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Abstract 

We explore unsupervised language model 
adaptation techniques for Statistical Machine 
Translation.  The hypotheses from the 
machine translation output are converted into 
queries at different levels of representation 
power and used to extract similar sentences 
from very large monolingual text collection.  
Specific language models are then build from 
the retrieved data and interpolated with a 
general background model.  Experiments 
show significant improvements when 
translating with these adapted language 
models. 

1 Introduction 

Language models (LM) are applied in many 
natural language processing applications, such as 
speech recognition and machine translation, to 
encapsulate syntactic, semantic and pragmatic 
information.  For systems which learn from given 
data we frequently observe a severe drop in 
performance when moving to a new genre or new 
domain.  In speech recognition a number of 
adaptation techniques have been developed to cope 
with this situation.  In statistical machine 
translation we have a similar situation, i.e. estimate 
the model parameter from some data, and use the 
system to translate sentences which may not be 
well covered by the training data.  Therefore, the 
potential of adaptation techniques needs to be 
explored for machine translation applications. 

Statistical machine translation is based on the 
noisy channel model, where the translation 
hypothesis is searched over the space defined by a 
translation model and a target language (Brown et 
al, 1993).  Statistical machine translation can be 
formulated as follows: 

)()|(maxarg)|(maxarg* tPtsPstPt
tt

⋅==  

where t is the target sentence, and s is the source 
sentence. P(t) is the target language model and 
P(s|t) is the translation model.  The argmax 

operation is the search, which is done by the 
decoder. 

In the current study we modify the target 
language model P(t), to represent the test data 
better, and thereby improve the translation quality.  
(Janiszek, et al. 2001) list the following approaches 
to language model adaptation: 
• Linear interpolation of a general and a domain 

specific model (Seymore, Rosenfeld, 1997). 
• Back off of domain specific probabilities with 

those of a specific model (Besling, Meier, 
1995). 

• Retrieval of documents pertinent to the new 
domain and training a language model on-line 
with those data (Iyer, Ostendorf, 1999, 
Mahajan et. al. 1999). 

• Maximum entropy, minimum discrimination 
adaptation (Chen, et. al., 1998). 

• Adaptation by linear transformation of vectors 
of bigram counts in a reduced space (DeMori, 
Federico, 1999). 

• Smoothing and adaptation in a dual space via 
latent semantic analysis, modeling long-term 
semantic dependencies, and trigger 
combinations.  (J. Bellegarda, 2000). 

Our approach can be characterized as 
unsupervised data augmentation by retrieval of 
relevant documents from large monolingual 
corpora, and interpolation of the specific language 
model, build from the retrieved data, with a 
background language model.  To be more specific, 
the following steps are carried out to do the 
language model adaptation.  First, a baseline 
statistical machine translation system, using a large 
general language model, is applied to generate 
initial translations.  Then these translations 
hypotheses are reformulated as queries to retrieve 
similar sentences from a very large text collection.  
A small domain specific language model is build 
using the retrieved sentences and linearly 
interpolated with the background language model.  
This new interpolated language model in applied in 
a second decoding run to produce the final 
translations.  



There are a number of interesting questions 
pertaining to this approach: 
• Which information can and should used to 

generate the queries: the first-best translation 
only, or also translation alternatives. 

• How should we construct the queries, just as 
simple bag-of-words, or can we incorporate more 
structure to make them more powerful. 

• How many documents should be retrieved to 
build the specific language models, and on what 
granularity should this be done, i.e. what is a 
document in the information retrieval process. 
 
The paper is structured as follows:  section 2 

outlines the sentence retrieval approach, and three 
bag-of-words query models are designed and 
explored; structured query models are introduced 
in section 3.  In section 4 we present translation 
experiments are presented for the different query.  
Finally, summary is given in section 5. 

2 LM Adaptation via Sentence Retrieval 

Our language model adaptation is an unsupervised 
data augmentation approach guided by query 
models.  Given a baseline statistical machine 
translation system, the language model adaptation 
is done in several steps shown as follows: 

 
� Generate a set of initial translation 

hypotheses H = {h1 …hn} for source 
sentences s, using either the baseline MT 
system with the background language 
model or only the translation model 

� Use H  to build query 
� Use query to retrieve relevant sentences 

from the large corpus  
� Build specific language models from 

retrieved sentences 
� Interpolate the specific language model 

with the background language 
� Re-translate sentences s with adapted 

language model 
 

Figure-1: Adaptation Algorithm 
 
The specific language model )|( hwP iA  and the 

general background model )|( hwP iB  are combined 
using linear interpolation: 
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The interpolation factor λ  can be simply 
estimated using cross validation or a grid search. 

As an alternative to using translations for the 
baseline system, we will also describe an approach, 
which uses partial translations of the source 
sentence, using the translation model only.  In this 

case, no full translation needs to be carried out in 
the first step; only information from the translation 
model is used.  

Our approach focuses on query model building, 
using different levels of knowledge representations 
from the hypothesis set or from the translation 
model itself.  The quality of the query models is 
crucial to the adapted language model’s 
performance.  Three bag-of-words query models 
are proposed and explained in the following 
sections. 

2.1 Sentence Retrieval Process 

In our sentence retrieval process, the standard tf/idf 
(term frequency and inverse document frequency) 
term weighting scheme is used.  The queries are 
built from the translation hypotheses.  We follow 
(Eck, et al., 2004) in considering each sentence in 
the monolingual corpus as a document, as they 
have shown that this gives better results compared 
to retrieving entire news stories. 

Both the query and the sentences in the text 
corpus are converted into vectors by assigning a 
term weight to each word.  Then the cosine 
similarity is calculated proportional to the inner 
product of the two vectors.  All sentences are 
ranked according to their similarity with the query, 
and the most similar sentences are used as the data 
for building the specific language model.  In our 
experiments we use different numbers of similar 
sentences, ranting from one to several thousand. 

2.2 Bag-of-words Query Models 

Different query models are designed to guide the 
data augmentation efficiently.  We first define  
“bag-of-words” models, based on different levels 
of knowledge collected from the hypotheses of the 
statistical machine translation engine. 

2.2.1 First-best Hypothesis as a Query Model 
The first-best hypothesis is the Viterbi path in the 
search space returned from the statistical machine 
translation decoder.  It is the optimal hypothesis 
the statistical machine translation system can 
generate using the given translation and language 
model, and restricted by the applied pruning 
strategy.  Ignoring word order, the hypothesis is 
converted into a bag-of-words representation, 
which is then used as a query: 
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where iw is a word in the vocabulary 1TV of the Top-
1 hypothesis. if  is the frequency of iw ’s 
occurrence in the hypothesis.  

The first-best hypothesis is the actual translation 
we want to improve, and usually it captures 
enough correct word translations to secure a sound 
adaptation process.  But it can miss some 



informative translation words, which could lead to 
better-adapted language models.  

2.2.2  N-Best Hypothesis List as a Query Model 
Similar to the first-best hypothesis, the n-best 
hypothesis list is converted into a bag-of-words 
representation.  Words which occurred in several 
translation hypotheses are simply repeated in the 
bag-of-words representations.  
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where TNV  is the combined vocabulary from all n-
best hypotheses and if  is the frequency of iw ’s 
occurrence in the n-best hypothesis list. 

TNQ  has several good characteristics:  First it 
contains translation candidates, and thus is more 
informative than 1TQ .  In addition, the confidently 
translated words usually occur in every hypothesis 
in the n-best list, therefore have a stronger impact 
on the retrieval result due to the higher term 
frequency (tf) in the query.  Thirdly, most of the 
hypotheses are only different from each other in 
one word or two.  This means, there is not so much 
noise and variance introduced in this query model. 

2.2.3 Translation Model as a Query Model 
To fully leverage the available knowledge from the 
translation system, the translation model can be 
used to guide the language model adaptation 
process.  As introduced in section 1, the translation 
model represents the full knowledge of translating 
words, as it encodes all possible translations 
candidates for a given source sentence.  Thus the 
query model based on the translation model, has 
potential advantages over both 1TQ  and TNQ . 

To utilize the translation model, all the n-grams 
from the source sentence are extracted, and the 
corresponding candidate translations are collected 
from the translation model.  These are then 
converted into a bag-of-words representation as 
follows: 
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where is  is a source n-gram, and I is the number of 
n-grams in the source sentence.  jsi

w ,  is a candidate 
target word as translation of is .  Thus the 
translation model is converted into a collection of 
target words as a bag-of-word query model. 

There is no decoding process involved to build 
TMQ .  This means TMQ  does not incorporate any 

background language model information at all, 
while both 1TQ  and TNQ  implicitly use the 
background language model to prune the words in 
the query.  Thus TMQ  is a generalization, and 1TQ  

and TNQ  are pruned versions.  This also means TMQ  
is subject to more noise. 

3 Structured Query Models 

Word proximity and word order is closely related 
to syntactic and semantic characteristics.  
However, it is not modeled in the query models 
presented so far, which are simple bag-of-words 
representations.  Incorporating syntactic and 
semantic information into the query models can 
potentially improve the effectiveness of LM 
adaptation. 

The word-proximity and word ordering 
information can be easily extracted from the first-
best hypothesis, the n-best hypothesis list, and the 
translation lattice built from the translation model.  
After extraction of the information, structured 
query models are proposed using the structured 
query language, described in the Section 3.1. 

3.1 Structured Query Language 

This query language essentially enables the use of 
proximity operators (ordered and unordered 
windows) in queries, so that it is possible to model 
the syntactic and semantic information encoded in 
phrases, n-grams, and co-occurred word pairs.  

The InQuery implementation (Lemur 2003) is 
applied.  So far 16 operators are defined in 
InQuery to model word proximity (ordered, 
unordered, phrase level, and passage level).  Four 
of these operators are used specially for our 
language model adaptation: 

Sum Operator: #sum( 1t … nt ) 
The terms or nodes ( 1t … nt ) are treated as 

having equal influence on the final retrieval result.  
The belief values provided by the arguments of the 
sum are averaged to produce the belief value of the 
#sum node. 

Weighted Sum Operator: #wsum( 11 : tw , …) 
The terms or nodes ( 1t … nt ) contribute 

unequally to the final result according to the 
weight ( iw ) associated with each it .  

Ordered Distance Operator: #N( 1t … nt ) 
The terms must be found within N words of 

each other in the text in order to contribute to the 
document's belief value.  An n-gram phrase can be 
modeled as an ordered distance operator with N=n. 

Unordered Distance Operator: #uwN( 1t … nt ) 
The terms contained must be found in any order 

within a window of N words in order for this 
operator to contribute to the belief value of the 
document. 



3.2 Structured Query Models 

Given the representation power of the structured 
query language, the Top-1 hypothesis, Top-N Best 
hypothesis list, and the translation lattice can be 
converted into three Structured Query Models 
respectively. 

For first-best and n-best hypotheses, we collect 
related target n-grams of a given source word 
according to the alignments generated in the 
Viterbi decoding process.  While for the translation 
lattice, similar to the construction of TMQ , we 
collect all the source n-grams, and translate them 
into target n-grams.  In either case, we get a set of 
target n-grams for each source word. The 
structured query model for the whole source 
sentence is a collection of such subsets of target n-
grams. 
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In our experiments, we consider up to trigram for 
better retrieval efficiency, but higher order n-grams 
could be used as will.  The second simplification is 
that every source word is equally important, thus 
each n-gram subset 

ist
v

will have an equal 
contribution to the final retrieval results.  The last 
simplification is each n-gram within the set of 

ist
v

 
has an equal weight, i.e. we do not use the 
translation probabilities of the translation model.  
If the system is a phrase-based translation system, 
we can encode the phrases using the ordered 
distance operator (#N) with N equals to the number 
of the words of that phrase, which is denoted as the 
#phrase operator in InQuery implementation.  The 
2-grams and 3-grams can be encoded using this 
operator too. 

Thus our final structured query model is a sum 
operator over a set of nodes.  Each node 
corresponds to a source word.  Usually each source 
word has a number of translation candidates 
(unigrams or phrases).  Each node is a weighted 
sum over all translation candidates weighted by 
their frequency in the hypothesis set.  An example 
is shown below, where #phrase indicates the use of 
the ordered distance operator with varying n: 
 
#q=#sum( #wsum(2 eu  2 #phrase(european union) ) 

   #wsum(12 #phrase(the united states) 
1 american 1 #phrase(an american) ) 

   #wsum(4 are 1 is ) 
   #wsum(8 markets  3 market)) 
   #wsum(7 #phrase(the main)  5 primary ) ); 

4 Experiments 

Experiments are carried out on a standard 
statistical machine translation task defined in the 
NIST evaluation in June 2002.  There are 878 test 
sentences in Chinese, and each sentence has four 
human translations as references.  NIST score 
(NIST 2002) and Bleu score (Papineni et. al. 2002) 
of mteval version 9 are reported to evaluate the 
translation quality. 

4.1  Baseline Translation System 

Our baseline system (Vogel et al., 2003) gives 
scores of 7.80 NIST and 0.1952 Bleu for Top-1 
hypothesis, which is comparable to the best results 
reported on this task.  

For the baseline system, we built a translation 
model using 284K parallel sentence pairs, and a 
trigram language model from a 160 million words 
general English news text collection.  This LM is 
the background model to be adapted.  

With the baseline system, the n-best hypotheses 
list and the translation lattice are extracted to build 
the query models.  Experiments are carried out on 
the adapted language model using the three bag-of-
words query models: 1TQ , TNQ  and TMQ , and the 
corresponding structured query models. 

4.2 Data: GigaWord Corpora 

The so-called GigaWord corpora (LDC, 2003) are 
very large English news text collections.  There are 
four distinct international sources of English 
newswire: 

 
AFE Agence France Press English Service 
APW Associated Press Worldstream English Service 
NYT The New York Times Newswire Service 
XIE The Xinhua News Agency English Service 
 
Table-1 shows the size of each part in word counts. 

 
AFE APW NYT XIE 
170,969K 539,665K 914,159K 131,711K 

Table-1: Number of words in the different 
GigaWord corpora 

 
As the Lemur toolkit could not handle the two 

large corpora (APW and NYT) we used only 200 
million words from each of these two corpora. 

In the preprocessing all words are lowercased 
and punctuation is separated.  There is no explicit 
removal of stop words as they usually fade out by 
tf.idf weights, and our experiments showed not 
positive effects when removing stop words. 



4.3 Bag-of-Words Query Models 

Table-2 shows the size of 1TQ , TNQ  and TMQ  in 
terms of number of tokens in the 878 queries: 

 
 1TQ  TNQ  TMQ  

|| Q  25,861 231,834 3,412,512 
Table-2: Query size in number of tokens 

 
As words occurring several times are reduced to 
word-frequency pairs, the size of the queries 
generated from the 100-best translation lists is only 
9 times as big as the queries generated from the 
first-best translations.  The queries generated from 
the translation model contain many more 
translation alternatives, summing up to almost 3.4 
million tokens.  Using the lattices the whole 
information of the translation model is kept.  

4.3.1 Results for Query 1TQ  
In the first experiment we used the first-best 
translations to generate the queries.  For each of 
the 4 corpora different numbers of similar 
sentences (1, 10, 100, and 1000) were retrieved to 
build specific language models.  Figure-2 shows 
the language model adaptation after tuning the 
interpolation factor λ  by a grid search over [0,1]. 
Typically λ  is around 0.80. 
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Figure-2: NIST and Bleu scores 

1TQ  
 

We see that each corpus gives an improvement 
over the baseline.  The best NIST score is 7.94, 
and the best Bleu score is 0.2018.  Both best scores 
are realized using top 100 relevant sentences 
corpus per source sentence mined from the AFE. 

4.3.2 Results for Query TNQ  

Figure-3 shows the results for the query model TNQ .  
The best results are 7.99 NIST score, and 0.2022 
Bleu score.  These improvements are statistically 
significant.  Both scores are achieved at the same 
settings as those in 1TQ , i.e. using top 100 retrieved 
relevant sentences mined from the AFE corpus. 
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Figure-3: NIST and Bleu scores from TNQ  

 
Using the translation alternatives to retrieve the 

data for language model adaptation gives an 
improvement over using the first-best translation 
only for query construction.  Using only one 
translation hypothesis to build an adapted language 
model has the tendency to reinforce that 
translation. 

4.3.3 Results for Query TMQ  

The third bag-of-words query model uses all 
translation alternatives for source words and source 
phrases.  Figure-4 shows the results of this query 
model TMQ .  The best results are 7.91 NIST score 
and 0.1995 Bleu.  For this query model best results 
were achieved using the top 1000 relevant 
sentences mined from the AFE corpus per source 
sentence. 

The improvement is not as much as the other 
two query models.  The reason is probably that all 
translation alternatives, even wrong translations 
resulting from errors in the word and phrase 
alignment, contribute alike to retrieve similar 
sentences.  Thereby, an adapted language model is 
built, which reinforces not only good translations, 
but also bad translations. 



All the three query models showed 
improvements over the baseline system in terms of 
NIST and Bleu scores.  The best bag-of-words 
query model is TNQ  built from the N-Best list.  It 
provides a good balance between incorporating 
translation alternatives in the language model 
adaptation process and not reinforcing wrong 
translations. 
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Figure-4: NIST and Bleu scores from TMQ  

 

4.4 Structured Query Models 

The next series of experiments was done to 
study if using word order information in 
constructing the queries could help to generate 
more effective adapted language models.  By using 
the structured query language we converted the 
same first-best hypothesis, the 100-best list, and 
the translation lattice into structured query models.  
Results are reported for the AFE corpus only, as 
this corpus gave best translation scores. 

Figure-5 shows the results for all three structured 
query models, built from the first-best hypothesis 
(“1-Best”), the 100 best hypotheses list (“100-
Best”), and translation lattice (“TM-Lattice”).  
Using these query models, different numbers of 
most similar sentences, ranging from 100 to 4000, 
where retrieved from the AFE corpus.  The given 
baseline results are the best results achieved from 
the corresponding bag-of-words query models. 

Consistent improvements were observed on 
NIST and Bleu scores.  Again, optimal 
interpolation factors to interpolate the specific 
language models with the background language 
model were used, which typically were in the 
range of [0.6, 0.7].  Structured query models give 

most improvements when using more sentences for 
language model adaptation.  The effect is more 
pronounced for Bleu then for NIST score. 
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Figure-5: NIST and Bleu scores from the  

structured query models 
 

The really interesting result is that the structured 
query model TMQ gives now the best translation 
results.  Adding word order information to the 
queries obviously helps to reduce the noise in the 
retrieved data by selecting sentences, which are 
closer to the good translations,  

The best results using the adapted language 
models are NIST score 8.12 for using the 2000 
most similar sentences, whereas Bleu score goes 
up to 0.2068 when using 4000 sentences for 
language model adaptation. 

4.5 Example 

Table-3 shows translation examples for the 17th 
Chinese sentence in the test set. We applied the 
baseline system (Base), the bag-of-word query 
model (Hyp1), and the structured query model 
(Hyp2) using AFE corpus. 

 

Ref The police has already blockade the scene 
of the explosion. 

Base At present, the police had cordoned off the 
explosion. 

Hyp1 At present, police have sealed off the 
explosion.  

Hyp2 Currently, police have blockade on the 
scene of the explosion. 

Table-3 Translation examples 



 

4.6 Oracle Experiment 

Finally, we run an oracle experiments to see 
how much improvement could be achieved if we 
only selected better data for the specific language 
models. We converted the four available reference 
translations into structured query models and 
retrieved the top 4000 relevant sentences from 
AFE corpus for each source sentence.  Using these 
language models, interpolated with the background 
language model gave a NIST score of 8.67, and a 
Bleu score of 0.2228.  This result indicates that 
there is room for further improvements using this 
language model adaptation technique. 

The oracle experiment suggests that better initial 
translations lead to better language models and 
thereby better 2nd iteration translations.  This lead 
to the question if we can iterate the retrieval 
process several times to get further improvement, 
or if the observed improvement results form using 
for (good) translations, which have more diversity 
than the translations in an n-best list. 

On the other side the oracle experiment also 
shows that the optimally expected improvement is 
limited by the translation model and decoding 
algorithm used in the current SMT system. 
 

5 Summary 

In this paper, we studied language model 
adaptation for statistical machine translation.  
Extracting sentences most similar to the initial 
translations, building specific language models for 
each sentence to be translated, and interpolating 
those with the background language models gives 
significant improvement in translation quality.  
Using structured query models, which capture 
word order information, leads to better results that 
plain bag of words models. 

The results obtained suggest a number of 
extensions of this work:  The first question is if 
more data to retrieve similar sentences from will 
result in even better translation quality.  A second 
interesting question is if the translation 
probabilities can be incorporated into the queries.  
This might be especially useful for structured 
query models generated from the translation 
lattices.  
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