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Abstract

This paper describes CMU’s submission to the
IWSLT 2024 Simultaneous Speech Translation
(SST) task for translating English speech to
German text in a streaming manner. Our end-to-
end speech-to-text (ST) system integrates the
WavLM speech encoder, a modality adapter,
and the Llama2-7B-Base model as the decoder.
We employ a two-stage training approach: ini-
tially, we align the representations of speech
and text, followed by full fine-tuning. Both
stages are trained on MuST-c v2 data with
cross-entropy loss. We adapt our offline ST
model for SST using a simple fixed hold-n pol-
icy. Experiments show that our model obtains
an offline BLEU score of 31.1 and a BLEU
score of 29.5 under 2 seconds latency on the
MuST-C-v2 tst-COMMON.

1 Introduction

This paper presents CMU’s submission to the
IWSLT 2024 (Carpuat et al., 2024) Simultane-
ous Speech Translation (SST) task, focusing on
streaming English speech to German text transla-
tion. Recent advancements in large language mod-
els (LLMs) have demonstrated their potential to
be a strong backbone for offline ST (Huang et al.,
2023; Zhang et al., 2023). In this year’s submis-
sion, we build an end-to-end offline ST model with
WavLM (Chen et al., 2022) and Llama2-7B-Base
(Touvron et al., 2023) following the practice of
LST (Zhang et al., 2023). Then we adapt the of-
fline model for simultaneous translation.

We prepare our end-to-end ST model in the fol-
lowing steps:

1. Offline ST with WavLM and Llama2-7B-base.

2. Online adaptation of offline model via hold-n
policy and incremental beam search.

∗Equal contribution.

2 Task Description

The IWSLT 2024 SST track1 English-German di-
rection is a shared task for streaming speech-to-text
translation of English TED talks. The task requires
the system to generate the translation without mod-
ifying its previous outputs. The average lagging
(AL) (Ma et al., 2019) of SST systems must be be-
low 2 seconds on MuST-C v2.0 tst-COMMON set
(Di Gangi et al., 2019). Note that AL has been mod-
ified from its original definition (Ma et al., 2020a).

Following the constraint of data and pretrained
weights, we use MuST-C v2.0 as the only training
set and leverage pretrained models of WavLM and
Llama2-7B-Base.

3 System Description

As shown in Figure 1, our offline ST models con-
sists of three primary components: a speech en-
coder, an adapter, and a LLM decoder.

For the speech encoder, we employ the WavLM
model 2, which has been pre-trained on 94,000
hours data including LibriLight (Kahn et al., 2020),
VoxPopuli (Wang et al., 2021) and GigaSpeech
(Chen et al., 2021). We use the output of last en-
coder layer as the speech representation.

The modality adapter consists of two compo-
nents: a length adapter and a modality adapter. The
length adapter consists of two 1-dimensional con-
volutional layers with a kernel size of 5, a stride
size of 2, padding of 2, and a hidden size of 1024.
The modality adapter is a linear layer that projects
the output of the length adapter to the embedding
space of LLM.

We use Llama2-7B-Base as the LLM decoder.
The LLM decoder takes the output of the modality
adapter and autoregressively generate the target
text translation.

1https://iwslt.org/2024/simultaneous
2https://huggingface.co/microsoft/

wavlm-large
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Figure 1: Offline ST model architecture based on WavLM encoder and Llama2 7B decoder.

3.1 Offline Speech Translation (ST)
For each sample, given speech XS , the reference
translation XT , and the prompt XP , we initially
transform the speech signal into a feature represen-
tation via the speech encoder:

HS = Encoder(XS), (1)

where HS = [hS1 , . . . , h
S
T ] with T denoting the

sequence length of the feature representation. To
reconcile the length difference between the speech
feature sequence HS and its corresponding text,
we downsample the speech with a length adapter.

To clarify further, the length adapter transforms
HS using a pair of 1-dimensional convolutional
layers, which can be represented as:

ZS = Length adapter(HS ; k, s, p, h), (2)

where k is the kernel size, s is the stride, p is the
padding, and h denotes the number of convolutional
filters. The reduced temporal dimension is ZS =
[zS1 , . . . , z

S
N ], where

N =

⌊
T − k + 2p

s

⌋
+ 1, (3)

Next, a projector is applied to transform the speech
features ZS into ES with the same dimension as
the LLM input embedding. We use a single hidden
layer as the projector,

ES = Linear(ZS). (4)

Finally, we feed the speech embedding ES , trans-
lation embedding ET , and prompt embedding EP

into the template to compose the final input E of
LLM,

ET = Emb(Tokenizer(XT )), (5)

EP = Emb(Tokenizer(XP )), (6)

E =

{
Template(ES , EP , ET ) if training,
Template(ES , EP , ẼT ) if inference,

(7)
where Emb is the LLM embedding layer, ẼT is the
embedding of model’s previously generated tokens.

The template is formatted as:

<P> USER: <S> ASSISTANT:<T>

where <P> represents the system prompt3, <S>
denotes the speech embedding, and <T> is the
target reference or generated translation.

We finetune our offline ST model following a
2-stage strategy. In the first stage, we finetune the
speech encoder together with the adapters, while
keeping the LLM frozen. In the second stage, we
finetune the entire model. We employ cross entropy
loss in both stages. In addition, we apply rule-
based filtering (Ouyang et al., 2022) of the dataset

3We use the following system prompt: "You are a large
language and speech assistant. You are able to understand
the speech content that the user provides, and assist the user
with a variety of tasks using natural language. Follow the
instructions carefully and explain your answers in detail."



MODEL QUALITY LATENCY

OFFLINE SPEECH TRANSLATION (ST) SACREBLEU ↑ AL ↓ LAAL ↓ LAAL_CA ↓

WavLM-LLaMA2 (Ours) 31.1 5.85 5.85 7.09

SIMUL SPEECH TRANSLATION (SST) SACREBLEU ↑ AL ↓ LAAL ↓ LAAL_CA ↓

WavLM-LLaMA2-AlignAtt (Papi et al., 2023) 27.8 2.00 2.21 2.93
WavLM-LLaMA2 (Ours) 29.5 1.96 2.22 3.16

Table 1: Results of our English to German ST/SST models on MuST-C-v2 tst-COMMON. Latency for offline ST is
calculated using a wait-k policy with k set to infinity.

Algorithm 1 Selective Output of Speech Chunk
Hypotheses
1: procedure SELECTIVEOUTPUT(hyps, n)
2: prunedHyps = {}
3: for c ∈ {1, . . . , C} do
4: W (c) = hyps[c]

5: l = |W (c)|
6: if source_finished then
7: prunedHyps[c] = W (c)

8: else
9: n′ = min(n, l)

10: W
(c)
prefix = W

(c)

0:l−n′

11: if W (c)
prefix is not empty then

12: prunedHyps[c] = W
(c)
prefix

13: else
14: action = Read
15: break
16: end if
17: end if
18: end for
19: return prunedHyps
20: end procedure

to clean the unnecessary speaker names from the
training set.

3.2 Simultaneous Speech Translation (SST)

We adapt our offline ST model for streaming in-
ference using hold-n policy. Our scheme uses a
fixed duration (e.g. 2 seconds) to compute the en-
coder representations on chunks of input speech.
With each new chunk, we re-compute the encoder
representations using the entire given input speech.

As shown in Algorithm 1, for each chunk c, we
obtain the corresponding hypotheses W (c) using
beam search given partial speech input. We then
determine the number of tokens n′ to withhold
based on the minimum of the predefined value n
and the length of the current chunk’s hypotheses
l. The prefix W

(c)
prefix is obtained by selecting the

tokens from index 0 to l − n′.

4 Experimental Setup

We use the AdamW optimizer with a cosine learn-
ing rate decay and a warmup ratio of 0.2. The
learning rate commences at 2e-4 for the first train-
ing stage and is reduced to 2e-5 for the second
stage. We train the first stage for 6 epochs and train
the second stage for 1 epoch.

We employ an early stopping strategy with a
patience of 6 epochs, evaluating every 1000 steps
in Stage 1 and every 200 steps in Stage 2. The
batch size is set to 128 for both stages. All models
are trained on 4 Nividia A6000 GPUs with Deep-
speed’s ZeRO training strategy. The training times
for the first and second stages are approximately
29 hours and 9 hours, respectively. We select the
checkpoints with the lowest dev loss for testing.

For offline testing, we use a beam size of 4 to
generate translations. In the simultaneous testing
scenario, we set the start seconds to 2, indicat-
ing the initial wait time before processing speech
chunks. We employ a hold-n strategy with n set to
7, meaning that the last 7 tokens of each chunk are
withheld until more context is available. The beam
size is set to 4, and the chunk size is set to 2500ms.

We evaluate translation quality using Sacre-
BLEU (Post, 2018). We evaluate translation la-
tency for SST with average lagging (AL) (Ma
et al., 2020b) and length-adaptive average lagging
(LAAL) (Papi et al., 2022) using SimulEval toolkit
(Ma et al., 2020b).

5 Results

Table 1 shows the quality and latency of our SST
system as measured on En-De tst-COMMON. We
also include the offline ST performance of our
model for reference. We implement the Alignatt
policy (Papi et al., 2023) as a baseline for our
model, we set start seconds to 2, speech segment
size to 1000ms. We set number of frames to 20 and



Wav2vec WavLM

LLM Stage1 Stage2 Stage1 Stage2

TowerInstruct - - 29.64 -
Tower 29.35 30.53 30.11 31.64
LLaMA2 - 30.02 25.50 30.31

Table 2: SacreBLEU score of different Speech Encoder
and LLMs, all models are trained on the original MuST-
C 2.0 data without data cleaning.

use attention from all layers of the LLM decoder
with greedy decoding.

From ST to SST, we observe a 5% quality degra-
dation (31.1 to 29.5 SacreBLEU). However, this
comes with significant latency improvements. The
Average Lagging (AL) decreases from 5.85 to 1.96
seconds, a 66.5% reduction. The Length Adaptive
Average Lagging (LAAL) improves from 5.85 to
2.22 seconds, a 62.1% decrease.

We also investigate the impacts of different
LLMs and speech encoders, as shown in Ta-
ble 2. We compare WavLM with a CTC fine-tuned
Wav2vec 2.0 large model4. This Wav2vec model
was pre-trained on 53.2k hours of untranscribed
speech from LibriVox and fine-tuned on 960 hours
of transcribed speech from Librispeech, as well as
on pseudo-labels. Our results show that replacing
Wav2vec with WavLM yields a significant improve-
ment: a 1.1 BLEU score increase when using the
Tower LLM (Alves et al., 2024) as the decoder, and
a 0.3 BLEU score increase with LLaMA2 as the
decoder. This suggests that the performance gains
from a well-pretrained speech encoder are more
pronounced when coupled with LLMs of higher
translation capability.

Our analysis of the performance between differ-
ent LLMs used as decoders shows that the Tower
LLM5, subjected to continued pre-training on a cu-
rated multilingual dataset of 20 billion high-quality
tokens, exhibits a marked performance advantage
over LLaMA2 in the initial stage of training. How-
ever, during the second stage, when the LLM back-
end is trainable, Tower quickly overfits, implying
potential overlap between the MuST-C corpus and
the data involved in Tower’s pretraining. Tower

4https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_vox_960h_pl.pt

5https://huggingface.co/Unbabel/
TowerBase-7B-v0.1

Instruct6, which undergoes supervised fine-tuning
(SFT) on instruction dataset for various translation-
related tasks, achieves a slightly lower BLEU score
compared to the base model. To mitigate overfit-
ting during the second stage of training with Tower,
a reduced learning rate of 7e-6 is used, compared to
the 2e-5 learning rate applied to LLaMA2 training.

6 Conclusion

In this paper, we describe the submission of CMU’s
English to German simultaneous speech-to-text
translation systems for the IWSLT 2024 Simultane-
ous track. We start by building a offline speech-to-
text system which leverages self-supervised speech
and text foundation models. We then adapt this
offline model for streaming inference, enabling si-
multaneous speech-to-text translation.
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