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Abstract

This work describes CMU’s submission to the
IWSLT 2024 Offline Speech Translation (ST)
Shared Task for translating English speech to
German, Chinese, and Japanese text. We are
the first participants to employ a long-form
strategy which directly processes unsegmented
recordings without the need for a separate
voice-activity detection stage (VAD). We show
that the Whisper automatic speech recognition
(ASR) model has a hallucination problem when
applied out-of-the-box to recordings contain-
ing non-speech noises, but a simple noisy fine-
tuning approach can greatly enhance Whisper’s
long-form robustness across multiple domains.
Then, we feed English ASR outputs into fine-
tuned NLLB machine translation (MT) models
which are decoded using COMET-based Min-
imum Bayes Risk. Our VAD-free ASR+MT
cascade is tested on TED talks, TV series, and
workout videos and shown to outperform prior
winning IWSLT submissions and large open-
source models.

1 Introduction

CMU’s submission to the IWSLT 2024 Offline
Speech Translation shared task is a cascaded auto-
matic speech recognition (ASR) and machine trans-
lation (MT) system designed to effectively translate
English speech from long unsegmented recordings,
such as TED talks, TV series, and workout videos,
into German, Chinese, and Japanese text.

Typically systems are short-form, meaning they
are dependent on some voice-activity detection
to first convert long recordings which contain
speech and non-speech noises into short segments
of speech. This makes it relatively easy to train
a short-form model and test it on similar clean
speech segments. However, these systems exhibit
alarming brittleness in the wild; results from recent
iterations of the Offline ST track have shown large
fluctuations in performance between different seg-
mentations of the same test set (Anastasopoulos

et al., 2021, 2022; Agarwal et al., 2023).
Why are these short-form systems brittle in-the-

wild (or in IWSLT by proxy)? Our view is that
these systems are plagued by train/test mismatch.
Common training sets, e.g. MuST-C (Di Gangi
et al., 2019), are produced using sentence-level
forced alignment. In other words, this training seg-
mentation can only be obtained given a reference.
For a blind test set however, forced alignment is
not possible. Instead, practitioners have resorted
to using VAD with additional tricks to reduce the
train/test mismatch, such as heuristically replicat-
ing segment characteristics (Inaguma et al., 2021)
or modeling the segmentation pattern of training
data (Tsiamas et al., 2022). These methods of ap-
proximating the training data segmentation may
work within a single domain but are complex to
configure for multi-domain scenarios.

In this work, we explore long-form processing
of unsegmented recordings via a 30 second sliding
window as an alternative to segment-dependent
speech processing. Our system consists of:

1. Whisper-based ASR (Radford et al., 2023) ap-
plied in long-form inference §3.1.1, after a sim-
ple noisy fine-tuning procedure which greatly
enhances robustness to non-speech noises §3.1.2

2. NLLB-based MT (Costa-jussà et al., 2022), fine-
tuned and decoded via Minimum Bayes-Risk
§3.2

Our experiments first show that Whisper out-of-
the-box has a hallucination problem caused by non-
speech noises during long-form inference. We then
show that our noisy fine-tuning broadly addresses
these hallucinations. Finally, we show the ultimate
cascaded ST performance across multiple domains:
TED talks, TV series, and workout videos.

2 Task Description

The IWSLT 2024 Offline Speech Transla-
tion shared task consists of three language
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Figure 1: Summary of our cascaded system. ASR: long-form processing of unsegmented recordings. MT: sentence-
based translation with Minimum Bayes-Risk decoding.

pairs: English-to-German, English-to-Chinese, and
English-to-Japanese. For all three language pairs,
unsegmented TED talks (5-20 min) are given
as shared task evaluation data. As a dev set,
we use the provided tst2020 (TED’20), tst2021
(TED’21), and tst2022 (TED’22) for English-to-
German and tst2022 (TED’22) for English-to-
Chinese and English-to-Japanese.

For English-to-German, systems are also tested
on additional domains: TV series (45-60 min),
workout videos (10-20 min), and accented speech
(5-20 min). We therefore use two additional dev
sets obtained from the IWSLT 2024 Subtitling
shared task: ITV and Peloton.

We evaluate ASR using case-sensitive punctu-
ated word error-rate (WER ↓) against recording-
level references. We evaluate MT systems using
COMET ↑ (Rei et al., 2020) against sentence-level
references. We evaluate ST systems using COMET
after first performing minimum WER alignment of
our hypothesis to sentence-level references. Note
that for Chinese and Japanese, this alignment is
done at the character level.

We use MuST-C v3 (Di Gangi et al., 2019)
for fine-tuning ASR models on the TED do-
main. We use TED2020 for fine-tuning English-to-
German MT and MuST-C for English-to-Chinese
and English-to-Japanese. For multi-domain fine-
tuning we also add Bazinga TV series ASR data
(Lerner et al., 2022) and a 500k subset of OpenSub-
titles MT data (Creutz, 2018). Note that our use of
Bazinga (as well as the use of Whisper) puts our
system under the "Unconstrained" designation.

3 System Description

Figure 1 summarizes the components in our
ASR+MT cascade. The following section describes

the system in greater detail, referring at times to
the summary figure.

3.1 ASR

3.1.1 Long-Form Inference
As illustrated in Steps 1 and 2 of Figure 1, we de-
ploy Whisper in a long-form mode. Under this
scheme, the window size is always 30 seconds
(or the remainder of the recording). Although the
window size is fixed, the hop size is dynamic and
based on the predicted time-boundaries of speech
segments. As shown in Step 2, the final speech
segment in a window is considered to be truncated
if the predicted end-time is within 1 second of the
end of the window. To avoid transcribing with a
truncated utterance, the next window starts from
the start-time of the truncated utterance.

For non-speech noises, the expected behavior
is that the model produces a special symbol, e.g.
(NOISE), along with time-boundaries. However,
we found that Whisper Large-v2 frequently hal-
lucinates on non-speech such as music and ap-
plause.1 These errors can be categorized as oscil-
lations in which the auto-regressive decoder enters
a bad state causing long repeated garbage outputs.

Whisper applies an inference time patch to ad-
dress these oscillations, somewhat obscuring the
lack of long-form robustness in the model out-of-
the-box. This patch detects oscillations via a heuris-
tic repetition factor, then if high repetitions are de-
tected then it falls back to sampling. If the sampling
output is still high in repetitions, then it falls back
to sampling with greater and greater temperature.
Eventually, the model either escapes from the oscil-
lations (typically by producing EOS) or exhausts

1We also tested Large-v3 and found that hallucinations to
be more severe than Large-v2, perhaps due to error compound-
ing from the semi-supervision used in Large-v3.
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MODEL TED’20 TED’21 TED’22 ITV PELOTON

Whisper 54.9 8.3 5.8 38.9 47.9
+ Fallback on Oscillation 1.6 2.4 2.1 6.5 4.2
Whisper ft on TED + Baz 0.9 1.2 1.9 6.9 5.9
+ Fallback on Oscillation 0.9 1.2 1.1 3.5 3.4

Table 1: Insertion error-rates of Whisper out-of-the-box
vs Whisper after Noisy Fine-tuning. High insertions
indicates frequent oscillation.

the allotted number of fallback decodings.

3.1.2 Noisy Fine-tuning

Motivated by the apparent lack of long-form ro-
bustness described in the previous section, we pro-
pose a simple fine-tuning strategy to improve the
Whisper’s ability to predict the special non-speech
token: (NOISE). We prepare fine-tuning data by
taking consecutive 30 second segments from the un-
segmented recordings. Using given sentence-level
forced alignments, we obtain references containing
transcribed speech and noises. Critically, the 30
second segments also include untranscribed noises;
these non-speech portions were originally cut out
via forced alignment (they represent the durations
between speech segments). If these untranscribed
non-speech portions exceed 1 second in duration,
we add a new (NOISE) token in the target.

In practice (see §4.1), this noisy fine-tuning en-
compasses non-speech noises that Whisper out-
of-the-box struggles with. After fine-tuning, the
model does not produce oscillations and rather pro-
duces the (NOISE) token which is cleaned before
scoring ASR and feeding into MT.

3.2 MT

ASR outputs, which are cased and punctuated, are
concatenated at a recording-level (Step 3). This
recording-level ASR output is then split into sen-
tences and subsequently fed into our MT model.

For each language-pair, we fine-tune NLLB 1B
and NLLB 3B on TED data. For English-German
we also fine-tune a separate NLLB 1B model on
TED + OpenSubtitles data.

During inference, we generate a set of candidate
translations via epsilon-sampling (Step 4). We then
(optionally) pool the candidate translations across
multiple MT systems. Finally, the 1-best trans-
lation is chosen using COMET-based Minimum
Bayes-Risk decoding (Yan et al., 2022).

4 Results

4.1 Noisy Fine-Tuning Improves Whisper’s
Long-Form Robustness

Table 1 shows ASR insertion error-rates for Whis-
per out-of-the-box versus Whisper with noisy fine-
tuning. As can be seen from the high insertion error-
rates in row 1, Whisper without fine-tuning and
without relying on the fallback-based inference-
time patch (described in §3.1.1) has a major oscil-
lation problem. Noisy fine-tuning greatly reduces
this problem, as can be seen from row 3. Our results
show that noisy fine-tuning improved performance
on all domains, so we have reason to believe that
the improved long-form robustness generalizes to
some extent. The fallback method still improves
the fine-tuned model, indicating that some oscilla-
tions still remain, but this inference-time patch is
not critical as it was out-of-the-box.

Note that fallback is applied in all subsequent
ASR results unless otherwise indicated.

4.2 ST Results

Table 2 shows the ASR, MT, and ST performances
of our fine-tuned models versus their out-of-the-
box counterparts for English-German. For ASR,
fine-tuning on TED + Bazinga versus fine-tuning
on TED-only improved the TV series performance
(ITV) while maintaining the performance on TED.

For MT, the NLLB 3B fine-tuned model was
the best across all sets. The NLLB 1B models
fine-tuned on TED versus on TED + OpenSubtitles
performed similarly. We use all three MT models
in our final ensemble.

Table 3 shows a single-domain version of
the same story for English-Chinese and English-
Japanese. For these pairs, we use the TED-only
fine-tuned ASR model and we do not use any TED
+ OpenSubtitles fine-tuned MT models.

4.3 COMET-Based Minimum Bayes-Risk

Table 4 shows the impact of COMET-based MBR
compared to beam search. We observed improve-
ments up to 50 samples per system. Further, en-
sembling slightly improves results.

4.4 Benchmarking vs. Prior Works

Finally, Table 5 compares our VAD-free cascaded
approach to prior works. Note we’re showing
BLEU score (Post, 2018) in this table for com-
patibility with prior studies.
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MODEL TED’20 TED’21 TED’22 ITV PELOTON TED AVG NON-TED AVG

ASR WER ↓
Whisper (Large-v2) 10.8 10.1 9.3 30.9 24.2 10.1 27.6
Whisper ft on TED 8.8 7.5 7.8 27.5 22.3 8.0 24.9
Whisper ft on TED + Bazinga (Baz) 8.7 7.7 7.8 25.0 22.4 8.1 23.7

MT COMET ↑
NLLB 1B 0.8093 0.7825 0.7845 0.6322 0.6162 0.7921 0.6242
NLLB 1B ft on TED 0.8229 0.8006 0.7977 0.6638 0.6348 0.8071 0.6493
NLLB 1B ft on TED + OpenSubtitles (OS) 0.8219 0.7991 0.7943 0.6598 0.6396 0.8051 0.6497
NLLB 3B 0.8171 0.7892 0.7892 0.6472 0.6200 0.7985 0.6336
NLLB 3B ft on TED 0.8242 0.8053 0.8010 0.6697 0.6548 0.8102 0.6623

ST (ASR→MT) COMET ↑
Whisper → NLLB 1B 0.7891 0.7622 0.7691 0.5920 0.6119 0.7735 0.6020
Whisper → NLLB 3B 0.7954 0.7705 0.7779 0.6012 0.6152 0.7813 0.6082
Whisper ft on TED → NLLB 1B ft on TED 0.8050 0.7872 0.7844 0.6311 0.6111 0.7922 0.6211
Whisper ft on TED + Baz → NLLB 1B ft on TED (➀) 0.8053 0.7856 0.7855 0.6501 0.6087 0.7921 0.6294
Whisper ft on TED + Baz → NLLB 1B ft on TED + OS (➁) 0.8018 0.7872 0.7827 0.6537 0.6086 0.7906 0.6312
Whisper ft on TED + Baz → NLLB 3B ft on TED (➂) 0.8059 0.7911 0.7875 0.6562 0.6183 0.7948 0.6373

MBR Ensemble (➀ + ➁ + ➂) - - 0.8104 0.6647 0.6293 - 0.6470

Table 2: ASR/MT/ST results for English-German across TED and non-TED domains.

LANG MODEL MT ST

En-Zh NLLB 1B 0.7864 0.7309
En-Zh NLLB 1B ft on TED (➀) 0.8362 0.8082
En-Zh NLLB 3B 0.7464 0.7279
En-Zh NLLB 3B ft on TED (➁) 0.8362 0.8078

En-Zh MBR Ensemble (➀ + ➁) - 0.8295

En-Ja NLLB 1B 0.8300 0.7568
En-Ja NLLB 1B ft on TED (➀) 0.8625 0.8086
En-Ja NLLB 3B 0.7854 0.7715
En-Ja NLLB 3B ft on TED (➁) 0.8639 0.8046

En-Ja MBR Ensemble (➀ + ➁) - 0.8363

Table 3: MT/ST results for English-Chinese and
English-Japanese.

MODEL DECODING TED’22 ITV PELOTON

NLLB 1B ft on TED Beam (5) 0.7855 0.6501 0.6087
NLLB 1B ft on TED (➀) MBR (50) 0.8038 0.6570 0.6180

NLLB 1B ft on TED + OS Beam (5) 0.7827 0.6537 0.6086
NLLB 1B ft on TED + OS (➁) MBR (50) 0.8009 0.6628 0.6207

NLLB 3B ft on TED Beam (5) 0.7875 0.6562 0.6183
NLLB 3B ft on TED (➂) MBR (50) 0.8076 0.6632 0.6286

Ensemble (➀ + ➁ + ➂) MBR (50 ea.) 0.8104 0.6647 0.6293

Table 4: Beam search vs. MBR decoding.

5 Conclusion

We describe our IWSLT 2024 Offline Speech Trans-
lation system which is based on long-form process-
ing of unsegmented recordings. Our system con-
sists of fine-tuned Whisper and NLLB components
of a cascade. We evaluate our system on TED talks,
TV series, and workout videos.

TYPE MODEL USES VAD TED’22

Cascade IWSLT 2022 Top (Zhang et al., 2022) ✓ 23.9
Cascade Our Single Best Model ✗ 24.5

Direct SeamlessM4T (Barrault et al., 2023) ✓ 16.2
Direct WavLM+mBART (Yan et al., 2023) ✓ 19.2
Direct OWSM 3.1 (Peng et al., 2024b) ✗ 18.4
Direct OWSM-CTC (Peng et al., 2024a) ✗ 19.6

Table 5: BLEU score comparison with prior works.
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