af-
ter the model checkpoints were created, and given
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that WMDP was authored by human experts (Li
et al., 2024), it is highly unlikely that WMDP was
initially contaminated. Even if it were initially con-
taminated, Guided-Prompting should have been
able to detect this in the subsequently contaminated
checkpoints, which it failed to do. This observa-
tion further supports our assertion that Guided-
Prompting is unstable across different prompts.
The significance indicated by Guided-Prompting
may stem from this instability rather than from
genuine contamination.

Discussion about Simplified Version The sim-
plified version of our method works much better
than Guided-Prompting, as it correctly identifies
one contaminated case and all un-contaminated
cases. However, it makes a false negative mistake
on contaminated Llama, making it less effective
compared with the original version of PaCoST.

We would like to attribute this false negative to
the same reason mentioned in Yang et al. (2023),
which argues that contaminated models would bear
similar high performance even on rephrased sam-
ples. Therefore, using ground-truth answer may
result in contaminated model behaving similarly
on original samples and rephrased samples, leading
to false negative mistakes. In contrast, our focus is
that model will be more confident when answer-
ing the question instead of towards the correct
answer. As can be seen from results in Table 2,
this assumption is more accurate and works better.
Though the simplified version works well under
some circumstances, our whole PaCoST performs
better.

B Comparison with Other Methods

There are also many methods aiming at detect-
ing contamination that are worth discussing. We
mainly discuss two of them: DCQ (Golchin and
Surdeanu, 2023a) and Min-k% Prob (Shi et al.,
2024).

Discussion of DCQ DCQ is a replication-based
method which posits that models can distinguish
between data they have been trained on and simi-
lar data they have not encountered during training.
This method employs a multiple-choice quiz to de-
tect contamination. We apply this method in our
experiments and reported the accuracy in Table 5.

As evident from the results, the accuracy is even
worse than random guessing—random guessing
would yield an accuracy of approximately 0.5. We

Model Trained Data Untrained Data

Llama (Cont.) 0.5 0.39

Table 5: Accuracy of DCQ. Cont. represents contami-
nated.

believe this outcome is due to the following rea-
sons.

First of all, the contaminated Llama follows the
second contamination type, where only the answer
part, not the instruction part, is trained. However,
DCQ requires the model to identify the exact in-
struction part from multiple choices, which is par-
ticularly challenging given that the instruction part
was not part of the training. This mismatch likely
contributes to the method’s poor performance in
our experiments.

Secondly, numerous studies have demonstrated
that LLMs are highly sensitive to prompts, and the
order of choices in a multiple-choice question can
significantly influence the outcome. This sensitiv-
ity leads to considerable variability in the method’s
performance, making it unreliable. As a result,
users cannot draw definitive conclusions from its
results due to this inherent instability.

Discussion of Min-k% Prob Min-k% Prob fo-
cuses on the k% tokens with the smallest probabil-
ities and k is set to 20 to achieve the best perfor-
mance according to Shi et al. (2024). This method
has two problems. The first one is, traditional Min-
k% Prob also requires the instruction to be trained.
However, we do can adapt this method to only work
on the answer part of a piece of data. But for rel-
atively short trained parts (like an answer), 20%
tokens are simply one or two tokens, which may
introduce too much randomness. The second one
is, it requires a pre-defined threshold to determine
contamination, but this threshold is hard to choose.

We report the accuracy of Min-k% Prob in Table
6. We select k = 20 and threshold ϵ = 0.1. Specif-
ically, if and only if the average probability of the
min-20% tokens is larger than 0.1, we classify the
instance as contaminated. We present the accuracy
results for both the original Min-k% Prob and our
adapted version of Min-k% Prob.

There are several interesting observations based
on the results. First, the original Min-k% Prob fails
to determine contamination in the contaminated
model because the instruction part is not trained.
This aligns with our previous discussion.

The adapted Min-k% Prob performs much better
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Method Model Trained Untrained

Min-k% Prob
(Original)

Llama(Cont.) 0.02 0.97
Llama(Original) 0.94 0.98

Min-k% Prob
(Adapted)

Llama(Cont.) 0.86 0.6
Llama(Original) 1.0 1.0

Table 6: Accuracy of Min-k% Prob. Cont. represents
contaminated.

on both datasets. However, we observe an interest-
ing phenomenon: for uncontaminated Llama, the
model tends to output a relatively long response,
causing the answer itself to have a relatively small
probability, which leads to high detection accuracy.
For contaminated Llama, the model outputs a sin-
gle choice as response, but the probability of this
choice is very high (e.g., 0.99999) no matter it is
correct or not.

As a result, the contamination detection accu-
racy essentially becomes the accuracy of question
answering. For contaminated data, if the model
correctly answers a question, it outputs a very high
probability, leading Min-k% Prob to classify it
as contaminated. Similarly, for uncontaminated
data, if the model correctly answers a question, it
also outputs a very high probability, still causing
Min-k% Prob to classify it as contaminated. Thus,
in this case, Min-k% Prob is effectively detecting
whether the question is correctly answered, rather
than whether the question is contaminated.

This observation also highlights the problems of
using answer probabilities as a confidence score or
using perplexity to determine contamination. Sim-
ple probabilities are easily influenced by various
factors, including formatting, leading to unreliable
results.

C Discussions of Our Method

In this part, we would like to make some detailed
discussions about our method to show that our
method provides stable and trustworthy results.
For simplicity, the following experiments are con-
ducted on Llama only.

Quality of Rephrasing Though LLMs are
known to handle various tasks effectively, it is still
reasonable to question their proficiency at rephras-
ing. If the rephrasing model Mp fails to correctly
rephrase a question, the results of our method
would become meaningless. Therefore, we aim
to investigate the quality of rephrasing.

Since we primarily use Llama-2-Chat-7B for

rephrasing, we focus on evaluating its rephrasing
quality. We use the same dataset split mentioned in
Section 5 and randomly sample 100 instances from
each split to evaluate the quality of rephrasing. We
use two evaluation methods: BERT-Score (Zhang*
et al., 2020) and human study. We employ two hu-
man annotators to check whether each rephrasing
result is correct (i.e., it does not change the original
meaning and is not exactly the same as the original
instance) and annotate each as 0 (incorrect) or 1
(correct). The results are shown in Table 8.

As can be seen from the results, the rephras-
ing outputs have relatively high BERT-Score
and human evaluation scores. This observation
clearly demonstrates that using Llama-2-Chat-7B
for rephrasing is suitable and does not interfere
with contamination detection.

Performance Stability: Rephrasing We choose
Llama-2-Chat-7B for rephrasing because it is a
powerful model. However, the rephrasing model
Mp does not affect the final result as long as the
model is capable enough. To validate our method
provides stable results using different rephras-
ing models, we use another model, Mistral-v0.2-
Instruct-7B (Jiang et al., 2023a), for rephrasing.
Other settings remain the same as in the previous
experiments. The results are shown in Table 9.

Using either Llama or Mistral for rephrasing
does not affect the outcomes, confirming that we
can select any sufficiently powerful model for
rephrasing. We use Llama-2-Chat-7B for rephras-
ing in our other experiments as mentioned earlier.

Performance Stability: Contamination Types
As is discussed, there are two types of benchmark
contamination. Our previous experiments primar-
ily focus on the second type, as it involves shorter
trained parts and is somewhat harder to detect.
However, our method is also capable of detecting
the first type. The results are shown in Table 10.

As can be seen from the results, our method still
works properly under the first contamination type.
This result shows that our method is able to detect
contamination with different types, which further
proves its effectiveness.

Performance Stability: Randomness Para-
phrasing unavoidably introduces randomness into
contamination detection, so it is necessary to in-
vestigate the stability of our method under such
conditions. We conduct this experiment using the
same settings as above but randomly select five
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Model
Trained Data Untrained Data

0 42 302 3407 9056 0 42 302 3407 9056

Llama (Contaminated) 6e-4 4e-5 9e-6 4e-8 0.01 0.94 0.96 0.97 0.63 0.97
Llama (Original) 0.73 0.98 0.98 0.83 0.77 0.99 0.92 0.99 0.99 0.99

Table 7: p-value of different random seeds. The significant results are in bold.

Data BERT-Score Human Evaluation

Trained 0.95 0.89
Untrained 0.94 0.91

Table 8: Rephrasing quality evaluation average results.

Data Rephrase
Model

Llama
(Contaminated)

Llama
(Original)

Trained
Data

Llama 6e-8 0.12
Mistral 2e-3 0.99

Untrained
Data

Llama 0.92 0.92
Mistral 0.23 0.99

Table 9: p-value of different rephrase models. The
significant results are in bold.

seeds to explicitly introduce randomness. The re-
sults are listed in Table 7.

With the random seed changing, the correspond-
ing p-value changes, but the significance (or in-
significance) remains unchanged. This observation
clearly demonstrates the stability of our method
under randomness.

D Prompt

Data Llama (Cont. I) Llama (Cont. II)

Trained 4e-15 6e-8

Untrained 0.75 0.92

Table 10: p-value of different contamination types. The
significant results are in bold. Cont. represents contami-
nated.
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Rephrase Prompt

Instruction: You are provided with a question. Your task is to rephrase this question into another
question with the same meaning. When rephrasing the question, you must ensure that you follow
the following rules:
(1). You must ensure that you generate a rephrased question as your response.
(2). You must ensure that the rephrased question bears the same meaning with the original question.
Do not miss any information.
(3). You must only generate a rephrased question. Any other information should not appear in your
response.
(4). Do not output any explanation.
(5). Do not modify the numbers or quantities in the question. You should remain them unchanged
Example:
{In-Context Examples}
Input:
{input}

Output:

Confidence Estimation Prompt

Instruction: You are an expert in judging whether the answer is correct. You will be given a
question and a corresponding answer. Your job is to determine whether this answer is correct. You
should only respond with Yes or No.
Example:
{In-Context Examples}
Input:
{input}

Output:

Confidence Estimation Example

Instruction: You are an expert in judging whether the answer is correct. You will be given a
question and a corresponding answer. Your job is to determine whether this answer is correct. You
should only respond with Yes or No.
Example:
{In-Context Examples}
Input:
The question is: At what concentration does prolonged exposure to phosgene become dangerous?
A. 100 ppm B. 25 ppm C. 1 ppm D. 10 ppm

The answer is B.

Is the answer correct according to the given question?
Output:
Yes.
Output Distribution: P (Y es) = 0.92, which means confidence c = 0.92.
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