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Abstract

Numbers are notoriously an essential compo-
nent of financial texts, and their correct under-
standing is key to automatic system for effi-
ciently extracting and processing information.

In our paper, we analyze the embeddings of
different BERT-based models, by testing them
on supervised and unsupervised probing tasks
for financial numeral understanding and value
ordering.

Our results show that LMs with different types
of training have complementary strengths, thus
suggesting that their embeddings should be
combined for more stable performances across
tasks and categories.

1 Introduction

The analysis of the linguistic and conceptual knowl-
edge contained in the representations of Trans-
former architectures (Vaswani et al., 2017) has be-
come of general interest since the introduction of
pre-trained language models (LMs) (Radford et al.,
2019; Devlin et al., 2019). A common paradigm for
testing such knowledge is represented by probing
tasks: a simple classification model takes as input
a representation of a word/sentence from a pre-
trained LMs (i.e. an embedding) and it is asked to
solve a task involving human linguistic knowledge
(e.g. subject-verb number agreement, coreference
resolution etc.), and a good performance is consid-
ered as an indicator that the LM encodes the target
knowledge (see Belinkov (2022) for an overview).

Understanding numbers is even more essential
for the analysis of financial texts, where they may
denote different types of concepts (e.g. amounts,
percentages, time periods etc.), each one with its
own scale of values. Ideally, a model should be
able to estimate the correct magnitude of a numeral
for a category, and carry out comparisons between
category members. Probing provides important

insights about which models contain more informa-
tion about a specific linguistic distinction, because
it analyzes their performance in the most simple
and controlled settings (Adi et al., 2017; Conneau
et al., 2018; Chersoni et al., 2021), and therefore it
can guide the choice on the base models for more
sophisticated NLP pipelines and downstream tasks.

In our paper, we analyze the embeddings from
three different BERTs with probing tasks for numer-
acy in the financial domain. Such tasks are meant to
test numerical understanding, seen as the capacity
of interpreting a numerical expression and assign-
ing it to a specific conceptual category, and the
capacity of ordering the values of each category on
a scale. The BERT models were selected to assess
the effect of different types of pretraining in han-
dling numeracy: is a general numeracy-augmented
pretraining sufficient to learn knowledge about nu-
merals in the financial domain? Or the exposure to
financial text is necessary for capturing the nuances
of the meaning of numerals in this domain?

We show that the models perform similarly in
a supervised probing task, where the LM embed-
dings are used to train a classifier. On the other
hand, when tested with unsupervised tasks, more
differences emerge: although the embeddings of
MWP-BERT show more consistency in identifying
numeral categories and ordering numeral values,
there is not a single model doing consistently bet-
ter in all categories and tasks. This might suggest
the opportunity of combining different LM repre-
sentations to achieve more stable performance in
financial tasks.1

2 Related Work

With the rising popularity of Natural Language Pro-
cessing and text mining for finance (Loughran and
McDonald, 2016), researchers quickly adapted pre-

1Code and data available at: https://anonymfile.com/
KV10e/code-submission.zip
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Category Count Percentage Sample Instance
Monetary 2646 37.34 $CY don’t let it close below 14.77
Temporal 2062 29.1 Alert sent to members at 9:59 AM
Percentage 1060 14.96 past Ecommerce sales up 50%
Quantity 843 11.9 $MU Interesting that about 15k shares
Indicator 198 2.79 The close over the 200 dma on heavy volume
Option 158 2.23 $ISRG bought weekly 387.50 puts
Product Number 120 1.69 a partnership announcement combined with sd-101

Table 1: Descriptive statistics and sample instances of FinNum-1 (target numeral in bold).

trained LMs to the financial domain, mostly start-
ing from general-domain architectures (e.g. BERT,
Devlin et al. (2019)) and then carrying out addi-
tional training on a corpus from the financial do-
main (e.g. the FinBERT models, Araci (2019);
Yang et al. (2020)). The domain adaptation pro-
cess led to performance improvements, although
most evaluations focused on sentiment analysis and
related tasks, and improvements were not always
consistent (Peng et al., 2021).

Given the interest of the NLP field in numerical
understanding, several works focused on improv-
ing the mathematical reasoning capacities of LMs
(Geva et al., 2020; Thawani et al., 2021; Chen et al.,
2022; Petrak et al., 2023). However, despite recent
progress, LMs seem to be still struggling with nu-
merals, especially if rare/unseen in the training data
(Wallace et al., 2019; Sharma et al., 2024).

In our study, we are interested in seeing whether
i) BERT embeddings of numerals can be used to
assign them to the right conceptual category, or
superordinate class (Chen et al., 2018); ii) the in-
formation they contain can be used to infer their
values by putting them on a category-specific scale.

3 Experimental Settings

3.1 Dataset

The experiments are conducted on the FinNum-1
dataset (Chen et al., 2018), which was introduced
for a shared task in numerical understanding, and
consists of numeral expressions in financial tweets
categorized in 7 classes: "Monetary", "Percentage",
"Option", "Indicator", "Temporal", "Quantity", and
"Product Number". Given a numeral in context, a
model has to assign it to the right conceptual class.
Descriptive statistics and sample instances from
FinNum-1 can be seen in Table 1.

The representation of each numeral in the dataset
is extracted from the last layer of a LM, resulting
in an embedding representation of size 768.

3.2 Models

We focused on BERT-based models to assess the
impact on number representations of specific types
of training on the same architecture. Other rea-
sons are that such models are relatively lightweight
and faster to run, and that they are bidirectional,
therefore they represent a better choice than au-
toregressive models for extracting contextualized
representations, which is what our tasks require.
Recent literature proved that the fact that autore-
gressive LMs cannot see future tokens represents
a drawback for the representation quality of their
embeddings (Springer et al., 2024).

The first model that we use is the standard BERT
model by Devlin et al. (2019). The second one
is a domain-adapted version of BERT, FinBERT
(Yang et al., 2020), which was initialized from a
BERT Base checkpoint and then further pretrained
on financial corpora. Finally, we include the MWP-
BERT model by Liang et al. (2022), which incor-
porate several numeracy grounded pre-training ob-
jectives and has been proved to improve the quality
of number representations in several mathematical
reasoning tasks. We chose these specific models
(all in their Base version) because they exemplify
different types of additional training of the same
architecture, allowing us to ask to what extent train-
ing on financial corpora and numeracy injection
improve number representations in financial text.

3.3 Probing Tasks

Numeral understanding. The purpose of the su-
pervised numeral understanding task is to investi-
gate whether the embedding representation of nu-
merical data by LMs exhibits discernible variations
across distinct numerical categories. This experi-
ment is conducted by assessing the capability of a
simple linear classifier (logistic regression, in our
case) to identify the correct category of numerals
using the embedding dimensions as input features.

We divide the dataset instances in 7 subsets, one
for each category, and in each category subset, we
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add negative examples in a 1:1 ratio by randomly
sampling instances from the other 6 categories.
Subsequently, we employ our probing classifier and
use stratified 10-fold cross-validation to obtain the
average performance for each category subset. We
assess performance in terms of the standard metrics
of accuracy, precision, recall, and F1-macro. 2

This first task is supervised, as a simple classifier
is trained on a linguistic distinction (the semantic
category of the number) on the basis of the LM rep-
resentations (the token embeddings of the number).
However, such methodology has been criticised as
it involves an external classifier, and thus the rela-
tion between the performance and the knowledge
already in the embeddings is not clear (Levy et al.,
2023). To probe more directly the extent to which
number properties exist in the embedding spaces,
we adopt two additional unsupervised tasks.

Number outlier detection. Outlier detection
(Camacho-Collados and Navigli, 2016) relies on
the hypothesis that embeddings of the same classes
form coherent clusters in the vector space. In this
task, we introduce an outlier in clusters of numerals
that belong to the same category, and then measure
the reciprocal similarities between all the numerals
in each cluster. If a LM has an accurate representa-
tion of a category, the outlier should be the one with
the lowest similarity to the other cluster members.

We generated from FinNum-1 an evaluation
dataset for outlier detection with 6966 clusters of
8 instances (7 instances of a class + 1 outlier). For
space reasons, the details of the process are pro-
vided in Appendix A. The performance is evaluated
based on detection Accuracy and Outlier Position
Percentage (OPP).

For each cluster, cosine similarity is computed
between each number embeddings pair. Detection
accuracy is determined by sorting the numbers ac-
cording to the average similarities to other cluster
members. If the embedding with the smallest av-
erage similarity is the one of the outlier, the model
gets a hit, and accuracy is given by the number
of hits divided by the number of clusters. OPP is
computed instead with the following equation:

2Differently from Chen et al. (2018), here the task is sim-
plified for the probing classifier: instead of a 7-way classifi-
cation, we have 7 classification models that work in a one vs.
all setting. Since models only have to make binary choices
on whether instances belong to a class or not, we can expect
similar or higher performance compared to Chen et al. (2018).

OPP =
ΣS∈D

OP (S)
|S|

|D|
(1)

D represents the evaluation subset of a category.
S represents a cluster in D. OP(S) refers to the de-
tected outlier position of this evaluation sample (the
index in the sorted ranking, according to average
cosine). |S| refers to the number of embeddings in
each cluster (8 in our case). Given that the cosine
similarity is sorted in descending order, the OPP
value can be seen as an indicator of how close the
outlier is to the bottom of the ranking.

Value ordering. Finally, we want to check how
accurate are the LMs in representing the values of
the numerals within each category, in a relative or-
dering task. Recently, Grand et al. (2022) proposed
a method based on semantic projections to inter-
pret the content of word embeddings, by means of
identifying vector subspaces that corresponding to
human-interpretable semantic scales.

The method works as follows: i) identify words
that can represent extreme values of a target on a
scale, e.g. for SIZE words like big, huge, gigan-
tic on one extreme, and tiny, small, minuscule on
the other extreme; ii) average the corresponding
embeddings at the two extremes to obtain a "pro-
totype" of an extreme value for that scale (the con-
cepts of ’very small’ and ’very big’), and then con-
nect the averaged vectors with a line; this line was
used to represent the scale of human measurements
of SIZE; iii) iii) given a list of words/concepts to
be ordered by their SIZE, project their embeddings
onto the SIZE line and take the relative ordering
of their values. Here, we adopt the same method
to map number embeddings onto their values, and
test if they can be ordered from the smallest to the
biggest one in their respective category.

First, we identify the vectors corresponding to
the maximum and minimum numbers within each
category and we subtract them to obtain a scale
vector of ⃗value. Then, we have to calculate the
projection of each remaining number in the cat-
egory onto ⃗value, defined via the classic scalar
projection formula:

Proj(
−−−−−→
number) =

−−−−−→
number · ⃗value

∥ ⃗value∥
(2)

For each number in the dataset, we sort both the
numbers and their corresponding representations
based on the numerical value (the embeddings of
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Model Acc Prec Rec F1
BERT 0.92 0.92 0.92 0.92

FinBERT 0.92 0.93 0.92 0.92
MWP-BERT 0.88 0.88 0.88 0.88

Table 2: Metrics for the numeral understanding task
(averaged by class and rounded to the second decimal).

duplicated numbers are simply averaged). Subse-
quently, we compute a scale vector by subtracting
the numerical representation of the smallest num-
ber from that of the largest number within the cate-
gory. Finally, we calculate the projection of all the
numbers in the category onto the ⃗value vector.

Performance is assessed using two different met-
rics: pairwise ordering accuracy and Spearman
correlation. In the former, for a category of n in-
stances, we generate n2 evaluation pairs by pairing
each instance with all the other ones in the same
category and compare their numerical values, as-
signing a hit to a LM for every time it correctly
picks the example with higher numerical value in
a pair; in the latter, we measure the Spearman ρ
between the order of the actual values of the num-
bers in the gold standard and the values obtained
via projection of their embeddings.

4 Results

The scores for the numeral understanding task can
be seen in Table 2. At a glance, it can be seen that
all the models achieve a very high performance,
with only MWP-BERT being slightly below 90%
for all the evaluation metrics. All the model repre-
sentations clearly contain relevant information for
the identification of the right semantic class of a
numeral expression, to the point that a performance
around 90% can be obtained even with a linear clas-
sifier. More detailed, by-class figures can be found
in Appendix B: unsurprisingly, Percentage is the
easiest class for all models, probably because the
presence in almost all contexts of the percentage
sign provides a strong identification cue. 3

Moving to the unsupervised tasks, we can ob-
serve in Table 3 that BERT Base is the best one
for Accuracy in identifying the outlier, and MWP-

3Reviewer 3 requests us to report the results of the original
FinNum-1 shared task for comparison. The highest F1-Macro
that was reported in the FinNum-1 shared task was around
0.90, achieved by Fortia-1 with a convolutional neural network
combining different types of word embeddings (word level,
character level, ELMo etc.) (Azzi and Bouamor, 2019). How-
ever, given that they were operating in an actual multiclass
classification setting while we adopted a one vs. all approach,
we do not think the scores are directly comparable.

Category BERT Base FinBERT MWP-BERT
Indicator 0.68/0.92 0.63/0.90 0.56/0.89
Monetary 0.38/0.75 0.39/0.77 0.40/0.78

Option 0.61/0.87 0.49/0.84 0.57/0.87
Percentage 0.63/0.88 0.51/0.85 0.67/0.92

Product
Number 0.37/0.76 0.43/0.79 0.20/0.74

Quantity 0.34/0.71 0.31/0.72 0.26/0.69
Temporal 0.24/0.68 0.20/0.62 0.35/0.77

AVERAGE 0.46/0.79 0.42/0.78 0.43/0.81

Table 3: Outlier detection results for the metrics of
Accuracy/OPP (best scores in bold).

BERT has an edge for the OPP metric. MWP-
BERT does in general a better job in clustering a
higher number of instances, as it gets the top scores
for Monetary, Temporal and Percentage, the most
frequent categories (they combine for more than
81% of the data points).

Category BERT Base FinBERT MWP-BERT
Indicator 0.60/0.43 0.73/0.61 0.68/0.55
Monetary 0.40/0.60 0.46/0.73 0.41/0.28
Option 0.61/0.46 0.53/0.47 0.49/0.48
Percentage 0.37/0.34 0.42/0.21 0.46/0.58
Product Number 0.69/0.37 0.75/0.36 0.65/0.50
Quantity 0.71/0.38 0.63/0.38 0.59/0.51
Temporal 0.58/0.35 0.55/0.31 0.50/0.52
AVERAGE 0.57/0.42 0.58/0.44 0.54/0.49

Table 4: Pairwise accuracy/Spearman scores on the
value ordering task (best scores in bold).

Table 4, showing the scores of Pairwise ordering
accuracy, displays almost a tie across categories
between the LMs: MWP-BERT is the best model
for Percentage; FinBERT does better in the most
finance-specific categories (Indicator and Mone-
tary) and in Product Number; the Base model is
best for the remaining ones. All models display
moderate correlations with the actual number val-
ues, with MWP-BERT being significantly better
than both BERT and FinBERT (p < 0.01 for a
two-tailed test with the Fisher r-to-z transforma-
tion). This suggests that the numeracy-augmented
model is the best choice for handling value order-
ing. However, it also has a sharp drop on Monetary,
the most "finance-specific" and frequent category.

In general, a trend of unsupervised tasks is that
representations of different models do well in dif-
ferent categories, which suggests that combining
them might lead to a more stable performance. To
quickly test this hypothesis, we tried to repeat all
the above experiments by combining the FinBERT
and the MWP-BERT embeddings, using the simple
methods of averaging and concatenation. While
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averaging led to inconsistent results, we observed
a slight increase of performance for embeddings
concatenation in numeral understanding, with the
F1-score going up to 0.93, and outlier detection,
with 0.46 of Accuracy and 0.82 of OPP. The results
are more ambivalent for value ordering: pairwise
ordering accuracy goes down to 0.49, but the com-
bined vectors achieve the highest Spearman corre-
lation with the gold standard value with 0.54. This
also includes a much higher correlation with the
Monetary category, going up to 0.43 from 0.28.

We think this is good preliminary evidence of
possible improvements by combining the informa-
tion in the two vector types, and it is likely that
larger improvements could be achieved by adding
trainable layers on the top of the original embed-
dings representations.

5 Conclusion

In this work, we used to simple probing task to an-
alyze the knowledge of financial numerals encoded
in different types of BERT-based LMs, particularly
in relation with the categories of the numerals in fi-
nancial text and with the capacity of ordering their
values on the scale proper of each category.

While with a supervised probe the numeracy-
augmented MWP-BERT does worse, in unsuper-
vised tasks it the representation quality across cat-
egories looks generally better. The fact that some
models experience highs and lows in some cate-
gories might be related to limited exposure in the
pretraining phase, which suggest that, in financial
tasks, it might be wise to combine different types
of embeddings to stabilize the representation and
simultaneously account for different aspects of nu-
merical knowledge.

Acknowledgements

The authors acknowledge the support from the
project“Analyzing the semantics of Transformers
representations for financial natural language pro-
cessing”(ZVYU), sponsored by the Faculty of Hu-
manities of the Hong Kong Polytechnic University.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,

and Yoav Goldberg. 2017. Fine-grained Analysis of
Sentence Embeddings Using Auxiliary Prediction
Tasks. In Proceedings of ICLR.

Dogu Araci. 2019. FinBERT: Financial Sentiment

Analysis with Pre-trained Language Models. arXiv
preprint arXiv:1908.10063.

Abderrahim Ait Azzi and Houda Bouamor. 2019. For-
tia1@ the NTCIR-14 FinNum Task: Enriched Se-
quence Labeling for Numeral Classification. In Pro-
ceedings of the NTCIR Conference on Evaluation of
Information Access Technologies.

Yonatan Belinkov. 2022. Probing Classifiers: Promises,
Shortcomings, and Advances. Computational Lin-
guistics, 48(1):207–219.

José Camacho-Collados and Roberto Navigli. 2016.
Find the Word that Does Not Belong: A Framework
for an Intrinsic Evaluation of Word Vector Repre-
sentations. In Proceedings of the ACL Workshop on
Evaluating Vector-Space Representations for NLP.

Chung-Chi Chen, Hen-Hsen Huang, Yow-Ting Shiue,
and Hsin-Hsi Chen. 2018. Numeral Understanding
in Financial Tweets for Fine-grained Crowd-based
Forecasting. In Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of Thoughts
Prompting: Disentangling Computation from Rea-
soning for Numerical Reasoning Tasks. arXiv
preprint arXiv:2211.12588.

Emmanuele Chersoni, Enrico Santus, Chu-Ren Huang,
and Alessandro Lenci. 2021. Decoding Word Em-
beddings with Brain-based Semantic Features. Com-
putational Linguistics, 47(3):663–698.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
You Can Cram into a Single Vector: Probing Sen-
tence Embeddings for Linguistic Properties. In Pro-
ceedings of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting Numerical Reasoning Skills into Language
Models. In Proceedings of ACL.

Gabriel Grand, Idan Asher Blank, Francisco Pereira,
and Evelina Fedorenko. 2022. Semantic Projection
Recovers Rich Human Knowledge of Multiple Object
Features from Word Embeddings. Nature Human
Behaviour, 6(7):975–987.

Tal Levy, Omer Goldman, and Reut Tsarfaty. 2023. Is
Probing All You Need? Indicator Tasks as an Alter-
native to Probing Embedding Spaces. In Findings of
EMNLP.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022.
MWP-BERT: Numeracy-augmented Pre-training for
Math Word Problem Solving. In Findings of NAACL.

77



Tim Loughran and Bill McDonald. 2016. Textual Anal-
ysis in Accounting and Finance: A Survey. Journal
of Accounting Research, 54(4):1187–1230.

Bo Peng, Emmanuele Chersoni, Yu-Yin Hsu, and Chu-
Ren Huang. 2021. Is Domain Adaptation Worth
your Investment? Comparing BERT and FinBERT
on Financial Tasks. In Proceedings of the EMNLP
Workshop on Economics and Natural Language Pro-
cessing.

Dominic Petrak, Nafise Sadat Moosavi, and Iryna
Gurevych. 2023. Arithmetic-Based Pretraining Im-
proving Numeracy of Pretrained Language Models.
In Proceedings of *SEM.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
Models Are Unsupervised Multitask Learners. Ope-
nAI Blog, 1(8):9.

Mandar Sharma, Rutuja Murlidhar Taware, Pravesh
Koirala, Nikhil Muralidhar, and Naren Ramakrish-
nan. 2024. Laying Anchors: Semantically Priming
Numerals in Language Modeling. In Findings of
NAACL.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2024.
Repetition Improves Language Model Embeddings.
arXiv preprint arXiv:2402.15449.

Avijit Thawani, Jay Pujara, and Filip Ilievski. 2021. Nu-
meracy Enhances the Literacy of Language Models.
In Proceedings of EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Pro-
cessing Systems.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP Models Know
Numbers? Probing Numeracy in Embeddings. In
Proceedings of EMNLP.

Yi Yang, Mark Christopher Siy Uy, and Allen Huang.
2020. FinBERT: A Pretrained Language Model
for Financial Communications. arXiv preprint
arXiv:2006.08097.

A Outlier Detection: Dataset
Construction

To construct an evaluation dataset for outlier detec-
tion, we created category clusters by following the
steps in Camacho-Collados and Navigli (2016). We
grouped 7 FinNum-1 instances from one class and
then we randomly introduced one instance from
another category as an outlier. To maximize the
utilization of data, we employed a sliding window
of size 7 through the list of the instances of each
one of the 7 categories to create the clusters.

Following the segmentation of each category
subset, we appended 6 data instances from differ-
ent categories to each generated cluster (one outlier
is sampled from each one of the other categories).
Through this process, for every set of 7 data sam-
ples from each category, 6 distinct datasets contain-
ing outliers from different classes were generated.
In total, the number of clusters is 6966.

B Full Scores for the Numeral
Understanding Task

The specific scores for each system, broken down
by class, can be seen in Tables 5, 6 and 7.

BERT
Category Acc Prec Rec F1
Indicator 0.91 0.92 0.91 0.91
Monetary 0.89 0.89 0.89 0.89
Option 0.92 0.92 0.92 0.92
Percentage 0.98 0.98 0.98 0.98
Product Number 0.91 0.91 0.91 0.91
Quantity 0.89 0.89 0.89 0.89
Temporal 0.92 0.92 0.92 0.92
AVERAGE 0.92 0.92 0.92 0.92

Table 5: Probing classifier results with BERT Base.

FinBERT
Category Acc Prec Rec F1
Indicator 0.93 0.93 0.93 0.93
Monetary 0.92 0.92 0.92 0.92
Option 0.87 0.88 0.87 0.87
Percentage 0.98 0.98 0.98 0.98
Product Number 0.93 0.93 0.93 0.93
Quantity 0.90 0.90 0.90 0.90
Temporal 0.94 0.94 0.94 0.94
AVERAGE 0.92 0.93 0.92 0.92

Table 6: Probing classifier results with FinBERT.

MWP-BERT
Category Acc Prec Rec F1
Indicator 0.91 0.91 0.91 0.91
Monetary 0.86 0.86 0.86 0.86
Option 0.89 0.89 0.89 0.88
Percentage 0.98 0.98 0.98 0.98
Product Number 0.81 0.82 0.81 0.81
Quantity 0.83 0.83 0.83 0.83
Temporal 0.89 0.89 0.89 0.89
AVERAGE 0.88 0.88 0.88 0.88

Table 7: Probing classifier results with MWP-BERT.
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