@inproceedings{petryk-etal-2024-aloha,
title = "{ALOH}a: A New Measure for Hallucination in Captioning Models",
author = "Petryk, Suzanne and
Chan, David and
Kachinthaya, Anish and
Zou, Haodi and
Canny, John and
Gonzalez, Joseph and
Darrell, Trevor",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-short.30/",
doi = "10.18653/v1/2024.naacl-short.30",
pages = "342--357",
abstract = "Despite recent advances in multimodal pre-training for visual description, state-of-the-art models still produce captions containing errors, such as hallucinating objects not present in a scene. The existing prominent metric for object hallucination, CHAIR, is limited to a fixed set of MS COCO objects and synonyms. In this work, we propose a modernized open-vocabulary metric, ALOHa, which leverages large language models (LLMs) to measure object hallucinations. Specifically, we use an LLM to extract groundable objects from a candidate caption, measure their semantic similarity to reference objects from captions and object detections, and use Hungarian matching to produce a final hallucination score. We show that ALOHa correctly identifies 13.6\% more hallucinated objects than CHAIR on HAT, a new gold-standard subset of MS COCO Captions annotated for hallucinations, and 30.8\% more on nocaps, where objects extend beyond MS COCO categories."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="petryk-etal-2024-aloha">
<titleInfo>
<title>ALOHa: A New Measure for Hallucination in Captioning Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suzanne</namePart>
<namePart type="family">Petryk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anish</namePart>
<namePart type="family">Kachinthaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haodi</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Canny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Gonzalez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Darrell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite recent advances in multimodal pre-training for visual description, state-of-the-art models still produce captions containing errors, such as hallucinating objects not present in a scene. The existing prominent metric for object hallucination, CHAIR, is limited to a fixed set of MS COCO objects and synonyms. In this work, we propose a modernized open-vocabulary metric, ALOHa, which leverages large language models (LLMs) to measure object hallucinations. Specifically, we use an LLM to extract groundable objects from a candidate caption, measure their semantic similarity to reference objects from captions and object detections, and use Hungarian matching to produce a final hallucination score. We show that ALOHa correctly identifies 13.6% more hallucinated objects than CHAIR on HAT, a new gold-standard subset of MS COCO Captions annotated for hallucinations, and 30.8% more on nocaps, where objects extend beyond MS COCO categories.</abstract>
<identifier type="citekey">petryk-etal-2024-aloha</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-short.30</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-short.30/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>342</start>
<end>357</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ALOHa: A New Measure for Hallucination in Captioning Models
%A Petryk, Suzanne
%A Chan, David
%A Kachinthaya, Anish
%A Zou, Haodi
%A Canny, John
%A Gonzalez, Joseph
%A Darrell, Trevor
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F petryk-etal-2024-aloha
%X Despite recent advances in multimodal pre-training for visual description, state-of-the-art models still produce captions containing errors, such as hallucinating objects not present in a scene. The existing prominent metric for object hallucination, CHAIR, is limited to a fixed set of MS COCO objects and synonyms. In this work, we propose a modernized open-vocabulary metric, ALOHa, which leverages large language models (LLMs) to measure object hallucinations. Specifically, we use an LLM to extract groundable objects from a candidate caption, measure their semantic similarity to reference objects from captions and object detections, and use Hungarian matching to produce a final hallucination score. We show that ALOHa correctly identifies 13.6% more hallucinated objects than CHAIR on HAT, a new gold-standard subset of MS COCO Captions annotated for hallucinations, and 30.8% more on nocaps, where objects extend beyond MS COCO categories.
%R 10.18653/v1/2024.naacl-short.30
%U https://aclanthology.org/2024.naacl-short.30/
%U https://doi.org/10.18653/v1/2024.naacl-short.30
%P 342-357
Markdown (Informal)
[ALOHa: A New Measure for Hallucination in Captioning Models](https://aclanthology.org/2024.naacl-short.30/) (Petryk et al., NAACL 2024)
- ALOHa: A New Measure for Hallucination in Captioning Models (Petryk et al., NAACL 2024)
ACL
- Suzanne Petryk, David Chan, Anish Kachinthaya, Haodi Zou, John Canny, Joseph Gonzalez, and Trevor Darrell. 2024. ALOHa: A New Measure for Hallucination in Captioning Models. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers), pages 342–357, Mexico City, Mexico. Association for Computational Linguistics.