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Preface

Welcome to EMNLP-CoNLL 2007, an unprecedented joint meeting of the Conference on Empirical
Methods in Natural Language Processing (EMNLP) and the Conference on Computational Natural
Language Learning (CoNLL).

The conference is a joint effort of SIGDAT and SIGNLL, the ACL Special Interest Groups that usually
organize the annual EMNLP and CoNLL conferences, respectively.

Our field is growing rapidly. This year, EMNLP-CoNLL considered a remarkable 398 submissions,1

accepting 109 of them (for an acceptance rate of 27%). It is startling to realize that even the ACL
conferences were not this large until two years ago.

Only 66 of the accepted papers were scheduled for presentation as talks, and 43 more as posters. We
took pains to ensure that the poster sessions would be leisurely and interactive.

In addition, two sessions of the conference and 22 specially designated short papers in this volume are
devoted to the CoNLL Shared Task competition, an annual tradition. The 2007 competition concerns
dependency parsing, with both a multilingual track and a domain adaptation track.

Several innovations this year have received positive feedback and are worth mentioning:

• To encourage thorough citation of related work, a paper’s References section was not counted
against the 8-page limit for submitted papers or the 9-page limit for camera-ready papers.

(Note that authors were allowed an extra page in the camera-ready version to help them effectively
address reviewers’ comments, following an innovation at EMNLP 2006.)

• The review form was redesigned (starting from the fine review form of EACL 2006) to provide
clearer and more consistent guidance to reviewers, area chairs, and authors. Authors were
directed to consult the review form, which was posted at the conference website, while preparing
their submissions and when interpreting their review scores.

• Some of our submissions (fewer than 1/3) appeared to be revisions of rejected ACL 2007
submissions. Where possible, we tried to conserve valuable information and effort from the
ACL 2007 reviewing process by re-assigning one, though only one, of the ACL reviewers to such
a paper.

Such re-reviewers were instructed to give the new, revised submission the fresh reading that it
deserved, but they were also encouraged to bring up points that still applied from any of the ACL
2007 reviews or discussion.

1Of the original 419 submissions, 17 were withdrawn (usually upon acceptance elsewhere), and 4 more were rejected
without review (for violating the conference’s standards on length, anonymization, or plagiarism).
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• By accepting many posters and presenting them all simultaneously, we hoped to accommodate a
large audience without overcrowding at each poster.

The large number of posters in turn required a long period for poster viewing. With a total of 5
hours spanning two receptions, a conferencegoer can engage with nearly half of the posters for 15
minutes of personalized discussion each. This makes the posters roughly as visible as the talks,
which are split into parallel sessions.

• In addition to the Best Paper Award (see Session 1), we are considering organizing—if logistically
feasible—an “Audience Choice” award for the most worthwhile presentation at the conference.
Such a prize would reward authors who not only produced outstanding research but also
communicated it clearly and enjoyably at the conference meeting.

It is my privilege to thank the many individuals—most of them listed on the following pages—whose
generous efforts have made this conference possible. Foremost are the 16 dedicated area chairs and
370 reviewers, who worked together hard and thoughtfully to select this excellent program and provide
valuable feedback to the authors. Also as part of the technical program, Joakim Nivre chaired the
organization of the CoNLL Shared Task and the resulting short papers; Taku Kudo ably identified ACL
2007 resubmissions (see above); and Hal Daumé III kindly chaired the best paper award committee.
Eric Ringger put a great deal of effort into producing this fine proceedings volume, with support from
Su Jian, the ACL publications chair. Jan Hajic coordinated the many local arrangements, along with
Priscilla Rasmussen, Anna Kotesovcova, Jiri Mirovsky, Pavel Stranak, Zdenek Zabokrtsky, and no
doubt others; we are very grateful to them for making everything run smoothly in Prague. Antal van
den Bosch, Dan Jurafsky, Eric Gaussier, and Ken Church provided much valuable advice over the
past months based on their experience. Finally, let us not forget the hundreds of authors who actually
produced the excellent research in this volume, and the invited speakers who graciously traveled a long
way to enlighten us.

Enjoy the conference!

Jason Eisner
EMNLP-CoNLL Chair
May 2007
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Abstract

Sentence compression holds promise for
many applications ranging from summarisa-
tion to subtitle generation and subtitle gen-
eration. The task is typically performed on
isolated sentences without taking the sur-
rounding context into account, even though
most applications would operate over entire
documents. In this paper we present a dis-
course informed model which is capable of
producing document compressions that are
coherent and informative. Our model is in-
spired by theories of local coherence and
formulated within the framework of Integer
Linear Programming. Experimental results
show significant improvements over a state-
of-the-art discourse agnostic approach.

1 Introduction

The computational treatment of sentence compres-
sion has recently attracted much attention in the
literature. The task can be viewed as producing a
summary of a single sentence that retains the most
important information and remains grammatically
correct (Jing 2000). Sentence compression is com-
monly expressed as a word deletion problem: given
an input sentence of wordsW = w1,w2, . . . ,wn, the
aim is to produce a compression by removing any
subset of these words (Knight and Marcu 2002).

Sentence compression can potentially benefit
many applications. For example, in summarisation,
a compression mechanism could improve the con-
ciseness of the generated summaries (Jing 2000;
Lin 2003). Sentence compression could be also
used to automatically generate subtitles for tele-
vision programs; the transcripts cannot usually be

used verbatim due to the rate of speech being too
high (Vandeghinste and Pan 2004). Other applica-
tions include compressing text to be displayed on
small screens (Corston-Oliver 2001) such as mobile
phones or PDAs, and producing audio scanning de-
vices for the blind (Grefenstette 1998).

Most work to date has focused on a rather sim-
ple formulation of sentence compression that does
not allow any rewriting operations, besides word re-
moval. Moreover, compression is performed on iso-
lated sentences without taking into account their sur-
rounding context. An advantage of this simple view
is that it renders sentence compression amenable to
a variety of learning paradigms ranging from in-
stantiations of the noisy-channel model (Galley and
McKeown 2007; Knight and Marcu 2002; Turner
and Charniak 2005) to Integer Linear Programming
(Clarke and Lapata 2006a) and large-margin online
learning (McDonald 2006).

In this paper we take a closer look at one of
the simplifications associated with the compression
task, namely that sentence reduction can be realised
in isolation without making use of discourse-level
information. This is clearly not true — professional
abstracters often rely on contextual cues while creat-
ing summaries (Endres-Niggemeyer 1998). Further-
more, determining what information is important in
a sentence is influenced by a variety of contextual
factors such as the discourse topic, whether the sen-
tence introduces new entities or events that have not
been mentioned before, and the reader’s background
knowledge.

The simplification is also at odds with most appli-
cations of sentence compression which aim to cre-
ate a shorter document rather than a single sentence.
The resulting document must not only be grammat-
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ical but also coherent if it is to function as a re-
placement for the original. However, this cannot be
guaranteed without knowing how the discourse pro-
gresses from sentence to sentence. To give a simple
example, a contextually aware compression system
could drop a word or phrase from the current sen-
tence, simply because it is not mentioned anywhere
else in the document and is therefore deemed unim-
portant. Or it could decide to retain it for the sake of
topic continuity.

We are interested in creating a compression model
that is appropriate for documents and sentences. To
this end, we assess whether discourse-level informa-
tion is helpful. Our analysis is informed by two pop-
ular models of discourse, Centering Theory (Grosz
et al. 1995) and lexical chains (Morris and Hirst
1991). Both approaches modellocal coherence—
the way adjacent sentences bind together to form a
larger discourse. Our compression model is an ex-
tension of the integer programming formulation pro-
posed by Clarke and Lapata (2006a). Their approach
is conceptually simple: it consists of a scoring func-
tion coupled with a small number of syntactic and
semantic constraints. Discourse-related information
can be easily incorporated in the form of additional
constraints. We employ our model to perform sen-
tence compression throughout a whole document
(by compressing sentences sequentially) and evalu-
ate whether the resulting text is understandable and
informative using a question-answering task. Our
method yields significant improvements over a dis-
course agnostic state-of-the-art compression model
(McDonald 2006).

2 Related Work

Sentence compression has been extensively stud-
ied across different modelling paradigms and has
received both generative and discriminative formu-
lations. Most generative approaches (Galley and
McKeown 2007; Knight and Marcu 2002; Turner
and Charniak 2005) are instantiations of the noisy-
channel model, whereas discriminative formulations
include decision-tree learning (Knight and Marcu
2002), maximum entropy (Riezler et al. 2003),
support vector machines (Nguyen et al. 2004),
and large-margin learning (McDonald 2006). These
models are trained on a parallel corpus of long
sourcesentences and theirtargetcompressions. Us-
ing a rich feature set derived from parse trees, the

models learn either which constituents to delete or
which words to place adjacently in the compression
output. Relatively few approaches dispense with the
parallel corpus and generate compressions in an un-
supervised manner using either a scoring function
(Clarke and Lapata 2006a; Hori and Furui 2004) or
compression rules that are approximated from a non-
parallel corpus such as the Penn Treebank (Turner
and Charniak 2005).

Our work differs from previous approaches in two
key respects. First, we present a compression model
that is contextually aware; decisions on whether to
remove or retain a word (or phrase) are informed by
its discourse properties (e.g., whether it introduces a
new topic, whether it is semantically related to the
previous sentence). Second, we apply our compres-
sion model to entire documents rather than isolated
sentences. This is more in the spirit of real-world ap-
plications where the goal is to generate a condensed
and coherent text. Previous work on summarisation
has also utilised discourse information (e.g., Barzi-
lay and Elhadad 1997; Daumé III and Marcu 2002;
Marcu 2000; Teufel and Moens 2002). However, its
application to document compression is novel to our
knowledge.

3 Discourse Representation

Obtaining an appropriate representation of discourse
is the first step towards creating a compression
model that exploits contextual information. In this
work we focus on the role of local coherence as
this is prerequisite for maintaining global coherence.
Ideally, we would like our compressed document to
maintain the discourse flow of the original. For this
reason, we automatically annotate the source docu-
ment with discourse-level information which is sub-
sequently used to inform our compression proce-
dure. We first describe our algorithms for obtaining
discourse annotations and then present our compres-
sion model.

3.1 Centering Theory

Centering Theory (Grosz et al. 1995) is an entity-
orientated theory of local coherence and salience.
Although an utterance in discourse may contain sev-
eral entities, it is assumed that asingle entity is
salient or “centered”, thereby representing the cur-
rent focus. One of the main claims underlying cen-
tering is that discourse segments in which succes-
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sive utterances contain common centers are more
coherent than segments where the center repeatedly
changes.

Each utteranceUi in a discourse segment has a
list of forward-looking centers, Cf (Ui) and aunique
backward-looking center, Cb(Ui). Cf (Ui) represents
a ranking of the entities invoked byUi according
to their salience. TheCb of the current utterance
Ui, is the highest-ranked element inCf (Ui−1) that is
also inUi . TheCb thus linksUi to the previous dis-
course, but it does solocally sinceCb(Ui) is chosen
from Ui−1.

Centering Algorithm So far we have presented
centering without explicitly stating how the con-
cepts “utterance”, “entities” and “ranking” are in-
stantiated. A great deal of research has been devoted
into fleshing these out and many different instantia-
tions have been developed in the literature (see Poe-
sio et al. 2004 for details). Since our aim is to iden-
tify centers in discourse automatically, our param-
eter choice is driven by two considerations, robust-
ness and ease of computation.

We therefore follow previous work (e.g., Milt-
sakaki and Kukich 2000) in assuming that the unit of
an utterance is the sentence (i.e., a main clause with
accompanying subordinate and adjunct clauses).
This is in line with our compression task which also
operates over sentences. We determine which en-
tities are invoked by a sentence using two meth-
ods. First, we perform named entity identification
and coreference resolution on each document using
LingPipe1, a publicly available system. Named en-
tities and all remaining nouns are added to theCf

list. Entity matching between sentences is required
to determine theCb of a sentence. This is done using
the named entity’s unique identifier (as provided by
LingPipe) or by the entity’s surface form in the case
of nouns not classified as named entities.

Entities are ranked according to their grammatical
roles; subjects are ranked more highly than objects,
which are in turn ranked higher than other grammat-
ical roles (Grosz et al. 1995); ties are broken using
left-to-right ordering of the grammatical roles in the
sentence (Tetreault 2001). We identify grammatical
roles with RASP (Briscoe and Carroll 2002). For-
mally, our centering algorithm is as follows (where
Ui corresponds to sentencei):

1LingPipe can be downloaded fromhttp://www.
alias-i.com/lingpipe/ .

1. Extract entities fromUi.
2. Create Cf (Ui) by ranking the entities in

Ui according to their grammatical role
(subjects> objects> others).

3. Find the highest ranked entity inCf (Ui−1)
which occurs in Cf (Ui), set the entity to
beCb(Ui).

The above procedure involves several automatic
steps (named entity recognition, coreference reso-
lution, identification of grammatical roles) and will
unavoidably produce some noisy annotations. So,
there is no guarantee that the rightCb will be iden-
tified or that all sentences will be marked with aCb.
The latter situation also occurs in passages that con-
tain abrupt changes in topic. In such cases, none of
the entities realised inUi will occur in Cf (Ui−1).
Rather than accept that discourse information may
be absent in a sentence, we turn to lexical chains
as an alternative means of capturing topical content
within a document.

3.2 Lexical Chains

Lexical cohesion refers to the degree of semantic re-
latedness observed among lexical items in a docu-
ment. The term was coined by Halliday and Hasan
(1976) who observed that coherent documents tend
to have more related terms or phrases than inco-
herent ones. A number of linguistic devices can be
used to signal cohesion; these range from repeti-
tion, to synonymy, hyponymy and meronymy. Lexi-
cal chains are a representation of lexical cohesion as
sequences of semantically related words (Morris and
Hirst 1991) and provide a useful means for describ-
ing the topic flow in discourse. For instance, a docu-
ment with many different lexical chains will prob-
ably contain several topics. And main topics will
tend to be represented by dense and long chains.
Words participating in such chains are important for
our compression task — they reveal what the docu-
ment is about — and in all likelihood should not be
deleted.

Lexical Chains Algorithm Barzilay and Elhadad
(1997) describe a technique for text summarisation
based on lexical chains. Their algorithm uses Word-
Net to build chains of nouns (and noun compounds).
These are ranked heuristically by a score based on
their length and homogeneity. A summary is then
produced by extracting sentences corresponding to
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strong chains, i.e., chains whose score is two stan-
dard deviations above the average score.

Like Barzilay and Elhadad (1997), we wish to
determine which lexical chains indicate the most
prevalent discourse topics. Our assumption is that
terms belonging to these chains are indicative of the
document’s main focus and should therefore be re-
tained in the compressed output. Barzilay and El-
hadad’s scoring function aims to identify sentences
(for inclusion in a summary) that have a high con-
centration of chain members. In contrast, we are in-
terested in chains that span several sentences. We
thus score chains according to the number of sen-
tences their terms occur in. For example, the chain
{house3, home3, loft3, house5} (where wordi de-
notesword occurring in sentencei) would be given
a score of two as the terms only occur in two sen-
tences. We assume that a chain signals a prevalent
discourse topic if it occurs throughout more sen-
tences than the average chain. The scoring algorithm
is outlined more formally below:

1. Compute the lexical chains for the document.
2. Score(Chain) = Sentences(Chain).
3. Discard chains ifScore(Chain) < Avg(Score).
4. Mark terms from the remaining chains as being

the focus of the document.

We use the method of Galley and McKeown (2003)
to compute lexical chains for each document.2 This
is an improved version of Barzilay and Elhadad’s
(1997) original algorithm.

Before compression takes place, all documents
are pre-processed using the centering and lexical
chain algorithms described above. In each sentence
we mark the centerCb(Ui) if one exists. Words (or
phrases) that are present in the current sentence and
function as the center in the next sentenceCb(Ui+1)
are also flagged. Finally, words are marked if they
are part of a prevalent chain. An example of our dis-
course annotation is given in Figure 1.

4 The Compression Model

Our model is an extension of the approach put for-
ward in Clarke and Lapata (2006a). Their work tack-
les sentence compression as an optimisation prob-
lem. Given a long sentence, a compression is formed
by retaining the words that maximise a scoring func-

2The software is available fromhttp://www1.cs.
columbia.edu/˜galley/ .
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Figure 1: Excerpt of document from our test set with
discourse annotations. Centers are in double boxes;
terms occurring in lexical chains are in oval boxes.
Words with the same subscript are members of the
same chain (e.g.,today, day, second, yesterday)

tion. The latter is essentially a language model cou-
pled with a few constraints ensuring that the re-
sulting output is grammatical. The language model
and the constraints are encoded as linear inequal-
ities whose solution is found using Integer Linear
Programming (ILP, Vanderbei 2001; Winston and
Venkataramanan 2003).

We selected this model for several reasons. First
it does not require a parallel corpus and thus can be
ported across domains and text genres, whilst de-
livering state-of-the-art results (see Clarke and La-
pata 2006a for details). Second, discourse-level in-
formation can be easily incorporated by augment-
ing the constraint set. This is not the case for other
approaches (e.g., those based on the noisy channel
model) where compression is modelled by gram-
mar rules indicating which constituents to delete in a
syntactic context. Third, the ILP framework delivers
a globally optimal solution by searching over the en-
tire compression space3 without employing heuris-
tics or approximations during decoding.

We begin by recapping the formulation of Clarke
and Lapata (2006a). LetW = w1,w2, . . . ,wn denote
a sentence for which we wish to generate a com-
pression. A set of binary decision variables repre-
sent whether each wordwi should be included in the

3For a sentence of lengthn, there are 2n compressions.
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compression or not. Let:

yi =

{

1 if wi is in the compression
0 otherwise

∀i ∈ [1. . .n]

A trigram language model forms the backbone of
the compression model. The language model is for-
mulated as an integer program with the introduction
of extra decision variables indicating whichword
sequencesshould be retained or dropped from the
compression. Let:

pi =

{

1 if wi starts the compression
0 otherwise

∀i ∈ [1. . .n]

qi j =







1 if sequencewi,w j ends
the compression ∀i ∈ [1. . .n−1]

0 otherwise ∀ j ∈ [i +1. . .n]

xi jk =







1 if sequencewi,w j ,wk ∀i ∈ [1. . .n−2]
is in the compression∀ j ∈ [i +1. . .n−1]

0 otherwise ∀k∈ [ j +1. . .n]

The objective function is expressed in Equa-
tion (1). It is the sum of all possible trigrams mul-
tiplied by the appropriate decision variable. The ob-
jective function also includes a significance score for
each word multiplied by the decision variable for
that word (see the last summation term in (1)). This
score highlights important content words in a sen-
tence and is defined in Section 4.1.

maxz =
n

∑
i=1

pi ·P(wi|start)

+
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

xi jk ·P(wk|wi ,w j)

+
n−1

∑
i=0

n

∑
j=i+1

qi j ·P(end|wi ,w j)

+
n

∑
i=1

yi · I(wi) (1)

subject to:

yi , pi ,qi j ,xi jk = 0 or 1 (2)

A set of sequentialconstraints4 are added to the
problem to only allow results which combine valid
trigrams.

4We have omitted sequential constraints due to space limi-
tations. The full details are given in Clarke and Lapata (2006a).

4.1 Significance Score

The significance score is an attempt at capturing the
gist of a sentence. It gives more weight to content
words that appear in the deepest level of embed-
ding in the syntactic tree representing the source
sentence:

I(wi) =
l
N
· fi log

Fa

Fi
(3)

The score is computed over a large corpus wherewi

is a content word (i.e., a noun or verb),fi andFi are
the frequencies ofwi in the document and corpus
respectively, andFa is the sum of all content words
in the corpus.l is the number of clause constituents
abovewi, andN is the deepest level of embedding.

4.2 Sentential Constraints

The model also contains a small number of
sentence-level constraints. Their aim is to preserve
the meaning and structure of the original sentence
as much as possible. The majority of constraints
revolve around modification and argument struc-
ture and are defined over parse trees or gram-
matical relations. For example, the following con-
straint template disallows the inclusion of modifiers
(e.g., nouns, adjectives) without their head words:

yi −y j ≥ 0 (4)

∀i, j : w j modifieswi

Other constraints force the presence of modifiers
when the head is retained in the compression. This
way, it is ensured that negation will be preserved in
the compressed output:

yi −y j = 0 (5)

∀i, j : w j modifieswi ∧ w j = not

Argument structure constraints make sure that
the resulting compression has a canonical argument
structure. For instance a constraint ensures that if a
verb is present in the compression then so are its ar-
guments:

yi −y j = 0 (6)

∀i, j : w j ∈ subject/object of verbwi

Finally, Clarke and Lapata (2006a) propose one
discourse constraint which forces the system to pre-
serve personal pronouns in the compressed output:

yi = 1 (7)

∀i : wi ∈ personal pronouns
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4.3 Discourse Constraints

In addition to the constraints described above, our
model includes constraints relating to the centering
and lexical chains representations discussed in Sec-
tion 3. Recall that after some pre-processing, each
sentence is marked with: its own centerCb(Ui), the
centerCb(Ui+1) of the sentence following it and
words that are members of high scoring chains cor-
responding to the document’s focus. We introduce
two new types of constraints based on these addi-
tional knowledge sources.

The first constraint is the centering constraint
which operates over adjacent sentences. It ensures
that theCb identified in the source sentence is re-
tained in the target compression. If present, the en-
tity realised as theCb in the following sentence is
also retained:

yi = 1 (8)

∀i : wi ∈ {Cb(Ui),Cb(Ui+1)}

Consider for example the discourse in Figure 1. The
constraints generated from Equation (8) will require
the compression to retainlava in the first two sen-
tences anddebris in sentences two and three.

We also add a lexical chain constraint. This ap-
plies only to nouns which are members of prevalent
chains:

yi = 1 (9)

∀i : wi ∈ document focus lexical chain

This constraint is complementary to the centering
constraint; the sentences it applies to do not have to
be adjacent and the entities under consideration are
not restricted to a specific syntactic role (e.g., sub-
ject or object). See for instance the wordsflow and
rate in Figure 1 which are members of the same
chain (marked with subscript one). According to
constraint (9) both words must be included in the
compressed document.

The constraints just described ensure that the
compressed document will retain the discourse flow
of the original and will preserve terms indicative
of important topics. We argue that these constraints
will additionally benefit sentence-level compres-
sion, as words which are not signalled as discourse
relevant can be dropped.

4.4 Applying the Constraints

Our compression system is given a (sentence sepa-
rated) document as input. The ILP model just pre-
sented is then applied sequentially to all sentences
to generate a compressed version of the original. We
thus create and solve an ILP for every sentence.5 In
the formulation of Clarke and Lapata (2006a) a sig-
nificance score (see Section 4.1) highlights which
nouns and verbs to include in the compression. As
far as nouns are concerned, our discourse constraints
perform a similar task. Thus, when a sentence con-
tains discourse annotations, we are inclined to trust
them more and only calculate the significance score
for verbs.

During development it was observed that apply-
ing all discourse constraints simultaneously (see
Equations (7)–(9)) results in relatively long com-
pressions. To counter this, we employ these con-
straints using a back-off strategy that relies on pro-
gressively less reliable information. Our back-off
model works as follows: if centering information is
present, we apply the appropriate constraints (Equa-
tion (8)). If no centers are present, we back-off to the
lexical chain information using Equation (9), and in
the absence of the latter we back-off to the pronoun
constraint (Equation (7)). Finally, if discourse infor-
mation is entirely absent from the sentence, we de-
fault to the significance score. Sentential constraints
(see Section 4.2) are applied throughout irrespec-
tively of discourse constraints. In our test data (see
Section 5 for details), the centering constraint was
used in 68.6% of the sentences. The model backed
off to lexical chains for 13.7% of the test sentences,
whereas the pronoun constraint was applied in 8.5%.
Finally, the noun and verb significance score was
used on the remaining 9.2%. An example of our sys-
tem’s output for the text in Figure 1 is given in Fig-
ure 2.

5 Experimental Set-up

In this section we present our experimental set-up.
We briefly introduce the model used for compar-
ison with our approach and give details regarding
our compression corpus and parameter estimation.
Finally, we describe our evaluation methodology.

5We use the publicly availablelp solve solver (http://
www.geocities.com/lpsolve/ ).
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Bad weather dashed hopes to halt the flow during
what was seen as lull in lava’s momentum. Ex-
perts say that even if eruption stopped, the pres-
sure of lava piled would bring debris cascading.
Some estimate volcano is pouring million tons of
debris from fissure opened in mid-December. The
Army yesterday detonated 400lb of dynamite.

Figure 2: System output on excerpt from Figure 1.

Comparison with state-of-the-art An obvious
evaluation experiment would involve comparing
the ILP model without any discourse constraints
against the discourse informed model presented in
this work. Unfortunately, the two models obtain
markedly different compression rates6 which ren-
ders the comparison of their outputs problematic. To
put the comparison on an equal footing, we evalu-
ated our approach against a state-of-the-art model
that achieves a compression rate similar to ours
without taking discourse-level information into ac-
count. McDonald (2006) formalises sentence com-
pression in a discriminative large-margin learning
framework as a classification task: pairs of words
from the source sentence are classified as being ad-
jacent or not in the target compression. A large
number of features are defined over words, parts
of speech, phrase structure trees and dependen-
cies. These are gathered over adjacent words in the
compression and the words in-between which were
dropped.

It is important to note that McDonald (2006) is not
a straw-man system. It achieves highly competitive
performance compared with Knight and Marcu’s
(2002) noisy channel and decision tree models. Due
to its discriminative nature, the model is able to use
a large feature set and to optimise compression ac-
curacy directly. In other words, McDonald’s model
has a head start against our own model which does
not utilise a parallel corpus and has only a few con-
straints. The comparison of the two systems allows
us to investigate whether discourse information is re-
dundant when using a powerful sentence compres-
sion model.

Corpus Previous work on sentence compres-
sion has used almost exclusively the Ziff-Davis,

6The discourse agnostic ILP model has a compression rate
of 81.2%; when discourse constraints are include the rate drops
to 65.4%.

a compression corpus derived automatically from
document-abstract pairs (Knight and Marcu 2002).
Unfortunately, this corpus is not suitable for our
purposes since it consists of isolated sentences. We
thus created a document-based compression corpus
manually. Following Clarke and Lapata (2006a), we
asked annotators to produce compressions for 82
stories (1,629 sentences) from the BNC and the LA
Times Washington Post.7 48 documents (962 sen-
tences) were used for training, 3 for development (63
sentences), and 31 for testing (604 sentences).

Parameter Estimation Our parameters for the
ILP model followed closely Clarke and Lapata
(2006a). We used a language model trained on
25 million tokens from the North American News
corpus. The significance score was based on 25
million tokens from the same corpus. Our re-
implementation of McDonald (2006) used an identi-
cal feature set, and a slightly modified loss function
to encourage compression on our data set.8

Evaluation Previous studies evaluate how well-
formed the automatically derived compressions are
out of context. The target sentences are typi-
cally rated by naive subjects on two dimensions,
grammaticality and importance (Knight and Marcu
2002). Automatic evaluation measures have also
been proposed. Riezler et al. (2003) compare the
grammatical relations found in the system output
against those found in a gold standard using F-score
which Clarke and Lapata (2006b) show correlates
reliably with human judgements.

Following previous work, sentence-based com-
pressions were evaluated automatically using F-
score computed over grammatical relations which
we obtained by RASP (Briscoe and Carroll 2002).
Besides individual sentences, our goal was to evalu-
ate the compressed document as whole. Our evalu-
ation methodology was motivated by two questions:
(1) are the documents readable? and (2) how much
key information is preserved between the source
document and its target compression? We assume
here that the compressed document is to function as
a replacement for the original. We can thus measure
the extent to which the compressed version can be

7The corpus is available fromhttp://homepages.inf.
ed.ac.uk/s0460084/data/ .

8McDonald’s (2006) results are reported on the Ziff-Davis
corpus.

7



What is posing a threat to the town? (lava)
What hindered attempts to stop the lava flow?
(bad weather)
What did the Army do first to stop the lava flow?
(detonate explosives)

Figure 3: Example questions with answer key.

used to find answers for questions which are derived
from the original and represent its core content.

We therefore employed a question-answering
evaluation paradigm which has been previously used
for summarisation evaluation and text comprehen-
sion (Mani et al. 2002; Morris et al. 1992). The
overall objective of our Q&A task is to determine
how accurate each document (generated by differ-
ent compression systems) is at answering questions.
For this we require a methodology for constructing
Q&A pairs and for scoring each document.

Two annotators were independently instructed
to create Q&A pairs for the original documents
in the test set. Each annotator read the document
and then drafted no more than ten questions and
answers related to its content. Annotators were
asked to create factual-based questions which re-
quired an unambiguous answer; these were typically
who/what/where/when/how style questions. Anno-
tators then compared and revised their question-
answer pairs to create a common agreed upon set.
Revisions typically involved merging questions, re-
wording and simplifying questions, and in some
cases splitting a question into multiple questions.
Documents for which too few questions were cre-
ated or for which questions or answers were too am-
biguous were removed. This left an evaluation set
of six documents with between five to eight con-
cise questions per document. Some example ques-
tions corresponding to the document from Figure 1
are given in Figure 3; correct answers are shown in
parentheses.

Compressed documents and their accompanying
questions were presented to human subjects who
were asked to provide answers as best they could.
We elicited answers for six documents in three com-
pression conditions: gold standard, using the ILP
discourse model, and McDonald’s (2006) model.
Each participant was also asked to rate the readabil-
ity of the compressed document on a seven point
scale. A Latin Square design prevented participants

Model CompR F-Score
McDonald 60.1% 36.0%∗

Discourse ILP 65.4% 39.6%
Gold Standard 70.3% —–

Table 1: Compression results: compression rate and
relation-based F-score;∗ sig. diff. from Discourse
ILP (p < 0.05 using the Studentt test).

Model Readability Q&A
McDonald 2.6∗ 53.7%∗†

Discourse ILP 3.0∗ 68.3%
Gold Standard 5.5† 80.7%

Table 2: Human Evaluation Results: average read-
ability ratings and average percentage of questions
answered correctly.∗: sig. diff. from Gold Standard;
†: sig. diff. from Discourse ILP.

from seeing two different compressions of the same
document.

The study was conducted remotely over the In-
ternet. Participants were presented with a set of in-
structions that explained the Q&A task and provided
examples. Subjects were first asked to read the com-
pressed document and rate its readability. Questions
were then presented one at a time and participants
were allowed to consult the document for the an-
swer. Once a participant had provided an answer
they were not allowed to modify it. Thirty unpaid
volunteers took part in our Q&A study. All were self
reported native English speakers.

The answers provided by the participants were
scored against the answer key. Answers were con-
sidered correct if they were identical to the answer
key or subsumed by it. For instance,Mount Etna
was considered a right answer to the first question
from Figure 3. A compressed document receives a
full score if subjects have answered all questions re-
lating to it correctly.

6 Results

As a sanity check, we first assessed the compres-
sions produced by our model and McDonald (2006)
on a sentence-by-sentence basis without taking the
documents into account. There is no hope for gener-
ating shorter documents if the compressed sentences
are either too wordy or too ungrammatical. Table 1
shows the compression rates (CompR) for the two
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systems and evaluates the quality of their output us-
ing F-score based on grammatical relations. As can
be seen, the Discourse ILP compressions are slightly
longer than McDonald (65.4% vs. 60.1%) but closer
to the human gold standard (70.3%). This is not sur-
prising, the Discourse ILP model takes the entire
document into account, and compression decisions
will be slightly more conservative. The Discourse
ILP’s output is significantly better than McDonald in
terms of F-score, indicating that discourse-level in-
formation is generally helpful. Both systems could
use further improvement as inter-annotator agree-
ment on this data yields an F-score of 65.8%.

Let us now consider the results of our document-
based evaluation. Table 2 shows the mean readabil-
ity ratings obtained for each system and the per-
centage of questions answered correctly. We used
an Analysis of Variance (ANOVA) to examine the ef-
fect of compression type (McDonald, Discourse ILP,
Gold Standard). The ANOVA revealed a reliable ef-
fect on both readability and Q&A. Post-hoc Tukey
tests showed that McDonald and the Discourse ILP
model do not differ significantly in terms of read-
ability. However, they are significantly less read-
able than the gold standard (α < 0.05). For the Q&A
task we observe that our system is significantly bet-
ter than McDonald (α < 0.05) and not significantly
worse than the gold standard.

These results indicate that the automatic systems
lag behind the human gold standard in terms of
readability. When reading entire documents, sub-
jects are less tolerant of ungrammatical construc-
tions. We also find out that despite relatively low
readability, the documents are overall understand-
able. The discourse informed model generates more
informative documents — the number of questions
answered correctly increases by 15% in comparison
to McDonald. This is an encouraging result suggest-
ing that there may be advantages in developing com-
pression models that exploit contextual information.

7 Conclusions and Future Work

In this paper we proposed a novel method for au-
tomatic sentence compression. Central in our ap-
proach is the use of discourse-level information
which we argue is an important prerequisite for doc-
ument (as opposed to sentence) compression. Our
model uses integer programming for inferring glob-
ally optimal compressions in the presence of lin-

guistically motivated constraints. Our discourse con-
straints aim to capture local coherence and are in-
spired by centering theory and lexical chains. We
showed that our model can be successfully em-
ployed to produce compressed documents that pre-
serve most of the original’s core content.

Our approach to document compression differs
from most summarisation work in that our sum-
maries are fairly long. However, we believe this is
the first step into understanding how compression
can help summarisation. In the future, we will in-
terface our compression model with sentence ex-
traction. The discourse annotations can help guide
the extraction method into selecting topically re-
lated sentences which can consequently be com-
pressed together. The compression rate can be tai-
lored through additional constraints which act on
the output length to ensure precise word limits are
obeyed.

We also plan to study the effect of global dis-
course structure (Daumé III and Marcu 2002) on the
compression task. In general, we will assess the im-
pact of discourse information more systematically
by incorporating it into generative and discrimina-
tive modelling paradigms.
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Abstract

Shallow semantic parsing, the automatic
identification and labeling of sentential con-
stituents, has recently received much atten-
tion. Our work examines whether seman-
tic role information is beneficial to question
answering. We introduce a general frame-
work for answer extraction which exploits
semantic role annotations in the FrameNet
paradigm. We view semantic role assign-
ment as an optimization problem in a bipar-
tite graph and answer extraction as an in-
stance of graph matching. Experimental re-
sults on the TREC datasets demonstrate im-
provements over state-of-the-art models.

1 Introduction

Recent years have witnessed significant progress in
developing methods for the automatic identification
and labeling of semantic roles conveyed by senten-
tial constituents.1 The success of these methods, of-
ten referred to collectively as shallow semantic pars-
ing (Gildea and Jurafsky, 2002), is largely due to the
availability of resources like FrameNet (Fillmore et
al., 2003) and PropBank (Palmer et al., 2005), which
document the surface realization of semantic roles in
real world corpora.

More concretely, in the FrameNet paradigm, the
meaning of predicates (usually verbs, nouns, or ad-
jectives) is conveyed by frames, schematic repre-
sentations of situations. Semantic roles (or frame

1The approaches are too numerous to list; we refer the inter-
ested reader to Carreras and Màrquez (2005) for an overview.

elements) are defined for each frame and corre-
spond to salient entities present in the evoked situ-
ation. Predicates with similar semantics instantiate
the same frame and are attested with the same roles.
The FrameNet database lists the surface syntactic
realizations of semantic roles, and provides anno-
tated example sentences from the British National
Corpus. For example, the frame Commerce Sell has
three core semantic roles, namely Buyer, Goods, and
Seller — each expressed by an indirect object, a di-
rect object, and a subject (see sentences (1a)–(1c)).
It can also be attested with non-core (peripheral)
roles (e.g., Means, Manner, see (1d) and (1e)) that
are more generic and can be instantiated in sev-
eral frames, besides Commerce Sell. The verbs sell,
vend, and retail can evoke this frame, but also the
nouns sale and vendor.

(1) a. [Lee]Seller sold a textbook [to
Abby]Buyer.

b. [Kim]Seller sold [the sweater]Goods.
c. [My company]Seller has sold [more

than three million copies]Goods.
d. [Abby]Seller sold [the car]Goods [for

cash]Means.
e. [He]Seller [reluctanctly]Manner sold

[his rock]Goods.

By abstracting over surface syntactic configura-
tions, semantic roles offer an important first step to-
wards deeper text understanding and hold promise
for a range of applications requiring broad cover-
age semantic processing. Question answering (QA)
is often cited as an obvious beneficiary of semantic
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role labeling (Gildea and Jurafsky, 2002; Palmer et
al., 2005; Narayanan and Harabagiu, 2004). Faced
with the question Q: What year did the U.S. buy
Alaska? and the retrieved sentence S: . . .before Rus-
sia sold Alaska to the United States in 1867, a hypo-
thetical QA system must identify that United States
is the Buyer despite the fact that it is attested in one
instance as a subject and in another as an object.
Once this information is known, isolating the correct
answer (i.e., 1867) can be relatively straightforward.

Although conventional wisdom has it that seman-
tic role labeling ought to improve answer extraction,
surprising little work has been done to this effect
(see Section 2 for details) and initial results have
been mostly inconclusive or negative (Sun et al.,
2005; Kaisser, 2006). There are at least two good
reasons for these findings. First, shallow semantic
parsers trained on declarative sentences will typi-
cally have poor performance on questions and gen-
erally on out-of-domain data. Second, existing re-
sources do not have exhaustive coverage and recall
will be compromised, especially if the question an-
swering system is expected to retrieve answers from
unrestricted text. Since FrameNet is still under de-
velopment, its coverage tends to be more of a prob-
lem in comparison to other semantic role resources
such as PropBank.

In this paper we propose an answer extraction
model which effectively incorporates FrameNet-
style semantic role information. We present an auto-
matic method for semantic role assignment which is
conceptually simple and does not require extensive
feature engineering. A key feature of our approach
is the comparison of dependency relation paths at-
tested in the FrameNet annotations and raw text. We
formalize the search for an optimal role assignment
as an optimization problem in a bipartite graph. This
formalization allows us to find an exact, globally op-
timal solution. The graph-theoretic framework goes
some way towards addressing coverage problems re-
lated with FrameNet and allows us to formulate an-
swer extraction as a graph matching problem. As a
byproduct of our main investigation we also exam-
ine the issue of FrameNet coverage and show how
much it impacts performance in a TREC-style ques-
tion answering setting.

In the following section we provide an overview
of existing work on question answering systems that

exploit semantic role-based lexical resources. Then
we define our learning task and introduce our ap-
proach to semantic role assignment and answer ex-
traction in the context of QA. Next, we present our
experimental framework and data. We conclude the
paper by presenting and discussing our results.

2 Related Work

Question answering systems have traditionally de-
pended on a variety of lexical resources to bridge
surface differences between questions and potential
answers. WordNet (Fellbaum, 1998) is perhaps the
most popular resource and has been employed in
a variety of QA-related tasks ranging from query
expansion, to axiom-based reasoning (Moldovan et
al., 2003), passage scoring (Paranjpe et al., 2003),
and answer filtering (Leidner et al., 2004). Besides
WordNet, recent QA systems increasingly rely on
syntactic information as a means of abstracting over
word order differences and structural alternations
(e.g., passive vs. active voice). Most syntax-based
QA systems (Wu et al., 2005) incorporate some
means of comparison between the tree representing
the question with the subtree surrounding the answer
candidate. The assumption here is that appropriate
answers are more likely to have syntactic relations
in common with their corresponding question. Syn-
tactic structure matching has been applied to pas-
sage retrieval (Cui et al., 2005) and answer extrac-
tion (Shen and Klakow, 2006).

Narayanan and Harabagiu (2004) were the first
to stress the importance of semantic roles in an-
swering complex questions. Their system identifies
predicate argument structures by merging semantic
role information from PropBank and FrameNet. Ex-
pected answers are extracted by performing proba-
bilistic inference over the predicate argument struc-
tures in conjunction with a domain specific topic
model. Sun et al. (2005) incorporate semantic analy-
sis in their TREC05 QA system. They use ASSERT
(Pradhan et al., 2004), a publicly available shallow
semantic parser trained on PropBank, to generate
predicate-argument structures which subsequently
form the basis of comparison between question and
answer sentences. They find that semantic analysis
does not boost performance due to the low recall
of the semantic parser. Kaisser (2006) proposes a
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Figure 1: Architecture of answer extraction

question paraphrasing method based on FrameNet.
Questions are assigned semantic roles by matching
their dependency relations with those attested in the
FrameNet annotations. The assignments are used to
create question reformulations which are submitted
to Google for answer extraction. The semantic role
assignment module is not probabilistic, it relies on
strict matching, and runs into severe coverage prob-
lems.

In line with previous work, our method exploits
syntactic information in the form of dependency re-
lation paths together with FrameNet-like semantic
roles to smooth lexical and syntactic divergences be-
tween question and answer sentences. Our approach
is less domain dependent and resource intensive than
Narayanan and Harabagiu (2004), it solely employs
a dependency parser and the FrameNet database. In
contrast to Kaisser (2006), we model the semantic
role assignment and answer extraction tasks numer-
ically, thereby alleviating the coverage problems en-
countered previously.

3 Problem Formulation

We briefly summarize the architecture of the QA
system we are working with before formalizing the
mechanics of our FrameNet-based answer extraction
module. In common with previous work, our over-
all approach consists of three stages: (a) determining
the expected answer type of the question, (b) retriev-
ing passages likely to contain answers to the ques-
tion, and (c) performing a match between the ques-
tion words and retrieved passages in order to extract
the answer. In this paper we focus on the last stage:
question and answer sentences are normalized to a
FrameNet-style representation and answers are re-
trieved by selecting the candidate whose semantic
structure is most similar to the question.

The architecture of our answer extraction mod-

ule is shown in Figure 1. Semantic structures for
questions and sentences are automatically derived
using the model described in Section 4 (Model I). A
semantic structure SemStruc = 〈p,Set(SRA)〉 con-
sists of a predicate p and a set of semantic role as-
signments Set(SRA). p is a word or phrase evok-
ing a frame F of FrameNet. A semantic role assign-
ment SRA is a ternary structure 〈w,SR,s〉, consist-
ing of frame element w, its semantic role SR, and
score s indicating to what degree SR qualifies as a
label for w.

For a question q, we generate a semantic struc-
ture SemStrucq. Question words, such as what, who,
when, etc., are considered expected answer phrases
(EAPs). We require that EAPs are frame elements
of SemStrucq. Likely answer candidates are ex-
tracted from answer sentences following some pre-
processing steps detailed in Section 6. For each
candidate ac, we derive its semantic structure
SemStrucac and assume that ac is a frame ele-
ment of SemStrucac. Question and answer seman-
tic structures are compared using a model based on
graph matching detailed in Section 5 (Model II).
We calculate the similarity of all derived pairs
〈SemStrucq,SemStrucac〉 and select the candidate
with the highest value as an answer for the question.

4 Semantic Structure Generation

Our method crucially exploits the annotated sen-
tences in the FrameNet database together with the
output of a dependency parser. Our guiding assump-
tion is that sentences that share dependency rela-
tions will also share semantic roles as long as they
evoke the same or related frames. This is motivated
by much research in lexical semantics (e.g., Levin
(1993)) hypothesizing that the behavior of words,
particularly with respect to the expression and in-
terpretation of their arguments, is to a large ex-
tent determined by their meaning. We first describe
how predicates are identified and then introduce our
model for semantic role labeling.

Predicate Identification Predicate candidates are
identified using a simple look-up procedure which
compares POS-tagged tokens against FrameNet en-
tries. For efficiency reasons, we make the simplify-
ing assumption that questions have only one predi-
cate which we select heuristically: (1) verbs are pre-
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ferred to other parts of speech, (2) if there is more
than one verb in the question, preference is given to
the verb with the highest level of embedding in the
dependency tree, (3) if no verbs are present, a noun
is chosen. For example, in Q: Who beat Floyd Pat-
terson to take the title away?, beat, take away, and
title are identified as predicate candidates and beat
is selected the main predicate of the question. For
answer sentences, we require that the predicate is ei-
ther identical or semantically related to the question
predicate (see Section 5).

In the example given above, the predicate beat
evoques a single frame (i.e., Cause harm). However,
predicates often have multiple meanings thus evo-
quing more than one frame. Knowing which is the
appropriate frame for a given predicate impacts the
semantic role assignment task; selecting the wrong
frame will unavoidably result in erroneous semantic
roles. Rather than disambiguiting polysemous pred-
icates prior to semantic role assignment, we perform
the assignment for each frame evoqued by the pred-
icate.

Semantic Role Assignment Before describing
our approach to semantic role labeling we define
dependency relation paths. A relation path R is a
relation sequence 〈r1,r2, ...,rL〉, in which rl (l =
1,2, ...,L) is one of predefined dependency relations
with suffix of traverse direction. An example of a
relation path is R = 〈sub jU ,ob jD〉, where the sub-
scripts U and D indicate upward and downward
movement in trees, respectively. Given an unanno-
tated sentence whose roles we wish to label, we as-
sume that words or phrases w with a dependency
path connecting them to p are frame elements. Each
frame element is represented by an unlabeled depen-
dency path Rw which we extract by traversing the
dependency tree from w to p. Analogously, we ex-
tract from the FrameNet annotations all dependency
paths RSR that are labeled with semantic role infor-
mation and correspond to p. We next measure the
compatibility of labeled and unlabeled paths as fol-
lows:

s(w,SR) =
maxRSR∈M [sim(Rw,RSR) ·P(RSR)]

(2)

where M is the set of dependency relation paths
for SR in FrameNet, sim(Rw,RSR) the similarity be-
tween paths Rw and RSR weighted by the relative

w SRw SR

(a) (b)

Figure 2: Sample original bipartite graph (a) and its
subgraph with edge covers (b). In each graph, the
left partition represents frame elements and the right
partition semantic roles.

frequency of RSR in FrameNet (P(RSR)). We con-
sider both core and non-core semantic roles instan-
tiated by frames with at least one annotation in
FrameNet. Core roles tend to have more annotations
in Framenet and consequently are considered more
probable.

We measure sim(Rw,RSR), by adapting a string
kernel to our task. Our hypothesis is that the more
common substrings two dependency paths have,
the more similar they are. The string kernel we
used is similar to Leslie (2002) and defined as
the sum of weighted common dependency rela-
tion subsequences between Rw and RSR. For effi-
ciency, we consider only unigram and bigram sub-
sequences. Subsequences are weighted by a metric
akin to t f · id f which measures the degree of asso-
ciation between a candidate SR and the dependency
relation r present in the subsequence:

weightSR(r) = fr · log
(

1+
N
nr

)
(3)

where fr is the frequency of r occurring in SR; N is
the total number of SRs evoked by a given frame;
and nr is the number of SRs containing r.

For each frame element we thus generate a set
of semantic role assignments Set(SRA). This initial
assignment can be usefully represented as a com-
plete bipartite graph in which each frame element
(word or phrase) is connected to the semantic roles
licensed by the predicate and vice versa. (see Fig-
ure 2a). Edges are weighted and represent how com-
patible the frame elements and semantic roles are
(see equation (2)). Now, for each frame element w
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Q: Who discovered prions?
S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...
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Figure 3: Semantic structures induced by our model
for a question and answer sentence

we could simply select the semantic role with the
highest score. However, this decision procedure is
local, i.e., it yields a semantic role assignment for
each frame element independently of all other ele-
ments. We therefore may end up with the same role
being assigned to two frame elements or with frame
elements having no role at all. We remedy this short-
coming by treating the semantic role assignment as
a global optimization problem.

Specifically, we model the interaction between all
pairwise labeling decisions as a minimum weight
bipartite edge cover problem (Eiter and Mannila,
1997; Cormen et al., 1990). An edge cover is a sub-
graph of a bipartite graph so that each node is linked
to at least one node of the other partition. This yields
a semantic role assignment for all frame elements
(see Figure 2b where frame elements and roles are
adjacent to an edge). Edge covers have been success-
fully applied in several natural language processing
tasks, including machine translation (Taskar et al.,
2005) and annotation projection (Padó and Lapata,
2006).

Formally, optimal edge cover assignments are so-
lutions of following optimization problem:

max
E is edge cover

∏
(ndw,ndSR)∈E

s(ndw,ndSR)(4)

where, s(ndw,ndSR) is the compatibility score be-

tween the frame element node ndw and semantic role
node ndSR. Edge covers can be computed efficiently
in cubic time using algorithms for the equivalent
linear assignment problem. Our experiments used
Jonker and Volgenant’s (1987) solver.2

Figure 3 shows the semantic role assignments
generated by our model for the question Q: Who
discovered prions? and the candidate answer sen-
tence S: 1997: Stanley B. Prusiner, United States,
discovery of prions. . . Here we identify two predi-
cates, namely discover and discovery. The expected
answer phrase (EAP) who and the answer candi-
date Stanley B. Prusiner are assigned the COGNIZER

role. Note that frame elements can bear multiple se-
mantic roles. By inducing a soft labeling we hope to
render the matching of questions and answers more
robust, thereby addressing to some extent the cover-
age problems associated with FrameNet.

5 Semantic Structure Matching

We measure the similarity between a question and
its candidate answer by matching their predicates
and semantic role assignments. Since SRs are frame-
specific, we prioritize frame matching to SR match-
ing. Two predicates match if they evoke the same
frame or one of its hypernyms (or hyponyms). The
latter are expressed by the Inherits From and Is In-
herited By relations in the frame definitions. If the
predicates match, we examine whether the assigned
semantic roles match. Since we represent SR assign-
ments as graphs with edge covers, we can also for-
malize SR matching as a graph matching problem.

The similarity between two graphs is measured
as the sum of similarities between their subgraphs.
We first decompose a graph into subgraphs consist-
ing of one frame element node w and a set of SR
nodes connected to it. The similarity between two
subgraphs SubG1, and SubG2 is then formalized as:

(5)
Sim(SubG1,SubG2) =

∑
ndSR

1 ∈ SubG1
ndSR

2 ∈ SubG2
ndSR

1 = ndSR
2

1
|s(ndw,ndSR

1 )− s(ndw,ndSR
2 )|+1

where, ndSR
1 and ndSR

2 are semantic role nodes con-
nected to a frame element node ndw in SubG1 and

2The software is available from http://www.magiclogic.
com/assignment.html .
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Figure 4: Distribution of Numbers of Predicates and
annotated sentences; each sub-pie, lists the number
of predicates (above) with their corresponding range
of annotated sentences (below)

SubG2, respectively. s(ndw,ndsr
1 ) and s(ndw,ndSR

2 )
are edge weights between two nodes in correspond-
ing subgraphs (see (2)). Our intuition here is that
the more semantic roles two subgraphs share for a
given frame element, the more similar they are and
the closer their corresponding edge weights should
be. Edge weights are normalized by dividing by the
sum of all edges in a subgraph.

6 Experimental Setup

Data All our experiments were performed on the
TREC02–05 factoid questions. We excluded NIL
questions since TREC doesn’t supply an answer for
them. We used the FrameNet V1.3 lexical database.
It contains 10,195 predicates grouped into 795 se-
mantic frames and 141,238 annotated sentences.
Figure 4 shows the number of annotated sentences
available for different predicates. As can be seen,
there are 3,380 predicates with no annotated sen-
tences and 1,175 predicates with less than 5 anno-
tated sentences. All FrameNet sentences, questions,
and answer sentences were parsed using MiniPar
(Lin, 1994), a robust dependency parser.

As mentioned in Section 4 we extract depen-
dency relation paths by traversing the dependency
tree from the frame element node to the predicate
node. We used all dependency relations provided
by MiniPar (42 in total). In order to increase cov-
erage, we combine all relation paths for predicates

that evoke the same frame and are labeled with the
same POS tag. For example, found and establish
are both instances of the frame Intentionally create
but the database does not have any annotated sen-
tences for found.v. In default of not assigning any
role labels for found.v, our model employs the rela-
tion paths for the semantically related establish.v.

Preprocessing Here we summarize the steps of
our QA system preceding the assignment of seman-
tic structure and answer extraction. For each ques-
tion, we recognize its expected answer type (e.g., in
Q: Which record company is Fred Durst with? we
would expect the answer to be an ORGANIZA-
TION). Answer types are determined using classi-
fication rules similar to Li and Roth (2002). We also
reformulate questions into declarative sentences fol-
lowing the strategy proposed in Brill et al. (2002).

The reformulated sentences are submitted as
queries to an IR engine for retrieving sentences with
relevant answers. Specifically, we use the Lemur
Toolkit3, a state-of-the-art language model-driven
search engine. We work only with the 50 top-ranked
sentences as this setting performed best in previ-
ous experiments of our QA system. We also add to
Lemur’s output gold standard sentences, which con-
tain and support an answer for each question. Specif-
ically, documents relevant for each question are re-
trieved from the AQUAINT Corpus4 according to
TREC supplied judgments. Next, sentences which
match both the TREC provided answer pattern and
at least one question key word are extracted and their
suitability is manually judged by humans. The set of
relevant sentences thus includes at least one sentence
with an appropriate answer as well as sentences that
do not contain any answer specific information. This
setup is somewhat idealized, however it allows us to
evaluate in more detail our answer extraction mod-
ule (since when an answer is not found, we know it
is the fault of our system).

Relevant sentences are annotated with their
named entities using Lingpipe5, a MUC-based
named entity recognizer. When we successfully
classify a question with an expected answer type

3See http://www.lemurproject.org/ for details.
4This corpus consists of English newswire texts and is used

as the main document collection in official TREC evaluations.
5The software is available from www.alias-i.com/

lingpipe/
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(e.g., ORGANIZATION in the example above), we
assume that all NPs attested in the set of relevant
sentences with the same answer type are candidate
answers; in cases where no answer type is found
(e.g., as in Q: What are prions made of?), all NPs
in the relevant answers set are considered candidate
answers.

Baseline We compared our answer extraction
method to a QA system that exploits solely syntac-
tic information without making use of FrameNet or
any other type of role semantic annotations. For each
question, the baseline identifies key phrases deemed
important for answer identification. These are verbs,
noun phrases, and expected answer phrases (EAPs,
see Section 3). All dependency relation paths con-
necting a key phrase and an EAP are compared to
those connecting the same key phrases and an an-
swer candidate. The similarity of question and an-
swer paths is computed using a simplified version
of the similarity measure6 proposed in Shen and
Klakow (2006).

Our second baseline employs Shalmaneser (Erk
and Padó, 2006), a publicly available shallow se-
mantic parser7, for the role labeling task instead of
the graph-based model presented in Section 4. The
software is trained on the FrameNet annotated sen-
tences using a standard feature set (see Carreras and
Màrquez (2005) for details). We use Shalmaneser
to parse questions and answer sentences. The parser
makes hard decisions about the presence or absence
of a semantic role. Unfortunately, this prevents us
from using our method for semantic structure match-
ing (see Section 5) which assumes a soft labeling.
We therefore came up with a simple matching strat-
egy suitable for the parser’s output. For question
and answer sentences matching in their frame as-
signment, phrases bearing the same semantic role as
the EAP are considered answer candidates. The lat-
ter are ranked according to word overlap (i.e., iden-
tical phrases are ranked higher than phrases with no

6Shen and Klakow (2006) use a dynamic time warping al-
gorithm to calculate the degree to which dependency relation
paths are correlated. Correlations for individual relations are es-
timated from training data whereas we assume a binary value (1
for identical relations and 0 otherwise). The modification was
necessary to render the baseline system comparable to our an-
swer extraction model which is unsupervised.

7The software is available from http://www.coli.
uni-saarland.de/projects/salsa/shal/ .

overlap at all).

7 Results

Our evaluation was motivated by the following ques-
tions: (1) How does the incompleteness of FrameNet
impact QA performance on the TREC data sets? In
particular, we wanted to examine whether there are
questions for which in principle no answer can be
found due to missing frame entries or missing an-
notated sentences. (2) Are all questions and their
corresponding answers amenable to a FrameNet-
style analysis? In other words, we wanted to assess
whether questions and answers often evoke the same
or related frames (with similar roles). This is a pre-
requisite for semantic structure matching and ulti-
mately answer extraction. (3) Do the graph-based
models introduced in this paper bring any perfor-
mance gains over state-of-the-art shallow semantic
parsers or more conventional syntax-based QA sys-
tems? Recall that our graph-based models were de-
signed especially for the QA answer extraction task.

Our results are summarized in Tables 1–3. Table 1
records the number of questions to be answered for
the TREC02–05 datasets (Total). We also give infor-
mation regarding the number of questions which are
in principle unanswerable with a FrameNet-style se-
mantic role analysis.

Column NoFrame shows the number of questions
which don’t have an appropriate frame or predicate
in the database. For example, there is currently no
predicate entry for sponsor or sink (e.g., Q: Who
is the sponsor of the International Criminal Court?
and Q: What date did the Lusitania sink?). Column
NoAnnot refers to questions for which no semantic
role labeling is possible because annotated sentences
for the relevant predicates are missing. For instance,
there are no annotations for win (e.g., Q: What divi-
sion did Floyd Patterson win?) or for hit (e.g., Q:
What was the Beatles’ first number one hit?). This
problem is not specific to our method which admit-
tedly relies on FrameNet annotations for performing
the semantic role assignment (see Section 4). Shal-
low semantic parsers trained on FrameNet would
also have trouble assigning roles to predicates for
which no data is available.

Finally, column NoMatch reports the number of
questions which cannot be answered due to frame
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Data Total NoFrame NoAnnot NoMatch Rest
TREC02 444 87 (19.6) 29 (6.5) 176 (39.6) 152 (34.2)
TREC03 380 55 (14.5) 30 (7.9) 183 (48.2) 112 (29.5)
TREC04 203 47 (23.1) 14 (6.9) 67 (33.0) 75 (36.9)
TREC05 352 70 (19.9) 23 (6.5) 145 (41.2) 114 (32.4)

Table 1: Number of questions which cannot be answered using a FrameNet style semantic analysis; numbers
in parentheses are percentages of Total (NoFrame: frames or predicates are missing; NoAnnot: annotated
sentences are missing, NoMatch: questions and candidate answers evoke different frames.

mismatches. Consider Q: What does AARP stand
for? whose answer is found in S: The American
Association of Retired Persons (AARP) qualify for
discounts. . .. The answer and the question evoke dif-
ferent frames; in fact here a semantic role analysis is
not relevant for locating the right answer. As can be
seen NoMatch cases are by far the most frequent.
The number of questions remaining after excluding
NoFrame, NoAnnot, and NoMatch are shown under
the Rest heading in Table 1.

These results indicate that FrameNet-based se-
mantic role analysis applies to approximately 35%
of the TREC data. This means that an extraction
module relying solely on FrameNet will have poor
performance, since it will be unable to find answers
for more than half of the questions beeing asked. We
nevertheless examine whether our model brings any
performance improvements on this limited dataset
which is admittedly favorable towards a FrameNet
style analysis. Table 2 shows the results of our an-
swer extraction module (SemMatch) together with
two baseline systems. The first baseline uses only
dependency relation path information (SynMatch),
whereas the second baseline (SemParse) uses Shal-
maneser, a state-of-the-art shallow semantic parser
for the role labeling task. We consider an answer
correct if it is returned with rank 1. As can be seen,
SemMatch is significantly better than both Syn-
Match and SemParse, whereas the latter is signifi-
cantly worse than SynMatch.

Although promising, the results in Table 2 are not
very informative, since they show performance gains
on partial data. Instead of using our answer extrac-
tion model on its own, we next combined it with the
syntax-based system mentioned above (SynMatch,
see also Section 6 for details). If FrameNet is indeed
helpful for QA, we would expect an ensemble sys-

Model TREC02 TREC03 TREC04 TREC05
SemParse 13.16 8.92 17.33 13.16
SynMatch 35.53∗ 33.04∗ 40.00∗ 36.84∗

SemMatch 53.29∗† 49.11∗† 54.67∗† 59.65∗†

Table 2: System Performance on subset of TREC
datasets (see Rest column in Table 1); ∗: signifi-
cantly better than SemParse; †: significantly better
than SynMatch (p < 0.01, using a χ2 test).

Model TREC02 TREC03 TREC04 TREC05
SynMatch 32.88∗ 30.70∗ 35.95∗ 34.38∗

+SemParse 25.23 23.68 28.57 26.70
+SemMatch 38.96∗† 35.53∗† 42.36∗† 41.76∗†

Table 3: System Performance on TREC datasets (see
Total column in Table 1); ∗: significantly better than
+SemParse; †: significantly better than SynMatch
(p < 0.01, using a χ2 test).

tem to yield better performance over a purely syn-
tactic answer extraction module. The two systems
were combined as follows. Given a question, we first
pass it to our FrameNet model; if an answer is found,
our job is done; if no answer is returned, the ques-
tion is passed on to SynMatch. Our results are given
in Table 3. +SemMatch and +SemParse are ensem-
ble systems using SynMatch together with the QA
specific role labeling method proposed in this pa-
per and Shalmaneser, respectively. We also compare
these systems against SynMatch on its own.

We can now attempt to answer our third ques-
tion concerning our model’s performance on the
TREC data. Our experiments show that a FrameNet-
enhanced answer extraction module significantly
outperforms a similar module that uses only syn-
tactic information (compare SynMatch and +Sem-
Match in Table 3). Another interesting finding is that
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the shallow semantic parser performs considerably
worse in comparison to our graph-based models and
the syntax-based system. Inspection of the parser’s
output highlights two explanations for this. First, the
shallow semantic parser has difficulty assigning ac-
curate semantic roles to questions (even when they
are reformulated as declarative sentences). And sec-
ondly, it tends to favor precision over recall, thus re-
ducing the number of questions for which answers
can be found. A similar finding is reported in Sun et
al. (2005) for a PropBank trained parser.

8 Conclusion

In this paper we assess the contribution of semantic
role labeling to open-domain factoid question an-
swering. We present a graph-based answer extrac-
tion model which effectively incorporates FrameNet
style role semantic information and show that it
achieves promising results. Our experiments show
that the proposed model can be effectively combined
with a syntax-based system to obtain performance
superior to the latter when used on its own. Fur-
thermore, we demonstrate performance gains over a
shallow semantic parser trained on the FrameNet an-
notated corpus. We argue that performance gains are
due to the adopted graph-theoretic framework which
is robust to coverage and recall problems.

We also provide a detailed analysis of the appro-
priateness of FrameNet for QA. We show that per-
formance can be compromised due to incomplete
coverage (i.e., missing frame or predicate entries
as well as annotated sentences) but also because of
mismatching question-answer representations. The
question and the answer may evoke different frames
or the answer simply falls outside the scope of a
given frame (i.e., in a non predicate-argument struc-
ture). Our study shows that mismatches are rela-
tively frequent and motivates the use of semantically
informed methods in conjunction with syntax-based
methods.

Important future directions lie in evaluating the
contribution of alternative semantic role frameworks
(e.g., PropBank) to the answer extraction task and
developing models that learn semantic roles di-
rectly from unannotated text without the support
of FrameNet annotations (Grenager and Manning,
2006). Beyond question answering, we also plan to

investigate the potential of our model for shallow
semantic parsing since our experience so far has
shown that it achieves good recall.
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Abstract

This paper presents a syntax-driven ap-
proach to question answering, specifically
the answer-sentence selection problem for
short-answer questions. Rather than us-
ing syntactic features to augment exist-
ing statistical classifiers (as in previous
work), we build on the idea that ques-
tions and their (correct) answers relate to
each other via loose but predictable syntac-
tic transformations. We propose a prob-
abilistic quasi-synchronous grammar, in-
spired by one proposed for machine trans-
lation (D. Smith and Eisner, 2006), and pa-
rameterized by mixtures of a robust non-
lexical syntax/alignment model with a(n
optional) lexical-semantics-driven log-linear
model. Our model learns soft alignments as
a hidden variable in discriminative training.
Experimental results using the TREC dataset
are shown to significantly outperform strong
state-of-the-art baselines.

1 Introduction and Motivation

Open-domain question answering (QA) is a widely-
studied and fast-growing research problem. State-
of-the-art QA systems are extremely complex. They
usually take the form of a pipeline architecture,
chaining together modules that perform tasks such
as answer type analysis (identifying whether the
correct answer will be a person, location, date,
etc.), document retrieval, answer candidate extrac-
tion, and answer reranking. This architecture is so
predominant that each task listed above has evolved

into its own sub-field and is often studied and evalu-
ated independently (Shima et al., 2006).

At a high level, the QA task boils down to only
two essential steps (Echihabi and Marcu, 2003). The
first step, retrieval, narrows down the search space
from a corpus of millions of documents to a fo-
cused set of maybe a few hundred using an IR en-
gine, where efficiency and recall are the main fo-
cus. The second step, selection, assesses each can-
didate answer string proposed by the first step, and
finds the one that is most likely to be an answer
to the given question. The granularity of the tar-
get answer string varies depending on the type of
the question. For example, answers to factoid ques-
tions (e.g., Who, When, Where) are usually single
words or short phrases, while definitional questions
and other more complex question types (e.g., How,
Why) look for sentences or short passages. In this
work, we fix the granularity of an answer to a single
sentence.

Earlier work on answer selection relies only on
the surface-level text information. Two approaches
are most common: surface pattern matching, and
similarity measures on the question and answer, rep-
resented as bags of words. In the former, pat-
terns for a certain answer type are either crafted
manually (Soubbotin and Soubbotin, 2001) or ac-
quired from training examples automatically (Itty-
cheriah et al., 2001; Ravichandran et al., 2003;
Licuanan and Weischedel, 2003). In the latter,
measures like cosine-similarity are applied to (usu-
ally) bag-of-words representations of the question
and answer. Although many of these systems have
achieved very good results in TREC-style evalua-
tions, shallow methods using the bag-of-word repre-
sentation clearly have their limitations. Examples of
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cases where the bag-of-words approach fails abound
in QA literature; here we borrow an example used by
Echihabi and Marcu (2003). The question is “Who
is the leader of France?”, and the sentence “Henri
Hadjenberg, who is the leader of France ’s Jewish
community, endorsed ...” (note tokenization), which
is not the correct answer, matches all keywords in
the question in exactly the same order. (The cor-
rect answer is found in “Bush later met with French
President Jacques Chirac.”)

This example illustrates two types of variation
that need to be recognized in order to connect this
question-answer pair. The first variation is the
change of the word “leader” to its semantically re-
lated term “president”. The second variation is the
syntactic shift from “leader of France” to “French
president.” It is also important to recognize that
“France” in the first sentence is modifying “com-
munity”, and therefore “Henri Hadjenberg” is the
“leader of ... community” rather than the “leader of
France.” These syntactic and semantic variations oc-
cur in almost every question-answer pair, and typi-
cally they cannot be easily captured using shallow
representations. It is also worth noting that such
syntactic and semantic variations are not unique to
QA; they can be found in many other closely related
NLP tasks, motivating extensive community efforts
in syntactic and semantic processing.

Indeed, in this work, we imagine a generative
story for QA in which the question is generated
from the answer sentence through a series of syn-
tactic and semantic transformations. The same story
has been told for machine translation (Yamada and
Knight, 2001, inter alia), in which a target language
sentence (the desired output) has undergone seman-
tic transformation (word to word translation) and
syntactic transformation (syntax divergence across
languages) to generate the source language sen-
tence (noisy-channel model). Similar stories can
also be found in paraphrasing (Quirk et al., 2004;
Wu, 2005) and textual entailment (Harabagiu and
Hickl, 2006; Wu, 2005).

Our story makes use of a weighted formalism
known as quasi-synchronous grammar (hereafter,
QG), originally developed by D. Smith and Eisner
(2006) for machine translation. Unlike most syn-
chronous formalisms, QG does not posit a strict iso-
morphism between the two trees, and it provides

an elegant description for the set of local configura-
tions. In Section 2 we situate our contribution in the
context of earlier work, and we give a brief discus-
sion of quasi-synchronous grammars in Section 3.
Our version of QG, called the Jeopardy model, and
our parameter estimation method are described in
Section 4. Experimental results comparing our ap-
proach to two state-of-the-art baselines are presented
in Section 5. We discuss portability to cross-lingual
QA and other applied semantic processing tasks in
Section 6.

2 Related Work

To model the syntactic transformation process, re-
searchers in these fields—especially in machine
translation—have developed powerful grammatical
formalisms and statistical models for representing
and learning these tree-to-tree relations (Wu and
Wong, 1998; Eisner, 2003; Gildea, 2003; Melamed,
2004; Ding and Palmer, 2005; Quirk et al., 2005;
Galley et al., 2006; Smith and Eisner, 2006, in-
ter alia). We can also observe a trend in recent work
in textual entailment that more emphasis is put on
explicit learning of the syntactic graph mapping be-
tween the entailed and entailed-by sentences (Mac-
Cartney et al., 2006).

However, relatively fewer attempts have been
made in the QA community. As pointed out by
Katz and Lin (2003), most early experiments in
QA that tried to bring in syntactic or semantic
features showed little or no improvement, and it
was often the case that performance actually de-
graded (Litkowski, 1999; Attardi et al., 2001). More
recent attempts have tried to augment the bag-of-
words representation—which, after all, is simply a
real-valued feature vector—with syntactic features.
The usual similarity measures can then be used on
the new feature representation. For example, Pun-
yakanok et al. (2004) used approximate tree match-
ing and tree-edit-distance to compute a similarity
score between the question and answer parse trees.
Similarly, Shen et al. (2005) experimented with de-
pendency tree kernels to compute similarity between
parse trees. Cui et al. (2005) measured sentence
similarity based on similarity measures between de-
pendency paths among aligned words. They used
heuristic functions similar to mutual information to
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assign scores to matched pairs of dependency links.
Shen and Klakow (2006) extend the idea further
through the use of log-linear models to learn a scor-
ing function for relation pairs.

Echihabi and Marcu (2003) presented a noisy-
channel approach in which they adapted the IBM
model 4 from statistical machine translation (Brown
et al., 1990; Brown et al., 1993) and applied it to QA.
Similarly, Murdock and Croft (2005) adopted a sim-
ple translation model from IBM model 1 (Brown et
al., 1990; Brown et al., 1993) and applied it to QA.
Porting the translation model to QA is not straight-
forward; it involves parse-tree pruning heuristics
(the first two deterministic steps in Echihabi and
Marcu, 2003) and also replacing the lexical trans-
lation table with a monolingual “dictionary” which
simply encodes the identity relation. This brings us
to the question that drives this work: is there a statis-
tical translation-like model that is natural and accu-
rate for question answering? We propose Smith and
Eisner’s (2006) quasi-synchronous grammar (Sec-
tion 3) as a general solution and the Jeopardy model
(Section 4) as a specific instance.

3 Quasi-Synchronous Grammar

For a formal description of QG, we recommend
Smith and Eisner (2006). We briefly review the cen-
tral idea here. QG arose out of the empirical obser-
vation that translated sentences often have some iso-
morphic syntactic structure, but not usually in en-
tirety, and the strictness of the isomorphism may
vary across words or syntactic rules. The idea is that,
rather than a synchronous structure over the source
and target sentences, a tree over the target sentence
is modeled by a source-sentence-specific grammar
that is inspired by the source sentence’s tree.1 This
is implemented by a “sense”—really just a subset
of nodes in the source tree—attached to each gram-
mar node in the target tree. The senses define an
alignment between the trees. Because it only loosely
links the two sentences’ syntactic structure, QG is
particularly well-suited for QA insofar as QA is like
“free” translation.

A concrete example that is easy to understand
is a binary quasi-synchronous context-free grammar

1Smith and Eisner also show how QG formalisms generalize
synchronous grammar formalisms.

(denoted QCFG). Let VS be the set of constituent to-
kens in the source tree. QCFG rules would take the
augmented form

〈X, S1〉 → 〈Y, S2〉〈Z, S3〉
〈X, S1〉 → w

where X, Y, and Z are ordinary CFG nonterminals,
each Si ∈ 2VS (subsets of nodes in the source tree
to which the nonterminals align), and w is a target-
language word. QG can be made more or less “lib-
eral” by constraining the cardinality of the Si (we
force all |Si| = 1), and by constraining the relation-
ships among the Si mentioned in a single rule. These
are called permissible “configurations.” An example
of a strict configuration is that a target parent-child
pair must align (respectively) to a source parent-
child pair. Configurations are shown in Table 1.

Here, following Smith and Eisner (2006), we use
a weighted, quasi-synchronous dependency gram-
mar. Apart from the obvious difference in appli-
cation task, there are a few important differences
with their model. First, we are not interested in the
alignments per se; we will sum them out as a hid-
den variable when scoring a question-answer pair.
Second, our probability model includes an optional
mixture component that permits arbitrary features—
we experiment with a small set of WordNet lexical-
semantics features (see Section 4.4). Third, we ap-
ply a more discriminative training method (condi-
tional maximum likelihood estimation, Section 4.5).

4 The Jeopardy Model

Our model, informally speaking, aims to follow the
process a player of the television game show Jeop-
ardy! might follow. The player knows the answer
(or at least thinks he knows the answer) and must
quickly turn it into a question.2 The question-answer
pairs used on Jeopardy! are not precisely what we
have in mind for the real task (the questions are not
specific enough), but the syntactic transformation in-
spires our model. In this section we formally define

2A round of Jeopardy! involves a somewhat involved and
specific “answer” presented to the competitors, and the first
competitor to hit a buzzer proposes the “question” that leads to
the answer. For example, an answer might be, This Eastern Eu-
ropean capital is famous for defenestrations. In Jeopardy! the
players must respond with a queston: What is Prague?
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this probability model and present the necessary al-
gorithms for parameter estimation.

4.1 Probabilistic Model
The Jeopardy model is a QG designed for QA. Let
q = 〈q1, ..., qn〉 be a question sentence (each qi is a
word), and let a = 〈a1, ..., am〉 be a candidate an-
swer sentence. (We will use w to denote an abstract
sequence that could be a question or an answer.) In
practice, these sequences may include other infor-
mation, such as POS, but for clarity we assume just
words in the exposition. Let A be the set of can-
didate answers under consideration. Our aim is to
choose:

â = argmax
a∈A

p(a | q) (1)

At a high level, we make three adjustments. The
first is to apply Bayes’ rule, p(a | q) ∝ p(q |
a) · p(a). Because A is known and is assumed to
be generated by an external extraction system, we
could use that extraction system to assign scores
(and hence, probabilities p(a)) to the candidate an-
swers. Other scores could also be used, such as
reputability of the document the answer came from,
grammaticality, etc. Here, aiming for simplicity, we
do not aim to use such information. Hence we treat
p(a) as uniform over A.3

The second adjustment adds a labeled, directed
dependency tree to the question and the answer.
The tree is produced by a state-of-the-art depen-
dency parser (McDonald et al., 2005) trained on
the Wall Street Journal Penn Treebank (Marcus et
al., 1993). A dependency tree on a sequence w =
〈w1, ..., wk〉 is a mapping of indices of words to in-
dices of their syntactic parents and a label for the
syntactic relation, τ : {1, ..., k} → {0, ..., k} × L.
Each word wi has a single parent, denoted wτ(i).par .
Cycles are not permitted. w0 is taken to be the invis-
ible “wall” symbol at the left edge of the sentence; it
has a single child (|{i : τ(i) = 0}| = 1). The label
for wi is denoted τ(i).lab.

The third adjustment involves a hidden variable
X , the alignment between question and answer

3The main motivation for modeling p(q | a) is that it is eas-
ier to model deletion of information (such as the part of the sen-
tence that answers the question) than insertion. Our QG does
not model the real-world knowledge required to fill in an an-
swer; its job is to know what answers are likely to look like,
syntactically.

words. In our model, each question-word maps to
exactly one answer-word. Let x : {1, ..., n} →
{1, ...,m} be a mapping from indices of words in q
to indices of words in a. (It is for computational rea-
sons that we assume |x(i)| = 1; in general x could
range over subsets of {1, ...,m}.) Because we de-
fine the correspondence in this direction, note that it
is possible for multple question words to map to the
same answer word.

Why do we treat the alignment X as a hidden vari-
able? In prior work, the alignment is assumed to be
known given the sentences, but we aim to discover
it from data. Our guide in this learning is the struc-
ture inherent in the QG: the configurations between
parent-child pairs in the question and their corre-
sponding, aligned words in the answer. The hidden
variable treatment lets us avoid commitment to any
one x mapping, making the method more robust to
noisy parses (after all, the parser is not 100% ac-
curate) and any wrong assumptions imposed by the
model (that |x(i)| = 1, for example, or that syntactic
transformations can explain the connection between
q and a at all).4

Our model, then, defines

p(q, τq | a, τa) =
∑

x

p(q, τq, x | a, τa) (2)

where τq and τa are the question tree and answer
tree, respectively. The stochastic process defined by
our model factors cleanly into recursive steps that
derive the question from the top down. The QG de-
fines a grammar for this derivation; the grammar de-
pends on the specific answer.

Let τ i
w refer to the subtree of τw rooted at wi. The

model is defined by:

p(τ i
q | qi, τq(i), x(i), τa) = (3)

p#kids(|{j : τq(j) = i, j < i}| | qi, left)
×p#kids(|{j : τq(j) = i, j > i}| | qi, right)

×
∏

j:τq(j)=i

m∑
x(j)=0

pkid (qj , τq(j).lab | qi, τq(i), x(i), x(j), τa)
×p(τ j

q | qj , τq(j), x(j), τa)
4If parsing performance is a concern, we might also treat the

question and/or answer parse trees as hidden variables, though
that makes training and testing more computationally expen-
sive.
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Note the recursion in the last line. While the above
may be daunting, in practice it boils down only to
defining the conditional distribution pkid , since the
number of left and right children of each node need
not be modeled (the trees are assumed known)—
p#kids is included above for completeness, but in the
model applied here we do not condition it on qi and
therefore do not need to estimate it (since the trees
are fixed).

pkid defines a distribution over syntactic children
of qi and their labels, given (1) the word qi, (2) the
parent of qi, (3) the dependency relation between
qi and its parent, (4) the answer-word qi is aligned
to, (5) the answer-word the child being predicted is
aligned to, and (6) the remainder of the answer tree.

4.2 Dynamic Programming

Given q, the score for an answer is simply p(q, τq |
a, τa). Computing the score requires summing over
alignments and can be done efficiently by bottom-up
dynamic programming. Let S(j, `) refer to the score
of τ j

q, assuming that the parent of qj , τq(j).par , is
aligned to a`. The base case, for leaves of τq, is:

S(j, `) = (4)

p#kids(0 | qj , left)× p#kids(0 | qj , right)

×
m∑

k=0

pkid (qj , τq(j).lab | qτq(j)
, `, k, τa)

Note that k ranges over indices of answer-words to
be aligned to qj . The recursive case is

S(i, `) = (5)

p#kids(|{j : τq(j) = i, j < i}| | qj , left)
×p#kids(|{j : τq(j) = i, j > i}| | qj , right)

×
m∑

k=0

pkid (qi, τq(i).lab | qτq(i), `, k, τa)

×
∏

j:τq(j)=i

S(j, k)

Solving these equations bottom-up can be done
in O(nm2) time and O(nm) space; in practice this
is very efficient. In our experiments, computing the
value of a question-answer pair took two seconds on

average.5 We turn next to the details of pkid , the core
of the model.

4.3 Base Model
Our base model factors pkid into three conditional
multinomial distributions.

pbase
kid (qi, τq(i).lab | qτq(i), `, k, τa) =

p(qi.pos | ak.pos)× p(qi.ne | ak.ne)
×p(τq(i).lab | config(τq, τa, i)) (6)

where qi.pos is question-word i’s POS label and
qi.ne is its named-entity label. config maps
question-word i, its parent, and their alignees to
a QG configuration as described in Table 1; note
that some configurations are extended with addi-
tional tree information. The base model does not
directly predict the specific words in the question—
only their parts-of-speech, named-entity labels, and
dependency relation labels. This model is very sim-
ilar to Smith and Eisner (2006).

Because we are interested in augmenting the QG
with additional lexical-semantic knowledge, we also
estimate pkid by mixing the base model with a
model that exploits WordNet (Miller et al., 1990)
lexical-semantic relations. The mixture is given by:

pkid (• | •) = αpbase
kid (• | •)+(1−α)pls

kid (• | •) (7)

4.4 Lexical-Semantics Log-Linear Model
The lexical-semantics model pls

kid is defined by pre-
dicting a (nonempty) subset of the thirteen classes
for the question-side word given the identity of
its aligned answer-side word. These classes in-
clude WordNet relations: identical-word, synonym,
antonym (also extended and indirect antonym), hy-
pernym, hyponym, derived form, morphological
variation (e.g., plural form), verb group, entailment,
entailed-by, see-also, and causal relation. In ad-
dition, to capture the special importance of Wh-
words in questions, we add a special semantic re-
lation called “q-word” between any word and any
Wh-word. This is done through a log-linear model
with one feature per relation. Multiple relations may
fire, motivating the log-linear model, which permits
“overlapping” features, and, therefore prediction of

5Experiments were run on a 64-bit machine with 2× 2.2GHz
dual-core CPUs and 4GB of memory.
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any of the possible 213 − 1 nonempty subsets. It
is important to note that this model assigns zero
probability to alignment of an answer-word with
any question-word that is not directly related to it
through any relation. Such words may be linked in
the mixture model, however, via pbase

kid .6

(It is worth pointing out that log-linear models
provide great flexibility in defining new features. It
is straightforward to extend the feature set to include
more domain-specific knowledge or other kinds of
morphological, syntactic, or semantic information.
Indeed, we explored some additional syntactic fea-
tures, fleshing out the configurations in Table 1 in
more detail, but did not see any interesting improve-
ments.)

parent-child Question parent-child pair align respec-
tively to answer parent-child pair. Aug-
mented with the q.-side dependency la-
bel.

child-parent Question parent-child pair align respec-
tively to answer child-parent pair. Aug-
mented with the q.-side dependency la-
bel.

grandparent-child Question parent-child pair align respec-
tively to answer grandparent-child pair.
Augmented with the q.-side dependency
label.

same node Question parent-child pair align to the
same answer-word.

siblings Question parent-child pair align to sib-
lings in the answer. Augmented with
the tree-distance between the a.-side sib-
lings.

c-command The parent of one answer-side word is
an ancestor of the other answer-side
word.

other A catch-all for all other types of config-
urations, which are permitted.

Table 1: Syntactic alignment configurations are par-
titioned into these sets for prediction under the Jeop-
ardy model.

4.5 Parameter Estimation

The parameters to be estimated for the Jeopardy
model boil down to the conditional multinomial
distributions in pbase

kid , the log-linear weights in-
side of pls

kid , and the mixture coefficient α.7 Stan-

6It is to preserve that robustness property that the models are
mixed, and not combined some other way.

7In our experiments, all log-linear weights are initialized to
be 1; all multinomial distributions are initialized as uniform dis-

dard applications of log-linear models apply con-
ditional maximum likelihood estimation, which for
our case involves using an empirical distribution p̃
over question-answer pairs (and their trees) to opti-
mize as follows:

max
θ

∑
q,τq,a,τa

p̃(q, τq,a, τa) log pθ(q, τq | a, τa)︸ ︷︷ ︸P
x pθ(q,τq,x|a,τa)

(8)
Note the hidden variable x being summed out; that
makes the optimization problem non-convex. This
sort of problem can be solved in principle by condi-
tional variants of the Expectation-Maximization al-
gorithm (Baum et al., 1970; Dempster et al., 1977;
Meng and Rubin, 1993; Jebara and Pentland, 1999).
We use a quasi-Newton method known as L-BFGS
(Liu and Nocedal, 1989) that makes use of the gra-
dient of the above function (straightforward to com-
pute, but omitted for space).

5 Experiments

To evaluate our model, we conducted experiments
using Text REtrieval Conference (TREC) 8–13 QA
dataset.8

5.1 Experimental Setup
The TREC dataset contains questions and answer
patterns, as well as a pool of documents returned by
participating teams. Our task is the same as Pun-
yakanok et al. (2004) and Cui et al. (2005), where
we search for single-sentence answers to factoid
questions. We follow a similar setup to Shen and
Klakow (2006) by automatically selecting answer
candidate sentences and then comparing against a
human-judged gold standard.

We used the questions in TREC 8–12 for training
and set aside TREC 13 questions for development
(84 questions) and testing (100 questions). To gen-
erate the candidate answer set for development and
testing, we automatically selected sentences from
each question’s document pool that contains one or
more non-stopwords from the question. For gen-
erating the training candidate set, in addtion to the
sentences that contain non-stopwords from the ques-
tion, we also added sentences that contain correct

tributions; α is initialized to be 0.1.
8We thank the organizers and NIST for making the dataset

publicly available.
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answer pattern. Manual judgement was produced
for the entire TREC 13 set, and also for the first 100
questions from the training set TREC 8–12.9 On av-
erage, each question in the development set has 3.1
positive and 17.1 negative answers. There are 3.6
positive and 20.0 negative answers per question in
the test set.

We tokenized sentences using the standard tree-
bank tokenization script, and then we performed
part-of-speech tagging using MXPOST tagger (Rat-
naparkhi, 1996). The resulting POS-tagged sen-
tences were then parsed using MSTParser (McDon-
ald et al., 2005), trained on the entire Penn Treebank
to produce labeled dependency parse trees (we used
a coarse dependency label set that includes twelve
label types). We used BBN Identifinder (Bikel et al.,
1999) for named-entity tagging.

As answers in our task are considered to be sin-
gle sentences, our evaluation differs slightly from
TREC, where an answer string (a word or phrase
like 1977 or George Bush) has to be accompanied
by a supporting document ID. As discussed by Pun-
yakanok et al. (2004), the single-sentence assump-
tion does not simplify the task, since the hardest part
of answer finding is to locate the correct sentence.
From an end-user’s point of view, presenting the
sentence that contains the answer is often more in-
formative and evidential. Furthermore, although the
judgement data in our case are more labor-intensive
to obtain, we believe our evaluation method is a bet-
ter indicator than the TREC evaluation for the qual-
ity of an answer selection algorithm.

To illustrate the point, consider the example ques-
tion, “When did James Dean die?” The correct an-

9More human-judged data are desirable, though we will ad-
dress training from noisy, automatically judged data in Sec-
tion 5.4. It is important to note that human judgement of an-
swer sentence correctness was carried out prior to any experi-
ments, and therefore is unbiased. The total number of questions
in TREC 13 is 230. We exclude from the TREC 13 set questions
that either have no correct answer candidates (27 questions), or
no incorrect answer candidates (19 questions). Any algorithm
will get the same performance on these questions, and therefore
obscures the evaluation results. 6 such questions were also ex-
cluded from the 100 manually-judged training questions, result-
ing in 94 questions for training. For computational reasons (the
cost of parsing), we also eliminated answer candidate sentences
that are longer than 40 words from the training and evaluation
set. After these data preparation steps, we have 348 positive
Q-A pairs for training, 1,415 Q-A pairs in the development set,
and 1,703 Q-A pairs in the test set.

swer as appeared in the sentence “In 1955, actor
James Dean was killed in a two-car collision near
Cholame, Calif.” is 1955. But from the same docu-
ment, there is another sentence which also contains
1955: “In 1955, the studio asked him to become a
technical adviser on Elia Kazan’s ‘East of Eden,’
starring James Dean.” If a system missed the first
sentence but happened to have extracted 1955 from
the second one, the TREC evaluation grants it a “cor-
rect and well-supported” point, since the document
ID matches the correct document ID—even though
the latter answer does not entail the true answer. Our
evaluation does not suffer from this problem.

We report two standard evaluation measures com-
monly used in IR and QA research: mean av-
erage precision (MAP) and mean reciprocal rank
(MRR). All results are produced using the standard
trec eval program.

5.2 Baseline Systems

We implemented two state-of-the-art answer-finding
algorithms (Cui et al., 2005; Punyakanok et al.,
2004) as strong baselines for comparison. Cui et
al. (2005) is the answer-finding algorithm behind
one of the best performing systems in TREC eval-
uations. It uses a mutual information-inspired score
computed over dependency trees and a single align-
ment between them. We found the method to be brit-
tle, often not finding a score for a testing instance
because alignment was not possible. We extended
the original algorithm, allowing fuzzy word align-
ments through WordNet expansion; both results are
reported.

The second baseline is the approximate tree-
matching work by Punyakanok et al. (2004). Their
algorithm measures the similarity between τq and τa
by computing tree edit distance. Our replication is
close to the algorithm they describe, with one subtle
difference. Punyakanok et al. used answer-typing in
computing edit distance; this is not available in our
dataset (and our method does not explicitly carry out
answer-typing). Their heuristics for reformulating
questions into statements were not replicated. We
did, however, apply WordNet type-checking and ap-
proximate, penalized lexical matching. Both results
are reported.
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development set test set
training dataset model MAP MRR MAP MRR
100 manually-judged TreeMatch 0.4074 0.4458 0.3814 0.4462

+WN 0.4328 0.4961 0.4189 0.4939
Cui et al. 0.4715 0.6059 0.4350 0.5569

+WN 0.5311 0.6162 0.4271 0.5259
Jeopardy (base only) 0.5189 0.5788 0.4828 0.5571
Jeopardy 0.6812 0.7636 0.6029 0.6852

+2,293 noisy Cui et al. 0.2165 0.3690 0.2833 0.4248
+WN 0.4333 0.5363 0.3811 0.4964

Jeopardy (base only) 0.5174 0.5570 0.4922 0.5732
Jeopardy 0.6683 0.7443 0.5655 0.6687

Table 2: Results on development and test sets. TreeMatch is our implementation of Punyakanok et al.
(2004); +WN modifies their edit distance function using WordNet. We also report our implementation of
Cui et al. (2005), along with our WordNet expansion (+WN). The Jeopardy base model and mixture with
the lexical-semantics log-linear model perform best; both are trained using conditional maximum likelihood
estimation. The top part of the table shows performance using 100 manually-annotated question examples
(questions 1–100 in TREC 8–12), and the bottom part adds noisily, automatically annotated questions 101–
2,393. Boldface marks the best score in a column and any scores in that column not significantly worse
under a a two-tailed paired t-test (p < 0.03).

5.3 Results

Evaluation results on the development and test sets
of our model in comparison with the baseline algo-
rithms are shown in Table 2. Both our model and
the model in Cui et al. (2005) are trained on the
manually-judged training set (questions 1-100 from
TREC 8–12). The approximate tree matching algo-
rithm in Punyakanok et al. (2004) uses fixed edit dis-
tance functions and therefore does not require train-
ing. From the table we can see that our model signif-
icantly outperforms the two baseline algorithms—
even when they are given the benefit of WordNet—
on both development and test set, and on both MRR
and MAP.

5.4 Experiments with Noisy Training Data

Although manual annotation of the remaining 2,293
training sentences’ answers in TREC 8–12 was too
labor-intensive, we did experiment with a simple,
noisy automatic labeling technique. Any answer
that had at least three non-stop word types seen in
the question and contains the answer pattern defined
in the dataset was labeled as “correct” and used in
training. The bottom part of Table 2 shows the re-
sults. Adding the noisy data hurts all methods, but

the Jeopardy model maintains its lead and consis-
tently suffers less damage than Cui et al. (2005).
(The TreeMatch method of Punyakanok et al. (2004)
does not use training examples.)

5.5 Summing vs. Maximizing

Unlike most previous work, our model does not try
to find a single correspondence between words in the
question and words in the answer, during training or
during testing. An alternative method might choose
the best (most probable) alignment, rather than the
sum of all alignment scores. This involves a slight
change to Equation 3, replacing the summation with
a maximization. The change could be made during
training, during testing, or both. Table 3 shows that
summing is preferable, especially during training.

6 Discussion

The key experimental result of this work is that
loose syntactic transformations are an effective way
to carry out statistical question answering.

One unique advantage of our model is the mix-
ture of a factored, multinomial-based base model
and a potentially very rich log-linear model. The
base model gives our model robustness, and the log-
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test set
training decoding MAP MRR
Σ Σ 0.6029 0.6852
Σ max 0.5822 0.6489
max Σ 0.5559 0.6250
max max 0.5571 0.6365

Table 3: Experimental results on comparing sum-
ming over alignments (Σ) with maximizing (max)
over alignments on the test set. Boldface marks the
best score in a column and any scores in that column
not significantly worse under a a two-tailed paired t-
test (p < 0.03).

linear model allows us to throw in task- or domain-
specific features. Using a mixture gives the advan-
tage of smoothing (in the base model) without hav-
ing to normalize the log-linear model by summing
over large sets. This powerful combination leads
us to believe that our model can be easily ported
to other semantic processing tasks where modeling
syntactic and semantic transformations is the key,
such as textual entailment, paraphrasing, and cross-
lingual QA.

The traditional approach to cross-lingual QA is
that translation is either a pre-processing or post-
processing step done independently from the main
QA task. Notice that the QG formalism that we have
employed in this work was originally proposed for
machine translation. We might envision transfor-
mations that are performed together to form ques-
tions from answers (or vice versa) and to translate—
a Jeopardy! game in which bilingual players must
ask a question in a different language than that in
which the answer is posed.

7 Conclusion

We described a statistical syntax-based model that
softly aligns a question sentence with a candidate
answer sentence and returns a score. Discrimina-
tive training and a relatively straightforward, barely-
engineered feature set were used in the implementa-
tion. Our scoring model was found to greatly out-
perform two state-of-the-art baselines on an answer
selection task using the TREC dataset.
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Abstract

Previous machine learning techniques for
answer selection in question answering
(QA) have required question-answer train-
ing pairs. It has been too expensive and
labor-intensive, however, to collect these
training pairs. This paper presents a novel
unsupervised support vector machine (U-
SVM) classifier for answer selection, which
is independent of language and does not re-
quire hand-tagged training pairs. The key
ideas are the following: 1. unsupervised
learning of training data for the classifier by
clustering web search results; and 2. select-
ing the correct answer from the candidates
by classifying the question. The compara-
tive experiments demonstrate that the pro-
posed approach significantly outperforms
the retrieval-based model (Retrieval-M), the
supervised SVM classifier (S-SVM), and the
pattern-based model (Pattern-M) for answer
selection. Moreover, the cross-model com-
parison showed that the performance rank-
ing of these models was: U-SVM > Pattern-
M > S-SVM > Retrieval-M.

1 Introduction

The purpose of answer selection in QA is to se-
lect the exact answer to the question from the ex-
tracted candidate answers. In recent years, many
supervised machine learning techniques for answer
selection in open-domain question answering have
been investigated in some pioneering studies [Itty-
cheriah et al. 2001; Ng et al. 2001; Suzuki et al.

2002; Sasaki, et al. 2005; and Echihabi et al. 2003].
Compared with retrieval-based [Yang et al. 2003],
pattern-based [Ravichandran et al. 2002 and Soub-
botin et al. 2002], and deep NLP-based [Moldovan
et al. 2002, Hovy et al. 2001; and Pasca et al. 2001]
answer selection, machine learning techniques are
more effective in constructing QA components from
scratch. These techniques suffer, however, from the
problem of requiring an adequate number of hand-
tagged question-answer training pairs. It is too ex-
pensive and labor intensive to collect such training
pairs for supervised machine learning techniques.

To tackle this knowledge acquisition bottleneck,
this paper presents an unsupervised SVM classifier
for answer selection, which is independent of lan-
guage and question type, and avoids the need for
hand-tagged question-answer pairs. The key ideas
are as follows:

1. Regarding answer selection as a kind of classi-
fication task and adopting an SVM classifier;

2. Applying unsupervised learning of pseudo-
training data for the SVM classifier by cluster-
ing web search results;

3. Training the SVM classifier by using three
types of features extracted from the pseudo-
training data; and

4. Selecting the correct answer from the candidate
answers by classifying the question. Note that
this means classifying a question into one of
the clusters learned by clustering web search
results. Therefore, our classifying the question
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Figure 1: Web Question Answering Architecture

is different from conventional question classifi-
cation (QC) [Li et al. 2002] that determines the
answer type of the question.

The proposed approach is fully unsupervised and
starts only from a user question. It does not require
richly annotated corpora or any deep linguistic tools.
To the best of our knowledge, no research on this
kind of study we discuss here has been reported.
Figure 1 illustrates the architecture of our web QA
approach. The S-SVM and Pattern-M models are
included for comparison.

Because the focus of this paper just evaluates the
answer selection part, our approach requires knowl-
edge of the answer type to the question in order to
find candidate answers, and that the answer must be
a NE for convenience in candidate extraction. Ex-
periments using Chinese versions of the TREC 2004
and 2005 test data sets show that our approach sig-
nificantly outperforms the S-SVM for answer selec-
tion, with a top 1 score improvement of more than
20%. Results obtained with the test data set in [Wu
et al. 2004] show that the U-SVM increases the
top 1/mrr 5/top 5 scores by 5.95%/6.06%/8.68%
as compared with the Pattern-M. Moreover, our

cross-model comparison demonstrates that the per-
formance ranking of all models considered is: U-
SVM > Pattern-M > S-SVM > Retrieval-M.

2 Comparison among Models

Related researches on answer selection in QA can be
classified into four categories. The retrieval-based
model [Yang et al. 2003] selects a correct answer
from the candidates according to the distance be-
tween a candidate and all question keywords. This
model does not work, however, if the question and
the answer-bearing sentences do not match on the
surface. The pattern-based model [Ravichandran
et al. 2002 and Soubbotin et al. 2002] first clas-
sifies the question into predefined categories, and
then extracts the exact answer by using answer pat-
terns learned off-line. Although the pattern-based
model can obtain high precision for some prede-
fined types of questions, it is difficult to define ques-
tion types in advance for open-domain question an-
swering. Furthermore, this model is not suitable for
all types of questions. The deep NLP-based model
[Moldovan et al. 2002; Hovy et al. 2001; and Pasca
et al. 2001] usually parses the user question and an
answer-bearing sentence into a semantic represen-
tation, and then semantically matches them to find
the answer. This model has performed very well at
TREC workshops, but it heavily depends on high-
performance NLP tools, which are time consuming
and labor intensive for many languages. Finally, the
machine learning-based model has also been inves-
tigated. current models of this type are based on su-
pervised approaches [Ittycheriah et al. 2001; Ng et
al. 2001; Suzuki et al. 2002; and Sasaki et al. 2005]
that are heavily dependent on hand-tagged question-
answer training pairs, which not readily available.

In response to this situation, this paper presents
the U-SVM for answer selection in open-domain
web question answering system. Our U-SVM has
the following advantages over supervised machine
learning techniques. First, the U-SVM classifies
questions into a question-dependent set of clusters,
and the answer is the name of a question cluster.
In contrast, most previous models have classified
candidates into positive and negative. Second, the
U-SVM automatically learns the unique question-
dependent clusters and the pseudo-training for each

34



Table 1: Comparison of Various Machine Learning Techniques
System Model Key Idea Training Data

[Ittycheriah et al. 2001] ME Classifier Classifying candidates into positive
and negative

5,000 English
Q-A pairs

[Suzuki et al. 2002] SVM Classifier Classifying candidates into positive
and negative

1358 Japanese
Q-A pairs

[Echihabi et al. 2003] N-C Model Selecting correct answer by aligning
question with sentences

90,000 English
Q-A pairs

[Sasaki et al. 2005] ME Classifier Classifying words in sentences into an-
swer and non-answer words

2,000 Japanese
Q-A pairs

Our U-SVM Model SVM Classifier Classifying question into a set of
question-dependent clusters

No Q-A pairs

question. This differs from the supervised tech-
niques, in which a large number of hand-tagged
training pairs are shared by all of the test ques-
tions. In addition, supervised techniques indepen-
dently process the answer-bearing sentences, so the
answers to the questions may not always be ex-
tractable because of algorithmic limitations. On the
other hand, the U-SVM can use the interdependence
between answer-bearing sentences to select the an-
swer to a question.

Table 1 compares the key idea and training data
used in the U-SVM with those used in the supervised
machine learning techniques. Here, ME means the
maximum entropy model, and N-C means the noisy-
channel model.

3 The U-SVM

The essence of the U-SVM is to regard answer selec-
tion as a kind of text categorization-like classifica-
tion task, but with no training data available. In the
U-SVM, the steps of ”clustering web search results”,
”classifying the question”, and ”training SVM clas-
sifier” play very important roles.

3.1 Clustering Web Search Results

Web search results, such as snippets returned by
Google, usually include a mixture of multiple
subtopics (called clusters in this paper) related to
the user question. To group the web search results
into clusters, we assume that the candidate answer in
each Google snippet can represent the ”signature” of
its cluster. In other words, the Google snippets con-
taining the same candidate are regarded as aligned

snippets, and thus belong to the same cluster. Web
search results are clustered in two phases.

• A first-stage Google search (FGS) is ap-
plied to extract n candidate answers
{c1, c2, . . . , cn} from the top m Google
snippets {s1, s2, . . . , sm} by a NER tool
[Wu et al. 2005]. Those snippets containing
the candidates {ci} and at least one ques-
tion keyword {qi} are retained. Finally,
the retained snippets {s1, s2, . . . , sm} are
clustered into n clusters {C1, C2, . . . , Cn}
by clustering web search results, that is,

If a snippet includes L different candidates,
the snippet belongs to L different clusters.
If the candidates of different snippets are
the same, these snippets belong to the same
clusters.

Consequently, the number of clusters {Ci} is
fully determined by the number of candidates
{ci}, and the cluster name of a cluster Ci is the
candidate answer ci. Up to this point, we have
obtained clusters and sample snippets for each
cluster that will be used as training data for the
SVM classifier. Because this training data is
learned automatically, rather than hand-tagged,
we call it pseudo-training data.

• A second-stage Google search (SGS) is ap-
plied to resolve data sparseness in the pseudo-
training samples learned through the FGS. The
FGS data may have very few training snip-
pets in some clusters, so more snippets must
be collected. Note that this step just learns new
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Google snippets into the clusters learned by the
FGS, but does not add new clusters.

For each candidate answer ci:
Combine the original query q = {qi} and
the candidate ci to form a new query q′ =
{q, ci}.
Submit q′ to Google and download the top
50 Google snippets.
Retain the snippets containing the candi-
date ci and at least one keyword qi.
Group the retained snippets into n clusters
to form the new pseudo-training data.

End

Here, we give an example illustrating the prin-
ciple of clustering web search results in the
FGS. In submitting TREC 2004 test question 1.1
”when was the first Crip gang started?” to Google
(http://www.google.com/apis), we extract n(= 8)
different candidates from the top m(= 30) Google
snippets. The Google snippets containing the same
candidates are aligned snippets, and thus the 12 re-
tained snippets are grouped into 8 clusters, as listed
in Table 2. This table roughly indicates that the snip-
pets with the same candidate answers contain the
same sub-meanings, so these snippets are considered
as aligned snippets. For example, all Google snip-
pets that contain the candidate answer 1969 express
the time of establishment of ”the first Crip gang”.

In summary, the U-SVM uses the result of ”clus-
tering web search results” as the pseudo-training
data of the SVM classifier, and then classifies user
question into one of the clusters for answer selec-
tion. On the one hand, the clusters and their names
are based on candidate answers to question; on the
other hand, candidates are dependent on question.
Therefore, the clusters are question-dependent.

3.2 Classifying Question

Using the pseudo-training data obtained by cluster-
ing web search results to train the SVM classifier,
we classify user questions into a set of question-
dependent clusters and assume that the correct an-
swer is the name of the question cluster that is as-
signed by the trained U-SVM classifier. For the
above example, if the U-SVM classifier, trained on
the pseudo-training data listed in Table 2, classifies
the above test question into a cluster whose name is

1969, then the cluster name 1969 is the answer to
the question.

This paper selects LIBSVM toolkit1 to implement
the SVM classifier. The kernel is the radical basis
function with the parameter γ = 0.001 in the exper-
iments.

3.3 Feature Extraction

To classify the question into a question-dependent
set of clusters, the U-SVM classifier extracts three
types of features.

• A similarity-based feature set (SBFS) is
extracted from the Google snippets. The SBFS
attempts to capture the word overlap between
a question and a snippet. The possible values
range from 0 to 1.

SBFS Features

percentage of matched keywords (KWs)
percentage of mismatched KWs
percentage of matched bi-grams of KWs
percentage of matched thesauruses
normalized distance between candidate and
KWs

To compute the matched thesaurus feature, we
adopt TONGYICICILIN 2 in the experiments.

• A Boolean match-based feature set (BMFS) is
also extracted from the Google snippets. The
BMFS attempts to capture the specific key-
word Boolean matches between a question and
a snippet. The possible values are true or false.

BMFS Features

person names are matched or not
location names are matched or not
organization names are matched or not
time words are matched or not
number words are matched or not
root verb is matched or not
candidate has or does not have bi-gram in
snippet matching bi-gram in question
candidate has or does not have desired
named entity type

• A window-based word feature set (WWFS)
is a set of words consisting of the words

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
2A Chinese Thesaurus Lexicon
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Table 2: Clustering Web Search Results
Cluster Name Google Snippet

1969 It is believed that the first Crip gang was formed in late 1969. During this time in
Los Angeles there were ...
... the first Bloods and Crips gangs started forming in Los Angeles in late 1969, the
Island Bloods sprung up in north Pomona ...
... formed by 16 year old Raymond Lee Washington in 1969. Williams joined
Washington in 1971 ... had come to be called the Crips. It was initially started to
eliminate all street gangs ...

August 8, 2005 High Country News – August 8, 2005: The Gangs of Zion
2004 2004 main 1 Crips 1.1 FACTOID When was the first Crip gang started? 1.2 FAC-

TOID What does the name mean or come...
1972 One of the first-known and publicized killings by Crip gang members occurred at

the Hollywood Bowl in March 1972.
1971 Williams joined Washington in 1971, forming the westside faction of what had

come to be called the Crips.
The Crips gang formed as a kind of community watchdog group in 1971 after the
demise of the Black Panthers. ...
... formed by 16 year old Raymond Lee Washington in 1969. Williams joined
Washington in 1971 ... had come to be called the Crips. It was initially started to
eliminate all street gangs ...

1982 Oceanside police first started documenting gangs in 1982, when five known gangs
were operating in the city: the Posole Locos...

mid-1990s Street Locos; Deep Valley Bloods and Deep Valley Crips. By the mid-1990s, gang
violence had ...

1970s The Blood gangs started up as opposition to the Crips gangs, also in the 1970s, and
the rivalry stands to this day ...

preceding {wi−5, . . . , wi−1} and following
{wi+1, . . . , wi+5} the candidate answer. The
WWFS features can be regarded as a kind of
relevant snippets-based question keywords ex-
pansion. By extracting the WWFS feature set,
the feature space in the U-SVM becomes ques-
tion dependent, which may be more suitable for
classifying the question. The number of classi-
fication features in the S-SVM must be fixed,
however, because all questions share the same
training data. This is one difference between
the U-SVM and the supervised SVM classifier
for answer selection. Each word feature in the
WWFS is weighted using its ISF value.

ISF (wj , Ci) =
N(wj , Ci) + 0.5

N(wj) + 0.5
(1)

where N(wj) is the total number of the

snippets containing word feature wj , and
N(wj , Ci) is the number of snippets in cluster
Ci containing word feature wj .

When constructing question vector, we assume
that the question is an ideal question that con-
tains all the extracted WWFS words. There-
fore, the values of the WWFS word features in
question vector are 1. Similarly, the values of
the SBFS and BMFS features in question vec-
tor are also estimated by self-similarity calcu-
lation.

4 Experiments

4.1 Data Sets

For the experiments, no English named entity recog-
nition (NER) tool is in our hand at the time of
the experiments; therefore, we validate the U-SVM
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in terms of Chinese web QA using three test data
sets, which will be published with this paper3. Al-
though the U-SVM is independent of the question
types, for convenience in candidate extraction, only
those questions whose answers are named entities
are selected. The three test data sets are CTREC04,
CTREC05 and CTEST05. CTREC04 is a set of
178 Chinese questions translated from TREC 2004
FACTOID testing questions. CTREC05 is a set of
279 Chinese questions translated from TREC 2005
FACTOID testing questions. CTEST05 is a set of
178 Chinese questions found in [Wu et al. 2004]
that are similar to TREC testing questions except
that they are written in Chinese. Figure 2 breaks
down the types of questions (manually assigned) in
the CTREC04 and CTREC05 data sets. Here, PER,
LOC, ORG, TIM, NUM, and CR refer to questions
whose answers are a person, location, organization,
time, number, and book or movie, respectively.

Figure 2: Statistics of CTEST05

To collect the question-answer training data for
the S-SVM, we submitted 807 Chinese questions to
Google and extracted the candidates for each ques-
tion from the top 50 Google snippets. We then man-
ually selected the snippets containing the correct
answers as positive snippets, and designated all of
the other snippets as negative snippets. Finally, we
collected 807 hand-tagged Chinese question-answer
pairs as the training data of S-SVM called CTRAIN-
DATA.

4.2 Evaluation Method

In the experiments, the top m(= 50) Google snip-
pets are adopted to extract candidates by using a

3Currently no public testing question set for simplified Chi-
nese QA is available.

Chinese NER tool [Wu et al. 2005]. The number of
the candidates extracted from the top m(= 50) snip-
pets, n, is adaptive for different questions but it does
not exceed 30. The results are evaluated in terms
of two scores, top n and mrr 5. Here, top n is the
rate at which at least one correct answer is included
in the top n answers, while mrr 5 is the average re-
ciprocal rank (1/n) of the highest rank n(n ≤ 5) of
a correct answer to each question.

4.3 U-SVM vs. Retrieval-M

The Retrieval-M selects the candidate with the short-
est distances to all question keywords as the cor-
rect answer. In this experiment, the Retrieval-M
is implemented based on the snippets returned by
Google, while the U-SVM is based on the SGS data,
the SBFS and BMFS feature. Table 3 summarizes
the comparative performance.

Table 3: Comparison of Retrieval-M and U-SVM
Retrieval-M U-SVM

top 1 27.84% 53.61%
CTREC04 mrr 5 43.67% 66.25%

top 5 71.13% 88.66%
top 1 34.00% 50.00%

CTREC05 mrr 5 48.20% 62.38%
top 5 71.33% 82.67%

The table shows that the U-SVM greatly improves
the performance of the Retrieval-M: the top 1 im-
provements for CTREC04 and CTREC05 are about
25.8% and 16.0%, respectively. This experiment
demonstrates that the assumptions used here in clus-
tering web search results and in classifying the ques-
tion are effective in many cases, and that the U-SVM
benefits from these assumptions.

4.4 U-SVM vs. S-SVM

To explore the effectiveness of our unsupervised
model as compared with the supervised model, we
conduct a cross-model comparison of the S-SVM
and the U-SVM with the SBFS and BMFS feature
sets. The U-SVM results are compared with the S-
SVM results for CTREC04 and CTREC05 in Ta-
bles 4 and 5, respectively. The S-SVM is trained
on CTRAINDATA.

These tables show the following:
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Table 4: Comparison of U-SVM and S-SVM on
CTREC04

FGS SGS

top 1 S-SVM 30.93% 39.18%
U-SVM 45.36% 53.61%

mrr 1 S-SVM 45.36% 53.54%
U-SVM 57.44% 66.25%

top 5 S-SVM 71.13% 79.38%
U-SVM 76.29% 88.66%

Table 5: Comparison of U-SVM and S-SVM on
CTREC05

FGS SGS

top 1 S-SVM 30.00% 33.33%
U-SVM 48.00% 50.00%

mrr 1 S-SVM 45.59% 48.67%
U-SVM 58.01% 62.38%

top 5 S-SVM 72.00% 74.67%
U-SVM 75.33% 82.67%

• The proposed U-SVM significantly outper-
forms the S-SVM for all measurements and
all test data sets. For the CTREC04 test data
set, the top1 improvements for the FGS and
SGS data are about 14.5% and 14.4%, respec-
tively. For the CTREC05 test data set, the top1

score for the FGS data increases from 30.0%
to 48.0%, and the top 1 score for the SGS data
increases from 33.3% to 50.0%. Note that the
SBFS and BMFS features here is fewer than the
features in [Ittycheriah et al. 2001; Suzuki et
al. 2002], but the comparison is still effective
because the models are compared in terms of
the same features. In the S-SVM, all questions
share the same training data, while the U-SVM
uses the unique pseudo-training data for each
question. This is the main reason why the U-
SVM performs better than the S-SVM does.

• The SGS data is greatly helpful for both
the U-SVM and the S-SVM. Compared with
the FGS data, the top 1/mrr 5/top 5 im-
provements for the S-SVM and the U-SVM
on CTREC04 are 8.25%/8.18%/8.25% and
7.25%/8.81%/12.37%. The SGS can be re-
garded as a kind of query expansion. The rea-

sons for this improvement are: the data sparse-
ness in FGS data is partially resolved; and the
use of the Web to introduce data redundancy
is helpful. [Clarke et al. 2001; Magnini et al.
2002; and Dumais et al. 2002].

In the S-SVM, all of the test questions share the
same hand-tagged training data, so the WWFS fea-
tures cannot be easily used [Ittycheriah et al. 2002;
Suzuki, et al. 2002]. Tables 6 and 7 compare
the performances of the U-SVM with the (SBFS +
BMFS) features, the WWFS features, and combina-
tion of three types of features for the CTREC04 and
CTREC05 test data sets, respectively.

Table 6: Performances of U-SVM for Different Fea-
tures on CTREC04

SBFS+BMFS WWFS Combination

top 1 53.61% 46.39% 60.82%
mrr 5 66.25% 59.19% 71.31%
top 5 88.66% 81.44% 88.66%

Table 7: Performances of U-SVM for Different Fea-
tures on CTREC05

SBFS+BMFS WWFS Combination

top 1 50.00% 49.33% 57.33%
mrr 5 62.38% 59.26% 65.61%
top 5 82.67% 74.00% 80.00%

These tables report that combining three types
of features can improve the performance of
the U-SVM. Using a combination of features
with the CTREC04 test data set results in the
best performances: 60.82%/71.31%/88.66% for
top 1/mrr 5/top 5. Similarly, as compared with
using the (SBFS + BMFS) and WWFS features, the
improvements from using a combination of features
with the CTREC05 test data set are 7.33%/3.23%/-
2.67% and 8.00%/6.35%/6.00%, respectively. The
results also demonstrate that the (SBFS + BMFS)
features are more important than the WWFS fea-
tures.

These comparative experiments indicate that the
U-SVM performs better than the S-SVM does, even
though the U-SVM is an unsupervised technique and
no hand-tagged training data is provided. The aver-
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age top 1 improvements for both test data sets are
both more than 20%.

4.5 U-SVM vs. Pattern-M vs. S-SVM

To compare the U-SVM with the Pattern-M and
the S-SVM, we use the CTEST05 data set, shown
in Figure 3. The CTEST05 includes 14 different
question types, for example, Inventor Stuff (with
question like ”Who invented telephone?”), Event-
Day (with question like ”when is World Day for Wa-
ter?”), and so on. The Pattern-M uses the depen-
dency syntactic answer patterns learned in [Wu et
al. 2007] to extract the answer, and named entities
are also used to filter noise from the candidates.

Figure 3: Statistics of CTEST05

Table 8 summarizes the performances of the U-
SVM, Pattern-M, and S-SVM models on CTEST05.

Table 8: Comparison of U-SVM, Pattern-M and S-
SVM on CTEST05

S-SVM Pattern-M U-SVM

top 1 44.89% 53.14% 59.09%
mrr 5 56.49% 61.28% 67.34%
top 5 74.43% 73.14% 81.82%

The results in the table show that the U-SVM
significantly outperforms the S-SVM and Pattern-
M, while the S-SVM underperforms the Pattern-
M. Compared with the Pattern-M, the U-SVM in-
creases the top 1/mrr 5/top 5 scores by 5.95%/
6.06%/8.68%, respectively. The reasons may lie in
the following:

• The Chinese dependency parser influences de-
pendency syntactic answer-pattern extraction,

and thus degrades the performance of the
Pattern-M model.

• The imperfection of Google snippets affects
pattern matching, and thus adversely influences
the Pattern-M model. From the cross-model
comparison, we conclude that the performance
ranking of these models is: U-SVM > Pattern-
M > S-SVM > Retrieval-M.

5 Conclusion and Future Work

This paper presents an unsupervised machine learn-
ing technique (called the U-SVM) for answer selec-
tion that is validated in Chinese open-domain web
QA. Regarding answer selection as a kind of classifi-
cation task, the U-SVM automatically learns clusters
and pseudo-training data for each cluster by cluster-
ing web search results. It then selects the correct
answer from the candidates according to classifying
the question. The contribution of this paper is that
it presents an unsupervised machine learning tech-
nique for web QA that starts with only a user ques-
tion. The results of our experiments with three test
data sets are encouraging. As compared with the
S-SVM, the top 1 performances of the U-SVM for
the CTREC04 and CTREC05 data sets are signifi-
cantly improved, at more than 20%. Moreover, the
U-SVM performs better than the Retrieval-M and
the Pattern-M.

These experiments have only validated the U-
SVM on named entity types of questions that ac-
count for about 82% of all TREC2004 and 2005
FACTOID test questions. In fact, our technique is
independent of question types only if the candidates
can be extracted. In the future, we will explore the
effectiveness of our technique for the other types of
questions. The web search results clustering in the
U-SVM defines that a candidate in a Google snip-
pet can represent the ”signature” of its cluster. This
definition, however, is not always effective. To fil-
ter noise in the pseudo-training data, we will extract
relations between the candidates and the keywords
as the cluster signatures of Google snippets. More-
over, applying the U-SVM to QA systems in other
languages, like English and Japanese, will also be
included in our future work.

40



References

Abdessamad Echihabi, and Daniel Marcu. 2003. A
Noisy-Channel Approach to Question Answering. In
Proc. of ACL-2003, Japan.

Abraham Ittycheriah, Salim Roukos. 2002. IBM’s Sta-
tistical Question Answering System-TREC 11. In Proc.
of TREC-11, Gaithersburg, Maryland.

Bernardo Magnini, Matteo Negri, Roberto Prevete,
Hristo Tanev. 2002. Is It the Right Answer? Exploit-
ing Web Redundancy for Answer Validation. In Proc.
of ACL-2002, Philadelphia, pp. 425 432.

Charles L. A. Clarke, Gordon V. Cormack, Thomas R.
Lynam. Exploiting Redundancy in Question Answer-
ing In Proc. of SIGIR-2001, pp 358–365, 2001.

Christopher Pinchak, Dekang Lin. 2006. A Probabilistic
Answer Type Model. In Proc. of EACL-2006, Trento,
Italy, pp. 393-400.

Dan Moldovan, Sanda Harabagiu, Roxana Girju, et al.
2002. LCC Tools for Question Answering. NIST Spe-
cial Publication: SP 500-251, TREC-2002.

Deepak Ravichandran, Eduard Hovy. 2002. Learning
Surface Text Patterns for a Question Answering Sys-
tem. In Proc. of the 40th ACL, Philadelphia, July
2002.

Eduard Hovy, Ulf Hermjakob, Chin-Yew Lin. 2001. The
Use of External Knowledge of Factoid QA. In Proc.
of TREC 2001, Gaithersburg, MD, U.S.A., November
13-16, 2001.

Hui Yang, Tat-Seng Chua. 2003. QUALIFIER: Question
Answering by Lexical Fabric and External Resources.
In Proc. of EACL-2003, page 363-370.

Hwee T. Ng, Jennifer L. P. Kwan, and Yiyuan Xia. 2001.
Question Answering Using a Large Text Database: A
Machine Learning Approach. In Proc. of EMNLP-
2001, pp66-73 (2001).

Jun Suzuki, Yutaka Sasaki, Eisaku Maeda. 2002. SVM
Answer Selection for Open-Domain Question Answer-
ing. In Proc. of Coling-2002, pp. 974 980 (2002).

Marius Pasca. 2001. A Relational and Logic Represen-
tation for Open-Domain Textual Question Answering.
In Proc. of ACL (Companion Volume) 2001: 37-42.

Martin M. Soubbotin, Sergei M. Soubbotin. 2002. Use of
Patterns for Detection of Likely Answer Strings: A Sys-
tematic Approach. In Proc. of TREC-2002, Gaithers-
burg, Maryland, November 2002.

Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin,
and Andre Ng. Web Question Answering: Is More
Always Better?. In Proc. SIGIR-2002, pp 291–298,
2002.

Xin Li, and Dan Roth. 2002. Learning Question Classi-
fication. In Proc. of the 19th International Conference
on Computational Linguistics, Taibai, 2002.

Youzheng Wu, Hideki Kashioka, Jun Zhao. 2007. Us-
ing Clustering Approaches to Open-domain Question
Answering. In Proc. of CICLING-2007, Mexico City,
Mexico, pp506 517, 2007.

Youzheng Wu, Jun Zhao and Bo Xu. 2005. Chinese
Named Entity Recognition Model Based on Multiple
Features. In Proc. of HLT/EMNLP-2005, Vancouver,
Canada, pp.427-434.

Youzheng Wu, Jun Zhao, Xiangyu Duan and Bo Xu.
2004. Building an Evaluation Platform for Chinese
Question Answering Systems. In Proc. of the First
NCIRCS, China, December, 2004.

Yutaka Sasaki. 2005. Question Answering as Question-
Biased Term Extraction: A New Approach toward
Multilingual QA. In Proc. of ACL-2005, pp.215-222.

41



Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 42–50, Prague, June 2007. c©2007 Association for Computational Linguistics

Improving Word Alignment with Bridge Languages

Shankar Kumar and Franz Och and Wolfgang Macherey
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043, U.S.A.

{shankarkumar,och,wmach}@google.com

Abstract

We describe an approach to improve
Statistical Machine Translation (SMT)
performance using multi-lingual, parallel,
sentence-aligned corpora in several bridge
languages. Our approach consists of a sim-
ple method for utilizing a bridge language to
create a word alignment system and a proce-
dure for combining word alignment systems
from multiple bridge languages. The final
translation is obtained by consensus de-
coding that combines hypotheses obtained
using all bridge language word alignments.
We present experiments showing that mul-
tilingual, parallel text in Spanish, French,
Russian, and Chinese can be utilized in
this framework to improve translation
performance on an Arabic-to-English task.

1 Introduction

Word Alignment of parallel texts forms a cru-
cial component of phrase-based statistical machine
translation systems. High quality word alignments
can yield more accurate phrase-pairs which improve
quality of a phrase-based SMT system (Och and
Ney, 2003; Fraser and Marcu, 2006b).

Much of the recent work in word alignment has
focussed on improving the word alignment quality
through better modeling (Och and Ney, 2003; Deng
and Byrne, 2005; Martin et al., 2005) or alternative
approaches to training (Fraser and Marcu, 2006b;
Moore, 2005; Ittycheriah and Roukos, 2005). In
this paper we explore a complementary approach to

improve word alignments using multi-lingual, par-
allel (or multi-parallel) corpora. Two works in the
literature are very relevant to our approach. Borin
(2000) describes a non-statistical approach where a
pivot alignment is used to combine direct translation
and indirect translation via a third language. Filali
and Bilmes (2005) present a multi-lingual extension
to the IBM/HMM models. Our current approach dif-
fers from this latter work in that we propose a sim-
ple framework to combine word alignments from
any underlying statistical alignment model without
the need for changing the structure of the model.
While both of the above papers focus on improv-
ing word alignment quality, we demonstrate that
our approach can yield improvements in transla-
tion performance. In particular, we aim to improve
an Arabic-to-English (Ar-En) system using multi-
parallel data from Spanish (Es), French (Fr), Rus-
sian (Ru) and Chinese (Zh). The parallel data in
these languages X ∈ {Es, Fr, Ru, Zh} is used to
generate word alignments between Arabic-X and
X-English. These alignments are then combined to
obtain multiple word alignments for Arabic-English
and the final translation systems.

The motivation for this approach is two-fold.
First, we believe that parallel corpora available
in several languages provide a better training ma-
terial for SMT systems relative to bilingual cor-
pora. Such multi-lingual parallel corpora are be-
coming widely available; examples include proceed-
ings of the United Nations in six languages (UN,
2006), European Parliament (EU, 2005; Koehn,
2003), JRC Acquis corpus (EU, 2007) and religious
texts (Resnik et al., 1997). Word alignment systems
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trained on different language-pairs (e.g. French-
English versus Russian-English) make errors which
are somewhat orthogonal. In such cases, incorrect
alignment links between a sentence-pair can be cor-
rected when a translation in a third language is avail-
able. Thus it can help resolve errors in word align-
ment. We combine word alignments using several
bridge languages with the aim of correcting some
of the alignment errors. The second advantage of
this approach is that the word alignment from each
bridge language can be utilized to build a phrase-
based SMT system. This provides a diverse collec-
tion of translation hypotheses for MT system com-
bination (Bangalore et al., 2002; Sim et al., 2007;
Matusov et al., 2006; Macherey and Och, 2007). Fi-
nally, a side benefit of this paper is that it provides a
study that compares alignment qualities and BLEU
scores for models in different languages trained on
parallel text which is held identical across all lan-
guages.

We show that parallel corpora in multiple lan-
guages can be exploited to improve the translation
performance of a phrase-based translation system.
This paper gives specific recipes for using a bridge
language to construct a word alignment and for com-
bining word alignments produced by multiple statis-
tical alignment models.

The rest of this paper is organized as follows: Sec-
tion 2 gives an overview of our framework for gen-
erating word alignments in a single language-pair.
In Section 3, we describe how a bridge language
may be used for producing word alignments. In Sec-
tion 4, we describe a scheme to combine word align-
ments from several bridge languages. Section 5 de-
scribes our experimental setup and reports the align-
ment and translation performance. A final discus-
sion is presented in Section 6.

2 Word Alignment Framework

A statistical translation model (Brown et al., 1993;
Och and Ney, 2003) describes the relationship be-
tween a pair of sentences in the source and target
languages (f = fJ

1 , e = eI
1) using a translation

probability P (f |e). Alignment models introduce a
hidden alignment variable a = aJ

1 to specify a map-
ping between source and target words; aj = i in-
dicates that the jth source word is linked to the ith

target word. Alignment models assign a probabil-
ity P (f ,a|e) to the source sentence and alignment
conditioned on the target sentence. The transla-
tion probability is related to the alignment model as:
P (f |e) =

∑
a Pθ(f ,a|e), where θ is a set of param-

eters.
Given a sentence-pair (f , e), the most likely

(Viterbi) word alignment is found as (Brown et al.,
1993): â = argmaxa P (f ,a|e). An alternate cri-
terion is the Maximum A-Posteriori (MAP) frame-
work (Ge, 2004; Matusov et al., 2004). We use a
refinement of this technique.

Given any word alignment model, posterior prob-
abilities can be computed as (Brown et al., 1993)

P (aj = i|e, f) =
∑
a

P (a|f , e)δ(i, aj), (1)

where i ∈ {0, 1, ..., I}. The assignment aj = 0
corresponds to the NULL (empty) alignment. These
posterior probabilities form a matrix of size (I+1)×
J , where entries along each column sum to one.

The MAP alignment for each source position j ∈
{1, 2, ..., J} is then computed as

aMAP (j) = argmax
i

P (aj = i|e, f). (2)

We note that these posterior probabilities can be
computed efficiently for some alignment models
such as the HMM (Vogel et al., 1996; Och and Ney,
2003), Models 1 and 2 (Brown et al., 1993).

In the next two sections, we describe how poste-
rior probabilities can be used to a) construct align-
ment systems from a bridge language, and b) merge
several alignment systems.

3 Constructing Word Alignment Using a
Bridge Language

We assume here that we have triples of sentences
that are translations of each other in languages F, E,
and the bridge language G: f = fJ

1 , e = eI
1,g =

gK
1 . Our goal is to obtain posterior probability es-

timates for the sentence-pair in FE: (f , e) using the
posterior probability estimates for the sentence pairs
in FG: (f ,g) and GE: (g, e). The word alignments
between the above sentence-pairs are referred to as
aFE , aFG, and aGE respectively; the notation aFE

indicates that the alignment maps a position in F to
a position in E.

43



We first express the posterior probability as a sum
over all possible translations g in G and hidden
alignments aFG.

P (aFE
j = i|e, f)

=
∑
g

P (aFE
j = i,g|e, f)

=
∑
g,k

P (aFE
j = i,g, aFG

j = k|e, f)

=
∑
g,k

{
P (g|e, f)P (aFG

j = k|g, e, f)

×P (aFE
j = i|aFG

j = k,g, e, f)
}

(3)

We now make some assumptions to simplify the
above expression. First, there is exactly one trans-
lation g in bridge language G corresponding to the
sentence-pair f , e. Since aGE

aFG
j

= i = aFE
j , we can

express
P (aFE

j = i|aFG
j = k,g, f , e) = P (aGE

k = i|g, e).
Finally, alignments in FG do not depend on E.

Under these assumptions, we arrive at the final ex-
pression for the posterior probability FE in terms of
posterior probabilities for GF and EG

P (aFE
j = i|e, f) = (4)

K∑
k=0

P (aFG
j = k|g, f)P (aGE

k = i|g, e)

The above expression states that the posterior prob-
ability matrix for FE can be obtained using a simple
matrix multiplication of posterior probability ma-
trices for GE and FG. In this multiplication, we
prepend a column to the GE matrix corresponding
to k = 0. This probability P (aGE

k = i) when k = 0
is not assigned by the alignment model; we set it as
follows

P (aGE
k = i|k = 0) =

{
ε i = 0
1−ε
I i ∈ {1, 2, ..., I}

The parameter ε controls the number of empty align-
ments; a higher value favors more empty alignments
and vice versa. In our experiments, we set ε = 0.5.

4 Word Alignment Combination Using
Posterior Probabilities

We next show how Word Alignment Posterior Prob-
abilities can be used for combining multiple word

alignment systems. In our context, we use this pro-
cedure to combine word alignments produced using
multiple bridge languages.

Suppose we have translations in bridge languages
G1, G2, ..., GN , we can generate a posterior prob-
ability matrix for FE using each of the bridge lan-
guages. In addition, we can always generate a poste-
rior probability matrix for FE with the FE alignment
model directly without using any bridge language.
These N + 1 posterior matrices can be combined as
follows. Here, the variable B indicates the bridge
language. B ∈ {G0, G1, ..., GN}; G0 indicates the
case when no bridge language is used.

P (aFE
j = i|e, f) (5)

=
N∑

l=0

P (B = Gl, a
FE
j = i|e, f)

=
N∑

l=0

P (B = Gl)P (aFE
j = i|Gl, e, f),

where P (aFE
j = i|Gl, j, e, f) is the posterior proba-

bility when bridge language B = Gl. The probabili-
ties P (B = Gl) sum to one over l ∈ {0, 1, 2, ..., N}
and represent the prior probability of bridge lan-
guage l. In our experiments, we use a uniform prior
P (B = Gl) = 1

N+1 . Equation 5 provides us a way
to combine word alignment posterior probabilites
from multiple bridge languages. In our alignment
framework (Section 2), we first interpolate the pos-
terior probability matrices (Equation 5) and then ex-
tract the MAP word alignment (Equation 2) from the
resulting matrix.

5 Experiments

We now present experiments to demonstrate the ad-
vantages of using bridge languages. Our experi-
ments are performed in the open data track of the
NIST Arabic-to-English (A-E) machine translation
task 1.

5.1 Training and Test Data

Our approach to word alignment (Section 3) requires
aligned sentences in multiple languages. For train-
ing alignment models, we use the ODS United Na-

1http://www.nist.gov/speech/tests/mt/
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Set # of Ar words (K) # of sentences
dev1 48.6 2007
dev2 11.4 498
test 37.8 1610

blind 36.5 1797

Table 1: Statistics for the test data.

tions parallel data (UN, 2006) which contains par-
liamentary documents from 1993 onwards in all six
official languages of the UN: Arabic (Ar), Chinese
(Zh), English (En), French (Fr), Russian (Ru), and
Spanish (Es).

We merge the NIST 2001-2005 Arabic-English
evaluation sets into a pool and randomly sam-
ple this collection to create two development sets
(dev1,dev2) and a test set (test) with 2007, 498, and
1610 sentences respectively. Our blind test (blind)
set is the NIST part of the NIST 06 evaluation set
consisting of 1797 sentences. The GALE portion of
the 06 evaluation set is not used in this paper. We re-
port results on the test and blind sets. Some statistics
computed on the test data are shown in Table 1.

5.2 Alignment Model Training

For training Arabic-English alignment models, we
use Chinese, French, Russian and Spanish as bridge
languages. We train a model for Ar-En and 4 mod-
els each for Ar-X and X-En, where X is the bridge
language. To obtain aligned sentences in these lan-
guage pairs, we train 9 sentence aligners. We then
train alignment models for all 9 language-pairs us-
ing a recipe consisting of 6 Model-1 iterations and
6 HMM iterations. Finally, Word Alignment Poste-
rior Probabilities are generated over the bitext. In
Table 2, we report the perplexities of the alignment
models for the translation directions where either
Arabic or English is predicted. There are 55M Ara-
bic tokens and 58M English tokens. We observe
that the alignment model using Spanish achieves the
lowest perplexity; this value is even lower than the
perplexity of the direct Arabic-English model. Per-
plexity is related to the hardness of the word align-
ment; the results suggest that bridge languages such
as Spanish make alignment task easier while others
do not. We stress that perplexity is not related to the
alignment or the translation performance.

Bridge Perplexity
Lang → Ar →En
None 113.8 26.1

Es 99.0 22.9
Fr 138.6 30.2
Ru 128.3 27.5
Zh 126.1 34.6

Table 2: Perplexities of the alignment models.

5.3 Bridge Language Word Alignments

Each of the 4 bridge languages is utilized for con-
structing a word alignment for Arabic-English. Us-
ing each bridge language X, we obtain Arabic-
English word alignments in both translation direc-
tions (AE and EA). The posterior matrix for AE is
obtained using AX and XE matrices while the EA
matrix is obtained from EX and XA matrices (Equa-
tion 4). The AE (EA) matrices from the bridge
languages are then interpolated with the AE (EA)
matrix obtained from the alignment model trained
directly on Arabic-English (Section 4). The MAP
word alignment for AE (EA) direction is computed
from the AE (EA) matrix. We next outline how these
word alignments are utilized in building a phrase-
based SMT system.

5.4 Phrase-based SMT system

Our phrase-based SMT system is similar to the
alignment template system described in Och and
Ney (2004). We first extract an inventory of phrase-
pairs up to length 7 from the union of AE and EA
word alignments. Various feature functions (Och
and Ney, 2004) are then computed over the entries
in the phrase table. 5-gram word language models
in English are trained on a variety of monolingual
corpora (Brants et al., 2007). Minimum Error Rate
Training (MERT) (Och, 2003) under BLEU crite-
rion is used to estimate 20 feature function weights
over the larger development set (dev1).

Translation is performed using a standard dy-
namic programming beam-search decoder (Och and
Ney, 2004). Decoding is done in two passes. An ini-
tial list of 1000-best hypotheses is generated by the
decoder. This list is then rescored using Minimum
Bayes-Risk (MBR) decoding (Kumar and Byrne,
2004). The MBR scaling parameter is tuned on the
smaller development set (dev2).

45



Bridge Metrics(%)
Language AE EA

Prec Rec AER Prec Rec AER
None 74.1 73.9 26.0 67.3 57.7 37.9

Es 61.7 56.3 41.1 50.0 40.2 55.4
Fr 52.9 48.0 49.7 42.3 33.6 62.5
Ru 57.4 50.8 46.1 40.2 31.6 64.6
Zh 44.3 39.3 58.3 39.7 29.9 65.9

AC1 70.0 65.0 32.6 56.8 46.4 48.9

Table 3: Alignment Performance with Bridge Lan-
guages

5.5 Alignment Results

We first report alignment performance (Table 3) of
the alignment models obtained using the bridge lan-
guages. Alignment results are reported in terms
of Precision (Prec), Recall (Rec) and Alignment
Error Rate (AER). We report these numbers on
a 94-sentence test set with translations in all six
languages and human word alignments in Arabic-
English. Our human word alignments do not dis-
tinguish between Sure and Probable links (Och and
Ney, 2003).

In these experiments, we first identify the com-
mon subset of sentences which have translations in
all six languages. Each of the 9 alignment models
is then trained on this subset. We report Alignment
performance in both translation directions: Arabic-
to-English (AE) and English-to-Arabic (EA). The
first row (None) gives the results when no bridge
language is used.

Among the bridge languages, Spanish gives the
best alignment for Arabic-English while Chinese re-
sults in the worst. This might be related to how dif-
ferent the bridge language is relative to either En-
glish or Arabic. The last row (AC1) shows the per-
formance of the alignment obtained by combining
None/Es/Fr/Ru/Zh alignments. This alignment out-
performs all bridge alignments but is weaker than
the alignment without any bridge language. Our
hypothesis is that a good choice of interpolation
weights (Equation 5) would reduce AER of the AC1
combination. However, we did not investigate these
choices in this paper. We report alignment error rates
here to give the readers an idea of the vastly differ-
ent alignment performance using each of the bridge
languages.

5.6 Translation Results

We now report translation performance of our tech-
niques. We measure performance using the NIST
implementation of case sensitive BLEU-4 on true-
cased translations. We observed in experiments
not reported here that results are almost identical
with/without Minimum Error Rate Training ; we
therefore report the results without the training. We
note that the blind set is the NIST subset of the 2006
NIST evaluation set. The systems reported here are
for the Unlimited Data Track in Arabic-to-English
and obtain competitive performance relative to the
results reported on the NIST official results page 2

We present three sets of experiments. In Table 4,
we describe the first set where all 9 alignment mod-
els are trained on nearly the same set of sentences
(1.9M sentences, 57.5M words in English). This
makes the alignment models in all bridge languages
comparable. In the first row marked None, we do not
use a bridge language. Instead, an Ar-En alignment
model is trained directly on the set of sentence pairs.
The next four rows give the performance of align-
ment models trained using the bridge languages Es,
Fr, Ru and Zh respectively. For each language, we
use the procedure (Section 3) to obtain the posterior
probability matrix for Arabic-English from Arabic-
X and X-English matrices. The row AC1 refers to
alignment combination using interpolation of poste-
rior probabilities described in Section 4. We com-
bine posterior probability matrices from the systems
in the first four rows: None, Es, Ru and Zh. We
exclude the Zh system from the AC1 combination
because it is found to degrade the translation perfor-
mance by 0.2 points on the test set.

In the final six rows of Table 4, we show the per-
formance of a consensus decoding technique that
produces a single output hypothesis by combin-
ing translation hypotheses from multiple systems;
this is an MBR-like candidate selection procedure
based on BLEU correlation matrices and is de-
scribed in Macherey and Och (2007). We first report
performance of the consensus output by combining
None systems with/without MERT. Each of the fol-
lowing rows provides the results from consensus de-
coding for adding an extra system both with/without
MERT. Thus, the final row (TC1) combines transla-

2
http://www.nist.gov/speech/tests/mt/mt06eval official results.html
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tions from 12 systems: None, Es, Fr, Ru, Zh, AC1
with/without MERT. All entries marked with an as-
terisk are better than the None baseline with 95%
statistical significance computed using paired boot-
strap resampling (Koehn, 2004).
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Figure 1: 100-AER (%) vs. BLEU(%) on the blind
set for 6 systems from Table 3.

Figure 1 shows the plot between 100-AER% (av-
erage of EA/AE directions) and BLEU for the six
systems in Table 3. We observe that AER is loosely
correlated to BLEU (ρ = 0.81) though the re-
lation is weak, as observed earlier by Fraser and
Marcu (2006a). Among the bridge languages, Span-
ish gives the lowest AER/highest BLEU while Chi-
nese results in highest AER/lowest BLEU. We can
conclude that Spanish is closest to Arabic/English
while Chinese is the farthest. All the bridge lan-
guages yield lower BLEU/higher AER relative to the
No-Bridge baseline. Therefore, our estimate of the
posterior probability (Equation 4) is always worse
than the posterior probability obtained using a di-
rect model. The alignment combination (AC1) be-
haves differently from other bridge systems in that it
gives a higher AER and a higher BLEU relative to
None baseline. We hypothesize that AC1 is differ-
ent from the bridge language systems since it arises
from a different process: interpolation with the di-
rect model (None).

Both system combination techniques give im-
provements relative to None baseline: alignment
combination AC1 gives a small gain (0.2 points)
while the consensus translation TC1 results in a
larger improvement (0.8 points). The last 4 rows
of the table show that the performance of the hy-

pothesis consensus steadily increases as systems get
added to the None baseline. This shows that while
bridge language systems are weaker than the di-
rect model, they can provide complementary sources
of evidence. To further validate this hypothesis,
we compute inter-system BLEU scores between
None/es and all the systems in Table 5. We observe
that the baseline (None) is very dissimilar from the
rest of the systems. We hypothesize that the baseline
system has an alignment derived from a real align-
ment model while the rest of the bridge systems are
derived using matrix multiplication. The low inter-
system BLEU scores show that the bridge systems
provide diverse hypotheses relative to the baseline
and therefore contribute to gains in consensus de-
coding.

Bridge Lang # Msents BLEU (%)
test blind

None 1.9 52.1 40.1
Es 1.9 51.7 39.8
Fr 1.9 51.2 39.5
Ru 1.9 50.4 38.7
Zh 1.9 48.4 37.1

AC1 1.9 52.1 40.3
Hypothesis Consensus

None 1.9 51.9 39.8
+Es 1.9 52.2 40.0
+Fr 1.9 52.4∗ 40.5∗

+Ru 1.9 52.8∗ 40.7∗

+Zh 1.9 52.6∗ 40.6∗

+AC1 = TC1 1.9 53.0∗ 40.9∗

Table 4: Translation Experiments for Set 1; Results
are reported on the test and blind set: (NIST portion
of 2006 NIST eval set).

Ref None es fr ru zh AC1
None 100.0 60.0 59.8 59.7 59.5 58.7

es 59.6 100.0 79.9 69.3 67.4 70.5

Table 5: Inter-system BLEU scores (%) between
None/es and all systems in Table 3.

To gain some insight about how the bridge sys-
tems help in Table 4, we present an example in Ta-
ble 6. The example shows the consensus Transla-
tions and the 12 input translations for the consensus
decoding. The example suggests that the inputs to
the consensus decoding exhibit diversity.

Table 7 reports the second and third sets of ex-
periments. For both sets, we first train each bridge
language system X using all aligned sentences avail-
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System MERT Hypothesis
None N The President of the National Conference Visit Iraqi Kurdistan Iraqi
None Y President of the Iraqi National Conference of Iraqi Kurdistan Visit

Es N President of the Iraqi National Congress to Visit Iraqi Kurdistan
Es Y President of the Iraqi National Congress to Visit Iraqi Kurdistan
Fr N President of the Iraqi National Conference Visits Iraqi Kurdistan
Fr Y Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Ru N The Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Ru Y Chairman of the Iraqi National Conference Visit the Iraqi Kurdistan
Zh N The Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Zh Y The Chairman of the Iraqi National Conference Visit Iraqi Kurdistan

AC1 N President of the Iraqi National Congress to Visit Iraqi Kurdistan
AC1 Y Chairman of the Iraqi National Congress to Visit Iraqi Kurdistan
TC1 - The Chairman of the Iraqi National Conference Visits Iraqi Kurdistan
Ref - Head of Iraqi National Congress Visits Iraqi Kurdistan

Table 6: An example showing the Consensus Translation (TC1) and the 12 inputs for consensus decoding.
The final row shows the reference translation.

able in Ar, En and X. In Set 2, the first row (Union)
is an alignment model trained on all sentence-pairs
in Ar-En which are available in at least one bridge
language X. AC2 refers to alignment combination
using bridge languages Es/Fr/Ru and Union. TC2
refers to the translation combination from 12 sys-
tems: Es/Fr/Ru/Zh/Union/AC2 with/without Mini-
mum Error Rate training. Finally, the goal in Set 3
(last 3 rows) is to improve the best Arabic-English
system that can be built using all available sen-
tence pairs from the UN corpus. The first row
(Direct) gives the performance of this Ar-En sys-
tem; AC3 refers to alignment combination using
Es/Fr/Ru and Direct. TC3 merges translations from
Es/Fr/Ru/Zh/Direct/AC3. All entries marked with
an asterisk (plus) are better than the Union (Direct)
baseline with 95% statistical significance computed
using paired bootstrap resampling (Koehn, 2004).

The motivation behind Sets 2 and 3 is to train all
bridge language systems on as much bitext as possi-
ble. As a consequence, these systems give better re-
sults than the corresponding systems in Table 4. The
Union system outperforms None by 1.7/1.4 BLEU
points and provides a better baseline. We show un-
der this scenario that system combination techniques
AC2 and TC2 can still give smaller improvements
(0.3/0.5 and 1.0/0.7 points) relative to this baseline.

As mentioned earlier, our approach requires
sentence-aligned corpora. In our experiments, we
use a single sentence aligner for each language pair
(total of 9 aligners). Since these aligners make inde-
pendent decisions on sentence boundaries, we end

up with a smaller pool of sentences (1.9M) that is
common across all language pairs. In contrast, a
sentence aligner that makes simultaneous decisions
in multiple languages would result in a larger set of
common sentence pairs (close to 7M sentence pairs).
Simard (1999) describes a sentence aligner of this
type that improves alignment on a trilingual paral-
lel text. Since we do not currently have access to
such an aligner, we simulate that situation with Sets
2 and 3: AC2/AC3 do not insist that a sentence-pair
be present in all input word alignments. We note that
Set 2 is a data scenario that falls between Sets 1 and
3.

Set 3 provides the best baseline for Arabic-
English based on the UN data by training on
all parallel sentence-pairs. In this situation, sys-
tem combination with bridge languages (AC3/TC3)
gives reasonable improvements in BLEU on the test
set (0.4/1.0 points) but only modest improvements
(0.1/0.4 points) on the blind set. However, this does
show that the bridge systems continue to provide or-
thogonal evidence at different operating points.

6 Discussion

We have described a simple approach to improve
word alignments using bridge languages. This in-
cludes two components: a matrix multiplication to
assemble a posterior probability matrix for the de-
sired language-pair FE using a pair of posterior
probability matrices FG and GE relative to a bridge
language G. The second component is a recipe for
combining word alignment systems by linearly in-
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Bridge Lang # Msents BLEU (%)
test blind

Es 4.7 53.7 40.9
Fr 4.7 53.2 40.7
Ru 4.5 52.4 39.9
Zh 3.4 49.7 37.9

Set 2
Union 7.2 53.8 41.5
AC2 7.2 54.1 42.0∗

TC2 - 54.8∗ 42.2∗
Set 3

Direct 7.0 53.9 42.2
AC3 9.0 54.3+ 42.3
TC3 - 54.9+ 42.6+

Table 7: Translation performance for Sets 2 and 3 on
test and blind:NIST portion of 2006 NIST eval set.

terpolating posterior probability matrices from dif-
ferent sources. In our case, these sources are multi-
ple bridge languages. However, this method is more
generally applicable for combining posterior matri-
ces from different alignment models such as HMM
and Model-4. Such an approach contrasts with the
log-linear HMM/Model-4 combination proposed by
Och and Ney (2003).

There has been recent work by Ayan and Dorr
(2006) on combining word alignments from differ-
ent alignment systems; this paper describes a maxi-
mum entropy framework for this combination. Their
approach operates at the level of the alignment links
and uses maximum entropy to decide whether or
not to include an alignment link in the final out-
put. In contrast, we use posterior probabilities as the
interface between different alignment models. An-
other difference is that this maxent framework re-
quires human word aligned data for training feature
weights. We do not require any human word aligned
data to train our combiner.

Another advantage of our approach is that it is
based on word alignment posterior probability ma-
trices that can be generated by any underlying align-
ment model. Therefore, this method can be used to
combine word alignments generated by fairly dis-
similar word alignment systems as long as the sys-
tems can produce posterior probabilities.

Bridge languages have been used by NLP re-
searchers as a means to induce translation lexicons
between distant languages without the need for par-
allel corpora (Schafer and Yarowsky, 2002; Mann
and Yarowsky, 2001). Our current approach differs

from these efforts in that we use bridge languages to
improve word alignment quality between sentence
pairs. Furthermore, we do not use linguistic insight
to identify bridge languages. In our framework, a
good bridge language is one that provides the best
translation performance using the posterior matrix
multiplication. Our experiments show that Spanish
is a better bridge language relative to Chinese for
Arabic-to-English translation. We speculate that if
our approach was carried out on a data set with hun-
dreds of languages, we might be able to automati-
cally identify language families.

A downside of our approach is the requirement
for exact sentence-aligned parallel data. Except for
a few corpora such as UN, European Parliament etc,
such a resource is hard to find. One solution is to cre-
ate such parallel data by automatic translation and
then retaining reliable translations by using confi-
dence metrics (Ueffing and Ney, 2005).

Our approach to using bridge languages is ex-
tremely simple. Despite its simplicity, the system
combination gives improvements in alignment and
translation performance. In future work, we will
consider several extensions to this framework that
lead to more powerful system combination strategies
using multiple bridge languages. We recall that the
present approach trains bridge systems (e.g. Arabic-
to-French, French-to-English) until the alignment
stage and then uses these for constructing Arabic-
to-English word alignment. An alternate scenario
would be to build phrase-based SMT systems for
Arabic-to-Spanish and Spanish-to-English, and then
obtain Arabic-to-English translation by first trans-
lating from Arabic into Spanish and then Spanish
into English. Such end-to-end bridge systems may
lead to an even more diverse pool of hypotheses that
could further improve system combination.
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Abstract

Word alignment is the problem of annotating
parallel text with translational correspon-
dence. Previous generative word alignment
models have made structural assumptions
such as the 1-to-1, 1-to-N, or phrase-based
consecutive word assumptions, while previ-
ous discriminative models have either made
such an assumption directly or used features
derived from a generative model making one
of these assumptions. We present a new gen-
erative alignment model which avoids these
structural limitations, and show that it is
effective when trained using both unsuper-
vised and semi-supervised training methods.

1 Introduction

Several generative models and a large number of
discriminatively trained models have been proposed
in the literature to solve the problem of automatic
word alignment of bitexts. The generative propos-
als have required unrealistic assumptions about the
structure of the word alignments. Two assumptions
are particularly common. The first is the 1-to-N as-
sumption, meaning that each source word generates
zero or more target words, which requires heuristic
techniques in order to obtain alignments suitable for
training a SMT system. The second is the consec-
utive word-based “phrasal SMT” assumption. This
does not allow gaps, which can be used to particular
advantage by SMT models which model hierarchi-
cal structure. Previous discriminative models have
either made such assumptions directly or used fea-

tures from a generative model making such an as-
sumption. Our objective is to automatically produce
alignments which can be used to build high quality
machine translation systems. These are presumably
close to the alignments that trained bilingual speak-
ers produce. Human annotated alignments often
contain M-to-N alignments, where several source
words are aligned to several target words and the re-
sulting unit can not be further decomposed. Source
or target words in a single unit are sometimes non-
consecutive.

In this paper, we describe a new generative model
which directly models M-to-N non-consecutive
word alignments. The rest of the paper is organized
as follows. The generative story is presented, fol-
lowed by the mathematical formulation. Details of
the unsupervised training procedure are described.
The generative model is then decomposed into fea-
ture functions used in a log-linear model which is
trained using a semi-supervised algorithm. Experi-
ments show improvements in word alignment accu-
racy and usage of the generated alignments in hier-
archical and phrasal SMT systems results in an in-
creased BLEU score. Previous work is discussed
and this is followed by the conclusion.

2 LEAF: a generative word alignment
model

2.1 Generative story

We introduce a new generative story which enables
the capture of non-consecutive M-to-N alignment
structure. We have attempted to use the same la-
bels as the generative story for Model 4 (Brown et
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al., 1993), which we are extending.
Our generative story describes the stochastic gen-

eration of a target string f (sometimes referred to
as the French string, or foreign string) from a source
string e (sometimes referred to as the English string),
consisting of l words. The variable m is the length
of f . We generally use the index i to refer to source
words (ei is the English word at position i), and j to
refer to target words.

Our generative story makes the distinction be-
tween different types of source words. There are
head words, non-head words, and deleted words.
Similarly, for target words, there are head words,
non-head words, and spurious words. A head word
is linked to zero or more non-head words; each non-
head word is linked to from exactly one head word.
The purpose of head words is to try to provide a ro-
bust representation of the semantic features neces-
sary to determine translational correspondence. This
is similar to the use of syntactic head words in sta-
tistical parsers to provide a robust representation of
the syntactic features of a parse sub-tree.

A minimal translational correspondence consists
of a linkage between a source head word and a target
head word (and by implication, the non-head words
linked to them). Deleted source words are not in-
volved in a minimal translational correspondence, as
they were “deleted” by the translation process. Spu-
rious target words are also not involved in a min-
imal translational correspondence, as they sponta-
neously appeared during the generation of other tar-
get words.

Figure 1 shows a simple example of the stochas-
tic generation of a French sentence from an English
sentence, annotated with the step number in the gen-
erative story.

1. Choose the source word type.

for each i = 1, 2, ..., l choose a word type
χi = −1 (non-head word), χi = 0 (deleted
word) or χi = 1 (head word) according to the
distribution g(χi|ei)
let χ0 = 1

2. Choose the identity of the head word for each
non-head word.

for each i = 1, 2, ..., l if χi = −1 choose a
“linked from head word” value µi (the position

of the head word which ei is linked to) accord-
ing to the distribution w−1(µi − i|classe(ei))

for each i = 1, 2, ..., l if χi = 1 let µi = i

for each i = 1, 2, ..., l if χi = 0 let µi = 0

for each i = 1, 2, ..., l if χµi 6= 1 return “fail-
ure”

3. Choose the identity of the generated target head
word for each source head word.

for each i = 1, 2, ..., l if χi = 1 choose τi1
according to the distribution t1(τi1|ei)

4. Choose the number of words in a target cept
conditioned on the identity of the source head
word and the source cept size (γi is 1 if the cept
size is 1, and 2 if the cept size is greater).

for each i = 1, 2, ..., l if χi = 1 choose a For-
eign cept size ψi according to the distribution
s(ψi|ei, γi)
for each i = 1, 2, ..., l if χi < 1 let ψi = 0

5. Choose the number of spurious words.

choose ψ0 according to the distribution
s0(ψ0|

∑
i ψi)

let m = ψ0 +
∑l

i=1 ψi

6. Choose the identity of the spurious words.

for each k = 1, 2, ..., ψ0 choose τ0k according
to the distribution t0(τ0k)

7. Choose the identity of the target non-head
words linked to each target head word.

for each i = 1, 2, ..., l and for each k =
2, 3, ..., ψi choose τik according to the distribu-
tion t>1(τik|ei, classh(τi1))

8. Choose the position of the target head and non-
head words.

for each i = 1, 2, ..., l and for each k =
1, 2, ..., ψi choose a position πik as follows:

• if k = 1 choose πi1 accord-
ing to the distribution d1(πi1 −
cρi |classe(eρi), classf (τi1))
• if k = 2 choose πi2 according to the dis-

tribution d2(πi2 − πi1|classf (τi1))
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source absolutely [comma] they do not want to spend that money

word type (1) DEL. DEL. HEAD non-head HEAD HEAD non-head HEAD HEAD HEAD

linked from (2) THEY do NOT
||

WANT to SPEND
{{

THAT MONEY

head(3) ILS PAS DESIRENT DEPENSER CET ARGENT

cept size(4) 1 2 1 1 1 1

num spurious(5) 1

spurious(6) aujourd’hui

non-head(7) ILS PAS
""
ne DESIRENT DEPENSER CET ARGENT

placement(8) aujourd’hui ILS ne DESIRENT PASww DEPENSER CET ARGENT

spur. placement(9) ILS ne DESIRENT PASww DEPENSER CET ARGENT aujourd’hui

Figure 1: Generative story example, (number) indicates step number

• if k > 2 choose πik according to the dis-
tribution d>2(πik − πik−1|classf (τi1))

if any position was chosen twice, return “fail-
ure”

9. Choose the position of the spuriously generated
words.

for each k = 1, 2, ..., ψ0 choose a position π0k

from ψ0 − k + 1 remaining vacant positions in
1, 2, ...,m according to the uniform distribution

let f be the string fπik = τik

We note that the steps which return “failure” are
required because the model is deficient. Deficiency
means that a portion of the probability mass in the
model is allocated towards generative stories which
would result in infeasible alignment structures. Our
model has deficiency in the non-spurious target word
placement, just as Model 4 does. It has addi-
tional deficiency in the source word linking deci-
sions. (Och and Ney, 2003) presented results sug-
gesting that the additional parameters required to en-
sure that a model is not deficient result in inferior
performance, but we plan to study whether this is
the case for our generative model in future work.

Given e, f and a candidate alignment a, which
represents both the links between source and tar-
get head-words and the head-word connections of
the non-head words, we would like to calculate
p(f, a|e). The formula for this is:

p(f, a|e) =[
l∏

i=1

g(χi|ei)]

[
l∏

i=1

δ(χi,−1)w−1(µi − i|classe(ei))]

[
l∏

i=1

δ(χi, 1)t1(τi1|ei)]

[
l∏

i=1

δ(χi, 1)s(ψi|ei, γi)]

[s0(ψ0|
l∑

i=1

ψi)]

[
ψ0∏

k=1

t0(τ0k)]

[
l∏

i=1

ψi∏

k=2

t>1(τik|ei, classh(τi1))]

[
l∏

i=1

ψi∏

k=1

Dik(πik)]

where:
δ(i, i′) is the Kronecker delta function which is

equal to 1 if i = i′ and 0 otherwise.
ρi is the position of the closest English head word

to the left of the word at i or 0 if there is no such
word.
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classe(ei) is the word class of the English word at
position i, classf (fj) is the word class of the French
word at position j, classh(fj) is the word class of
the French head word at position j.
p0 and p1 are parameters describing the proba-

bility of not generating and of generating a target
spurious word from each non-spurious target word,
p0 + p1 = 1.

m′ =
l∑

i=1

ψi (1)

s0(ψ0|m′) =
(
m′

ψ0

)
pm
′−ψ0

0 pψ0
1 (2)

Dik(j) =





d1(j − cρi |classe(eρi), classf (τik))
if k = 1

d2(j − πi1|classf (τik))
if k = 2

d>2(j − πik−1|classf (τik))
if k > 2

(3)

γi = min(2,
l∑

i′=1

δ(µi′ , i)) (4)

ci =
{

ceiling(
∑ψi

k=1 πik/ψi) if ψi 6= 0
0 if ψi = 0

(5)

The alignment structure used in many other mod-
els can be modeled using special cases of this frame-
work. We can express the 1-to-N structure of mod-
els like Model 4 by disallowing χi = −1, while for
1-to-1 structure we both disallow χi = −1 and de-
terministically set ψi = χi. We can also specialize
our generative story to the consecutive word M-to-N
alignments used in “phrase-based” models, though
in this case the conditioning of the generation deci-
sions would be quite different. This involves adding
checks on source and target connection geometry to
the generative story which, if violated, would return
“failure”; naturally this is at the cost of additional
deficiency.

2.2 Unsupervised Parameter Estimation
We can perform maximum likelihood estimation of
the parameters of this model in a similar fashion

to that of Model 4 (Brown et al., 1993), described
thoroughly in (Och and Ney, 2003). We use Viterbi
training (Brown et al., 1993) but neighborhood es-
timation (Al-Onaizan et al., 1999; Och and Ney,
2003) or “pegging” (Brown et al., 1993) could also
be used.

To initialize the parameters of the generative
model for the first iteration, we use bootstrapping
from a 1-to-N and a M-to-1 alignment. We use the
intersection of the 1-to-N and M-to-1 alignments
to establish the head word relationship, the 1-to-N
alignment to delineate the target word cepts, and the
M-to-1 alignment to delineate the source word cepts.

In bootstrapping, a problem arises when we en-
counter infeasible alignment structure where, for in-
stance, a source word generates target words but no
link between any of the target words and the source
word appears in the intersection, so it is not clear
which target word is the target head word. To ad-
dress this, we consider each of the N generated tar-
get words as the target head word in turn and assign
this configuration 1/N of the counts.

For each iteration of training we search for the
Viterbi solution for millions of sentences. Evidence
that inference over the space of all possible align-
ments is intractable has been presented, for a sim-
ilar problem, in (Knight, 1999). Unlike phrase-
based SMT, left-to-right hypothesis extension using
a beam decoder is unlikely to be effective because in
word alignment reordering is not limited to a small
local window and so the necessary beam would be
very large. We are not aware of admissible or inad-
missible search heuristics which have been shown to
be effective when used in conjunction with a search
algorithm similar to A* search for a model predict-
ing over a structure like ours. Therefore we use
a simple local search algorithm which operates on
complete hypotheses.

(Brown et al., 1993) defined two local search op-
erations for their 1-to-N alignment models 3, 4 and
5. All alignments which are reachable via these
operations from the starting alignment are consid-
ered. One operation is to change the generation de-
cision for a French word to a different English word
(move), and the other is to swap the generation de-
cision for two French words (swap). All possible
operations are tried and the best is chosen. This is
repeated. The search is terminated when no opera-
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tion results in an improvement. (Och and Ney, 2003)
discussed efficient implementation.

In our model, because the alignment structure is
richer, we define the following operations: move
French non-head word to new head, move English
non-head word to new head, swap heads of two
French non-head words, swap heads of two English
non-head words, swap English head word links of
two French head words, link English word to French
word making new head words, unlink English and
French head words. We use multiple restarts to try to
reduce search errors. (Germann et al., 2004; Marcu
and Wong, 2002) have some similar operations with-
out the head word distinction.

3 Semi-supervised parameter estimation

Equation 6 defines a log-linear model. Each feature
function hm has an associated weight λm. Given
a vector of these weights λ, the alignment search
problem, i.e. the search to return the best alignment
â of the sentences e and f according to the model, is
specified by Equation 7.

pλ(f, a|e) =
exp(

∑
m λmhm(a, e, f))∑

a′,f ′ exp(
∑

m λmhm(a′, e, f ′))
(6)

â = argmax
a

∑
m

λmhm(f, a, e) (7)

We decompose the new generative model pre-
sented in Section 2 in both translation directions
to provide the initial feature functions for our log-
linear model, features 1 to 10 and 16 to 25 in Table
1.

We use backoffs for the translation decisions (fea-
tures 11 and 26 and the HMM translation tables
which are features 12 and 27) and the target cept size
distributions (features 13, 14, 28 and 29 in Table 1),
as well as heuristics which directly control the num-
ber of unaligned words we generate (features 15 and
30 in Table 1).

We use the semi-supervised EMD algorithm
(Fraser and Marcu, 2006b) to train the model. The
initial M-step bootstraps parameters as described in
Section 2.2 from a M-to-1 and a 1-to-N alignment.
We then perform the D-step following (Fraser and

A B C

D

nnnnnnnnnnnnnn
E

@@@@@@@

~~~~~~~

A B C

D

nnnnnnnnnnnnnn
E

@@@@@@@

~~~~~~~

Figure 2: Two alignments with the same transla-
tional correspondence

Marcu, 2006b). Given the feature function param-
eters estimated in the M-step and the feature func-
tion weights λ determined in the D-step, the E-step
searches for the Viterbi alignment for the full train-
ing corpus.

We use 1 − F-Measure as our error criterion.
(Fraser and Marcu, 2006a) established that it is im-
portant to tune α (the trade-off between Precision
and Recall) to maximize performance. In working
with LEAF, we discovered a methodological prob-
lem with our baseline systems, which is that two
alignments which have the same translational cor-
respondence can have different F-Measures. An ex-
ample is shown in Figure 2.

To overcome this problem we fully interlinked the
transitive closure of the undirected bigraph formed
by each alignment hypothesized by our baseline
alignment systems1. This operation maps the align-
ment shown to the left in Figure 2 to the alignment
shown to the right. This operation does not change
the collection of phrases or rules extracted from a
hypothesized alignment, see, for instance, (Koehn et
al., 2003). Working with this fully interlinked rep-
resentation we found that the best settings of α were
α = 0.1 for the Arabic/English task and α = 0.4 for
the French/English task.

4 Experiments

4.1 Data Sets

We perform experiments on two large alignments
tasks, for Arabic/English and French/English data
sets. Statistics for these sets are shown in Table 2.
All of the data used is available from the Linguis-
tic Data Consortium except for the French/English

1All of the gold standard alignments were fully interlinked
as distributed. We did not modify the gold standard alignments.
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1 chi(χi|ei) source word type 9 d2(4j|classf (fj)) movement for left-most target
non-head word

2 µ(4i|classe(ei)) choosing a head word 10 d>2(4j|classf (fj)) movement for subsequent target
non-head words

3 t1(fj |ei) head word translation 11 t(fj |ei) translation without dependency on word-type
4 s(ψi|ei, γi) ψi is number of words in target cept 12 t(fj |ei) translation table from final HMM iteration
5 s0(ψ0|

P
i ψi) number of unaligned target words 13 s(ψi|γi) target cept size without dependency on

source head word e
6 t0(fj) identity of unaligned target words 14 s(ψi|ei) target cept size without dependency on γi
7 t>1(fj |ei, classh(τi1)) non-head word translation 15 target spurious word penalty
8 d1(4j|classe(eρ), classf (fj)) movement for target

head words
16-30 (same features, other direction)

Table 1: Feature functions

gold standard alignments which are available from
the authors.

4.2 Experiments

To build all alignment systems, we start with 5 iter-
ations of Model 1 followed by 4 iterations of HMM
(Vogel et al., 1996), as implemented in GIZA++
(Och and Ney, 2003).

For all non-LEAF systems, we take the best per-
forming of the “union”, “refined” and “intersection”
symmetrization heuristics (Och and Ney, 2003) to
combine the 1-to-N and M-to-1 directions resulting
in a M-to-N alignment. Because these systems do
not output fully linked alignments, we fully link the
resulting alignments as described at the end of Sec-
tion 3. The reader should recall that this does not
change the set of rules or phrases that can be ex-
tracted using the alignment.

We perform one main comparison, which is of
semi-supervised systems, which is what we will use
to produce alignments for SMT. We compare semi-
supervised LEAF with a previous state of the art
semi-supervised system (Fraser and Marcu, 2006b).
We performed translation experiments on the align-
ments generated using semi-supervised training to
verify that the improvements in F-Measure result in
increases in BLEU.

We also compare the unsupervised LEAF sys-
tem with GIZA++ Model 4 to give some idea of
the performance of the unsupervised model. We
made an effort to optimize the free parameters of
GIZA++, while for unsupervised LEAF there are
no free parameters to optimize. A single iteration
of unsupervised LEAF2 is compared with heuristic

2Unsupervised LEAF is equivalent to using the log-linear
model and setting λm = 1 for m = 1 to 10 and m = 16 to 25,

symmetrization of GIZA++’s extension of Model 4
(which was run for four iterations). LEAF was boot-
strapped as described in Section 2.2 from the HMM
Viterbi alignments.

Results for the experiments on the French/English
data set are shown in Table 3. We ran GIZA++
for four iterations of Model 4 and used the “re-
fined” heuristic (line 1). We ran the baseline semi-
supervised system for two iterations (line 2), and in
contrast with (Fraser and Marcu, 2006b) we found
that the best symmetrization heuristic for this sys-
tem was “union”, which is most likely due to our
use of fully linked alignments which was discussed
at the end of Section 3. We observe that LEAF
unsupervised (line 3) is competitive with GIZA++
(line 1), and is in fact competitive with the baseline
semi-supervised result (line 2). We ran the LEAF
semi-supervised system for two iterations (line 4).
The best result is the LEAF semi-supervised system,
with a gain of 1.8 F-Measure over the LEAF unsu-
pervised system.

For French/English translation we use a state of
the art phrase-based MT system similar to (Och and
Ney, 2004; Koehn et al., 2003). The translation test
data is described in Table 2. We use two trigram lan-
guage models, one built using the English portion of
the training data and the other built using additional
English news data. The BLEU scores reported in
this work are calculated using lowercased and tok-
enized data. For semi-supervised LEAF the gain of
0.46 BLEU over the semi-supervised baseline is not
statistically significant (a gain of 0.78 BLEU would
be required), but LEAF semi-supervised compared
with GIZA++ is significant, with a gain of 1.23
BLEU. We note that this shows a large gain in trans-

while setting λm = 0 for other values of m.
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ARABIC/ENGLISH FRENCH/ENGLISH
A E F E

TRAINING

SENTS 6,609,162 2,842,184
WORDS 147,165,003 168,301,299 75,794,254 67,366,819
VOCAB 642,518 352,357 149,568 114,907

SINGLETONS 256,778 158,544 60,651 47,765

ALIGN DISCR.
SENTS 1,000 110

WORDS 26,882 37,635 1,888 1,726
LINKS 39,931 2,292

ALIGN TEST
SENTS 83 110

WORDS 1,510 2,030 1,899 1,716
LINKS 2,131 2,176

TRANS. DEV
SENTS 728 (4 REFERENCES) 833 (1 REFERENCE)

WORDS 18,255 22.0K TO 24.6K 20,562 17,454

TRANS. TEST
SENTS 1,056 (4 REFERENCES) 2,380 (1 REFERENCE)

WORDS 28,505 35.8K TO 38.1K 58,990 49,182

Table 2: Data sets

lation quality over that obtained using GIZA++ be-
cause BLEU is calculated using only a single refer-
ence for the French/English task.

Results for the Arabic/English data set are also
shown in Table 3. We used a large gold standard
word alignment set available from the LDC. We ran
GIZA++ for four iterations of Model 4 and used the
“union” heuristic. We compare GIZA++ (line 1)
with one iteration of the unsupervised LEAF model
(line 2). The unsupervised LEAF system is worse
than four iterations of GIZA++ Model 4. We be-
lieve that the features in LEAF are too high dimen-
sional to use for the Arabic/English task without the
backoffs available in the semi-supervised models.
The baseline semi-supervised system (line 3) was
run for three iterations and the resulting alignments
were combined with the “union” heuristic. We ran
the LEAF semi-supervised system for two iterations.
The best result is the LEAF semi-supervised system
(line 4), with a gain of 5.4 F-Measure over the base-
line semi-supervised system.

For Arabic/English translation we train a state of
the art hierarchical model similar to (Chiang, 2005)
using our Viterbi alignments. The translation test
data used is described in Table 2. We use two tri-
gram language models, one built using the English
portion of the training data and the other built using
additional English news data. The test set is from the
NIST 2005 translation task. LEAF had the best per-
formance scoring 1.43 BLEU better than the base-
line semi-supervised system, which is statistically
significant.

5 Previous Work

The LEAF model is inspired by the literature on gen-
erative modeling for statistical word alignment and
particularly by Model 4 (Brown et al., 1993). Much
of the additional work on generative modeling of 1-
to-N word alignments is based on the HMM model
(Vogel et al., 1996). (Toutanova et al., 2002) and
(Lopez and Resnik, 2005) presented a variety of re-
finements of the HMM model particularly effective
for low data conditions. (Deng and Byrne, 2005)
described work on extending the HMM model us-
ing a bigram formulation to generate 1-to-N align-
ment structure. The common thread connecting
these works is their reliance on the 1-to-N approx-
imation, while we have defined a generative model
which does not require use of this approximation, at
the cost of having to rely on local search.

There has also been work on generative models
for other alignment structures. (Wang and Waibel,
1998) introduced a generative story based on ex-
tension of the generative story of Model 4. The
alignment structure modeled was “consecutive M
to non-consecutive N”. (Marcu and Wong, 2002)
defined the Joint model, which modeled consec-
utive word M-to-N alignments. (Matusov et al.,
2004) presented a model capable of modeling 1-to-
N and M-to-1 alignments (but not arbitrary M-to-
N alignments) which was bootstrapped from Model
4. LEAF directly models non-consecutive M-to-N
alignments.

One important aspect of LEAF is its symmetry.
(Och and Ney, 2003) invented heuristic symmetriza-
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FRENCH/ENGLISH ARABIC/ENGLISH
SYSTEM F-MEASURE (α = 0.4) BLEU F-MEASURE (α = 0.1) BLEU
GIZA++ 73.5 30.63 75.8 51.55
(FRASER AND MARCU, 2006B) 74.1 31.40 79.1 52.89
LEAF UNSUPERVISED 74.5 72.3
LEAF SEMI-SUPERVISED 76.3 31.86 84.5 54.34

Table 3: Experimental Results

tion of the output of a 1-to-N model and a M-to-1
model resulting in a M-to-N alignment, this was ex-
tended in (Koehn et al., 2003). We have used in-
sights from these works to help determine the struc-
ture of our generative model. (Zens et al., 2004)
introduced a model featuring a symmetrized lexi-
con. (Liang et al., 2006) showed how to train two
HMM models, a 1-to-N model and a M-to-1 model,
to agree in predicting all of the links generated, re-
sulting in a 1-to-1 alignment with occasional rare 1-
to-N or M-to-1 links. We improve on these works by
choosing a new structure for our generative model,
the head word link structure, which is both sym-
metric and a robust structure for modeling of non-
consecutive M-to-N alignments.

In designing LEAF, we were also inspired by
dependency-based alignment models (Wu, 1997;
Alshawi et al., 2000; Yamada and Knight, 2001;
Cherry and Lin, 2003; Zhang and Gildea, 2004). In
contrast with their approaches, we have a very flat,
one-level notion of dependency, which is bilingually
motivated and learned automatically from the paral-
lel corpus. This idea of dependency has some sim-
ilarity with hierarchical SMT models such as (Chi-
ang, 2005).

The discriminative component of our work is
based on a plethora of recent literature. This lit-
erature generally views the discriminative modeling
problem as a supervised problem involving the com-
bination of heuristically derived feature functions.
These feature functions generally include the predic-
tion of some type of generative model, such as the
HMM model or Model 4. A discriminatively trained
1-to-N model with feature functions specifically de-
signed for Arabic was presented in (Ittycheriah and
Roukos, 2005). (Lacoste-Julien et al., 2006) created
a discriminative model able to model 1-to-1, 1-to-
2 and 2-to-1 alignments for which the best results
were obtained using features based on symmetric
HMMs trained to agree, (Liang et al., 2006), and

intersected Model 4. (Ayan and Dorr, 2006) de-
fined a discriminative model which learns how to
combine the predictions of several alignment algo-
rithms. The experiments performed included Model
4 and the HMM extensions of (Lopez and Resnik,
2005). (Moore et al., 2006) introduced a discrimi-
native model of 1-to-N and M-to-1 alignments, and
similarly to (Lacoste-Julien et al., 2006) the best re-
sults were obtained using HMMs trained to agree
and intersected Model 4. LEAF is not bound by
the structural restrictions present either directly in
these models, or in the features derived from the
generative models used. We also iterate the gener-
ative/discriminative process, which allows the dis-
criminative predictions to influence the generative
model.

Our work is most similar to work using discrim-
inative log-linear models for alignment, which is
similar to discriminative log-linear models used for
the SMT decoding (translation) problem (Och and
Ney, 2002; Och, 2003). (Liu et al., 2005) presented
a log-linear model combining IBM Model 3 trained
in both directions with heuristic features which re-
sulted in a 1-to-1 alignment. (Fraser and Marcu,
2006b) described symmetrized training of a 1-to-
N log-linear model and a M-to-1 log-linear model.
These models took advantage of features derived
from both training directions, similar to the sym-
metrized lexicons of (Zens et al., 2004), including
features derived from the HMM model and Model
4. However, despite the symmetric lexicons, these
models were only able to optimize the performance
of the 1-to-N model and the M-to-1 model sepa-
rately, and the predictions of the two models re-
quired combination with symmetrization heuristics.
We have overcome the limitations of that work by
defining new feature functions, based on the LEAF
generative model, which score non-consecutive M-
to-N alignments so that the final performance crite-
rion can be optimized directly.
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6 Conclusion

We have found a new structure over which we can
robustly predict which directly models translational
correspondence commensurate with how it is used
in hierarchical SMT systems. Our new generative
model, LEAF, is able to model alignments which
consist of M-to-N non-consecutive translational cor-
respondences. Unsupervised LEAF is comparable
with a strong baseline. When coupled with a dis-
criminative training procedure, the model leads to
increases between 3 and 9 F-score points in align-
ment accuracy and 1.2 and 2.8 BLEU points in trans-
lation accuracy over strong French/English and Ara-
bic/English baselines.
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Abstract

We show for the first time that incorporating
the predictions of a word sense disambigua-
tion system within a typical phrase-based
statistical machine translation (SMT) model
consistently improves translation quality
across all three different IWSLT Chinese-
English test sets, as well as producing sta-
tistically significant improvements on the
larger NIST Chinese-English MT task—
and moreover never hurts performance on
any test set, according not only to BLEU
but to all eight most commonly used au-
tomatic evaluation metrics. Recent work
has challenged the assumption that word
sense disambiguation (WSD) systems are
useful for SMT. Yet SMT translation qual-
ity still obviously suffers from inaccurate
lexical choice. In this paper, we address
this problem by investigating a new strat-
egy for integrating WSD into an SMT sys-
tem, that performs fully phrasal multi-word
disambiguation. Instead of directly incor-
porating a Senseval-style WSD system, we
redefine the WSD task to match the ex-
act same phrasal translation disambiguation
task faced by phrase-based SMT systems.
Our results provide the first known empir-
ical evidence that lexical semantics are in-
deed useful for SMT, despite claims to the
contrary.

∗This material is based upon work supported in part by
the Defense Advanced Research Projects Agency (DARPA)
under GALE Contract No. HR0011-06-C-0023, and by the
Hong Kong Research Grants Council (RGC) research grants

1 Introduction

Common assumptions about the role and useful-
ness of word sense disambiguation (WSD) models
in full-scale statistical machine translation (SMT)
systems have recently been challenged.

On the one hand, in previous work (Carpuat and
Wu, 2005b) we obtained disappointing results when
using the predictions of a Senseval WSD system in
conjunction with a standard word-based SMT sys-
tem: we reported slightly lower BLEU scores de-
spite trying to incorporate WSD using a number
of apparently sensible methods. These results cast
doubt on the assumption that sophisticated dedicated
WSD systems that were developed independently
from any particular NLP application can easily be
integrated into a SMT system so as to improve trans-
lation quality through stronger models of context
and rich linguistic information. Rather, it has been
argued, SMT systems have managed to achieve sig-
nificant improvements in translation quality without
directly addressing translation disambiguation as a
WSD task. Instead, translation disambiguation deci-
sions are made indirectly, typically using only word
surface forms and very local contextual information,
forgoing the much richer linguistic information that
WSD systems typically take advantage of.

On the other hand, error analysis reveals that the
performance of SMT systems still suffers from inac-
curate lexical choice. In subsequent empirical stud-
ies, we have shown that SMT systems perform much
worse than dedicated WSD models, both supervised

RGC6083/99E, RGC6256/00E, and DAG03/04.EG09. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the Defense Advanced Research
Projects Agency.
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and unsupervised, on a Senseval WSD task (Carpuat
and Wu, 2005a), and therefore suggest that WSD
should have a role to play in state-of-the-art SMT
systems. In addition to the Senseval shared tasks,
which have provided standard sense inventories and
data sets, WSD research has also turned increasingly
to designing specific models for a particular applica-
tion. For instance, Vickrey et al. (2005) and Specia
(2006) proposed WSD systems designed for French
to English, and Portuguese to English translation re-
spectively, and present a more optimistic outlook for
the use of WSD in MT, although these WSD sys-
tems have not yet been integrated nor evaluated in
full-scale machine translation systems.

Taken together, these seemingly contradictory re-
sults suggest that improving SMT lexical choice ac-
curacy remains a key challenge to improve current
SMT quality, and that it is still unclear what is
the most appropriate integration framework for the
WSD models in SMT.

In this paper, we present first results with a
new architecture that integrates a state-of-the-art
WSD model into phrase-based SMT so as to per-
form multi-word phrasal lexical disambiguation,
and show that this new WSD approach not only
produces gains across all available Chinese-English
IWSLT06 test sets for all eight commonly used au-
tomated MT evaluation metrics, but also produces
statistically significant gains on the much larger
NIST Chinese-English task. The main difference
between this approach and several of our earlier ap-
proaches as described in Carpuat and Wu (2005b)
and subsequently Carpuat et al. (2006) lies in the
fact that we focus on repurposing the WSD system
for multi-word phrase-based SMT. Rather than us-
ing a generic Senseval WSD model as we did in
Carpuat and Wu (2005b), here both the WSD train-
ing and the WSD predictions are integrated into the
phrase-based SMT framework. Furthermore, rather
than using a single word based WSD approach to
augment a phrase-based SMT model as we did in
Carpuat et al. (2006) to improve BLEU and NIST
scores, here the WSD training and predictions oper-
ate on full multi-word phrasal units, resulting in sig-
nificantly more reliable and consistent gains as eva-
luted by many other translation accuracy metrics as
well. Specifically:

• Instead of using a Senseval system, we redefine
the WSD task to be exactly the same as lexi-
cal choice task faced by the multi-word phrasal
translation disambiguation task faced by the
phrase-based SMT system.

• Instead of using predefined senses drawn from
manually constructed sense inventories such as
HowNet (Dong, 1998), our WSD for SMT sys-
tem directly disambiguates between all phrasal
translation candidates seen during SMT train-
ing.

• Instead of learning from manually annotated
training data, our WSD system is trained on the
same corpora as the SMT system.

However, despite these adaptations to the SMT
task, the core sense disambiguation task remains
pure WSD:

• The rich context features are typical of WSD
and almost never used in SMT.

• The dynamic integration of context-sensitive
translation probabilities is not typical of SMT.

• Although it is embedded in a real SMT sys-
tem, the WSD task is exactly the same as in
recent and coming Senseval Multilingual Lexi-
cal Sample tasks (e.g., Chklovski et al. (2004)),
where sense inventories represent the semantic
distinctions made by another language.

We begin by presenting the WSD module and
the SMT integration technique. We then show that
incorporating it into a standard phrase-based SMT
baseline system consistently improves translation
quality across all three different test sets from the
Chinese-English IWSLT text translation evaluation,
as well as on the larger NIST Chinese-English trans-
lation task. Depending on the metric, the individual
gains are sometimes modest, but remarkably, incor-
porating WSD never hurts, and helps enough to al-
ways make it a worthwile additional component in
an SMT system. Finally, we analyze the reasons for
the improvement.
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2 Problems in context-sensitive lexical
choice for SMT

To the best of our knowledge, there has been no pre-
vious attempt at integrating a state-of-the-art WSD
system for fully phrasal multi-word lexical choice
into phrase-based SMT, with evaluation of the re-
sulting system on a translation task. While there
are many evaluations of WSD quality, in particular
the Senseval series of shared tasks (Kilgarriff and
Rosenzweig (1999), Kilgarriff (2001), Mihalcea et
al. (2004)), very little work has been done to address
the actual integration of WSD in realistic SMT ap-
plications.

To fully integrate WSD into phrase-based SMT,
it is necessary to perform lexical disambiguation
on multi-word phrasal lexical units; in contrast,
the model reported in Cabezas and Resnik (2005)
can only perform lexical disambiguation on sin-
gle words. Like the model proposed in this paper,
Cabezas and Resnik attempted to integrate phrase-
based WSD models into decoding. However, al-
though they reported that incorporating these predic-
tions via the Pharaoh XML markup scheme yielded
a small improvement in BLEU score over a Pharaoh
baseline on a single Spanish-English translation data
set, we have determined empirically that applying
their single-word based model to several Chinese-
English datasets does not yield systematic improve-
ments on most MT evaluation metrics (Carpuat and
Wu, 2007). The single-word model has the disad-
vantage of forcing the decoder to choose between
the baseline phrasal translation probabilities versus
the WSD model predictions for single words. In ad-
dition, the single-word model does not generalize
to WSD for phrasal lexical choice, as overlapping
spans cannot be specified with the XML markup
scheme. Providing WSD predictions for phrases
would require committing to a phrase segmenta-
tion of the input sentence before decoding, which
is likely to hurt translation quality.

It is also necessary to focus directly on translation
accuracy rather than other measures such as align-
ment error rate, which may not actually lead to im-
proved translation quality; in contrast, for example,
Garcia-Varea et al. (2001) and Garcia-Varea et al.
(2002) show improved alignment error rate with a
maximum entropy based context-dependent lexical

choice model, but not improved translation accu-
racy. In contrast, our evaluation in this paper is con-
ducted on the actual decoding task, rather than in-
termediate tasks such as word alignment. Moreover,
in the present work, all commonly available auto-
mated MT evaluation metrics are used, rather than
only BLEU score, so as to maintain a more balanced
perspective.

Another problem in the context-sensitive lexical
choice in SMT models of Garcia Varea et al. is that
their feature set is insufficiently rich to make much
better predictions than the SMT model itself. In
contrast, our WSD-based lexical choice models are
designed to directly model the lexical choice in the
actual translation direction, and take full advantage
of not residing strictly within the Bayesian source-
channel model in order to benefit from the much
richer Senseval-style feature set this facilitates.

Garcia Varea et al. found that the best results are
obtained when the training of the context-dependent
translation model is fully incorporated with the EM
training of the SMT system. As described below,
the training of our new WSD model, though not in-
corporated within the EM training, is also far more
closely tied to the SMT model than is the case with
traditional standalone WSD models.

In contrast with Brown et al. (1991), our ap-
proach incorporates the predictions of state-of-the-
art WSD models that use rich contextual features for
any phrase in the input vocabulary. In Brown et al.’s
early study of WSD impact on SMT performance,
the authors reported improved translation quality on
a French to English task, by choosing an English
translation for a French word based on the single
contextual feature which is reliably discriminative.
However, this was a pilot study, which is limited to
words with exactly two translation candidates, and it
is not clear that the conclusions would generalize to
more recent SMT architectures.

3 Problems in translation-oriented WSD

The close relationship between WSD and SMT has
been emphasized since the emergence of WSD as
an independent task. However, most of previous re-
search has focused on using multilingual resources
typically used in SMT systems to improve WSD ac-
curacy, e.g., Dagan and Itai (1994), Li and Li (2002),
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Diab (2004). In contrast, this paper focuses on the
converse goal of using WSD models to improve ac-
tual translation quality.

Recently, several researchers have focused on de-
signing WSD systems for the specific purpose of
translation. Vickrey et al. (2005) train a logistic re-
gression WSD model on data extracted from auto-
matically word aligned parallel corpora, but evaluate
on a blank filling task, which is essentially an eval-
uation of WSD accuracy. Specia (2006) describes
an inductive logic programming-based WSD sys-
tem, which was specifically designed for the purpose
of Portuguese to English translation, but this system
was also only evaluated on WSD accuracy, and not
integrated in a full-scale machine translation system.

Ng et al. (2003) show that it is possible to use
automatically word aligned parallel corpora to train
accurate supervised WSD models. The purpose of
the study was to lower the annotation cost for su-
pervised WSD, as suggested earlier by Resnik and
Yarowsky (1999). However this result is also en-
couraging for the integration of WSD in SMT, since
it suggests that accurate WSD can be achieved using
training data of the kind needed for SMT.

4 Building WSD models for phrase-based
SMT

4.1 WSD models for every phrase in the input
vocabulary

Just like for the baseline phrase translation model,
WSD models are defined for every phrase in the in-
put vocabulary. Lexical choice in SMT is naturally
framed as a WSD problem, so the first step of inte-
gration consists of defining a WSD model for every
phrase in the SMT input vocabulary.

This differs from traditional WSD tasks, where
the WSD target is a single content word. Sense-
val for instance has either lexical sample or all word
tasks. The target words for both categories of Sen-
seval WSD tasks are typically only content words—
primarily nouns, verbs, and adjectives—while in the
context of SMT, we need to translate entire sen-
tences, and therefore have a WSD model not only
for every word in the input sentences, regardless of
their POS tag, but for every phrase, including tokens
such as articles, prepositions and even punctuation.
Further empirical studies have suggested that includ-

ing WSD predictions for those longer phrases is a
key factor to help the decoder produce better trans-
lations (Carpuat and Wu, 2007).

4.2 WSD uses the same sense definitions as the
SMT system

Instead of using pre-defined sense inventories, the
WSD models disambiguate between the SMT trans-
lation candidates. In order to closely integrate WSD
predictions into the SMT system, we need to formu-
late WSD models so that they produce features that
can directly be used in translation decisions taken
by the SMT system. It is therefore necessary for the
WSD and SMT systems to consider exactly the same
translation candidates for a given word in the input
language.

Assuming a standard phrase-based SMT system
(e.g., Koehn et al. (2003)), WSD senses are thus ei-
ther words or phrases, as learned in the SMT phrasal
translation lexicon. Those “sense” candidates are
very different from those typically used even in ded-
icated WSD tasks, even in the multilingual Senseval
tasks. Each candidate is a phrase that is not neces-
sarily a syntactic noun or verb phrase as in manually
compiled dictionaries. It is quite possible that dis-
tinct “senses” in our WSD for SMT system could be
considered synonyms in a traditional WSD frame-
work, especially in monolingual WSD.

In addition to the consistency requirements for in-
tegration, this requirement is also motivated by em-
pirical studies, which show that predefined trans-
lations derived from sense distinctions defined in
monolingual ontologies do not match translation
distinction made by human translators (Specia et al.,
2006).

4.3 WSD uses the same training data as the
SMT system

WSD training does not require any other resources
than SMT training, nor any manual sense annota-
tion. We employ supervised WSD systems, since
Senseval results have amply demonstrated that su-
pervised models significantly outperform unsuper-
vised approaches (see for instance the English lexi-
cal sample tasks results described by Mihalcea et al.
(2004)).

Training examples are annotated using the phrase
alignments learned during SMT training. Every in-
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put language phrase is sense-tagged with its aligned
output language phrase in the parallel corpus. The
phrase alignment method used to extract the WSD
training data therefore depends on the one used by
the SMT system. This presents the advantage of
training WSD and SMT models on exactly the same
data, thus eliminating domain mismatches between
Senseval data and parallel corpora. But most impor-
tantly, this allows WSD training data to be gener-
ated entirely automatically, since the parallel corpus
is automatically phrase-aligned in order to learn the
SMT phrase bilexicon.

4.4 The WSD system
The word sense disambiguation subsystem is mod-
eled after the best performing WSD system in the
Chinese lexical sample task at Senseval-3 (Carpuat
et al., 2004).

The features employed are typical of WSD and
are therefore far richer than those used in most
SMT systems. The feature set consists of position-
sensitive, syntactic, and local collocational fea-
tures, since these features yielded the best results
when combined in a naı̈ve Bayes model on several
Senseval-2 lexical sample tasks (Yarowsky and Flo-
rian, 2002). These features scale easily to the bigger
vocabulary and sense candidates to be considered in
a SMT task.

The Senseval system consists of an ensemble of
four combined WSD models:

The first model is a naı̈ve Bayes model, since
Yarowsky and Florian (2002) found this model to be
the most accurate classifier in a comparative study
on a subset of Senseval-2 English lexical sample
data.

The second model is a maximum entropy model
(Jaynes, 1978), since Klein and Manning (Klein
and Manning, 2002) found that this model yielded
higher accuracy than naı̈ve Bayes in a subsequent
comparison of WSD performance.

The third model is a boosting model (Freund
and Schapire, 1997), since boosting has consistently
turned in very competitive scores on related tasks
such as named entity classification. We also use the
Adaboost.MH algorithm.

The fourth model is a Kernel PCA-based model
(Wu et al., 2004). Kernel Principal Component
Analysis or KPCA is a nonlinear kernel method for

extracting nonlinear principal components from vec-
tor sets where, conceptually, the n-dimensional in-
put vectors are nonlinearly mapped from their origi-
nal space Rn to a high-dimensional feature space F
where linear PCA is performed, yielding a transform
by which the input vectors can be mapped nonlin-
early to a new set of vectors (Schölkopf et al., 1998).
WSD can be performed by a Nearest Neighbor Clas-
sifier in the high-dimensional KPCA feature space.

All these classifiers have the ability to handle
large numbers of sparse features, many of which
may be irrelevant. Moreover, the maximum entropy
and boosting models are known to be well suited to
handling features that are highly interdependent.

4.5 Integrating WSD predictions in
phrase-based SMT architectures

It is non-trivial to incorporate WSD into an existing
phrase-based architecture such as Pharaoh (Koehn,
2004), since the decoder is not set up to easily ac-
cept multiple translation probabilities that are dy-
namically computed in context-sensitive fashion.

For every phrase in a given SMT input sentence,
the WSD probabilities can be used as additional fea-
ture in a loglinear translation model, in combina-
tion with typical context-independent SMT bilexi-
con probabilities.

We overcome this obstacle by devising a calling
architecture that reinitializes the decoder with dy-
namically generated lexicons on a per-sentence ba-
sis.

Unlike a n-best reranking approach, which is lim-
ited by the lexical choices made by the decoder us-
ing only the baseline context-independent transla-
tion probabilities, our method allows the system to
make full use of WSD information for all competing
phrases at all decoding stages.

5 Experimental setup

The evaluation is conducted on two standard Chi-
nese to English translation tasks. We follow stan-
dard machine translation evaluation procedure us-
ing automatic evaluation metrics. Since our goal is
to evaluate translation quality, we use standard MT
evaluation methodology and do not evaluate the ac-
curacy of the WSD model independently.
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Table 1: Evaluation results on the IWSLT06 dataset: integrating the WSD translation predictions improves
BLEU, NIST, METEOR, WER, PER, CDER and TER across all 3 different available test sets.

Test
Set

Exper. BLEU NIST METEOR METEOR
(no syn)

TER WER PER CDER

Test 1 SMT 42.21 7.888 65.40 63.24 40.45 45.58 37.80 40.09
SMT+WSD 42.38 7.902 65.73 63.64 39.98 45.30 37.60 39.91

Test 2 SMT 41.49 8.167 66.25 63.85 40.95 46.42 37.52 40.35
SMT+WSD 41.97 8.244 66.35 63.86 40.63 46.14 37.25 40.10

Test 3 SMT 49.91 9.016 73.36 70.70 35.60 40.60 32.30 35.46
SMT+WSD 51.05 9.142 74.13 71.44 34.68 39.75 31.71 34.58

Table 2: Evaluation results on the NIST test set: integrating the WSD translation predictions improves
BLEU, NIST, METEOR, WER, PER, CDER and TER

Exper. BLEU NIST METEOR METEOR
(no syn)

TER WER PER CDER

SMT 20.41 7.155 60.21 56.15 76.76 88.26 61.71 70.32
SMT+WSD 20.92 7.468 60.30 56.79 71.34 83.87 57.29 67.38

5.1 Data set
Preliminary experiments are conducted using train-
ing and evaluation data drawn from the multilin-
gual BTEC corpus, which contains sentences used in
conversations in the travel domain, and their transla-
tions in several languages. A subset of this data was
made available for the IWSLT06 evaluation cam-
paign (Paul, 2006); the training set consists of 40000
sentence pairs, and each test set contains around 500
sentences. We used only the pure text data, and not
the speech transcriptions, so that speech-specific is-
sues would not interfere with our primary goal of un-
derstanding the effect of integrating WSD in a full-
scale phrase-based model.

A larger scale evaluation is conducted on the stan-
dard NIST Chinese-English test set (MT-04), which
contains 1788 sentences drawn from newswire cor-
pora, and therefore of a much wider domain than the
IWSLT data set. The training set consists of about 1
million sentence pairs in the news domain.

Basic preprocessing was applied to the corpus.
The English side was simply tokenized and case-
normalized. The Chinese side was word segmented
using the LDC segmenter.

5.2 Baseline SMT system
Since our focus is not on a specific SMT architec-
ture, we use the off-the-shelf phrase-based decoder

Pharaoh (Koehn, 2004) trained on the IWSLT train-
ing set. Pharaoh implements a beam search decoder
for phrase-based statistical models, and presents
the advantages of being freely available and widely
used.

The phrase bilexicon is derived from the inter-
section of bidirectional IBM Model 4 alignments,
obtained with GIZA++ (Och and Ney, 2003), aug-
mented to improve recall using the grow-diag-final
heuristic. The language model is trained on the Eng-
lish side of the corpus using the SRI language mod-
eling toolkit (Stolcke, 2002).

The loglinear model weights are learned using
Chiang’s implementation of the maximum BLEU
training algorithm (Och, 2003), both for the base-
line, and the WSD-augmented system. Due to
time constraints, this optimization was only con-
ducted on the IWSLT task. The weights used in the
WSD-augmented NIST model are based on the best
IWSLT model. Given that the two tasks are quite
different, we expect further improvements on the
WSD-augmented system after running maximum
BLEU optimization for the NIST task.

6 Results and discussion

Using WSD predictions in SMT yields better trans-
lation quality on all test sets, as measured by all
eight commonly used automatic evaluation metrics.
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Table 3: Translation examples with and without WSD for SMT, drawn from IWSLT data sets.
Input ÷lX-. ¿�
Ref. Please transfer to the Chuo train line.
SMT Please turn to the Central Line.
SMT+WSD Please transfer to Central Line.
Input fh(f
p��
Ref. Do I pay on the bus?
SMT Please get on the bus?
SMT+WSD I buy a ticket on the bus?
Input ���¢��
Ref. Do I need a reservation?
SMT I need a reservation?
SMT+WSD Do I need a reservation?
Input �ó�n¤��Ù h��¢�
Ref. I want to reconfirm this ticket.
SMT I would like to reconfirm a flight for this ticket.
SMT+WSD I would like to reconfirm my reservation for this ticket.
Input eLïå0£Ì��
Ref. Can I get there on foot?
SMT Is there on foot?
SMT+WSD Can I get there on foot?
Input �	æ��*¦��@å÷ë¹�
Ref. I have another appointment, so please hurry.
SMT I have an appointment for a, so please hurry.
SMT+WSD I have another appointment, so please hurry.
Input ù
w�`ýJÉ�0~�G�ï��
Ref. Excuse me. Could you tell me the way to Broadway?
SMT Could you tell me the way to Broadway? I am sorry.
SMT+WSD Excuse me, could you tell me the way to Broadway?
Input ù
w��ó��*&7�
Ref. Excuse me, I want to open an account.
SMT Excuse me, I would like to have an account.
SMT+WSD Excuse me, I would like to open an account.

The results are shown in Table 1 for IWSLT and Ta-
ble 2 for the NIST task. Paired bootstrap resampling
shows that the improvements on the NIST test set
are statistically significant at the 95% level.

Remarkably, integrating WSD predictions helps
all the very different metrics. In addition to the
widely used BLEU (Papineni et al., 2002) and NIST
(Doddington, 2002) scores, we also evaluate trans-
lation quality with the recently proposed Meteor
(Banerjee and Lavie, 2005) and four edit-distance
style metrics, Word Error Rate (WER), Position-
independent word Error Rate (PER) (Tillmann et

al., 1997), CDER, which allows block reordering
(Leusch et al., 2006), and Translation Edit Rate
(TER) (Snover et al., 2006). Note that we report
Meteor scores computed both with and without us-
ing WordNet synonyms to match translation candi-
dates and references, showing that the improvement
is not due to context-independent synonym matches
at evaluation time.

Comparison of the 1-Best decoder output with
and without the WSD feature shows that the sen-
tences differ by one or more token respectively for
25.49%, 30.40% and 29.25% of IWSLT test sets 1,
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Table 4: Translation examples with and without WSD for SMT, drawn from the NIST test set.
Input ¡	ûU®X�hÍùÖ�
SMT Without any congressmen voted against him.
SMT+WSD No congressmen voted against him.
Input Ä(fã�L�?VåÊùìTS»ý��¦ô/ä�ýÅç�
SMT Russia’s policy in Chechnya and CIS neighbors attitude is even more worried that the

United States.
SMT+WSD Russia’s policy in Chechnya and its attitude toward its CIS neighbors cause the United

States still more anxiety.
Input ó��ý�ºC¶µb�
SMT As for the U.S. human rights conditions?
SMT+WSD As for the human rights situation in the U.S.?
Input �ÂÜ/:�HBå,��s�Ac�
SMT The purpose of my visit to Japan is pray for peace and prosperity.
SMT+WSD The purpose of my visit is to pray for peace and prosperity for Japan.
Input : 2�P�;¨��Iöf¹ÇÖ�M@*	�%ÆÝ�ª½�
SMT In order to prevent terrorist activities Los Angeles, the police have taken unprecedented

tight security measures.
SMT+WSD In order to prevent terrorist activities Los Angeles, the police to an unprecedented tight

security measures.

2 and 3, and 95.74% of the NIST test set.
Tables 3 and 4 show examples of translations

drawn from the IWSLT and NIST test sets respec-
tively.

A more detailed analysis reveals WSD predic-
tions give better rankings and are more discrimi-
native than baseline translation probabilities, which
helps the final translation in three different ways.

• The rich context features help rank the correct
translation first with WSD while it is ranked
lower according to baseline translation proba-
bility scores .

• Even when WSD and baseline translation prob-
abilities agree on the top translation candidate,
the stronger WSD scores help override wrong
language model predictions.

• The strong WSD scores for phrases help the
decoder pick longer phrase translations, while
using baseline translation probabilities often
translate those phrases in smaller chunks that
include a frequent (and incorrect) translation
candidate.

For instance, the top 4 Chinese sentences in Ta-

ble 4, are better translated by the WSD-augmented
system because the WSD scores help the decoder
to choose longer phrases. In the first example,
the phrase “¡	 ûU” is correctly translated as
a whole as “No” by the WSD-augmented system,
while the baseline translates each word separately
yielding an incorrect translation. In the following
three examples, the WSD system encourages the de-
coder to translate the long phrases “ô / ä �ý
Åç”, “�ý � ºC ¶µ”, and “HB å, �
�s�Ac” as single units, while the baseline in-
troduces errors by breaking them down into shorter
phrases.

The last sentence in the table shows an example
where the WSD predictions do not help the base-
line system. The translation quality is actually much
worse, since the verb “ÇÖ” is incorrectly trans-
lated as “to”, despite the fact that the top candidate
predicted by the WSD system alone is the much bet-
ter translation “has taken”, but with a relatively low
probability of 0.509.

7 Conclusion

We have shown for the first time that integrating
multi-word phrasal WSD models into phrase-based
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SMT consistently helps on all commonly available
automated translation quality evaluation metrics on
all three different test sets from the Chinese-English
IWSLT06 text translation task, and yields statisti-
cally significant gains on the larger NIST Chinese-
English task. It is important to note that the WSD
models never hurt translation quality, and always
yield individual gains of a level that makes their in-
tegration always worthwile.

We have proposed to consistently integrate WSD
models both during training, where sense definitions
and sense-annotated data are automatically extracted
from the word-aligned parallel corpora from SMT
training, and during testing, where the phrasal WSD
probabilities are used by the SMT system just like
all the other lexical choice features.

Context features are derived from state-of-the-art
WSD models, and the evaluation is conducted on the
actual translation task, rather than intermediate tasks
such as word alignment.

It is to be emphasized that this approach does not
merely consist of adding a source sentence feature
in the log linear model for translation. On the con-
trary, it remains a real WSD task, defined just as
in the Senseval Multilingual Lexical Sample tasks
(e.g., Chklovski et al. (2004)). Our model makes use
of typical WSD features that are almost never used
in SMT systems, and requires a dynamically created
translation lexicon on a per-sentence basis.

To our knowledge this constitues the first attempt
at fully integrating state-of-the-art WSD with con-
ventional phrase-based SMT. Unlike previous ap-
proaches, the WSD targets are not only single words,
but multi-word phrases, just as in the SMT sys-
tem. This means that WSD senses are unusually
predicted not only for a limited set of single words
or very short phrases, but for all phrases of arbitrar-
ily length that are in the SMT translation lexicon.
The single word approach, as we reported in Carpuat
et al. (2006), improved BLEU and NIST scores
for phrase-based SMT, but subsequent detailed em-
pirical studies we have performed since then sug-
gest that single word WSD approaches are less suc-
cessful when evaluated under all other MT metrics
(Carpuat and Wu, 2007). Thus, fully phrasal WSD
predictions for longer phrases, as reported in this pa-
per, are particularly important to improve translation
quality.

The results reported in this paper cast new light on
the WSD vs. SMT debate, suggesting that a close
integration of WSD and SMT decisions should be
incorporated in a SMT model that successfully uses
WSD predictions. Our objective here is to demon-
strate that this technique works for the widest pos-
sible class of models, so we have chosen as the
baseline the most widely used phrase-based SMT
model. Our positive results suggest that our ex-
periments could be tried on other current statistical
MT models, especially the growing family of tree-
structured SMT models employing stochastic trans-
duction grammars of various sorts (Wu and Chiang,
2007). For instance, incorporating WSD predictions
into an MT decoder based on inversion transduction
grammars (Wu, 1997)—such as the Bracketing ITG
based models of Wu (1996), Zens et al. (2004), or
Cherry and Lin (2007)—would present an intriguing
comparison with the present work. It would also be
interesting to assess whether a more grammatically
structured statistical MT model that is less reliant
on an n-gram language model, such as the syntactic
ITG based “grammatical channel” translation model
of (Wu and Wong, 1998), could make more effective
use of WSD predictions.
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Abstract

This paper presents a tree-to-tree transduc-
tion method for text rewriting. Our model
is based on synchronous tree substitution
grammar, a formalism that allows local dis-
tortion of the tree topology and can thus
naturally capture structural mismatches. We
describe an algorithm for decoding in this
framework and show how the model can
be trained discriminatively within a large
margin framework. Experimental results on
sentence compression bring significant im-
provements over a state-of-the-art model.

1 Introduction

Recent years have witnessed increasing interest in
text-to-text generation methods for many natural
language processing applications ranging from text
summarisation to question answering and machine
translation. At the heart of these methods lies the
ability to perform rewriting operations according to
a set of prespecified constraints. For example, text
simplification identifies which phrases or sentences
in a document will pose reading difficulty for a given
user and substitutes them with simpler alternatives
(Carroll et al., 1999). Sentence compression pro-
duces a summary of a single sentence that retains the
most important information while remaining gram-
matical (Jing, 2000).

Ideally, we would like a text-to-text rewriting sys-
tem that is not application specific. Given a parallel
corpus of training examples, we should be able to
learn rewrite rules and how to combine them in order
to generate new text. A great deal of previous work
has focused on the rule induction problem (Barzilay

and McKeown, 2001; Pang et al., 2003; Lin and Pan-
tel, 2001; Shinyama et al., 2002), whereas relatively
little emphasis has been placed on the actual gen-
eration task (Quirk et al., 2004). A notable excep-
tion is sentence compression for which end-to-end
rewriting systems are commonly developed (Knight
and Marcu, 2002; Turner and Charniak, 2005; Gal-
ley and McKeown, 2007; Riezler et al., 2003; Mc-
Donald, 2006). The appeal of this task lies in its
simplified formulation as a single rewrite operation,
namely word deletion (Knight and Marcu, 2002).

Solutions to the compression task have been cast
mostly in a supervised learning setting (but see
Clarke and Lapata (2006a), Hori and Furui (2004),
and Turner and Charniak (2005) for unsupervised
methods). Rewrite rules are learnt from a parsed
parallel corpus and subsequently used to find the
best compression from the set of all possible com-
pressions for a given sentence. A common assump-
tion is that the tree structures representing long sen-
tences and their compressions are isomorphic. Con-
sequently, the models are not generally applicable
to other text rewriting problems since they cannot
readily handle structural mismatches and more com-
plex rewriting operations such as substitutions or
insertions. A related issue is that the tree structure
of the compressed sentences is often poor; most al-
gorithms delete words or constituents without pay-
ing too much attention to the structure of the com-
pressed sentence. However, without an explicit gen-
eration mechanism that allows tree transformations,
there is no guarantee that the compressions will have
well-formed syntactic structures. And it will not be
easy to process them for subsequent generation or
analysis tasks.

In this paper we present a text-to-text rewriting
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model that scales to non-isomorphic cases and can
thus naturally account for structural and lexical di-
vergences. Our approach is inspired by synchronous
tree substitution grammar (STSG, Eisner (2003))
a formalism that allows local distortion of the tree
topology. We show how such a grammar can be in-
duced from a parallel corpus and propose a large
margin model for the rewriting task which can be
viewed as a weighted tree-to-tree transducer. Our
learning framework makes use of the algorithm put
forward by Tsochantaridis et al. (2005) which ef-
ficiently learns a prediction function to minimise a
given loss function. Experiments on sentence com-
pression show significant improvements over the
state-of-the-art. Beyond sentence compression and
related text-to-text generation problems (e.g., para-
phrasing), our model is generally applicable to tasks
involving structural mapping. Examples include ma-
chine translation (Eisner, 2003) or semantic parsing
(Zettlemoyer and Collins, 2005).

2 Related Work

Knight and Marcu (2002) proposed a noisy-channel
formulation of sentence compression based on syn-
chronous context-free grammar (SCFG). The lat-
ter is a generalisation of the context-free grammar
(CFG) formalism to simultaneously produce strings
in two languages. In the case of sentence compres-
sion, the grammar rules have two right hand sides,
one corresponding to the source (long) sentence and
the other to its target compression. The synchronous
derivations are learnt from a parallel corpus and their
probabilities are estimated generatively.

Given a long sentence, l, the aim is to find the
corresponding compressed sentence, s, which max-
imises P(s)P(l|s) (here P(s) is the source model
and P(l|s) the channel model.) Modifications of this
model are reported in Turner and Charniak (2005)
and Galley and McKeown (2007) with improved re-
sults. The channel model is limited to tree deletion
and does not allow any type of tree re-organisation.

Non-isomorphic tree structures are common when
translating between languages. It is therefore not
surprising that most previous work on tree rewrit-
ing falls within the realm of machine translation.
Proposals include Eisner’s (2003) synchronous tree
substitution grammar (STSG), Melamed’s (2004)

multitext grammar, and Graehl and Knight’s (2004)
tree-to-tree transducers. Despite differences in for-
malism, all these approaches model the translation
process using tree-based probabilistic transduction
rules. The grammar induction process requires EM
training which can be computationally expensive es-
pecially if all synchronous rules are considered.

Our work formulates sentence compression in the
framework of STSG (Eisner, 2003). We propose a
novel grammar induction algorithm that does not
require EM training and is coupled with a sepa-
rate large margin training process (Tsochantaridis
et al., 2005) for weighting each rule. McDonald
(2006) also presents a sentence compression model
that uses a discriminative large margin algorithm.
However, we differ in two important respects. First,
our generation algorithm is more powerful, perform-
ing complex tree transformations, whereas McDon-
ald only considers simple word deletion. Being tree-
based, the generation algorithm is better able to pre-
serve the grammaticality of the compressed output.
Second, our model can be tuned to a wider range of
loss functions (e.g.,tree-based measures).

3 Problem Formulation

We formulate sentence compression as an instance
of the general problem of learning a mapping from
input patterns x ∈ X to discrete structured objects
y ∈ Y . Our training sample consists of a parallel
corpus of input (uncompressed) and output (com-
pressed) pairs (x1,y1) . . .(xn,yn) ∈ X × Y and our
task is to predict a target labelled tree y from a
source labelled tree x. As we describe below, y is
not precisely a target tree, but instead derivations
which generate both the source and the target tree.
We model the dependency between x and y as a
weighted STSG. Grammar rules are of the form
〈X ,Y 〉 → 〈γ,α,β〉 where γ and α are elementary
trees composed of a mixture of terminal and non-
terminals rooted with non-terminals X and Y respec-
tively, and β is a set of variable correspondences
between pairs of frontier non-terminals in γ and α.
A grammar rule specifies that we can substitute the
trees γ and α for corresponding X and Y nodes in the
source and target trees respectively. For example, the
rule:

〈NP, NP〉 → 〈[DT 1 ADJP NN 2 ]NP, [DT 1 NN 2 ]NP〉
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allows adjective phrases to be dropped from the
source tree within an NP. The indices x are used to
specify the variable correspondences, β.

Each grammar rule has a score from which the
overall score of a compression y for sentence x
can be derived. These scores are learnt discrimina-
tively using the large margin technique proposed by
Tsochantaridis et al. (2005). The synchronous rules
are combined using a chart-based parsing algorithm
(Eisner, 2003) to generate the derivation (i.e., com-
pressed tree) with the highest score.

We begin by describing our STSG generation al-
gorithm in Section 3.1. We next explain how a syn-
chronous grammar is induced from a parallel corpus
of original sentences and their compressions (Sec-
tion 3.2) and give the details of our learning frame-
work (Section 3.3).

3.1 Generation
Generation aims to find the best target tree for a
given source tree using the transformations specified
by the synchronous grammar. (We discuss how we
obtain this grammar in the following section.)

y∗ =max
y∈Y

score(x,y;w) (1)

where y ranges over all target derivations (and there-
fore trees), w is a parameter vector and score(·) is
an objective function measuring the quality of the
derivation. In common with many parsing methods,
we encounter a problem with spurious ambiguity:
i.e., there may be many derivations (sequences of
rule applications) which produce the same target
tree. Ideally we would sum up the scores over all
these derivations, however for the sake of tractability
we instead take the maximum score. This allows us
to pose the maximisation problem over derivations
rather than target trees.

The generation algorithm uses a dynamic pro-
gram defined over the constituents in the source
tree as shown in Figure 1 (see also Eisner (2003)).
The algorithm makes the assumption that the scor-
ing function decomposes with the derivation, such
that a partial score can be evaluated at each step,
i.e., score(x,y;w) = ∑r∈y score(r;w) where r are
the rules used in the derivation. This method builds
a chart of the best scoring partial derivation for
each source subtree headed by a given target non-
terminal. The inductive step is applied recursively

1: for all nodes, n, in source tree (bottom-up) do
2: for all rules, r with left side matching node, nr = n do
3: s = score(r)
4: for all variables v in r do
5: score = score+ chart[nv,cv]
6: end for
7: update chart[n,cr] with score, s, if better than current
8: end for
9: end for

10: cbest = argmaxc chart[root,c]
11: find best derivation using back-pointers from (root,cbest)

Figure 1: Generation algorithm to find the best
derivation. nr and nv are the source nodes indexed
by the rule’s source side (root and variable), while
cr and cv are the non-terminal categories of the rule’s
target side (root and variable).

is very good and includes ...

AUX RB JJ CC

VPVP

ADJP

VP

Figure 2: Example of a rule application during gen-
eration. The dashed area shows a matching rule for
the V P node.

bottom-up, and involves applying a grammar rule
to a node in the source tree. Rules with substitution
variables in their frontier are scored with reference
to the chart for the matching nodes and target non-
terminal categories. Once the process is complete,
we can read the best score from the chart cell for the
root node, and the best derivation can be constructed
by traversing back-pointers also stored in the chart.
This is illustrated in Figure 2 where the rule
〈V P,V P〉→ 〈[[isAUX ADJP 1 ]V P CC V P]V P, [isAUX NP 1 ]V P〉 is
applied to the top V P node. The score of the result-
ing tree would reference the chart to calculate the
score for the best target tree at the ADJP node with
syntactic category NP.

3.2 Grammar Induction

Our induction algorithm automatically finds gram-
mar rules from a word-aligned parsed parallel cor-
pus. The rules are pairs of elementary trees (i.e., tree
fragments) whose leaf nodes are linked by the word
alignments. These leaves can be either terminal or
non-terminal symbols. Initially, the algorithm ex-
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tracts tree pairs from word aligned text by choos-
ing aligned constituents in the source and the tar-
get. These pairs are then generalised using subtrees
which are also extracted, resulting in synchronous
rules with variable nodes. The set of aligned tree
pairs are extracted using the alignment template
method (Och and Ney, 2004), constrained to syntac-
tic constituent pairs:

C = {(nS,nT ), (∃(s, t) ∈ A ∧ s ∈ Y (nS)∧ t ∈ Y (nT ))∧
(@(s, t) ∈ A ∧ (s ∈ Y (nS)Y t ∈ Y (nT )))}

where nS and nT are source and target tree nodes
(subtrees), A = {(s, t)} is the set of word alignments
(pairs of word-indices), Y (·) returns the yield span
for a subtree and Y is the exclusive-or operator.

The next step is to generalise the candidate pairs
by replacing subtrees with variable nodes. We could
fully trust the word alignments and adopt a strat-
egy in which the rules are generalised as much as
possible and thus include little lexicalisation. Fig-
ure 3 shows a simple sentence pair and the result-
ing synchronous rules according to this generalisa-
tion strategy. Alternatively, we could extract every
possible rule by including unlexicalised rules, lexi-
calised rules and their combination. The downside
here is that the total number of possible rules is fac-
torial in the size of the candidate set. We address this
problem by limiting the number of variables and the
recursion depth, and by filtering out singleton rules.

There is no guarantee that the induced rules will
generalise well to a testing set. For example, the test-
ing data may have a rule which was not seen in the
training set (e.g., a new terminal or non terminal).
In this case no rule can be applied and subsequently
generation fails. For this reason we allow the model
to duplicate any CFG production from the source
tree, and uses a feature to flag that this rule was un-
seen in training. These SCFG rules are then merged
with the induced rules and fed into the feature detec-
tion module (see Section 3.3 for details).

3.3 The Large Margin Model

We now describe how the parameters of our STSG
generation system are fit to a supervised training set.
For a given source tree, the space of sister target
trees implied by the synchronous grammar is often
very large, and the majority of these trees are un-
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〈S,S〉 → 〈[NP 1 V P 2 . 3 ]S, [NP 1 V P 2 . 3 ]S〉
〈NP,NP〉 → 〈[DT NN 1 ]NP, [NN 1 ]NP〉
〈NN,NN〉 → 〈documentationNN ,DocumentationNN〉
〈V P,V P〉 → 〈V P 1 CC V P,V P 1 〉
〈V P,V P〉 → 〈AUX 1 ADJP 2 ,AUX 1 ADJP 2 〉

〈AUX ,AUX〉 → 〈isAUX , isAUX 〉
〈ADJP,ADJP〉 → 〈[RB 1 JJ 2 ]ADJP, [RB 1 JJ 2 ]ADJP〉

〈RB,RB〉 → 〈veryRB,veryRB〉
〈JJ,JJ〉 → 〈goodADJ ,goodADJ〉

〈., .〉 → 〈.., ..〉

Figure 3: Induced synchronous grammar from a sen-
tence pair using a strategy that extracts general rules.

grammatical or are poor compressions. The train-
ing procedure learns weights such that the model
can discriminate between these trees and predict a
good target tree. For this we develop a discriminative
training process which learns a weighted tree-to-tree
transducer. Our model is based on Tsochantaridis et
al.’s (2005) framework for learning Support Vector
Machines (SVMs) with structured output spaces, us-
ing the SVMstruct implementation.1 We briefly sum-
marise the approach below; for a more detailed de-
scription we refer the interested reader to Tsochan-
taridis et al. (2005).

Traditionally SVMs learn a linear classifier that
separates two or more classes with the largest pos-
sible margin. Analogously, structured SVMs at-
tempt to separate the correct structure from all other

1http://svmlight.joachims.org/svm struct.html
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structures with a large margin. Given an input in-
stance x, we search for the optimum output y under
the assumption that x and y can be adequately de-
scribed using a combined feature vector representa-
tion Ψ(x,y). Recall that x are the source trees and y
are synchronous derivations which generate both x
and a target tree.

f (x;w) = argmax
y∈Y

〈w,Ψ(x,y)〉 (2)

The goal of the training procedure is to find a param-
eter vector w such that it satisfies the condition:

∀i,∀y ∈ Y \yi : 〈w,Ψ(xi,yi)−Ψ(xi,y)〉 ≥ 0 (3)

where xi,yi are the ith training source tree and tar-
get derivation. To obtain a unique solution — there
will be several parameter vectors w satisfying (3)
if the training instances are linearly separable —
Tsochantaridis et al. (2005) select the w that max-
imises the minimum distance between yi and the
closest runner-up structure.

The framework also incorporates a loss function.
This property is particularly appealing in the context
of sentence compression and generally text-to-text
generation. For example, a compression that differs
from the gold standard with respect to one or two
words should be treated differently from a compres-
sion that bears no resemblance to it. Another impor-
tant factor is the length of the compression. Com-
pressions whose length is similar to the gold stan-
dard should be be preferable to longer or shorter
output. A loss function ∆(yi,y) quantifies the accu-
racy of prediction y with respect to the true output
value yi. We give details of the loss functions we
employed for the compression task below.

We are now ready to state the learning objective
for the structured SVM. We use the soft-margin for-
mulation which allows errors in the training set, via
the slack variables ξi:

min
w,ξ

1
2
||w||2 +

C
n

n

∑
i=1

ξi, ξi ≥ 0 (4)

∀i,∀y ∈ Y \yi : 〈w,δΨ(y)〉 ≥ 1− ξi

∆(yi,y)

Slack variables ξi are introduced here for each train-
ing example xi, C is a constant that controls the
trade-off between training error minimisation and

margin maximisation, and δΨ(y) is a shorthand for
Ψ(xi,yi)−Ψ(xi,y) (see (3)). Note that slack vari-
ables are rescaled with the inverse loss incurred in
each of the linear constraints.2

The optimisation problem in (4) is approximated
using a polynomial time cutting plane algorithm
(Tsochantaridis et al., 2005). This optimisation cru-
cially relies on finding the constraint incurring the
maximum cost. The cost function for slack rescaling
can be formulated as:

H(y) = (1−〈δΨi(y),w〉)∆(yi,y) (5)

In order to adapt this framework to our genera-
tion problem, we must provide the feature map-
ping Ψ(x,y), a loss function ∆(yi,y), and a max-
imiser ŷ = argmaxy∈Y H(y) (see (5)). The following
sections describe how these are instantiated in the
sentence compression task.

Feature Mapping We devised a general feature
set suitable for compression and paraphrasing. Our
feature space is defined over source trees (x) and
target derivations (y). All features apply to a single
grammar rule; a feature vector for a derivation is ex-
pressed as the sum of the feature vectors for each
rule in this derivation.

We make use of syntactic, lexical, and com-
pression specific features. Our simplest syntac-
tic feature is the identity of a synchronous rule.
Specifically, we record its source tree, its target
tree and their combination. We also include rule
frequencies φ(target|source), φ(source|target) and
φ(source, target). Another feature records the fre-
quencies of the CFG productions used in the tar-
get side of a rule. This allows the model to learn
the weights of a CFG generation grammar, as a
proxy for a language model. Using scores from a
pre-trained CFG grammar or an n-gram language
model might be preferable when the training sample
is small, however we leave this as future work. Our
last syntactic feature keeps track of the source root
and the target root non-terminals. Our lexical fea-
tures contain the list of tokens in the source yield,
target yield, and both. We also use words as features.

2Alternatively, the loss function can be used to rescale the
margin. This approach is less desirable as it is not scale invari-
ant (Tsochantaridis et al., 2005). We also found empirically that
slack-rescaling slightly outperforms margin rescaling on our
compression task.
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Finally, we have implemented a set of
compression-specific features. These include a
feature that detects if the yield of the target side
of a synchronous rule is a subset of the yield of
its source. We also take note of the edit operations
(i.e., removal, insertion) required to transform the
source side into the target. Edit operations are
recorded separately for trees and their yields. In
order to encourage compression, we also count the
number of words on the target, the number of rules
used in the derivation and the number of dropped
variables.

Loss Functions The large margin configuration
sketched above is quite modular and in theory a wide
range of loss functions could be specified. Examples
include edit-distance, precision, F-score, BLEU and
tree-based measures. In practice, the loss function
should be compatible with our maximisation algo-
rithm which requires the objective function to de-
compose along the same lines as the tree derivation.3

Given this restriction, we define a loss based
on position-independent unigram precision (Prec)
which penalises errors in the yield independently
for each word. Although fairly intuitive, this loss
is far from ideal. First, it maximally rewards re-
peatedly predicting the same word if the latter is
in the reference target tree. Secondly, it may bias
towards overly short output which drops core in-
formation — one-word compressions will tend to
have higher precision than longer output. To coun-
teract this, we introduce two brevity penalty mea-
sures (BP) inspired by BLEU (Papineni et al., 2002)
which we incorporate into the loss function, using a
product, loss = 1−Prec ·BP:

BP1 = exp(1−max(1,
r
c
)) (6)

BP2 = exp(1−max(
c
r
,

r
c
))

where r is the reference length and c is the candidate
length.

BP1 is asymmetric, it has value one when c ≥ r
and decays to zero when c < r. Note that precision
should decay when c > r as extra output will often
not match the reference. BP2 is two-sided: it has

3Optimising non-decompositional loss functions compli-
cates the objective function, which then cannot be solved ef-
ficiently using a dynamic program.

value one when c = r and decays towards zero for
c < r and c > r. In both cases, brevity is assessed
against the gold standard target (not the source) to
allow the system to learn the correct degree of com-
pression from the training data.

Maximisation Algorithm Our algorithm finds the
maximising derivation for H(y) in (5). This deriva-
tion will have a high loss and a high score under the
model, and therefore represents the most-violated
constraint which is then added to the SVM’s work-
ing set of constraints (see (4)).

The standard generation method from Section 3.1
cannot be used without modification to find the best
scoring derivation since it does not account for the
loss function or the gold standard derivation. In-
stead, we stratify the generation chart with the num-
ber of true and false positive tokens predicted, as de-
scribed in Joachims (2005). These contingency val-
ues allow us to compute the precision and brevity
penalty (see (6)) for each complete derivation. This
is then combined with the derivation score and the
gold standard derivation score to give H(y).

The gold standard derivation features, Ψ(xi,yi),
must be calculated from a derivation linking the
source tree to the gold target tree. As there may
be many such derivations, we find a unique deriva-
tion using the smallest rules possible (for maximum
generality). This is done using a dynamic program,
similar to the inside-outside algorithm used in pars-
ing. Other strategies are also possible, however we
leave this to future work. Finally, we can find the
global maximum H(y) by maximising over all the
root chart entries.

4 Evaluation Set-up

In this section we present our experimental set-up
for assessing the performance of the max margin
model described above. We give details of the cor-
pora used, briefly introduce McDonald’s (2006) sen-
tence compression model used for comparison with
our approach, and explain how system output was
evaluated.

Corpora We evaluated our system on two dif-
ferent corpora. The first is the compression cor-
pus of Knight and Marcu (2002) derived automati-
cally from the document-abstract pairs of the Ziff-
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Davis corpus. Previous compression work has al-
most exclusively used this corpus. Our experiments
follow Knight and Marcu’s partition of training, test,
and development sets (1,002/36/12 instances). We
also present results on Clarke and Lapata’s (2006a)
Broadcast News corpus.4 This corpus was created
manually (annotators were asked to produce com-
pressions for 50 Broadcast news stories) and poses
more of a challenge than Ziff-Davis. Being a speech
corpus, it often contains incomplete and ungram-
matical utterances and speech artefacts such as dis-
fluencies, false starts and hesitations. Furthermore,
spoken utterances have varying lengths, some are
very wordy whereas others cannot be reduced any
further. Thus a hypothetical compression system
trained on this domain should be able to leave some
sentences uncompressed. Again we used Clarke and
Lapata’s training, test, and development set split
(882/410/78 instances).

Comparison with State-of-the-art We evaluated
our approach against McDonald’s (2006) discrimi-
native model. This model is a good basis for compar-
ison for several reasons. First, it achieves compet-
itive performance with Knight and Marcu’s (2002)
decision tree and noisy channel models. Second, it
also uses large margin learning. Sentence compres-
sion is formulated as a string-to-substring mapping
problem with a deletion-based Hamming loss. Re-
call that our formulation involves a tree-to-tree map-
ping. Third, it uses a feature space complementary to
ours. For example features are defined between ad-
jacent words, and syntactic evidence is incorporated
indirectly into the model. In contrast our model re-
lies on synchronous rules to generate valid compres-
sions and does not explicitly incorporate adjacency
features. We used an implementation of McDonald
(2006) for comparison of results (Clarke and Lapata,
2007).

Evaluation Measures In line with previous work
we assessed our model’s output by eliciting hu-
man judgements. Participants were presented with
an original sentence and its compression and asked
to rate the latter on a five point scale based on the in-
formation retained and its grammaticality. We con-
ducted two separate elicitation studies, one for the

4The corpus can be downloaded from http://homepages.
inf.ed.ac.uk/s0460084/data/.

O: I just wish my parents and my other teachers could
be like this teacher, so we could communicate.

M: I wish my teachers could be like this teacher.
S: I wish my teachers could be like this, so we could

communicate.
G: I wish my parents and other teachers could be like

this, so we could communicate.
O: Earlier this week, in a conference call with analysts,

the bank said it boosted credit card reserves by $350
million.

M: Earlier said credit card reserves by $350 million.
S: In a conference call with analysts, the bank boosted

card reserves by $350 million.
G: In a conference call with analysts the bank said it

boosted credit card reserves by $350 million.

Table 1: Compression examples from the Broadcast
news corpus (O: original sentence, M: McDonald
(2006), S: STSG, G: gold standard)

Ziff-Davis and one for the Broadcast news dataset.
In both cases our materials consisted of 96 source-
target sentences. These included gold standard com-
pressions and the output of our system and Mc-
Donald’s (2006). We were able to obtain ratings on
the entire Ziff-Davis test set as it has only 32 in-
stances; this was not possible for Broadcast news
as the test section consists of 410 instances. Conse-
quently, we randomly selected 32 source-target sen-
tences to match the size of the Ziff-Davis test set.5

We collected ratings from 60 unpaid volunteers, all
self reported native English speakers. Both studies
were conducted over the Internet. Examples of our
experimental items are given in Table 1.

We also report results using F1 computed over
grammatical relations (Riezler et al., 2003). We
chose F1 (as opposed to accuracy or edit distance-
based measures) as Clarke and Lapata (2006b) show
that it correlates reliably with human judgements.

5 Experiments

The framework presented in Section 3 is quite flex-
ible. Depending on the grammar induction strategy,
choice of features, loss function and maximisation
algorithm, different classes of models can be de-
rived. Before presenting our results in detail we dis-
cuss the specific model employed in our experiments
and explain how its parameters were instantiated.

In order to build a compression model we need

5A Latin square design ensured that subjects did not see two
different compressions of the same sentence.
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Figure 4: Compression rate vs. grammatical rela-
tions F1 using unigram precision alone and in com-
bination with two brevity penalties.

a parallel corpus of syntax trees. We obtained syn-
tactic analyses for source and target sentences with
Bikel’s (2002) parser. Our corpora were automat-
ically aligned with Giza++ (Och et al., 1999) in
both directions between source and target and sym-
metrised using the intersection heuristic (Koehn et
al., 2003). Each word in the lexicon was also aligned
with itself. This was necessary in order to inform
Giza++ about word identity. Unparseable sentences
and those longer than 50 tokens were removed from
the data set.

We induced a synchronous tree substitution gram-
mar from the Ziff-Davis and Broadcast news cor-
pora using the method described in Section 3.2. We
extracted all maximally general synchronous rules.
These were complemented with more specific rules
from conjoining pairs of general rules. The specific
rules were pruned to remove singletons and those
rules with more than 3 variables. Grammar rules
were represented by the features described in Sec-
tion 3.3.

An important parameter for our compression task
is the appropriate choice of loss function. Ideally, we
would like a loss function that encourages compres-
sion without overly aggressive information loss. Fig-
ure 4 plots compression rate against grammatical re-
lations F1 using each of the loss functions presented
in Section 3.3 on the Ziff-Davis development set.6

As can be seen with unigram precision alone (Prec)

6We obtained a similar plot for the Broadcast News corpus
but omit it due to lack of space.

Ziff-Davis CompR RelF1
McDonald06 66.2 45.8
STSG 56.8 54.3
Gold standard 57.2 —

Broadcast News CompR RelF1
McDonald06 68.6 47.6
STSG 73.7 53.4∗

Gold standard 76.1 —

Table 2: Results using grammatical relations F1
(∗: sig. diff. from McDonald06; p < 0.01 using the
Student t test)

the system produces overly short output, whereas
the one-sided brevity penalty (BP1) achieves the op-
posite effect. The two-sided brevity penalty (BP2)
seems to strike the right balance: it encourages com-
pression while achieving good F-scores. This sug-
gests that important information is retained in spite
of significant compression. We also varied the regu-
larisation parameter C (see (4)) over a range of val-
ues on the development set and found that setting it
to 0.01 yields overall good performance across cor-
pora and loss functions.

We now present our results on the test set. These
were obtained with a model that uses slack rescal-
ing and a precision-based loss function with a two-
sided brevity penalty (C = 0.01). Table 2 shows the
average compression rates (CompR) for McDonald
(2006) and our model (STSG) as well as their perfor-
mance according to grammatical relations F1. The
row ‘Gold standard’ displays human-produced com-
pression rates. Notice that our model obtains com-
pression rates similar to the gold standard, whereas
McDonald tends to compress less on Ziff-Davis and
more on Broadcast news. As far as F1 is concerned,
we see that STSG outperforms McDonald on both
corpora. The difference in F1 is statistically signifi-
cant on Broadcast news but not on Ziff-Davis (which
consists solely of 32 sentences).

Table 3 presents the results of our elicitation
study. We carried out an Analysis of Variance
(ANOVA) to examine the effect of system type (Mc-
Donald06, STSG, Gold standard) on the compres-
sion ratings. The ANOVA revealed a reliable effect
on both corpora. We used post-hoc Tukey tests to
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Model Ziff-Davis Broadcast news
McDonald06 2.82† 2.16†

STSG 3.20†∗ 2.63∗

Gold standard 3.72 3.05

Table 3: Mean ratings on compression output
elicited by humans (∗: sig. diff. from McDon-
ald06 (α < 0.05); † sig. diff. from Gold standard
(α < 0.01); using post-hoc Tukey tests)

examine whether the mean ratings for each sys-
tem differed significantly. The Tukey tests showed
that STSG is perceived as significantly better than
McDonald06. There is no significant difference be-
tween STSG and the gold standard compressions on
the Broadcast news; both systems are significantly
worse than the gold standard on Ziff-Davis.

These results are encouraging, indicating that our
highly expressive framework is a good model for
sentence compression. Under several experimental
conditions we obtain better performance than previ-
ous work. Importantly, the model described here is
not compression-specific, it could be easily adapted
to other tasks, corpora or languages (for which
syntactic analysis tools are available). Being su-
pervised, our model learns to fit the compression
rate of the training data. In this sense, it is some-
what inflexible as it cannot easily adapt to a spe-
cific rate given by a user or imposed by an appli-
cation (e.g., when displaying text on small screens).
Compression rate can be indirectly manipulated by
adopting loss functions that encourage or discourage
compression (see Figure 4), but admittedly in other
frameworks (e.g., Clarke and Lapata (2006a)) the
length of the compression can be influenced more
naturally.

In our formulation of the compression problem,
a derivation is characterised by a single inventory
of features. This entails that the feature space can-
not in principle distinguish between derivations that
use the same rules, applied in a different order. Al-
though, this situation does not arise often in our
dataset, we believe that it can be ameliorated by in-
tersecting a language model with our generation al-
gorithm (Chiang, 2005).

6 Conclusions and Future Work

In this paper we have presented a novel method
for sentence compression cast in the framework of
structured learning. We develop a system that gener-
ates compressions using a synchronous tree substi-
tution grammar whose weights are discriminatively
trained within a large margin model. We also de-
scribe an appropriate algorithm than can be used in
both training (i.e., learning the model weights) and
decoding (i.e., finding the most plausible compres-
sion under the model). The proposed formulation al-
lows us to capture rewriting operations that go be-
yond word deletion and can be easily tuned to spe-
cific loss functions directly related to the problem at
hand. We empirically evaluate our approach against
a state-of-the art model (McDonald, 2006) and show
performance gains on two compression corpora.

Future research will follow three directions. First,
we will extend the framework to incorporate po-
sition dependent loss functions. Examples include
the Hamming distance or more sophisticated func-
tions that take the tree structure of the source and
target sentences into account. Such functions can
be supported by augmenting our generation algo-
rithm with a beam search. Secondly, the present pa-
per used a relatively simple feature set. Our inten-
tion was to examine our model’s performance with-
out extensive feature engineering. Nevertheless, im-
provements should be possible by incorporating fea-
tures defined over n-grams and dependencies (Mc-
Donald, 2006). Finally, the experiments presented
in this work use a grammar acquired from the train-
ing corpus. However, there is nothing inherent in our
formalisation that restricts us to this particular gram-
mar. We therefore plan to investigate the potential
of our method with unsupervised or semi-supervised
grammar induction techniques for additional rewrit-
ing tasks including paraphrase generation and ma-
chine translation.
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Abstract

Many emerging applications require doc-
uments to be repeatedly updated. Such
documents include newsfeeds, webpages,
and shared community resources such as
Wikipedia. In this paper we address the
task of inserting new information into exist-
ing texts. In particular, we wish to deter-
mine the best location in a text for a given
piece of new information. For this process
to succeed, the insertion algorithm should
be informed by the existing document struc-
ture. Lengthy real-world texts are often hier-
archically organized into chapters, sections,
and paragraphs. We present an online rank-
ing model which exploits this hierarchical
structure – representationally in its features
and algorithmically in its learning proce-
dure. When tested on a corpus of Wikipedia
articles, our hierarchically informed model
predicts the correct insertion paragraph more
accurately than baseline methods.

1 Introduction

Many emerging applications require documents to
be repeatedly updated. For instance, newsfeed ar-
ticles are continuously revised by editors as new in-
formation emerges, and personal webpages are mod-
ified as the status of the individual changes. This re-
vision strategy has become even more prevalent with
the advent of community edited web resources, the
most notable example being Wikipedia. At present
this process involves massive human effort. For in-
stance, the English language version of Wikipedia

averaged over 3 million edits1 per month in 2006.
Even so, many articles quickly become outdated.
A system that performs such updates automatically
could drastically decrease maintenance efforts and
potentially improve document quality.

Currently there is no effective way to automati-
cally update documents as new information becomes
available. The closest relevant text structuring tech-
nique is the work on sentence ordering, in which a
complete reordering of the text is undertaken. Pre-
dictably these methods are suboptimal for this new
task because they cannot take advantage of existing
text structure.

We introduce an alternative vision of text struc-
turing as a process unfolding over time. Instead of
ordering sentences all at once, we start with a well-
formed draft and add new information at each stage,
while preserving document coherence. The basic
operation of incremental text structuring is the inser-
tion of new information. To automate this process,
we develop a method for determining the best loca-
tion in a text for a given piece of new information.

The main challenge is to maintain the continuity
and coherence of the original text. These proper-
ties may be maintained by examining sentences ad-
jacent to each potential insertion point. However, a
local sentence comparison method such as this may
fail to account for global document coherence (e.g.
by allowing the mention of some fact in an inappro-
priate section). This problem is especially acute in
the case of lengthy, real-world texts such as books,
technical reports, and web pages. These documents

1http://stats.wikimedia.org/EN/
TablesWikipediaEN.htm
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are commonly organized hierarchically into sections
and paragraphs to aid reader comprehension. For
documents where hierarchical information is not ex-
plicitly provided, such as automatic speech tran-
scripts, we can use automatic segmentation methods
to induce such a structure (Hearst, 1994). Rather
than ignoring the inherent hierarchical structure of
these texts, we desire to directly model such hierar-
chies and use them to our advantage – both repre-
sentationally in our features and algorithmically in
our learning procedure.

To achieve this goal, we introduce a novel method
for sentence insertion that operates over a hierarchi-
cal structure. Our document representation includes
features for each layer of the hierarchy. For ex-
ample, the word overlap between the inserted sen-
tence and a section header would be included as an
upper-level section feature, whereas a comparison
of the sentence with all the words in a paragraph
would be a lower-level paragraph feature. We pro-
pose a linear model which simultaneously considers
the features of every layer when making insertion
decisions. We develop a novel update mechanism
in the online learning framework which exploits the
hierarchical decomposition of features. This mecha-
nism limits model updates to those features found at
the highest incorrectly predicted layer, without un-
necessarily disturbing the parameter values for the
lower reaches of the tree. This conservative update
approach maintains as much knowledge as possible
from previously encountered training examples.

We evaluate our method using real-world data
where multiple authors have revised preexisting doc-
uments over time. We obtain such a corpus from
Wikipedia articles,2 which are continuously updated
by multiple authors. Logs of these updates are pub-
licly available, and are used for training and testing
of our algorithm. Figure 1 shows an example of a
Wikipedia insertion. We believe this data will more
closely mirror potential applications than synthetic
collections used in previous work on text structur-
ing.

Our hierarchical training method yields signifi-
cant improvement when compared to a similar non-
hierarchical model which instead uses the standard

2Data and code used in this paper are available at
http://people.csail.mit.edu/edc/emnlp07/

perceptron update of Collins (2002). We also report
human performance on the insertion task in order to
provide a reasonable upper-bound on machine per-
formance. An analysis of these results shows that
our method closes the gap between machine and hu-
man performance substantially.

In the following section, we provide an overview
of existing work on text structuring and hierarchi-
cal learning. Then, we define the insertion task and
introduce our hierarchical ranking approach to sen-
tence insertion. Next, we present our experimental
framework and data. We conclude the paper by pre-
senting and discussing our results.

2 Related Work

Text Structuring The insertion task is closely re-
lated to the extensively studied problem of sentence
ordering.3 Most of the existing algorithms repre-
sent text structure as a linear sequence and are driven
by local coherence constraints (Lapata, 2003; Kara-
manis et al., 2004; Okazaki et al., 2004; Barzi-
lay and Lapata, 2005; Bollegala et al., 2006; El-
sner and Charniak, 2007). These methods induce
a total ordering based on pairwise relations between
sentences. Researchers have shown that identifying
precedence relations does not require deep semantic
interpretation of input sentences: shallow distribu-
tional features are sufficient for accurate prediction.
Our approach employs similar features to represent
nodes at the lowest level of the hierarchy.

The key departure of our work from previous re-
search is the incorporation of hierarchical structure
into a corpus-based approach to ordering. While in
symbolic generation and discourse analysis a text is
typically analyzed as a tree-like structure (Reiter and
Dale, 1990), a linear view is prevalent in data-driven
methods to text structuring.4 Moving beyond a lin-
ear representation enables us to handle longer texts
where a local view of coherence does not suffice. At
the same time, our approach does not require any
manual rules for handling tree insertions, in contrast
to symbolic text planners.

3Independently and simultaneously with our work, Elsner
and Charniak (2007) have studied the sentence insertion task in
a different setting.

4Though statistical methods have been used to induce such
trees (Soricut and Marcu, 2003), they are not used for ordering
and other text-structuring tasks.
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  Shaukat Aziz (born March 6, 1949, Karachi, Pakistan) has been the Finance Minister of Pakistan since November 1999.

  He was nominated for the position of Prime Minister after the resignation of Zafarullah Khan Jamali on June 6, 2004.

Education
  

  Aziz attended Saint Patrick’s school, Karachi and Abbottabad Public School.  He graduated with a Bachelor of Science degree

  from Gordon College, Rawalpindi, in 1967.  He obtained an MBA Degree in 1969 from the Institute of Business

  Administration, Karachi.

Career
  

  In November, 1999, Mr. Aziz became Pakistan’s Minister of Finance.  As Minister of finance, Mr. Aziz also heads the

  Economic Coordination Committee of the Cabinet, and the Cabinet Committee on Privatization.
  

  Mr. Aziz was named as Prime Minister by interim Prime Minister Chaudhry Shujaat Hussain after the resignation of Zafarullah

  Khan Jamali on June 6, 2004.  He is expected to retain his position as Minister of Finance.

In 2001, Mr Aziz was declared ’Finance Minister of the Year’ by

Euromoney and Banker’s Magazine.

Figure 1: An example of Wikipedia insertion.

Hierarchical Learning There has been much re-
cent research on multiclass hierarchical classifica-
tion. In this line of work, the set of possible la-
bels is organized hierarchically, and each input must
be assigned a node in the resulting tree. A pro-
totype weight vector is learned for each node, and
classification decisions are based on all the weights
along the path from node to root. The essence of
this scheme is that the more ancestors two nodes
have in common, the more parameters they are
forced to share. Many learning methods have been
proposed, including SVM-style optimization (Cai
and Hofmann, 2004), incremental least squares es-
timation (Cesa-Bianchi et al., 2006b), and percep-
tron (Dekel et al., 2004).

This previous work rests on the assumption that a
predetermined set of atomic labels with a fixed hi-
erarchy is given. In our task, however, the set of
possible insertion points – along with their hierar-
chical organization – is unique to each input docu-
ment. Furthermore, nodes exhibit rich internal fea-
ture structure and cannot be identified across docu-
ments, except insofar as their features overlap. As
is commonly done in NLP tasks, we make use of a
feature function which produces one feature vector
for each possible insertion point. We then choose
among these feature vectors using a single weight
vector (casting the task as a structured ranking prob-
lem rather than a classification problem). In this
framework, an explicit hierarchical view is no longer
necessary to achieve parameter tying. In fact, each
parameter will be shared by exactly those insertion

points which exhibit the corresponding feature, both
across documents and within a single document.
Higher level parameters will thus naturally be shared
by all paragraphs within a single section.

In fact, when the perceptron update rule of (Dekel
et al., 2004) – which modifies the weights of every
divergent node along the predicted and true paths –
is used in the ranking framework, it becomes virtu-
ally identical with the standard, flat, ranking percep-
tron of Collins (2002).5 In contrast, our approach
shares the idea of (Cesa-Bianchi et al., 2006a) that
“if a parent class has been predicted wrongly, then
errors in the children should not be taken into ac-
count.” We also view this as one of the key ideas
of the incremental perceptron algorithm of (Collins
and Roark, 2004), which searches through a com-
plex decision space step-by-step and is immediately
updated at the first wrong move.

Our work fuses this idea of selective hierarchical
updates with the simplicity of the perceptron algo-
rithm and the flexibility of arbitrary feature sharing
inherent in the ranking framework.

3 The Algorithm

In this section, we present our sentence inser-
tion model and a method for parameter estima-
tion. Given a hierarchically structured text com-
posed of sections and paragraphs, the sentence in-
sertion model determines the best paragraph within

5The main remaining difference is that Dekel et al. (2004)
use a passive-aggressive update rule (Crammer et al., 2006) and
in doing so enforce a margin based on tree distance.
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which to place the new sentence. To identify the
exact location of the sentence within the chosen
paragraph, local ordering methods such as (Lapata,
2003) could be used. We formalize the insertion task
as a structured ranking problem, and our model is
trained using an online algorithm. The distinguish-
ing feature of the algorithm is a selective correction
mechanism that focuses the model update on the rel-
evant layer of the document’s feature hierarchy.

The algorithm described below can be applied to
any hierarchical ranking problem. For concreteness,
we use the terminology of the sentence insertion
task, where a hierarchy corresponds to a document
with sections and paragraphs.

3.1 Problem Formulation

In a sentence insertion problem, we are
given a training sequence of instances
(s1, T 1, `1), . . . , (sm, T m, `m). Each instance
contains a sentence s, a hierarchically structured
document T , and a node ` representing the correct
insertion point of s into T . Although ` can generally
be any node in the tree, in our problem we need
only consider leaf nodes. We cast this problem in
the ranking framework, where a feature vector is as-
sociated with each sentence-node pair. For example,
the feature vector of an internal, section-level node
may consider the word overlap between the inserted
sentence and the section title. At the leaf level,
features may include an analysis of the overlap
between the corresponding text and sentence. In
practice, we use disjoint feature sets for different
layers of the hierarchy, though in theory they could
be shared.

Our goal then is to choose a leaf node by taking
into account its feature vector as well as feature vec-
tors of all its ancestors in the tree.

More formally, for each sentence s and hierarchi-
cally structured document T , we are given a set of
feature vectors, with one for each node: {φ(s, n) :
n ∈ T }. We denote the set of leaf nodes by L(T )
and the path from the root of the tree to a node n
by P(n). Our model must choose one leaf node
among the set L(T ) by examining its feature vec-
tor φ(s, `) as well as all the feature vectors along its
path: {φ(s, n) : n ∈ P(`)}.

Input : (s1, T 1, `1), . . . , (sm, T m, `m).
Initialize : Set w1 = 0
Loop : For t = 1, 2, ..., N :

1. Get a new instance st, T t.
2. Predict ˆ̀t = arg max`∈L(T ) wt · Φ(st, `).
3. Get the new label `t.
4. If ˆ̀t = `t:

wt+1 ← wt

Else:
i∗ ← max{i : P(`t)i = P(ˆ̀t)i}
a ← P(`t)i∗+1

b ← P(ˆ̀t)i∗+1

wt+1 ← wt + φ(s, a)− φ(s, b)

Output : wN+1.

Figure 2: Training algorithm for the hierarchical
ranking model.

3.2 The Model

Our model consists of a weight vector w, each
weight corresponding to a single feature. The fea-
tures of a leaf are aggregated with the features of all
its ancestors in the tree. The leaf score is then com-
puted by taking the inner product of this aggregate
feature vector with the weights w. The leaf with the
highest score is then selected.

More specifically, we define the aggregate feature
vector of a leaf ` to be the sum of all features found
along the path to the root:

Φ(s, `) =
∑

n∈P(`)

φ(s, n) (1)

This has the effect of stacking together features
found in a single layer, and adding the values of fea-
tures found at more than one layer.

Our model then outputs the leaf with the highest
scoring aggregate feature vector:

arg max
`∈L(T )

w · Φ(s, `) (2)

Note that by using this criterion, our decoding
method is equivalent to that of the standard linear
ranking model. The novelty of our approach lies in
our training algorithm which uses the hierarchical
feature decomposition of Equation 1 to pinpoint its
updates along the path in the tree.
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Figure 3: An example of a tree with the correspond-
ing model scores. The path surrounded by solid lines
leads to the correct node `1. The path surrounded by
dotted lines leads to `3, the predicted output based
on the current model.

3.3 Training

Our training procedure is implemented in the online
learning framework. The model receives each train-
ing instance, and predicts a leaf node according to its
current parameters. If an incorrect leaf node is pre-
dicted, the weights are updated based on the diver-
gence between the predicted path and the true path.
We trace the paths down the tree, and only update
the weights of the features found at the split point.
Updates for shared nodes along the paths would of
course cancel out. In contrast to the standard rank-
ing perceptron as well as the hierarchical perceptron
of (Dekel et al., 2004), no features further down the
divergent paths are incorporated in the update. For
example, if the model incorrectly predicts the sec-
tion, then only the weights of the section features
are updated whereas the paragraph feature weights
remain untouched.

More formally, let ˆ̀be the predicted leaf node and
let ` 6= ˆ̀be the true leaf node. Denote by P(`)i the
ith node on the path from the root to `. Let i∗ be
the depth of the lowest common ancestor of ` and

ˆ̀ (i.e., i∗ = max{i : P(`)i = P(ˆ̀)i}). Then the
update rule for this round is:

w ← w + φ
(
s,P(`)i∗+1

)
− φ

(
s,P(ˆ̀)i∗+1

)
(3)

Full pseudo-code for our hierarchical online training
algorithm is shown in Figure 2.

We illustrate the selective update mechanism on
the simple example shown on Figure 3. The cor-
rect prediction is the node `1 with an aggregate path
score of 5, but `3 with the higher score of 6 is pre-
dicted. In this case, both the section and the para-
graph are incorrectly predicted. In response to this
mistake, the features associated with the correct sec-
tion, n2, are added to the weights, and the features of
the incorrectly predicted section, n3, are subtracted
from the weights. An alternative update strategy
would be to continue to update the feature weights
of the leaf nodes, `1 and `3. However, by identifying
the exact source of path divergence we preserve the
previously learned balance between leaf node fea-
tures.

4 Features

Features used in our experiments are inspired by
previous work on corpus-based approaches for dis-
course analysis (Marcu and Echihabi, 2002; Lapata,
2003; Elsner et al., 2007). We consider three types
of features: lexical, positional, and temporal. This
section gives a general overview of these features
(see code for further details.)

Lexical Features Lexical features have been
shown to provide strong cues for sentence position-
ing. To preserve text cohesion, an inserted sentence
has to be topically close to its surrounding sentences.
At the paragraph level, we measure topical over-
lap using the TF*IDF weighted cosine similarity be-
tween an inserted sentence and a paragraph. We also
use a more linguistically refined similarity measure
that computes overlap considering only subjects and
objects. Syntactic analysis is performed using the
MINIPAR parser (Lin, 1998).

The overlap features are computed at the section
level in a similar way. We also introduce an addi-
tional section-level overlap feature that computes the
cosine similarity between an inserted sentence and
the first sentence in a section. In our corpus, the
opening sentence of a section is typically strongly
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indicative of its topic, thus providing valuable cues
for section level insertions.

In addition to overlap, we use lexical features
that capture word co-occurrence patterns in coherent
texts. This measure was first introduced in the con-
text of sentence ordering by Lapata (2003). Given
a collection of documents in a specific domain, we
compute the likelihood that a pair of words co-occur
in adjacent sentences. From these counts, we in-
duce the likelihood that two sentences are adjacent
to each other. For a given paragraph and an in-
serted sentence, the highest adjacency probability
between the inserted sentence and paragraph sen-
tences is recorded. This feature is also computed
at the section level.

Positional Features These features aim to cap-
ture user preferences when positioning new infor-
mation into the body of a document. For instance,
in the Wikipedia data, insertions are more likely to
appear at the end of a document than at its begin-
ning. We track positional information at the section
and paragraph level. At the section level, we record
whether a section is the first or last of the document.
At the paragraph level, there are four positional fea-
tures which indicate the paragraph’s position (i.e.,
start or end) within its individual section and within
the document as a whole.

Temporal Features The text organization may be
influenced by temporal relations between underly-
ing events. In temporally coherent text, events that
happen in the same time frame are likely to be de-
scribed in the same segment. Our computation of
temporal features does not require full fledged tem-
poral interpretation. Instead, we extract these fea-
tures based on two categories of temporal cues: verb
tense and date information. The verb tense feature
captures whether a paragraph contains at least one
sentence using the same tense as the inserted sen-
tence. For instance, this feature would occur for the
inserted sentence in Figure 1 since both the sentence
and chosen paragraph employ the past tense.

Another set of features takes into account the re-
lation between the dates in a paragraph and those in
an inserted sentence. We extract temporal expres-
sions using the TIMEX2 tagger (Mani and Wilson,
2000), and compute the time interval for a paragraph
bounded by its earliest and latest dates. We record
the degree of overlap between the paragraph time in-

Section Paragraph Tree Dist
T1 J1 0.575 0.5 1.85

J2 0.7 0.525 1.55
T2 J3 0.675 0.55 1.55

J4 0.725 0.55 1.45

Table 1: Accuracy of human insertions compared
against gold standard from Wikipedia’s update log.
T1 is a subset of the data annotated by judges J1 and
J2, while T2 is annotated by J3 and J4.

terval and insertion sentence time interval.

5 Experimental Set-Up

Corpus Our corpus consists of Wikipedia articles
that belong to the category “Living People.” We
focus on this category because these articles are
commonly updated: when new facts about a person
are featured in the media, a corresponding entry in
Wikipedia is likely to be modified. Unlike entries
in a professionally edited encyclopedia, these arti-
cles are collaboratively written by multiple users,
resulting in significant stylistic and content varia-
tions across texts in our corpus. This property dis-
tinguishes our corpus from more stylistically homo-
geneous collections of biographies used in text gen-
eration research (Duboue and McKeown, 2003).

We obtain data on insertions6 from the update log
that accompanies every Wikipedia entry. For each
change in the article’s history, the log records an ar-
ticle before and after the change. From this informa-
tion, we can identify the location of every inserted
sentence. In cases where multiple insertions occur
over time to the same article, they are treated in-
dependently of each other. To eliminate spam, we
place constraints on inserted sentences: (1) a sen-
tence has at least 8 tokens and at most 120 tokens;
(2) the MINIPAR parser (Lin, 1998) can identify a
subject or an object in a sentence.

This process yields 4051 insertion/article pairs,
from which 3240 pairs are used for training and 811
pairs for testing. These insertions are derived from
1503 Wikipedia articles. Relative to other corpora
used in text structuring research (Barzilay and Lee,
2004; Lapata, 2003; Karamanis et al., 2004), texts in

6Insertion is only one type of recorded update, others in-
clude deletions and sentence rewriting.
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our collection are long: an average article has 32.9
sentences, organized in 3.61 sections and 10.9 para-
graphs. Our corpus only includes articles that have
more than one section. When sentences are inserted
between paragraphs, by convention we treat them as
part of the previous paragraph.

Evaluation Measures We evaluate our model us-
ing insertion accuracy at the section and paragraph
level. This measure computes the percentage of
matches between the predicted location of the in-
sertion and the true placement. We also report the
tree distance between the predicted position and the
true location of an inserted sentence. Tree distance
is defined as the length of the path through the tree
which connects the predicted and the true paragraph
positions. This measure captures section level errors
(which raise the connecting path higher up the tree)
as well as paragraph level errors (which widen the
path across the tree).

Baselines Our first three baselines correspond to
naive insertion strategies. The RANDOMINS method
randomly selects a paragraph for a new sentence,
while FIRSTINS and LASTINS insert a sentence into
the first and the last paragraph, respectively.

We also compare our HIERARCHICAL method
against two competitive baselines, PIPELINE and
FLAT. The PIPELINE method separately trains two
rankers, one for section selection and one for para-
graph selection. During decoding, the PIPELINE

method first chooses the best section according to
the section-layer ranker, and then selects the best
paragraph within the chosen section according to the
paragraph-layer ranker. The FLAT method uses the
same decoding criterion as our model (Equation 2),
thus making use of all the same features. However,
FLAT is trained with the standard ranking percep-
tron update, without making use of the hierarchical
decomposition of features in Equation 1.

Human Performance To estimate the difficulty
of sentence insertion, we conducted experiments
that evaluate human performance on the task. Four
judges collectively processed 80 sentence/article
pairs which were randomly extracted from the test
set. Each insertion was processed by two annotators.

Table 1 shows the insertion accuracy for each
judge when compared against the Wikipedia gold
standard. On average, the annotators achieve 66%
accuracy in section placement and 53% accuracy

Section Paragraph Tree Dist
RANDOMINS 0.318* 0.134* 3.10*
FIRSTINS 0.250* 0.136* 3.23*
LASTINS 0.305* 0.215* 2.96*
PIPELINE 0.579 0.314* 2.21*
FLAT 0.593 0.313* 2.19*
HIERARCHY 0.598 0.383 2.04

Table 2: Accuracy of automatic insertion meth-
ods compared against the gold standard from
Wikipedia’s update log. The third column gives tree
distance, where a lower score corresponds to bet-
ter performance. Diacritic * (p < 0.01) indicates
whether differences in accuracy between the given
model and the Hierarchical model is significant (us-
ing a Fisher Sign Test).

in paragraph placement. We obtain similar re-
sults when we compare the agreement of the judges
against each other: 65% of section inserts and 48%
of paragraph inserts are identical between two anno-
tators. The degree of variability observed in this ex-
periment is consistent with human performance on
other text structuring tasks such as sentence order-
ing (Barzilay et al., 2002; Lapata, 2003).

6 Results

Table 2 shows the insertion performance of our
model and the baselines in terms of accuracy and
tree distance error. The two evaluation measures are
consistent in that they yield roughly identical rank-
ings of the systems. Assessment of statistical sig-
nificance is performed using a Fisher Sign Test. We
apply this test to compare the accuracy of the HIER-
ARCHICAL model against each of the baselines.

The results in Table 2 indicate that the naive inser-
tion baselines (RANDOMINS, FIRSTINS, LASTINS)
fall substantially behind the more sophisticated,
trainable strategies (PIPELINE, FLAT, HIERARCHI-
CAL). Within the latter group, our HIERARCHI-
CAL model slightly outperforms the others based on
the coarse measure of accuracy at the section level.
However, in the final paragraph-level analysis, the
performance gain of our model over its counterparts
is quite significant. Moreover, according to tree dis-
tance error, which incorporates error at both the sec-
tion and the paragraph level, the performance of the
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HIERARCHICAL method is clearly superior. This
result confirms the benefit of our selective update
mechanism as well as the overall importance of joint
learning.

Viewing human performance as an upper bound
for machine performance highlights the gains of our
algorithm. We observe that the gap between our
method and human performance at the paragraph
level is 32% smaller than that between the PIPELINE

model and human performance, as well as the FLAT

model and human performance.
Sentence-level Evaluation Until this point, we

have evaluated the accuracy of insertions at the para-
graph level, remaining agnostic as to the specific
placement within the predicted paragraph. We per-
form one final evaluation to test whether the global
hierarchical view of our algorithm helps in deter-
mining the exact insertion point. To make sentence-
level insertion decisions, we use a local model in
line with previous sentence-ordering work (Lapata,
2003; Bollegala et al., 2006). This model examines
the two surrounding sentences of each possible in-
sertion point and extracts a feature vector that in-
cludes lexical, positional, and temporal properties.
The model weights are trained using the standard
ranking perceptron (Collins, 2002).

We apply this local insertion model in two dif-
ferent scenarios. In the first, we ignore the global
hierarchical structure of the document and apply the
local insertion model to every possible sentence pair.
Using this strategy, we recover 24% of correct inser-
tion points. The second strategy takes advantage of
global document structure by first applying our hier-
archical paragraph selection method and only then
applying the local insertion to pairs of sentences
within the selected paragraph. This approach yields
35% of the correct insertion points. This statistically
significant difference in performance indicates that
purely local methods are insufficient when applied
to complete real-world documents.

7 Conclusion and Future Work

We have introduced the problem of sentence inser-
tion and presented a novel corpus-based method for
this task. The main contribution of our work is the
incorporation of a rich hierarchical text representa-
tion into a flexible learning approach for text struc-

turing. Our learning approach makes key use of
the hierarchy by selecting to update only the layer
found responsible for the incorrect prediction. Em-
pirical tests on a large collection of real-world inser-
tion data confirm the advantage of this approach.

Sentence ordering algorithms too are likely to
benefit from a hierarchical representation of text.
However, accounting for long-range discourse de-
pendencies in the unconstrained ordering framework
is challenging since these dependencies only appear
when a particular ordering (or partial ordering) is
considered. An appealing future direction lies in si-
multaneously inducing hierarchical and linear struc-
ture on the input sentences. In such a model, tree
structure could be a hidden variable that is influ-
enced by the observed linear order.

We are also interested in further developing our
system for automatic update of Wikipedia pages.
Currently, our system is trained on insertions in
which the sentences of the original text are not mod-
ified. However, in some cases additional text revi-
sions are required to guarantee coherence of the gen-
erated text. Further research is required to automat-
ically identify and handle such complex insertions.
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Abstract

Approaches to plural reference generation
emphasise descriptive brevity, but often lack
empirical backing. This paper describes
a corpus-based study of plural descrip-
tions, and proposes a psycholinguistically-
motivated algorithm for plural reference
generation. The descriptive strategy is based
on partitioning and incorporates corpus-
derived heuristics. An exhaustive evaluation
shows that the output closely matches hu-
man data.

1 Introduction

Generation of Referring Expressions (GRE) is a
well-studied sub-task of microplanning in Natural
Language Generation. Most algorithms in this area
view GRE as a content determination problem, that
is, their emphasis is on the construction of a se-
mantic representation which is eventually mapped
to a linguistic realisation (i.e. a noun phrase). Con-
tent Determination for GRE starts from a Knowledge
Base (KB) consisting of a set of entities U and a set
of properties P represented as attribute-value pairs,
and searches for a description D ⊆ P which distin-
guishes a referent r ∈ U from its distractors. Under
this view, reference is mainly about identification of
an entitiy in a given context (represented by the KB),
a well-studied pragmatic function of definite noun
phrases in both the psycholinguistic and the compu-
tational literature (Olson, 1970).

For example, the KB in Table 1 represents 8 en-
tities in a 2D visual domain, each with 6 attributes,
including their location, represented as a combina-
tion of horizontal (X) and vertical (Y) numerical co-

TYPE COLOUR ORIENTATION SIZE X Y
e1 desk red back small 3 1
e2 sofa blue back small 5 2
e3 desk red back large 1 1
e4 desk red front large 2 3
e5 desk blue right large 2 4
e6 sofa red back large 4 1
e7 sofa red front large 3 3
e8 sofa blue back large 3 2

Table 1: A visual domain

ordinates. To refer to an entity an algorithm searches
through values of the different attributes.

GRE has been dominated by Dale and Reiter’s
(1995) Incremental Algorithm (IA), one version
of which, generalised to deal with non-disjunctive
plural references, is shown in Algorithm 1 (van
Deemter, 2002). A non-disjunctive reference to a
set R is possible just in case all the elements of R
can be distinguished using the same attribute-value
pairs. Such a description is equivalent to the logical
conjunction of the properties in question. This al-
gorithm, IAplur, initialises a description D and a set
of distractors C [1.1–1.2], and traverses an ordered
list of properties, called the preference order (PO)
[1.3], which reflects general or domain-specific pref-

Algorithm 1 IAplur(R,U,PO
1: D ← ∅
2: C ← U −R
3: for 〈A : v〉 ∈ PO do
4: if R ⊆ [[ 〈A : v〉 ]] ∧ [[ 〈A : v〉 ]]− C 6= ∅ then
5: D ← D ∪ {〈A : v〉}
6: C ← C ∩ [[ 〈A : v〉 ]]
7: if [[ D ]] = R then
8: return D
9: end if

10: end if
11: end for
12: return D
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erences for attributes. For instance, with the PO in
the top row of the Table, the algorithm first consid-
ers values of TYPE, then COLOUR, and so on, adding
a property to D if it is true of the intended referents
R, and has some contrastive value, that is, excludes
some distractors [1.4]. The description and the dis-
tractor set C are updated accordingly [1.5–1.6], and
the description returned if it is distinguishing [1.7].
Given R = {e1, e2}, this algorithm would return the
following description:

(1) 〈ORIENTATION : back〉 ∧ 〈SIZE : small〉

This description is overspecified, because ORI-
ENTATION is not strictly necessary to distinguish
the referents (〈SIZE : small〉 suffices). Moreover,
the description does not include TYPE, though it
has been argued that this is always required, as it
maps to the head noun of an NP (Dale and Re-
iter, 1995). We will adopt this assumption here, for
reasons explained below. Due to its hillclimbing
nature, the IA avoids combinatorial search, unlike
some predecessors which searched exhaustively for
the briefest possible description of a referent (Dale,
1989), based on a strict interpretation of the Gricean
Maxim of Quantity (Grice, 1975). Given that, un-
der the view proposed by Olson (1970) among oth-
ers, the function of a referential NP is to identify, a
strict Gricean interpretation holds that it should con-
tain no more information than necessary to achieve
this goal.

The Incremental Algorithm constitutes a depar-
ture from this view given that it can overspecify
through its use of a PO. This has been justified
on psycholinguistic grounds. Speakers overspecify
their descriptions because they begin their formula-
tion of a reference without exhaustively scanning a
domain (Pechmann, 1989; Belke and Meyer, 2002).
They prioritise the basic-level category (TYPE) of an
object, and salient, absolute properties like COLOUR

(Pechmann, 1989; Eikmeyer and Ahlsèn, 1996), as
well as locative properties in the vertical dimen-
sion (Arts, 2004). Relative attributes like SIZE

are avoided unless absolutely required for identi-
fication (Belke and Meyer, 2002). This evidence
suggests that speakers conceptualise referents as
gestalts (Pechmann, 1989) whose core is their basic-
level TYPE (Murphy, 2002) and some other salient
attributes like COLOUR. For instance, according to

Schriefers and Pechmann (1988), an NP such as the
large black triangle reflects a conceptualisation of
the referent as a black triangle, of which the SIZE

property is predicated. Thus, the TYPE+COLOUR

combination is not mentally represented as two sep-
arable dimensions.
In what follows, we will sometimes refer to this prin-
ciple as the Conceptual Gestalts Principle. Note that
the IA does not fully mirror these human tendencies,
since it only includes preferred attributes in a de-
scription if they remove some distractors given the
current state of the algorithm, whereas psycholin-
guistic research suggests that people include them
irrespective of contrastiveness (but cf. van der Sluis
and Krahmer (2005)).

More recent research on plural GRE has de-
emphasised these issues, especially in case of dis-
junctive plural reference. Disjunction is required
whenever elements of a set of referents R do not
have identical distinguishing properties. For exam-
ple, {e1, e3} can be distinguished by the following
Conjunctive Normal Form (CNF) description1:

(2) 〈TYPE : desk〉∧
`
〈COLOUR : red〉∨ 〈COLOUR : blue〉

´
∧`

〈ORIENTATION : right〉 ∨ 〈ORIENTATION : back〉
´

Such a description would be returned by a gen-
eralised version of Algorithm 1 proposed by van
Deemter (2002). This generalisation, IAbool (so
called because it handles all Boolean operators, such
as negation and disjunction), first tries to find a non-
disjunctive description using Algorithm 1. Failing
this, it searches through disjunctions of properties
of increasing length, conjoining them to the descrip-
tion. This procedure has three consequences:

1. Efficiency: Searching through disjunctive
combinations results in a combinatorial explo-
sion (van Deemter, 2002).

2. Gestalts and content: The notion of a ‘pre-
ferred attribute’ is obscured, since it is dif-
ficult to apply the same reasoning that moti-
vated the PO in the IA to combinations like
(COLOUR ∨ SIZE).

1Note that logical disjunction is usually rendered as linguis-
tic coordination using and. Thus, the table and the desk is the
union of things which are desks or tables.
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3. Form: Descriptions can become logically very
complex (Gardent, 2002; Horacek, 2004).

Proposals to deal with (3) include Gardent’s
(2002) non-incremental, constraint-based algorithm
to generate the briefest available description of a
set, an approach extended in Gardent et al. (2004).
An alternative, by Horacek (2004), combines best-
first search with optimisation to reduce logical com-
plexity. Neither approach benefits from empiri-
cal grounding, and both leave open the question of
whether previous psycholinguistic research on sin-
gular reference is applicable to plurals.

This paper reports a corpus-based analysis of plu-
ral descriptions elicited in well-defined domains, of
which Table 1 is an example. This study falls within
a recent trend in which empirical issues in GRE have
begun to be tackled (Gupta and Stent, 2005; Jordan
and Walker, 2005; Viethen and Dale, 2006). We then
propose an efficient algorithm for the generation of
references to arbitrary sets, which combines corpus-
derived heuristics and a partitioning-based proce-
dure, comparing this to IAbool. Unlike van Deemter
(2002), we only focus on disjunction, leaving nega-
tion aside. Our starting point is the assumption that
plurals, like singulars, evince preferences for certain
attributes as predicted by the Conceptual Gestalts
Principle. Based on previous work in Gestalt per-
ception (Wertheimer, 1938; Rock, 1983), we pro-
pose an extension of this to sets, whereby plural de-
scriptions are preferred if (a) they maximise the sim-
ilarity of their referents, using the same attributes to
describe them as far as possible; (b) prioritise salient
(‘preferred’) attributes which are central to the con-
ceptual representation of an object. We address (3)
above by investigating the logical form of plurals in
the corpus. One determinant of logical form is the
basic-level category of objects. For example, to re-
fer to {e1, e2} in the Table, an author has at least the
following options:

(3) (a) the small desk and sofa
(b) the small red desk and the small blue sofa
(c) the small desk and the small blue sofa
(d) the small objects

These descriptions exemplify three possible sources
of variation:

Disjunctive/Non-disjunctive: The last description,

(3d), is non-disjunctive (i.e. it is logically a conjunc-
tion of properties). This, however, is only achiev-
able through the use of a non-basic level value for
the TYPE of the entities (objects). Using the basic-
level would require the disjunction (〈TYPE : desk〉∨
〈TYPE : sofa〉), which is the case in (3a–c). Given
that basic-level categories are preferred on indepen-
dent grounds (Rosch et al., 1976), we would expect
examples like (3d) to be relatively infrequent.

Aggregation: If a description is disjunctive, it may
be aggregated, with properties common to all ob-
jects realised as wide-scope modifiers. For instance,
in (3a), small modifies desk and sofa. By contrast,
(3b) is non-aggregated: small occurs twice (modi-
fying each coordinate in the NP). Non-aggregated,
disjunctive descriptions are logically equivalent to a
partition of a set. For instance, (3c) partitions the
set R = {e1, e2} into {{e1}, {e2}}, describing each
element separately. Descriptions like (3b) are more
overspecified than their aggregated counterparts due
to the repetition of information.

Paralellism/Similarity: Non-aggregated, disjunc-
tive descriptions (partitions) may exhibit semantic
parallelism: In (3b), elements of the partition are
described using exactly the same attributes (that is,
TYPE, COLOUR, and SIZE). This is not the case in
(3c), which does represent a partition but is non-
parallel. Parallel structures maximise the similarity
of elements of a partition, using the same attributes
to describe both. The likelihood of propagation of an
attribute across disjuncts is probably dependent on
its degree of salience or preference (e.g. COLOUR is
expected to be more likely to be found in a parallel
structure than SIZE).

2 The data

The data for our study is a subset of the TUNA Cor-
pus (Gatt et al., 2007), consisting of 900 references
to furniture and household items, collected via a
controlled experiment involving 45 participants. In
addition to their TYPE, objects in the domains have
COLOUR, ORIENTATION and SIZE (see Table 1). For
each subset of these three attributes, there was an
equal number of domains in which the minimally
distinguishing description (MD) consisted of values
of that subset. For example, Table 1 represents a do-
main in which the intended referents, {e1, e2}, can
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<DESCRIPTION num=‘pl’>
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘red’>red</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘desk’>desk</ATTRIBUTE>
</DESCRIPTION>
and
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘blue’>blue</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘sofa’>sofa</ATTRIBUTE>
</DESCRIPTION>
</DESCRIPTION>

(〈SIZE : small〉 ∧ 〈COLOUR : red〉 ∧ 〈TYPE : desk〉)
∨

(〈SIZE : small〉 ∧ 〈COLOUR : blue〉 ∧ 〈TYPE : sofa〉)

Figure 1: Corpus annotation examples

be minimally distinguished using only SIZE2. Thus,
overspecified usage of attributes can be identified
in authors’ descriptions. Domain objects were ran-
domly placed in a 3 (row) × 5 (column) grid, rep-
resented by X and Y in Table 1. These are relevant
for a subset of descriptions which contain locative
expressions.

Corpus descriptions are paired with an explicit
XML domain representation, and annotated with se-
mantic markup which makes clear which attributes
a description contains. This markup abstracts away
from differences in lexicalisation, making it an ideal
resource to evaluate content determination algo-
rithms, because it is semantically transparent, in
the sense of this term used by van Deemter et al.
(2006). This markup scheme also enables the com-
positional derivation of a logical form from a natural
language description. For example, the XML repre-
sentation of (3b) is shown in Figure 1, which also
displays the LF derived from it. Each constituent NP

in (3b) is annotated as a set of attributes enclosed by
a DESCRIPTION tag, which is marked up as singular
(sg). The two coordinates are further enclosed in
a plural DESCRIPTION; correspondingly, the LF is a
disjunction of (the LFs of) the two internal descrip-
tions.

Descriptions in the corpus were elicited in 7 do-
mains with one referent, and 13 domains with 2
referents. Plural domains represented levels of a
Value Similarity factor. In 7 Value-Similar (VS)
domains, referents were identifiable using identical
values of the minimally distinguishing attributes. In
the remaining 6 Value-Dissimilar (VDS) domains,
the minimally distinguishing values were different.
Table 1 represents a VS domain, where {e1, e2} can

2TYPE was not included in the calculation of MD.

VS VDS
+Disj −Disj +Disj −Disj

+aggr 20.2 15.5 2.4 3.7
−aggr 64.3 – 93.9 –
% overall 84.5 15.5 96.3 3.7

Table 2: % disjunctive and non-disjunctive plurals

be minimally distinguished using the same value of
SIZE (small).

In terms of our introductory discussion, referents
in Value-Similar conditions could be minimally dis-
tinguished using a conjunction of properties, while
Value-Dissimilar referents required a disjunction
since, if two referents could be minimally distin-
guished by different values v and v′ of an attribute
A, then MD had the form 〈A : v〉 ∨ 〈A : v’〉. How-
ever, even in the VS condition, referents had differ-
ent basic-level types. Thus, an author faced with a
domain like Table 1 had at least the descriptive op-
tions in (3a–d). If they chose to refer to entities using
basic-level values of TYPE, their description would
be disjunctive (e.g. 3a). A non-disjunctive descrip-
tion would require the use of a superordinate value,
as in (3d).

Our analysis will focus on a stratified random
sample of 180 plural descriptions, referred to as PL1,
generated by taking 4 descriptions from each author
(2 each from VS and VDS conditions). We also use
the singular data (SG; N = 315). The remaining
plural descriptions (PL2; N = 405) are used for
evaluation.

3 The logical form of plurals

Descriptions in PL1 were first classified according to
whether they were non-disjunctive (cf. 3d) or dis-
junctive (3a–c). The latter were further classified
into aggregated (3a) and non-aggregated (3b). Ta-
ble 2 displays the percentage of descriptions in each
of the four categories, within each level of Value
Similarity. Disjunctive descriptions were a major-
ity in either condition, and most of these were non-
aggregated. As noted in §1, these descriptions cor-
respond to partitions of the set of referents.

Since referents in VS had identical properties ex-
cept for TYPE values, the most likely reason for the
majority of disjunctives in VS is that people’s de-
scriptions represented a partition of a set of refer-
ents induced by the basic-level category of the ob-
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Non-Parallel Parallel χ2 (p ≤ .001)
overspec. 24.6 75.4 92.467

underspec. 5.3 94.7 42.217
well-spec. 11 89 26

Table 3: Parallelism: % per description type

jects. This is strengthened by the finding that the
likelihood of a description being disjunctive or non-
disjunctive did not differ as a function of Value Sim-
ilarity (χ2 = 2.56, p > .1). A χ2 test on overall fre-
quencies of aggregated versus non-aggregated dis-
junctives showed that the non-aggregated descrip-
tions (‘true’ partitions) were a significant major-
ity (χ2 = 83.63, p < .001). However, the
greater frequency of aggregation in VS compared
to VDS turned out to be significant (χ2 = 15.498,
p < .001). Note that the predominance of non-
aggregated descriptions in VS implies that proper-
ties are repeated in two disjuncts (resp. coordinate
NPs), suggesting that authors are likely to redun-
dantly propagate properties across disjuncts. This
evidence goes against some recent proposals for plu-
ral reference generation which emphasise brevity
(Gardent, 2002).

3.1 Conceptual gestalts and similarity
Allowing for the independent motivation for set par-
titioning based on TYPE values, we suggested in §1
that parallel descriptions such as (3b) may be more
likely than non-parallel ones (3c), since the latter
does not use the same properties to describe the two
referents. Similarity, however, should also interact
with attribute preferences.

For this part of the analysis, we focus exclusively
on the disjunctive descriptions in PL1 (N = 150) in
both VS and VDS. The descriptions were categorised
according to whether they had parallel or non-
parallel semantic structure. Evidence for Similarity
interacting with attribute preferences is strongest if
it is found in those cases where an attribute is over-
specified (i.e. used when not required for a distin-
guishing description). In those cases where corpus
descriptions do not contain locative expressions (the
X and/or Y attributes), such an overspecified usage
is straightforwardly identified based on the MD of
a domain. This is less straightforward in the case of
locatives, since the position of objects was randomly
determined in each domain. Therefore, we divided

Actual Predicted
p(A, SG) p(A, PPS) p(A, PPS)

COLOUR .680 .835 .61
SIZE .290 .359 .28

ORIENTATION .280 .269 .26
X-DIMENSION .440 .517 .52
Y-DIMENSION .630 .647 .65

Table 4: Actual and predicted usage probabilities

descriptions into three classes, whereby a descrip-
tion is considered to be:

1. underspecified if it does not include a locative
expression and omits some MD attributes;

2. overspecified if either (a) it does not omit any
MD attributes, but includes locatives and/or
non-required visual attributes; or (b) it omits
some MD attributes, but includes both a locative
expression and other, non-required attributes;

3. well-specified otherwise.

Proportions of Parallel and Non-Parallel descrip-
tions for each of the three classes are are shown
in Table 3. In all three description types, there is
an overwhelming majority of Parallel descriptions,
confirmed by a χ2 analysis. The difference in pro-
portions of description types did not differ between
VS and VDS (χ2 < 1, p > .8), suggesting that the
tendency to redundantly repeat attributes, avoiding
aggregation, is independent of whether elements of
a set can be minimally distinguished using identical
values.

Our second prediction was that the likelihood
with which an attribute is used in a parallel structure
is a function of its overall ‘preference’. Thus, we
expect attributes such as COLOUR to feature more
than once (perhaps redundantly) in a parallel de-
scription to a greater extent than SIZE. To test this,
we used the SG sample, estimating the overall prob-
ability of occurrence of a given attribute in a singu-
lar description (denoted p(A, SG)), and using this in
a non-linear regression model to predict the likeli-
hood of usage of an attribute in a plural partitioned
description with parallel semantic structure (denoted
p(A, PPS)). The data was fitted to a regression equa-
tion of the form p(A, PPS) = k× p(A, SG)S . The re-
sulting equation, shown in (4), had a near-perfect fit
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to the data (R2 = .910)3. This is confirmed by com-
paring actual probability of occurrence in the second
column of Table 4, to the predicted probabilities in
the third column, which are estimated from singular
probabilities using (4).

p(A, PPS) = .713 p(A, SG).912 (4)

Note that the probabilities in the Table con-
firm previous psycholinguistic findings. To the ex-
tent that probability of occurrence reflects salience
and/or conceptual importance, an order over the
three attributes COLOUR, SIZE and ORIENTATION

can be deduced (C>>O>>S), which is compatible
with the findings of Pechmann (1989), Belke and
Meyer (2002) and others. The locative attributes
are also ordered (Y>>X), confirming the findings
of Arts (2004) that vertical location is preferred. Or-
derings deducible from the SG data in turn are ex-
cellent predictors of the likelihood of ‘propagating’
an attribute across disjuncts in a plural description,
something which is likely even if an attribute is re-
dundant, modulo the centrality or salience of the at-
tribute in the mental gestalt corresponding to the set.
Together with the earlier findings on logical form,
the data evinces a dual strategy whereby (a) sets
are partitioned based on basic-level conceptual cat-
egory; (b) elements of the partitions are described
using the same attributes if they are easily perceived
and conceptualised. Thus, of the descriptions in (3)
above, it is (3b) that is the norm among authors.

4 Content determination by partitioning

In this section we describe IApart, a partitioning-
based content determination algorithm. Though pre-
sented as a version of the IA, the basic strategy is
generalisable beyond it. For our purposes, the as-
sumption of a preference order will be maintained.
IApart is distinguished from the original IA and
IAbool (cf. §1) in two respects. First, it induces par-
titions opportunistically based on KB information,
and this is is reflected in the way descriptions are
represented. Second,, the criteria whereby a prop-
erty is added to a description include a consideration
of the overall salience or preference of an attribute,
and its contribution to the conceptual cohesiveness

3A similar analysis using linear regression gave essentially
the same results.

of the description. Throughout the following discus-
sion, we maintain a running example from Table 1,
in which R = {e1, e2, e5}.

4.1 Partitioned descriptions
IApart generates a partitioned description (Dpart) of
a set R, corresponding to a formula in Disjunctive
Normal Form. Dpart is a set of Description Frag-
ments (DFs). A DF is a triple 〈RDF, TDF,MDF〉, where
RDF ⊆ R, TDF is a value of TYPE, and MDF is a pos-
sibly empty set of other properties. DFs refer to dis-
joint subsets of R. As the representation suggests,
TYPE is given a special status. IApart starts by se-
lecting the basic-level values of TYPE, partitioning
R and creating a DF for each element of the partition
on this basis. In our example, the selection of TYPE

results in two DFs, with MDF initialised to empty:

(5) DF1

˙
{e1, e5}, 〈TYPE : desk〉, ∅

¸
DF2

˙
{e2}, 〈TYPE : sofa〉, ∅

¸
Although neither DF is distinguishing, RDF indicates
which referents a fragment is intended to identify.
In this way, the algorithm incorporates a ‘divide-
and-conquer’ strategy, splitting up the referential in-
tention into ‘sub-intentions’ to refer to elements of
a partition. Following the initial step of selecting
TYPE, the algorithm considers other properties in
PO. Suppose 〈COLOUR : blue〉 is considered first.
This property is true of e2 and e5. Since DF2 refers to
e2, the new property can be added to MDF2 . Since e5

is not the sole referent of DF1, the property induces
a further partitioning of this fragment, resulting in a
new DF. This is identical to DF1 except that it refers
only to e5 and contains 〈COLOUR : blue〉. DF1 it-
self now refers only to e1. Once 〈COLOUR : red〉 is
considered, it is added to the latter, yielding (6).

(6) DF1

˙
{e1}, 〈TYPE : desk〉, {〈COLOUR : red〉}

¸
DF2

˙
{e2}, 〈TYPE : sofa〉, {〈COLOUR : blue〉}

¸
DF3

˙
{e5}, 〈TYPE : desk〉, {〈COLOUR : blue〉}

¸
The procedure updateDescription, which cre-

ates and updates DFs, is formalised in Algorithm 2.
When some property 〈A : v〉 is found to be ‘use-
ful’ in relation to R (in a sense to be made precise),
this function is called with two arguments: 〈A : v〉
itself, and R′ = [[ 〈A : v〉 ]] ∩ R, the referents of
which 〈A : v〉 is true. The procedure iterates through
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Algorithm 2 updateDescription(〈A : v〉, R′)

1: for 〈RDF, TDF, MDF〉 ∈ Dpart do
2: if R′ = ∅ then
3: return
4: else if RDF ⊆ R′ then
5: MDF ←MDF ∪

˘
〈A : v〉

¯
6: R′ ← R′ −RDF

7: else if RDF ∩R′ 6= ∅ then
8: Rnew ← RDF ∩R′

9: DFnew ←
˙
Rnew, TDF, MDF ∪ {〈A : v〉}

¸
10: Dpart ← Dpart ∪

˘
DFnew

¯
11: RDF ← RDF −Rnew

12: R′ ← R′ −Rnew

13: end if
14: end for
15: if A = TYPE then
16: Dpart ← Dpart ∪

˘˙
R′, 〈A : v〉, ∅

¸¯
17: else
18: Dpart ← Dpart ∪

˘
〈R′,⊥, {〈A : v〉}〉

¯
19: end if

the DFs in Dpart, adding the property to any DF such
that RDF∩R′ 6= ∅, until R′ is empty and all referents
in it have been accounted for [2.2]. As indicated in
the informal discussion, there are two cases to con-
sider for each DF:

1. RDF ⊆ R′ [2.4]. This corresponds to our exam-
ple involving 〈COLOUR : blue〉 and DF2. The
property is simply added to MDF [2.5] and R′

is updated by removing the elements thus ac-
counted for [2.6].

2. Suppose RDF 6⊆ R′. If RDF ∩ R′ is empty, then
〈A : v〉 is not useful. Suppose on the other hand
that RDF ∩ R′ 6= ∅ [2.7]. This occurred with
〈COLOUR : red〉 in relation to DF1. The proce-
dure initialises Rnew, a set holding those refer-
ents in RDF which are also in R′ [2.8]. A new
DF (DFnew) is created, which is a copy of the
old DF, except that (a) it contains the new prop-
erty; and (b) its intended referents are Rnew

[2.9]. The new DF is included in the description
[2.10], while the old DF is altered by removing
Rnew from RDF [2.11]. This ensures that DFs
denote disjoint subsets of R.

Two special cases arise when Dpart is empty, or
there are some elements of R′ for which no DF ex-
ists. Both cases result in the construction of a new
DF. An example of the former case is the initial state
of the algorithm, when TYPE is added. As in exam-
ple (5), the TYPE results in a new DF [2.16]. If a
property is not a TYPE, the new DF has T set to null

(⊥) and the property is included in M [2.18]4. Note
that this procedure easily generalises to the singular
case, where Dpart would only contain one DF.

4.2 Property selection criteria
IApart’s content determination strategy maximises
the similarity of a set by generating semantically
parallel structures. Though contrastiveness plays a
role in property selection, the ‘preference’ or con-
ceptual salience of an attribute is also considered in
the decision to propagate it across DFs.

Candidate properties for addition need only be
true of at least one element of R. Because of the
partitioning strategy, properties are not equally con-
strastive for all referents. For instance, in (5), e2

needs to be distinguished from the other sofas in Ta-
ble 1, while {e1, e5} need to be distinguished from
the desks. Therefore, distractors are held in an as-
sociative array C, such that for all r ∈ R, C[r] is
the set of distractors for that referent at a given stage
in the procedure. Contrastiveness is defined via the
following Boolean function:

contrastive(〈A : v〉, R) ↔
∃r ∈ R : C[r]− [[ 〈A : v〉 ]] 6= ∅ (7)

We turn next to salience and similarity. Let
A(Dpart) be the set of attributes included in Dpart.
A property is salient with respect to Dpart if it satis-
fies the following:

salient(〈A : v〉, Dpart) ↔
A ∈ A(Dpart) ∧ (.713 p(A, SG).912 > 0.5) (8)

that is, the attribute is already included in the de-
scription, and the predicted probability of its be-
ing propagated in more than one fragment of a de-
scription is greater than chance. A potential prob-
lem arises here. Consider the description in (5)
once more. At this stage, IApart begins to consider
COLOUR. The value red is true of e1, but non-
contrastive (all the desks which are not in R are red).
If this is the first value of COLOUR considered, (8)
returns false because the attribute has not been
used in any part of the description. On later con-
sidering 〈COLOUR : blue〉, the algorithm adds it to

4This only occurs if the KB is incomplete, that is, there some
entities have no TYPE, so that R is not fully covered by the
intended referents of the DFs when TYPE is initially added.
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Dpart, since it is contrastive for {e2, e5}, but will
have failed to propagate COLOUR across fragments.
As a result, IApart considers values of an attribute in
order of discriminatory power (Dale, 1989), defined
in the present context as follows:

|[[ 〈A : v〉 ]] ∩R| + |[[ 〈A : v〉 ]]− (U −R)|
|[[ 〈A : v〉 ]]|

(9)

Discriminatory power depends on the number of ref-
erents a property includes in its extension, and the
number of distractors (U−R) it removes. By priori-
tising discriminatory values, the algorithm first con-
siders and adds 〈COLOUR : blue〉, and subsequently
will include red because (8) returns true.

To continue with the example, at the stage repre-
sented by (6), only e5 has been distinguished. ORI-
ENTATION, the next attribute considered, is not con-
trastive for any referent. On considering SIZE, small
is found to be contrastive for e1 and e2, and added to
DF1 and DF2. However, SIZE is not added to DF3, in
spite of being present in two other fragments. This
is because the probability function p(SIZE, PPS) re-
turns a value below 0.5 (see Table 4, reflecting the
relatively low conceptual salience of this attribute.
The final description is the blue desk, the small red
desk and the small blue sofa. This example illus-
trates the limits set on semantic parallelism and sim-
ilarity: only attributes which are salient enough are
redundantly propagated across DFs.

4.3 Complexity
An estimate of the complexity of IApart must ac-
count for the way properties are selected (§4.2) and
the way descriptions are updated (Algorithm 2).

Property selection involves checking properties
for contrastive value and salience, and updating the
ordering of values of each attribute based on dis-
criminatory power (9). Clearly, the number of times
this is carried out is bounded by the number of prop-
erties in the KB, which we denote np. Every time a
property is selected, the discriminatory power of val-
ues changes (since the number of remaining distrac-
tors changes). Now, in the worst case, all np proper-
ties are selected by the algorithm 5. Each time, the
algorithm must compare the remaining properties

5Only unique properties need to be considered, as each prop-
erty is selected at most once, though it can be included in more
than one DF.

Mean Mode PRP

IAbool
+ LOC 7.716 7 .7
− LOC 8.335 7 3.5

IApart
+ LOC 4.345 4 6.8
− LOC 1.93 0 44.7

Table 5: Edit distance scores

pairwise for discriminatory power, a quadratic op-
eration with complexity O(n2

p). With respect to the
procedure updateDescription, we need to consider
the number of iterations in the for loop starting at
line [2.1]. This is bounded by nr = |R| (there can be
no more DFs than there are referents). Once again,
if at most np properties are selected, then the algo-
rithm makes at most nr iterations np times, yield-
ing complexity O(npnr). Overall, then, IApart has a
worst-case runtime complexity O(n3

pnr).

5 Evaluation

IApart was compared to van Deemter’s IAbool (§1)
against human output in the evaluation sub-corpus
PL2 (N = 405). This was considered an ade-
quate comparison, since IAbool shares with the cur-
rent framework a genetic relationship with the IA.
Other approaches, such as Gardent’s (2002) brevity-
oriented algorithm, would perform poorly on our
data. As shown in §3, overspecification is extremely
common in plural descriptions, suggesting that such
a strategy is on the wrong track (but see §6).

IApart and IAbool were each run over the domain
representation paired with each corpus description.
The output logical form was compared to the LF

compiled from the XML representation of an au-
thor’s description (cf. Figure 1). LFs were repre-
sented as and-or trees, and compared using the tree
edit distance algorithm of Shasha and Zhang (1990).
On this measure, a value of 0 indicates identity.

Because only a subset of descriptions con-
tain locative expressions, PL2 was divided into
a +LOC dataset (N = 148) and a −LOC

dataset (N = 257). The preference orders for
both algorithms were (C>>O>>S) for −LOC and
(Y>>C>>X>>S>>O) for +LOC. These are sug-
gested by the attribute probabilities in Table 4. Ta-
ble 5 displays the mean Edit score obtained by
each algorithm on the two datasets, the modal (most
frequent) value, and the perfect recall percentage
(PRP), the proportion of Edit scores of 0, indicating
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perfect agreement with an author.
As the means and modes indicate, IApart outper-

formed IAbool on both datasets, with a consistently
higher PRP (this coincides with the modal score in
the case of −LOC). Pairwise t−tests showed that
the trends were significant in both +LOC (t(147) =
9.28, p < .001) and −LOC (t(256) = 10.039,
p < .001).

IAbool has a higher (worse) mean on −LOC, but a
better PRP than on +LOC. This apparent discrepancy
is partly due to variance in the edit distance scores.
For instance, because the Y attribute was highest in
the preference order for +LOC, there were occasions
when both referents could be identified using the
same value of Y, which was therefore included by
IAbool at first pass, before considering disjunctions.
Since Y was highly preferred by authors (see Table
4), there was higher agreement on these cases, com-
pared to those where the values of Y were different
for the two referents. In the latter case, Y was only
when disjunctions were considered, if at all. The
worse performance of IApart on +LOC is due to a
larger choice of attributes, also resulting in greater
variance, and occasionally incurring higher Edit cost
when the algorithm overspecified more than a hu-
man author. This is a potential shortcoming of the
partitioning strategy outlined here, when it is applied
to more complex domains.

Some example outputs are given below, in a do-
main where COLOUR sufficed to distinguish the ref-
erents, which had different values of this attribute
(i.e. an instance of the VDS condition). The formula
returned by IApart (10a) is identical to the (LF of)
the human-authored description (with Edit score of
0). The output of IAbool is shown in (10b).

(10) (a)
`
fan ∧ green

´
∨

`
sofa ∧ blue

´
‘the green fan and the big sofa’

(b)
`
sofa ∨ fan

´
∧ small ∧ front ∧

`
blue ∨ green

´
‘the small, blue and green sofa and fan’

As a result of IAbool’s requiring a property or dis-
junction to be true of the the entire set of refer-
ents, COLOUR is not included until disjunctions are
considered, while values of SIZE and ORIENTATION

are included at first pass. By contrast, IApart in-
cludes COLOUR before any other attribute apart from
TYPE. Though overspecification is common in our
data, IAbool overspecifies with the ‘wrong’ attributes

(those which are relatively dispreferred). The ratio-
nale in IApart is to overspecify only if a property
will enhance referent similarity, and is sufficiently
salient. As for logical form, the Conjunctive Nor-
mal Form output of IAbool increases the Edit score,
given the larger number of logical operators in (10b)
compared to (10a).

6 Summary and conclusions

This paper presented a study of plural reference,
showing that people (a) partition sets based on the
basic level TYPE or category of their elements and
(b) redundantly propagate attributes across disjuncts
in a description, modulo their salience. Our algo-
rithm partitions a set opportunistically, and incor-
porates a corpus-derived heuristic to estimate the
salience of a property. Evaluation results showed
that these principles are on the right track, with sig-
nificantly better performance over a previous model
(van Deemter, 2002). The partitioning strategy is
related to a proposal by van Deemter and Krah-
mer (2007), which performs exhaustive search for
a partition of a set whose elements can be described
non-disjunctively. Unlike the present approach, this
algorithm is non-incremental and computationally
costly.

IApart initially performs partitioning based on the
basic-level TYPE of objects, in line with the evi-
dence. However, later partitions can be induced by
other properties, possible yielding partitions even
with same-TYPE referents (e.g. the blue chair and
the red chair). Aggregation (the blue and red chairs)
may be desirable in such cases, but limits on syntac-
tic complexity of NPs are bound to play a role (Ho-
racek, 2004). Another possible limitation of IApart

is that, despite strong evidence for overspecifica-
tion, complex domains could yield very lengthy out-
puts. Strategies to avoid them include the utilisation
of other boolean operators like negation (the desks
which are not red) (Horacek, 2004). These issues
are open to future empirical research.
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Abstract

This paper compares a deep and a shallow
processing approach to the problem of clas-
sifying a sentence as grammatically well-
formed or ill-formed. The deep processing
approach uses the XLE LFG parser and En-
glish grammar: two versions are presented,
one which uses the XLE directly to perform
the classification, and another one which
uses a decision tree trained on features con-
sisting of the XLE’s output statistics. The
shallow processing approach predicts gram-
maticality based on n-gram frequency statis-
tics: we present two versions, one which
uses frequency thresholds and one which
uses a decision tree trained on the frequen-
cies of the rarest n-grams in the input sen-
tence. We find that the use of a decision tree
improves on the basic approach only for the
deep parser-based approach. We also show
that combining both the shallow and deep
decision tree features is effective. Our eval-
uation is carried out using a large test set of
grammatical and ungrammatical sentences.
The ungrammatical test set is generated au-
tomatically by inserting grammatical errors
into well-formed BNC sentences.

1 Introduction

This paper is concerned with the task of predict-
ing whether a sentence contains a grammatical er-
ror. An accurate method for carrying out automatic

∗Also affiliated to IBM CAS, Dublin.

grammaticality judgements has uses in the areas of
computer-assisted language learning and grammar
checking. Comparative evaluation of existing error
detection approaches has been hampered by a lack
of large and commonly used evaluation error cor-
pora. We attempt to overcome this by automatically
creating a large error corpus, containing four dif-
ferent types of frequently occurring grammatical er-
rors. We use this corpus to evaluate the performance
of two approaches to the task of automatic error de-
tection. One approach uses low-level detection tech-
niques based on POS n-grams. The other approach
is a novel parser-based method which employs deep
linguistic processing to discriminate grammatical in-
put from ungrammatical. For both approaches, we
implement a basic solution, and then attempt to im-
prove upon this solution using a decision tree clas-
sifier. We show that combining both methods im-
proves upon the individual methods.

N-gram-based approaches to the problem of error
detection have been proposed and implemented in
various forms by Atwell(1987), Bigert and Knutsson
(2002), and Chodorow and Leacock (2000) amongst
others. Existing approaches are hard to compare
since they are evaluated on different test sets which
vary in size and error density. Furthermore, most of
these approaches concentrate on one type of gram-
matical error only, namely, context-sensitive or real-
word spelling errors. We implement a vanilla n-
gram-based approach which is tested on a very large
test set containing four different types of error.

The idea behind the parser-based approach to er-
ror detection is to use a broad-coverage hand-crafted
precision grammar to detect ungrammatical sen-
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tences. This approach exploits the fact that a pre-
cision grammar is designed, in the traditional gen-
erative grammar sense (Chomsky, 1957), to dis-
tinguish grammatical sentences from ungrammati-
cal sentences. This is in contrast to treebank-based
grammars which tend to massively overgenerate and
do not generally aim to discriminate between the
two. In order for our approach to work, the coverage
of the precision grammars must be broad enough to
parse a large corpus of grammatical sentences, and
for this reason, we choose the XLE (Maxwell and
Kaplan, 1996), an efficient and robust parsing sys-
tem for Lexical Functional Grammar (LFG) (Kaplan
and Bresnan, 1982) and the ParGram English gram-
mar (Butt et al., 2002) for our experiments. This sys-
tem employs robustness techniques, some borrowed
from Optimality Theory (OT) (Prince and Smolen-
sky, 1993), to parse extra-grammatical input (Frank
et al., 1998), but crucially still distinguishes between
optimal and suboptimal solutions.

The evaluation corpus is a subset of an un-
grammatical version of the British National Cor-
pus (BNC), a 100 million word balanced corpus of
British English (Burnard, 2000). This corpus is ob-
tained by automatically inserting grammatical errors
into the original BNC sentences based on an analysis
of a manually compiled “real” error corpus.

This paper makes the following contributions to
the task of automatic error detection:

1. A novel deep processing XLE-based approach

2. An effective and novel application of decision
tree machine learning to both shallow and deep
approaches

3. A novel combination of deep and shallow pro-
cessing

4. An evaluation of an n-gram-based approach on
a wider variety of errors than has previously
been carried out

5. A large evaluation error corpus

The paper is organised as follows: in Section 2,
we describe previous approaches to the problem of
error detection; in Section 3, a description of the
error corpus used in our evaluation experiments is
presented, and in Section 4, the two approaches to
error detection are presented, evaluated, combined

and compared. Section 5 provides a summary and
suggestions for future work.

2 Background

2.1 Precision Grammars

A precision grammar is a formal grammar designed
to distinguish ungrammatical from grammatical sen-
tences. This is in contrast to large treebank-induced
grammars which often accept ungrammatical input
(Charniak, 1996). While high coverage is required,
it is difficult to increase coverage without also in-
creasing the amount of ungrammatical sentences
that are accepted as grammatical by the grammar.
Most publications in grammar-based automatic error
detection focus on locating and categorising errors
and giving feedback. Existing grammars are re-used
(Vandeventer Faltin, 2003), or grammars of limited
size are developed from scratch (Reuer, 2003).

The ParGram English LFG is a hand-crafted
broad-coverage grammar developed over several
years with the XLE platform (Butt et al., 2002). The
XLE parser uses OT to resolve ambiguities (Prince
and Smolensky, 1993). Grammar constraints re-
sulting in rare constructions can be marked as “dis-
preferred” and constraints resulting in common un-
grammatical constructions can be marked as “un-
grammatical”. The use of constraint ordering and
marking increases the robustness of the grammar,
while maintaining the grammatical / ungrammati-
cal distinction (Frank et al., 1998). The English
Resource Grammar (ERG) is a precision Head-
Driven Phrase Structure Grammar (HPSG) of En-
glish (Copestake and Flickinger, 2000; Pollard and
Sag, 1994). Its coverage is not as broad as the XLE
English grammar. Baldwin et al. (2004) propose a
method to identify gaps in the grammar. Blunsom
and Baldwin (2006) report ongoing development.

There has been previous work using the ERG and
the XLE grammars in the area of computer-assisted
language learning. Bender et al. (2004) use a ver-
sion of the ERG containing mal-rules to parse ill-
formed sentences from the SST corpus of Japanese
learner English (Emi et al., 2004). They then use
the semantic representations of the ill-formed input
to generate well-formed corrections. Khader et al.
(2004) study whether the ParGram English LFG can
be used for computer-assisted language learning by
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adding additional OT marks for ungrammatical con-
structions observed in a learner corpus. However,
the evaluation is preliminary, on only 50 test items.

2.2 N-gram Methods

Most shallow approaches to grammar error detection
originate from the area of real-word spelling error
correction. A real-word spelling error is a spelling
or typing error which results in a token which is an-
other valid word of the language in question.

The (to our knowledge) oldest work in this area
is that of Atwell (1987) who uses a POS tagger to
flag POS bigrams that are unlikely according to a
reference corpus. While he speculates that the bi-
gram frequency should be compared to how often
the same POS bigram is involved in errors in an error
corpus, the proposed system uses the raw frequency
with an empirically established threshold to decide
whether a bigram indicates an error. In the same
paper, a completely different approach is presented
that uses the same POS tagger to consider spelling
variants that have a different POS. In the example
sentenceI am veryhit the POS of the spelling vari-
anthot/JJis added to the list NN-VB-VBD-VBN of
possible POS tags ofhit. If the POS tagger chooses
hit/JJ, the word is flagged and the correctionhot is
proposed to the user. Unlike most n-gram-based ap-
proaches, Atwell’s work aims to detect grammar er-
rors in general and not just real-word spelling errors.
However, a complete evaluation is missing.

The idea of disambiguating between the elements
of confusion sets is related to word sense disam-
biguation. Golding (1995) builds a classifier based
on a rich set of context features. Mays et al. (1991)
apply the noisy channel model to the disambiguation
problem. For each candidate correctionS′ of the
input S the probabilityP (S′)P (S|S′) is calculated
and the most likely correction selected. This method
is re-evaluated by Wilcox-O’Hearn et al. (2006) on
WSJ data with artificial real-word spelling errors.

Bigert and Knutsson (2002) extend upon a basic
n-gram approach by attempting to match n-grams of
low frequency with similar n-grams in order to re-
duce overflagging. Furthermore, n-grams crossing
clause boundaries are not flagged and the similarity
measure is adapted in the case of phrase boundaries
that usually result in low frequency n-grams.

Chodorow and Leacock (2000) use a mutual in-

formation measure in addition to raw frequency of n-
grams. Apart from this, their ALEK system employs
other extensions to the basic approach, for exam-
ple frequency counts from both generic and word-
specific corpora are used in the measures. It is not
reported how much each of these contribute to the
overall performance.

Rather than trying to implement all of the pre-
vious n-gram approaches, we implement the basic
approach which uses rare n-grams to predict gram-
maticality. This property is shared by all previous
shallow approaches. We also test our approach on a
wider class of grammatical errors.

3 Ungrammatical Data

In this section, we discuss the notion of an artifi-
cial error corpus (Section 3.1), define the type of
ungrammatical language we are dealing with (Sec-
tion 3.2), and describe our procedure for creating a
large artificial error corpus derived from the BNC
(Section 3.3).

3.1 An Artificial Error Corpus

In order to meaningfully evaluate a shallow ver-
sus deep approach to automatic error detection, a
large test set of ungrammatical sentences is needed.
A corpus of ungrammatical sentences can take the
form of a learner corpus (Granger, 1993; Emi et al.,
2004), i. e. a corpus of sentences produced by lan-
guage learners, or it can take the form of a more gen-
eral error corpus comprising sentences which are not
necessarily produced in a language-learning context
and which contain competence and performance er-
rors produced by native and non-native speakers of
the language (Becker et al., 1999; Foster and Vogel,
2004; Foster, 2005). For both types of error corpus,
it is not enough to collect a large set of sentences
which are likely to contain an error - it is also neces-
sary to examine each sentence in order to determine
whether an error has actually occurred, and, if it has,
to note the nature of the error. Thus, like the cre-
ation of a treebank, the creation of a corpus of un-
grammatical sentences requires time and linguistic
knowledge, and is by no means a trivial task.

A corpus of ungrammatical sentences which is
large enough to be useful can be created auto-
matically by inserting, deleting or replacing words
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in grammatical sentences. These transformations
should be linguistically realistic and should, there-
fore, be based on an analysis of naturally produced
grammatical errors. Automatically generated error
corpora have been used before in natural language
processing. Bigert (2004) and Wilcox-O’Hearn et
al. (2006), for example, automatically introduce
spelling errors into texts. Here, we generate a large
error corpus by automatically inserting four different
kinds of grammatical errors into BNC sentences.

3.2 Commonly Produced Grammatical Errors

Following Foster (2005), we define a sentence to be
ungrammatical if all the words in the sentence are
well-formed words of the language in question, but
the sentence contains one or more error. This er-
ror can take the form of a performance slip which
can occur due to carelessness or tiredness, or a com-
petence error which occurs due to a lack of knowl-
edge of a particular construction. This definition in-
cludes real-word spelling errors and excludes non-
word spelling errors. It also excludes the abbrevi-
ated informal language used in electronic communi-
cation. Using the above definition as a guideline, a
20,000 word corpus of ungrammatical English sen-
tences was collected from a variety of written texts
including newspapers, academic papers, emails and
website forums (Foster and Vogel, 2004; Foster,
2005). The errors in the corpus were carefully anal-
ysed and classified in terms of how they might be
corrected using the three word-level correction op-
erators: insert, delete and substitute. The following
frequency ordering of the three word-level correc-
tion operators was found:
substitute(48%)> insert (24%)> delete(17%)>
combination(11%)
Stemberger (1982) reports the same ordering of the
substitution, deletion and insertion correction oper-
ators in a study of native speaker spoken language
slips. Among the grammatical errors which can be
corrected by substituting one word for another, the
most common errors are real-word spelling errors
and agreement errors. In fact, 72% of all errors fall
into one of the following four classes:

1. missing word errors:
Whatare the subjects?> What the subjects?

2. extra word errors:

Was that in the summer?> Was that in the sum-
merin?

3. real-word spelling errors:
She couldnot comprehend.> She couldno
comprehend.

4. agreement errors:
She steered Melissa round a corner.> She
steered Melissa round acorners.

A similar classification was adopted by Nicholls
(1999), having analysed the errors in a learner cor-
pus. Our research is currently limited to the four er-
ror types given above, i. e. missing word errors, ex-
tra word errors, real-word spelling errors and agree-
ments errors. However, it is possible for it to be ex-
tended to handle a wider class of errors.

3.3 Automatic Error Creation

The error creation procedure takes as input a part-
of-speech-tagged corpus of sentences which are as-
sumed to be well-formed, and outputs a corpus of
ungrammatical sentences. The automatically intro-
duced errors take the form of the four most com-
mon error types found in the manually created cor-
pus, i. e. missing word errors, extra word errors, real-
word spelling errors and agreement errors. For each
sentence in the original tagged corpus, an attempt is
made to automatically produce four ungrammatical
sentences, one for each of the four error types. Thus,
the output of the error creation procedure is, in fact,
four error corpora.

3.3.1 Missing Word Errors

In the manually created error corpus of Foster
(2005), missing word errors are classified based on
the part-of-speech (POS) of the missing word. 98%
of the missing parts-of-speech come from the fol-
lowing list (the frequency distribution in the error
corpus is given in brackets):
det (28%)> verb (23%)> prep (21%)> pro (10%)
> noun (7%)> “to” (7%) > conj (2%)
We use this information when introducing missing
word errors into the BNC sentences. For each sen-
tence, all words with the above POS tags are noted.
One of these is selected and deleted. The above
frequency ordering is respected so that, for exam-
ple, missing determiner errors are produced more of-
ten than missing pronoun errors. No ungrammatical
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sentence is produced if the original sentence con-
tains just one word or if the sentence contains no
words with parts-of-speech in the above list.

3.3.2 Extra Word Errors

We introduce extra word errors in the following
three ways:

1. Random duplication of any token within a sen-
tence:That’s the waywe we learn here.

2. Random duplication of any POS within a sen-
tence:Thereit he was.

3. Random insertion of an arbitrary token into the
sentence:Joanna drewas a long breadth.

Apart from the case of duplicate tokens, the extra
words are selected from a list of tagged words com-
piled from a random subset of the BNC. Again, our
procedure for inserting extra words is based on the
analysis of extra word errors in the 20,000 word er-
ror corpus of Foster (2005).

3.3.3 Real-Word Spelling Errors

We classify an error as a real-word spelling er-
ror if it can be corrected by replacing the erroneous
word with another word with a Levenshtein distance
of one from the erroneous word, e.g.the and they.
Based on the analysis of the manually created er-
ror corpus (Foster, 2005), we compile a list of com-
mon English real-word spelling error word pairs.
For each BNC sentence, the error creation proce-
dure records all tokens in the sentence which appear
as one half of one of these word pairs. One token
is selected at random and replaced by the other half
of the pair. The list of common real-word spelling
error pairs contains such frequently occurring words
asis anda, and the procedure therefore produces an
ill-formed sentence for most input sentences.

3.3.4 Agreement Errors

We introduce subject-verb and determiner-noun
number agreement errors into the BNC sentences.
We consider both types of agreement error equally
likely and introduce the error by replacing a singular
determiner, noun or verb with its plural counterpart,
or vice versa. For English, subject-verb agreement
errors can only be introduced for present tense verbs,
and determiner-noun agreement errors can only be
introduced for determiners which are marked for

number, e.g. demonstratives and the indefinite ar-
ticle. The procedure would be more productive if
applied to a morphologically richer language.

3.3.5 Covert Errors

James (1998) uses the termcovert error to de-
scribe a genuine language error which results in a
sentence which is syntactically well-formed under
some interpretation different from the intended one.
The prominence of covert errors in our automati-
cally created error corpus is estimated by manually
inspecting 100 sentences of each error type. The per-
centage of grammatical structures that are inadver-
tently produced for each error type and an example
of each one are shown below:

• Agreement Errors, 7%
Mary’s staff include Jones,Smith and Murphy
> Mary’s staffincludes Jones,Smith and Mur-
phy

• Real-Word Spelling Errors, 10%
Andthen? > Andthem?

• Extra Word Errors, 5%
in defiance of the free rider prediction> in de-
fiance of the free ridernear prediction

• Missing Word Errors, 13%
She steeredMelissa round a corner> She
steered round a corner

The occurrence of thesecovert errorscan be re-
duced by fine-tuning the error creation procedure but
they can never be completely eliminated. Indeed,
they should not be eliminated from the test data,
because, ideally, an optimal error detection system
should be sophisticated enough to flag syntactically
well-formed sentences containing covert errors as
potentially ill-formed.1

4 Error Detection Evaluation

In this section we present the error detection eval-
uation experiments. The experimental setup is ex-
plained in Section 4.1, the results are presented in
Section 4.2 and they are analysed in Section 4.3.

1An example of this is given in the XLE User Documen-
tation (http://www2.parc.com/isl/groups/nltt/
xle/doc/). The authors remark that an ungrammatical read-
ing of the sentenceLets go to the storein whichLetsis missing
an apostrophe, is preferable to the grammatical yet implausible
analysis in whichLetsis a plural noun.
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4.1 Experimental Setup

4.1.1 Test Data and Evaluation Procedure

The following steps are carried out to produce
training and test data for this experiment:

1. Speech material, poems, captions and list items
are removed from the BNC. 4.2 million sen-
tences remain. The order of sentences is ran-
domised.

2. For the purpose of cross-validation, the corpus
is split into 10 parts.

3. Each part is passed to the 4 automatic error in-
sertion modules described in Section 3.3, re-
sulting in 40 additional sets of varying size.

4. The first 60,000 sentences of each of the 50
sets, i. e. 3 million sentences, are parsed with
XLE.2

5. N-gram frequency information is extracted for
the first 60,000 sentences of each set. An addi-
tional 20,000 is extracted as held-out data.

6. 10 sets with mixed error types are produced by
joining a quarter of each respective error set.

7. For each error type (including mixed errors)
and cross-validation set, the 60,000 grammat-
ical and 60,000 ungrammatical sentences are
joined.

8. Each cross-validation run uses one set out of
the 10 as test data (120,000 sentences) and the
remaining 9 sets for training (1,080,000 sen-
tences).

The experiment is a standard binary classification
task. The methods classify the sentences of the test
sets as grammatical or ungrammatical. We use the
standard measures of precision, recall, f-score and
accuracy (Figure 1). True positives are understood
to be ungrammatical sentences that are identified as
such. The baseline precision and accuracy is 50%
as half of the test data is ungrammatical. If 100%
of the test data is classified as ungrammatical, re-
call will be 100% and f-score2/3. Recall shows
the accuracy we would get if the grammatical half
of the test data was removed. Parametrised methods

2We use the XLE commandparse-testfilewith parse-
literally set to 1,max xle scratch storageset to 1,000 MB,time-
out to 60 seconds, and the XLE English LFG. Skimming is not
switched on and fragments are.

Measure Formula
precision tp/(tp + fp)
recall tp/(tp + fn)
f-score 2pr ∗ re/(pr + re)
accuracy (tp + tn)/(tp + tn + fp + fn)

Figure 1: Evaluation measures: tp = true positives,
fp = false positives, tn = true negatives, fn = false
negatives, pr = precision, re = recall

are first optimised for accuracy and then the other
measures are taken. Therefore, f-scores below the
artificial 2/3 baseline are meaningful.

4.1.2 Method 1: Precision Grammar

According to the XLE documentation, a sentence
is marked with a star (*) if its optimal solution uses
a constraint marked as ungrammatical. We use this
star feature, parser exceptions and zero number of
parses to classify a sentence as ungrammatical.

4.1.3 Method 2: POS N-grams

In each cross-validation run, the full data of the
remaining 9 sets of step 2 of the data generation
(see Section 4.1.1) is used as a reference corpus of
0.9×4, 200, 000 = 3, 800, 000 assumedly grammat-
ical sentences. The reference corpora and data sets
are POS tagged with the IMS TreeTagger (Schmidt,
1994). Frequencies of POS n-grams (n = 2, . . . , 7)
are counted in the reference corpora. A test sentence
is flagged as ungrammatical if it contains an n-gram
below a fixed frequency threshold. Method 2 has
two parameters:n and the frequency threshold.

4.1.4 Method 3: Decision Trees on XLE Output

The XLE parser outputs additional statistics for
each sentence that we encode in six features:

• An integer indicating starredness (0 or 1) and
various parser exceptions (-1 for time out, -2
for exceeded memory, etc.)

• The number of optimal parses3

• The number of unoptimal parses
• The duration of parsing
• The number of subtrees
• The number of words
3The use of preferred versus dispreferred constraints are

used to distinguish optimal parses from unoptimal ones.
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Training data for the decision tree learner is com-
posed of9×60, 000 = 540, 000 feature vectors from
grammatical sentences and9 × 15, 000 = 135, 000
feature vectors from ungrammatical sentences of
each error type, resulting in equal amounts of gram-
matical and ungrammatical training data.

We choose the weka implementation of machine
learning algorithms for the experiments (Witten and
Frank, 2000). We use a J48 decision tree learner
with the default model.

4.1.5 Method 4: Decision Trees on N-grams

Method 4 follows the setup of Method 3. How-
ever, the features are the frequencies of the rarest
n-grams (n = 2, . . . , 7) in the sentence. Therefore,
the feature vector of one sentence contains 6 num-
bers.

4.1.6 Method 5: Decision Trees on Combined
Feature Sets

This method combines the features of Methods 3
and 4 for training a decision tree.

4.2 Results

Table 1 shows the results for Method 1, which uses
XLE starredness, parser exceptions4 and zero parses
to classify grammaticality. Table 2 shows the re-
sults for Method 2, the basic n-gram approach. Ta-
ble 3 shows the results for Method 3, which classi-
fies based on a decision tree of XLE features. The
results for Method 4, the n-gram-based decision tree
approach, are shown in Table 4. Finally, Table 5
shows the results for Method 5 which combines n-
gram and XLE features in decision trees.

In the case of Method 2, we first have to find opti-
mal parameters. As only very limited integer values
for n and the threshold are reasonable, an exhaustive
search is feasible. We consideredn = 2, . . . , 7 and
frequency thresholds below 20,000. Separate held-
out data (400,000 sentences) is used in order to avoid
overfitting. Best accuracy is achieved with 5-grams
and a threshold of 4. Table 2 reports results with
these parameters.

4XLE parsing (see footnote 2 for configuration) runs out
of time for 0.7 % and out of memory for 2.5 % of sentences,
measured on training data of the first cross-validation run, i. e.
540,000 grammatical sentence and 135,000 of each error type.
14 sentences of 3 million caused the parser to terminate abnor-
mally.

Error type Pr. Re. F-Sc. Acc.
Agreement 66.2 64.6 65.4 65.8
Real-word 63.5 57.3 60.3 62.2
Extra word 64.4 59.7 62.0 63.4
Missing word 59.2 47.8 52.9 57.4
Mixed errors 63.5 57.3 60.3 62.2

Table 1: Classification results with XLE starredness,
parser exceptions and zero parses (Method 1)

Error type Pr. Re. F-Sc. Acc.
Agreement 58.6 51.7 55.0 57.6
Real-word 64.0 64.9 64.5 64.2
Extra word 64.8 67.3 66.0 65.4
Missing word 57.2 48.8 52.7 56.1
Mixed errors 61.5 58.2 59.8 60.8

Table 2: Classification results with 5-gram and fre-
quency threshold 4 (Method 2)

The standard deviation of results across cross-
validation runs is below 0.006 on all measures, ex-
cept for Method 4. Therefore we only report average
percentages. The highest observed standard devia-
tion is 0.0257 for recall of Method 4 on agreement
errors.

For Methods 3, 4 and 5, the decision tree learner
optimises accuracy and, in doing so, chooses a trade-
off between precision and recall.

4.3 Analysis

Both Method 1 (Table 1) and Method 2 (Table 2)
achieve above baseline accuracy for all error types.
However, Method 1, which uses the XLE starred
feature, parser exceptions and zero parses to de-
termine whether or not a sentence is grammatical,
slightly outperforms Method 2, which uses the fre-

Error type Pr. Re. F-Sc. Acc.
Agreement 67.0 79.3 72.6 70.1
Real-word 63.4 67.6 65.4 64.3
Extra word 63.0 66.4 64.7 63.7
Missing word 59.7 57.8 58.7 59.4
Mixed errors 63.4 67.8 65.6 64.4

Table 3: Classification results with decision tree on
XLE output (Method 3)
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Error type Pr. Re. F-Sc. Acc.
Agreement 61.2 53.8 57.3 59.9
Real-word 65.3 64.3 64.8 65.1
Extra word 66.4 67.4 66.9 66.7
Missing word 59.1 49.2 53.7 57.5
Mixed errors 63.3 58.7 60.9 62.3

Table 4: Classification results with decision tree on
vectors of frequency of rarest n-grams (Method 4)

Error type Pr. Re. F-Sc. Acc.
Agreement 67.1 75.2 70.9 69.2
Real-word 65.8 70.7 68.1 67.0
Extra word 65.9 71.2 68.5 67.2
Missing word 61.2 58.0 59.5 60.6
Mixed errors 65.2 68.8 66.9 66.0

Table 5: Classification results with decision tree on
joined feature set (Method 5)

quency of POS 5-grams to detect an error. The
XLE deep-processing approach is better than the n-
gram-based approach for agreement errors (f-score
+10.4). Examining the various types of agree-
ment errors, we can see that this is especially the
case for singular subjects followed by plural cop-
ula verbs (recall +37.7) and determiner-noun num-
ber mismatches (recall +23.6 for singular nouns and
+18.0 for plural nouns), but not for plural subjects
followed by singular verbs (recall -24.0). The rela-
tively poor performance of Method 2 on agreement
errors involving determiners could be due to the lack
of agreement marking on the Penn Treebank deter-
miner tag used by TreeTagger.

Method 1 is outperformed by Method 2 for real-
word spelling and extra word errors (f-score -4.2,
-4.0). Unsurprisingly, Method 2 has an advantage
on those real-word spelling errors that change the
POS (recall -8.8 for Method 1). Both methods per-
form poorly on missing word errors. For both meth-
ods there are only very small differences in perfor-
mance between the various missing word error sub-
types (identified by the POS of the deleted word).

Method 3, which uses machine learning to exploit
all the information returned by the XLE parser, im-
proves performance from Method 1, the basic XLE

method, for all error types.5 The general improve-
ment comes from an improvement in recall, mean-
ing that more ungrammatical sentences are actu-
ally flagged as such without compromising preci-
sion. The improvement is highest for agreement
errors (f-score +7.2). Singular subject with plural
copula errors (e. g.The man are) peak at a recall of
91.0. The Method 3 results indicate that information
on the number of solutions (optimal and unoptimal),
the number of subtrees, the time taken to parse the
sentence and the number of words can be used to
predict grammaticality. It would be interesting to
investigate this approach with other parsers.

Method 4, which uses a decision tree with n-
gram-based features, confirms the results of Method
2. The decision trees’ root nodes are similar or even
identical (depending on cross-validation run) to the
decision rule of Method 2 (5-gram frequency below
4). However, the 10 decision trees have between
1,111 and 1,905 nodes and draw from all features,
even bigrams and 7-grams that perform poorly on
their own. The improvements are very small though
and they are not significant according the criterion of
non-overlapping cross-validation results. The main
reason for the evaluation of Method 4 is to provide
another reference point for comparison of the final
method.

The overall best results are those for Method 5,
the combined XLE, n-gram and machine-learning-
based method, which outperforms the next best
method, Method 3, on all error types apart from
agreement errors (f-score -1.7, +2.7, +3.8, +0.8).
For agreement errors, it seems that the relatively
poor results for n-grams have a negative effect on the
relatively good results for the XLE. Figure 2 shows
that the performance is almost constant on ungram-
matical data in the important sentence length range
from 5 to 40. However, there is a negative correla-
tion of accuracy and sentence length for grammati-
cal sentences. Very long sentences of any kind tend
to be classified as ungrammatical, except for missing
word errors which remain close to the 50% baseline
of coin-flipping.

For all methods, missing word errors are the
worst-performing, particularly in recall (i. e. the ac-

5The +0.3 increase in average accuracy for extra word errors
is not clearly significant as the results of cross-validation runs
overlap.
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Figure 2: Accuracy by sentence length for Method 5
measured on separate grammatical and ungrammat-
ical data: Gr = Grammatical, AG = Agreement, RW
= Real-Word, EW = Extra Word, MW = Missing
Word

curacy on ungrammatical data alone). This means
that the omission of a word is less likely to result in
the sentence being flagged as erroneous. In contrast,
extra word errors perform consistently and relatively
well for all methods.

5 Conclusion and Future Work

We evaluated a deep processing approach and a POS
n-gram-based approach to the automatic detection of
common grammatical errors in a BNC-derived arti-
ficial error corpus. The results are broken down by
error type. Together with the deep approach, a deci-
sion tree machine learning algorithm can be used ef-
fectively. However, extending the shallow approach
with the same learning algorithm gives only small
improvements. Combining the deep and shallow ap-
proaches gives an additional improvement on all but
one error type.

Our plan is to investigate why all methods per-
form poorly on missing word errors, to extend the
error creation procedure so that it includes a wider
range of errors, to try the deep approach with other
parsers, to integrate additional features from state-
of-the-art shallow techniques and to repeat the ex-
periments for languages other than English.
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Abstract

We present a comparative error analysis
of the two dominant approaches in data-
driven dependency parsing: global, exhaus-
tive, graph-based models, and local, greedy,
transition-based models. We show that, in
spite of similar performance overall, the two
models produce different types of errors, in
a way that can be explained by theoretical
properties of the two models. This analysis
leads to new directions for parser develop-
ment.

1 Introduction

Syntactic dependency representations have a long
history in descriptive and theoretical linguistics and
many formal models have been advanced (Hudson,
1984; Mel’čuk, 1988; Sgall et al., 1986; Maruyama,
1990). A dependency graph of a sentence repre-
sents each word and its syntactic modifiers through
labeled directed arcs, as shown in Figure 1, taken
from the Prague Dependency Treebank (Böhmová et
al., 2003). A primary advantage of dependency rep-
resentations is that they have a natural mechanism
for representing discontinuous constructions, aris-
ing from long distance dependencies or free word
order, through non-projective dependency arcs, ex-
emplified by the arc from jedna to Z in Figure 1.

Syntactic dependency graphs have recently
gained a wide interest in the computational lin-
guistics community and have been successfully em-
ployed for many problems ranging from machine
translation (Ding and Palmer, 2004) to ontology

Figure 1: Example dependency graph.

construction (Snow et al., 2004). In this work we
focus on a common parsing paradigm called data-
driven dependency parsing. Unlike grammar-based
parsing, data-driven approaches learn to produce de-
pendency graphs for sentences solely from an anno-
tated corpus. The advantage of such models is that
they are easily ported to any domain or language in
which annotated resources exist.

As evident from the CoNLL-X shared task on de-
pendency parsing (Buchholz and Marsi, 2006), there
are currently two dominant models for data-driven
dependency parsing. The first is what Buchholz and
Marsi (2006) call the “all-pairs” approach, where ev-
ery possible arc is considered in the construction of
the optimal parse. The second is the “stepwise” ap-
proach, where the optimal parse is built stepwise and
where the subset of possible arcs considered depend
on previous decisions. Theoretically, these models
are extremely different. The all-pairs models are
globally trained, use exact (or near exact) inference
algorithms, and define features over a limited history
of parsing decisions. The stepwise models use local
training and greedy inference algorithms, but define
features over a rich history of parse decisions. How-
ever, both models obtain similar parsing accuracies
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McDonald Nivre
Arabic 66.91 66.71

Bulgarian 87.57 87.41
Chinese 85.90 86.92

Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59

German 87.34 85.82
Japanese 90.71 91.65

Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Overall 80.83 80.75

Table 1: Labeled parsing accuracy for top scoring
systems at CoNLL-X (Buchholz and Marsi, 2006).

on a variety of languages, as seen in Table 1, which
shows results for the two top performing systems in
the CoNLL-X shared task, McDonald et al. (2006)
(“all-pairs”) and Nivre et al. (2006) (“stepwise”).

Despite the similar performance in terms of over-
all accuracy, there are indications that the two types
of models exhibit different behaviour. For example,
Sagae and Lavie (2006) displayed that combining
the predictions of both parsing models can lead to
significantly improved accuracies. In order to pave
the way for new and better methods, a much more
detailed error analysis is needed to understand the
strengths and weaknesses of different approaches.
In this work we set out to do just that, focusing on
the two top performing systems from the CoNLL-X
shared task as representatives of the two dominant
models in data-driven dependency parsing.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible arc
labels. Let x = w0, w1, . . . , wn be an input sen-
tence where w0=root. Formally, a dependency graph
for an input sentence x is a labeled directed graph
G = (V,A) consisting of a set of nodes V and a
set of labeled directed arcs A ⊆ V × V × L, i.e., if
(i, j, l) ∈ A for i, j ∈ V and l ∈ L, then there is an

arc from node i to node j with label l in the graph.
A dependency graph G for sentence x must satisfy
the following properties:

1. V = {0, 1, . . . , n}

2. If (i, j, l) ∈ A, then j 6= 0.

3. If (i, j, l) ∈ A, then for all i′ ∈ V − {i} and
l′ ∈ L, (i′, j, l′) /∈ A.

4. For all j ∈ V −{0}, there is a (possibly empty)
sequence of nodes i1, . . . , im∈V and labels
l1, . . . , lm, l∈L such that (0, i1, l1),(i1, i2, l2),
. . . , (im, j, l)∈A.

The constraints state that the dependency graph
spans the entire input (1); that the node 0 is a root
(2); that each node has at most one incoming arc
in the graph (3); and that the graph is connected
through directed paths from the node 0 to every other
node in the graph (4). A dependency graph satisfy-
ing these constraints is a directed tree originating out
of the root node 0. We say that an arc (i, j, l) is non-
projective if not all words k occurring between i and
j in the linear order are dominated by i (where dom-
inance is the transitive closure of the arc relation).

2.2 Global, Exhaustive, Graph-Based Parsing
For an input sentence, x = w0, w1, . . . , wn consider
the dense graph Gx = (Vx, Ax) where:

1. Vx = {0, 1, . . . , n}
2. Ax = {(i, j, l) | ∀ i, j ∈ Vx and l ∈ L}

Let D(Gx) represent the subgraphs of graph Gx

that are valid dependency graphs for the sentence
x. Since Gx contains all possible labeled arcs, the
set D(Gx) must necessarily contain all valid depen-
dency graphs for x.

Assume that there exists a dependency arc scoring
function, s : V × V × L → R. Furthermore, define
the score of a graph as the sum of its arc scores,

s(G = (V,A)) =
∑

(i,j,l)∈A

s(i, j, l)

The score of a dependency arc, s(i, j, l) represents
the likelihood of creating a dependency from word
wi to word wj with the label l. If the arc score func-
tion is known a priori, then the parsing problem can
be stated as,
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G = arg max
G∈D(Gx)

s(G) = arg max
G∈D(Gx)

∑
(i,j,l)∈A

s(i, j, l)

This problem is equivalent to finding the highest
scoring directed spanning tree in the graph Gx origi-
nating out of the root node 0, which can be solved for
both the labeled and unlabeled case in O(n2) time
(McDonald et al., 2005b). In this approach, non-
projective arcs are produced naturally through the
inference algorithm that searches over all possible
directed trees, whether projective or not.

The parsing models of McDonald work primarily
in this framework. To learn arc scores, these mod-
els use large-margin structured learning algorithms
(McDonald et al., 2005a), which optimize the pa-
rameters of the model to maximize the score mar-
gin between the correct dependency graph and all
incorrect dependency graphs for every sentence in a
training set. The learning procedure is global since
model parameters are set relative to the classification
of the entire dependency graph, and not just over sin-
gle arc attachment decisions. The primary disadvan-
tage of these models is that the feature representa-
tion is restricted to a limited number of graph arcs.
This restriction is required so that both inference and
learning are tractable.

The specific model studied in this work is that
presented by McDonald et al. (2006), which factors
scores over pairs of arcs (instead of just single arcs)
and uses near exhaustive search for unlabeled pars-
ing coupled with a separate classifier to label each
arc. We call this system MSTParser, which is also
the name of the freely available implementation.1

2.3 Local, Greedy, Transition-Based Parsing

A transition system for dependency parsing defines

1. a set C of parser configurations, each of which
defines a (partially built) dependency graph G

2. a set T of transitions, each a function t :C→C

3. for every sentence x = w0, w1, . . . , wn,

(a) a unique initial configuration cx

(b) a set Cx of terminal configurations

1http://mstparser.sourceforge.net

A transition sequence Cx,m = (cx, c1, . . . , cm) for a
sentence x is a sequence of configurations such that
cm ∈ Cx and, for every ci (ci 6= cx), there is a tran-
sition t ∈ T such that ci = t(ci−1). The dependency
graph assigned to x by Cx,m is the graph Gm defined
by the terminal configuration cm.

Assume that there exists a transition scoring func-
tion, s : C × T → R. The score of a transition
t in a configuration c, s(c, t), represents the likeli-
hood of taking transition t out of configuration c.
The parsing problem consists in finding a terminal
configuration cm ∈ Cx, starting from the initial
configuration cx and taking the optimal transition
t∗ = arg maxt∈T s(c, t) out of every configuration
c. This can be seen as a greedy search for the optimal
dependency graph, based on a sequence of locally
optimal decisions in terms of the transition system.

Many transition systems for data-driven depen-
dency parsing are inspired by shift-reduce parsing,
where configurations contain a stack for storing par-
tially processed nodes. Transitions in such systems
add arcs to the dependency graph and/or manipu-
late the stack. One example is the transition system
defined by Nivre (2003), which parses a sentence
x = w0, w1, . . . , wn in O(n) time, producing a pro-
jective dependency graph satisfying conditions 1–4
in section 2.1, possibly after adding arcs (0, i, lr)
for every node i 6= 0 that is a root in the output
graph (where lr is a special label for root modifiers).
Nivre and Nilsson (2005) showed how the restric-
tion to projective dependency graphs could be lifted
by using graph transformation techniques to pre-
process training data and post-process parser output,
so-called pseudo-projective parsing.

To learn transition scores, these systems use dis-
criminative learning methods, e.g., memory-based
learning or support vector machines. The learning
procedure is local since only single transitions are
scored, not entire transition sequences. The primary
advantage of these models is that features are not re-
stricted to a limited number of graph arcs but can
take into account the entire dependency graph built
so far. The main disadvantage is that the greedy
parsing strategy may lead to error propagation.

The specific model studied in this work is that pre-
sented by Nivre et al. (2006), which uses labeled
pseudo-projective parsing with support vector ma-
chines. We call this system MaltParser, which is also
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the name of the freely available implementation.2

2.4 Comparison

These models differ primarily with respect to three
important properties.

1. Inference: MaltParser uses a transition-based
inference algorithm that greedily chooses the
best parsing decision based on a trained clas-
sifier and current parser history. MSTParser
instead uses near exhaustive search over a
dense graphical representation of the sentence
to find the dependency graph that maximizes
the score.

2. Training: MaltParser trains a model to make
a single classification decision (choose the next
transition). MSTParser trains a model to maxi-
mize the global score of correct graphs.

3. Feature Representation: MaltParser can in-
troduce a rich feature history based on previ-
ous parser decisions. MSTParser is forced to
restrict the score of features to a single or pair
of nearby parsing decisions in order to make
exhaustive inference tractable.

These differences highlight an inherent trade-off be-
tween exhaustive inference algorithms plus global
learning and expressiveness of feature representa-
tions. MSTParser favors the former at the expense
of the latter and MaltParser the opposite.

3 The CoNLL-X Shared Task

The CoNLL-X shared task (Buchholz and Marsi,
2006) was a large-scale evaluation of data-driven de-
pendency parsers, with data from 13 different lan-
guages and 19 participating systems. The official
evaluation metric was the labeled attachment score
(LAS), defined as the percentage of tokens, exclud-
ing punctuation, that are assigned both the correct
head and the correct dependency label.3

The output of all systems that participated in the
shared task are available for download and consti-
tute a rich resource for comparative error analysis.

2http://w3.msi.vxu.se/users/nivre/research/MaltParser.html
3In addition, results were reported for unlabeled attachment

score (UAS) (tokens with the correct head) and label accuracy
(LA) (tokens with the correct label).

The data used in the experiments below are the out-
puts of MSTParser and MaltParser for all 13 lan-
guages, together with the corresponding gold stan-
dard graphs used in the evaluation. We constructed
the data by simply concatenating a system’s output
for every language. This resulted in a single out-
put file for each system and a corresponding single
gold standard file. This method is sound because the
data sets for each language contain approximately
the same number of tokens – 5,000. Thus, evalu-
ating system performance over the aggregated files
can be roughly viewed as measuring system perfor-
mance through an equally weighted arithmetic mean
over the languages.

It could be argued that a language by language
comparison would be more appropriate than com-
paring system performance across all languages.
However, as table Table 1 shows, the difference in
accuracy between the two systems is typically small
for all languages, and only in a few cases is this
difference significant. Furthermore, by aggregating
over all languages we gain better statistical estimates
of parser errors, since the data set for each individual
language is very small.

4 Error Analysis

The primary purpose of this study is to characterize
the errors made by standard data-driven dependency
parsing models. To that end, we present a large set of
experiments that relate parsing errors to a set of lin-
guistic and structural properties of the input and pre-
dicted/gold standard dependency graphs. We argue
that the results can be correlated to specific theoreti-
cal aspects of each model – in particular the trade-off
highlighted in Section 2.4.

For simplicity, all experiments report labeled
parsing accuracies. Identical experiments using un-
labeled parsing accuracies did not reveal any addi-
tional information. Furthermore, all experiments are
based on the data from all 13 languages together, as
explained in section 3.

4.1 Length Factors

It is well known that parsing systems tend to have
lower accuracies for longer sentences. Figure 2
shows the accuracy of both parsing models relative
to sentence length (in bins of size 10: 1–10, 11–20,
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Figure 2: Accuracy relative to sentence length.

etc.). System performance is almost indistinguish-
able. However, MaltParser tends to perform better
on shorter sentences, which require the greedy in-
ference algorithm to make less parsing decisions. As
a result, the chance of error propagation is reduced
significantly when parsing these sentences. The fact
that MaltParser has a higher accuracy (rather than
the same accuracy) when the likelihood of error
propagation is reduced comes from its richer feature
representation.

Another interesting property is accuracy relative
to dependency length. The length of a dependency
from word wi to word wj is simply equal to |i− j|.
Longer dependencies typically represent modifiers
of the root or the main verb in a sentence. Shorter
dependencies are often modifiers of nouns such as
determiners or adjectives or pronouns modifying
their direct neighbours. Figure 3 measures the pre-
cision and recall for each system relative to depen-
dency lengths in the predicted and gold standard de-
pendency graphs. Precision represents the percent-
age of predicted arcs of length d that were correct.
Recall measures the percentage of gold standard arcs
of length d that were correctly predicted.

Here we begin to see separation between the two
systems. MSTParser is far more precise for longer
dependency arcs, whereas MaltParser does better
for shorter dependency arcs. This behaviour can
be explained using the same reasoning as above:
shorter arcs are created before longer arcs in the
greedy parsing procedure of MaltParser and are less
prone to error propagation. Theoretically, MST-
Parser should not perform better or worse for edges
of any length, which appears to be the case. There
is still a slight degradation, but this can be attributed
to long dependencies occurring more frequently in
constructions with possible ambiguity. Note that

even though the area under the curve is much larger
for MSTParser, the number of dependency arcs with
a length greater than ten is much smaller than the
number with length less than ten, which is why the
overall accuracy of each system is nearly identical.
For all properties considered here, bin size generally
shrinks in size as the value on the x-axis increases.

4.2 Graph Factors

The structure of the predicted and gold standard de-
pendency graphs can also provide insight into the
differences between each model. For example, mea-
suring accuracy for arcs relative to their distance to
the artificial root node will detail errors at different
levels of the dependency graph. For a given arc, we
define this distance as the number of arcs in the re-
verse path from the modifier of the arc to the root.
Figure 4 plots the precision and recall of each sys-
tem for arcs of varying distance to the root. Preci-
sion is equal to the percentage of dependency arcs in
the predicted graph that are at a distance of d and are
correct. Recall is the percentage of dependency arcs
in the gold standard graph that are at a distance of d
and were predicted.

Figure 4 clearly shows that for arcs close to the
root, MSTParser is much more precise than Malt-
Parser, and vice-versa for arcs further away from the
root. This is probably the most compelling graph
given in this study since it reveals a clear distinction:
MSTParser’s precision degrades as the distance to
the root increases whereas MaltParser’s precision in-
creases. The plots essentially run in opposite direc-
tions crossing near the middle. Dependency arcs fur-
ther away from the root are usually constructed early
in the parsing algorithm of MaltParser. Again a re-
duced likelihood of error propagation coupled with
a rich feature representation benefits that parser sub-
stantially. Furthermore, MaltParser tends to over-
predict root modifiers, because all words that the
parser fails to attach as modifiers are automatically
connected to the root, as explained in section 2.3.
Hence, low precision for root modifiers (without a
corresponding drop in recall) is an indication that the
transition-based parser produces fragmented parses.

The behaviour of MSTParser is a little trickier to
explain. One would expect that its errors should be
distributed evenly over the graph. For the most part
this is true, with the exception of spikes at the ends

126



0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

Figure 3: Dependency arc precision/recall relative to predicted/gold dependency length.

of the plot. The high performance for root modifica-
tion (distance of 1) can be explained through the fact
that this is typically a low entropy decision – usu-
ally the parsing algorithm has to determine the main
verb from a small set of possibilities. On the other
end of the plot there is a sharp downwards spike for
arcs of distance greater than 10. It turns out that
MSTParser over-predicts arcs near the bottom of the
graph. Whereas MaltParser pushes difficult parsing
decisions higher in the graph, MSTParser appears to
push these decisions lower.

The next graph property we will examine aims to
quantify the local neighbourhood of an arc within
a dependency graph. Two dependency arcs, (i, j, l)
and (i′, j′, l′) are classified as siblings if they repre-
sent syntactic modifications of the same word, i.e.,
i = i′. Figure 5 measures the precision and recall
of each system relative to the number of predicted
and gold standard siblings of each arc. There is
not much to distinguish between the parsers on this
metric. MSTParser is slightly more precise for arcs
that are predicted with more siblings, whereas Malt-
Parser has slightly higher recall on arcs that have
more siblings in the gold standard tree. Arcs closer
to the root tend to have more siblings, which ties this
result to the previous ones.

The final graph property we wish to look at is the
degree of non-projectivity. The degree of a depen-
dency arc from word w to word u is defined here
as the number of words occurring between w and u
that are not descendants of w and modify a word that
does not occur between w and u (Nivre, 2006). In
the example from Figure 1, the arc from jedna to Z
has a degree of one, and all other arcs have a degree
of zero. Figure 6 plots dependency arc precision and
recall relative to arc degree in predicted and gold
standard dependency graphs. MSTParser is more

precise when predicting arcs with high degree and
MaltParser vice-versa. Again, this can be explained
by the fact that there is a tight correlation between a
high degree of non-projectivity, dependency length,
distance to root and number of siblings.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a
set of linguistic categories, such as parts of speech
and dependency types. Therefore, we have made
an attempt to distinguish a few broad categories
that are cross-linguistically identifiable, based on the
available documentation of the treebanks used in the
shared task.

For parts of speech, we distinguish verbs (includ-
ing both main verbs and auxiliaries), nouns (includ-
ing proper names), pronouns (sometimes also in-
cluding determiners), adjectives, adverbs, adposi-
tions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For depen-
dency types, we distinguish a general root category
(for labels used on arcs from the artificial root, in-
cluding either a generic label or the label assigned
to predicates of main clauses, which are normally
verbs), a subject category, an object category (in-
cluding both direct and indirect objects), and various
categories related to coordination.

Figure 7 shows the accuracy of the two parsers
for different parts of speech. This figure measures
labeled dependency accuracy relative to the part of
speech of the modifier word in a dependency rela-
tion. We see that MaltParser has slightly better ac-
curacy for nouns and pronouns, while MSTParser
does better on all other categories, in particular con-
junctions. This pattern is consistent with previous
results insofar as verbs and conjunctions are often
involved in dependencies closer to the root that span
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Figure 4: Dependency arc precision/recall relative to predicted/gold distance to root.
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Figure 5: Dependency arc precision/recall relative to number of predicted/gold siblings.

longer distances, while nouns and pronouns are typ-
ically attached to verbs and therefore occur lower in
the graph, with shorter distances. Empirically, ad-
verbs resemble verbs and conjunctions with respect
to root distance but group with nouns and pronouns
for dependency length, so the former appears to be
more important. In addition, both conjunctions and
adverbs tend to have a high number of siblings, mak-
ing the results consistent with the graph in Figure 5.

Adpositions and especially adjectives constitute
a puzzle, having both high average root distance
and low average dependency length. Adpositions do
tend to have a high number of siblings on average,
which could explain MSTParser’s performance on
that category. However, adjectives on average occur
the furthest away from the root, have the shortest
dependency length and the fewest siblings. As such,
we do not have an explanation for this behaviour.

In the top half of Figure 8, we consider precision
and recall for dependents of the root node (mostly
verbal predicates), and for subjects and objects. As
already noted, MSTParser has considerably better
precision (and slightly better recall) for the root cat-
egory, but MaltParser has an advantage for the nomi-
nal categories, especially subjects. A possible expla-
nation for the latter result, in addition to the length-
based and graph-based factors invoked before, is that
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Figure 7: Accuracy for different parts of speech.

MaltParser integrates labeling into the parsing pro-
cess, so that previously assigned dependency labels
can be used as features, which may be important to
disambiguate subjects and objects.

Finally, in the bottom half of Figure 8, we dis-
play precision and recall for coordinate structures,
divided into different groups depending on the type
of analysis adopted in a particular treebank. The cat-
egory CCH (coordinating conjunction as head) con-
tains conjunctions analyzed as heads of coordinate
structures, with a special dependency label that does
not describe the function of the coordinate structure
in the larger syntactic structure, a type of category
found in the so-called Prague style analysis of coor-
dination and used in the data sets for Arabic, Czech,
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Figure 6: Dependency arc precision/recall relative to predicted/gold degree of non-projectivity.
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Figure 8: Precision/recall for different dependency types.

and Slovene. The category CCD (coordinating con-
junction as dependent) instead denotes conjunctions
that are attached as dependents of one of the con-
juncts with a label that only marks them as conjunc-
tions, a type of category found in the data sets for
Bulgarian, Danish, German, Portuguese, Swedish
and Turkish. The two remaining categories con-
tain conjuncts that are assigned a dependency label
that only marks them as conjuncts and that are at-
tached either to the conjunction (CJCC) or to an-
other conjunct (CJCJ). The former is found in Bul-
garian, Danish, and German; the latter only in Por-
tuguese and Swedish. For most of the coordination
categories there is little or no difference between the
two parsers, but for CCH there is a difference in both
precision and recall of almost 20 percentage points
to MSTParser’s advantage. This can be explained by

noting that, while the categories CCD, CJCC, and
CJCJ denote relations that are internal to the coor-
dinate structure and therefore tend to be local, the
CCH relations hold between the coordinate struc-
ture and its head, which is often a relation that spans
over a greater distance and is nearer the root of the
dependency graph. It is likely that the difference in
accuracy for this type of dependency accounts for a
large part of the difference in accuracy noted earlier
for conjunctions as a part of speech.

4.4 Discussion

The experiments from the previous section highlight
the fundamental trade-off between global training
and exhaustive inference on the one hand and ex-
pressive feature representations on the other. Error
propagation is an issue for MaltParser, which typi-
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cally performs worse on long sentences, long depen-
dency arcs and arcs higher in the graphs. But this is
offset by the rich feature representation available to
these models that result in better decisions for fre-
quently occurring arc types like short dependencies
or subjects and objects. The errors for MSTParser
are spread a little more evenly. This is expected,
as the inference algorithm and feature representation
should not prefer one type of arc over another.

What has been learned? It was already known that
the two systems make different errors through the
work of Sagae and Lavie (2006). However, in that
work an arc-based voting scheme was used that took
only limited account of the properties of the words
connected by a dependency arc (more precisely, the
overall accuracy of each parser for the part of speech
of the dependent). The analysis in this work not only
shows that the errors made by each system are dif-
ferent, but that they are different in a way that can be
predicted and quantified. This is an important step
in parser development.

To get some upper bounds of the improvement
that can be obtained by combining the strengths of
each models, we have performed two oracle experi-
ments. Given the output of the two systems, we can
envision an oracle that can optimally choose which
single parse or combination of sub-parses to predict
as a final parse. For the first experiment the oracle
is provided with the single best parse from each sys-
tem, say G = (V,A) and G′ = (V ′, A′). The oracle
chooses a parse that has the highest number of cor-
rectly predicted labeled dependency attachments. In
this situation, the oracle accuracy is 84.5%. In the
second experiment the oracle chooses the tree that
maximizes the number of correctly predicted depen-
dency attachments, subject to the restriction that the
tree must only contain arcs from A ∪ A′. This can
be computed by setting the weight of an arc to 1 if
it is in the correct parse and in the set A ∪ A′. All
other arc weights are set to negative infinity. One can
then simply find the tree that has maximal sum of
arc weights using directed spanning tree algorithms.
This technique is similar to the parser voting meth-
ods used by Sagae and Lavie (2006). In this situa-
tion, the oracle accuracy is 86.9%.

In both cases we see a clear increase in accuracy:
86.9% and 84.5% relative to 81% for the individual
systems. This indicates that there is still potential

for improvement, just by combining the two existing
models. More interestingly, however, we can use
the analysis to get ideas for new models. Below we
sketch some possible new directions:

1. Ensemble systems: The error analysis pre-
sented in this paper could be used as inspiration
for more refined weighting schemes for ensem-
ble systems of the kind proposed by Sagae and
Lavie (2006), making the weights depend on a
range of linguistic and graph-based factors.

2. Hybrid systems: Rather than using an ensem-
ble of several parsers, we may construct a sin-
gle system integrating the strengths of each
parser described here. This could defer to
a greedy inference strategy during the early
stages of the parse in order to benefit from a
rich feature representation, but then default to
a global exhaustive model as the likelihood for
error propagation increases.

3. Novel approaches: The two approaches inves-
tigated are each based on a particular combina-
tion of training and inference methods. We may
naturally ask what other combinations may
prove fruitful. For example, what about glob-
ally trained, greedy, transition-based models?
This is essentially what Daumé III et al. (2006)
provide, in the form of a general search-based
structured learning framework that can be di-
rectly applied to dependency parsing. The ad-
vantage of this method is that the learning can
set model parameters relative to errors resulting
directly from the search strategy – such as error
propagation due to greedy search. When com-
bined with MaltParser’s rich feature represen-
tation, this could lead to significant improve-
ments in performance.

5 Conclusion

We have presented a thorough study of the dif-
ference in errors made between global exhaustive
graph-based parsing systems (MSTParser) and lo-
cal greedy transition-based parsing systems (Malt-
Parser). We have shown that these differences can
be quantified and tied to theoretical expectations of
each model, which may provide insights leading to
better models in the future.
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Hal Daumé III, John Langford, and Daniel Marcu. 2006.
Search-based structured prediction. In Submission.

Y. Ding and M. Palmer. 2004. Synchronous dependency
insertion grammars: A grammar formalism for syntax
based statistical MT. In Workshop on Recent Advances
in Dependency Grammars (COLING).

R. Hudson. 1984. Word Grammar. Blackwell.

H. Maruyama. 1990. Structural disambiguation with
constraint propagation. In Proc. ACL.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b.
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Abstract

A notable gap in research on statistical de-
pendency parsing is a proper conditional
probability distribution over nonprojective
dependency trees for a given sentence. We
exploit the Matrix Tree Theorem (Tutte,
1984) to derive an algorithm that efficiently
sums the scores of all nonprojective trees
in a sentence, permitting the definition of
a conditional log-linear model over trees.
While discriminative methods, such as those
presented in McDonald et al. (2005b), ob-
tain very high accuracy on standard de-
pendency parsing tasks and can be trained
and applied without marginalization, “sum-
ming trees” permits some alternative tech-
niques of interest. Using the summing al-
gorithm, we present competitive experimen-
tal results on four nonprojective languages,
for maximum conditional likelihood estima-
tion, minimum Bayes-risk parsing, and hid-
den variable training.

1 Introduction

Recently dependency parsing has received renewed
interest, both in the parsing literature (Buchholz
and Marsi, 2006) and in applications like translation
(Quirk et al., 2005) and information extraction (Cu-
lotta and Sorensen, 2004). Dependency parsing can
be used to provide a “bare bones” syntactic struc-
ture that approximates semantics, and it has the addi-
tional advantage of admitting fast parsing algorithms
(Eisner, 1996; McDonald et al., 2005b) with a neg-
ligible grammar constant in many cases.

The latest state-of-the-art statistical dependency
parsers are discriminative, meaning that they are
based on classifiers trained to score trees, given a
sentence, either via factored whole-structure scores
(McDonald et al., 2005a) or local parsing decision
scores (Hall et al., 2006). In the works cited, these
scores are not intended to be interpreted as proba-
bilistic quantities.

Here we consider weighted dependency parsing
models that can be used to define well-formed con-
ditional distributions p(y | x), for dependency
trees y and a sentence x. Conditional distribu-
tions over outputs (here, trees) given inputs (here,
sentences) have certain advantages. They per-
mit marginalization over trees to compute poste-
riors of interesting sub-events (e.g., the probabil-
ity that two noun tokens bear a relation, regard-
less of which tree is correct). A probability model
permits alternative decoding procedures (Goodman,
1996). Well-motivated hidden variable training
procedures (such as EM and conditional EM) are
also readily available for probabilistic models. Fi-
nally, probability models can be chained together (as
in a noisy channel model), mixed, or combined in a
product-of-experts.

Sequence models, context-free models, and de-
pendency models have appeared in several guises;
a cross-model comparison clarifies the contribution
of this paper. First, there were generative, stochas-
tic models like HMMs, PCFGs, and Eisner’s (1996)
models. Local discriminative classifiers were pro-
posed by McCallum et al. (2000) for sequence mod-
eling, by Ratnaparkhi et al. (1994) for constituent
parsing, and by Hall et al. (2006) (among others) for
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dependencies. Large-margin whole-structure mod-
els were proposed for sequence labeling by Al-
tun et al. (2003), for constituents by Taskar et al.
(2004), and for dependency trees by McDonald et
al. (2005a). In this paper, we propose a model
most similar to the conditional random fields—
interpretable as log-linear models—of Lafferty et al.
(2001), which are now widely used for sequence la-
beling. Log-linear models have been used in pars-
ing by Riezler et al. (2000) (for constraint-based
grammars) and Johnson (2001) and Miyao and Tsu-
jii (2002) (for CFGs). Like McDonald et al., we use
an edge-factored model that permits nonprojective
trees; like Lafferty et al., we argue for an alternative
interpretation as a log-linear model over structures,
conditioned on the observed sentence.

In Section 2 we point out what would be required,
computationally, for conditional training of nonpro-
jective dependency models. The solution to the con-
ditionalization problem is given in Section 3, using a
widely-known but newly-applied Matrix Tree Theo-
rem due to Tutte (1984), and experimental results are
presented with a comparison to the MIRA learning
algorithm used by McDonald et al. (2005a). We go
on to describe and experiment with two useful appli-
cations of conditional modeling: minimum Bayes-
risk decoding (Section 4) and hidden-variable train-
ing by conditional maximum likelihood estimation
(Section 5). Discussion in Section 6 considers the
implications of our experimental results.

Two indepedent papers, published concurrently
with this one, report closely related results to ours.
Koo et al. (2007) and McDonald and Satta (2007)
both describe how the Matrix Tree Theorem can be
applied to computing the sum of scores of edge-
factored dependency trees and the edge marginals.
Koo et al. compare conditional likelihood training
(as here) to the averaged perceptron and a max-
imum margin model trained using exponentiated-
gradient (Bartlett et al., 2004); the latter requires
the same marginalization calculations as conditional
log-linear estimation. McDonald and Satta discuss a
variety of applications (including minimum Bayes-
risk decoding) and give complexity results for non-
edge-factored models. Interested readers are re-
ferred to those papers for further discussion.

2 Conditional Training for Nonprojective
Dependency Models

Let x = 〈x1, ..., xn〉 be a sequence of words (possi-
bly with POS tags, lemmas, and morphological in-
formation) that are the input to a parser. y will refer
to a directed, unlabeled dependency tree, which is a
map y : {1, ..., n} → {0, ..., n} from child indices
to parent indices; x0 is the invisible “wall” symbol.
Let Yx be the set of valid dependency trees for x. In
this paper, Yx is equivalent to the set of all directed
spanning trees over x.1

A conditional model defines a family of probabil-
ity distributions p(y | x), for all x and y ∈ Yx. We
propose that this model take a log-linear form:

p~θ
(y | x) =

e
~θ·~f(x,y)∑

y′∈Yx

e
~θ·~f(x,y′)

=
e
~θ·~f(x,y)

Z~θ
(x)

(1)

where ~f is a feature vector function on parsed sen-
tences and ~θ ∈ Rm parameterizes the model. Fol-
lowing McDonald et al. (2005a), we assume that the
features are edge-factored:

~f(x,y) =
n∑

i=1

~f(x, xi, xy(i)) (2)

In other words, the dependencies between words in
the tree are all conditionally independent of each
other, given the sequence x and the fact that the
parse is a spanning tree. Despite the constraints they
impose on features, edge-factored models have the
advantage of tractable O(n3) inference algorithms
or, with some trickery, O(n2) maximum a posteriori
(“best parse tree”) inference algorithms in the non-
projective case. Exact nonprojective inference and
estimation become intractable if we break edge fac-
toring (McDonald and Pereira, 2006).

We wish to estimate the parameters ~θ by maxi-
mizing the conditional likelihood (like a CRF) rather

1To be precise, every word has in-degree 1, with the sole
edge pointing from the word’s parent, xy(i) → xi. x0 has in-
degree 0. By definition, trees are acyclic. The edges need not
be planar and may “cross” in the plane, since we do not have a
projectivity constraint. In some formulations, exactly one node
in x can attach to x0; here we allow multiple nodes to attach
to x0, since this occurs with some frequency in many existing
datasets. Summation over trees where x0 has exactly one child
is addressed directly by Koo et al. (2007).
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than the margin (McDonald et al., 2005a). For an
empirical distribution p̃ given by a set of training ex-
amples, this means:

max
~θ

∑
x,y

p̃(x,y)
(
~θ · ~f(x,y)

)
−

∑
x

p̃(x) log Z~θ
(x)

(3)
This optimization problem is typically solved us-

ing a quasi-Newton numerical optimization method
such as L-BFGS (Liu and Nocedal, 1989). Such a
method requires the gradient of the objective func-
tion, which for θk is given by the following differ-
ence in expectations of the value of feature fk:

∂

∂θk
= (4)

Ep̃(X,Y) [fk(X,Y)]−Ep̃(X)p~θ
(Y|X) [fk(X,Y)]

The computation of Z~θ
(x) and the sufficient

statistics (second expectation in Equation 4) are typ-
ically the difficult parts. They require summing the
scores of all the spanning trees for a given sentence.
Note that, in large-margin training, and in standard
maximum a posteriori decoding, only a maximum
over spanning trees is called for—it is conditional
training that requires Z~θ

(x). In Section 3, we will
show how this can be done exactly in O(n3) time.

3 Exploiting the Matrix Tree Theorem for
Z~θ(x)

We wish to apply conditional training to estimate
conditional models of nonprojective trees. This re-
quires computing Z~θ

(x) for each training example
(as an inner loop to training). In this section we show
how the summation can be computed and how con-
ditional training performs.

3.1 Kirchoff Matrix

Recall that we defined the unnormalized probability
(henceforth, score) of a dependency tree as a combi-
nation of edge-factored scores for the edges present
in the tree (Eq. 2):

exp ~θ·~f(x,y) =
n∏

i=1

e
~θ·~f(x,xi,xy(i)) =

n∏
i=1

s
x,~θ

(i,y(i))

(5)
where y(i) denotes the parent of xi in y. s

x,~θ
(i, j),

then, denotes the (multiplicative) contribution of the

edge from child i to parent j to the total score of
the tree, if the edge is present. Define the Kirchoff
matrix K

x,~θ
∈ Rn×n by[

K
x,~θ

]
mom,kid

= (6)
−s

x,~θ
(kid ,mom) if mom 6= kid∑

j∈{0,...n}:j 6=mom

s
x,~θ

(kid , j) if mom = kid .

where mom indexes a parent node and kid a child
node.

K
x ~θ

can be regarded as a special weighted adja-
cency matrix in which the ith diagonal entry is the
sum of edge-scores directed into vertex i (i.e., xi is
the child)—note that the sum includes the score of
attaching xi to the wall x0.

In our notation and in one specific form, the Ma-
trix Tree Theorem (Tutte, 1984) states:2

Theorem 1 The determinant of the Kirchoff matrix
K

x,~θ
is equal to the sum of scores of all directed

spanning trees in Yx rooted at x0. Formally:∣∣∣Kx,~θ

∣∣∣ = Z~θ
(x).

A proof is omitted; see Tutte (1984).
To compute Z~θ

(x), we need only take the deter-
minant of K

x,~θ
, which can be done in O(n3) time

using the standard LU factorization to compute the
matrix inverse. Since all of the edge weights used
to construct the Kirchoff matrix are positive, it is di-
agonally dominant and therefore non-singular (i.e.,
invertible).

3.2 Gradient

The gradient of Z~θ
(x) (required for numerical opti-

mization; see Eqs. 3–4) can be efficiently computed
from the same matrix inverse. While ∇ log Z~θ

(x)
equates to a vector of feature expectations (Eq. 4),
we exploit instead some facts from linear algebra

2There are proven generalizations of this theorem (Chen,
1965; Chaiken, 1982; Minoux, 1999); we give the most specific
form that applies to our case, originally proved by Tutte in 1948.
Strictly speaking, our Kx,~θ is not the Kirchoff matrix, but rather
a submatrix of the Kirchoff matrix with a leftmost column of
zeroes and a topmost row [0,−sx,~θ(1, 0), ...,−sx,~θ(n, 0)] re-
moved. Farther afield, Jaakkola et al. (1999) used an undirected
matrix tree theorem for learning tree structures for graphical
models.
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K
x,~θ

=



∑
j∈{0,...,n}:j 6=1

s
x,~θ

(1, j) −s
x,~θ

(2, 1) · · · −s
x,~θ

(n, 1)

−s
x,~θ

(1, 2)
∑

j∈{0,...,n}:j 6=2

s
x,~θ

(2, j) · · · −s
x,~θ

(n, 2)

...
...

. . .
...

−s
x,~θ

(1, n) −s
x,~θ

(2, n) · · ·
∑

j∈{0,...,n}:j 6=n

s
x,~θ

(n, j)



and the chain rule. First, note that, for any weight
θk,

∂ log Z~θ
(x)

∂θk

=
∂ log |K

x,~θ
|

∂θk

=
1

|K
x,~θ
|
∂|K

x,~θ
|

∂θk

=
1

|K
x,~θ
|

n∑
i=1

n∑
j=0

∂|K
x,~θ
|

∂s
x,~θ

(i, j)

∂s
x,~θ

(i, j)

∂θk

=
1

|K
x,~θ
|

n∑
i=1

n∑
j=0

s
x,~θ

(i, j)fk(x, xi, xj)

×
∂|K

x,~θ
|

∂s
x,~θ

(i, j)
(7)

(We assume s
x,~θ

(i, i) = 0, for simplicity of nota-
tion.) The last line follows from the definition of
s
x,~θ

(i, j) as exp ~θ· ~f(x, xi, xj). Now, since s
x,~θ

(i, j)
affects the Kirchoff matrix in at most two cells—
(i, i) and (j, i), the latter only when j > 0—we
know that

∂|K
x,~θ
|

∂s
x,~θ

(i, j)
=

∂|K
x,~θ
|

∂[K
x,~θ

]i,i

∂[K
x,~θ

]i,i
∂s

x,~θ
(i, i)

−
∂|K

x,~θ
|

∂[K
x,~θ

]j,i

∂[K
x,~θ

]j,i
∂s

x,~θ
(i, j)

=
∂|K

x,~θ
|

∂[K
x,~θ

]i,i
−

∂|K
x,~θ
|

∂[K
x,~θ

]j,i
(8)

We have now reduced the problem of the gradient
to a linear function of ∇|K

x,~θ
| with respect to the

cells of the matrix itself. At this point, we simplify
notation and consider an arbitrary matrix A.

The minor mj,i of a matrix A is the determi-
nant of the submatrix obtained by striking out row
j and column i of A; the cofactor cj,i of A is then
(−1)i+jmj,i. Laplace’s formula defines the deter-
minant as a linear combination of matrix cofactors
of an arbitrary row j:

|A| =
n∑

i=1

[A]j,icj,i (9)

It should be clear that any cj,k is constant with re-
spect to the cell [A]j,i (since it is formed by remov-
ing row j of A) and that other entries of A are con-
stant with respect to the cell [A]j,i. Therefore:

∂|A|
∂[A]j,i

= cj,i (10)

The inverse matrix A−1 can also be defined in terms
of cofactors:

[A−1]i,j =
cj,i

|A|
(11)

Combining Eqs. 10 and 11, we have:

∂|A|
∂[A]j,i

= |A|[A−1]i,j (12)

Plugging back in through Eq. 8 to Eq. 7, we have:

∂ log Z~θ
(x)

∂θk
=

n∑
i=1

n∑
j=0

s
x,~θ

(i, j)fk(x, xi, xj)

×
([

K−1

x,~θ

]
i,i
−

[
K−1

x,~θ

]
i,j

)
(13)

where [K−1]i,0 is taken to be 0. Note that the cofac-
tors do not need to be computed directly. We pro-
posed in Section 3.1 to get Z~θ

(x) by computing the
inverse of the Kirchoff matrix (which is known to
exist). Under that procedure, the marginalization is
a by-product of the gradient.
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decode train Arabic Czech Danish Dutch
map MIRA 79.9 81.4 86.6 90.0

CE 80.4 80.2 87.5 90.0 (Section 3)

mBr MIRA 79.4 80.3 85.0 87.2 (Section 4)

CE 80.5 80.4 87.5 90.0 (Sections 3 & 4)

Table 1: Unlabeled dependency parsing accuracy (on test data) for two training methods (MIRA, as in
McDonald et al. (2005b), and conditional estimation) and with maximum a posteriori (map) and minimum
Bayes-risk (mBr) decoding. Boldface scores are best in their column on a permutation test at the .05 level.

3.3 Experiment

We compare conditional training of a nonprojective
edge-factored parsing model to the online MIRA
training used by McDonald et al. (2005b). Four lan-
guages with relatively common nonprojective phe-
nomena were tested: Arabic (Hajič et al., 2004),
Czech (Böhmová et al., 2003), Danish (Kromann,
2003), and Dutch (van der Beek et al., 2002). The
Danish and Dutch datasets were prepared for the
CoNLL 2006 shared task (Buchholz and Marsi,
2006); Arabic and Czech are from the 2007 shared
task. We used the same features, extracted by Mc-
Donald’s code, in both MIRA and conditional train-
ing. In this paper, we consider only unlabeled de-
pendency parsing.

Our conditional training used an online gradient-
based method known as stochastic gradient descent
(see, e.g., Bottou, 2003). Training with MIRA and
conditional estimation take about the same amount
of time: approximately 50 sentences per second.
Training proceeded as long as an improvement on
held-out data was evident. The accuracy of the hy-
pothesized parses for the two models, on each lan-
guage, are shown in the top two rows of Tab. 1 (la-
beled “map” for maximum a posteriori, meaning
that the highest-weighted tree is hypothesized).

The two methods are, not surprisingly, close in
performance; conditional likelihood outperformed
MIRA on Arabic and Danish, underperformed
MIRA on Czech, and the two tied on Dutch. Results
are significant at the .05 level on a permutation test.
Conditional estimation is in practice more prone to
over-fitting than maximum margin methods, though
we did not see any improvement using zero-mean
Gaussian priors (variance 1 or 10).

These experiments serve to validate conditional
estimation as a competitive learning algorithm for

parsing models, and the key contribution of the sum-
ming algorithm that permits conditional estimation.

4 Minimum Bayes-Risk Decoding

A second application of probability distributions
over trees is the alternative decoding algorithm
known as minimum Bayes-risk (mBr) decoding.
The more commonly used maximum a posteriori
decoding (also known as “Viterbi” decoding) that
we applied in Section 3.3 sought to minimize the ex-
pected whole-tree loss:

ŷ = argmax
y

p~θ
(y | x) = argmin

y
Ep~θ

(Y|x) [−δ(y,Y)]

(14)
Minimum Bayes-risk decoding generalizes this idea
to an arbitrary loss function ` on the proposed tree:

ŷ = argmin
y

Ep~θ
(Y|x) [`(y,Y)] (15)

This technique was originally applied in speech
recognition (Goel and Byrne, 2000) and translation
(Kumar and Byrne, 2004); Goodman (1996) pro-
posed a similar idea in probabilistic context-free
parsing, seeking to maximize expected recall. For
more applications in parsing, see Petrov and Klein
(2007).

The most common loss function used to evaluate
dependency parsers is the number of attachment er-
rors, so we seek to decode using:

ŷ = argmin
y

Ep~θ
(Y|x)

[
n∑

i=1

−δ(y(i),Y(i))

]

= argmax
y

n∑
i=1

p~θ
(Y(i) = y(i) | x) (16)

To apply this decoding method, we make use of
Eq. 13, which gives us the posterior probabilities
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of edges under the model, and the same Chiu-
Liu-Edmonds maximum directed spanning tree al-
gorithm used for maximum a posteriori decoding.
Note that this decoding method can be applied re-
gardless of how the model is trained. It merely re-
quires assuming that the tree scores under the trained
model (probabilistic or not) can be treated as unnor-
malized log-probabilities over trees given the sen-
tence x.

We applied minimum Bayes-risk decoding to the
models trained using MIRA and using conditional
estimation (see Section 3.3). Table 1 shows that,
across languages, minimum Bayes-risk decoding
hurts slightly the performance of a MIRA-trained
model, but helps slightly or does not affect the per-
formance of a conditionally-trained model. Since
MIRA does not attempt to model the distribution
over trees, this result is not surprising; interpreting
weights as defining a conditional log-linear distribu-
tion is questionable under MIRA’s training criterion.

One option, which we do not test here, is to
use minimum Bayes-risk decoding inside of MIRA
training, to propose a hypothesis tree (or k-best
trees) at each training step. Doing this would more
closely match the training conditions with the test-
ing conditions; however, it is unclear whether there
is a formal interpretation of such a combination, for
example its relationship to McDonald et al.’s “fac-
tored MIRA.”

Minimum Bayes-risk decoding, we believe, will
become important in nonprojective parsing with
non-edge-factored models. Note that minimium
Bayes-risk decoding reduces any parsing problem to
the maximum directed spanning tree problem, even
if the original model is not edge-factored. All that
is required are the marginals p~θ

(Y(i) = y(i) | x),
which may be intractable to compute exactly, though
it may be possible to develop efficient approxima-
tions.

5 Hidden Variables

A third application of probability distributions over
trees is hidden-variable learning. The Expectation-
Maximization (EM) algorithm (Baum and Petrie,
1966; Dempster et al., 1977; Baker, 1979), for
example, is a way to maximum the likelihood of
training data, marginalizing out hidden variables.

This has been applied widely in unsupervised pars-
ing (Carroll and Charniak, 1992; Klein and Man-
ning, 2002). More recently, EM has been used to
learn hidden variables in parse trees; these can be
head-child annotations (Chiang and Bikel, 2002), la-
tent head features (Matsuzaki et al., 2005; Prescher,
2005; Dreyer and Eisner, 2006), or hierarchically-
split nonterminal states (Petrov et al., 2006).

To date, we know of no attempts to apply hid-
den variables to supervised dependency tree mod-
els. If the trees are constrained to be projective, EM
is easily applied using the inside-outside variant of
the parsing algorithm described by Eisner (1996) to
compute the marginal probability. Moving to the
nonprojective case, there are two difficulties: (a) we
must marginalize over nonprojective trees and (b)
we must define a generative model over (X,Y).

We have already shown in Section 3 how to solve
(a); here we avoid (b) by maximizing conditional
likelihood, marginalizing out the hidden variable,
denoted z:

max
~θ

∑
x,y

p̃(x,y) log
∑
z

p~θ
(y, z | x) (17)

This sort of conditional training with hidden vari-
ables was carried out by Koo and Collins (2005),
for example, in reranking; it is related to the infor-
mation bottleneck method (Tishby et al., 1999) and
contrastive estimation (Smith and Eisner, 2005).

5.1 Latent Dependency Labels
Noting that our model is edge-factored (Eq. 2), we
define our hidden variables to be edge-factored as
well. We can think of the hidden variables as clusters
on dependency tokens, and redefine the score of an
edge to be:

s
x,~θ

(i, j) =
∑
z∈Z

e
~θ·~f(x,xi,xj ,z) (18)

where Z is a set of dependency clusters.
Note that keeping the model edge-factored means

that the cluster of each dependency in a tree is con-
ditionally independent of all the others, given the
words. This is computationally advantageous (we
can factor out the marginalization of the hidden vari-
able by edge), and it permits the use of any cluster-
ing method at all. For example, if an auxiliary clus-
tering model q(z | x,y)—perhaps one that did not
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make such independence assumptions—were used,
the posterior probability q(Zi = z | x,y) could
be a feature in the proposed model. On the other
hand, we must consider carefully the role of the
dependency clusters in the model; if clusters are
learned extrinsic to estimation of the parsing model,
we should not expect them to be directly advanta-
geous to parsing accuracy.

5.2 Experiments
We tried two sets of experiments with clustering. In
one case, we simply augmented all of McDonald
et al.’s edge features with a cluster label in hopes
of improved accuracy. Models were initialized near
zero, with Gaussian noise added to break symmetry
among clusters.

Under these conditions, performance stayed the
same or changed slightly (see Table 2); none of the
improvements are significant. Note that three de-
coders were applied: maximum a posteriori (map)
and minimum Bayes-risk (mBr) as described in Sec-
tion 4, and “max-z,” in which each possible edge
was labeled and weighted only with its most likely
cluster (rather than the sum over all clusters), before
finding the most probable tree.3 For each of the three
languages tested, some number of clusters and some
decoding method gave small improvements over the
baseline.

More ambitiously, we hypothesized that many
lexicalized features on edges could be “squeezed”
through clusters to reduce the size of the feature set.
We thus removed all word-word and lemma-lemma
features and all tag fourgrams. Although this re-
duced our feature set by a factor of 60 or more (prior
to taking a cross-product with the clusters), the dam-
age of breaking the features was tremendous, and
performance even with a thousand clusters barely
broke 25% accuracy.

6 Discussion

Noting that adding latent features to nonterminals
in unlexicalized context-free parsing has been very
successful (Chiang and Bikel, 2002; Matsuzaki et
al., 2005; Prescher, 2005; Dreyer and Eisner, 2006;
Petrov et al., 2006), we were surprised not to see a

3Czech experiments were not done, since the number of fea-
tures (more than 14 million) was too high to multiply out by
clusters.

# cl. decoding Arabic Danish Dutch
none map=max-z 80.4 87.5 90.0

mBr 80.5 87.5 90.0
2 map 80.4 87.5 89.5

mBr 80.6 87.3 89.7
max-z 80.4 86.3 89.4

16 map 80.4 87.6 90.1
mBr 80.4 87.6 90.1
max-z 80.4 87.6 90.2

32 map 80.0 87.6 –
mBr 80.4 87.5 –
max-z 80.0 87.5 –

Table 2: Augmenting edge features with clusters re-
sults in similar performance to conditional training
with no clusters (top two lines). Scores are unla-
beled dependency accuracy on test data.

more substantial performance improvement through
latent features. We propose several interpretations.
First, it may simply be that many more clusters may
be required. Note that the label-set sizes for the la-
beled versions of these datasets are larger than 32
(e.g., 50 for Danish). This has the unfortunate effect
of blowing up the feature space beyond the mem-
ory capacity of our machines (hence our attempts
at squeezing high-dimensional features through the
clusters).

Of course, improved clustering methods may
also improve performance. In particular, a cluster-
learning algorithm that permits clusters to split
and/or merge, as in Petrov et al. (2006) or in Pereira
et al. (1993), may be appropriate.

Given the relative simplicity of clustering meth-
ods for context-free parsing to date (gains were
found just by using Expectation-Maximization), we
believe the fundamental reason clustering was not
particularly helpful here is a structural one. In
context-free parsing, the latent features are (in pub-
lished work to date) on nonterminal states, which are
the stuctural “bridge” between context-free rules.
Adding features to those states is a way of pushing
information—encoded indirectly, perhaps—farther
around the tree, and therefore circumventing the
strict independence assumptions of probabilistic
CFGs.

In an edge-factored dependency model, on the
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other hand, latent features on the edges seem to have
little effect. Given that they are locally “summed
out” when we compute the scores of possible at-
tachments, it should be clear that the edge clusters
do not circumvent any independence assumptions.
Three options appear to present themselves. First,
we might attempt to learn clusters in tandem with
estimating a richer, non-edge-factored model which
would require approximations to Z~θ

(x), if condi-
tional training were to be used. Note that the approx-
imations to maximizing over spanning trees with
second-order features, proposed by McDonald and
Pereira (2006), do not permit estimating the clusters
as part of the same process as weight estimation (at
least not without modification). In the conditional
estimation case, a variational approach might be ap-
propriate. The second option is to learn clusters of-
fline, before estimating the parser. (We suggested
how to incorporate soft clusters into our model in
Section 5.1.) This option is computationally ad-
vantageous but loses sight of the aim of learning
the clusters specifically to improve parsing accuracy.
Third, noting that the structural “bridge” between
two coincident edges is the shared vertex (word), we
might consider word token clustering.

We also believe this structural locality issue helps
explain the modesty of the gains using minimum
Bayes-risk decoding with conditional training (Sec-
tion 4). In other dependency parsing scenarios, min-
imum Bayes-risk decoding has been found to offer
significant advantages—why not here? Minimum
Bayes-risk makes use of global statistical dependen-
cies in the posterior when making local decisions.
But in an edge-factored model, the edges are all con-
ditionally independent, given that y is a spanning
tree.

As a post hoc experiment, we compared
purely greedy attachment (attach each word to its
maximum-weighted parent, without any tree con-
straints). Edge scores as defined in the model were
compared to minimum Bayes-risk posterior scores,
and the latter were consistently better (though this
always under-performed optimal spanning-tree de-
coding, unsurprisingly). This comparison serves
only to confirm that minimum Bayes-risk decoding
is a way to circumvent independence assumptions
(here made by a decoder), but only when the trained
model does not make those particular assumptions.

7 Conclusion

We have shown how to carry out exact marginaliza-
tion under an edge-factored, conditional log-linear
model over nonprojective dependency trees. The
method has cubic runtime in the length of the se-
quence, but is very fast in practice. It can be used
in conditional training of such a model, in minimum
Bayes-risk decoding (regardless of how the model is
trained), and in training with hidden variables. We
demonstrated how each of these techniques gives re-
sults competitive with state-of-the-art existing de-
pendency parsers.
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Abstract

This paper provides an algorithmic frame-
work for learning statistical models involv-
ing directed spanning trees, or equivalently
non-projective dependency structures. We
show how partition functions and marginals
for directed spanning trees can be computed
by an adaptation of Kirchhoff’s Matrix-Tree
Theorem. To demonstrate an application of
the method, we perform experiments which
use the algorithm in training both log-linear
and max-margin dependency parsers. The
new training methods give improvements in
accuracy over perceptron-trained models.

1 Introduction

Learning with structured data typically involves
searching or summing over a set with an exponen-
tial number of structured elements, for example the
set of all parse trees for a given sentence. Meth-
ods for summing over such structures include the
inside-outside algorithm for probabilistic context-
free grammars (Baker, 1979), the forward-backward
algorithm for hidden Markov models (Baum et
al., 1970), and the belief-propagation algorithm for
graphical models (Pearl, 1988). These algorithms
compute marginal probabilities and partition func-
tions, quantities which are central to many meth-
ods for the statistical modeling of complex struc-
tures (e.g., the EM algorithm (Baker, 1979; Baum
et al., 1970), contrastive estimation (Smith and Eis-
ner, 2005), training algorithms for CRFs (Lafferty et
al., 2001), and training algorithms for max-margin
models (Bartlett et al., 2004; Taskar et al., 2004a)).

This paper describes inside-outside-style algo-
rithms for the case of directed spanning trees. These
structures are equivalent to non-projective depen-
dency parses (McDonald et al., 2005b), and more
generally could be relevant to any task that involves
learning a mapping from a graph to an underlying

spanning tree. Unlike the case for projective depen-
dency structures, partition functions and marginals
for non-projective trees cannot be computed using
dynamic-programming methods such as the inside-
outside algorithm. In this paper we describe how
these quantities can be computed by adapting a well-
known result in graph theory: Kirchhoff’s Matrix-
Tree Theorem (Tutte, 1984). A naı̈ve application of
the theorem yields O(n4) and O(n6) algorithms for
computation of the partition function and marginals,
respectively. However, our adaptation finds the par-
tition function and marginals in O(n3) time using
simple matrix determinant and inversion operations.

We demonstrate an application of the new infer-
ence algorithm to non-projective dependency pars-
ing. Specifically, we show how to implement
two popular supervised learning approaches for this
task: globally-normalized log-linear models and
max-margin models. Log-linear estimation criti-
cally depends on the calculation of partition func-
tions and marginals, which can be computed by
our algorithms. For max-margin models, Bartlett
et al. (2004) have provided a simple training al-
gorithm, based on exponentiated-gradient (EG) up-
dates, that requires computation of marginals and
can thus be implemented within our framework.
Both of these methods explicitly minimize the loss
incurred when parsing the entire training set. This
contrasts with the online learning algorithms used in
previous work with spanning-tree models (McDon-
ald et al., 2005b).

We applied the above two marginal-based train-
ing algorithms to six languages with varying de-
grees of non-projectivity, using datasets obtained
from the CoNLL-X shared task (Buchholz and
Marsi, 2006). Our experimental framework com-
pared three training approaches: log-linear models,
max-margin models, and the averaged perceptron.
Each of these was applied to both projective and
non-projective parsing. Our results demonstrate that
marginal-based training yields models which out-
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perform those trained using the averaged perceptron.
In summary, the contributions of this paper are:

1. We introduce algorithms for inside-outside-
style calculations for directed spanning trees, or
equivalently non-projective dependency struc-
tures. These algorithms should have wide
applicability in learning problems involving
spanning-tree structures.

2. We illustrate the utility of these algorithms in
log-linear training of dependency parsing mod-
els, and show improvements in accuracy when
compared to averaged-perceptron training.

3. We also train max-margin models for depen-
dency parsing via an EG algorithm (Bartlett
et al., 2004). The experiments presented here
constitute the first application of this algorithm
to a large-scale problem. We again show im-
proved performance over the perceptron.

The goal of our experiments is to give a rigorous
comparative study of the marginal-based training al-
gorithms and a highly-competitive baseline, the av-
eraged perceptron, using the same feature sets for
all approaches. We stress, however, that the purpose
of this work is not to give competitive performance
on the CoNLL data sets; this would require further
engineering of the approach.

Similar adaptations of the Matrix-Tree Theorem
have been developed independently and simultane-
ously by Smith and Smith (2007) and McDonald and
Satta (2007); see Section 5 for more discussion.

2 Background
2.1 Discriminative Dependency Parsing
Dependency parsing is the task of mapping a sen-
tence x to a dependency structure y. Given a sen-
tence x with n words, a dependency for that sen-
tence is a tuple (h,m) where h ∈ [0 . . . n] is the
index of the head word in the sentence, and m ∈
[1 . . . n] is the index of a modifier word. The value
h = 0 is a special root-symbol that may only ap-
pear as the head of a dependency. We use D(x) to
refer to all possible dependencies for a sentence x:
D(x) = {(h,m) : h ∈ [0 . . . n],m ∈ [1 . . . n]}.

A dependency parse is a set of dependencies
that forms a directed tree, with the sentence’s root-
symbol as its root. We will consider both projective

Projective Non-projective

Single
Root 1 30 2

Heroot saw her

1 30 2

Heroot saw her

Multi
Root 1 30 2

Heroot saw her

1 30 2

Heroot saw her

Figure 1: Examples of the four types of dependency struc-
tures. We draw dependency arcs from head to modifier.

trees, where dependencies are not allowed to cross,
and non-projective trees, where crossing dependen-
cies are allowed. Dependency annotations for some
languages, for example Czech, can exhibit a signifi-
cant number of crossing dependencies. In addition,
we consider both single-root and multi-root trees. In
a single-root tree y, the root-symbol has exactly one
child, while in a multi-root tree, the root-symbol has
one or more children. This distinction is relevant
as our training sets include both single-root corpora
(in which all trees are single-root structures) and
multi-root corpora (in which some trees are multi-
root structures).

The two distinctions described above are orthog-
onal, yielding four classes of dependency structures;
see Figure 1 for examples of each kind of structure.
We use T s

p (x) to denote the set of all possible pro-
jective single-root dependency structures for a sen-
tence x, and T s

np(x) to denote the set of single-root
non-projective structures for x. The sets T m

p (x) and
T m

np (x) are defined analogously for multi-root struc-
tures. In contexts where any class of dependency
structures may be used, we use the notation T (x) as
a placeholder that may be defined as T s

p (x), T s
np(x),

T m
p (x) or T m

np (x).
Following McDonald et al. (2005a), we use a dis-

criminative model for dependency parsing. Fea-
tures in the model are defined through a function
f(x, h,m) which maps a sentence x together with
a dependency (h,m) to a feature vector in Rd. A
feature vector can be sensitive to any properties of
the triple (x, h,m). Given a parameter vector w,
the optimal dependency structure for a sentence x is

y∗(x;w) = argmax
y∈T (x)

∑
(h,m)∈y

w · f(x, h,m) (1)

where the set T (x) can be defined as T s
p (x), T s

np(x),
T m

p (x) or T m
np (x), depending on the type of parsing.
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The parameters w will be learned from a train-
ing set {(xi, yi)}N

i=1 where each xi is a sentence and
each yi is a dependency structure. Much of the pre-
vious work on learning w has focused on training lo-
cal models (see Section 5). McDonald et al. (2005a;
2005b) trained global models using online algo-
rithms such as the perceptron algorithm or MIRA.
In this paper we consider training algorithms based
on work in conditional random fields (CRFs) (Laf-
ferty et al., 2001) and max-margin methods (Taskar
et al., 2004a).

2.2 Three Inference Problems
This section highlights three inference problems
which arise in training and decoding discriminative
dependency parsers, and which are central to the ap-
proaches described in this paper.

Assume that we have a vector θ with values
θh,m ∈ R for all (h,m) ∈ D(x); these values cor-
respond to weights on the different dependencies in
D(x). Define a conditional distribution over all de-
pendency structures y ∈ T (x) as follows:

P (y |x;θ) =
exp

{∑
(h,m)∈y θh,m

}
Z(x;θ)

(2)

Z(x;θ) =
∑

y∈T (x)

exp

 ∑
(h,m)∈y

θh,m

 (3)

The function Z(x;θ) is commonly referred to as the
partition function.

Given the distribution P (y |x;θ), we can define
the marginal probability of a dependency (h,m) as

µh,m(x;θ) =
∑

y∈T (x) : (h,m)∈y

P (y |x;θ)

The inference problems are then as follows:

Problem 1: Decoding:
Find argmaxy∈T (x)

∑
(h,m)∈y θh,m

Problem 2: Computation of the Partition Func-
tion: Calculate Z(x;θ).

Problem 3: Computation of the Marginals:
For all (h,m) ∈ D(x), calculate µh,m(x;θ).

Note that all three problems require a maximiza-
tion or summation over the set T (x), which is ex-
ponential in size. There is a clear motivation for

being able to solve Problem 1: by setting θh,m =
w · f(x, h,m), the optimal dependency structure
y∗(x;w) (see Eq. 1) can be computed. In this paper
the motivation for solving Problems 2 and 3 arises
from training algorithms for discriminative models.
As we will describe in Section 4, both log-linear and
max-margin models can be trained via methods that
make direct use of algorithms for Problems 2 and 3.

In the case of projective dependency structures
(i.e., T (x) defined as T s

p (x) or T m
p (x)), there are

well-known algorithms for all three inference prob-
lems. Decoding can be carried out using Viterbi-
style dynamic-programming algorithms, for exam-
ple the O(n3) algorithm of Eisner (1996). Com-
putation of the marginals and partition function can
also be achieved in O(n3) time, using a variant of
the inside-outside algorithm (Baker, 1979) applied
to the Eisner (1996) data structures (Paskin, 2001).

In the non-projective case (i.e., T (x) defined as
T s

np(x) or T m
np (x)), McDonald et al. (2005b) de-

scribe how the CLE algorithm (Chu and Liu, 1965;
Edmonds, 1967) can be used for decoding. How-
ever, it is not possible to compute the marginals
and partition function using the inside-outside algo-
rithm. We next describe a method for computing
these quantities in O(n3) time using matrix inverse
and determinant operations.

3 Spanning-tree inference using the
Matrix-Tree Theorem

In this section we present algorithms for computing
the partition function and marginals, as defined in
Section 2.2, for non-projective parsing. We first re-
iterate the observation of McDonald et al. (2005a)
that non-projective parses correspond to directed
spanning trees on a complete directed graph of n
nodes, where n is the length of the sentence. The
above inference problems thus involve summation
over the set of all directed spanning trees. Note that
this set is exponentially large, and there is no obvi-
ous method for decomposing the sum into dynamic-
programming-like subproblems. This section de-
scribes how a variant of Kirchhoff’s Matrix-Tree
Theorem (Tutte, 1984) can be used to evaluate the
partition function and marginals efficiently.

In what follows, we consider the single-root set-
ting (i.e., T (x) = T s

np(x)), leaving the multi-root
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case (i.e., T (x) = T m
np (x)) to Section 3.3. For a

sentence x with n words, define a complete directed
graph G on n nodes, where each node corresponds
to a word in x, and each edge corresponds to a de-
pendency between two words in x. Note thatG does
not include the root-symbol h = 0, nor does it ac-
count for any dependencies (0,m) headed by the
root-symbol. We assign non-negative weights to the
edges of this graph, yielding the following weighted
adjacency matrix A(θ) ∈ Rn×n, for h,m = 1 . . . n:

Ah,m(θ) =

{
0, if h = m
exp {θh,m} , otherwise

To account for the dependencies (0,m) headed by
the root-symbol, we define a vector of root-selection
scores r(θ) ∈ Rn, for m = 1 . . . n:

rm(θ) = exp {θ0,m}

Let the weight of a dependency structure y ∈ T s
np(x)

be defined as:

ψ(y;θ) = rroot(y)(θ)
∏

(h,m)∈y : h 6=0

Ah,m(θ)

Here, root(y) = m : (0,m) ∈ y is the child of the
root-symbol; there is exactly one such child, since
y ∈ T s

np(x). Eq. 2 and 3 can be rephrased as:

P (y |x;θ) =
ψ(y;θ)
Z(x;θ)

(4)

Z(x;θ) =
∑

y∈T s
np(x)

ψ(y;θ) (5)

In the remainder of this section, we drop the nota-
tional dependence on x for brevity.

The original Matrix-Tree Theorem addressed the
problem of counting the number of undirected span-
ning trees in an undirected graph. For the models
we study here, we require a sum of weighted and
directed spanning trees. Tutte (1984) extended the
Matrix-Tree Theorem to this case. We briefly sum-
marize his method below.

First, define the Laplacian matrix L(θ) ∈ Rn×n

of G, for h,m = 1 . . . n:

Lh,m(θ) =

{ ∑n
h′=1Ah′,m(θ) if h = m

−Ah,m(θ) otherwise

Second, for a matrix X , let X(h,m) be the minor of
X with respect to row h and column m; i.e., the

determinant of the matrix formed by deleting row h
and column m from X . Finally, define the weight of
any directed spanning tree of G to be the product of
the weights Ah,m(θ) for the edges in that tree.
Theorem 1 (Tutte, 1984, p. 140). Let L(θ) be the
Laplacian matrix of G. Then L(m,m)(θ) is equal to
the sum of the weights of all directed spanning trees
of G which are rooted at m. Furthermore, the mi-
nors vary only in sign when traversing the columns
of the Laplacian (Tutte, 1984, p. 150):

∀h,m : (−1)h+mL(h,m)(θ) = L(m,m)(θ) (6)

3.1 Partition functions via matrix determinants
From Theorem 1, it directly follows that

L(m,m)(θ) =
∑

y∈U(m)

∏
(h,m)∈y : h 6=0

Ah,m(θ)

where U(m) = {y ∈ T s
np : root(y) = m}. A

naı̈ve method for computing the partition function is
therefore to evaluate

Z(θ) =
n∑

m=1

rm(θ)L(m,m)(θ)

The above would require calculating n determinants,
resulting in O(n4) complexity. However, as we
show below Z(θ) may be obtained in O(n3) time
using a single determinant evaluation.

Define a new matrix L̂(θ) to beL(θ) with the first
row replaced by the root-selection scores:

L̂h,m(θ) =

{
rm(θ) h = 1
Lh,m(θ) h > 1

This matrix allows direct computation of the parti-
tion function, as the following proposition shows.
Proposition 1 The partition function in Eq. 5 is
given by Z(θ) = |L̂(θ)|.
Proof: Consider the row expansion of |L̂(θ)| with
respect to row 1:

|L̂(θ)| =
n∑

m=1

(−1)1+mL̂1,m(θ)L̂(1,m)(θ)

=
n∑

m=1

(−1)1+mrm(θ)L(1,m)(θ)

=
n∑

m=1

rm(θ)L(m,m)(θ) = Z(θ)

The second line follows from the construction of
L̂(θ), and the third line follows from Eq. 6.

144



3.2 Marginals via matrix inversion
The marginals we require are given by

µh,m(θ) =
1

Z(θ)

∑
y∈T s

np : (h,m)∈y

ψ(y;θ)

To calculate these marginals efficiently for all values
of (h,m) we use a well-known identity relating the
log partition-function to marginals

µh,m(θ) =
∂ logZ(θ)
∂θh,m

Since the partition function in this case has a closed-
form expression (i.e., the determinant of a matrix
constructed from θ), the marginals can also obtained
in closed form. Using the chain rule, the derivative
of the log partition-function in Proposition 1 is

µh,m(θ) =
∂ log |L̂(θ)|
∂θh,m

=
n∑

h′=1

n∑
m′=1

∂ log |L̂(θ)|
∂L̂h′,m′(θ)

∂L̂h′,m′(θ)
∂θh,m

To perform the derivative, we use the identity

∂ log |X|
∂X

=
(
X−1

)T

and the fact that ∂L̂h′,m′(θ)/∂θh,m is nonzero for
only a few h′,m′. Specifically, when h = 0, the
marginals are given by

µ0,m(θ) = rm(θ)
[
L̂−1(θ)

]
m,1

and for h > 0, the marginals are given by

µh,m(θ) = (1− δ1,m)Ah,m(θ)
[
L̂−1(θ)

]
m,m

−

(1− δh,1)Ah,m(θ)
[
L̂−1(θ)

]
m,h

where δh,m is the Kronecker delta. Thus, the com-
plexity of evaluating all the relevant marginals is
dominated by the matrix inversion, and the total
complexity is therefore O(n3).

3.3 Multiple Roots
In the case of multiple roots, we can still compute
the partition function and marginals efficiently. In
fact, the derivation of this case is simpler than for
single-root structures. Create an extended graph G′

which augments G with a dummy root node that has
edges pointing to all of the existing nodes, weighted
by the appropriate root-selection scores. Note that
there is a bijection between directed spanning trees
ofG′ rooted at the dummy root and multi-root struc-
tures y ∈ T m

np (x). Thus, Theorem 1 can be used to
compute the partition function directly: construct a
Laplacian matrix L(θ) for G′ and compute the mi-
nor L(0,0)(θ). Since this minor is also a determi-
nant, the marginals can be obtained analogously to
the single-root case. More concretely, this technique
corresponds to defining the matrix L̂(θ) as

L̂(θ) = L(θ) + diag(r(θ))

where diag(v) is the diagonal matrix with the vector
v on its diagonal.

3.4 Labeled Trees

The techniques above extend easily to the case
where dependencies are labeled. For a model with
L different labels, it suffices to define the edge
and root scores as Ah,m(θ) =

∑L
`=1 exp {θh,m,`}

and rm(θ) =
∑L

`=1 exp {θ0,m,`}. The partition
function over labeled trees is obtained by operat-
ing on these values as described previously, and
the marginals are given by an application of the
chain rule. Both inference problems are solvable in
O(n3 + Ln2) time.

4 Training Algorithms

This section describes two methods for parameter
estimation that rely explicitly on the computation of
the partition function and marginals.

4.1 Log-Linear Estimation

In conditional log-linear models (Johnson et al.,
1999; Lafferty et al., 2001), a distribution over parse
trees for a sentence x is defined as follows:

P (y |x;w) =
exp

{∑
(h,m)∈y w · f(x, h,m)

}
Z(x;w)

(7)

where Z(x;w) is the partition function, a sum over
T s

p (x), T s
np(x), T m

p (x) or T m
np (x).

We train the model using the approach described
by Sha and Pereira (2003). Assume that we have a
training set {(xi, yi)}N

i=1. The optimal parameters
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are taken to be w∗ = argminw L(w) where

L(w) = −C
N∑

i=1

logP (yi |xi;w) +
1
2
||w||2

The parameterC > 0 is a constant dictating the level
of regularization in the model.

Since L(w) is a convex function, gradient de-
scent methods can be used to search for the global
minimum. Such methods typically involve repeated
computation of the loss L(w) and gradient ∂L(w)

∂w ,
requiring efficient implementations of both func-
tions. Note that the log-probability of a parse is

logP (y |x;w) =
∑

(h,m)∈y

w · f(x, h,m)− logZ(x;w)

so that the main issue in calculating the loss func-
tion L(w) is the evaluation of the partition functions
Z(xi;w). The gradient of the loss is given by

∂L(w)
∂w

= w − C
N∑

i=1

∑
(h,m)∈yi

f(xi, h,m)

+ C
N∑

i=1

∑
(h,m)∈D(xi)

µh,m(xi;w)f(xi, h,m)

where

µh,m(x;w) =
∑

y∈T (x) : (h,m)∈y

P (y |x;w)

is the marginal probability of a dependency (h,m).
Thus, the main issue in the evaluation of the gradient
is the computation of the marginals µh,m(xi;w).

Note that Eq. 7 forms a special case of the log-
linear distribution defined in Eq. 2 in Section 2.2.
If we set θh,m = w · f(x, h,m) then we have
P (y |x;w) = P (y |x;θ), Z(x;w) = Z(x;θ), and
µh,m(x;w) = µh,m(x;θ). Thus in the projective
case the inside-outside algorithm can be used to cal-
culate the partition function and marginals, thereby
enabling training of a log-linear model; in the non-
projective case the algorithms in Section 3 can be
used for this purpose.

4.2 Max-Margin Estimation

The second learning algorithm we consider is
the large-margin approach for structured prediction
(Taskar et al., 2004a; Taskar et al., 2004b). Learning
in this framework again involves minimization of a

convex function L(w). Let the margin for parse tree
y on the i’th training example be defined as

mi,y(w) =
∑

(h,m)∈yi

w·f(xi, h,m)−
∑

(h,m)∈y

w·f(xi, h,m)

The loss function is then defined as

L(w) = C
N∑

i=1

max
y∈T (xi)

(Ei,y −mi,y(w)) +
1
2
||w||2

where Ei,y is a measure of the loss—or number of
errors—for parse y on the i’th training sentence. In
this paper we take Ei,y to be the number of incorrect
dependencies in the parse tree y when compared to
the gold-standard parse tree yi.

The definition of L(w) makes use of the expres-
sion maxy∈T (xi) (Ei,y −mi,y(w)) for the i’th train-
ing example, which is commonly referred to as the
hinge loss. Note that Ei,yi = 0, and also that
mi,yi(w) = 0, so that the hinge loss is always non-
negative. In addition, the hinge loss is 0 if and only
ifmi,y(w) ≥ Ei,y for all y ∈ T (xi). Thus the hinge
loss directly penalizes margins mi,y(w) which are
less than their corresponding losses Ei,y.

Figure 2 shows an algorithm for minimizing
L(w) that is based on the exponentiated-gradient al-
gorithm for large-margin optimization described by
Bartlett et al. (2004). The algorithm maintains a set
of weights θi,h,m for i = 1 . . . N, (h,m) ∈ D(xi),
which are updated example-by-example. The algo-
rithm relies on the repeated computation of marginal
values µi,h,m, which are defined as follows:1

µi,h,m =
∑

y∈T (xi) : (h,m)∈y

P (y |xi) (8)

P (y |xi) =
exp

{∑
(h,m)∈y θi,h,m

}
∑

y′∈T (xi) exp
{∑

(h,m)∈y′ θi,h,m

}
A similar definition is used to derive marginal val-
ues µ′i,h,m from the values θ′i,h,m. Computation of
the µ and µ′ values is again inference of the form
described in Problem 3 in Section 2.2, and can be

1Bartlett et al. (2004) write P (y |xi) as αi,y . The αi,y vari-
ables are dual variables that appear in the dual objective func-
tion, i.e., the convex dual of L(w). Analysis of the algorithm
shows that as the θi,h,m variables are updated, the dual vari-
ables converge to the optimal point of the dual objective, and
the parameters w converge to the minimum of L(w).
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Inputs: Training examples {(xi, yi)}N
i=1.

Parameters: Regularization constant C, starting point β,
number of passes over training set T .

Data Structures: Real values θi,h,m and li,h,m for i =
1 . . . N, (h, m) ∈ D(xi). Learning rate η.

Initialization: Set learning rate η = 1
C

. Set θi,h,m = β for
(h, m) ∈ yi, and θi,h,m = 0 for (h, m) /∈ yi. Set li,h,m = 0
for (h, m) ∈ yi, and li,h,m = 1 for (h, m) /∈ yi. Calculate
initial parameters as

w = C
∑

i

∑
(h,m)∈D(xi)

δi,h,mf(xi, h, m)

where δi,h,m = (1− li,h,m −µi,h,m) and the µi,h,m values
are calculated from the θi,h,m values as described in Eq. 8.

Algorithm: Repeat T passes over the training set, where
each pass is as follows:

Set obj = 0

For i = 1 . . . N
• For all (h, m) ∈ D(xi):
θ′i,h,m = θi,h,m + ηC (li,h,m + w · f(xi, h, m))

• For example i, calculate marginals µi,h,m

from θi,h,m values, and marginals µ′
i,h,m

from θ′i,h,m values (see Eq. 8).

• Update the parameters:
w = w + C

∑
(h,m)∈D(xi)

δi,h,mf(xi, h, m)

where δi,h,m = µi,h,m − µ′
i,h,m,

• For all (h, m) ∈ D(xi), set θi,h,m = θ′i,h,m

• Set obj = obj + C
∑

(h,m)∈D(xi)
li,h,mµ′

i,h,m

Set obj = obj − ||w||2
2

. If obj has decreased
compared to last iteration, set η = η

2
.

Output: Parameter values w.

Figure 2: The EG Algorithm for Max-Margin Estimation.
The learning rate η is halved each time the dual objective func-
tion (see (Bartlett et al., 2004)) fails to increase. In our experi-
ments we chose β = 9, which was found to work well during
development of the algorithm.

achieved using the inside-outside algorithm for pro-
jective structures, and the algorithms described in
Section 3 for non-projective structures.

5 Related Work

Global log-linear training has been used in the con-
text of PCFG parsing (Johnson, 2001). Riezler et al.
(2004) explore a similar application of log-linear
models to LFG parsing. Max-margin learning

has been applied to PCFG parsing by Taskar et al.
(2004b). They show that this problem has a QP
dual of polynomial size, where the dual variables
correspond to marginal probabilities of CFG rules.
A similar QP dual may be obtained for max-margin
projective dependency parsing. However, for non-
projective parsing, the dual QP would require an ex-
ponential number of constraints on the dependency
marginals (Chopra, 1989). Nevertheless, alternative
optimization methods like that of Tsochantaridis et
al. (2004), or the EG method presented here, can still
be applied.

The majority of previous work on dependency
parsing has focused on local (i.e., classification of
individual edges) discriminative training methods
(Yamada and Matsumoto, 2003; Nivre et al., 2004;
Y. Cheng, 2005). Non-local (i.e., classification of
entire trees) training methods were used by McDon-
ald et al. (2005a), who employed online learning.

Dependency parsing accuracy can be improved
by allowing second-order features, which consider
more than one dependency simultaneously. McDon-
ald and Pereira (2006) define a second-order depen-
dency parsing model in which interactions between
adjacent siblings are allowed, and Carreras (2007)
defines a second-order model that allows grandpar-
ent and sibling interactions. Both authors give poly-
time algorithms for exact projective parsing. By
adapting the inside-outside algorithm to these mod-
els, partition functions and marginals can be com-
puted for second-order projective structures, allow-
ing log-linear and max-margin training to be ap-
plied via the framework developed in this paper.
For higher-order non-projective parsing, however,
computational complexity results (McDonald and
Pereira, 2006; McDonald and Satta, 2007) indicate
that exact solutions to the three inference problems
of Section 2.2 will be intractable. Exploration of ap-
proximate second-order non-projective inference is
a natural avenue for future research.

Two other groups of authors have independently
and simultaneously proposed adaptations of the
Matrix-Tree Theorem for structured inference on di-
rected spanning trees (McDonald and Satta, 2007;
Smith and Smith, 2007). There are some algorithmic
differences between these papers and ours. First, we
define both multi-root and single-root algorithms,
whereas the other papers only consider multi-root
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parsing. This distinction can be important as one
often expects a dependency structure to have ex-
actly one child attached to the root-symbol, as is the
case in a single-root structure. Second, McDonald
and Satta (2007) propose an O(n5) algorithm for
computing the marginals, as opposed to the O(n3)
matrix-inversion approach used by Smith and Smith
(2007) and ourselves.

In addition to the algorithmic differences, both
groups of authors consider applications of the
Matrix-Tree Theorem which we have not discussed.
For example, both papers propose minimum-risk
decoding, and McDonald and Satta (2007) dis-
cuss unsupervised learning and language model-
ing, while Smith and Smith (2007) define hidden-
variable models based on spanning trees.

In this paper we used EG training methods only
for max-margin models (Bartlett et al., 2004). How-
ever, Globerson et al. (2007) have recently shown
how EG updates can be applied to efficient training
of log-linear models.

6 Experiments on Dependency Parsing

In this section, we present experimental results
applying our inference algorithms for dependency
parsing models. Our primary purpose is to estab-
lish comparisons along two relevant dimensions:
projective training vs. non-projective training, and
marginal-based training algorithms vs. the averaged
perceptron. The feature representation and other rel-
evant dimensions are kept fixed in the experiments.

6.1 Data Sets and Features

We used data from the CoNLL-X shared task
on multilingual dependency parsing (Buchholz and
Marsi, 2006). In our experiments, we used a subset
consisting of six languages; Table 1 gives details of
the data sets used.2 For each language we created
a validation set that was a subset of the CoNLL-X

2Our subset includes the two languages with the lowest ac-
curacy in the CoNLL-X evaluations (Turkish and Arabic), the
language with the highest accuracy (Japanese), the most non-
projective language (Dutch), a moderately non-projective lan-
guage (Slovene), and a highly projective language (Spanish).
All languages but Spanish have multi-root parses in their data.
We are grateful to the providers of the treebanks that constituted
the data of our experiments (Hajič et al., 2004; van der Beek et
al., 2002; Kawata and Bartels, 2000; Džeroski et al., 2006; Civit
and Martı́, 2002; Oflazer et al., 2003).

language %cd train val. test
Arabic 0.34 49,064 5,315 5,373
Dutch 4.93 178,861 16,208 5,585

Japanese 0.70 141,966 9,495 5,711
Slovene 1.59 22,949 5,801 6,390
Spanish 0.06 78,310 11,024 5,694
Turkish 1.26 51,827 5,683 7,547

Table 1: Information for the languages in our experiments.
The 2nd column (%cd) is the percentage of crossing dependen-
cies in the training and validation sets. The last three columns
report the size in tokens of the training, validation and test sets.

training set for that language. The remainder of each
training set was used to train the models for the dif-
ferent languages. The validation sets were used to
tune the meta-parameters (e.g., the value of the reg-
ularization constantC) of the different training algo-
rithms. We used the official test sets and evaluation
script from the CoNLL-X task. All of the results that
we report are for unlabeled dependency parsing.3

The non-projective models were trained on the
CoNLL-X data in its original form. Since the pro-
jective models assume that the dependencies in the
data are non-crossing, we created a second train-
ing set for each language where non-projective de-
pendency structures were automatically transformed
into projective structures. All projective models
were trained on these new training sets.4 Our feature
space is based on that of McDonald et al. (2005a).5

6.2 Results

We performed experiments using three training al-
gorithms: the averaged perceptron (Collins, 2002),
log-linear training (via conjugate gradient descent),
and max-margin training (via the EG algorithm).
Each of these algorithms was trained using pro-
jective and non-projective methods, yielding six
training settings per language. The different
training algorithms have various meta-parameters,
which we optimized on the validation set for
each language/training-setting combination. The

3Our algorithms also support labeled parsing (see Section
3.4). Initial experiments with labeled models showed the same
trend that we report here for unlabeled parsing, so for simplicity
we conducted extensive experiments only for unlabeled parsing.

4The transformations were performed by running the pro-
jective parser with score +1 on correct dependencies and -1 oth-
erwise: the resulting trees are guaranteed to be projective and to
have a minimum loss with respect to the correct tree. Note that
only the training sets were transformed.

5It should be noted that McDonald et al. (2006) use a richer
feature set that is incomparable to our features.
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Perceptron Max-Margin Log-Linear
p np p np p np

Ara 71.74 71.84 71.74 72.99 73.11 73.67
Dut 77.17 78.83 76.53 79.69 76.23 79.55
Jap 91.90 91.78 92.10 92.18 91.68 91.49
Slo 78.02 78.66 79.78 80.10 78.24 79.66
Spa 81.19 80.02 81.71 81.93 81.75 81.57
Tur 71.22 71.70 72.83 72.02 72.26 72.62

Table 2: Test data results. The p and np columns show results
with projective and non-projective training respectively.

Ara Dut Jap Slo Spa Tur AV
P 71.74 78.83 91.78 78.66 81.19 71.70 79.05
E 72.99 79.69 92.18 80.10 81.93 72.02 79.82
L 73.67 79.55 91.49 79.66 81.57 72.26 79.71

Table 3: Results for the three training algorithms on the differ-
ent languages (P = perceptron, E = EG, L = log-linear models).
AV is an average across the results for the different languages.

averaged perceptron has a single meta-parameter,
namely the number of iterations over the training set.
The log-linear models have two meta-parameters:
the regularization constant C and the number of
gradient steps T taken by the conjugate-gradient
optimizer. The EG approach also has two meta-
parameters: the regularization constant C and the
number of iterations, T .6 For models trained using
non-projective algorithms, both projective and non-
projective parsing was tested on the validation set,
and the highest scoring of these two approaches was
then used to decode test data sentences.

Table 2 reports test results for the six training sce-
narios. These results show that for Dutch, which is
the language in our data that has the highest num-
ber of crossing dependencies, non-projective train-
ing gives significant gains over projective training
for all three training methods. For the other lan-
guages, non-projective training gives similar or even
improved performance over projective training.

Table 3 gives an additional set of results, which
were calculated as follows. For each of the three
training methods, we used the validation set results
to choose between projective and non-projective
training. This allows us to make a direct com-
parison of the three training algorithms. Table 3

6We trained the perceptron for 100 iterations, and chose the
iteration which led to the best score on the validation set. Note
that in all of our experiments, the best perceptron results were
actually obtained with 30 or fewer iterations. For the log-linear
and EG algorithms we tested a number of values for C, and for
each value of C ran 100 gradient steps or EG iterations, finally
choosing the best combination of C and T found in validation.

shows the results of this comparison.7 The results
show that log-linear and max-margin models both
give a higher average accuracy than the perceptron.
For some languages (e.g., Japanese), the differences
from the perceptron are small; however for other
languages (e.g., Arabic, Dutch or Slovene) the im-
provements seen are quite substantial.

7 Conclusions

This paper describes inference algorithms for
spanning-tree distributions, focusing on the funda-
mental problems of computing partition functions
and marginals. Although we concentrate on log-
linear and max-margin estimation, the inference al-
gorithms we present can serve as black-boxes in
many other statistical modeling techniques.

Our experiments suggest that marginal-based
training produces more accurate models than per-
ceptron learning. Notably, this is the first large-scale
application of the EG algorithm, and shows that it is
a promising approach for structured learning.

In line with McDonald et al. (2005b), we confirm
that spanning-tree models are well-suited to depen-
dency parsing, especially for highly non-projective
languages such as Dutch. Moreover, spanning-tree
models should be useful for a variety of other prob-
lems involving structured data.
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Abstract

Inclusions from other languages can be a
significant source of errors for monolin-
gual parsers. We show this for English in-
clusions, which are sufficiently frequent to
present a problem when parsing German.
We describe an annotation-free approach for
accurately detecting such inclusions, and de-
velop two methods for interfacing this ap-
proach with a state-of-the-art parser for Ger-
man. An evaluation on the TIGER cor-
pus shows that our inclusion entity model
achieves a performance gain of 4.3 points in
F-score over a baseline of no inclusion de-
tection, and even outperforms a parser with
access to gold standard part-of-speech tags.

1 Introduction

The status of English as a global language means
that English words and phrases are frequently bor-
rowed by other languages, especially in domains
such as science and technology, commerce, adver-
tising, and current affairs. This is an instance oflan-
guage mixing, whereby inclusions from other lan-
guages appear in an otherwise monolingual text.
While the processing of foreign inclusions has re-
ceived some attention in the text-to-speech (TTS) lit-
erature (see Section 2), the natural language process-
ing (NLP) community has paid little attention both
to the problem of inclusion detection, and to poten-
tial applications thereof. Also the extent to which
inclusions pose a problem to existing NLP methods
has not been investigated.

In this paper, we address this challenge. We focus
on English inclusions in German text. Anglicisms

and other borrowings from English form by far the
most frequent foreign inclusions in German. In spe-
cific domains, up to 6.4% of the tokens of a Ger-
man text can be English inclusions. Even in regular
newspaper text as used for many NLP applications,
English inclusions can be found in up to 7.4% of all
sentences (see Section 3 for both figures).

Virtually all existing NLP algorithms assume that
the input is monolingual, and does not contain for-
eign inclusions. It is possible that this is a safe
assumption, and inclusions can be dealt with ac-
curately by existing methods, without resorting to
specialized mechanisms. The alternative hypothe-
sis, however, seems more plausible: foreign inclu-
sions pose a problem for existing approaches, and
sentences containing them are processed less ac-
curately. A parser, for example, is likely to have
problems with inclusions – most of the time, they
are unknown words, and as they originate from
another language, standard methods for unknown
words guessing (suffix stripping, etc.) are unlikely to
be successful. Furthermore, the fact that inclusions
are often multiword expressions (e.g., named enti-
ties) means that simply part-of-speech (POS) tag-
ging them accurately is not sufficient: if the parser
posits a phrase boundary within an inclusion this is
likely to severely decrease parsing accuracy.

In this paper, we focus on the impact of En-
glish inclusions on the parsing of German text. We
describe an annotation-free method that accurately
recognizes English inclusions, and demonstrate that
inclusion detection improves the performance of a
state-of-the-art parser for German. We show that the
way of interfacing the inclusion detection and the
parser is crucial, and propose a method for modify-
ing the underlying probabilistic grammar in order to
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enable the parser to process inclusions accurately.
This paper is organized as follows. We review re-

lated work in Section 2, and present the English in-
clusion classifier in Section 3. Section 4 describes
our results on interfacing inclusion detection with
parsing, and Section 5 presents an error analysis.
Discussion and conclusion follow in Section 6.

2 Related Work

Previous work on inclusion detection exists in the
TTS literature. Here, the aim is to design a sys-
tem that recognizes foreign inclusions on the word
and sentence level and functions at the front-end to
a polyglot TTS synthesizer. Pfister and Romsdor-
fer (2003) propose morpho-syntactic analysis com-
bined with lexicon lookup to identify foreign words
in mixed-lingual text. While they state that their sys-
tem is precise at detecting the language of tokens
and determining the sentence structure, it is not eval-
uated on real mixed-lingual text. A further approach
to inclusion detection is that of Marcadet et. al
(2005). They present experiments with a dictionary-
driven transformation-based learning method and a
corpus-based n-gram approach and show that a com-
bination of both methods yields the best results.
Evaluated on three mixed-lingual test sets in differ-
ent languages, the combined approach yields word-
based language identification error rates (i.e. the per-
centage of tokens for which the language is identi-
fied incorrectly) of 0.78% on the French data, 1.33%
on the German data and 0.84% on the Spanish data.
Consisting of 50 sentences or less for each language,
their test sets are very small and appear to be se-
lected specifically for evaluation purposes. It would
therefore be interesting to determine the system’s
performance on random and unseen data and exam-
ine how it scales up to larger data sets.

Andersen (2005), noting the importance of rec-
ognizing anglicisms to lexicographers, tests algo-
rithms based on lexicon lookup, character n-grams
and regular expressions and a combination thereof to
automatically extract anglicisms in Norwegian text.
On a 10,000 word subset of the neologism archive
(Wangensteen, 2002), the best method of combin-
ing character n-grams and regular expression match-
ing yields an accuracy of 96.32% and an F-score of
59.4 (P = 75.8%, R = 48.8%). This result is unsur-

prisingly low as no differentiation is made between
full-word anglicisms and tokens with mixed-lingual
morphemes in the gold standard.

In the context of parsing, Forst and Kaplan (2006)
have observed that the failure to properly deal with
foreign inclusions is detrimental to a parser’s accu-
racy. However, they do not substantiate this claim
using numeric results.

3 English Inclusion Detection

Previous work reported by Alex (2006; 2005) has
focused on devising a classifier that detects angli-
cisms and other English inclusions in text written in
other languages, namely German and French. This
inclusion classifier is based on a lexicon and search
engine lookup as well as a post-processing step.

The lexicon lookup is performed for tokens
tagged as noun (NN ), named entity (NE), foreign
material (FM ) or adjective (ADJA/ADJD) using the
German and English CELEX lexicons. Tokens only
found in the English lexicon are classified as En-
glish. Tokens found in neither lexicon are passed
to the search engine module. Tokens found in
both databases are classified by the post-processing
module. The search engine module performs lan-
guage classification based on the maximum nor-
malised score of the number of hits returned for two
searches per token, one for each language (Alex,
2005). This score is determined by weighting the
number of hits, i.e. the “absolute frequency” by the
estimated size of the accessible Web corpus for that
language (Alex, 2006). Finally, the rule-based post-
processing module classifies single-character tokens
and resolves language classification ambiguities for
interlingual homographs, English function words,
names of currencies and units of measurement. A
further post-processing step relates language infor-
mation between abbreviations or acronyms and their
definitions in combination with an abbreviation ex-
traction algorithm (Schwartz and Hearst, 2003). Fi-
nally, a set of rules disambiguates English inclusions
from person names (Alex, 2006).

For German, the classifier has been evaluated
on test sets in three different domains: newspaper
articles, selected from the Frankfurter Allgemeine
Zeitung, on internet and telecoms, space travel and
European Union related topics. Table 1 presents an
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Domain EI tokens EI types EI TTR Accuracy Precision Recall F

Internet 6.4% 5.9% 0.25 98.13% 91.58% 78.92% 84.78
Space 2.8% 3.5% 0.33 98.97% 84.02% 85.31% 84.66
EU 1.1% 2.1% 0.50 99.65% 82.16% 87.36% 84.68

Table 1: English inclusion (EI) token and type statistics, EI type-token-ratios (TTR) as well as accuracy,
precision, recall and F-scores for the unseen German test sets.

overview of the percentages of English inclusion to-
kens and types within the gold standard annotation
of each test set, and illustrates how well the English
inclusion classifier is able to detect them in terms
of F-score. The figures show that the frequency of
English inclusions varies considerably depending on
the domain but that the classifier is able to detect
them equally well with an F-score approaching 85
for each domain.

The recognition of English inclusions bears sim-
ilarity to classification tasks such as named en-
tity recognition, for which various machine learning
(ML) techniques have proved successful. In order to
compare the performance of the English inclusion
classifier against a trained ML classifier, we pooled
the annotated English inclusion evaluation data for
all three domains. As the English inclusion classifier
does not rely on annotated data, it can be tested and
evaluated once for the entire corpus. The ML classi-
fier used for this experiment is a conditional Markov
model tagger which is designed for, and proved suc-
cessful in, named entity recognition in newspaper
and biomedical text (Klein et al., 2003; Finkel et al.,
2005). It can be trained to perform similar informa-
tion extraction tasks such as English inclusion detec-
tion. To determine the tagger’s performance over the
entire set and to investigate the effect of the amount
of annotated training data available, a 10-fold cross-
validation test was conducted whereby increasing
sub-parts of the training data are provided when test-
ing on each fold. The resulting learning curves in
Figure 1 show that the English inclusion classifier
has an advantage over the supervised ML approach,
despite the fact the latter requires expensive hand-
annotated data. A large training set of 80,000 tokens
is required to yield a performance that approximates
that of our annotation-free inclusion classifier. This
system has been shown to perform similarly well on
unseen texts in different domains, plus it is easily
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Figure 1: Learning curve of a ML classifier versus
the English inclusion classifier’s performance.

extendable to a new language (Alex, 2006).

4 Experiments

The primary focus of this paper is to apply the En-
glish inclusion classifier to the German TIGER tree-
bank (Brants et al., 2002) and to evaluate the clas-
sifier on a standard NLP task, namely parsing. The
aim is to investigate the occurrence of English in-
clusions in more general newspaper text, and to ex-
amine if the detection of English inclusions can im-
prove parsing performance.

The TIGER treebank is a bracketed corpus con-
sisting of 40,020 sentences of newspaper text. The
English inclusion classifier was run once over the
entire TIGER corpus. In total, the system detected
English inclusions in 2,948 of 40,020 sentences
(7.4%), 596 of which contained at least one multi-
word inclusion. This subset of 596 sentences is the
focus of the work reported in the remainder of this
paper, and will be referred to as the inclusion set.

A gold standard parse tree for a sentence contain-
ing a typical multi-word English inclusion is illus-
trated in Figure 2. The tree is relatively flat, which
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is a trait trait of TIGER treebank annotation (Brants
et al., 2002). The non-terminal nodes of the tree rep-
resent the phrase categories, and the edge labels the
grammatical functions. In the example sentence, the
English inclusion is contained in a proper noun (PN)
phrase with a grammatical function of type noun
kernel element (NK ). Each terminal node is POS-
tagged as a named entity (NE) with the grammatical
function ot type proper noun component (PNC).

4.1 Data

Two different data sets are used in the experiments:
(1) the inclusion set, i.e., the sentences containing
multi-word English inclusions recognized by the in-
clusion classifier, and (2) a stratified sample of sen-
tences randomly extracted from the TIGER corpus,
with strata for different sentence lengths. The strata
were chosen so that the sentence length distribution
of the random set matches that of the inclusion set.
The average sentence length of this random set and
the inclusion set is therefore the same at 28.4 tokens.
This type of sampling is necessary as the inclusion
set has a higher average sentence length than a ran-
dom sample of sentences from TIGER, and because
parsing accuracy is correlated with sentence length.
Both the inclusion set and the random set consist of
596 sentences and do not overlap.

4.2 Parser

The parsing experiments were performed with a
state-of-the-art parser trained on the TIGER corpus
which returns both phrase categories and grammati-
cal functions (Dubey, 2005b). Following Klein and
Manning (2003), the parser uses an unlexicalized
probabilistic context-free grammar (PCFG) and re-
lies on treebank transformations to increase parsing
accuracy. Crucially, these transformations make use
of TIGER’s grammatical functions to relay pertinent
lexical information from lexical elements up into the
tree.

The parser also makes use of suffix analysis.
However, beam search or smoothing are not em-
ployed. Based upon an evaluation on the NEGRA
treebank (Skut et al., 1998), using a 90%-5%-5%
training-development-test split, the parser performs
with an accuracy of 73.1 F-score on labelled brack-
ets with a coverage of 99.1% (Dubey, 2005b). These
figures were derived on a test set limited to sentences

containing 40 tokens or less. In the data set used
in this paper, however, sentence length is not lim-
ited. Moreover, the average sentence length of our
test sets is considerably higher than that of the NE-
GRA test set. Consequently, a slightly lower perfor-
mance and/or coverage is anticipated, albeit the type
and domain as well as the annotation of both the NE-
GRA and the TIGER treebanks are very similar. The
minor annotation differences that do exist between
NEGRA and TIGER are explained in Brants et. al
(2002).

4.3 Parser Modifications

We test several variations of the parser. Thebaseline
parser does not treat foreign inclusions in any spe-
cial way: the parser attempts to guess the POS tag
and grammatical function labels of the word using
the same suffix analysis as for rare or unseen Ger-
man words. The additional versions of the parser
are inspired by the hypothesis that inclusions make
parsing difficult, and this difficulty arises primarily
because the parser cannot detect inclusions prop-
erly. Therefore, a suitable upper bound is to give
the parserperfect tagging information. Two further
versions interface with our inclusion classifier and
treat words marked as inclusions differently from
native words. The first version does so on aword-
by-word basis. In contrast, theinclusion entity ap-
proach attempts to group inclusions, even if a group-
ing is not posited by phrase structure rules. We now
describe each version in more detail.

In the TIGER annotation, preterminals include
both POS tags and grammatical function labels.
For example, rather than a preterminal node hav-
ing the categoryPRELS (personal pronoun), it is
given the categoryPRELS-OA(accusative personal
pronoun). Due to these grammatical function tags,
the perfect tagging parser may disambiguate more
syntactic information than provided with POS tags
alone. Therefore, to make this model more realistic,
the parser is required to guess grammatical functions
(allowing it to, for example, mistakenly tag an ac-
cusative pronoun as nominative, dative or genitive).
This gives the parser information about the POS tags
of English inclusions (along with other words), but
does not give any additional hints about the syntax
of the sentence.

The two remaining models both take advantage
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Figure 2: Example parse tree of a German TIGER sentence containing an English inclusion. Translation:
The nicest road movie came from Switzerland.

NE FM NN KON CARD ADJD APPR
1185 512 44 8 8 1 1

Table 2: POS tags of foreign inclusions.

PN

FOM

. . .

FOM

. . .
(a) Whenever aFOM is encoun-
tered...

PN

FP

FOM

. . .

FOM

. . .
(b) ...a newFP category is cre-
ated

Figure 3: Tree transformation employed in thein-
clusion entityparser.

of information from the inclusion detector. To inter-
face the detector with the parser, we simply mark
any inclusion with a specialFOM (foreign mate-
rial) tag. The word-by-word parser attempts to guess
POS tags itself, much like the baseline. However,
whenever it encounters aFOM tag, it restricts itself
to the set of POS tags observed in inclusions during
training (the tags listed in Table 2). When aFOM is
detected, these and only these POS tags are guessed;
all other aspects of the parser remain the same.

The word-by-word parser fails to take advantage
of one important trend in the data: that foreign in-
clusion tokens tend to be adjacent, and these adja-
cent words usually refer to the same entity. There
is nothing stopping the word-by-word parser from
positing a constituent boundary between two adja-
cent foreign inclusions. The inclusion entity model
was developed to restrict such spurious bracketing.
It does so by way of another tree transformation.
The new categoryFP (foreign phrase) is added be-
low any node dominating at least one token marked
FOM during training. For example, when encoun-
tering aFOM sequence dominated byPN as in Fig-
ure 3(a), the tree is modified so that it is theFP rule
which generates theFOM tokens. Figure 3(b) shows
the modified tree. In all cases, a unary rulePN→FP
is introduced. As this extra rule decreases the proba-
bility of the entire tree, the parser has a bias to intro-
duce as few of these rules as possible – thus limiting
the number of categories which expand toFOMs.
Once a candidate parse is created during testing, the
inverse operation is applied, removing theFP node.

4.4 Method

For all experiments reported in this paper, the parser
is trained on the TIGER treebank. As the inclusion
and random sets are drawn from the whole TIGER
treebank, it is necessary to ensure that the data used
to train the parser does not overlap with these test
sentences. The experiments are therefore designed
as multifold cross-validation tests. Using 5 folds,
each model is trained on 80% of the data while the
remaining 20% are held out. The held out set is then

155



Data P R F Dep. Cov. AvgCB 0CB ≤2CB

Baseline model

Inclusion set 56.1 62.6 59.2 74.9 99.2 2.1 34.0 69.0
Random set 63.3 67.3 65.2 81.1 99.2 1.6 40.4 75.1

Perfect tagging model

Inclusion set 61.3 63.0 62.2 75.1 92.7 1.7 41.5 72.6
Random set 65.8 68.9 67.3 82.4 97.7 1.4 45.9 77.1

Word-by-word model

Inclusion set 55.6 62.8 59.0 73.1 99.2 2.1 34.2 70.2
Random set 63.3 67.3 65.2 81.1 99.2 1.6 40.4 75.1

Inclusion entity model

Inclusion set 61.3 65.9 63.5 78.3 99.0 1.7 42.4 77.1
Random set 63.4 67.5 65.4 80.8 99.2 1.6 40.1 75.7

Table 3: Baseline and perfect tagging for inclusion and random sets andresults for the word-by-word and
the inclusion entity models.

intersected with the inclusion set (or, respectively,
the random set). The evaluation metrics are calcu-
lated on this subset of the inclusion set (or random
set), using the parser trained on the corresponding
training data. This process ensures that the test sen-
tences are not contained in the training data.

The overall performance metrics of the parser are
calculated on the aggregated totals of the five held
out test sets. For each experiment, we report pars-
ing performance in terms of the standard PARSE-
VAL scores (Abney et al., 1991), including cov-
erage (Cov), labeled precision (P) and recall (R),
F-score, the average number of crossing brackets
(AvgCB), and the percentage of sentences parsed
with zero and with two or fewer crossing brack-
ets (0CB and≤2CB). In addition, we also report
dependency accuracy (Dep), calculated using the
approach described in Lin (1995), using the head-
picking method used by Dubey (2005a). The la-
beled bracketing figures (P, R and F), and the de-
pendency score are calculated on all sentences, with
those which are out-of-coverage getting zero nodes.
The crossing bracket scores are calculated only on
those sentences which are successfully parsed.

4.5 Baseline and Perfect Tagging

The baseline, for which the unmodified parser is
used, achieves a high coverage at over 99% for both
the inclusion and the random sets (see Table 3).

However, scores differ for the bracketing measures.
Using stratified shuffling1, we performed at-test on
precision and recall, and found both to be signif-
icantly worse in the inclusion condition. Overall,
the harmonic mean (F) of precision and recall was
65.2 on the random set, 6 points better than 59.2
F observed on the inclusion set. Similarly, depen-
dency and cross-bracketing scores are higher on the
random test set. This result strongly indicates that
sentences containing English inclusions present dif-
ficulty for the parser, compared to length-matched
sentences without inclusions.

When providing the parser with perfect tagging
information, scores improve both for the inclusion
and the random TIGER samples, resulting in F-
scores of 62.2 and 67.3, respectively. However, the
coverage for the inclusion set decreases to 92.7%
whereas the coverage for the random set is 97.7%.
In both cases, the lower coverage is caused by the
parser being forced to use infrequent tag sequences,
with the much lower coverage of the inclusion set
likely due to infrequent tags (notableFM ), solely
associated with inclusions. While perfect tagging
increases overall accuracy, a difference of 5.1 in F-
score remains between the random and inclusion test
sets. Although smaller than that of the baseline runs,
this difference shows that even with perfect tagging,

1This approach to statistical testing is described in:http:
//www.cis.upenn.edu/˜dbikel/software.html
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parsing English inclusions is harder than parsing
monolingual data.

So far, we have shown that the English inclusion
classifier is able to detect sentences that are difficult
to parse. We have also shown that perfect tagging
helps to improve parsing performance but is insuffi-
cient when it comes to parsing sentences containing
English inclusions. In the next section, we will ex-
amine how the knowledge provided by the English
inclusion classifier can be exploited to improve pars-
ing performance for such sentences.

4.6 Word-by-word Model

The word-by-word model achieves the same cover-
age on the inclusion set as the baseline but with a
slightly lower F of 59.0. All other scores, includ-
ing dependency accuracy and cross bracketing re-
sults are similar to those of the baseline (see Ta-
ble 3). This shows that limiting the parser’s choice
of POS tags to those encountered for English inclu-
sions is not sufficient to deal with such constructions
correctly. In the error analysis presented in Sec-
tion 5, we report that the difficulty in parsing multi-
word English inclusions is recognizing them as con-
stituents, rather than recognizing their POS tags. We
attempt to overcome this problem with the inclusion
entity model.

4.7 Inclusion Entity Model

The inclusion entity parser attains a coverage of
99.0% on the inclusion set, similiar to the cover-
age of 99.2% obtained by the baseline model on
the same data. On all other measures, the inclu-
sion entity model exceeds the performance of the
baseline, with a precision of 61.3% (5.2% higher
than the baseline), a recall of 65.9% (3.3% higher),
an F of 63.5 (4.3 higher) and a dependency accu-
racy of 78.3% (3.4% higher). The average number
of crossing brackets is 1.7 (0.4 lower), with 42.4%
of the parsed sentences having no crossing brack-
ets (8.2% higher), and 77.1% having two or fewer
crossing brackets (8.1% higher). When testing the
inclusion entity model on the random set, the per-
formance is very similar to the baseline model on
this data. While coverage is the same, F and cross-
brackting scores are marginally improved, and the
dependency score is marginally deteriorated. This
shows that the inclusion entity model does not harm
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Figure 4: Average relative token frequencies for sen-
tences of equal length.

the parsing accuracy of sentences that do not actu-
ally contain foreign inclusions.

Not only did the inclusion entity parser perform
above the baseline on every metric for the inclusion
set, its performance also exceeds that of the perfect
tagging model on all measures except precision and
average crossing brackets, where both models are
tied. These results clearly indicate that the inclusion
entity model is able to leverage the additional infor-
mation about English inclusions provided by our in-
clusion classifier. However, it is also important to
note that the performance of this model on the in-
clusion set is still consistently lower than that of all
models on the random set. This demonstrates that
sentences with inclusions are more difficult to parse
than monolingual sentences, even in the presence of
information about the inclusions that the parser can
exploit.

Comparing the inclusion set to the length-
matched random set is arguably not entirely fair as
the latter may not contain as many infrequent tokens
as the inclusion set. Figure 4 shows the average rel-
ative token frequencies for sentences of equal length
for both sets. The frequency profiles of the two data
sets are broadly similar (the difference in means of
both groups is only 0.000676), albeit significantly
different according to a pairedt-test (p≤ 0.05). This
is one reason why the inclusion entity model’s per-
formance on the inclusion set does not reach the up-
per limit set by the random sample.
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Phrase cat. Frequency Example

PN 91 The Independent
CH 10 Made in Germany
NP 4 Peace Enforcement

CNP 2 Botts and Company
– 2 Chief Executives

Table 4: Gold phrase categories of inclusions.

5 Error Analysis

The error analysis is limited to 100 sentences se-
lected from the inclusion set parsed with both the
baseline and the inclusion entity model. This sam-
ple contains 109 English inclusions, five of which
are false positives, i.e., the output of the English in-
clusion classifier is incorrect. The precision of the
classifier in recognizing multi-word English inclu-
sions is therefore 95.4% for this TIGER sample.

Table 4 illustrates that the majority of multi-word
English inclusions are contained in a proper noun
(PN) phrase, including names of companies, politi-
cal parties, organizations, films, newspapers, etc. A
less frequent phrasal category is chunk (CH) which
tends to be used for slogans, quotes or expressions
like Made in Germany. Even in this small sam-
ple, annotations of inclusions as eitherPN or CH,
and not the other, can be misleading. For example,
the organizationFriends of the Earthis annotated
as aPN, whereas another organizationInternational
Union for the Conservation of Natureis marked as
a CH in the gold standard. This suggests that the
annotation guidelines on foreign inclusions could be
improved when differentiating between phrase cate-
gories containing foreign material.

For the majority of sentences (62%), the baseline
model predicts more brackets than are present in the
gold standard parse tree (see Table 5). This number
decreases by 11% to 51% when parsing with the in-
clusion entity model. This suggests that the baseline
parser does not recognize English inclusions as con-
stituents, and instead parses their individual tokens
as separate phrases. Provided with additional infor-
mation of multi-word English inclusions in the train-
ing data, the parser is able to overcome this problem.

We now turn our attention to how accurately the
various parsers are at predicting both phrase brack-
eting and phrase categories (see Table 6). For 46

Phrase bracket (PB) frequency BL IE

PBPRED> PBGOLD 62% 51%
PBPRED< PBGOLD 11% 13%
PBPRED= PBGOLD 27% 36%

Table 5: Bracket frequency of the predicted baseline
(BL) and inclusion entity (IE) model output com-
pared to the gold standard.

(42.2%) of inclusions, the baseline model makes an
error with a negative effect on performance. In 39
cases (35.8%), the phrase bracketing and phrase cat-
egory are incorrect, and constituent boundaries oc-
cur within the inclusion, as illustrated in Figure 5(a).
Such errors also have a detrimental effect on the
parsing of the remainder of the sentence. Overall,
the baseline model predicts the correct phrase brack-
eting and phrase category for 63 inclusions (57.8%).
Conversely, the inclusion entity model, which is
given information on tag consistency within inclu-
sions via theFOM tags, is able to determine the
correct phrase bracketing and phrase category for
67.9% inclusions (10.1% more), e.g. see Figure 5(b).
Both the phrase bracketing and phrase category are
predicted incorrectly in only 6 cases (5.5%). The
inclusion entity model’s improved phrase boundary
prediction for 31 inclusions (28.4% more correct) is
likely to have an overall positive effect on the pars-
ing decisions made for the context which they ap-
pear in. Nevertheless, the inclusion entity parser still
has difficulty determining the correct phrase cate-
gory in 25 cases (22.9%). The main confusion lies
between assigning the categoriesPN, CH andNP,
the most frequent phrase categories of multi-word
English inclusions. This is also partially due to the
ambiguity between these phrases in the gold stan-
dard. Finally, few parsing errors (4) are caused by
the inclusion entity parser due to the markup of false
positive inclusions (mainly boundary errors).

6 Discussion and Conclusion

This paper has argued that English inclusions in
German text is an increasingly pervasive instance
of language mixing. Starting with the hypothesis
that such inclusions can be a significant source of
errors for monolingual parsers, we found evidence
that an unmodified state-of-the-art parser for Ger-
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...

PN-NK

NP-PNC

NE-NK

Made

PP-MNR

APPR-AD

In

NE-NK

Heaven
(a) Partial parsing output of the baseline model with a con-
stiuent boundary in the English inclusion.

...

PN-NK

FOM

Made

FOM

In

FOM

Heaven
(b) Partial parsing output of the inclusion en-
tity model with the English inclusion parsed cor-
rectly.

Figure 5: Comparing baseline model output to inclusion entity model output.

Errors No. of inclusions (in %)

Parser: baseline model, data: inclusion set
Incorrect PB and PC 39 (35.8%)
Incorrect PC 5 (4.6%)
Incorrect PB 2 (1.8%)
Correct PB and PC 63 (57.8%)

Parser: inclusion entity model, data: inclusion set
Incorrect PB and PC 6 (5.5%)
Incorrect PC 25 (22.9%)
Incorrect PB 4 (3.7%)
Correct PB and PC 74 (67.9%)

Table 6: Baseline and inclusion entity model errors
for inclusions with respect to their phrase bracketing
(PB) and phrase category (PC).

man performs substantially worse on a set of sen-
tences with English inclusions compared to a set of
length-matched sentences randomly sampled from
the same corpus. The lower performance on the
inclusion set persisted even when the parser when
given gold standard POS tags in the input.

To overcome the poor accuracy of parsing inclu-
sions, we developed two methods for interfacing the
parser with an existing annotation-free inclusion de-
tection system. The first method restricts the POS
tags for inclusions that the parser can assign to those
found in the data. The second method applies tree
transformations to ensure that inclusions are treated
as phrases. An evaluation on the TIGER corpus
shows that the second method yields a performance

gain of 4.3 in F-score over a baseline of no inclusion
detection, and even outperforms a model involving
perfect POS tagging of inclusions.

To summarize, we have shown that foreign inclu-
sions present a problem for a monolingual parser.
We also demonstrated that it is insufficient to know
where inclusions are or even what their parts of
speech are. Parsing performance only improves if
the parser also has knowledge about the structure of
the inclusions. It is particularly important to know
when adjacent foreign words are likely to be part of
the same phrase. As our error analysis showed, this
prevents cascading errors further up in the parse tree.

Finally, our results indicate that future work could
improve parsing performance for inclusions further:
we found that parsing the inclusion set is still harder
than parsing a randomly sampled test set, even for
our best-performing model. This provides an up-
per bound on the performance we can expect from
a parser that uses inclusion detection. Future work
will also involve determining the English inclusion
classifier’s merit when applied to rule-based parsing.
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Abstract 

Semantic inference is a core component of 
many natural language applications. In re-
sponse, several researchers have developed 
algorithms for automatically learning infer-
ence rules from textual corpora. However, 
these rules are often either imprecise or un-
derspecified in directionality. In this paper 
we propose an algorithm called LEDIR that 
filters incorrect inference rules and identi-
fies the directionality of correct ones. 
Based on an extension to Harris’s distribu-
tional hypothesis, we use selectional pref-
erences to gather evidence of inference di-
rectionality and plausibility. Experiments 
show empirical evidence that our approach 
can classify inference rules significantly 
better than several baselines. 

1 Introduction 

Paraphrases are textual expressions that convey the 
same meaning using different surface forms. Tex-
tual entailment is a similar phenomenon, in which 
the presence of one expression licenses the validity 
of another. Paraphrases and inference rules are 
known to improve performance in various NLP 
applications like Question Answering (Harabagiu 
and Hickl 2006), summarization (Barzilay et al. 
1999) and Information Retrieval (Anick and Tipir-
neni 1999).  

Paraphrase and entailment involve inference 
rules that license a conclusion when a premise is 
given.  Deciding whether a proposed inference rule 
is fully valid is difficult, however, and most NL 
systems instead focus on plausible inference.  In 
this case, one statement has some likelihood of 

being identical in meaning to, or derivable from, 
the other.  In the rest of this paper we discuss plau-
sible inference only.   

Given the importance of inference, several re-
searchers have developed inference rule collec-
tions. While manually built resources like Word-
Net (Fellbaum 1998) and Cyc (Lenat 1995) have 
been around for years, for coverage and domain 
adaptability reasons many recent approaches have 
focused on automatic acquisition of paraphrases 
(Barzilay and McKeown 2001) and inference rules 
(Lin and Pantel 2001; Szpektor et al. 2004). The 
downside of these approaches is that they often 
result in incorrect inference rules or in inference 
rules that are underspecified in directionality (i.e. 
asymmetric but are wrongly considered symmet-
ric). For example, consider an inference rule from 
DIRT (Lin and Pantel 2001): 

X eats Y ⇔ X likes Y  (1)   
All rules in DIRT are considered symmetric. 
Though here, one is most likely to infer that “X 
eats Y” ⇒ “X likes Y”, because if someone eats 
something, he most probably likes it1, but if he 
likes something he might not necessarily be able to 
eat it. So for example, given the sentence “I eat 
spicy food”, one is mostly likely to infer that “I like 
spicy food”. On the other hand, given the sentence 
“I like rollerblading”, one cannot infer that “I eat 
rollerblading”. 

In this paper, we propose an algorithm called 
LEDIR (pronounced “leader”) for LEarning Di-
rectionality of Inference Rules. Our algorithm fil-
ters incorrect inference rules and identifies the di-
rectionality of the correct ones. Our algorithm 

                                                
1 There could be certain usages of “X eats Y” where, one 
might not be able to infer “X likes Y” (for example meta-
phorical). But, in most cases, this inference holds. 
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works with any resource that produces inference 
rules of the form shown in example (1). We use 
both the distributional hypothesis and selectional 
preferences as the basis for our algorithm. We pro-
vide empirical evidence to validate the following 
main contribution:  
Claim: Relational selectional preferences can be 
used to automatically determine the plausibility 
and directionality of an inference rule. 

2 Related Work 

In this section, we describe applications that can 
benefit by using inference rules and their direc-
tionality.  We then talk about some previous work 
in this area. 

2.1 Applications 

Open domain question answering approaches often 
cast QA as the problem of finding some kind of 
semantic inference between a question and its an-
swer(s) (Moldovan et al. 2003; Echiabi and Marcu 
2003). Harabagiu and Hickl (2006) recently dem-
onstrated that textual entailment inference informa-
tion, which in this system is a set of directional 
inference relations, improves the performance of a 
QA system significantly even without using any 
other form of semantic inference. This evidence 
supports the idea that learning the directionality of 
other sets of inference rules may improve QA per-
formance. 

 In Multi-Document Summarization (MDS), 
paraphrasing is useful for determining sentences 
that have similar meanings (Barzilay et al. 1999). 
Knowing the directionality between the inference 
rules here could allow the MDS system to choose 
either the more specific or general sentence de-
pending on the purpose of the summary. 

In IR, paraphrases have been used for query ex-
pansion, which is known to promote effective re-
trieval (Anick and Tipirneni 1999). Knowing the 
directionality of rules here could help in making a 
query more general or specific depending on the 
user needs. 

2.2 Learning Inference Rules 

Automatically learning paraphrases and inference 
rules from text is a topic that has received much 
attention lately. Barzilay and McKeown (2001) for 
paraphrases, DIRT (Lin and Pantel 2001) and 
TEASE (Szpektor et al. 2004) for inference rules, 

are recent approaches that have achieved promis-
ing results. While all these approaches produce 
collections of inference rules that have good recall, 
they suffer from the complementary problem of 
low precision. They also make no attempt to dis-
tinguish between symmetric and asymmetric infer-
ence rules. Given the potential positive impact 
shown in Section 2.1 of learning the directionality 
of inference rules, there is a need for methods, 
such as the one we present, to improve existing 
automatically created resources. 

2.3 Learning Directionality 

There have been a few approaches at learning the 
directionality of restricted sets of semantic rela-
tions, mostly between verbs. Chklovski and Pantel 
(2004) used lexico-syntactic patterns over the Web 
to detect certain types of symmetric and asymmet-
ric relations between verbs. They manually exam-
ined and obtained lexico-syntactic patterns that 
help identify the types of relations they considered 
and used these lexico-syntactic patterns over the 
Web to detect these relations among a set of candi-
date verb pairs. Their approach however is limited 
only to verbs and to specific types of verb-verb 
relations. 

Zanzotto et al. (2006) explored a selectional 
preference-based approach to learn asymmetric 
inference rules between verbs. They used the selec-
tional preferences of a single verb, i.e. the semantic 
types of a verb’s arguments, to infer an asymmetric 
inference between the verb and the verb form of its 
argument type. Their approach however applies 
also only to verbs and is limited to some specific 
types of verb-argument pairs. 

Torisawa (2006) presented a method to acquire 
inference rules with temporal constraints, between 
verbs. They used co-occurrences between verbs in 
Japanese coordinated sentences and co-occurrences 
between verbs and nouns to learn the verb-verb 
inference rules. Like the previous two methods, 
their approach too deals only with verbs and is lim-
ited to learning inference rules that are temporal in 
nature. 

Geffet and Dagan (2005) proposed an extension 
to the distributional hypothesis to discover entail-
ment relation between words. They model the con-
text of a word using its syntactic features and com-
pare the contexts of two words for strict inclusion 
to infer lexical entailment. In principle, their work 
is the most similar to ours. Their method however 
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is limited to lexical entailment and they show its 
effectiveness for nouns. Our method on the other 
hand deals with inference rules between binary 
relations and includes inference rules between ver-
bal relations, non-verbal relations and multi-word 
relations. Our definition of context and the meth-
odology for obtaining context similarity and over-
lap is also much different from theirs. 

3 Learning Directionality of Inference 
Rules 

The aim of this paper is to filter out incorrect infer-
ence rules and to identify the directionality of the 
correct ones. 

Let pi ⇔ pj be an inference rule where each p is 
a binary semantic relation between two entities x 
and y. Let <x, p, y> be an instance of relation p. 
Formal problem definition: Given the inference 
rule pi ⇔ pj, we want to conclude which one of the 
following is more appropriate: 

1. pi ⇔ pj 
2. pi ⇒ pj 
3. pi ⇐ pj 
4. No plausible inference 
Consider the example (1) from section 1. There, 

it is most plausible to conclude  “X eats Y” ⇒ “X 
likes Y”.  

Our algorithm LEDIR uses selectional prefer-
ences along the lines of Resnik (1996) and Pantel 
et al. (2007) to determine the plausibility and di-
rectionality of inference rules. 

3.1 Underlying Assumption 

Many approaches to modeling lexical semantics 
have relied on the distributional hypothesis (Harris 
1954), which states that words that appear in the 
same contexts tend to have similar meanings. The 
idea is that context is a good indicator of a word 
meaning. Lin and Pantel (2001) proposed an exten-
sion to the distributional hypothesis and applied it 
to paths in dependency trees, where if two paths 
tend to occur in similar contexts it is hypothesized 
that the meanings of the paths tend to be similar. 

In this paper, we assume and propose a further 
extension to the distributional hypothesis and call 
it the “Directionality Hypothesis”. 
Directionality Hypothesis: If two binary semantic 
relations tend to occur in similar contexts and the 
first one occurs in significantly more contexts than 

the second, then the second most likely implies the 
first and not vice versa. 

The intuition here is that of generality. The more 
general a relation, more the types (and number) of 
contexts in which it is likely to appear. Consider 
the example (1) from section 1. The fact is that 
there are many more things that someone might 
like than those that someone might eat. Hence, by 
applying the directionality hypothesis, one can in-
fer that “X eats Y” ⇒ “X likes Y”. 

The key to applying the distributional hypothe-
sis to the problem at hand is to model the contexts 
appropriately and to introduce a measure for calcu-
lating context similarity. Concepts in semantic 
space, due to their abstractive power, are much 
richer for reasoning about inferences than simple 
surface words. Hence, we model the context of a 
relation p of the form <x, p, y> by using the seman-
tic classes C(x) and C(y) of words that can be in-
stantiated for x and y respectively. To measure 
context similarity of two relations, we calculate the 
overlap coefficient (Manning and Schütze, 1999) 
between their contexts. 

3.2 Selectional Preferences 

The selectional preferences of a predicate is the set 
of semantic classes that its arguments can belong 
to (Wilks 1975). Resnik (1996) gave an informa-
tion theoretical formulation of the idea. Pantel et 
al. (2007) extended this idea to non-verbal rela-
tions by defining the relational selectional prefer-
ences (RSPs) of a binary relation p as the set of 
semantic classes C(x) and C(y) of words that can 
occur in positions x and y respectively. 

The set of semantic classes C(x) and C(y) can be 
obtained either from a manually created taxonomy 
like WordNet as proposed in the above previous 
approaches or by using automatically generated 
classes from the output of a word clustering algo-
rithm as proposed in Pantel et al. (2007). For ex-
ample given a relation like “X likes Y”, its RSPs 
from WordNet could be {individual, so-
cial_group…} for X and {individual, food, activ-
ity…} for Y. 

In this paper, we deployed both the Joint Rela-
tional Model (JRM) and Independent Relational 
Model (IRM) proposed by Pantel et al. (2007) to 
obtain the selectional preferences for a relation p. 
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Model 1: Joint Relational Model (JRM) 
The JRM uses a large corpus to learn the selec-
tional preferences of a binary semantic relation by 
considering its arguments jointly. 

Given a relation p and large corpus of English 
text, we first find all occurrences of relation p in 
the corpus. For every instance <x, p, y> in the cor-
pus, we obtain the sets C(x) and C(y) of the seman-
tic classes that x and y belong to. We then accumu-
late the frequencies of the triples <c(x), p, c(y)> by 
assuming that every c(x) ∈ C(x) can co-occur with 
every  c(y) ∈ C(y) and vice versa. Every triple 
<c(x), p, c(y)> obtained in this manner is a candi-
date selectional preference for p. Following Pantel 
et al. (2007), we rank these candidates using 
Pointwise mutual information (Cover and Thomas 
1991). The ranking function is defined as the 
strength of association between two semantic 
classes, cx and cy

2, given the relation p: 

! 

pmi cx p; cy p( ) = log
P cx,cy p( )

P cx p( )P cy p( )
                   (3.1) 

Let |cx, p, cy| denote the frequency of observing 
the instance <c(x), p, c(y)>. We estimate the prob-
abilities of Equation 3.1 using maximum likeli-
hood estimates over our corpus: 

! 

P cx p( ) =
cx, p,"

", p,"
P cy p( ) =

", p,cy

", p,"

P cx,cy p( ) =
cx, p,cy

", p,"

                 (3.2) 

We estimate the above frequencies using: 

  

! 

cx, p," =
w, p,"

C w( )w#cx

$ ", p,cy =
", p,w

C w( )w#cy

$

cx, p,cy =
w
1
, p,w

2

C w
1( ) % C w

2( )w1 #cx ,w2 #cy

$

       (3.3) 

where |x, p, y| denotes the frequency of observing 
the instance <x, p, y> and |C(w)| denotes the num-
ber of classes to which word w belongs. |C(w)| dis-
tributes w’s mass equally among all of its senses 
C(w). 
Model 2: Independent Relational Model (IRM) 
Due to sparse data, the JRM is likely to miss some 
pair(s) of valid relational selectional preferences. 
Hence we use the IRM, which models the argu-
ments of a binary semantic relation independently. 

                                                
2 cx and cy are shorthand for c(x) and c(y) in our equations. 

Similar to JRM, we find all instances of the 
form <x, p, y> for a relation p. We then find the 
sets C(x) and C(y) of the semantic classes that x 
and y belong to and accumulate the frequencies of 
the triples <c(x), p, *> and <*, p, c(y)> where c(x) 
∈ C(x) and  c(y) ∈ C(y). 

All the tuples <c(x), p, *> and <*, p, c(y)> are 
the independent candidate RSPs for a relation p 
and we rank them according to equation 3.3. 

Once we have the independently learnt RSPs, 
we need to convert them into a joint representation 
for use by the inference plausibility and direction-
ality model. To do this, we obtain the Cartesian 
product between the sets <C(x), p, *>  and <*, p, 
C(y)> for a relation p. The Cartesian product be-
tween two sets A and B is given by: 

! 

A " B = a,b( ) :#a$ A and #b$ B{ }         (3.4) 

Similarly we obtain: 

! 

Cx, p," # ", p,Cy =
cx, p,cy : $ cx, p," % Cx, p," and

$ ", p,cy % ", p,Cy

& 
' 
( 

) ( 

* 
+ 
( 

, ( 

  (3.5) 

The Cartesian product in equation 3.5 gives the 
joint representation of the RSPs of the relation p 
learnt using IRM. In the joint representation, the 
IRM RSPs have the form <c(x), p, c(y)>  which is 
the same form as the JRM RSPs. 

3.3 Inference plausibility and directionality 
model 

Our model for determining inference plausibility 
and directionality is based on the intuition that for 
an inference to hold between two semantic rela-
tions there must exist sufficient overlap between 
their contexts and the directionality of the infer-
ence depends on the quantitative comparison be-
tween their contexts. 

Here we model the context of a relation by the 
selectional preferences of that relation. We deter-
mine the plausibility of an inference based on the 
overlap coefficient (Manning and Schütze, 1999) 
between the selectional preferences of the two 
paths. We determine the directionality based on the 
difference in the number of selectional preferences 
of the relations when the inference seems plausi-
ble.  

Given a candidate inference rule pi ⇔ pj, we 
first obtain the RSPs <C(x), pi, C(y)>  for pi and 
<C(x), pj, C(y)> for pj.  We then calculate the over-
lap coefficient between their respective RSPs. 
Overlap coefficient is one of the many distribu-
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tional similarity measures used to calculate the 
similarity between two vectors A and B: 

! 

sim A,B( ) =
A" B

min A , B( )
           (3.6) 

The overlap coefficient between the selectional 
preferences of pi and pj is calculated as: 

! 

sim pi, p j( ) =
Cx, pi,Cy " Cx, p j ,Cy

min Cx, pi,Cy ,Cx, p j ,Cy( )
          (3.7) 

If sim(pi,pj) is above a certain empirically de-
termined threshold α (≤1), we conclude that the 
inference is plausible, i.e.: 

If  

! 

sim pi, p j( ) "#  

we conclude the inference is plausible 
else 
 we conclude the inference is not plausible 
For a plausible inference, we then compute the 

ratio between the number of selectional prefer-
ences |C(x), pi, C(y)|  for pi and |C(x), pj, C(y)| for pj 
and compare it against an empirically determined 
threshold β (≥1) to determine the direction of in-
ference. So the algorithm is: 

If   

! 

Cx, pi,Cy

Cx, p j ,Cy

" #
      we conclude pi ⇐ pj 

else if  

! 

Cx, pi,Cy

Cx, p j ,Cy

"
1

#

    we conclude pi ⇒ pj 

else                 we conclude pi ⇔ pj 

4 Experimental Setup 

In this section, we describe our experimental setup 
to validate our claim that LEDIR can be used to 
determine plausibility and directionality of an in-
ference rule. 

Given an inference rule of the form pi ⇔ pj, we 
want to use automatically learned relational selec-
tional preferences to determine whether the infer-
ence rule is valid and if it is valid then what its di-
rectionality is.  

4.1 Inference Rules 

LEDIR can work with any set of binary semantic 
inference rules. For the purpose of this paper, we 
chose the inference rules from the DIRT resource 
(Lin and Pantel 2001). DIRT consists of 12 million 
rules extracted from 1GB of newspaper text (AP 
Newswire, San Jose Mercury and Wall Street 

Journal). For example, “X eats Y” ⇔ “X likes Y” is 
an inference rule from DIRT. 

4.2 Semantic Classes 

Appropriate choice of semantic classes is crucial 
for learning relational selectional preferences. The 
ideal set should have semantic classes that have the 
right balance between abstraction and discrimina-
tion, the two important characteristics that are of-
ten conflicting. A very general class has limited 
discriminative power, while a very specific class 
has limited abstractive power. Finding the right 
balance here is a separate research problem of its 
own. 

Since the ideal set of universally acceptable se-
mantic classes in unavailable, we decided to use 
the Pantel et al. (2007) approach of using two sets 
of semantic classes. This approach gave us the ad-
vantage of being able to experiment with sets of 
classes that vary a lot in the way they are generated 
but try to maintain the granularity by obtaining 
approximately the same number of classes. 

The first set of semantic classes was obtained by 
running the CBC clustering algorithm (Pantel and 
Lin, 2002) on TREC-9 and TREC-2002 newswire 
collections consisting of over 600 million words. 
This resulted in 1628 clusters, each representing a 
semantic class. 

The second set of semantic classes was obtained 
by using WordNet 2.1 (Fellbaum 1998). We ob-
tained a cut in the WordNet noun hierarchy3 by 
manual inspection and used all the synsets below a 
cut point as the semantic class at that node. Our 
inspection showed that the synsets at depth four 
formed the most natural semantic classes4. A cut at 
depth four resulted in a set of 1287 semantic 
classes, a set that is much coarser grained than 
WordNet which has an average depth of 12. This 
seems to be a depth that gives a reasonable abstrac-
tion while maintaining good discriminative power. 
It would however be interesting to experiment with 
more sophisticated algorithms for extracting se-
mantic classes from WordNet and see their effect 

                                                
3 Since we are dealing with only noun binary relations, we 
use only WordNet noun Hierarchy. 
4 By natural, here, we simply mean that a manual inspection 
by the authors showed that, at depth four, the resulting clus-
ters had struck a better granularity balance than other cutoff 
points. We acknowledge that this is a very coarse way of ex-
tracting concepts from WordNet. 

165



on the relational selectional preferences, something 
we do not address this in this paper. 

4.3 Implementation 

We implemented LEDIR with both the JRM and 
IRM models using inference rules from DIRT and 
semantic classes from both CBC and WordNet. We 
parsed the 1999 AP newswire collection consisting 
of 31 million words with Minipar (Lin 1993) and 
used this to obtain the probability statistics for the 
models (as described in section 3.2).  

We performed both system-wide evaluations 
and intrinsic evaluations with different values of α 
and β parameters. Section 5 presents these results 
and our error analysis. 

4.4 Gold Standard Construction 

In order to evaluate the performance of the differ-
ent systems, we compare their outputs against a 
manually annotated gold standard. To create this 
gold standard, we randomly sampled 160 inference 
rules of the form pi ⇔ pj from DIRT. We discarded 
three rules since they contained nominalizations5.  

For every inference rule of the form pi ⇔ pj, the 
annotation guideline asked annotators (in this pa-
per we used two annotators) to choose the most 
appropriate of the four options: 

1. pi ⇔ pj 
2. pi ⇒ pj 
3. pi ⇐ pj 
4. No plausible inference 

To help the annotators with their decisions, the 
annotators were provided with 10 randomly chosen 
instances for each inference rule. These instances, 
extracted from DIRT, provided the annotators with 
context where the inference could hold. So for ex-
ample, for the inference rule “X eats Y” ⇔ “X likes 
Y”, an example instance would be “I eat spicy 
food” ⇔ “I like spicy food”. The annotation guide-
line however gave the annotators the freedom to 
think of examples other than the ones provided to 
make their decisions. 

The annotators found that while some decisions 
were quite easy to make, the more complex ones 
                                                

5 For the purpose of simplicity, we in our experiments did 
not use DIRT rules containing nominalizations. The algo-
rithm however can be applied without change to inference 
rules containing nominalization. In fact, in the resource that 
we plan to release soon, we have applied the algorithm 
without change to DIRT rules containing nominalizations. 

often involved the choice between bi-directionality 
and one of the directions. To minimize disagree-
ments and to get a better understanding of the task, 
the annotators trained themselves by annotating 
several samples together. 

We divided the set of 157 inference rules, into a 
development set of 57 inference rules and a blind 
test set of 100 inference rules. Our two annotators 
annotated the development test set together to train 
themselves. The blind test set was then annotated 
individually to test whether the task is well de-
fined. We used the kappa statistic (Siegel and 
Castellan Jr. 1988) to calculate the inter-annotator 
agreement, resulting in κ=0.63. The annotators 
then looked at the disagreements together to build 
the final gold standard. 

All this resulted in a final gold standard of 100 
annotated DIRT rules. 

4.5 Baselines 

To get an objective assessment of the quality of the 
results obtained by using our models, we compared 
the output of our systems against three baselines: 
B-random: Randomly assigns one of the four pos-
sible tags to each candidate inference rule.  
B-frequent: Assigns the most frequently occurring 
tag in the gold standard to each candidate infer-
ence rule. 
B-DIRT: Assumes each inference rule is bidirec-
tional and assigns the bidirectional tag to each 
candidate inference rule. 

5 Experimental Results 

In this section, we provide empirical evidence to 
validate our claim that the plausibility and direc-
tionality of an inference rule can be determined 
using LEDIR. 

5.1 Evaluation Criterion 

We want to measure the effectiveness of LEDIR 
for the task of determining the validity and direc-
tionality of a set of inference rules. We follow the 
standard approach of reporting system accuracy by 
comparing system outputs on a test set with a 
manually created gold standard. Using the gold 
standard described in Section 4.4, we measure the 
accuracy of our systems using the following for-
mula: 
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5.2 Result Summary 

We ran all our algorithms with different parameter 
combinations on the development set (the 57 DIRT 
rules described in Section 4.4). This resulted in a 
total of 420 experiments on the development set. 
Based on these experiments, we used the accuracy 
statistic to obtain the best parameter combination 
for each of our four systems. We then used these 
parameter values to obtain the corresponding per-
centage accuracies on the test set for each of the 
four systems. 

Model α  β Accuracy (%) 
B-random - - 25 
B-frequent - - 34 

B-DIRT - - 25 
CBC 0.15 2 38 JRM 
WN 0.55 2 38 
CBC 0.15 3 48 IRM 
WN 0.45 2 43 

Table 1: Summary of results on the test set 
Table 1 summarizes the results obtained on the 

test set for the three baselines and for each of the 
four systems using the best parameter combina-
tions obtained as described above. The overall best 
performing system uses the IRM algorithm with 
RSPs form CBC. Its performance is found to be 
significantly better than all the three baselines us-
ing the Student’s paired t-test (Manning and 
Schütze, 1999) at p<0.05. However, this system is 
not statistically significant when compared with 
the other LEDIR implementations (JRM and IRM 
with WordNet). 

5.3 Performance and Error Analysis 

The best performing system selected using the de-
velopment set is the IRM system using CBC with 
the parameters α=0.15 and β=3. In general, the 
results obtained on the test set show that the IRM 
tends to perform better than the JRM. This obser-
vation points at the sparseness of data available for 
learning RSPs for the more restrictive JRM, the 
reason why we introduced the IRM in the first 
place. A much larger corpus would be needed to 
obtain good enough coverage for the JRM. 

GOLD STANDARD  
⇔ ⇒ ⇐ NO 

⇔ 16 1 3 7 
⇒ 0 3 1 3 
⇐ 7 4 22 15 

SY
ST

E
M

 

NO 2 3 4 9 

Table 2: Confusion Matrix for the best performing 
system, IRM using CBC with α=0.15 and β=3. 

Table 2 shows the confusion matrix for the 
overall best performing system as selected using 
the development set (results are taken from the test 
set). The confusion matrix indicates that the system 
does a very good job of identifying the directional-
ity of the correct inference rules, but gets a big per-
formance hit from its inability to identify the incor-
rect inference rules accurately. We will analyze 
this observation in more detail below. 

Figure 1 plots the variation in accuracy of IRM 
with different RSPs and different values of α and 
β. The figure shows a very interesting trend.  It is 
clear that for all values of β, systems for IRM us-
ing CBC tend to reach their peak in the range 0.15 
≤ α ≤ 0.25, whereas the systems for IRM using 
WordNet (WN), tend to reach their peak in the 
range 0.4 ≤ α ≤ 0.6. This variation indicates the 
kind of impact the selection of semantic classes 
could have on the overall performance of the sys-
tem. This is not hard evidence, but it does suggest 
that finding the right set of semantic classes could 
be one big step towards improving system accu-
racy. 

 
Figure 1: Accuracy variation for IRM with differ-
ent values of α and β. 

Two other factors that have a big impact on the 
performance of our systems are the values of the 
system parameters α and β, which decide the plau-
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sibility and directionality of an inference rule, re-
spectively. To better study their effect on the sys-
tem performances, we studied the two parameters 
independently. 

 
Figure 2: Accuracy variation in predicting correct 
versus incorrect inference rules for different values 
of α. 

 
Figure 3: Accuracy variation in predicting direc-
tionality of correct inference rules for different 
values of β. 

Figure 2 shows the variation in the accuracy for 
the task of predicting the correct and incorrect in-
ference rules for the different systems when vary-
ing the value of α. To obtain this graph, we classi-
fied the inference rules in the test set only as cor-
rect and incorrect without further classification 
based on directionality. All of our four systems 
obtained accuracy scores in the range of 68-70% 
showing a good performance on the task of deter-
mining plausibility. This however is only a small 
improvement over the baseline score of 66% ob-
tained by assuming every inference to be plausible 
(as will be shown below, our system has most im-
pact not on determining plausibility but on deter-

mining directionality). Manual inspection of some 
system errors showed that the most common errors 
were due to the well-known ‘problem of an-
tonymy’ when applying the distributional hypothe-
sis. In DIRT, one can learn rules like “X loves Y” 
⇔ “X hates Y”. Since the plausibility of inference 
rules is determined by applying the distributional 
hypothesis and the antonym paths tend to take the 
same set of classes for X and Y, our models find it 
difficult to filter out the incorrect inference rules 
which DIRT ends up learning for this very same 
reason. To improve our system, one avenue of re-
search is to focus specifically on filtering incorrect 
inference rules involving antonyms (perhaps using 
methods similar to (Lin et al. 2003)). 

Figure 3 shows the variation in the accuracy for 
the task of predicting the directionality of the cor-
rect inference rules for the different systems when 
varying the value of β.  To obtain this graph, we 
separated the correct inference rules form the in-
correct ones and ran all the systems on only the 
correct ones, predicting only the directionality of 
each rule for different values of β. Too low a value 
of β means that the algorithms tend to predict most 
things as unidirectional and too high a value means 
that the algorithms tend to predict everything as 
bidirectional. It is clear from the figure that the 
performance of all the systems reach their peak 
performance in the range 2 ≤ β ≤ 4, which agrees 
with our intuition of obtaining the best system ac-
curacy in a medium range. It is also seen that the 
best accuracy for each of the models goes up as 
compared to the corresponding values obtained in 
the general framework. The best performing sys-
tem, IRM using CBC RSPs, reaches a peak accu-
racy of 63.64%, a much higher score than its accu-
racy score of 48% under the general framework 
and also a significant improvement over the base-
line score of 48.48% for this task. Paired t-test 
shows that the difference is statistically significant 
at p<0.05. The baseline score for this task is ob-
tained by assigning the most frequently occurring 
direction to all the correct inference rules. This 
paints a very encouraging picture about the ability 
of the algorithm to identify the directionality much 
more accurately if it can be provided with a cleaner 
set of inference rules. 
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6 Conclusion 

Semantic inferences are fundamental to under-
standing natural language and are an integral part 
of many natural language applications such as 
question answering, summarization and textual 
entailment. Given the availability of large amounts 
of text and with the increase in computation power, 
learning them automatically from large text cor-
pora has become increasingly feasible and popular. 
We introduced the Directionality Hypothesis, 
which states that if two paths share a significant 
number of relational selectional preferences 
(RSPs) and if the first has many more RSPs than 
the second, then the second path implies the first. 
Our experiments show empirical evidence that the 
Directionality Hypothesis with RSPs can indeed be 
used to filter incorrect inference rules and find the 
directionality of correct ones. We believe that this 
result is one step in the direction of solving the 
basic problem of semantic inference. 

Several questions must still be addressed. The 
models need to be improved in order to address the 
problem of incorrect inference rules. The distribu-
tional hypothesis does not provide a framework to 
address the issue with antonymy relations like “X 
loves Y” ⇔ “X hates Y” and hence other ideas need 
to be investigated. 

Ultimately, our goal is to improve the perform-
ance of NLP applications with better inferencing 
capabilities. Several recent data points, such as  
(Harabagiu and Hickl 2006), and others discussed 
in Section 2.1, give promise that refined inference 
rules for directionality may indeed improve ques-
tion answering, textual entailment and multi-
document summarization accuracies. It is our hope 
that methods such as the one proposed in this paper 
may one day be used to harness the richness of 
automatically created inference rule resources 
within large-scale NLP applications. 
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Abstract

This paper assesses the role of multi-label
classification in modelling polysemy for lan-
guage acquisition tasks. We focus on the ac-
quisition of semantic classes for Catalan ad-
jectives, and show that polysemy acquisition
naturally suits architectures used for multi-
label classification. Furthermore, we ex-
plore the performance of information drawn
from different levels of linguistic descrip-
tion, using feature sets based on morphol-
ogy, syntax, semantics, andn-gram distribu-
tion. Finally, we demonstrate that ensemble
classifiers are a powerful and adequate way
to combine different types of linguistic ev-
idence: a simple, majority voting ensemble
classifier improves the accuracy from 62.5%
(best single classifier) to 84%.

1 Introduction

This paper reports on a series of experiments to ex-
plore the automatic acquisition of semantic classes
for Catalan adjectives. The most important chal-
lenge of the classification task is to model the assign-
ment of polysemous lexical instances to multiple se-
mantic classes, combining a) a state-of-the-art Ma-
chine Learning architecture forMulti-label Classi-
fication (Schapire and Singer, 2000; Ghamrawi and
McCallum, 2005) and anEnsemble Classifier(Di-
etterich, 2002) with b) the definition of features at
various levels of linguistic description.

A proper treatment of polysemy is essential in the
area of lexical acquisition, since polysemy repre-

sents a pervasive phenomenon in natural language.
However, previous approaches to the automatic ac-
quisition of semantic classes have mostly disre-
garded the problem (cf. Merlo and Stevenson, 2001
and Stevenson and Joanis, 2003 for English seman-
tic verb classes, or Schulte im Walde, 2006 for Ger-
man semantic verb classes). There are a few excep-
tions to this tradition, such as Pereira et al. (1993),
Rooth et al. (1999), Korhonen et al. (2003), who
used soft clustering methods for multiple assign-
ment to verb semantic classes.

Our work addresses the lack of methodology in
modelling a polysemous classification. We imple-
ment a multi-label classification architecture to han-
dle polysemy. This paper concentrates on the clas-
sification of Catalan adjectives, but the general na-
ture of the architecture should allow related tasks to
profit from our insights.

As target classification for the experiments, a set
of 210 Catalan adjectives was manually classified by
experts into three simple and three polysemous se-
mantic classes. We deliberately decided in favour
of a small-scale, broad classification. So far, there
is little work on the semantic classification of adjec-
tives, as opposed to verbal semantic classification.
The semantic classification we propose is a first step
in characterising adjectival meaning, and can be re-
fined and extended in subsequent work.

The experiments also provide a thorough compar-
ison of feature sets based on different levels of lin-
guistic description (morphology, syntax, semantics).
A set of features is defined for each level of descrip-
tion, and its performance is assessed within the se-
ries of experiments. An ensemble classifier comple-
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ments the classification architecture, by optimising
the combination of these different types of linguistic
evidence.

Our task is motivated by the fact that adjectives
play an important role in sentential semantics: they
are crucial in determining the reference of NPs,
and in defining properties of entities. Even using
only three different classes, the information acquired
could be applied to, e.g., identify referents in a given
context in Dialog or Question Answering systems,
and to induce properties of objects within Informa-
tion Extraction tasks. Furthermore, with the seman-
tic classes corresponding to broad sense representa-
tions, they can be exploited for Word Sense Disam-
biguation.

The remainder of this paper is organised as fol-
lows. Section 2 provides background on Catalan ad-
jectives, and Section 3 presents the Gold Standard
classification. Section 4 introduces the methodology
of the multi-label classification experiments, Sec-
tion 5 discusses the results, and the improved en-
semble classifier is presented in Section 6.

2 Catalan adjective classes

The definition and characterisation of our target se-
mantic classification follows the proposal by Raskin
and Nirenburg (1998) within the framework of On-
tological Semantics(Nirenburg and Raskin, 2004).
In Ontological Semantics, an ontology of concepts
modelling the world is explicitly defined, and the
semantics of words are mapped onto elements of
the ontology. The classification pursued in this pa-
per is drawn up based on the ontological sort of ad-
jectival denotation: all adjectives denote properties,
but these properties can be instantiated as simple at-
tributes (basic adjectives), relationships to objects
(object-related adjectives), or relationships to events
(event-related adjectives).

Basic adjectives are the prototypical adjectives
which denote attributes or properties and cannot be
decomposed further (such asbonic ‘beautiful’, gran
‘big’). In Ontological Semantics, these adjectives
are mapped to concepts of typeattribute. For in-
stance, the semantics of the adjectivegran specifies
a mapping to thesize-attributeelement in the onto-
logy. As for event-related adjectives, they have an
event component in their meaning and are therefore

mapped ontoeventconcepts in the ontology. For
instance, the semantics oftangible (‘tangible’) in-
cludes a pointer to the event elementtouch in the
ontology. Similarly, object-related adjectives are
mapped onto object concepts in the ontology:defor-
mació nasal(‘nasal deformity’) can be paraphrased
asdeformity that affects the nose, so nasalevokes
the objectnose.

The semantic distinctions are mirrored at sev-
eral levels of linguistic description, such as mor-
phology, syntax, and semantics. For instance, there
is a clear relationship between morphological type
and semantic class: basic adjectives are typically
non-derived, object adjectives tend to be denomi-
nal, and event adjectives are usually deverbal. This
is the default mapping that one expects from the
morphology-semantics interface. As an example for
syntactic evidence, basic adjectives in Catalan can
be used non-restrictively (in a pre-nominal position)
and also predicatively, while object adjectives typi-
cally cannot.

However, the correspondences between the lin-
guistic properties and the semantic classes are not
one-to-one mappings. Taking the morphological le-
vel as an example, some denominal adjectives are
basic (such asvergonyós‘shy’, from vergonya‘shy-
ness’). Conversely, some object adjectives are not
synchronically denominal (such asbotànic ‘botan-
ical’), and some deverbal adjectives are not event-
related, such asamable(lit. ‘suitable to be loved’;
has evolved to ‘kind, friendly’). In such cases, the
semantic class can be better traced in the distribu-
tional properties, not the morphological properties
of the adjective.

The proposed classification accounts for some
cases of adjectival polysemy. For instance,familiar
has an object reading (related to the Catalan noun
for ‘family’), and a basic reading (corresponding to
the English adjective ‘familiar’):

(1) reunió
meeting

familiar
familiar

/
/
cara
face

familiar
familiar

‘family meeting / familiar face’

Similarly, the participial adjective sabut
(‘known’) has an event-related sense, corre-
sponding to the verbsaber (‘know’), and a basic
sense equivalent to ‘wise’:
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(2) conseqüència
consequence

sabuda
known

/
/
home
man

sabut
wise

‘known consequence / wise man’

The polysemy between our proposed classes, as
exemplified in (1) and (2), is the kind of polysemy
we aim to model in the acquisition experiments re-
ported in this paper.

3 Gold Standard classes

As a Gold Standard for the experiments to fol-
low, 210 Catalan adjectives were classified by three
experts. The adjectives were randomly sampled
from an adjective database (Sanromà, 2003), bal-
ancing three factors of variability: frequency, mor-
phological type, and suffix. An equal number of
adjectives was chosen from three frequency bands
(low, medium, high), from four derivational types
(denominal, deverbal, non-derived, participle), and
from a series of suffixes within each type. The
derivational type and suffix of each adjective were
available in the adjective database, and had been
manually encoded.

Three experts assigned the 210 lemmata to one
out of six classes: each adjective was tagged as ba-
sic (B), event (E), object (O), or as polysemous be-
tween basic and event (BE), between basic and ob-
ject (BO), or between event and object (EO). The
decisions were reached by consensus. The distribu-
tion of the Gold Standard material across classes is
shown in the last column of Table 6 (Section 5.2).

In the acquisition experiments, our aim is to auto-
matically assign a class to each adjective that can be
simple (B, E, O) or complex (BE, BO, EO), in case
of polysemy.

4 Classification method

Adjective classification was performed within a two-
level architecture for multi-label classification: first,
make a binary decision on each of the classes, and
then combine the classifications to achieve a final,
multi-label classification. We therefore decomposed
the global decision on the (possibly polysemous)
class of an adjective into three binary decisions: Is it
basic or not? Is it event-related or not? Is it object-
related or not? The individual decisions were then
combined into an overall classification that included

polysemy. For example, if a lemma was classified
both as basic and as object in each of the binary de-
cisions, it was deemed polysemous (BO). The mo-
tivation behind this approach was that polysemous
adjectives should exhibit properties of all the classes
involved. As a result, positive decisions on each bi-
nary classification can be made by the algorithm,
which can be viewed as implicit polysemous assign-
ments.

This classification architecture is very popu-
lar in Machine Learning for multi-label problems,
cf. (Schapire and Singer, 2000; Ghamrawi and Mc-
Callum, 2005), and has also been applied to NLP
problems such as entity extraction and noun-phrase
chunking (McDonald et al., 2005). The remainder of
this section describes other methodological aspects
of our experiments.

4.1 Classifier: Decision Trees

As classifier for the binary decisions we chose De-
cision Trees, one of the most widely used Ma-
chine Learning techniques for supervised experi-
ments (Witten and Frank, 2005). Decision Trees
provide a transparent representation of the decisions
made by the algorithm, and thus facilitate the in-
spection of results and the error analysis. The ex-
periments were carried out with the freely available
Weka software package. The particular algorithm
chosen, Weka’s J48, is the latest open source ver-
sion of C4.5 (Quinlan, 1993). For an explanation of
decision tree induction and C4.5, see Quinlan (1993)
and Witten and Frank (2005, Sections 4.3 and 6.1).

4.2 Feature definition

Five levels of linguistic description, formalised as
different feature sets, were chosen for our task. They
included evidence from morphology (morph), syn-
tax (func, uni, bi), semantics (sem), plus a combi-
nation of the five levels (all). Table 1 lists the lin-
guistic levels, their explanations, and the number of
features used on each level.1 Morphological fea-
tures (morph) encode the derivational type (denomi-
nal, deverbal, participial, non-derived) and the suffix
(in case the adjective is derived) of each adjective,
and correspond to the manually encoded informa-

1In level all, different features were used for each of the
three classes. Table 1 reports the mean number of features
across the three classes.
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Level Explanation # Features
morph morphological (derivational) properties 2
func syntactic function 4
uni uni-gram distribution 24
bi bi-gram distribution 50
sem distributional cues of semantic properties 18
all combination of the 5 linguistic levels 10.3

Table 1: Linguistic levels as feature sets.

tion from the adjective database. Syntactic and se-
mantic features encode distributional properties of
adjectives. Syntactic features comprise three sub-
types: (i) the syntactic function (levelfunc) of the
adjective, as assigned by a shallow Constraint Gram-
mar (Alsina et al., 2002), distinguishing the modifier
(pre-nominal or post-nominal) and predicative func-
tions; (ii) a unigram distribution (leveluni), inde-
pendently encoding the parts of speech (POS) of the
words preceding and following the adjective, respec-
tively; and (iii) a bigram distribution (levelbi), the
POS bigram around the target adjective, considering
only the 50 most frequent bigrams to avoid sparse
features. Semantic features (levelsem) expand syn-
tactic features with heterogeneous shallow cues of
semantic properties. Table 2 lists the semantic prop-
erties encoded in the features, as well as the number
of heuristic cues defined for each property. As an
example, one of the shallow cues used for gradabil-
ity was the presence of degree adverbs (més‘more’,
menys‘less’) to the left of the target adjectives. The
last set of features,all, combines features from all
levels of description. However, it does not contain
all features, but a selection of the most relevant ones
(further details in Section 4.3).

property #
non-restrictivity 1
predicativity 4
gradability 4
syntactic function of head noun 3
distance to the head noun 1
binaryhood (adjectives with two arguments) 1
agreement properties 2

Table 2: Semantic features.

4.3 Feature selection

Irrelevant features typically decrease performance
by 5 to 10% when using Decision Trees (Witten and
Frank, 2005, p. 288). We therefore applied a fea-
ture selection algorithm. We chose a feature selec-
tion method available in Weka (WrapperSubsetEval)
that selects a subset of the features according to its
performance within the Machine Learning algorithm
used for classification. Accuracy for a given sub-
set of features is estimated by cross-validation over
the training data. Because the number of subsets in-
creases exponentially with the number of features,
this method is computationally very expensive, and
we used a best-first search strategy to alleviate this
problem.

We additionally used the feature selection pro-
cedure to select the features for levelall: for each
class, we used only those features that were selected
by the feature selection algorithm in at least 30% of
the experiments.

4.4 Differences across linguistic levels

One of our goals was to test the strengths and weak-
nesses of each level of linguistic description for the
task of adjective classification. This was done by
comparing the accuracy results obtained with each
of the feature sets in the Machine Learning experi-
ments. Following a standard procedure in Machine
Learning, we created several partitions of the data to
obtain different estimates of the accuracy of each of
the levels, so as to be able to perform a significance
test on the differences in accuracy. We performed
10 experiments with 10-fold cross-validation (10x10
cv for short), so that for each class 100 different bi-
nary decisions were made for each adjective. For the
comparison of accuracies, a standard pairedt-test
could not be used, because of the inflated Type I er-
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ror probability when reusing data (Dietterich, 1998).
Instead, we used thecorrected resampledt-test as
proposed by Nadeau and Bengio (2003).2

5 Classification results

5.1 Accuracy results

The accuracy results for each of the binary deci-
sions (basic/non-basic, event/non-event, object/non-
object) are depicted in Table 3.3 Level bl corre-
sponds to the baseline: the baseline accuracy was
determined by assigning all lemmata to the most fre-
quent class. The remaining levels follow the nomen-
clature in Table 1 above. Each column contains the
mean and the standard deviation (marked by±) of
the accuracy for the relevant level of information
over the 100 results obtained with 10x10 cv.

Basic Event Object
bl 65.2±11.1 76.2±9.9 71.9±9.6

morph 72.5±7.9 89.1±6.0 84.2±7.5

func 73.6±9.3 76.0±9.3 81.7±7.4

uni 66.1±9.4 75.1±10.6 82.2±7.5

bi 67.4±10.6 72.3±10.2 83.0±8.3

sem 72.8±9.0 73.8±9.6 82.3±8.0

all 75.3±7.6 89.4±5.7 85.4±8.7

Table 3: Accuracy results for binary decisions.

As one might have expected, the best results were
obtained with theall level (bold faced in Table 3),
which is the combination of all feature types. This
level achieved a mean improvement of 12.3% over
the baseline. The differences in accuracy results
between most levels of information were, however,
rather small. For the object class, all levels except
for funcanduni achieved a significant improvement
over the baseline. For the basic class, no improve-

2Note that the corrected resampledt-test can only compare
accuracies obtained under two conditions (algorithms or, as is
our case, feature sets); ANOVA would be more adequate. In
the field of Machine Learning, there is no established correc-
tion for ANOVA for the purposes of testing differences in ac-
curacy (Bouckaert, 2004). Therefore, we used multiplet-tests
instead, which increases the overall error probability of the re-
sults for the significance tests.

3The accuracy for each decision was computed indepen-
dently. For instance, aBE adjective was judged correct within
the basic class iff the decision wasbasic; correct within the
event class iff the decision wasevent; and correct within the
object class iff the decision wasnon-object.

ment over the baseline was significant according to
the corrected resampledt-test. And for the event
class, only levelsmorphandall offered a significant
improvement in accuracy; the remaining levels even
obtained a slightly lower accuracy score.

These results concern the three individual binary
decisions. However, our goal was not to obtain three
separate decisions, but a single classification includ-
ing polysemy. Table 4 shows the accuracy results for
the classification obtained by combining the three
individual decisions for each adjective. We report
two accuracy measures, full and partial: full ac-
curacy required the class assignments to be identi-
cal; partial accuracy only required some overlap in
the classification of the Machine Learning algorithm
and the Gold Standard for a given class assignment.
The motivation for calculating partial overlap was
that a class assignment with some overlap with the
Gold Standard (even if they were not identical) is
generally more useful than a class assignment with
no overlap.

Full Partial
bl 51.0±0.0 65.2±0.0

morph 60.6±1.3 87.8±0.4

func 53.5±1.8 79.8±1.3

uni 52.3±1.7 76.7±1.0

bi 52.9±1.9 76.9±1.8

sem 52.0±1.3 78.7±1.7

all 62.3±2.3 90.7±1.6

Table 4: Accuracy results for combined decisions.

Again, the best results were obtained with theall
level. The second best results were obtained with
levelmorph. These results could have been expected
from the results obtained by the individual decisions
(Table 3); however, note that the differences between
the various levels are much clearer in the combined
classification than in the individual binary decisions.

Table 5 shows the two-by-two comparisons of the
accuracy scores. Each cell contains the difference in
accuracy means between two levels of description,
as well as the level of significance of the difference.
The significance is marked as follows: * forp <

0.05, ** for p < 0.01, *** for p < 0.001. If no
asterisk is shown, the difference was not significant.

Under the strictest evaluation condition (full accu-
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agreement level bl morph func uni bi sem

full

morph 9.7***
func 2.5* -7.1***
uni 1.4 -8.3*** -1.1
bi 2.0 -7.7*** -0.6 0.6
sem 1.0 -8.7*** -1.5 -0.4 1.0
all 11.4*** 1.7 8.9*** 10.0*** 9.4*** 10.4***

partial

morph -22.6***
func 14.6*** -8.0***
uni 11.4*** -11.1*** -3.1**
bi 11.7*** -10.9*** -2.9** 0.2
sem 13.4*** -9.1*** -1.1 2.0 1.8
all 25.4*** 2.9* 10.9*** 14.0*** 13.8*** 12.0***

Table 5: Comparison of accuracy scores across linguistic levels.

racy), only levelsmorph, func, andall significantly
improved upon the baseline. Levelsmorphandall
are better than the remaining levels, to a similar ex-
tent. In the partial evaluation condition, all levels
achieved a highly significant improvement over the
baseline (p < 0.001). Therefore, the classifications
obtained with any of the feature levels are more use-
ful than the baseline, in the sense that they present
more overlap with the Gold Standard.

The best result obtained for the full classifica-
tion of adjectives with our methodology achieved a
mean of 62.3% (full accuracy) or 90.7% (partial ac-
curacy), which represents an improvement of 11.3%
and 25.5% over the baselines, respectively. Levels
including morphological information were clearly
superior to levels using only distributional informa-
tion.

These results suggest that morphology is the best
single source of evidence for our task. However, re-
call from Section 3 that the sampling procedure for
the Gold Standard explicitly balanced for morpho-
logical factors. As a result, denominal and particip-
ial adjectives are underrepresented in the Gold Stan-
dard, while non-derived and deverbal adjectives are
overrepresented. Moreover, previous experiments
on different datasets (Boleda et al., 2004; Boleda et
al., 2005) provided some evidence that distributional
information outperforms morphological information
for our task. Therefore, we cannot conclude from
the experiments that morphological features are the
most important information for the classification of

Catalan adjectives in general.

5.2 Error analysis

The error analysis focuses on the two best fea-
ture sets,morphandall. Table 6 compares the er-
rors made by the experiment classifications (based
on the two sets of features) against the Gold Stan-
dard classification. To obtain a unique experiment
classification for each feature level in this compar-
ison, we applied majority voting across the 10 dif-
ferent classifications obtained in the 10 experiment
runs for each of the linguistic levels. The table rows
correspond to the Gold Standard classification and
the columns correspond to the experiment classifi-
cations with the feature levelsall and morph, re-
spectively. The matches (the diagonal elements)
are in italics, and off-diagonal cells representing the
largest numbers of mismatches are boldfaced. The
overall number of mistakes made by both levels with
majority voting is almost the same: 86 (morph) vs.
89 (all). However, the mismatches are qualitatively
quite different.

Levelmorphuniformly mapped denominal adjec-
tives to both basic and object (BO). Because of this
overgeneration of BOs, 31 lemmata that were tagged
as either basic or object in the Gold Standard were
assigned to BO. In contrast, levelall was overly dis-
criminative: most of the BO cases (16 out of 23), as
well as 16 object adjectives, were assigned to basic.
This type of confusion could be explained by the fact
that some non-prototypical basic adjectives were as-
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all morph
B BE BO E EO O B BE BO E EO O Total

GS

B 94 12 0 0 1 0 82 2 10 11 2 0 107
BE 1 6 0 0 0 0 0 1 0 6 0 0 7
BO 16 1 5 1 0 0 5 0 16 2 0 0 23
E 5 23 1 7 1 0 4 7 0 25 1 0 37
EO 0 2 0 0 4 0 0 0 0 6 0 0 6
O 16 1 6 2 0 5 6 0 21 3 0 0 30
Total 132 45 12 10 6 5 97 10 47 53 3 0 210

Table 6: Levelsall andmorphagainst the Gold Standard.

signed to the basic class in the Gold Standard, be-
cause they did not fit the narrower definitions of the
event and object classes, but these adjectives do not
behave like typical basic adjectives.

As for event adjectives, themorphlevel assigned
almost all deverbal adjectives to the event class,
which worked well in most cases (26). However,
this mapping cannot distinguish deverbal adjectives
with a basic meaning (11 basic and 6 BE adjectives
in the Gold Standard). Levelall, including morpho-
logical and distributional cues, also shows difficul-
ties with the event class, but of a different nature.
Feature examination showed that the distributional
differences between basic and event adjectives are
not robust. For instance, according tot-tests per-
formed on the Gold Standard (α = 0.05), only three
of the 18 semantic features exhibit significant mean
differences for classes basic and event. In contrast,
ANOVA across the 6 classes (α = 0.05) yields signif-
icant differences for 16 out of the 18 features, which
indicates that most features serve to distinguish ob-
ject adjectives from basic and event adjectives. As a
result of the lack of robust distributional differences
between basic and event adjectives, 35 basic or event
adjectives were classified as BE when using theall
level as feature set.

Further 23 event adjectives were incorrectly clas-
sified as BE by theall level, but correctly classi-
fied by themorph level, because they are deverbal
adjectives. These cases involved adjectives derived
from stative verbs, such asabundant(‘abundant’) or
preferible (‘preferable’). Feature analysis revealed
that deverbal adjectives derived from stative verbs
are more similar to basic adjectives than those de-
rived from process-denoting verbs.

To sum up, the default morphological mapping
mentioned in Section 2 works well in most cases
but has a clear ceiling, as it cannot account for de-
viations from the expected mapping. Distributional
cues are more sensitive to these deviations, but fail
mostly in the distinction between basic and event,
because the differences in syntactic distribution be-
tween these classes are not robust.

6 An improved classifier

The error analysis in the previous section has shown
that, although the number of mistakes made with le-
vel morphandall is comparable, the kinds of mis-
takes are qualitatively very different. This suggests
that mixing features for the construction of a sin-
gle Decision Tree, as is done in levelall, is not the
optimal way to combine the strengths of each le-
vel of description. An alternative combination can
be achieved with anensemble classifier, a type of
classifier that has received much attention in the Ma-
chine Learning community in the last decade (Diet-
terich, 2002). When building an ensemble classifier,
several class proposals for each item are obtained,
and one of them is chosen on the basis of majority
voting, weighted voting, or more sophisticated deci-
sion methods. It has been shown that in most cases,
the accuracy of the ensemble classifier is higher than
the best individual classifier (Freund and Schapire,
1996; Dietterich, 2000; Breiman, 2001). Within
NLP, ensemble classifiers have been applied, for in-
stance, to genus term disambiguation in machine-
readable dictionaries (Rigau et al., 1997), using a
majority voting scheme upon several heuristics, and
to part of speech tagging, by combining the class
predictions of different algorithms (van Halteren et
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Levels Full Ac. Part. Ac.
morph+func+uni+bi+sem+all 84.0±0.06 95.7±0.02

func+uni+bi+sem 81.5±0.04 95.9±0.01

morph+func+sem+all 72.4±0.03 89.3±0.02

bl 51.0±0.0 65.2±0.0

all 62.3±2.3 90.7±1.6

Table 7: Results for ensemble classifier.

al., 1998). The main reason for the general success
of ensemble classifiers is that they gloss over the bi-
ases introduced by the individual systems.

We implemented an ensemble classifier by using
the different levels of description as different subsets
of features, and applying majority voting across the
class proposals from each level. Intuitively, this ar-
chitecture is analogous to having a team of linguists
and NLP engineers, each contributing their knowl-
edge on morphology,n-gram distribution, syntactic
properties, etc., and have them reach a consensus
classification. We thus established a different classi-
fication for each of the 10 cross-validation runs by
assigning each adjective to the class that received
most votes. To enable a majority vote, at least three
levels have to be combined. Table 7 contains a rep-
resentative selection of the combinations, together
with their accuracies. Also, the accuracies obtained
with the baseline (bl) and the best single level (all)
are included for comparison.

In any of the combinations tested, accuracy im-
proved over 10% with respect to theall level. The
best result, a mean of 84% (full accuracy), was ob-
tained by combining all levels of description. These
results represent a raw improvement over the base-
line of 33%, and 21.7% over the best single classi-
fier. Also note that with this procedure 95.7% of the
classifications obtained with the ensemble classifier
present partial overlap with the class assignments in
the Gold Standard.

These results show that the combination of differ-
ent sources of linguistic evidence is more important
than the type of information used. As an example,
consider the second ensemble classifier in Table 7:
this classifier excludes the two levels that contain
morphological information (morphandall), which
represents the most successful individual source of
information for our dataset. Nevertheless, the com-
bination achieved 19.2/20.9% more accuracy than

levelsall andmorph, respectively.

7 Related work

Adjectives have received less attention than verbs
and nouns within Lexical Acquisition. Work by
Hatzivassiloglou and colleagues (Hatzivassiloglou
and McKeown, 1993; Hatzivassiloglou and McKe-
own, 1997; Hatzivassiloglou and Wiebe, 2000) used
clustering methods to automatically identify adjecti-
val scales from corpora.

Coordination information was used in Bohnet et
al. (2002) for a classification task similar to the task
we pursue, using a bootstrapping approach. The
authors, however, pursued a classification that is
not purely semantic, between quantitative adjectives
(similar to determiners, likeviele ‘many’), referen-
tial adjectives (heutige, ‘of today’), qualitative ad-
jectives (equivalent to basic adjectives), classifica-
tory adjectives (equivalent to object adjectives), and
adjectives of origin (Stuttgarter, ‘from Stuttgart’).

In a recent paper, Yallop et al. (2005) reported
experiments on the acquisition of syntactic subcat-
egorisation patterns for English adjectives.

Apart from the above research with a classifica-
tory flavour, other lines of research exploited lexi-
cal relations among adjectives for Word Sense Dis-
ambiguation (Justeson and Katz, 1995; Chao and
Dyer, 2000). Work by Lapata (2001), contrary to
the studies mentioned so far, focused on the mean-
ing of adjective-noun combinations, not on that of
adjectives alone.

8 Conclusion

This paper has presented an architecture for the se-
mantic classification of Catalan adjectives that ex-
plicitly includes polysemous classes. The focus of
the architecture was on two issues:(i) finding an ap-
propriate set of linguistic features,and(ii) defining
an adequate architecture for the task.The investiga-
tion and comparison of features at various linguis-
tic levels has shown that morphology plays a major
role for the target classification, despite the caveats
raised in the discussion. Morphological features re-
lated to derivational processes are among the sim-
plest types of features to extract, so that the approach
can be straightforwardly extended to languages sim-
ilar to Catalan with no extensive need of resources.
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Furthermore, we have argued that polysemy ac-
quisition naturally suits multi-label classification ar-
chitectures. We have implemented a standard archi-
tecture for this class of problems, and demonstrated
its applicability and success. The general nature of
the architecture should be useful for related tasks
that involve polysemy within the area of automatic
lexical acquisition.

Our work has focused on a broad classification
of the adjectives, similarly to Merlo and Stevenson
(2001), who classified transitive English verbs into
three semantic classes. The small number of classes
might be considered as an over-simplification of ad-
jective semantics, but the simplified setup facilitates
a detailed qualitative evaluation. In addition, as
there has been virtually no work on the acquisition
of semantic classes for adjectives, it seems sensible
to start with a small number of classes and incre-
mentally build upon that. Previous work has demon-
strated that multi-label classification is applicable
also to a large number of classes as used in, e.g., doc-
ument categorisation (Schapire and Singer, 2000).
This potential can be exploited in future work, ad-
dressing a finer-grained adjective classification.

Finally, we have demonstrated that the combina-
tion of different types of linguistic evidence boosts
the performance of the system beyond the best single
type of information: ensemble classifiers are a more
adequate way to combine the linguistic levels of de-
scription than simply merging all features for tree
construction. Using a simple, majority voting en-
semble classifier, the accuracy jumped from 62.5%
(best single classifier) to 84%. This result is im-
pressive by itself, and also in comparison to similar
work such as (Rigau et al., 1997), who achieved a
9% improvement on a similar task. Our insights are
therefore useful in related work which involves the
selection of linguistic features in Machine Learning
experiments.

Future work involves three main lines of re-
search. First, the refinement of the classification
itself, based on the results of the experiments pre-
sented. Second, the use of additional linguistic ev-
idence that contributes to the semantic class dis-
tinctions (e.g., selectional restrictions). Third, the
application of the acquired information to broader
NLP tasks. For example, given that each semantic
class exhibits a particular syntactic behaviour, infor-

mation on the semantic class should improve POS-
tagging for adjective-noun and adjective-participle
ambiguities, probably the most difficult distinctions
both for humans and computers (Marcus et al., 1993;
Brants, 2000). Also, semantic classes might be use-
ful in terminology extraction, where, presumably,
object adjectives participate in terms more often than
basic adjectives.4
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Abstract 

Traditional research on spelling correction 

in natural language processing and infor-

mation retrieval literature mostly relies on 

pre-defined lexicons to detect spelling er-

rors. But this method does not work well 

for web query spelling correction, because 

there is no lexicon that can cover the vast 

amount of terms occurring across the web. 

Recent work showed that using search 

query logs helps to solve this problem to 

some extent. However, such approaches 

cannot deal with rarely-used query terms 

well due to the data sparseness problem. In 

this paper, a novel method is proposed for 

use of web search results to improve the 

existing query spelling correction models 

solely based on query logs by leveraging 

the rich information on the web related to 

the query and its top-ranked candidate. Ex-

periments are performed based on real-

world queries randomly sampled from 

search engine’s daily logs, and the results 

show that our new method can achieve 

16.9% relative F-measure improvement 

and 35.4% overall error rate reduction in 

comparison with the baseline method. 

1 Introduction 

Nowadays more and more people are using Inter-

net search engine to locate information on the web. 

Search engines take text queries that users type as 

input, and present users with information of ranked 

web pages related to users’ queries. During this 

process, one of the important factors that lead to 

poor search results is misspelled query terms. Ac-

tually misspelled queries are rather commonly ob-

served in query logs, as shown in previous investi-

gations into the search engine’s log data that 

around 10%~15% queries were misspelled (Cucer-

zan and Brill, 2004).  

Sometimes misspellings are due to simple typo-

graphic errors such as teh for the. In many cases 

the spelling errors are more complicated cognitive 

errors such as camoflauge for camouflage. As a 

matter of fact, correct spelling is not always an 

easy task – even many Americans cannot exactly 

spell out California governor’s last name: Schwar-

zenegger. A spelling correction tool can help im-

prove users’ efficiency in the first case, but it is 

more useful in the latter since the users cannot fig-

ure out the correct spelling by themselves. 

There has been a long history of general-purpose 

spelling correction research in natural language 

processing and information retrieval literature 

(Kukich, 1992), but its application to web search 
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query is still a new challenge. Although there are 

some similarities in correction candidate genera-

tion and selection, these two settings are quite dif-

ferent in one fundamental problem: How to deter-

mine the validity of a search term. Traditionally, 

the measure is mostly based on a pre-defined spel-

ling lexicon – all character strings that cannot be 

found in the lexicon are judged to be invalid. How-

ever, in the web search context, there is little hope 

that we can construct such a lexicon with ideal 

coverage of web search terms. For example, even 

manually collecting a full list of car names and 

company names will be a formidable task. 

To obtain more accurate understanding of this 

problem, we performed a detailed investigation 

over one week’s MSN daily query logs, among 

which found that 16.5% of search terms are out of 

the scope of our spelling lexicon containing around 

200,000 entries. In order to get more specific num-

bers, we also manually labeled a query data set that 

contains 2,323 randomly sampled queries and 

6,318 terms. In this data set, the ratio of out-of-

vocabulary (OOV) terms is 17.4%, which is very 

similar to the overall distribution. However, only 

25.3% of these OOV terms are identified to be 

misspelled, which occupy 85% of the overall spel-

ling errors. All these statistics indicate that accu-

rate OOV term classification is of crucial impor-

tance to good query spelling correction perfor-

mance. 

Cucerzan and Brill (2004) first investigated this 

issue and proposed to use query logs to infer cor-

rect spellings of misspelled terms. Their principle 

can be summarized as follows: given an input 

query string q, finding a more probable query c 

than q within a confusion set of q, in which the edit 

distance between each element and q is less than a 

given threshold. They reported good recall for 

misspelled terms, but without detailed discussions 

on accurate classification of valid out-of-

vocabulary terms and misspellings. In Li’s work, 

distributional similarity metrics estimated from 

query logs were proposed to be used to discrimi-

nate high-frequent spelling errors such as massen-

ger from valid out-of-vocabulary terms such as 

biocycle. But this method suffers from the data 

sparseness problem: sufficient amounts of occur-

rences of every possible misspelling and valid 

terms are required to make good estimation of dis-

tributional similarity metrics; thus this method 

does not work well for rarely-used out-of-

vocabulary search terms and uncommon misspel-

lings. 

In this paper we propose to use web search re-

sults to further improve the performance of query 

spelling correction models. The key contribution of 

our work is to identify that the dynamic online 

search results can serve as additional evidence to 

determine users’ intended spelling of a given term. 

The information in web search results we used in-

cludes the number of pages matched for the query, 

the term distribution in the web page snippets and 

URLs. We studied two schemes to make use of the 

returning results of a web search engine. The first 

one only exploits indicators of the input query’s 

returning results, while the other also looks at other 

potential correction candidate’s search results. We 

performed extensive evaluations on a query set 

randomly sampled from search engines’ daily 

query logs, and experimental results show that we 

can achieve 35.4% overall error rate reduction and 

18.2% relative F-measure improvement on OOV 

misspelled terms. 

The rest of the paper is structured as follows. 

Section 2 details other related work of spelling cor-

rection research. In section 3, we show the intuitive 

motivations to use web search results for the query 

spelling correction. After presenting the formal 

statement of the query spelling correction problem 

in Section 4, we describe our approaches that use 

machine learning methods to integrate statistical 

features from web search results in Section 5. We 

present our evaluation methods for the proposed 

methods and analyze their performance in Section 

6. Section 7 concludes the paper. 

2 Related Work 

Spelling correction models in most previous work 

were constructed based on conventional task set-

tings. Based on the focus of these task settings, two 

lines of research have been applied to deal with 

non-word errors and real-word errors respectively.  

Non-word error spelling correction is focused on 

the task of generating and ranking a list of possible 

spelling corrections for each word not existing in a 

spelling lexicon. Traditionally candidate ranking is 

based on manually tuned scores such as assigning 

alternative weights to different edit operations or 

leveraging candidate frequencies (Damerau, 1964; 

Levenshtein, 1966). In recent years, statistical 

models have been widely used for the tasks of nat-
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ural language processing, including spelling cor-

rection task. (Brill and Moore, 2000) presented an 

improved error model over the one proposed by 

(Kernighan et al., 1990) by allowing generic 

string-to-string edit operations, which helps with 

modeling major cognitive errors such as the confu-

sion between le and al. Via explicit modeling of 

phonetic information of English words, (Toutanova 

and Moore, 2002) further investigated this issue. 

Both of them require misspelled/correct word pairs 

for training, and the latter also needs a pronuncia-

tion lexicon, but recently (Ahmad and Kondrak, 

2005) demonstrated that it is also possible to learn 

such models automatically from query logs with 

the EM algorithm, which is similar to work of 

(Martin, 2004), learning from a very large corpus 

of raw text for removing non-word spelling errors 

in large corpus. All the work for non-word spelling 

correction focused on the current word itself with-

out taking into account contextual information.  

Real-word spelling correction is also referred to 

be context sensitive spelling correction (CSSC), 

which tries to detect incorrect usage of valid words 

in certain contexts. Using a pre-defined confusion 

set is a common strategy for this task, such as in 

the work of (Golding and Roth, 1996) and (Mangu 

and Brill, 1997). Opposite to non-word spelling 

correction, in this direction only contextual evi-

dences were taken into account for modeling by 

assuming all spelling similarities are equal. 

The complexity of query spelling correction task 

requires the combination of these types of evidence, 

as done in (Cucerzan and Brill, 2004; Li et al., 

2006). One important contribution of our work is 

that we use web search results as extended contex-

tual information beyond query strings by taking 

advantage of application specific knowledge.  Al-

though the information used in our methods can all 

be accessed in a search engine’s web archive, such 

a strategy involves web-scale data processing 

which is a big engineering challenge, while our 

method is a light-weight solution to this issue. 

3 Motivation 

When a spelling correction model tries to make a 

decision whether to make a suggestion c to a query 

q, it generally needs to leverage two types of evi-

dence: the similarity between c and q, and the va-

lidity plausibility of c and q. All the previous work 

estimated plausibility of a query based on the 

query string itself – typically it is represented as 

the string probability, which is further decomposed 

into production of consecutive n-gram probabilities. 

For example, both the work of (Cucerzan and Brill, 

2004; Li et al., 2006) used n-gram statistical lan-

guage models trained from search engine’s query 

logs to estimate the query string probability.  

In the following, we will show that the search 

results for a query can serve as a feedback mechan-

ism to provide additional evidences to make better 

spelling correction decisions. The usefulness of 

web search results can be two-fold: 

First, search results can be used to validate 

query terms, especially those not popular enough 

in query logs. One case is the validation for navi-

gational queries (Broder, 2004). Navigational que-

ries usually contain terms that are key parts of des-

tination URLs, which may be out-of-vocabulary 

terms since there are millions of sites on the web. 

Because some of these navigational terms are very 

relatively rare in query logs, without knowledge of 

the special navigational property of a term, a query 

spelling correction model might confuse them with 

other low-frequency misspellings. But such infor-

mation can be effectively obtained from the URLs 

of retrieved web pages. Inferring navigational que-

ries through term-URL matching thus can help re-

duce the chance that the spelling correction model 

changes an uncommon web site name into popular 

search term, such as from innovet to innovate. 

Another example is that search results can be used 

in identifying acronyms or other abbreviations. We 

can observe some clear text patterns that relate ab-

breviations to their full spellings in the search re-

sults as shown in Figure 1. But such mappings 

cannot easily be obtained from query logs. 

 
Figure 1. Sample search results for SARS 

Second, search results can help verify correction 

candidates. The terms appearing in search results, 

both in the web page titles and snippets, provide 

additional evidences for users intention. For exam-

ple, if a user searches for a misspelled query vac-

cum cleaner on a search engine, it is very likely 

that he will obtain some search results containing 

the correct term vacuum as shown in Figure 2. This 
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can be attributed to the collective link text distribu-

tion on the web – many links with misspelled text 

point to sites with correct spellings. Such evi-

dences can boost the confidence of a spelling cor-

rection model to suggest vacuum as a correction.  

 
Figure 2. Sample search results  

for vaccum cleaner 

The number of matched pages can be used to 

measure the popularity of a query on the web, 

which is similar to term frequencies occurring in 

query logs, but with broader coverage. Poor cor-

rection candidates can usually be verified by a 

smaller number of matched web pages. 

 Another observation is that the documents re-

trieved with correctly-spelled query and misspelled 

ones are similar to some extent in the view of term 

distribution. Both the web retrieval results of va-

cuum and vaccum contain terms such as cleaner, 

pump, bag or systems. We can take this similarity 

as an evidence to verify the spelling correction re-

sults. 

4 Problem Statement 

Given a query q, a spelling correction model is to 

find a query string c that maximizes the posterior 

probability of c given q within the confusion set of 

q. Formally we can write this as follows: 

𝑐∗ = 𝐚𝐫𝐠𝐦𝐚𝐱 
𝑐∈𝐶

𝑃𝑟(𝑐|𝑞) (1)  

where C is the confusion set of q. Each query 

string c in the confusion set is a correction candi-

date for q, which satisfies the constraint that the 

spelling similarity between c and q is within given 

threshold 𝛿. 

In this formulation, the error detection and cor-

rection are performed in a unified way. The query 

q itself always belongs to its confusion set C, and 

when the spelling correction model identifies a 

more probable query string c in C which is differ-

ent from q, it claims a spelling error detected and 

makes a correction suggestion c. 

There are two tasks in this framework. One is 

how to learn a statistical model to estimate the 

conditional probability 𝑃𝑟 𝑐 𝑞 , and the other is 

how to generate confusion set C of a given query q  

4.1 Maximum Entropy Model for Query 

Spelling Correction 

We take a feature-based approach to model the 

posterior probability 𝑃𝑟 𝑐 𝑞 . Specifically we use 

the maximum entropy model (Berger et al., 1996) 

for this task: 

𝑃𝑟 𝑐 𝑞 =
exp  𝜆𝑖𝑓𝑖 𝑐, 𝑞 𝑁

𝑖=1  

 exp( 𝜆𝑖𝑓𝑖(𝑐, 𝑞)𝑁
𝑖=1 )𝑐

 (2)  

where  exp( 𝜆𝑖𝑓𝑖(𝑐, 𝑞)𝑁
𝑖=1 )𝑐  is the normalization 

factor; 𝑓𝑖 𝑐, 𝑞  is a feature function defined over 

query q and correction candidate c , while 𝜆𝑖  is the 

corresponding feature weight. 𝜆𝑠 can be optimized 

using the numerical optimization algorithms such 

as the Generalized Iterative Scaling (GIS) algo-

rithm (Darroch and Ratcliff, 1972) by maximizing 

the posterior probability of the training set which 

contains a manually labeled set of query-truth pairs: 

𝜆∗ = argmax  𝑐,𝑞 log 𝑃𝑟𝜆(𝑐|𝑞) (3)  

The advantage of maximum entropy model is 

that it provides a natural way and unified frame-

work to integrate all available information sources. 

This property is well fit for our task in which we 

are using a wide variety of evidences based on lex-

icon, query log and web search results. 

4.2 Correction Candidate Generation 

Correction candidate generation for a query q can 

be decomposed into two phases. In the first phase, 

correction candidates are generated for each term 

in the query from a term-base extracted from query 

logs. This task can leverage conventional spelling 

correction methods such as generating candidates 

based on edit distance (Cucerzan and Brill, 2004) 

or phonetic similarity (Philips, 1990). Then the 

correction candidates of the entire query are gener-

ated by composing the correction candidates of 

each individual term. Let  𝑞 = 𝑤1 ⋯𝑤𝑛 , and the 

confusion set of 𝑤𝑖  is  𝐶𝑤 𝑖
, then the confusion set 

of q is 𝐶𝑤1
⨂𝐶𝑤2

⨂⋯⨂𝐶𝑤𝑛
1. For example, for a 

query  𝑞 = 𝑤1𝑤2 , 𝑤1  has candidates 𝑐11  and 𝑐12 , 

while 𝑤2 has candidates 𝑐21and 𝑐22, then the con-

fusion set C is {𝑐11𝑐21 , 𝑐11𝑐22 , 𝑐12𝑐21 , 𝑐12𝑐22}. 

                                                 
1 For denotation simplicity, we do not cover compound and 

composition errors here. 
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The problem of this method is the size of confu-

sion set C may be huge for multi-term queries. In 

practice, one term may have hundreds of possible 

candidates, then a query containing several terms 

may have millions. This might lead to impractical 

search and training using the maximum entropy 

modeling method. Our solution to this problem is 

to use candidate pruning. We first roughly rank the 

candidates based on the statistical n-gram language 

model estimated from query logs. Then we only 

choose a subset of C that contains a specified 

number of top-ranked (most probable) candidates 

to present to the maximum entropy model for of-

fline training and online re-ranking, and the num-

ber of candidates is used as a parameter to balance 

top-line performance and run-time efficiency. This 

subset can be efficiently generated as shown in (Li 

et al., 2006). 

5 Web Search Results based Query Spel-

ling Correction 

In this section we will describe in detail the me-

thods for use of web search results in the query 

spelling correction task. In our work we studied 

two schemes. The first one only employs indicators 

of the input query’s search results, while the other 

also looks at the most probable correction candi-

dates’ search results. For each scheme, we extract 

additional scheme-specific features from the avail-

able search results, combine them with baseline 

features and construct a new maximal model to 

perform candidate ranking. 

5.1 Baseline model 

We denote the maximum entropy model based on 

baseline model feature set as M0 and the feature 

set S0 derived from the latest state of the art works 

of (Li et al., 2006), where S0 includes the features 

mostly concerning the statistics of the query terms 

and the similarities between query terms and their 

correction candidates. 

5.2 Scheme 1: Using search results for input 

query only 

In this scheme we build more features for each cor-

rection candidate (including input query q itself) 

by distilling more evidence from the search results 

of the query. S1 denotes the augmented feature set, 

and M1 denotes the maximum entropy model 

based on S1. The features are listed as follows: 

1. Number of pages returned: the number of 

web search pages retrieved by a web search 

engine, which is used to estimate the popu-

larity of query. This feature is only for q. 

2. URL string: Binary features indicating 

whether the combination of terms of each 

candidate is in the URLs of top retrieved 

documents. This feature is for all candidates. 

3. Frequency of correction candidate term: 

the number of occurrences of modified 

terms in the correction candidate found in 

the title and snippet of top retrieved docu-

ments based on the observation that correc-

tion terms possibly co-occur with their 

misspelled ones. This feature is invalid for q. 

4. Frequency of query term: the number of 

occurrences of each term of q found in the 

title or snippet of the top retrieved docu-

ments, based on the observation that the cor-

rect terms always appear frequently in their 

search results.  

5. Abbreviation pattern: Binary features indi-

cating whether inputted query terms might 

be abbreviations according to text patterns in 

search results. 

5.3 Scheme 2: Using both search results of 

input query and top-ranked candidate 

In this scheme we extend the use of search results 

both for query q and for top-ranked candidate c 

other than q determined by M1. First we submit a 

query to a search engine for the initial retrieval to 

obtain one set of search results 𝑅𝑞 , then use M1 to 

find the best correction candidate c other than q. 

Next we perform a second retrieval with c to ob-

tain another set of search results 𝑅𝑐 . Finally addi-

tional features are generated for each candidate 

based on 𝑅𝑐 , then a new maximum entropy model 

M2 is built to re-rank the candidates for a second 

time. The entire process can be schematically 

shown in Figure 3. 

 

Figure 3.  Relations of models and features 

Lexicon / query  
Logs Spelling  
Similarity 

𝑞 → 𝑅𝑞  

𝑐 → 𝑅𝑐  

S0 features 

S1 specific 

features 

 
S2 specific 

features 

 

Model M1 

 

Model M2 

 

Model M0 
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where 𝑅𝑞  is the web search results of query q; 𝑅𝑐  is 

the web search results of c which is the top-ranked 

correction of q suggested by model M1. 

   The new feature set denoted with S2 is a set of 

document similarities between 𝑅𝑞  and 𝑅𝑐 , which 

includes different similarity estimations between 

the query and its correction at the document level 

using merely cosine measure based on term fre-

quency vectors of 𝑅𝑞  and 𝑅𝑐 . 

6 Experiments 

6.1 Evaluation Metrics 

In our work, we consider the following four types 

of evaluation metrics: 

 Accuracy: The number of correct outputs 

proposed by the spelling correction model di-

vided by the total number of queries in the test 

set 

 Recall: The number of correct suggestions for 

misspelled queries by the spelling correction 

model divided by the total number of miss-

pelled queries in the test set 

 Precision: The number of correct suggestions 

for misspelled queries proposed by the spel-

ling correction model divided by the total 

number of suggestions made by the system 

 F-measure: Formula 𝐹 = 2𝑃𝑅/(𝑃 + 𝑅) used 

for calculating the f-measure, which is essen-

tially the harmonic mean of recall and preci-

sion 

Any individual metric above might not be suffi-

cient to indicate the overall performance of a query 

spelling correction model. For example, as in most 

retrieval tasks, we can trade recall for precision or 

vice versa. Although intuitively F might be in ac-

cordance with accuracy, there is no strict theoreti-

cal relation between these two numbers – there are 

conditions under which accuracy improves while 

F-measure may drop or be unchanged. 

6.2 Experimental Setup 

We used a manually constructed data set as gold 

standard for evaluation. First we randomly sam-

pled 7,000 queries from search engine’s daily 

query logs of different time periods, and had them 

manually labeled by two annotators independently. 

Each query is attached to a truth, which is either 

the query itself for valid queries, or a spelling cor-

rection for misspelled ones. From the annotation 

results that both annotators agreed with each other, 

we extracted 2,323 query-truth pairs as training set 

and 991 as test set. Table 1 shows the statistics of 

the data sets, in which Eq denotes the error rate of 

query and Et denotes the error rate of term. 
 

 # queries # terms qE  
tE  

Training set 2,323 6,318 15.0% 5.6% 

Test set 991 2,589 12.8% 5.2% 

Table 1. Statistics of training set and test set 

In the following experiments, at most 50 correc-

tion candidates were used in the maximum entropy 

model for each query if there is no special explana-

tion. The web search results were fetched from 

MSN’s search engine. By default, top 100 re-

trieved items from the web retrieval results were 

used to perform feature extraction. A set of query 

log data spanning 9 months are used for collecting 

statistics required by the baseline. 

6.3 Overall Results 

Following the method as described in previous sec-

tions, we first ran a group of experiments to eva-

luate the performance of each model we discussed 

with default settings. The detailed results are 

shown in Table 2. 
 

Model Accuracy Recall Precision F 

M0 91.8% 60.6% 62.6% 0.616 

M1 93.9% 64.6% 77.4% 0.704 

M2 94.7% 66.9% 78.0% 0.720 

Table 2. Overall Results 

From the table we can observe significant per-

formance boosts on all evaluation metrics of M1 

and M2 over M0.  

We can achieve 25.6% error rate reduction and 

23.6% improvement in precision, as well as 6.6% 

relative improvement in recall, when adding S1 to 

M1. Paired t-test gives p-value of 0.002, which is 

significant to 0.01 level. 

M2 can bring additional 13.1% error rate reduc-

tion and moderate improvement in precision, as 

well as 3.6% improvement in recall over M1, with 

paired t-test showing that the improvement is sig-

nificant to 0.01 level.  
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6.4 Impact of Candidate number 

Theoretically the number of correction candidates 

in the confusion set determines the accuracy and 

recall upper bounds for all models concerned in 

this paper. Performance might be hurt if we use a 

too small candidate number, which is because the 

corrections are separated from the confusion sets. 

These curves shown in Figure 4 and 5, include 

both theoretical bound (oracle) and actual perfor-

mance of our described models. From the chart we 

can see that our models perform best when 𝑁𝑡  is 

around 50, and when 𝑁𝑡 > 15 the oracle recall and 

accuracy almost stay unchanged, thus the actual 

models’ performance only benefits a little from 

larger 𝑁𝑡  values. The missing part of recall is 

largely due to the fact that we are not able to gen-

erate truth candidates for some weird query terms 

rather than insufficient size of confusion set. 
 

 

Figure 4. Recall versus candidate number 

 

Figure 5. Accuracy versus candidate number 

6.5 Discussions 

We also studied the performance difference be-

tween in-vocabulary (IV) and out-of-vocabulary 

(OOV) terms when using different spelling correc-

tion models. The detailed results are shown in Ta-

ble 3 and Table 4. 
 

 Accuracy Precision  Recall F 

M0 88.2% 77.1% 67.3% 0.718 

M1 92.4% 88.5% 77.3% 0.825 

M2 93.2% 91.6% 79.1% 0.849 

Table 3. OOV Term Results 

 Accuracy Precision  Recall F 

M0 98.8% 44.0% 45.8% 0.449 

M1 99.0% 62.5% 20.8% 0.313 

M2 99.1% 75.0% 37.5% 0.500 

Table 4. IV Term Results 

The results show that M1 is very powerful to 

identify and correct OOV spelling errors compared 

with M0. Actually M1 is able to correct spelling 

errors such as guiness, whose frequency in query 

log is even higher than its truth spelling guinness. 

Since most spelling errors are OOV terms, this ex-

plains why the model M1 can significantly outper-

form the baseline. But for IV terms things are dif-

ferent. Although the overall accuracy is better, the 

F-measure of M1 is far lower than M0. M2 per-

forms best for the IV task in terms of both accura-

cy and F-measure. However, IV spelling errors is 

so small a portion of the total misspelling (only 

17.4% of total spelling errors in our test set) that 

the room for improvement is very small. This helps 

to explain why the performance gap between M1 

and M0 is much larger than the one between M2 

and M1, and shows the tendency that M1 prefer to 

identify and correct OOV misspellings in compari-

son to IV ones, which causes F-measure drop from 

M0 to M1; while by introducing more useful evi-

dence, M2 outperforms better for both OOV and 

IV terms over M0 and M1. 

Another set of statistics we collected from the 

experiments is the performance data of low-

frequency terms when using the models proposed 

in this paper, since we believe that our approach 

would help make better classification of low-

frequency search terms. As a case study, we identi-

fied in the test set all terms whose frequencies in 

our query logs are less than 800, and for these 

terms we calculated the error reduction rate of 

model M1 over the baseline model M0 at each in-
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terval of 50. The detailed results are shown in Fig-

ure 6. The clear trend can be observed that M1 can 

achieve larger error rate reduction over baseline for 

terms with lower frequencies. This is because the 

performance of baseline model drops for these 

terms when there are no reliable distributional si-

milarity estimations available due to data sparse-

ness in query logs, while M1 can use web data to 

alleviate this problem.  

 

Figure 6. Error rate reduction of M1 over baseline 

for terms in different frequency ranges 

7 Conclusions and Future Work 

The task of query spelling correction is very differ-

ent from conventional spelling checkers, and poses 

special research challenges. In this paper, we pre-

sented a novel method for use of web search re-

sults to improve existing query spelling correction 

models.  

We explored two schemes for taking advantage 

of the information extracted from web search re-

sults. Experimental results show that our proposed 

methods can achieve statistically significant im-

provements over the baseline model which only 

relies on evidences of lexicon, spelling similarity 

and statistics estimated from query logs. 

There is still further potential useful information 

that should be studied in this direction. For exam-

ple, we can work on page ranking information of 

returning pages, because trusted or well-known 

sites with high page rank generally contain few 

wrong spellings. In addition, the term co-

occurrence statistics on the returned snippet text 

are also worth deep investigation. 
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Abstract 

The increasing use of large open-domain 
document sources is exacerbating the 
problem of ambiguity in named entities.  
This paper explores the use of a range of 
syntactic and semantic features in unsu-
pervised clustering of documents that re-
sult from ad hoc queries containing names. 
From these experiments, we find that the 
use of robust syntactic and semantic fea-
tures can significantly improve the state of 
the art for disambiguation performance for 
personal names for both Chinese and Eng-
lish. 

1 Introduction 

An ever-increasing number of question answering, 
summarization and information extraction systems 
are coming to rely on heterogeneous sets of 
documents returned by open-domain search en-
gines from collections over which application 
developers have no control. A frequent special 
case of these applications involves queries 
containing named entities of various sorts and 
receives as a result a large set of possibly relevant 
documents upon which further deeper processing 
is focused. Not surprisingly, many, if not most, of 
the returned documents will be irrelevant to the 
goals of the application because of the massive 
ambiguity associated with the query names of 
people, places and organizations in large open 
collections. Without some means of separating 
documents that contain mentions of distinct 
entities, most of these applications will produce 
incorrect results. The work presented here, there-
fore, addresses the problem of automatically 

problem of automatically separating sets of news 
documents generated by queries containing per-
sonal names into coherent partitions. 

The approach we present here combines unsu-
pervised clustering methods with robust syntactic 
and semantic processing to automatically cluster 
returned news documents (and thereby entities) 
into homogeneous sets. This work follows on the 
work of Bagga & Baldwin (1998), Mann & 
Yarowsky (2003), Niu et al. (2004), Li et al. 
(2004), Pedersen et al. (2005), and Malin (2005). 
The results described here advance this work 
through the use of syntactic and semantic features 
that can be robustly extracted from the kind of 
arbitrary news texts typically returned from open-
domain sources.  

The specific contributions reported here fall 
into two general areas related to robustness. In the 
first, we explore the use of features extracted from 
syntactic and semantic processing at a level that is 
robust to changes in genre and language. In par-
ticular, we seek to go beyond the kind of bag of 
local words features employed in earlier systems 
(Bagga & Baldwin, 1998; Gooi & Allan, 2004; 
Pedersen et al., 2005) that did not attempt to ex-
ploit deep semantic features that are difficult to 
extract, and to go beyond the kind of biographical 
information (Mann & Yarowsky, 2003) that is 
unlikely to occur with great frequency (such as 
place of birth, or family relationships) in many of 
the documents returned by typical search engines. 
The second contribution involves the application 
of these techniques to both English and Chinese 
news collections. As we’ll see, the methods are 
effective with both, but error analyses reveal in-
teresting differences between the two languages. 
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The paper is organized as follows. Section 2 
addresses related work and compares our work 
with that of others. Section 3 introduces our new 
phrase-based features along two dimensions: from 
syntax to semantics; and from local sentential con-
texts to document-level contexts. Section 4 first 
describes our datasets and then analyzes the per-
formances of our system for both English and 
Chinese. Finally, we draw some conclusions. 

2 Previous work 

Personal name disambiguation is a difficult prob-
lem that has received less attention than those top-
ics that can be addressed via supervised learning 
systems. Most previous work (Bagga & Baldwin, 
1998; Mann & Yarowsky, 2003; Li et al., 2004; 
Gooi & Allan, 2004;  Malin, 2005; Pedersen et al., 
2005; Byung-Won On and Dongwon Lee, 2007) 
employed unsupervised methods because no large 
annotated corpus is available and because of the 
variety of the data distributions for different am-
biguous personal names. 

Since it is common for a single document to 
contain one or more mentions of the ambiguous 
personal name of interest, there is a need to define 
the object to be disambiguated (the ambiguous 
object). In Bagga & Baldwin (1998), Mann & 
Yarowsky (2003) and Gooi & Allan (2004), an 
ambiguous object refers to a single entity with the 
ambiguous personal name in a given document. 
The underlying assumption for this definition is 
“one person per document” (all mentions of the 
ambiguous personal name in one document refer 
to the same personal entity in reality). In Niu et al. 
(2004) and Pedersen et al. (2005), an ambiguous 
object is defined as a mention of the ambiguous 
personal name in a corpus.  

The first definition of the ambiguous object 
(document-level object) can include much infor-
mation derived from that document, so that it can 
be represented by rich features. The later defini-
tion of the ambiguous object (mention-level object) 
can simplify the detection of the ambiguous object, 
but because of the limited coverage, it usually can 
use only local context (the text around the men-
tion of the ambiguous personal name) and might 
miss some document-level information. The kind 
of name disambiguation based on mention-level 
objects really solves “within-document name am-
biguity” and “cross-document name ambiguity” 

simultaneously, and often has a higher perform-
ance than the kind based on document-level ob-
jects because two mentions of the ambiguous per-
sonal name in a document are very likely to refer 
to the same personal entity. From our news corpus, 
we also found that mentions of the ambiguous 
personal name of interest in a news article rarely 
refer to multiple entities, so our system will focus 
on the name disambiguation for document-level 
objects. 

In general, there are two types of information 
usually used in name disambiguation (Malin, 
2005): personal information and relational infor-
mation (explicit and implicit). Personal informa-
tion gives biographical information about the am-
biguous object, and relational information speci-
fies explicit or implicit relations between the am-
biguous object and other entities, such as a mem-
bership relation between “John Smith” and “Labor 
Party.” Usually, explicit relational information can 
be extracted from local context, and implicit rela-
tional information is far away from the mentions 
of the ambiguous object. A hard case of name dis-
ambiguation often needs implicit relational infor-
mation that provides a background for the am-
biguous object. For example, if two news articles 
in consideration report an event happening in 
“Labor Party,” this implicit relational information 
between “John Smith” and “Labor Party” can give 
a hint for name disambiguation if no personal or 
explicit relational information is available. 

Bagga & Baldwin (1998), Mann & Yarowsky 
(2003), Gooi & Allan (2004), Niu et al. (2004), 
and Pedersen et al. (2005) explore features in local 
context. Bagga & Baldwin (1998), Gooi & Allan 
(2004), and Pedersen et al. (2005) use local token 
features; Mann & Yarowsky (2003) extract local 
biographical information; Niu et al. (2004) use co-
occurring Named Entity (NE) phrases and NE 
relationships in local context. Most of these local 
contextual features are personal information or 
explicit relational information. 

Li et al. (2004) and Malin (2005) consider 
named-entity disambiguation as a graph problem, 
and try to capture information related to the am-
biguous object beyond local context, even implicit 
relational information. Li et al. (2004) use the EM 
algorithm to learn the global probability distribu-
tion among documents, entities, and representative 
mentions, and Malin (2005) constructs a social 
network graph to learn a similarity matrix.  
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In this paper, we also explore both personal and 
relational information beyond local context. But 
we achieve it with a different approach: extracting 
these types of information by means of syntactic 
and semantic processing. We not only extract lo-
cal NE phrases as in Niu et al. (2004), but also use 
our entity co-reference system to extract accurate 
and representative NE phrases occurring in a 
document which may have a relation to the am-
biguous object. At the same time, syntactic phrase 
information sometimes can overcome the imper-
fection of our NE system and therefore makes our 
disambiguation system more robust. 

3 Overall Methodology 

Our approach follows a common architecture for 
named-entity disambiguation: the detection of 
ambiguous objects, feature extraction and repre-
sentation, similarity matrix learning, and finally 
clustering. 

In our approach, all documents are preproc-
essed with a syntactic phrase chunker (Hacioglu, 
2004) and the EXERT1 system (Hacioglu et al. 
2005; Chen & Hacioglu, 2006), a named-entity 
detection and co-reference resolution system that 
was developed for the ACE2 project. A syntactic 
phrase chunker segments a sentence into a se-
quence of base phrases. A base phrase is a syntac-
tic-level phrase that does not overlap another base 
phrase. Given a document, the EXERT system 
first detects all mentions of entities occurring in 
that document (named-entity detection) and then 
resolves the different mentions of an entity into 
one group that uniquely represents the entity 
(within-document co-reference resolution). The 
ACE 2005 task can detect seven types of named 
entities: person, organization, geo-political entity, 
location, facility, vehicle, and weapon; each type 
of named entity can occur in a document with any 
of three distinct formats: name, nominal construc-
tion, and pronoun. The F score of the syntactic 
phrase chunker, which is trained and tested on the 
Penn TreeBank, is 94.5, and the performances of 
the EXERT system are 82.9 (ACE value for 
named-entity detection) and 68.5 (ACE value for 
within-document co-reference resolution). 

                                                 
1 http://sds.colorado.edu/EXERT 
2 http://projects.ldc.upenn.edu/ace/ 

3.1 The detection of ambiguous objects  

In our approach, we assume that the ambiguous 
personal name has already been determined by the 
application. Moreover, we adopt the policy of 
“one person per document” as in Bagga & 
Baldwin (1998), and define an ambiguous object 
as a set of target entities given by the EXERT 
system. A target entity is an entity that has a 
mention of the ambiguous personal name. Given 
the definition of an ambiguous object, we define a 
local sentence (or local context) as a sentence that 
contains a mention of any target entity. 

3.2 Feature extraction and representation 

Since considerable personal and relational infor-
mation related to the ambiguous object resides in 
the noun phrases in the document, such as the per-
son’s job and the person’s location, we attempt to 
capture this noun phrase information along two 
dimensions: from syntax to semantics, and from 
local contexts to document-level contexts. 

Base noun phrase feature: To keep this feature 
focused, we extract only noun phrases occurring 
in the local sentences and the summarized sen-
tences (the headline + the first sentence of the 
document) of the document. The local sentences 
usually include personal or explicit relational in-
formation about the ambiguous object, and the 
summarized sentences of a news document usu-
ally give a short summary of the whole news story. 
With the syntactic phrase chunker, we develop 
two base noun phrase models: (i) Contextual base 
noun phrases (Contextual bnp), the base noun 
phrases in the local sentences; (ii) Summarized 
base noun phrases (Summarized bnp), the base 
noun phrases in the local sentences and the sum-
marized sentences. A base noun phrase of interest 
serves as an element in the feature vector. 

Named-Entity feature: Given the EXERT sys-
tem, a direct and simple way to extract some se-
mantic information is to use the named entities 
detected in the document. Based on their relation-
ship to the ambiguous personal name, the named 
entities identified in a text can be divided into 
three categories:  

(i) Target entity: an entity that has a mention 
of the ambiguous personal name. Target entities 
often include some personal information about the 
ambiguous object, such as the title, position, and 
so on.  
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(ii) Local entity: an entity other than a target 
entity that has a mention occurring in any local 
sentence. Local entities often include entities that 
are closely related to the ambiguous object, such 
as employer, location and co-workers.  

(iii) Non-local entity: an entity that is not ei-
ther the local entity or the target entity. Non-local 
entities are often implicitly related to the ambigu-
ous object and provide background information 
for the ambiguous object. 

To assess how important these entities are to 
named-entity disambiguation, we create two kinds 
of entity models: (i) Contextual entities: the enti-
ties in the feature vector are target entities and 
local entities; (ii) Document entities: the entities 
in the feature vector include all entities in the 
document including target entities, local entities 
and non-local entities. 

Since a given entity can be represented by 
many mentions in a document, we choose a single 

representative mention to represent each entity. 
The representative mention is selected according 
to the following ordered preference list: longest 
NAME mention, longest NOMINAL mention.  A 
representative mention phrase serves as an ele-
ment in a feature vector. 

Although the mentions of contextual entities of-
ten overlap with contextual base noun phrases, the 
representative mention of a contextual entity often 
goes beyond local sentences, and is usually the 
first or longest mention of that contextual entity. 
Compared to contextual base noun phrases, the 
representative mention of a contextual entity often 
includes more detail and accurate information 
about the entity. On the other hand, the contextual 
base noun phrase feature detects all noun phrases 
occurring in local sentences that are not limited to 
the seven types of named entities discovered by 
the EXERT system. Compared to the contextual 
entity feature, the contextual base noun phrase 

Entity space 

Text space 

Feature Space 

Contextual base noun phrases’  feature vector: < Hope Mills police Capt. John Smith16, 
what16, he16, the statements16, no criminal violation16, what17, the individuals17, no direct 
threat17, Smith17, He and Thomas18, they18, Collins18, his bill18> 
Summarized base noun phrases’  feature vector: < Hope Mills police Capt. John Smith16, 
what16, he16, the statements16, no criminal violation16, what17, the individuals17, no direct 
threat17, Smith17, He and Thomas18, they18, Collins18, his bill18, Collins1, restaurant1, HOPE 
MILLS2, Commissioner Tonzie Collins2, a town restaurant2, an alleged run-in2, two work-
ers2, Feb. 212> 
Contextual entities’  feature vector: < Hope Mills police Capt. John Smith16, Jenny Tho-
mas4, Commissioner Tonzie Collins2, He and Thomas4, the individuals17> 
Document entities’  feature vector: < Hope Mills police Capt. John Smith 16, Jenny Tho-
mas4, Commissioner Tonzie Collins2, He and Thomas4, the individuals17, Andy’s 
Cheesesteaks4, HOPE MILLS 2, two workers2, the Village Shopping Center 4, Hope Mills 
Road 4 > 

Target entity:     < Hope Mills police Capt. John Smith16, he16, Smith17, He18> 
Local entity:       < Thomas18, Jenny Thomas4, manager4>,  

< Collins18, his18, Collins1, Commissioner Tonzie Collins 2>, …… 
Non-local entity: < restaurant1, a town restaurant2, there2, Andy’s Cheesesteaks4>, …… 

(Headline & S1) Collins banned from restaurant 
(S2) HOPE MILLS — Commissioner Tonzie Collins has been banned from a town restau-

rant after an alleged run-in with two workers there Feb. 21. …… 
(S4) “In all fairness, that is not a representation of the town,” said Jenny Thomas, manager 

at Andy’s Cheesesteaks in the Village Shopping Center on Hope Mills Road. …… 
(S16) Hope Mills police Capt. John Smith said based on what he read in the statements, 

no criminal violation was committed.  
(S17) “Based on what the individuals involved said, there was no direct threat,” Smith said. 
(S18) He and Thomas said they don’t think Collins intentionally left without paying his 

bill. …… 
 

Figure 1: A Sample of Feature Extraction 
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feature is more general and can sometimes over-
come errors propagated from the named-entity 
system.  

To make this more concrete, the feature vectors 
for a document containing “John Smith” are high-
lighted in Figure 1. The superscript number for 
each phrase refers to the sentence where the 
phrase is located, and we assume that the syntactic 
phrase chunker and the EXERT system work per-
fectly. 

3.3 Similarity matrix learning 

Given a pair of feature vectors consisting of 
phrase-based features, we need to choose a simi-
larity scheme to calculate the similarity. Because 
of the word-space delimiter in English, the feature 
vector for an English document comprises phrases, 
whereas that for a Chinese document comprises 
tokens. There are a number of similarity schemes 
for learning a similarity matrix from token-based 
feature vectors, but there are few schemes for 
phrase-based feature vectors.  

Cohen et al. (2003) compared various similarity 
schemes for the task of matching English entity 
names and concluded that the hybrid scheme they 
call SoftTFIDF performs best. SoftTFIDF is a to-
ken-based similarity scheme that combines a stan-
dard TF-IDF weighting scheme with the Jaro-
Winkler distance function. Since Chinese feature 
vectors are token-based, we can directly use 
SoftTFIDF to learn the similarity matrix. However, 
English feature vectors are phrase-based, so we 
need to run SoftTFIDF iteratively and call it “two-
level SoftTFIDF.” First, the standard SoftTFIDF 
is used to calculate the similarity between phrases 
in the pair of feature vectors; in the second phase, 
we reformulate the standard SoftTFIDF to calcu-
late the similarity for the pair of feature vectors.  

First, we introduce the standard SoftTFIDF. In 
a pair of feature vectors S and T, S = (s1, … , sn ) 
and T = (t1, … , tm). Here, si (i = 1…n) and tj (j = 
1…m) are substrings (tokens). Let CLOSE(θ; S;T) 
be the set of substrings w∈S such that there is 
some v∈T satisfying dist(w; v) > θ. The Jaro-
Winkler distance function (Winkler, 1999) is 
dist(;). For w∈ CLOSE(θ; S;T), let D(w; T) = 

);(max vwdistTv∈ . Then the standard SoftTFIDF 
is computed as 

)D( )V( )V(
  )( SoftTFIDF

);;(
w, Tw, Tw, S

S,T

TSCLOSEw
××

=

∑ ∈ θ   
)(IDF log  1)  (TF log  )(V' ww,Sw, S ×+=          
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w
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where TFw,S is the frequency of substrings w in S, 
and IDFw is the inverse of the fraction of docu-
ments in the corpus that contain w. In computing 
the similarity for the English phrase-based feature 
vectors, in the second step of “two-level 
SoftTFIDF,” the substring w is a phrase and dist is 
the standard SoftTFIDF.  

So far, we have developed several feature mod-
els and learned the corresponding similarity ma-
trices, but clustering usually needs only one 
unique similarity matrix. Since a feature may have 
different effects for the disambiguation depending 
on the ambiguous personal name in consideration, 
to achieve the best disambiguation ability, each 
personal name may need its own weighting 
scheme to combine the given similarity matrices. 
However, learning that kind of weighting scheme 
is very difficult, so in this paper, we simply com-
bine the similarity matrices, assigning equal 
weight to each one. 

3.4 Clustering 

Although clustering is a well-studied area, a re-
maining research problem is to determine the op-
timal parameter setting during clustering, such as 
the number of clusters or the stop-threshold, a 
problem that is important for real tasks and that is 
not at all trivial. 

Since the focus of this paper is only on feature 
development, we simply employ a clustering 
method that can reflect the quality of the similar-
ity matrix for clustering. Here, we choose ag-
glomerative clustering with a single linkage. Since 
each personal name may need a different parame-
ter setting, to test the importance of the parameter 
setting for clustering, we use two kinds of stop-
thresholds for agglomerative clustering in our ex-
periments: first, to find the optimal stop-threshold 
for any ambiguous personal name and for each 
feature model, we run agglomerative clustering 
with all possible stop-thresholds, and choose the 
one that has the best performance as the optimal 
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stop-threshold; second, we use a fixed stop-
threshold acquired from development data.  

4 Performance  

4.1 Data 

To capture the real data distribution, we use two 
sets of naturally occurring data: Bagga’s corpus 
and the Boulder Name corpus, which is a news 
corpus locally acquired from a web search. 
Bagga’s corpus is a document collection for the 
English personal name “John Smith” that was 
used by Bagga & Baldwin (1998). There are 256 
articles that match the “/John.*?Smith/” regular 
expression in 1996 and 1997 editions of the New 
York Times, and 94 distinct “John Smith” personal 
entities are mentioned. Of these, 83 “John Smiths” 
are mentioned in only one article (singleton clus-
ters containing only one object), and 11 other 
“John Smiths” are mentioned several times in the 
remaining 173 articles (non-singleton clusters 
containing more than one object). For the task of 
cross-document co-reference, Bagga & Baldwin 
(1998) chose 24 articles from 83 singleton clusters, 
and 173 other articles in 11 non-singleton clusters 
to create the final test data set – Bagga’s corpus. 

We collected the Boulder Name corpus by first 
selecting four highly ambiguous personal names 
each in English and Chinese. For each personal 
name, we retrieved the first non-duplicated 100 
news articles from Google (Chinese) or Google 
news (English). There are four data sets for Eng-
lish personal names and four data sets for Chinese 
personal names: James Jones, John Smith, Mi-
chael Johnson, Robert Smith, and Li Gang, Li Hai, 
Liu Bo, Zhang Yong. 

Compared to Bagga’s corpus, which is limited 
to the New York Times, the documents in the 
Boulder Name corpus were collected from differ-
ent sources, and hence are more heterogeneous 
and noisy. This variety in the Boulder Name cor-
pus reflects the distribution of the real data and 
makes named-entity disambiguation harder.  

For each ambiguous personal name in both cor-
pora, the gold standard clusters have a long-tailed 
distribution - a high percentage of singleton clus-
ters plus a few non-singleton clusters. For exam-
ple, in the 111 documents containing “John 
Smith” in the Boulder Name corpus, 53 “John 
Smith” personal entities are mentioned. Of them, 
37 “John Smiths” are mentioned only once. The 

long-tailed distribution brings some trouble to 
clustering, since in many clustering algorithms a 
singleton cluster is considered as a noisy point and 
therefore is ignored. 

4.2 Corpus performance 

Because of the long tail of the data set, we design 
a baseline using one cluster per document. To 
evaluate our disambiguation system, we choose 
the B-cubed scoring method that was used by 
Bagga & Baldwin (1998).  

In order to compare our work to that of others, 
we re-implement the model used by Bagga & 
Baldwin (1998). First, extracting all local sen-
tences produces a summary about the given am-
biguous object. Then, the object is represented by 
the tokens in its summary in the format of a vector, 
and the tokens in the feature vector are in their 
morphological root form and are filtered by a 
stop-word dictionary. Finally, the similarity matrix 
is learned by the TF-IDF method.   

Because both “two-level SoftTFIDF” and ag-
glomerative clustering require a parameter setting, 
for each language, we reserve two ambiguous per-
sonal names from the Boulder Name corpus as 
development data (John Smith, Michael Johnson, 
Li Gang, Zhang Yong), and the other data are re-
served as test data: Bagga’s corpus and the other 
personal names in the Boulder Name corpus 
(Robert Smith, James Jones, Li Hai, Liu Bo).  

For any ambiguous personal name and for each 
feature model, we find the optimal stop-threshold 
for agglomerative clustering, and show the corre-
sponding performances in Table 1, Table 2 and 
Table 3. However, for the most robust feature 
model, Bagga + summarized bnp + document en-
tities, we learn the fixed stop-threshold for ag-
glomerative clustering from the development data 
(0.089 for English data and 0.078 for Chinese 
data), and show the corresponding performances 
in Table 4. 

4.2.1  Performance on Bagga’s corpus 

Table 1 shows the performance of each feature 
model for Bagga’s corpus with the optimal stop-
threshold. The metric here is the B-cubed F score 
(precision/recall).  

Because of the difference between Bagga’s re-
sources and ours (different versions of the named-
entity system and different dictionaries of the 
morphological root and the stop-words), our best 
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B-cubed F score for Bagga’s model is 80.3— 4.3 
percent lower than the best performance reported 
by Bagga & Baldwin (1998): 84.6.  

From Table 1, we found that the syntactic fea-
tures (contextual bnp and summarized bnp) and 

semantic features (contextual entities and docu-
ment entities) consistently improve the perform-
ances, and all performances outperform the best 
result reported by Bagga & Baldwin (1998): 84.6   

 
Model B-cubed performance  
Gold standard cluster # 35 
Baseline 30.17 (100.00/17.78) 
Bagga 80.32 (94.77/69.70) 
Bagga + contextual bnp   89.16 (89.18/89.13) 
Bagga + summarized bnp 89.59 (92.60/86.78)    
Bagga + summarized bnp + contextual entities 89.60 (87.16/92.18)    
Bagga + summarized bnp + document entities 92.02 (93.10/90.97)    

Table 1:  Performances for Bagga’s corpus with the optimal stop-threshold   
 

                Name 
Model 

John Smith 
(dev) 

Michael Johnson
(dev) 

Robert Smith 
(test) 

James Jones 
(test) 

Average 
performance

Gold standard cluster # 53 52 65 24  
Baseline 64.63 (111) 67.97 (101) 78.79 (100) 37.50 (104) 62.22 
Bagga 82.63 (75) 89.07 (66) 91.56 (73) 86.42 (24) 87.42 
Bagga + contextual bnp   85.18 (62) 89.13 (65) 92.35 (74) 86.45 (22) 88.28 
Bagga + summarized bnp 85.97 (66) 91.08 (51) 93.17 (70) 90.11 (33) 90.08 
Bagga + summarized bnp 
+ contextual entities 

85.44 (70) 94.24 (55) 91.94 (73) 96.66 (24) 92.07 

Bagga + summarized bnp 
+ document entities 

91.94 (61) 92.55 (51) 93.48 (67) 97.10 (28) 93.77 

Table 2: Performances for the English Boulder Name corpus with the optimal stop-threshold  
 

                 Name 
Model 

Li Gang  
(dev) 

Zhang Yong 
(dev) 

Li Hai 
(test) 

Liu Bo 
(test) 

Average 
performance

Gold standard cluster # 57 63 57 45  
Baseline 72.61 (100) 76.83 (101) 74.03 (97) 62.07 (100) 71.39 
Bagga  96.21 (57) 96.43 (64) 94.51 (64) 91.66 (49) 94.70 
Bagga + contextual bnp   97.57 (57) 96.38 (66) 94.53 (64) 93.21 (51) 95.42 
Bagga + summarized bnp 98.50 (56) 96.17 (61) 95.38 (62) 93.21 (51) 95.81 
Bagga + summarized bnp 
+ contextual entities 

99.50 (58) 95.49 (63) 96.75 (58) 91.05 (52) 95.70 

Bagga + summarized bnp 
+ document entities 

99.50 (56) 94.57 (70) 98.57 (59) 97.02 (48) 97.41 

Table 3: Performances for the Chinese Boulder Name corpus with the optimal stop-threshold 
 

English Name John Smith 
(dev) 

Michael Johnson
(dev) 

Robert Smith 
(test) 

James Jones 
(test) 

Average 
performance

Bagga + summarized bnp 
+ document entities 

91.31 
(91.94)  

 90.57 
(92.55) 

 86.71 
(93.48) 

96.64 
(97.10) 

 91.31 
(93.77) 

Chinese Name Li Gang  
(dev) 

Zhang Yong 
(dev) 

Li Hai 
(test) 

Liu Bo 
(test) 

Average 
performance

Bagga + summarized bnp 
+ document entities 

 99.06 
(99.50) 

94.56 
(94.56) 

98.25  
(98.57) 

 89.18 
(97.02) 

 95.26 
(97.41) 

Table 4: Performances for the Boulder Name corpus with the fixed stop-threshold 
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4.2.2 Performance on the Boulder Name cor-
pus 

Table 2 and Table 3 show the performance of each 
feature model with the optimal stop-threshold for 
the English and Chinese Boulder Name corpora, 
respectively. The metric is the B-cubed F score 
and the number in brackets is the corresponding 
cluster number. Since the same feature model has 
different contributions for different ambiguous 
personal names, we list the average performances 
for all ambiguous names in the last column in both 
tables. 
   Comparing Table 2 and Table 3, we find that 
Bagga’s model has different performances for the 
English and Chinese corpora. That means that 
contextual tokens have different contributions in 
the two languages. There are three apparent 
causes for this phenomenon. The first concerns 
the frequency of pronouns in English vs. pro-drop 
in Chinese. The typical usage of pronouns in Eng-
lish requires an accurate pronoun co-reference 
resolution that is very important for the local sen-
tence extraction in Bagga’s model. In the Boulder 
Name corpus, we found that ambiguous personal 
names occur in Chinese much more frequently 
than in English. For example, the string “Liu Bo” 
occurs 876 times in the “Liu Bo” data, but the 
string “John Smith” occurs only 161 times in the 
“John Smith” data. The repetition of ambiguous 
personal names in Chinese reduces the burden on 
pronoun co-reference resolution and hence cap-
tures local information more accurately.  

The second factor is the fact that tokens in 
Bagga’s model for Chinese are words, but a Chi-
nese word is a unit bigger than an English word, 
and may contain more knowledge. For example, 
“the White House” has three words in English, 
and a word in Chinese. Since Chinese named-
entity detection can be considered a sub-problem 
of Chinese word segmentation, a word in Chinese 
can catch partial information about named entities.  

Finally, compared to Chinese news stories, 
English news stories are more likely to mention 
persons marginal to the story, and less likely to 
give the complete identifying information about 
them in local context. Those phenomena require 
more background information or implicit rela-
tional information to improve English named-
entity disambiguation. 

From Table 2 and Table 3, we see that the aver-
age performance of all ambiguous personal names 
is increased (from 87.42 to 93.77 for English and 
from 94.70 to 97.41 for Chinese) by incorporating 
more information: contextual bnp (contextual base 
noun phrases), summarized bnp (summarized base 
noun phrases), contextual entities, and document 
entities. This indicates that the phrase-based fea-
tures, the syntactic and semantic noun phrases, are 
very useful for disambiguation.  

From Table 2 and Table 3, we also see that the 
phrase-based features can improve the average 
performance, but not always for all ambiguous 
personal names. For example, the feature model 
“Bagga + summarized bnp + contextual entities” 
hurts the performance for “Robert Smith.” As we 
mentioned above, the Boulder Name corpus is 
heterogeneous, so each feature does not make the 
same contribution to the disambiguation for any 
ambiguous personal name. What we need to do is 
to find a feature model that is robust for all am-
biguous personal names.  

In Table 4, we choose the last feature model—
Bagga + summarized bnp + document entities—as 
the final feature model, learn the fixed stop-
threshold for clustering from the development 
data, and show the corresponding performances as 
B-cubed F scores. The performances in italics are 
the performances with the optimal stop-threshold.  
From Table 4, we find that, with the exception of 
“Robert Smith” and “Liu Bo,” the performances 
for other ambiguous personal names with the 
fixed threshold are close to the corresponding best 
performances. 

5 Conclusion 

This work has explored the problem of personal 
named-entity disambiguation for news corpora. 
Our experiments extend token-based information 
to include noun phrase-based information along 
two dimensions: from syntax to semantics, and 
from local sentential contexts to document-level 
contexts. From these experiments, we find that 
rich and broad information improves the disam-
biguation performance considerably for both Eng-
lish and Chinese. In the future, we will continue to 
explore additional semantic features that can be 
robustly extracted, including features derived 
from semantic relations and semantic role labels, 
and try to extend our work from news articles to 
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web pages that include more noisy information. 
Finally, we have focused here primarily on feature 
development and not on clustering. We believe 
that the skewed long-tailed distribution that char-
acterizes this data requires the use of clustering 
algorithms tailored to this distribution. In particu-
lar, the large number of singleton clusters is an 
issue that confounds the standard clustering meth-
ods we have been employing. 
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Abstract 

Trigram language models are compressed 

using a Golomb coding method inspired by 

the original Unix spell program.  

Compression methods trade off space, time 

and accuracy (loss).  The proposed 

HashTBO method optimizes space at the 

expense of time and accuracy.  Trigram 

language models are normally considered 

memory hogs, but with HashTBO, it is 

possible to squeeze a trigram language 

model into a few megabytes or less.  

HashTBO made it possible to ship a 

trigram contextual speller in Microsoft 

Office 2007. 

1 Introduction 

This paper will describe two methods of com-

pressing trigram language models: HashTBO and 

ZipTBO. ZipTBO is a baseline compression me-

thod that is commonly used in many applications 

such as the Microsoft IME (Input Method Editor) 

systems that convert Pinyin to Chinese and Kana to 

Japanese. 

Trigram language models have been so success-

ful that they are beginning to be rolled out to appli-

cations with millions and millions of users: speech 

recognition, handwriting recognition, spelling cor-

rection, IME, machine translation and more.  The 

EMNLP community should be excited to see their 

technology having so much influence and visibility 

with so many people.  Walter Mossberg of the 

Wall Street Journal called out the contextual spel-

ler (the blue squiggles) as one of the most notable 

features in Office 2007: 

There are other nice additions. In Word, Out-

look and PowerPoint, there is now contextual spell 

checking, which points to a wrong word, even if 

the spelling is in the dictionary. For example, if 

you type “their” instead of “they're,” Office 

catches the mistake. It really works.
 1
 

The use of contextual language models in spel-

ling correction has been discussed elsewhere: 

(Church and Gale, 1991), (Mays et al, 1991), (Ku-

kich, 1992) and (Golding and Schabes, 1996).  

This paper will focus on how to deploy such me-

thods to millions and millions of users.  Depending 

on the particular application and requirements, we 

need to make different tradeoffs among: 

1. Space (for compressed language model), 

2. Runtime (for n-gram lookup), and 

3. Accuracy (losses for n-gram estimates). 

HashTBO optimizes space at the expense of the 

other two.  We recommend HashTBO when space 

concerns dominate the other concerns; otherwise, 

use ZipTBO. 

 There are many applications where space is ex-

tremely tight, especially on cell phones.  HashTBO 

was developed for contextual spelling in Microsoft 

Office 2007, where space was the key challenge.  

The contextual speller probably would not have 

shipped without HashTBO compression.   

We normally think of trigram language models 

as memory hogs, but with HashTBO, a few mega-

bytes are more than enough to do interesting things 

with trigrams.  Of course, more memory is always 

better, but it is surprising how much can be done 

with so little.   

For English, the Office contextual speller started 

with a predefined vocabulary of 311k word types 

and a corpus of 6 billion word tokens.   (About a 

                                                 
1
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T8UUTIl2b10DaW11usf4NasZTYI_20080103.html?m

od=tff_main_tff_top  
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third of the words in the vocabulary do not appear 

in the corpus.)  The vocabularies for other lan-

guages tend to be larger, and the corpora tend to be 

smaller.  Initially, the trigram language model is 

very large.  We prune out small counts (8 or less) 

to produce a starting point of 51 million trigrams, 

14 million bigrams and 311k unigrams (for Eng-

lish).  With extreme Stolcke, we cut the 51+14+0.3 

million n-grams down to a couple million.  Using a 

Golomb code, each n-gram consumes about 3 

bytes on average. 

With so much Stolcke pruning and lossy com-

pression, there will be losses in precision and re-

call.  Our evaluation finds, not surprisingly, that 

compression matters most when space is tight.  

Although HashTBO outperforms ZipTBO on the 

spelling task over a wide range of memory sizes, 

the difference in recall (at 80% precision) is most 

noticeable at the low end (under 10MBs), and least 

noticeable at the high end (over 100 MBs).  When 

there is plenty of memory (100+ MBs), the differ-

ence vanishes, as both methods asymptote to the 

upper bound (the performance of an uncompressed 

trigram language model with unlimited memory). 

2 Preliminaries 

Both methods start with a TBO (trigrams with 

backoff) LM (language model) in the standard 

ARPA format.  The ARPA format is used by many 

toolkits such as the CMU-Cambridge Statistical 

Language Modeling Toolkit.
2
 

2.1 Katz Backoff 

No matter how much data we have, we never 

have enough.  Nothing has zero probability.  We 

will see n-grams in the test set that did not appear 

in the training set.  To deal with this reality, Katz 

(1987) proposed backing off from trigrams to bi-

grams (and from bigrams to unigrams) when we 

don’t have enough training data.   

Backoff doesn’t have to do much for trigrams 

that were observed during training.  In that case, 

the backoff estimate of  𝑃(𝑤𝑖 |𝑤𝑖−2𝑤𝑖−1)  is simply 

a discounted probability 𝑃𝑑(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1). 

The discounted probabilities steal from the rich 

and give to the poor.  They take some probability 

mass from the rich n-grams that have been seen in 

training and give it to poor unseen n-grams that 

                                                 
2
 http://www.speech.cs.cmu.edu/SLM 

might appear in test.  There are many ways to dis-

count probabilities.  Katz used Good-Turing 

smoothing, but other smoothing methods such as 

Kneser-Ney are more popular today. 

Backoff is more interesting for unseen trigrams.  

In that case, the backoff estimate is: 

𝛼 𝑤𝑖−2𝑤𝑖−1 𝑃𝑑(𝑤𝑖|𝑤𝑖−1) 

The backoff alphas (α) are a normalization fac-

tor that accounts for the discounted mass.  That is, 

 

𝛼 𝑤𝑖−2𝑤𝑖−1 

=
1 −  𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1)𝑤 𝑖 :𝐶(𝑤 𝑖−2𝑤 𝑖−1𝑤 𝑖)

1 −  𝑃(𝑤𝑖|𝑤𝑖−1)𝑤 𝑖 :𝐶(𝑤 𝑖−2𝑤 𝑖−1𝑤 𝑖)
 

 

where 𝐶 𝑤𝑖−2𝑤𝑖−1𝑤𝑖 > 0  simply says that the 

trigram was seen in training data. 

3 Stolcke Pruning 

Both ZipTBO and HashTBO start with Stolcke 

pruning (1998).
3
   We will refer to the trigram lan-

guage model after backoff and pruning as a pruned 

TBO LM. 

Stolcke pruning looks for n-grams that would 

receive nearly the same estimates via Katz backoff 

if they were removed.  In a practical system, there 

will never be enough memory to explicitly mate-

rialize all n-grams that we encounter during train-

ing.  In this work, we need to compress a large set 

of n-grams (that appear in a large corpus of 6 bil-

lion words) down to a relatively small language 

model of just a couple of megabytes. We prune as 

much as necessary to make the model fit into the 

memory allocation (after subsequent Hash-

TBO/ZipTBO compression).   

Pruning saves space by removing n-grams sub-

ject to a loss consideration: 

1. Select a threshold . 

2. Compute the performance loss due to prun-

ing each trigram and bigram individually us-

ing the pruning criterion. 

3. Remove all trigrams with performance loss 

less than  

4. Remove all bigrams with no child nodes (tri-

gram nodes) and with performance loss less 

than    

5. Re-compute backoff weights. 

                                                 
3
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m20/lm20.htm  
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Stolcke pruning uses a loss function based on 

relative entropy.  Formally, let P denote the tri-

gram probabilities assigned by the original un-

pruned model, and let P’ denote the probabilities in 

the pruned model.  Then the relative entropy 

D(P||P’) between the two models is 

 

− 𝑃 𝑤, ℎ [log 𝑃′ 𝑤 ℎ − log 𝑃(𝑤, ℎ)]
𝑤,ℎ

 

 

where h is the history.  For trigrams, the history is 

the previous two words.  Stolcke showed that this 

reduces to 

−𝑃 ℎ {𝑃(𝑤|ℎ) 

[log 𝑃 𝑤 ℎ′ + log 𝛼′ ℎ − log 𝑃(𝑤|ℎ)] 

+[log 𝛼′(ℎ) − log 𝛼(ℎ)]  𝑃 𝑤 ℎ 

𝑤:𝐶 ℎ,𝑤 >0

} 

 

where 𝛼′(ℎ)  is the revised backoff weight after 

pruning and h’ is the revised history after dropping 

the first word.  The summation is over all the tri-

grams that were seen in training: 𝐶 ℎ, 𝑤 > 0.  

Stolcke pruning will remove n-grams as neces-

sary, minimizing this loss. 

3.1 Compression on Top of Pruning 

After Stolcke pruning, we apply additional com-

pression (either ZipTBO or HashTBO).  ZipTBO 

uses a fairly straightforward data structure, which 

introduces relatively few additional losses on top 

of the pruned TBO model.  A few small losses are 

introduced by quantizing the log likelihoods and 

the backoff alphas, but those losses probably don’t 

matter much.  More serious losses are introduced 

by restricting the vocabulary size, V, to the 64k 

most-frequent words.  It is convenient to use byte 

aligned pointers.   The actual vocabulary of more 

than 300,000 words for English (and more for oth-

er languages) would require 19-bit pointers (or 

more) without pruning.   Byte operations are faster 

than bit operations.  There are other implementa-

tions of ZipTBO that make different tradeoffs, and 

allow for larger V without pruning losses. 

HashTBO is more heroic.  It uses a method in-

spired by McIlroy (1982) in the original Unix Spell 

Program, which squeezed a word list of N=32,000 

words into a PDP-11 address space (64k bytes).  

That was just 2 bytes per word!   

HashTBO uses similar methods to compress a 

couple million n-grams into half a dozen mega-

bytes, or about 3 bytes per n-gram on average (in-

cluding log likelihoods and alphas for backing off).  

ZipTBO is faster, but takes more space (about 4 

bytes per n-gram on average, as opposed to 3 bytes 

per n-gram).  Given a fixed memory budget, 

ZipTBO has to make up the difference with more 

aggressive Stolcke pruning.  More pruning leads to 

larger losses, as we will see, for the spelling appli-

cation.   

Losses will be reported in terms of performance 

on the spelling task.  It would be nice if losses 

could be reported in terms of cross entropy, but the 

values output by the compressed language models 

cannot be interpreted as probabilities due to quan-

tization losses and other compression losses. 

4 McIlroy’s Spell Program 

McIlroy’s spell program started with a hash ta-

ble.  Normally, we store the clear text in the hash 

table, but he didn’t have space for that, so he 

didn’t.   Hash collisions introduce losses. 

McIlroy then sorted the hash codes and stored 

just the interarrivals of the hash codes instead of 

the hash codes themselves.  If the hash codes, h, 

are distributed by a Poisson process, then the inte-

rarrivals, t, are exponentially distributed: 

 

Pr 𝑡 = 𝜆𝑒−𝜆𝑡 ,  

 

where 𝜆 =
𝑁

𝑃
.  Recall that the dictionary contains 

N=32,000 words.  P is the one free parameter, the 

range of the hash function.   McIlroy hashed words 

into a large integer mod P, where P is a large 

prime that trades off space and accuracy.  Increas-

ing P consumes more space, but also reduces 

losses (hash collisions). 

McIlroy used a Golomb (1966) code to store the 

interarrivals.  A Golomb code is an optimal Huff-

man code for an infinite alphabet of symbols with 

exponential probabilities. 

The space requirement (in bits per lexical entry) 

is close to the entropy of the exponential. 

 

𝐻 = −  Pr 𝑡 log2 Pr 𝑡 𝑑𝑡

∞

𝑡=0

 

𝐻 =  
1

log𝑒 2
+  log2

1

𝜆
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 The ceiling operator ⌈ ⌉  is introduced because 

Huffman codes use an integer number of bits to 

encode each symbol. 

We could get rid of the ceiling operation if we 

replaced the Huffman code with an Arithmetic 

code, but it is probably not worth the effort. 

Lookup time is relatively slow.  Technically, 

lookup time is O(N), because one has to start at the 

beginning and add up the interarrivals to recon-

struct the hash codes.  McIlroy actually introduced 

a small table on the side with hash codes and off-

sets so one could seek to these offsets and avoid 

starting at the beginning every time.  Even so, our 

experiments will show that HashTBO is an order 

of magnitude slower than ZipTBO. 

Accuracy is also an issue.  Fortunately, we don’t 

have a problem with dropouts.  If a word is in the 

dictionary, we aren’t going to misplace it.  But two 

words in the dictionary could hash to the same val-

ue.  In addition, a word that is not in the dictionary 

could hash to the same value as a word that is in 

the dictionary.  For McIlroy’s application (detect-

ing spelling errors), the only concern is the last 

possibility.  McIlroy did what he could do to miti-

gate false positive errors by increasing P as much 

as he could, subject to the memory constraint (the 

PDP-11 address space of 64k bytes). 

We recommend these heroics when space domi-

nates other concerns (time and accuracy). 

5 Golomb Coding 

Golomb coding takes advantage of the sparseness 

in the interarrivals between hash codes.  Let’s start 

with a simple recipe.  Let t be an interarrival.   We 

will decompose t into a pair of a quotient (tq) and a 

remainder (tr).  That is, let 𝑡 = 𝑡𝑞𝑚 + 𝑡𝑟  where 

𝑡𝑞 = ⌊𝑡/ 𝑚⌋  and 𝑡𝑟 = 𝑡 mod 𝑚.  We choose m to 

be a power of two near 𝑚 ≈  
𝐸 𝑡 

2
 =  

𝑃

2𝑁
 , where 

E[t] is the expected value of the interarrivals, de-

fined below.  Store tq in unary and tr in binary. 

Binary codes are standard, but unary is not.  To 

encode a number z in unary, simply write out a 

sequence of z-1 zeros followed by a 1.  Thus, it 

takes z bits to encode the number z in unary, as 

opposed to  log2 𝑧 bits in binary. 

This recipe consumes 𝑡𝑞 + log2 𝑚  bits.  The 

first term is for the unary piece and the second 

term is for the binary piece. 

Why does this recipe make sense?  As men-

tioned above, a Golomb code is a Huffman code 

for an infinite alphabet with exponential probabili-

ties.  We illustrate Huffman codes for infinite al-

phabets by starting with a simple example of a 

small (very finite) alphabet with just three sym-

bols: {a, b, c}. Assume that half of the time, we 

see a, and the rest of the time we see b or c, with 

equal probabilities: 

 

Symbol Code Length Pr 

A 0 1 50% 

B 10 2 25% 

C 11 2 25% 

 

The Huffman code in the table above can be read 

off the binary tree below.   We write out a 0 when-

ever we take a left branch and a 1 whenever we 

take a right branch.  The Huffman tree is con-

structed so that the two branches are equally likely 

(or at least as close as possible to equally likely). 

 

 
 

 

Now, let’s consider an infinite alphabet where 

Pr 𝑎 =
1

2
 , Pr 𝑏 =

1

4
  and the probability of the 

t+1
st
 symbol is Pr 𝑡 = (1 − 𝛽)𝛽𝑡  where 𝛽 =

1

2
.  

In this case, we have the following code, which is 

simply t in unary.  That is, we write out 1t  zeros 

followed by a 1. 

 

Symbol Code Length Pr 

A 1 1 2
−1

 

B 01 2 2
−2

 

C 001 3 2
−3
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The Huffman code reduces to unary when the 

Huffman tree is left branching: 

 
 

 

In general, β need not be ½.  Without loss of ge-

nerality, assume Pr 𝑡 =  1 − 𝛽 𝛽𝑡  where 
1

2
≤ 𝛽 < 1 and 𝑡 ≥ 0.  β depends on E[t], the ex-

pected value of the interarrivals: 

 

𝐸 𝑡 =
𝑃

𝑁
=

𝛽

1 − 𝛽
⇒ 𝛽 =

𝐸 𝑡 

1 + 𝐸 𝑡 
 

 

Recall that the recipe above calls for expressing 

t as 𝑚 ∙ 𝑡𝑞 + 𝑡𝑟  where 𝑡𝑞 = ⌊
𝑡

𝑚
⌋  and 𝑡𝑟 =

𝑡 mod 𝑚.  We encode tq in unary and tr
 
in binary.  

(The binary piece consumes log2 𝑚  bits, since tr 

ranges from 0 to m.) 

How do we pick m?   For convenience, let m be 

a power of 2.   The unary encoding makes sense as 

a Huffman code if 𝛽𝑚 ≈
1

2
.   

Thus, a reasonable choice
4
 is 𝑚 ≈  

𝐸 𝑡 

2
 .   If 

𝛽 =
𝐸 𝑡 

1+𝐸 𝑡 
, then 𝛽𝑚 =

𝐸 𝑡 𝑚

 1+𝐸 𝑡  𝑚
≈ 1 −

𝑚

𝐸 𝑡 
.  Set-

ting 𝛽𝑚 ≈
1

2
, means 𝑚 ≈

𝐸 𝑡 

2
. 

                                                 
4
 This discussion follows slide 29 of 

http://www.stanford.edu/class/ee398a/handouts/lectures/

01-EntropyLosslessCoding.pdf.   See (Witten et al, 

6  HashTBO Format 

The HashTBO format is basically the same as McI-

lroy’s format, except that McIlroy was storing 

words and we are storing n-grams.    One could 

store all of the n-grams in a single table, though we 

actually store unigrams in a separate table.  An n-

gram is represented as a key of n integers (offsets 

into the vocabulary) and two values, a log likelih-

ood and, if appropriate, an alpha for backing off.    

We’ll address the keys first. 

6.1 HashTBO Keys 

Trigrams consist of three integers (offsets into 

the Vocabulary): 𝑤1𝑤2𝑤3. These three integers are 

mapped into a single hash between 0 and 𝑃 − 1 in 

the obvious way: 

 

ℎ𝑎𝑠ℎ =  𝑤3𝑉
0 + 𝑤2𝑉

1 + 𝑤1𝑉
2  mod 𝑃  

 

where V is vocabulary size.  Bigrams are hashed 

the same way, except that the vocabulary is padded 

with an extra symbol for NA (not applicable).  In 

the bigram case, 𝑤3 is NA. 

We then follow a simple recipe for bigrams and 

trigrams: 

1. Stolcke prune appropriately 

2. Let N be the number of n-grams 

3. Choose an appropriate P (hash range) 

4. Hash the N n-grams 

5. Sort the hash codes 

6. Take the first differences (which are mod-

eled as interarrivals of a Poisson process) 

7. Golomb code the first differences  

 

We did not use this method for unigrams, since 

we assumed (perhaps incorrectly) that we will have 

explicit likelihoods for most of them and therefore 

there is little opportunity to take advantage of 

sparseness. 

Most of the recipe can be fully automated with a 

turnkey process, but two steps require appropriate 

hand intervention to meet the memory allocation 

for a particular application: 

1. Stolcke prune appropriately, and 

2. Choose an appropriate P  

 

                                                                             
1999) and http://en.wikipedia.org/wiki/Golomb_coding, 

for similar discussion, though with slightly different 

notation.  The primary reference is (Golomb, 1966). 
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Ideally, we’d like to do as little pruning as poss-

ible and we’d like to use as large a P as possible, 

subject to the memory allocation.  We don’t have a 

principled argument for how to balance Stolcke 

pruning losses with hashing losses; this can be ar-

rived at empirically on an application-specific ba-

sis.  For example, to fix the storage per n-gram at 

around 13 bits: 

13 =  
1

log𝑒 2
+ log2

1

𝜆
  

 

If we solve for λ, we obtain 0000,20/1 .  In 

other words, set P to a prime near N000,20 and 

then do as much Stolcke pruning as necessary to 

meet the memory constraint.   Then measure your 

application’s accuracy, and adjust accordingly. 

6.2 HashTBO Values and Alphas 

There are N log likelihood values, one for each 

key.  These N values are quantized into a small 

number of distinct bins.  They are written out as a 

sequence of N Huffman codes.  If there are Katz 

backoff alphas, then they are also written out as a 

sequence of N Huffman codes.  (Unigrams and 

bigrams have alphas, but trigrams don’t.) 

6.3 HashTBO Lookup 

The lookup process is given an n-gram, 

𝑤𝑖−2𝑤𝑖−1𝑤𝑖 , and is asked to estimate a log likelih-

ood, log Pr 𝑤𝑖  𝑤𝑖−2 𝑤𝑖−1) .  Using the standard 

backoff model, this depends on the likelihoods for 

the unigrams, bigrams and trigrams, as well as the 

alphas. 

The lookup routine not only determines if the n-

gram is in the table, but also determines the offset 

within that table.  Using that offset, we can find the 

appropriate log likelihood and alpha.  Side tables 

are maintained to speed up random access. 

7 ZipTBO Format 

ZipTBO is a well-established representation of 

trigrams.  Detailed descriptions can be found in 

(Clarkson and Rosenfeld 1997; Whittaker and Raj 

2001). 

ZipTBO consumes 8 bytes per unigram, 5 bytes 

per bigram and 2.5 bytes per trigram.  In practice, 

this comes to about 4 bytes per n-gram on average. 

Note that there are some important interactions 

between ZipTBO and Stolcke pruning.  ZipTBO is 

relatively efficient for trigrams, compared to bi-

grams.   Unfortunately, aggressive Stolcke pruning 

generates bigram-heavy models, which don’t com-

press well with ZipTBO. 

 

 

probs 

&

weights
bounds

BIGRAM

ids
probs 

& 

weights

W[i-2]w[i-1]

W[i-2]w[i-1]w[i]

ids probsbounds

2 1/2

TRIGRAMUNIGRAM

ids

2 1 2

2 2 4

 

Figure 1.  Tree structure of n-grams in ZipTBO 

format, following Whittaker and Ray (2001) 

 

7.1 ZipTBO Keys 

The tree structure of the trigram model is im-

plemented using three arrays. As shown in Figure 

1, from left to right, the first array (called unigram 

array) stores unigram nodes, each of which 

branches out into bigram nodes in the second array 

(bigram array).  Each bigram node then branches 

out into trigram nodes in the third array (trigram 

array).  

The length of the unigram array is determined 

by the vocabulary size (V).  The lengths of the oth-

er two arrays depend on the number of bigrams 

and the number of trigrams, which depends on how 

aggressively they were pruned.  (We do not prune 

unigrams.) 

We store a 2-byte word id for each unigram, bi-

gram and trigram. 

The unigram nodes point to blocks of bigram 

nodes, and the bigram nodes point to blocks of tri-

gram nodes.  There are boundary symbols between 

blocks (denoted by the pointers in Figure 1).   The 

boundary symbols consume 4 bytes for each uni-

gram and 2 bytes for each bigram. 

In each block, nodes are sorted by their word 

ids. Blocks are consecutive, so the boundary value 
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of an n−1-gram node together with the boundary 

value of its previous n−1-gram node specifies, in 

the n-gram array, the location of the block contain-

ing all its child nodes. To locate a particular child 

node, a binary search of word ids is performed 

within the block. 

 
Figure 3.  The differences between the methods in 

Figure 2 vanish if we adjust for prune size. 

7.2 ZipTBO Values and Alphas 

Like HashTBO, the log likelihood values and 

backoff alphas are quantized to a small number of 

quantization levels (256 levels for unigrams and 16 

levels for bigrams and trigrams).   Unigrams use a 

full byte for the log likelihoods, plus another full 

byte for the alphas.  Bigrams use a half byte for the 

log likelihood, plus another half byte for the al-

phas.  Trigrams use a half byte for the log likelih-

ood.  (There are no alphas for trigrams.) 

7.3 ZipTBO Bottom Line 

1. 8 bytes for each unigram:  

a. 2 bytes for a word id + 

b. 4 bytes for two boundary symbols +  

c. 1 byte for a log likelihood +  

d. 1 byte for an alpha 

2. 5 bytes for each bigram:  

a. 2 bytes for a word id +  

b. 2 bytes for a boundary symbol +  

c. ½ bytes for a log likelihood + 

d. ½ bytes for an alpha 

3. 2.5 bytes for each trigram: 

a. 2 bytes for a word id + 

b. ½ bytes for a log likelihood 

8 Evaluation 

We normally think of trigram language models 

as memory hogs, but Figure 2 shows that trigrams 

can be squeezed down to a megabyte in a pinch.  

Of course, more memory is always better, but it is 

surprising how much can be done (27% recall at 

80% precision) with so little memory. 

Given a fixed memory budget, HashTBO out-

performs ZipTBO which outperforms StdTBO, a 

baseline system with no compression.  Compres-

sion matters more when memory is tight.  The gap 

between methods is more noticeable at the low end 

(under 10 megabytes) and less noticeable at the 

high end (over 100 megabytes), where both me-

thods asymptote to the performance of the StdTBO 

baseline. 

All methods start with Stolcke pruning.   Figure 

3 shows that the losses are largely due to pruning.  
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Figure 2. When there is plenty of memory, per-

formance (recall @ 80% precision) asymptotes to 

the performance of baseline system with no com-

pression (StdTBO).   When memory is tight, 

HashTBO >> ZipTBO >> StdTBO. 

 

 

 

Figure 4. On average, HashTBO consumes about 

3 bytes per n-gram, whereas ZipTBO consumes 4. 
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All three methods perform about equally well, as-

suming the same amount of pruning.   

The difference is that HashTBO can store more 

n-grams in the same memory and therefore it 

doesn’t have to do as much pruning.  Figure 4 

shows that HashTBO consumes 3 bytes per n-gram 

whereas ZipTBO consumes 4. 

Figure 4 combines unigrams, bigrams and tri-

grams into a single n-gram variable.  Figure 5 drills 

down into this variable, distinguishing bigrams 

from trigrams.  The axes here have been reversed 

so we can see that HashTBO can store more of 

both kinds in less space.  Note that both HashTBO 

lines are above both ZipTBO lines.   

 

Figure 5. HashTBO stores more bigrams and tri-

grams than ZipTBO in less space. 

 

In addition, note that both bigram lines are 

above both trigram lines (triangles).  Aggressively 

pruned models have more bigrams than trigrams!   

Linear regression on this data shows that Hash-

TBO is no better than ZipTBO on trigrams (with 

the particular settings that we used), but there is a 

big difference on bigrams.  The regressions below 

model M (memory in bytes) as a function of bi and 

tri, the number of bigrams and trigrams, respec-

tively.  (Unigrams are modeled as part of the inter-

cept since all models have the same number of un-

igrams.) 

 

𝑀𝐻𝑎𝑠ℎ𝑇𝐵𝑂 = 0.8 + 3.4𝑏𝑖 + 2.6𝑡𝑟𝑖 
𝑀𝑍𝑖𝑝𝑇𝐵𝑂 = 2.6 + 4.9𝑏𝑖 + 2.6𝑡𝑟𝑖 

 

As a sanity check, it is reassuring that ZipTBO’s 

coefficients of 4.9 and 2.6 are close to the true val-

ues of 5 bytes per bigram and 2.5 bytes per tri-

gram, as reported in Section 7.3. 

According to the regression, HashTBO is no 

better than ZipTBO for trigrams.  Both models use 

roughly 2.6 bytes per trigram.  When trigram mod-

els have relatively few trigrams, the other coeffi-

cients matter.  HashTBO uses less space for bi-

grams (3.4 bytes/bigram << 4.9 bytes/bigram) and 

it has a better intercept (0.8 << 2.6). 

We recommend HashTBO if space is so tight 

that it dominates other concerns.  However, if there 

is plenty of space, or time is an issue, then the tra-

deoffs work out differently.   Figure 6 shows that 

ZipTBO is an order of magnitude faster than 

HashTBO.  The times are reported in microseconds 

per n-gram lookup on a dual Xeon PC with a 3.6 

ghz clock and plenty of RAM (4GB).  These times 

were averaged over a test set of 4 million lookups.  

The test process uses a cache.  Turning off the 

cache increases the difference in lookup times. 

 

Figure 6. HashTBO is slower than ZipTBO. 

9 Conclusion 

Trigram language models were compressed 

using HashTBO, a Golomb coding method 

inspired by McIlroy’s original spell program for 

Unix.  McIlroy used the method to compress a 

dictionary of 32,000 words into a PDP-11 address 

space of 64k bytes.  That is just 2 bytes per word! 

We started with a large corpus of 6 billion words 

of English.  With HashTBO, we could compress 

the trigram language model into just a couple of 

megabytes using about 3 bytes per n-gram 

(compared to 4 bytes per n-gram for the ZipTBO 

baseline).  The proposed HashTBO method is not 

fast, and it is not accurate (not lossless), but it is 

hard to beat if space is tight, which was the case 

for the contextual speller in Microsoft Office 2007. 
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Abstract
In morphologically rich languages, should morphological and
syntactic disambiguation be treated sequentially or as a sin-
gle problem? We describe several efficient, probabilistically-
interpretable ways to apply joint inference to morphological
and syntactic disambiguation using lattice parsing. Joint infer-
ence is shown to compare favorably to pipeline parsing methods
across a variety of component models. State-of-the-art perfor-
mance on Hebrew Treebank parsing is demonstrated using the
new method. The benefits of joint inference are modest with
the current component models, but appear to increase as com-
ponents themselves improve.

1 Introduction

As the field of statistical NLP expands to handle
more languages and domains, models appropriate
for standard benchmark tasks do not always work
well in new situations. Take, for example, pars-
ing the Wall Street Journal Penn Treebank, a long-
standing task for which highly accurate context-free
models stabilized by the year 2000 (Collins, 1999;
Charniak, 2000). On this task, the Collins model
achieves 90% F1-accuracy. Extended for new lan-
guages by Bikel (2004), it achieves only 75% on
Arabic and 72% on Hebrew.1

It should come as no surprise that Semitic parsing
lags behind English. The Collins model was care-
fully designed and tuned for WSJ English. Many of
the features in the model depend on English syntax
or Penn Treebank annotation conventions. Inherent
in its crafting is the assumption that a million words
of training text are available. Finally, for English, it
need not handle morphological ambiguity.

Indeed, the figures cited above for Arabic and
Hebrew are achieved using gold-standard morpho-
logical disambiguation and part-of-speech tagging.

∗ The authors acknowledge helpful feedback from the
anonymous reviewers, Sharon Goldwater, Rebecca Hwa, Alon
Lavie, and Shuly Wintner.

1Compared to the Penn Treebank, the Arabic Treebank
(Maamouri et al., 2004) has 60% as many word tokens, and
the Hebrew Treebank (Sima’an et al., 2001) has 6%.

Given only surface words, Arabic performance
drops by 1.5 F1 points. The Hebrew Treebank (un-
like Arabic) is built over morphemes, a convention
we view as sensible, though it complicates parsing.

This paper considers parsing for morphologically
rich languages, with Hebrew as a test case. Mor-
phology and syntax are two levels of linguistic de-
scription that interact. This interaction, we argue,
can affect disambiguation, so we explore here the
matter of joint disambiguation. This involves the
comparison of a pipeline (where morphology is in-
ferred first and syntactic parsing follows) with joint
inference. We present a generalization of the two,
and show new ways to do joint inference for this task
that does not involve a computational blow-up.

The paper is organized as follows. §2 describes
the state of the art in NLP for Hebrew and some
phenomena it exhibits that motivate joint inference
for morphology and syntax. §3 describes our ap-
proach to joint inference using lattice parsing, and
gives three variants of weighted lattice parsing with
their probabilistic interpretations. The different fac-
tor models and their stand-alone performance are
given in §4. §5 presents experiments on Hebrew
parsing and explores the benefits of joint inference.

2 Background

In this section we discuss prior work on statistical
morphological and syntactic processing of Hebrew
and motivate the joint approach.

2.1 NLP for Modern Hebrew

Wintner (2004) reviews work in Hebrew NLP, em-
phasizing that the challenges stem from the writ-
ing system, rich morphology, unique word forma-
tion process of roots and patterns, and relative lack
of annotated corpora.

We know of no publicly available statistical parser
designed specifically for Hebrew. Sima’an et al.
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Figure 1: (a.) A sentence in Hebrew (to be read right to left), with (b.) one morphological analysis, (c.) English glosses, and (d.)
natural translation; and (e.) a different morphological analysis, (f.) English glosses, and (g.) less natural translation. (h.) shows a
morphological “sausage” lattice that encodes the morpheme-sequence analyses L(~x) possible for a shortened sentence (unmodified
“meadow”). Shaded states are word boundaries, white states are intra-word morpheme boundaries; in practice we add POS tags to
the arcs, to permit disambiguation. According to both native speakers we polled, both interpretations are grammatical—note the
long-distance agreement required for grammaticality.

(2001) built a Hebrew Treebank of 88,747 words
(4,783 sentences) and parsed it using a probabilis-
tic model. However, they assumed that the input to
the parser was already (perfectly) morphologically
disambiguated. This assumption is very common in
multilingual parsing (see, for example, Cowan et al.,
2005, and Buchholz et al., 2006).

Until recently, the NLP literature on morpho-
logical processing was dominated by the largely
non-probabilistic application of finite-state trans-
ducers (Kaplan and Kay, 1981; Koskenniemi, 1983;
Beesley and Karttunen, 2003) and the largely unsu-
pervised discovery of morphological patterns in text
(Goldsmith, 2001; Wicentowski, 2002); Hebrew
morphology receives special attention in Levinger
et al. (1995), Daya et al. (2004), and Adler and El-
hadad (2006). Lately a few supervised disambigua-
tion methods have come about, including hidden
Markov models (Hakkani-Tür et al., 2000; Hajič et
al., 2001), conditional random fields (Kudo et al.,
2004; Smith et al., 2005b), and local support vector
machines (Habash and Rambow, 2005). There are
also morphological disambiguators designed specif-
ically for Hebrew (Segal, 2000; Bar-Haim et al.,
2005).

2.2 Why Joint Inference?

In NLP, the separation of syntax and morphology is
understandable when the latter is impoverished, as

in English. When both involve high levels of am-
biguity, this separation becomes harder to justify,
as argued by Tsarfaty (2006). To our knowledge,
that is the only study to move toward joint inference
of syntax and morphology, presenting joint models
and testing approximation of these models with two
parsers: one a pipeline (segmentation → tagging →
parsing), the other involved joint inference of seg-
mentation and tagging, with the result piped to the
parser. The latter was slightly more accurate. Tsar-
faty discussed but did not carry out joint inference.

In a morphologically rich language, the different
morphemes that make up a word can play a variety
of different syntactic roles. A reasonable linguistic
analysis might not make such morphemes immedi-
ate sisters in the tree. Indeed, the convention of the
Hebrew Treebank is to place morphemes (rather than
words) at the leaves of the parse tree, allowing mor-
phemes of a word to attach to different nonterminal
parents.2

Generating parse trees over morphemes requires
the availability of morphological information when
parsing. Because this analysis is not in general re-
ducible to sequence labeling (tagging), the problem
is different from POS tagging. Figure 1 gives an

2The Arabic Treebank, by contrast, annotates words mor-
phologically but keeps the morphemes together as a single node
tagged with a POS sequence. In Bikel’s Arabic parser, complex
POS tags are projected to a small atomic set; it is unclear how
much information is lost.
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example from Hebrew that illustrates the interaction
between morphology and syntax. In this example,
we show two interpretations of the surface text, with
the first being a more common natural analysis for
the sentence. The first and third-to-last words’ anal-
yses depend on each other if the resulting analysis
is to be the more natural one: for this analysis the
first seven words have to be a noun phrase, while for
the less common analysis (“lying there nicely”) only
the first six words compose a noun phrase, with the
last two words composing a verb phrase. Consis-
tency depends on a long-distance dependency that a
finite-state morphology model cannot capture, but a
model that involves syntactic information can. Dis-
ambiguating the syntax aids in disambiguating the
morphology, suggesting that a joint model will per-
form both more accurately.

In sum, joint inference of morphology and syntax
is expected to allow decisions of both kinds to influ-
ence each other, enforce adherence to constraints at
both levels, and to diminish the propagation of errors
inherent in pipelines.

3 Joint Inference of Morphology and
Syntax

We now formalize the problem and supply the nec-
essary framework for performing joint morphologi-
cal disambiguation and syntactic parsing.

3.1 Notation and Morphological Sausages

Let X be the language’s word vocabulary and M be
its morpheme inventory. The set of valid analyses
for a surface word is defined using a morphologi-
cal lexicon L, which defines L(x) ⊆ M+. L(~x) ⊆
(M+)+ (sequence of sequences) is the set of whole-
sentence analyses for sentence ~x = 〈x1, x2, ..., xn〉,
produced by concatenating elements of L(xi) in or-
der. L(~x) can be represented as an acyclic lattice
with a “sausage” shape familiar from speech recog-
nition (Mangu et al., 1999) and machine translation
(Lavie et al., 2004). Fig. 1h shows a sausage lat-
tice for a sentence in Hebrew. We use ~m to denote
an element of L(~x) and ~mi to denote an element of
L(xi); in general, ~m = 〈~m1, ~m2, ..., ~mn〉.

We are interested in a function f :X+ →
(M+)+ × T, where T is the set of syntactic trees
for the language. f can be viewed as a structured

classifier. We use DG(~m) ⊆ T to denote the set of
valid trees under a grammar G (here, a PCFG with
terminal alphabet M) for morpheme sequence ~m. To
be precise, f(~x) selects a mutually consistent mor-
phological and syntactic analysis from

GEN(~x) = {〈~m, τ〉 | ~m ∈ L(~x), τ ∈ DG(~m)}

3.2 Product of Experts

Our mapping f(~x) is based on a joint probability
model p(τ, ~m | ~x) which combines two probabil-
ity models pG(τ, ~m) (a PCFG built on the gram-
mar G) and pL(~m | ~x) (a morphological disam-
biguation model built on the lexicon L). Factoring
the joint model into sub-models simplifies training,
since we can train each model separately, and in-
ference (parsing), as we will see later in this sec-
tion. Factored estimation has been quite popular in
NLP of late (Klein and Manning, 2003b; Smith and
Smith, 2004; Smith et al., 2005a, inter alia).

The most obvious joint parser uses pG as a condi-
tional model over trees given morphemes and maxi-
mizes the joint likelihood:

flik(~x)
= argmax

〈~m,τ〉∈GEN(~x)
pG(τ | ~m) · pL(~m | ~x) (1)

= argmax
〈~m,τ〉∈GEN(~x)

pG(τ, ~m)∑
τ ′

pG(τ ′, ~m)
· pL(~m, ~x)∑

~m′

pL(~m′, ~x)

This is not straightforward, because it involves sum-
ming up the trees for each ~m to compute pG(~m),
which calls for the O(|~m|3)-Inside algorithm to
be called on each ~m. Instead, we use the joint,
pG(τ, ~m), which, strictly speaking, makes the model
deficient (“leaky”), but permits a dynamic program-
ming solution.

Our models will be parametrized using either un-
normalized weights (a log-linear model) or multino-
mial distributions. Either way, both models define
scores over parts of analyses, and it may be advanta-
geous to give one model relatively greater strength,
especially since we often ignore constant normal-
izing factors. This is known as a product of ex-
perts (Hinton, 1999), where a new combined distri-
bution over events is defined by multiplying compo-
nent distributions together and renormalizing. In the
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present setting, for some value α ≥ 0,

fpoe,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

pG(τ, ~m) · pL(~m | ~x)α

Z(~x, α)
(2)

where Z(~x, α) need not be computed (since it is a
constant in ~m and τ ). α tunes the relative weight
of the morphology model with respect to the pars-
ing model. The higher α is, the more we trust the
morphology model over the parser to correctly dis-
ambiguate the sentence. We might trust one model
more than the other for a variety of reasons: it could
be more robustly or discriminatively estimated, or it
could be known to come from a more appropriate
family.

This formulation also generalizes two more naı̈ve
parsing methods. If α = 0, the morphology is mod-
eled only through the PCFG and pL is ignored ex-
cept as a constraint on which analyses L(~x) are al-
lowed (i.e., on the definition of the set GEN(~x)). At
the other extreme, as α → +∞, pL becomes more
important. Because pL does not predict trees, pG

still “gets to choose” the syntax tree, but in the limit
it must find a tree for argmax~m∈L(~x) pL(~m | ~x).
This is effectively the morphology-first pipeline.3

3.3 Parsing Algorithms
To parse, we apply a dynamic programming algo-
rithm in the 〈max, +〉 semiring to solve the fpoe,α

problem shown in Eq. 4. If pL is a unigram-factored
model, such that for some single-word morphologi-
cal model υ we have

pL(~m | ~x) =
∏n

i=1 υ(~mi | xi) (3)

then we can implement morpho-syntactic parsing by
weighting the sausage lattice. Let the weight of each
arc that starts an analysis ~mi ∈ L(xi) be equal to
log υ(~mi | xi), and let other arcs have weight 0.
In the parsing algorithm, the weight on an arc is
summed in when the arc is first used to build a con-
stituent.

In general, we would like to define a joint model
that assigns (unnormalized) probabilities to ele-
ments of GEN(~x). If pG is a PCFG and pL can

3There is a slight difference. If no parse tree exists for the
pL-best morphological analysis, then a less probable ~m may be
chosen. So as α → +∞, we can view flik,α as finding the best
grammatical ~m and its best tree—not exactly a pipeline.

be described as a weighted finite-state transducer,
then this joint model is their weighted composition,
which is a weighted CFG; call the composed gram-
mar I and its (unnormalized) distribution pI . Com-
pared to G, I will have many more nonterminals if
pL has a Markov order greater than 0 (unigram, as
above). Because parsing runtime depends heavily on
the grammar constant (at best, quadratic in the num-
ber of nonterminals), parsing with pI is not compu-
tationally attractive.4 fpoe,α is not, then, a scalable
solution when we wish to use a morphology model
pL that can make interdependent decisions about dif-
ferent words in ~x in context. We propose two new,
efficient dynamic programming solutions for joint
parsing.

In the first, we approximate the distribution
pL( ~M | ~x) using a unigram-factored model of the
form in Eq. 3:

p′L(~m | ~x) =
∏n

i=1 pL( ~Mi = ~mi | ~x)︸ ︷︷ ︸
posterior, depends on all of ~x

(7)

Similar methods were applied by Matsuzaki et al.
(2005) and Petrov and Klein (2007) for parsing un-
der a PCFG with nonterminals with latent anno-
tations. Their approach was variational, approxi-
mating the true posterior over coarse parses using
a sentence-specific PCFG on the coarse nontermi-
nals, created directly out of the true fine-grained
PCFG. In our case, we approximate the full distri-
bution over morphological analyses for the sentence
by a simpler, sentence-specific unigram model that
assumes each word’s analysis is to be chosen inde-
pendently of the others. Note that our model (pL)
does not make such an assumption, only the ap-
proximate model p′L does, and the approximation is
per-sentence. The idea resembles a mean-field vari-
ational approximation for graphical models. Turn-
ing to implementation, we can solve for pL(~mi | ~x)
exactly using the forward-backward algorithm. We
will call this method fvari,α (see Eq. 5).

A closely related method, applied by Goodman
(1996) is called minimum-risk decoding. Good-
man called it “maximum expected recall” when ap-
plying it to parsing. In the HMM community it

4In prior work involving factored syntax models—
lexicalized (Klein and Manning, 2003b) and bilingual (Smith
and Smith, 2004)—fpoe,1 was applied, and the asymptotic run-
time went to O(n5) and O(n7).
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fpoe,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

log pG(τ, ~m) + α log pL(~m | ~x) (4)

fvari,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

log pG(τ, ~m) + α
∑n

i=1 log pL(~mi | ~x) (5)

frisk,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

log pG(τ, ~m) + α
∑n

i=1 pL(~mi | ~x) (6)

is sometimes called “posterior decoding.” Mini-
mum risk decoding is attributable to Goel and Byrne
(2000). Applied to a single model, it factors the
parsing decision by penalizable errors, and chooses
the solution that minimizes the risk (expected num-
ber of errors under the model). This factors into a
sum of expectations, one per potential mistake. This
method is expensive for parsing models (since it re-
quires the Inside algorithm to compute expected re-
call mistakes), but entirely reasonable for sequence
labeling models. The idea is to score each word-
analysis ~mi in the morphological lattice by the ex-
pected value (under pL) that ~mi is present in the fi-
nal analysis ~m. This is, of course pL( ~Mi = ~mi | ~x),
the same quantity computed for fvari,α, except the
score of a path in the lattice is now a sum of pos-
teriors rather than a product. Our second approxi-
mate joint parser tries to maximize the probability
of the parse (as before) and at the same time to min-
imize the risk of the morphological analysis. See
frisk,α in Eq. 6; the only difference between frisk,α

and fvari,α is whether posteriors are added (frisk,α)
or multiplied (fvari,α).

To summarize this section, fvari,α and frisk,α

are two approximations to the expensive-in-general
fpoe,α that boil down to parsing over weighted lat-
tices. The only difference between them is how
the lattice is weighted: using α log pL(~mi | ~x) for
fvari,α or using αpL(~mi | ~x) for frisk,α.5 In case of
a unigram pL, fpoe,α is equivalent to fvari,α; other-
wise fpoe,α is likely to be too expensive.

3.4 Lattice Parsing

To parse the weighted lattices using fvari,α and
frisk,α in the previous section, we use lattice parsing.
Lattice parsing is a straightforward generalization of

5Until now, we have talked about weighting word analyses,
which may cover several arcs, rather than arcs. In practice we
apply the weight to the first arc of a word analysis, and weight
the remaining arcs of that analysis with 0 (no cost or benefit),
giving the desired effect.

string parsing that indexes constituents by states in
the lattice rather than word interstices. At parsing
time, a 〈max, +〉 lattice parser finds the best com-
bined parse tree and path through the lattice. Im-
portantly, the data structures that are used in chart
parsing need not change in order to accommodate
lattices. The generalization over classic Earley or
CKY parsing is simple: keep in the parsing chart
constituents created over a pair of start state and end
state (instead of start position and end position), and
(if desired) factor in weights on lattice arcs; see Hall
(2005).

4 Factored Models

A fair comparison of joint and pipeline parsing must
make some attempt to control for the component
models. We describe here two PCFGs we used for
pG(τ, ~m) and two finite-state morphological models
we used for pL(~m | ~x). We show how these mod-
els perform in stand-alone evaluations. For all ex-
periments, we used the Hebrew Treebank (Sima’an
et al., 2001). After removing traces and removing
functional information from the nonterminals, we
had 3,770 sentences in the training set, 371 sen-
tences in the development set (used primarily to se-
lect the value of α) and 370 sentences in the test set.

4.1 Syntax Model

Our first syntax model is an unbinarized PCFG
trained using relative frequencies. Preterminal (POS
tag → morpheme) rules are smoothed using back-
off to a model that predicts the morpheme length
and letter sequence. The PCFG is not binarized.
This grammar is remarkably good, given the lim-
ited effort that went into it. The rules in the train-
ing set had high coverage with respect to the de-
velopment set: an oracle experiment in which we
maximized the number of recovered gold-standard
constituents (on the development set) gave F1 ac-
curacy of 93.7%. In fact, its accuracy supersedes
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more complex, lexicalized, models: given gold-
standard morphology, it achieves 81.2% (compared
to 72.0% by Bikel’s parser, with head rules specified
by a native speaker). This is probably attributable
to the dataset’s size, which makes training with
highly-parameterized lexicalized models precarious
and prone to overfitting. With first-order vertical
markovization (i.e., annotating each nonterminal
with its parent as in Johnson, 1998), accuracy is also
at 81.2%. Tuning the horizontal markovization of
the grammar rules (Klein and Manning, 2003a) had
a small, adverse effect on this dataset.

Since the PCFG model was relatively successful
compared to lexicalized models, and is faster to run,
we decided to use a vanilla PCFG, denoted Gvan,
and a parent-annotated version of that PCFG (John-
son, 1998), denoted Gv=2.

4.2 Morphology Model

Both of our morphology models use the same mor-
phological lexicon L, which we describe first.

4.2.1 Morphological Lexicon

In this work, a morphological analysis of a word
is a sequence of morphemes, possibly with a tag for
each morpheme. There are several available analyz-
ers for Hebrew, including Yona and Wintner (2005)
and Segal (2000). We use instead an empirically-
constructed generative lexicon that has the advan-
tage of matching the Treebank data and conventions.
If the Treebank is enriched, this would then directly
benefit the lexicon and our models.

Starting with the training data from the Hebrew
Treebank, we first create a set of prefixes Mp ⊂ M;
this set includes any morpheme seen in a non-final
position within any word. We also create a set of
stems Ms ⊂ M that includes any morpheme seen
in a final position in a word. This effectively cap-
tures the morphological analysis convention in the
Hebrew Treebank, where a stem is prefixed by a rel-
atively dominant low-entropy sequence of 0–5 prefix
morphemes. For example, MHKLB (“from the dog”)
is analyzed as M+H+KLB with prefixes M (“from”)
and H (“the”) and KLB (“dog”) is the stem. In prac-
tice, |Mp| = 124 (including some conventions for
numerals) and |Ms| = 13,588. The morphological
lexicon is then defined as any analysis given Mp and

Ms:

L(x) = {mk
1 ∈ M∗

p ×Ms | concat(mk
1) = x)}

∪{mk
1 | count(mk

1, x) ≥ 1} (9)

where mk
1 denotes 〈m1, ...,mk〉 and count(mk

1, x)
denotes the number of occurrences of x disam-
biguated as mk

1 in the training set. Note that L(x)
also includes any analysis of x observed in the train-
ing data. This permits the memorization of any
observed analysis that is more involved than sim-
ple segmentation (4% of word tokens in the train-
ing set; e.g., LXDR (“to the room”) is analyzed as
L+H+XDR). This will have an effect on evaluation
(see §5.1). On the development data, L has 98.6%
coverage.

4.2.2 Unigram Baseline
The baseline morphology model, puni

L , first de-
fines a joint distribution following Eq. 8. The word
model factors out when we conditionalize to form
puni

L (〈m1, ...,mk〉 | x). The prefix sequence model
is multinomial estimated by MLE. The stem model
(conditioned on the prefix sequence) is smoothed to
permit any stem that is a sequence of Hebrew char-
acters. On the development data, puni

L is 88.8% ac-
curate (by word).

4.2.3 Conditional Random Field
The second morphology model, pcrf

L , which is
based on the same morphological lexicon L, uses
a second-order conditional random field (Lafferty et
al., 2001) to disambiguate the full sentence by mod-
eling local contexts (Kudo et al., 2004; Smith et al.,
2005b). Space does not permit a full description; the
model uses all the features of Smith et al. (2005b)
except the “lemma” portion of the model, since the
Hebrew Treebank does not provide lemmas. The
weights are trained to maximize the probability of
the correct path through the morphological lattice,
conditioned on the lattice. This is therefore a dis-
criminative model that defines pL(~m | ~x) directly,
though we ignore the normalization factor in pars-
ing.

Until now we have described pL as a model of
morphemes, but this CRF is trained to predict POS
tags as well—we can either use the tags (i.e., label
the morphological lattice with tag/morpheme pairs,

213



puni
L (〈m1,m2, ...,mk〉, x) = p(x | 〈m1,m2, ...,mk〉)︸ ︷︷ ︸

word

· p(mk | 〈m1, ...,mk−1〉)︸ ︷︷ ︸
stem

· p(〈m1, ...,mk−1〉)︸ ︷︷ ︸
prefix sequence

(8)

so that the lattice parser finds a parse that is con-
sistent under both models), or sum the tags out and
let the parser do the tagging. One subtlety is the
tagging of words not seen in the training data; for
such words an unsegmented hypothesis with tag UN-
KNOWN is included in the lattice and may therefore
be selected by the CRF. On the development data,
pcrf

L is 89.8% accurate on morphology, with 74.9%
fine-grained POS-tagging F1-accuracy (see §5.1).

Note on generative and discriminative models.
The reader may be skeptical of our choice to com-
bine a generative PCFG with a discrimative CRF.
We point out that both are used to define conditional
distributions over desired “output” structures given
“input” sequences. Notwithstanding the fact that the
factors can be estimated in very different ways, our
combination in an exact or approximate product-of-
experts is a reasonable and principled approach.

5 Experiments

In this section we evaluate parsing performance, but
an evaluation issue is resolved first.

5.1 Evaluation Measures
The “Parseval” measures (Black et al., 1991) are
used to evaluate a parser’s phrase-structure trees
against a gold standard. They compute precision and
recall of constituents, each indexed by a label and
two endpoints. As pointed out by Tsarfaty (2006),
joint parsing of morphology and syntax renders this
indexing inappropriate, since it assumes the yields
of the trees are identical—that assumption is vio-
lated if there are any errors in the hypothesized ~m.
Tsarfaty (2006) instead indexed by non-whitespace
character positions, to deal with segmentation mis-
matches. In general (and in this work) that is still
insufficient, since L(~x) may include ~m that are not
simply segmentations of ~x (see §4.2.1).

Roark et al. (2006) propose an evaluation met-
ric for comparing a parse tree over a sentence gen-
erated by a speech recognizer to a gold-standard
parse. As in our case, the hypothesized tree could
have a different yield than the original gold-standard

parse tree, because of errors made by the speech
recognizer. The metric is based on an alignment
between the hypothesized sentence and the gold-
standard sentence. We used a similar evaluation
metric, which takes into account the information
about parallel word boundaries as well, a piece of
information that does not appear naturally in speech
recognition. Given the correct ~m∗ and the hypothe-
sis ~̂m, we use dynamic programming to find an op-
timal many-to-many monotonic alignment between
the atomic morphemes in the two sequences. The
algorithm penalizes each violation (by a morpheme)
of a one-to-one correspondence,6 and each character
edit required to transform one side of a correspon-
dence into the other (without whitespace). Word
boundaries are (here) known and included as index
positions. In the case where ~̂m = ~m∗ (or equal up to
whitespace) the method is identical to Parseval (and
also to Tsarfaty, 2006). POS tag accuracy is evalu-
ated the same way, for the same reasons; we report
F1-accuracy for tagging and parsing.

5.2 Experimental Comparison
In our experiment we vary four settings:

• Decoding algorithm: fpoe,α, frisk,α, or fvari,α

(§3.3).
• Syntax model: Gvan or Gv=2 (§4.1).
• Morphology model: puni

L or pcrf
L (§4.2). In the lat-

ter case, we can use the scores over morpheme
sequences only (summing out tags before lattice
parsing; denoted m.-pcrf

L ) or the full model over
morphemes and tags, denoted t.-pcrf

L .7

• α, the relative strength given to the morphol-
ogy model (see §3). We tested values of α in
{0,+∞} ∪ {10q | q ∈ {0, 1, ..., 16}}. Recall
that α = 0 ignores the morphology model prob-
abilities altogether (using an unweighted lattice),
6That is, in a correspondence of a morphemes in one string

with b in the other, the penalty is a+ b−2, since the morpheme
on each side is not in violation.

7One subtlety is that any arc with the UNKNOWN POS
tag can be relabeled—to any other tag—by the syntax model,
whose preterminal rules are smoothed. This was crucial for
α = +∞ (pipeline) parsing with t.-pcrf

L as the morphology
model, since the parser does not recognize UNKNOWN as a tag.
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puni
L pGvan 88.0 70.6 75.5 59.5 88.5 71.5 76.1 59.8

pGv=2 88.0 70.7 75.8 60.4 88.6 70.8 75.7 59.9
m.-pcrf

L pGvan ∗ ∗ ∗ ∗ 90.9 75.6 80.2 63.7

f p
o
e
,α

pGv=2 ∗ ∗ ∗ ∗ 90.9 75.3 80.2 64.2
t.-pcrf

L pGvan ∗ ∗ ∗ ∗ 90.9 77.2 †81.5 63.0
pGv=2 ∗ ∗ ∗ ∗ 90.9 77.2 †81.5 64.0

puni
L pGvan 87.9 70.9 75.3 58.9 88.5 71.5 76.1 59.8

pGv=2 87.8 70.9 75.6 59.5 88.6 70.8 75.6 59.9
m.-pcrf

L pGvan 89.8 74.5 78.9 62.5 89.8 74.5 78.9 62.4

f r
is

k
,α

pGv=2 89.8 74.3 79.1 63.0 89.8 74.3 79.1 63.0
t.-pcrf

L pGvan 90.2 76.6 80.5 62.4 89.9 76.4 80.4 61.6
pGv=2 90.2 76.6 80.5 63.1 89.9 76.4 80.4 62.2

puni
L pGvan 88.0 70.6 75.5 59.5 88.5 71.5 76.1 59.8

pGv=2 88.0 70.7 75.8 60.4 88.6 70.8 75.7 59.9
m.-pcrf

L pGvan
†91.1 75.6 80.4 64.0 90.9 74.8 79.3 62.9

pGv=2 90.9 75.4 80.5 †64.4 90.1 74.6 79.5 63.2

f v
a
ri

,α

t.-pcrf
L pGvan

†91.3 †77.7 †81.7 63.0 90.9 77.0 †81.3 62.6
pGv=2

†91.3 †77.6 †81.6 63.6 90.9 77.0 †81.3 63.6

Table 1: Results of experi-
ments on Hebrew (test data,
max. length 40). This table
shows the performance of
joint parsing (finite α; left)
and a pipeline (α → +∞;
right). Joint parsing with a non-
unigram morphology model
is too expensive (marked ∗).
Morphological analysis accu-
racy (by word), fine-grained
(full tags) and coarse-grained
(only parts of speech) POS
tagging accuracy (F1), and gen-
eralized constituent accuracy
(F1) are reported; α was tuned
for each of these separately.
Boldface denotes that figures
were significantly better than
their counterparts in the same
row, under a binomial sign test
(p < 0.05). † marks the best
overall accuracy and figures
that are not significantly worse
(binomial sign test, p < 0.05).

and as α → +∞ a morphology-first pipeline is
approached.

We measured four outcome values: segmentation
accuracy (fraction of word tokens segmented cor-
rectly), fine- and coarse-grained tagging accuracy,8

and parsing accuracy. For tagging and parsing, F1-
measures are given, according to the generalized
evaluation measure described in §5.1.

5.3 Results

Tab. 1 compares parsing with tuned α values to the
pipeline.

The best results were achieved using fvari,α, us-
ing the CRF and joint disambiguation. Without the
CRF (using puni

L ), the difference between the decod-
ing algorithms is less apparent, suggesting an inter-
action between the sophistication of the components
and the best way to decode with them. These re-
sults suggest that fvari,α, which permits pL to “veto”
any structure involving a morphological analysis for
any word that is a posteriori unlikely (note that

8Although the Hebrew Treebank is small, the size of its POS
tagset is large (four times larger than the Penn Treebank), be-
cause the tags encode morphological features (gender, person,
and number). These features have either been ignored in prior
work or encoded differently. In order for our POS-tagging fig-
ures to be reasonably comparable to previous work, we include
accuracy for coarse-grained tags (only the core part of speech)
tags as well as the detailed Hebrew Treebank tags.

log pL(~mi | ~x) can be an arbitrarily large negative
number), is beneficial as a “filter” on parses.9 frisk,α,
on the other hand, is only allowed to give “bonuses”
of up to α to each morphological analysis that pL

believes in; its influence is therefore weaker. This
result is consistent with the findings of Petrov et al.
(2007) for another approximate parsing task.

The advantage of the parent-annotated PCFG is
also more apparent when the CRF is used for mor-
phology, and when α is tuned. All other things
equal, then, pcrf

L led to higher accuracy all around.
Letting the CRF help predict the POS tags helped
tagging accuracy but not parsing accuracy.

While the gains over the pipeline are modest,
the segmentation, fine POS, and parsing accuracy
scores achieved by joint disambiguation with fvari,α

with the CRF are significantly better than any of the
pipeline conditions.

Interestingly, if we had not tested with the CRF,
we might have reached a very different conclusion
about the usefulness of tuning α as opposed to a
pipeline. With the unigram morphology model,
joint parsing frequently underperforms the pipeline,
sometimes even signficantly. The explanation, we

9Another way to describe this combination is to call it a
product of |~x|+1 experts: one for the morphological analysis of
each word, plus the grammar. The morphology experts (softly)
veto any analysis that is dubious based on surface criteria, and
the grammar (softly) vetoes less-grammatical parses.
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puni
L pGvan 90.7 73.4 78.5 64.3

pGv=2 90.2 73.0 78.5 64.9
m.-pcrf

L pGvan 90.7 75.4 80.0 65.2

f r
is

k
,α

pGv=2 90.8 75.1 80.2 65.4
t.-pcrf

L pGvan 91.2 78.1 82.4 65.7
pGv=2 91.1 78.0 82.2 66.2

puni
L pGvan 90.6 73.2 78.3 63.5

pGv=2 90.2 72.8 78.4 64.4
m.-pcrf

L pGvan 92.0 76.6 81.5 66.9
pGv=2 91.9 76.2 81.6 66.9

f v
a
ri

,α

t.-pcrf
L pGvan 91.8 79.1 83.2 66.5

pGv=2 91.7 78.7 83.0 67.4

Table 2: Oracle results of experiments on Hebrew (test data,
max. length 40). This table shows the performance of mor-
phological segmentation, part-of-speech tagging, coarse part-
of-speech tagging and parsing when using an oracle to select
the best α for each sentence. The notation and interpretation of
the numbers are the same as in Tab. 1.

believe, has to do with the ability of the unigram
model to estimate a good distribution over analy-
ses. While the unigram model is nearly as good
as the CRF at picking the right segmentation for a
word, joint parsing demands much more. In case
the best segmentation does not lead to a grammat-
ical morpheme sequence (under the syntax model),
the morphology model needs to be able to give rela-
tive strengths to the alternatives. The unigram model
is less able to do this, because it ignores the context
of the word, and so the benefit of joint parsing is lost.

Most commonly the tuned value of α is around
10 (not shown, to preserve clarity). Because of ig-
nored normalization constants, this does not mean
that morphology is “10× more important than syn-
tax,” but it does mean that, for a particular pL and
pG, tuning their relative importance in decoding can
improve accuracy. In Tab. 2 we show how perfor-
mance would improve if the oracle value of α was
selected for each test-set sentence; this further high-
lights the potential impact of perfecting the tradeoff
between models. Of course, selecting α automati-
cally at test-time, per sentence, is an open problem.

To our knowledge, the parsers we have described
represent the state-of-the-art in Modern Hebrew
parsing. The closest result is Tsarfaty (2006), which
we have not directly replicated. Tsarfaty’s model is
essentially a pipeline application of fpoe,∞ with a

grammar like pGvan . Her work focused more on the
interplay between the segmentation and POS tag-
ging models and the amount of information passed
to the parser. Some key differences preclude direct
comparison: we modeled fine-grained tags (though
we report both kinds of tagging accurcy), we em-
ployed a richer morphological lexicon (permitting
analyses that are not just segmentation), and a dif-
ferent training/test split and length filter (we used
longer sentences). Nonetheless, our conclusions
support the argument in Tsarfaty (2006) for more in-
tegrated parsing methods.

We conclude that tuning the relative importance
of the two models—rather than pipelining to give
one infinitely more importance—can provide an im-
provement on segmentation, tagging, and parsing
accuracy. This suggests that future parsing efforts
for languages with rich morphology might con-
tinue to assume separately-trained (and separately-
improved) morphology and syntax components,
which would stand to gain from joint decoding. In
our experiments, better morphological disambigua-
tion was crucial to getting any benefit from joint
decoding. Our result also suggests that exploring
new, fully-integrated models (and training methods
for them) may be advantageous.

6 Conclusion

We showed that joint morpho-syntactic parsing can
improve the accuracy of both kinds of disambigua-
tion. Several efficient parsing methods were pre-
sented, using factored state-of-the-art morphology
and syntax models for the language under considera-
tion. We demonstrated state-of-the-art performance
on and consistent improvements across many set-
tings for Modern Hebrew, a morphologically-rich
language with a relatively small treebank.
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Abstract 

This paper proposes a new bootstrapping 
approach to unsupervised part-of-speech 
induction. In comparison to previous 
bootstrapping algorithms developed for this 
problem, our  approach aims to improve 
the quality of the seed clusters by 
employing seed words that are both 
distributionally and morphologically 
reliable. In particular, we present a novel 
method for combining morphological and 
distributional information for seed 
selection. Experimental results demonstrate 
that our approach works well for English 
and Bengali, thus providing suggestive 
evidence that it is applicable to both 
morphologically impoverished languages 
and highly inflectional languages. 

1 Introduction 

The availability of a high-quality lexicon is crucial 
to the development of fundamental text-processing 
components such as part-of-speech (POS) taggers 
and syntactic parsers. While hand-crafted lexicons 
are readily available for resource-rich languages 
such as English, the same is not true for resource-
scarce languages. Unfortunately, manually 
constructing a lexicon requires a lot of linguistic 
expertise, and is practically infeasible for highly 
inflectional and agglutinative languages, which 
contain a very large number of lexical items. Given 
the scarcity of annotated data for acquiring the 
lexicon in a supervised manner, researchers have 
instead investigated unsupervised POS induction 
techniques for automating the lexicon construction 

process. In essence, the goal of unsupervised POS 
induction is to learn the set of possible POS tags 
for each lexical item from an unannotated corpus. 

 The most common approach to unsupervised 
POS induction to date has been motivated by Har-
ris’s (1954) distributional hypothesis: words with 
similar co-occurrence patterns should have similar 
syntactic behavior. More specifically, unsupervised 
POS induction algorithms typically operate by (1) 
representing each target word (i.e., a word to be 
tagged with its POS) as a context vector that en-
codes its left and right context, (2) clustering dis-
tributionally similar words, and (3) manually label-
ing each cluster with a POS tag by inspecting the 
members of the cluster. 

This distributional approach works under the as-
sumption that the context vector of each word en-
codes sufficient information for enabling accurate 
word clustering. However, many words are dis-
tributionally unreliable: due to data sparseness, 
they occur infrequently and hence their context 
vectors do not capture reliable statistical informa-
tion. To overcome this problem, Clark (2000) pro-
poses a bootstrapping approach, in which he (1) 
clusters the most distributionally reliable words, 
and then (2) incrementally augments each cluster 
with words that are distributionally similar to those 
already in the cluster. 

The goal of this paper is to propose a new boot-
strapping approach to unsupervised POS induction 
that can operate in a resource-scarce setting. Most 
notably, our approach aims to improve the quality 
of the seed clusters by employing seed words that 
are both distributionally and morphologically reli-
able. In particular, we present a novel method for 
combining morphological and distributional infor-
mation for seed selection. Furthermore, given our 
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emphasis on resource-scarce languages, our ap-
proach does not rely on any language resources. In 
particular, the morphological information that it 
exploits is provided by an unsupervised morpho-
logical analyzer.  

It is perhaps not immediately clear why morpho-
logical information would play a crucial role in the 
induction process, especially since the distribu-
tional approach has achieved considerable success 
for English POS induction (see Lamb (1961), 
Schütze (1995) and Clark (2000)). To understand 
the role and significance of morphology, it is im-
portant to first understand why the distributional 
approach works well for English. Recall from the 
above that the distributional approach assumes that 
the information encoded in the context vector of 
each word, which typically consists of the 250 
most frequent words of a given language, is suffi-
cient for accurately clustering the words. This ap-
proach works well for English because the most 
frequent English words are composed primarily of 
closed-class words such as “to” and “is”, which 
provide strong clues to the POS of the target word. 
However, this assumption is not necessarily valid 
for fairly free word order and highly inflectional 
languages such as Bengali. The reason is that (1) 
co-occurrence statistics collected from free word 
order languages are not as reliable as those from 
fixed word order languages; and (2) many of the 
closed-class words that appear in the context vec-
tor for English words are realized as inflections in 
Bengali. The absence of these highly informative 
words implies that the context vectors may no 
longer capture sufficient information for accurately 
clustering Bengali words, and hence the use of 
morphological information becomes particularly 
important for unsupervised POS induction for 
these inflectional languages.  

We will focus primarily on labeling open-class 
words with their POS tags. Our decision is moti-
vated by the fact that closed-class words generally 
comprise a small percentage of the lexical items of 
a language. In Bengali, the percentage of closed-
class words is even smaller than that in English: as 
mentioned before, many closed-class words in 
English are realized as suffixes in Bengali. 

Although our attempt to incorporate morpho-
logical information into the distributional POS in-
duction framework was originally motivated by 
inflectional languages, experimental results show 
that our approach works well for both English and 

Bengali, suggesting its applicability to both mor-
phologically impoverished languages and highly 
inflectional languages. Owing to the lack of pub-
licly available resources for Bengali, we manually 
created a 5000-word Bengali lexicon for evaluation 
purposes. Hence, one contribution of our work lies 
in the creation of an annotated dataset for Bengali. 
By making this dataset publicly available 1 , we 
hope to facilitate the comparison of different unsu-
pervised POS induction algorithms and to stimu-
late interest in Bengali language processing.  

The rest of the paper is organized as follows. 
Section 2 discusses related work on unsupervised 
POS induction. Section 3 describes our tagsets for 
English and Bengali. The next three sections de-
scribe the three steps of our bootstrapping ap-
proach: cluster the words using morphological in-
formation (Section 4), remove potentially misla-
beled words from each cluster (Section 5), and 
bootstrap each cluster using a weakly supervised 
learner (Section 6). Finally, we present evaluation 
results in Section 7 and conclusions in Section 8.  

2 Related Work 

Several unsupervised POS induction algorithms 
have also attempted to incorporate morphological 
information into the distributional framework, but 
our work differs from these in two respects.  
Computing morphological information. Previous 
POS induction algorithms have attempted to derive 
morphological information from dictionaries (Ha-
ji�, 2000) and knowledge-based morphological 
analyzers (Duh and Kirchhoff, 2006). However, 
these resources are generally not available for re-
source-scarce languages. Consequently, research-
ers have attempted to derive morphological infor-
mation heuristically (e.g., Cucerzan and Yarowsky 
(2000), Clark (2003), Freitag (2004)). For instance, 
Cucerzan and Yarowsky (2000) posit a character 
sequence x as a suffix if there exists a sufficient 
number of distinct words w in the vocabulary such 
that the concatentations wx are also in the vocabu-
lary.  It is conceivable that such heuristically com-
puted morphological information can be inaccurate, 
thus rendering the usefulness of a more accurate 
morphological analyzer. To address this problem, 
we exploit morphological information provided by 
an unsupervised word segmentation algorithm.   

                                                 
1 See http://www.utdallas.edu/~sajib/posDatasets.html. 
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Tag Description Treebank tags 
JJ Adjective JJ 
JJR Adjective, comparative JJR 
JJS Adjective, superlative JJS 
NN Singular noun NN, NNP 
NNS Plural noun NNS, NNPS 
RB Adverb RB 
VB Verb, non-3rd ps. sing. present VB, VBP 
VBD Verb, past tense or past participle VBD, VBN 
VBG Verb, gerund/present participle VBG 
VBZ Verb, 3rd ps. sing. present VBZ 

Table 1: The English tagset 
 
Using morphological information. Perhaps due to 
the overly simplistic methods employed to com-
pute morphological information, morphology has 
only been used as what Biemann (2006) called 
add-on’s in existing POS induction algorithms, 
which remain primarily distributional in nature. In 
contrast, our approach more tightly integrates mor-
phology into the distributional framework. As we 
will see, we train SVM classifiers using both mor-
phological and distributional features to select seed 
words for our bootstrapping algorithm, effectively 
letting SVM combine these two sources of infor-
mation and perform automatic feature weighting. 
Another appealing feature of our approach is that 
when labeling each unlabeled word with its POS 
tag, an SVM classifier also returns a numeric value 
that indicates how confident the word is labeled. 
This opens up the possibility of having a human 
improve our automatically constructed lexicon by 
manually checking those entries that are tagged 
with low confidence by an SVM classifier. 

Recently, there have been attempts to perform 
(mostly) unsupervised POS tagging without rely-
ing on a POS lexicon. Haghighi and Klein’s (2006) 
prototype-driven approach requires just a few pro-
totype examples for each POS tag, exploiting these 
labeled words to constrain the labels of their dis-
tributionally similar words when training a genera-
tive log-linear model for POS tagging. Smith and 
Eisner (2005) train a log-linear model for POS tag-
ging in an unsupervised manner using contrastive 
estimation, which seeks to move probability mass 
to a positive example e from its neighbors (i.e., 
negative examples created by perturbing e). 

3 The English and Bengali Tagsets 

Given our focus on automatically labeling open 
class words, our English and Bengali tagsets are 
designed  to essentially  cover  all of the open-class 

Tag Description Examples 
JJ Adjective vhalo, garam, kharap 
NN Singular noun kanna, ridoy, shoshon 
NN2 2nd order inflectional noun dhopake, kalamtike 
NN6 6th order inflectional noun gharer, manusher 
NN7 7th order inflectional noun dhakai, barite, graame 
NNP Proper noun arjun, ahmmad 
NNS Plural noun manushgulo, pakhider 
NNSH Noun ending with “sh” barish, jatrish 
VB Finite verb kheyechi, krlam, krI 
VBN Non-finite verb kre, giye, jete, kadte 

Table 2: The Bengali tagset 
 

words. Our English tagset, which is composed of 
ten tags, is shown in Table 1. As we can see, a tag 
in our tagset can be mapped to more than one Penn 
Treebank tags. For instance, we use the tag “NN” 
for both singular and plural common nouns. Our 
decision of which Penn Treebank tags to group 
together is based on that of Schütze (1995).  

Our Bengali tagset, which also consists of ten 
tags, is adapted from the one proposed by Saha et 
al. (2004) (see Table 2). It is worth noting that 
unlike English, we assign different tags to Bengali 
proper nouns and common nouns. The reason is 
that for English, it is not particularly crucial to dis-
tinguish the two types of nouns during POS induc-
tion, since they can be distinguished fairly easily 
using heuristics such as initial capitalization. For 
Bengali, such simple heuristics do not exist, as the 
Bengali alphabet does not have any upper and 
lower case letters. Hence, it is important to distin-
guish Bengali proper nouns and common nouns 
during POS induction. 

4 Clustering the Morphologically Similar 
Words 

As mentioned before, our approach aims to more 
tightly integrate morphological information into 
the distributional POS induction framework. In 
fact, our POS induction algorithm begins by clus-
tering the morphologically similar words (i.e., 
words that combine with the same set of suffixes). 
The motivation for clustering morphologically 
similar words can be attributed to our hypothesis 
that words having similar POS should combine 
with a similar set of suffixes. For instance, verbs in 
English combine with suffixes like “ing”, “ed” and 
“s”, whereas adjectives combine with suffixes like 
“er” and “est”. Note, however, that the suffix “s” 
can attach to both verbs and nouns in English, and 
so it is not likely to be a useful feature for identify-
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ing the POS of a word. The question, then, is how 
to determine which suffixes are useful for the POS 
identification task in an unsupervised setting where 
we do not have any prior knowledge of language-
specific grammatical constraints. This section pro-
poses a method for identifying the “useful” suf-
fixes and employing them to cluster the morpho-
logically similar words. As we will see, our clus-
tering algorithm not only produces soft clusters, 
but it also automatically determines the number of 
clusters for a particular language.   

Before we describe how to identify the useful 
suffixes, we need to (1) induce all of the suffixes 
and (2) morphologically segment the words in our 
vocabulary. 2  However, neither of these tasks is 
simple for a truly resource-scarce language for 
which we do not have a dictionary or a knowledge-
based morphological analyzer. As mentioned in the 
introduction, our proposed solution to both tasks is 
to use an unsupervised morphological analyzer that 
can be built just from an unannotated corpus. In 
particular, we have implemented an unsupervised 
morphological analyzer that outperforms Gold-
smith’s (2001) Linguistica and Creutz and Lagus’s 
(2005) Morfessor for our English and Bengali 
datasets and compares favorably to the best-
performing morphological parsers in MorphoChal-
lenge 20053 (see Dasgupta and Ng (2007)).  

Given the segmentation of each word and the 
most frequent 30 suffixes4 provided by our mor-
phological analyzer, our clustering algorithm oper-
ates by (1) clustering the similar suffixes and then 
(2) assigning words to each cluster based on the 
suffixes a word combines with. To cluster similar 
suffixes, we need to define the similarity between 
two suffixes. Informally, we say that two suffixes x 
and y are similar if a word that combines with x 
also combines with y and vice versa. In practice, 
we will rarely posit two suffixes as similar under 
this definition unless we assume access to a com-
plete vocabulary – an assumption that is especially 
unrealistic for resource-scarce languages. As a re-
sult, we relax this definition and consider two suf-
fixes x and y similar if P(x | y) > t and P(y | x) > t, 
where P(x | y) is the probability of a word combin-
ing with suffix x given that it combines with suffix 
                                                 
2 A vocabulary is simply a set of (distinct) words extracted 
from an unannotated corpus. We extracted our English and 
Bengali vocabulary from WSJ and Prothom Alo, respectively.  
3 http://www.cis.hut.fi/morphochallenge2005/ 
4 We found that 30 suffixes are sufficient to cluster the words. 

y, and t is a threshold that we set to 0.4 in all of our 
experiments. Note that both probabilities can be 
estimated from an unannotated corpus.5 Given this 
definition of similarity, we can cluster the similar 
suffixes using the following steps: 
Creating the initial clusters.  First, we create a 
suffix graph, in which we have (1) one node for 
each of the 30 suffixes, and (2) a directed edge 
from suffix x to suffix y if P(y | x) > 0.4. We then 
identify the strongly connected components of this 
graph using depth-first search. These strongly con-
nected components define our initial partitioning of 
the 30 suffixes. We denote the suffixes assigned to 
a cluster the primary keys of the cluster.   
Improving the initial clusters. Recall that we 
ultimately want to cluster the words by assigning 
each word w to the cluster in which w combines 
with all of its primary keys. Given this goal, it is 
conceivable that singleton clusters are not 
desirable. For instance, a cluster that has “s” as its 
only primary key is not useful, because although a 
lot of words combine with “s”, they do not 
necessarily have the same POS. As a result, we 
improve each initial cluster by adding more 
suffixes to the cluster, in hopes of improving the 
resulting clustering of the words by placing 
additional constraints on each cluster. More 
specifically, we add a suffix y to a cluster c if, for 
each primary key x of c, P(y | x) > 0.4. If this 
condition is satisfied, then y becomes a secondary 
key of c. For each initial cluster c’, we perform this 
check using each of the suffixes x’ not in c’ to see 
if x’ can be added to c’. If, after this expansion 
step, we still have a cluster c* defined by a single 
primary key x that also serves as a secondary key 
in other clusters, then x is probably ambiguous 
(i.e., x can probably attach to words belonging to 
different POSs); and consequently, we remove c*. 
We denote the resulting set of clusters by C. 
Populating the clusters with words. Next, for 
each word w in our vocabulary, we check whether 
w can be assigned to any of the clusters in C. Spe-
cifically, we assign w to a cluster c if w can com-
bine with each of its primary keys and at least half 
of its secondary keys.  
Labeling and merging the clusters. After popu-
lating each cluster with words, we manually label 

                                                 
5 For instance, we compute P(x | y) as the ratio of the number 
of distinct words that combines with both x and y to the num-
ber of distinct words that combine with y only. 
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each of them with a POS tag from the tagset. We 
found that all of the clusters are labeled as NN, 
VB, or JJ. The reason is that the clustered words 
are mostly root words. We then merge all the clus-
ters labeled with the same POS tag, yielding only 
three “big” clusters. Note that these “big” clusters 
are soft clusters, since a word can belong to more 
than one of them. For instance, “cool” can combine 
with “s” or “ing” to form a VB, and it can also 
combine with “er” or “est” to form a JJ. 
Generating sub-clusters. Recall that each “big” 
cluster contains a set of suffixes and also a set of 
words that combines with those suffixes. Now, for 
each “big” cluster c, we create one sub-cluster cx 
for each suffix x that appears in c. Then, for each 
word w in c, we use our unsupervised morphologi-
cal analyzer to generate w+x and add the surface 
form to the corresponding sub-cluster. 
Labeling the sub-clusters. Finally, we manually 
label each sub-cluster with a POS tag from our 
tagset. For example, all the words ending in “ing” 
will be labeled as VBG. As before, we merge two 
clusters if they are labeled with the same POS tag. 
The resulting clusters are our morphologically 
formed clusters. 

5 Purifying the Seed Set 

The clusters formed thus far cannot be expected to 
be perfectly accurate, since (1) our unsupervised 
morphological analyzer is not perfect, and (2) 
morphology alone is not always sufficient for de-
termining the POS of a word. In fact, we found that 
many adjectives are mislabeled as nouns for both 
languages. For instance, “historic” is labeled as a 
noun, since it combines with suffixes like “al” and 
“ally” that “accident” combines with. In addition, 
many words are labeled with the POS that does not 
correspond to their most common word sense. For 
instance, while words like “chair”, “crowd” and 
“cycle” are more commonly used as nouns than 
verbs, they are labeled as verbs by our clustering 
algorithm. The reason is that suffixes that typically 
attach to verbs (e.g., “s”, “ed”, “ing”) also attach to 
these words. Such labelings, though not incorrect, 
are undesirable, considering the fact that these 
words are to be used as seeds to bootstrap our mor-
phologically formed clusters in a distributional 
manner. For instance, since “chair” and “crowd” 
are distributionally similar to nouns, their presence 
in the verb clusters can potentially contaminate the 

clusters with nouns during the bootstrapping proc-
ess. Hence, for the purpose of effective bootstrap-
ping, we also consider these words “mislabeled”.  

To identify the words that are potentially misla-
beled, we rely on the following assumption: words 
that are morphologically similar should also be 
distributionally similar and vice versa. Based on 
this assumption, we propose a purification method 
that posits a word w as potentially mislabeled (and 
therefore should be removed or relabeled) if the 
POS of w as predicted using distributional infor-
mation differs from that as determined by mor-
phology. 

The question, then, is how to predict the POS 
tag of a word using distributional information? Our 
idea is to use “supervised” learning, where we train 
and test on the seed set. Conceptually, we (1) train 
a multi-class classifier on the morphologically la-
beled words, each of which is represented by its 
context vector, and (2) apply the classifier to rela-
bel the same set of words. If the new label of a 
word w differs from its original label, then mor-
phology and context disagree upon the POS of w; 
and as mentioned above, our method then deter-
mines that the word is potentially misclassified. 
Note, however, that (1) the training instances are 
not perfectly labeled and (2) it does not make sense 
to train a classifier on data that is seriously misla-
beled. Hence, we make the assumption that a large 
percentage (> 70%) of the training instances is cor-
rectly labeled6, and that our method would work 
with a training set labeled at this level of accuracy. 
In addition, since we are training a classifier based 
on distributional features, we train and test on only 
distributionally reliable words, which we define to 
be words that appear at least five times in our cor-
pus. Distributionally unreliable words will all be 
removed from the morphologically formed clus-
ters, since we cannot predict their POS using dis-
tributional information.  

In our implementation of this method, rather 
than train a multi-class classifier, we train a set of 
binary classifiers using SVMlight (Joachims, 1999) 
together with the distributional features for deter-
mining the POS tag of a given word.7 More spe-
cifically, we train one classifier for each pair of 

                                                 
6 An inspection of the morphologically formed clusters reveals 
that this assumption is satisfied for both languages. 
7 In this and all subsequent uses of SVMlight, we set all the 
training parameters to their default values. 
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POS tags. For instance, since we have ten POS 
tags for English, we will train 45 binary classifi-
ers.8 To determine the POS tag of a given English 
word w, we will use these 45 pairwise classifiers to 
independently assign a label to w. For instance, the 
NN-JJ classifier will assign either NN or JJ to w. 
We then count how many times w is tagged with 
each of the ten POS tags. If there is a POS tag t 
whose count is nine, it means that all the nine clas-
sifiers associated with t have classified w as t, and 
so our method will label w as t. Otherwise, we re-
move w from our seed set, since we cannot confi-
dently label it using our classifier ensemble. 

To create the training set for the NN-JJ classi-
fier, for instance, we can possibly use all of the 
words labeled with NN and JJ as positive and 
negative instances, respectively. However, to en-
sure that we do not have a skewed class distribu-
tion, we use the same number of instances from 
each class to train the classifier. More formally, let 
INN be the set of instances labeled with NN, and IJJ 
be the set of instances labeled with JJ. Without loss 
of generality, assume that |INN| < |IJJ|, where |X| de-
notes the size of the set X. To avoid class skew-
ness, we have to sample from IJJ, since it is the lar-
ger set. Our sampling method is motivated by bag-
ging (Breiman, 1996). More specifically, we create 
10 training sets from IJJ, each of which has size 
|INN| and is formed by sampling with replacement 
from IJJ. We then combine each of these 10 train-
ing sets separately with INN, and train 10 SVM 
classifiers from the 10 resulting training sets. 
Given a test instance i, we first apply the 10 classi-
fiers independently to i and obtain the signed con-
fidence values9 of the predictions provided by the 
classifiers. We then take the average of the 10 con-
fidence values, assigning i the positive class if the 
average is at least 0, and negative otherwise.   

As mentioned above, we use distributional fea-
tures to represent an instance created from a word 
w. The distributional features are created based on 
Schütze’s (1995) method. Specifically, the left 
context and the right context of w are each encoded 
using the most frequent 500 words from the vo-
cabulary. A feature in the left (right) context has 
                                                 
8 We could have trained just one 10-class classifier, but the 
fairly large number of classes leads us to speculate that this 
multi-class classifier will not achieve a high accuracy. 
9  Here, a large positive number indicates that the classifier 
confidently labels the instance as NN, and a large negative 
number represents confident prediction for JJ. 

the value 1 if the corresponding word appears to 
the left (right) of w in our corpus, and 0 otherwise. 
However, we found that using distributional fea-
tures alone would erroneously classify words like 
“car” and “cars” as having the same POS because 
the two words are distributionally similar. In gen-
eral, it is difficult to distinguish words in NN from 
those in NNS by distributional means. The same 
problem occurs for words in VB and VBD. To ad-
dress this problem, we augment the feature set with 
suffixal features. Specifically, we create one binary 
feature for each of the 30 most frequent suffixes 
that we employed in the previous section. The fea-
ture corresponding to suffix x has the value 1 if x is 
the suffix of w. Moreover, we create an additional 
suffixal feature whose value is 1 if none of the 30 
most frequent suffixes is the suffix of w.  

6 Augmenting the Seed Set 

After purification, we have a set of clusters filled 
with distributionally and morphologically reliable 
seed words that receive the same POS tag when 
predicted independently by morphological features 
and distributional features. Our goal in this section 
is to augment this seed set. Since we have a small 
seed set (5K words for English and 8K words for 
Bengali) and a large number of unlabeled words, 
we believe that it is most natural to apply a weakly 
supervised learning algorithm to bootstrap the clus-
ters. Specifically, we employ a version of self-
training together with SVM as the underlying 
learning algorithm. 10  Below we first present the 
high-level idea of our self-training algorithm and 
then discuss the implementation details. 

Conceptually, our self-training algorithm works 
as follows. We first train a multi-class SVM classi-
fier on the seed set for determining the POS tag of 
a word using the morphological and distributional 
features described in the previous section, and then 
apply it to label the unlabeled (i.e., unclustered) 
words. Words that are labeled with a confidence 
value that exceeds the current threshold (which is 
initially set to 1 and -1 for positively and nega-
tively labeled instances, respectively) will be 

                                                 
10 As a related note, Clark’s (2001) bootstrapping algorithm 
uses KL-divergence to measure the distributional similarity 
between an unlabeled word and a labeled word, adding to a 
cluster the words that are most similar to its current member. 
For us, SVM is a more appealing option because it automati-
cally combines the morphological and distributional features. 
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added to the seed set.  In the next iteration, we re-
train the classifier on the augmented labeled data, 
apply it to the unlabeled data, and add to the la-
beled data those instances whose predicted confi-
dence is above the current threshold. If none of the 
instances has a predicted confidence above the cur-
rent threshold, we reduce the threshold by 0.1. (For 
instance, if the original thresholds are 1 and -1, 
they will be changed to 0.9 and -0.9.) We then re-
peat the above procedure until the thresholds reach 
0.5 and -0.5. 11  Finally, we apply the resulting 
bootstrapped classifier to label all of the unlabeled 
words that have a corpus frequency of at least five, 
using a threshold of 0. 

In our implementation of the self-training algo-
rithm, rather than train a multi-class classifier in 
each bootstrapping iteration, we train pairwise 
classifiers (recall that for English, 45 classifiers are 
formed from 10 POS tags) using the morphological 
and distributional features described in the previ-
ous section. Again, since we employ distributional 
features, we apply the 45 pairwise classifiers only 
to the distributionally reliable words (i.e., words 
with corpus frequency at least 5). To classify an 
unlabeled word w, we apply the 45 pairwise classi-
fiers to independently assign a label to w.12  We 
then count how many times w is tagged with each 
of the ten POS tags. If there is a POS tag whose 
count is nine and all of these nine votes are associ-
ated with confidence that exceeds the current 
threshold, then we add w to the labeled data to-
gether with its assigned tag.  

7 Evaluation 

7.1 Experimental Setup 

Corpora. Recall that our bootstrapping algorithm 
assumes as input an unannotated corpus from 
which we (1) extract our vocabulary (i.e., the set of 
words to be labeled) and (2) collect the statistics 
needed in morphological and distributional cluster-
                                                 
11 We decided to stop the bootstrapping procedure at thresh-
olds of 0.5 and -0.5, because the more bootstrapping iterations 
we use, the lower are the quality of the bootstrapped data as 
well as the accuracy of the bootstrapped classifier.  
12 As in purification, each pairwise classifier is implemented 
as a set of 10 classifiers, each of which is trained on an equal 
number of instances from both classes. Testing also proceeds 
as before: the label of an instance is derived from the average 
of the confidence values returned by the 10 classifiers, and the 
confidence value associated with the label is just the average 
of the 10 confidence values. 

ing. We use as our English corpus the Wall Street 
Journal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993). Our Bengali corpus is composed 
of five years of articles taken from the Bengali 
newspaper Prothom Alo.  
Vocabulary creation. To extract our English vo-
cabulary, we pre-processed each document in the 
WSJ corpus by first tokenizing them and then re-
moving the most frequent 500 words (as they are 
mostly closed class words), capitalized words, 
punctuations, numbers, and unwanted character 
sequences (e.g., “***”). The resulting English vo-
cabulary consists of approximately 35K words. We 
applied similar pre-processing steps to the Prothom 
Alo articles to generate our Bengali vocabulary, 
which consists of 80K words. 
Test set preparation. Our English test set is com-
posed of the 25K words in the vocabulary that ap-
pear at least five times in the WSJ corpus.  The 
gold-standard POS tags for each word w are de-
rived automatically from the parse trees in which w 
appears. To create the Bengali test set, we ran-
domly chose 5K words from the vocabulary that 
appear at least five times in Prothom Alo. Each 
word in the test set was then labeled with its POS 
tags by two of our linguists. 
Evaluation metric. Following Schütze (1995), we 
report performance in terms of recall, precision, 
and F1. Recall is the percentage of POS tags cor-
rectly proposed, precision is the percentage of POS 
tags proposed that are correct, and F1 is simply the 
harmonic mean of recall and precision. To exem-
plify, suppose the correct tagset for “crowd” is 
{NN, VB}; if our system outputs {VB, JJ, RB}, 
then recall is 50%, precision is 33%, and F1 is 
40%.  Importantly, all of our results will be re-
ported on word types. This prevents the frequently 
occurring words from having a higher influence on 
the results than their infrequent counterparts. 

7.2 Results and Discussion 

The baseline system. We use as our baseline sys-
tem one of the best existing unsupervised POS in-
duction algorithms (Clark, 2003). More specifi-
cally, we downloaded from Clark’s website13 the 
code that implements a set of POS induction algo-
rithms he proposed. Among these implementa-
tions, we chose cluster_neyessenmorph, which 
combines morphological and distributional infor-
                                                 
13 http://www.cs.rhul.ac.uk/home/alexc/ 
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mation and achieves the best performance in his 
paper. When running his program, we use WSJ and 
Prothom Alo as the input corpora. In addition, we 
set the number of clusters produced to be 128, 
since this setting yields the best result in his paper. 
Results of the baseline system for the English and 
Bengali test sets are shown under the “After Boot-
strapping” column in row 1 of Tables 3 and 4. As 
we can see, the baseline achieves F1-scores of 59% 
and 45% for English and Bengali, respectively. 
The other results in row 1 will be discussed below. 
Our induction system. Recall that our unsuper-
vised POS induction algorithm operates in three 
steps. To better understand the performance con-
tribution of each of these steps, we show in row 2 
of Tables 3 and 4 the results of our system after we 
(1) morphologically cluster the words, (2) purify 
the seed set, and (3) augment the seed set. Impor-
tantly, the numbers shown for each step are com-
puted over the set of words in the test set that are 
labeled at the end of that step. For instance, the 
morphological clustering algorithm labeled 11K 
English words and 25K Bengali words, and so re-
call, precision and F1-score are computed over the 
subset of these labeled words that appear in the test 
set. Similarly, after bootstrapping, all the words 
that appear at least five times in our corpus are la-
beled; since our labeled data is now a superset of 
our test data, the numbers in the last column are 
the results of our algorithm for the entire test set.  

As we can see, after morphological clustering, 
our system achieves F1-scores of 79% and 78% for 
English and Bengali, respectively. When measured 
on exactly the same set of words, the baseline only 
achieves F-scores of 59% and 56%. In fact, com-
paring rows 1 and 2, we outperform the baseline in 
each of the three steps of our algorithm. In particu-
lar, our system yields F1-scores of 73% and 77% 
for the entire English and Bengali test sets, thus 
outperforming the baseline by 14% and 18% for 
English and Bengali, respectively.  

Two additional points deserve mentioning. First, 
for both languages, the highest F1-score is 
achieved after the purification step. A closer analy-
sis of the labeled words reveals the reason. For 
English, many of the nouns incorrectly labeled as 
verbs by the morphological clustering algorithm 
were subsequently removed during the purification 
step when distributional similarity was used on top 
of morphological similarity. For Bengali, many 
proper nouns were assigned by the morphological 

clustering algorithm to the clusters dominated by 
common nouns (because the two types of Bengali 
nouns are morphologically similar), and many of 
these mislabeled proper nouns were subsequently 
removed during purification. Second, as expected, 
precision drops after the seed augmentation step, 
since the quality of the labeled data deteriorates as 
bootstrapping progresses. Nevertheless, with a lot 
more words labeled in the bootstrapping step, we 
still achieve F1-scores of 73% for English and 76% 
for Bengali.  

The remaining rows of the Tables 3 and 4 show 
the performance of our algorithm for each tag in 
our two POS tagsets. Different observations can be 
made for the two languages. For English, the poor 
results for VBZ and NNS can be attributed to the 
fact that it is not easy to distinguish between these 
two tags: “s” is a typical suffix for words that are 
NNS and words that are the third person singular 
of a verb. In addition, results for verbs are better 
than those for nouns, since verbs are easier to iden-
tify using only morphological knowledge. 

For Bengali, results for adjectives are not good, 
since (1) adjectives and nouns have very similar 
distributional property in Bengali and (2) there are 
not enough suffixes to induce the adjectives mor-
phologically. Moreover, we achieve high precision 
but low recall for proper nouns. This implies that 
most of the words that our algorithm labels as 
proper nouns are indeed correct, but there are also 
many proper nouns that are mislabeled. A closer 
examination of the clusters reveals that many of 
these proper nouns are mislabeled as common 
nouns, presumably because these two types of 
Bengali nouns are morphologically and distribu-
tionally similar and therefore it is difficult to sepa-
rate them. We will leave the identification of Ben-
gali proper nouns as a topic for future research.   

7.3 Additional Experiments 

Labeling rare words with morphological infor-
mation. Although our discussion thus far has fo-
cused on words whose corpus frequency is at least 
five, it would be informative to examine how well 
our algorithm performs on rare, distributionally 
unreliable words (i.e., words with corpus fre-
quency less than five). Recall that our morphologi-
cal clustering algorithm also clusters rare words. In 
fact, these rare words comprise 15% of the English 
words and 18% of the Bengali words in our mor-
phological formed clusters. Perhaps more impor-
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After Morphological Clustering After Purification After Bootstrapping  
P R F1 P R F1 P R F1 

Baseline 84.1 45.3 58.9 84.9 51.4 64.1 75.6 48.0 59.0 
Ours 85.9 74.0 79.4 89.3 74.4 81.7 80.4 66.8 73.1 
JJ 88.7 49.1 63.2 91.4 51.9 66.1 57.7 62.9 60.2 
JJR 91.1 86.2 88.6 92.1 92.0 92.0 62.1 83.1 71.0 
JJS 100 98.3 99.1 100 100 100 81.3 86.9 83.9 
NN 91.6 43.7 59.2 94.8 42.8 58.8 95.2 47.1 62.8 
NNS 90.6 39.2 53.5 93.5 41.3 57.2 96.6 44.7 60.9 
RB 100 76.1 86.4 100 82.2 90.6 98.8 63.5 77.3 
VB 74.0 97.7 84.1 79.8 96.0 87.1 65.7 92.8 76.9 
VBD 96.6 98.9 97.7 97.6 100 98.8 96.7 91.9 93.3 
VBG 89.9 100 94.7 91.1 100 95.7 90.8 93.5 92.1 
VBZ 60.9 99.9 74.7 65.1 96.8 77.7 52.8 92.6 67.3 

Table 3: POS induction results for English based on word type 
 

After Morphological Clustering After Purification After Bootstrapping  
P R F1 P R F1 P R F1 

Baseline 82.1 42.3 55.5 83.1 45.3 58.3 78.1 43.3 49.3 
Ours 74.1 81.3 77.5 83.4 78.0 80.7 74.1 79.2 76.6 
JJ 50.0 51.8 50.9 56.1 55.0 55.5 57.5 51.4 54.3 
NN 63.0 96.8 76.4 67.0 96.0 78.9 62.2 92.2 74.3 
NN2 96.3 100 98.1 99.0 100 99.5 99.0 99.0 99.0 
NN6 95.5 89.2 92.2 97.2 90.0 93.9 97.1 91.0 93.9 
NN7 88.4 94.1 89.7 92.1 99.2 93.1 90.1 78.7 84.1 
NNP 87.2 37.3 52.3 92.8 43.8 59.4 92.7 51.5 66.1 
NNS 62.7 93.1 75.0 66.8 93.5 77.9 65.2 94.1 77.1 
NNSH 91.0 100 95.6 91.0 100 95.7 91.0 100 95.7 
VB 68.9 93.0 79.2 77.0 94.6 84.9 73.9 91.8 81.9 
VBN 84.3 49.1 62.1 82.4 50.1 62.9 56.1 46.7 50.1 

Table 4: POS induction results for Bengali based on word type
 
tantly, when measuring performance on just these 
morphologically clustered rare words, our algo-
rithm achieves F1-scores of 81% and 79% for Eng-
lish and Bengali, respectively. These results pro-
vide empirical support for the claim that morpho-
logical information can be usefully employed to 
label rare words (Clark, 2003). 
Soft clustering. Many words have more than one 
POS tag. For instance, “received” can be labeled as 
VBD and JJ. Although our morphological cluster-
ing algorithm can predict some of these ambigui-
ties, those are at the “big” cluster level. At the sub-
cluster level, the algorithm imposes a hard cluster-
ing on the words. In other words, no word appears 
in more than one sub-cluster. 

Ideally, a POS induction algorithm should pro-
duce soft clusters due to lexical ambiguity. In fact, 
Jardino and Adda (1994), Schütze (1997) and 
Clark (2000) have attempted to address the ambi-
guity problem to a certain extent. We have also 
experimented with a very simple method for han-
dling ambiguity in our bootstrapping algorithm: 
when augmenting the seed set, instead of labeling a  

 
word with a tag that receives 9 votes from the 45 
pairwise classifiers, we label a word with any tag 
that receives at least 8 votes, effectively allowing 
the assignment of more than one label to a word. 
However, our experimental results (not shown due 
to space limitations) indicate that the incorporation 
of this method does not yield better overall per-
formance, since many of the additional labels are 
erroneous and hence their presence deteriorates the 
quality of the bootstrapped data.  

8 Conclusions 

We have proposed a new bootstrapping algorithm 
for unsupervised POS induction. In contrast to ex-
isting algorithms developed for this problem, our 
algorithm is designed to (1) operate under a re-
source-scarce setting in which no language-
specific tools or resources are available and (2) 
more tightly integrate morphological information 
with the distributional POS induction framework. 
In particular, our algorithm (1) improves the qual-
ity of the seed clusters by employing seed words 
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that are distributionally and morphologically reli-
able and (2) uses support vector learning to com-
bine morphological and distributional information. 
Our results show that it outperforms Clark’s algo-
rithm for English and Bengali, suggesting that it is 
applicable to both morphologically impoverished 
and highly inflectional languages.  
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Abstract

We introduce a relation extraction method to
identify the sentences in biomedical text that
indicate an interaction among the protein
names mentioned. Our approach is based on
the analysis of the paths between two protein
names in the dependency parse trees of the
sentences. Given two dependency trees, we
define two separate similarity functions (ker-
nels) based on cosine similarity and edit dis-
tance among the paths between the protein
names. Using these similarity functions, we
investigate the performances of two classes
of learning algorithms, Support Vector Ma-
chines and k-nearest-neighbor, and the semi-
supervised counterparts of these algorithms,
transductive SVMs and harmonic functions,
respectively. Significant improvement over
the previous results in the literature is re-
ported as well as a new benchmark dataset
is introduced. Semi-supervised algorithms
perform better than their supervised ver-
sion by a wide margin especially when the
amount of labeled data is limited.

1 Introduction

Protein-protein interactions play an important role
in vital biological processes such as metabolic and
signaling pathways, cell cycle control, and DNA
replication and transcription (Phizicky and Fields,
1995). A number of (mostly manually curated)
databases such as MINT (Zanzoni et al., 2002),
BIND (Bader et al., 2003), and SwissProt (Bairoch

and Apweiler, 2000) have been created to store pro-
tein interaction information in structured and stan-
dard formats. However, the amount of biomedical
literature regarding protein interactions is increas-
ing rapidly and it is difficult for interaction database
curators to detect and curate protein interaction in-
formation manually. Thus, most of the protein in-
teraction information remains hidden in the text of
the papers in the biomedical literature. Therefore,
the development of information extraction and text
mining techniques for automatic extraction of pro-
tein interaction information from free texts has be-
come an important research area.

In this paper, we introduce an information extrac-
tion approach to identify sentences in text that in-
dicate an interaction relation between two proteins.
Our method is different than most of the previous
studies (see Section 2) on this problem in two as-
pects: First, we generate the dependency parses of
the sentences that we analyze, making use of the
dependency relationships among the words. This
enables us to make more syntax-aware inferences
about the roles of the proteins in a sentence com-
pared to the classical pattern-matching information
extraction methods. Second, we investigate semi-
supervised machine learning methods on top of the
dependency features we generate. Although there
have been a number of learning-based studies in this
domain, our methods are the first semi-supervised
efforts to our knowledge. The high cost of label-
ing free text for this problem makes semi-supervised
methods particularly valuable.

We focus on two semi-supervised learning meth-
ods: transductive SVMs (TSVM) (Joachims, 1999),
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and harmonic functions (Zhu et al., 2003). We also
compare these two methods with their supervised
counterparts, namely SVMs andk-nearest neigh-
bor algorithm. Because of the nature of these al-
gorithms, we propose two similarity functions (ker-
nels in SVM terminology) among the instances of
the learning problem. The instances in this problem
are natural language sentences with protein names in
them, and the similarity functions are defined on the
positions of the protein names in the corresponding
parse trees. Our motivating assumption is that the
path between two protein names in a dependency
tree is a good description of the semantic relation
between them in the corresponding sentence. We
consider two similarity functions; one based on the
cosine similarity and the other based on the edit dis-
tance among such paths.

2 Related Work

There have been many approaches to extract pro-
tein interactions from free text. One of them is
based on matching pre-specified patterns and rules
(Blaschke et al., 1999; Ono et al., 2001). How-
ever, complex cases that are not covered by the
pre-defined patterns and rules cannot be extracted
by these methods. Huanget al. (2004) proposed a
method where patterns are discovered automatically
from a set of sentences by dynamic programming.
Bunescuet al. (2005) have studied the performance
of rule learning algorithms. They propose two meth-
ods for protein interaction extraction. One is based
on the rule learning method Rapier and the other
on longest common subsequences. They show that
these methods outperform hand-written rules.

Another class of approaches is using more syntax-
aware natural language processing (NLP) tech-
niques. Both full and partial (shallow) parsing
strategies have been applied in the literature. In
partial parsing the sentence structure is decomposed
partially and local dependencies between certain
phrasal components are extracted. An example of
the application of this method is relational parsing
for the inhibition relation (Pustejovsky et al., 2002).
In full parsing, however, the full sentence structure
is taken into account. Temkin and Gilder (2003)
used a full parser with a lexical analyzer and a con-
text free grammar (CFG) to extract protein-protein

interaction from text. Another study that uses full-
sentence parsing to extract human protein interac-
tions is (Daraselia et al., 2004). Alternatively,
Yakushiji et al. (2005) propose a system based on
head-driven phrase structure grammar (HPSG). In
their system protein interaction expressions are pre-
sented as predicate argument structure patterns from
the HPSG parser. These parsing approaches con-
sider only syntactic properties of the sentences and
do not take into account semantic properties. Thus,
although they are complicated and require many re-
sources, their performance is not satisfactory.

Machine learning techniques for extracting pro-
tein interaction information have gained interest in
the recent years. The PreBIND system uses SVM to
identify the existence of protein interactions in ab-
stracts and uses this type of information to enhance
manual expert reviewing for the BIND database
(Donaldson et al., 2003). Words and word bigrams
are used as binary features. This system is also
tested with the Naive Bayes classifier, but SVM is
reported to perform better. Mitsumoriet al. (2006)
also use SVM to extract protein-protein interac-
tions. They use bag-of-words features, specifically
the words around the protein names. These sys-
tems do not use any syntactic or semantic informa-
tion. Sugiyamaet al. (2003) extract features from
the sentences based on the verbs and nouns in the
sentences such as the verbal forms, and the part of
speech tags of the 20 words surrounding the verb
(10 before and 10 after it). Further features are used
to indicate whether a noun is found, as well as the
part of speech tags for the 20 words surrounding
the noun, and whether the noun contains numeri-
cal characters, non-alpha characters, or uppercase
letters. They construct k-nearest neighbor, decision
tree, neural network, and SVM classifiers by using
these features. They report that the SVM classifier
performs the best. They use part-of-speech informa-
tion, but do not consider any dependency or seman-
tic information.

The paper is organized as follows. In Section 3 we
describe our method of extracting features from the
dependency parse trees of the sentences and defin-
ing the similarity between two sentences. In Section
4 we discuss our supervised and semi-supervised
methods. In Section 5 we describe the data sets and
evaluation metrics that we used, and present our re-
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sults. We conclude in Section 6.

3 Sentence Similarity Based on
Dependency Parsing

In order to apply the semi-supervised harmonic
functions and its supervised counterpart kNN, and
the kernel based TSVM and SVM methods, we need
to define a similarity measure between two sen-
tences. For this purpose, we use the dependency
parse trees of the sentences. Unlike a syntactic parse
(which describes the syntactic constituent structure
of a sentence), the dependency parse of a sentence
captures the semantic predicate-argument relation-
ships among its words. The idea of using depen-
dency parse trees for relation extraction in general
was studied by Bunescu and Mooney (2005a). To
extract the relationship between two entities, they
design a kernel function that uses the shortest path in
the dependency tree between them. The motivation
is based on the observation that the shortest path be-
tween the entities usually captures the necessary in-
formation to identify their relationship. They show
that their approach outperforms the dependency tree
kernel of Culotta and Sorensen (2004), which is
based on the subtree that contains the two entities.
We adapt the idea of Bunescu and Mooney (2005a)
to the task of identifying protein-protein interaction
sentences. We define the similarity between two
sentences based on the paths between two proteins
in the dependency parse trees of the sentences.

In this study we assume that the protein names
have already been annotated and focus instead on
the task of extracting protein-protein interaction sen-
tences for a given protein pair. We parse the sen-
tences with the Stanford Parser1 (de Marneffe et al.,
2006). From the dependency parse trees of each sen-
tence we extract the shortest path between a protein
pair.

For example, Figure 1 shows the dependency tree
we got for the sentence “The results demonstrated
that KaiC interacts rhythmically with KaiA, KaiB,
and SasA.” This example sentence illustrates that
the dependency path between a protein pair captures
the relevant information regarding the relationship
between the proteins better compared to using the
words in the unparsed sentence. Consider the pro-

1http://nlp.stanford.edu/software/lex-parser.shtml

tein pair KaiC and SasA. The words in the sentence
between these proteins areinteracts, rhythmically,
with, KaiA, KaiB, and and. Among these words
rhythmically, KaiA, andand KaiB are not directly
related to the interaction relationship between KaiC
and SasA. On the other hand, the words in the depen-
dency path between this protein pair give sufficient
information to identify their relationship.

In this sentence we have four proteins (KaiC,
KaiA, KaiB, and SasA). So there are six pairs of
proteins for which a sentence may or may not be de-
scribing an interaction. The following are the paths
between the six protein pairs. In this example there
is a single path between each protein pair. However,
there may be more than one paths between a pro-
tein pair, if one or both appear multiple times in the
sentence. In such cases, we select the shortest paths
between the protein pairs.

ccomp

prep_with

results interacts

The

KaiA KaiB

rhytmically SasAthat KaiC

demonstrated

nsubj

complm nsubj
advmod

conj_and conj_and

det

Figure 1: The dependency tree of the sentence “The
results demonstrated that KaiC interacts rhythmi-
cally with KaiA, KaiB, and SasA.”

1. KaiC - nsubj - interacts - prepwith - SasA

2. KaiC - nsubj - interacts - prepwith - SasA - conjand -
KaiA

3. KaiC - nsubj - interacts - prepwith – SasA - conjand -
KaiB

4. SasA - conjand - KaiA

5. SasA - conjand - KaiB

6. KaiA – conj and – SasA - conjand - KaiB

If a sentence containsn different proteins, there
are

(

n
2

)

different pairs of proteins. We use machine
learning approaches to classify each sentence as an
interaction sentence or not for a protein pair. A sen-
tence may be an interaction sentence for one protein

230



pair, while not for another protein pair. For instance,
our example sentence is a positive interaction sen-
tence for theKaiC andSasAprotein pair. However,
it is a negative interaction sentence for theKaiA and
SasAprotein pair, i.e., it does not describe an inter-
action between this pair of proteins. Thus, before
parsing a sentence, we make multiple copies of it,
one for each protein pair. To reduce data sparseness,
we rename the proteins in the pair asPROTX1and
PROTX2, and all the other proteins in the sentence
asPROTX0. So, for our example sentence we have
the following instances in the training set:

1. PROTX1- nsubj - interacts - prepwith - PROTX2

2. PROTX1 - nsubj - interacts - prepwith - PROTX0 -
conj and -PROTX2

3. PROTX1- nsubj - interacts - prepwith – PROTX0-
conj and -PROTX2

4. PROTX1- conj and -PROTX2

5. PROTX1- conj and -PROTX2

6. PROTX1– conj and –PROTX0- conj and -PROTX2

The first three instances are positive as they describe
an interaction betweenPROTX1andPROTX2. The
last three are negative, as they do not describe an
interaction betweenPROTX1andPROTX2.

We define the similarity between two instances
based on cosine similarity and edit distance based
similarity between the paths in the instances.

3.1 Cosine Similarity

Supposepi andpj are the paths betweenPROTX1
andPROTX2in instancexi and instancexj, respec-
tively. We representpi and pj as vectors of term
frequencies in the vector-space model. The cosine
similarity measure is the cosine of the angle between
these two vectors and is calculated as follows:

cos sim(pi, pj) = cos(pi,pj) =
pi • pj

‖pi‖‖pj‖
(1)

that is, it is the dot product ofpi andpj divided by
the lengths ofpi andpj. The cosine similarity mea-
sure takes values in the range[0, 1]. If all the terms
in pi andpj are common, then it takes the maximum
value of1. If none of the terms are common, then it
takes the minimum value of0.

3.2 Similarity Based on Edit Distance

A shortcoming of cosine similarity is that it only
takes into account the common terms, but does not
consider their order in the path. For this reason, we
also use a similarity measure based on edit distance
(also called Levenshtein distance). Edit distance be-
tween two strings is the minimum number of op-
erations that have to be performed to transform the
first string to the second. In the original character-
based edit distance there are three types of opera-
tions. These are insertion, deletion, or substitution
of a single character. We modify the character-based
edit distance into a word-based one, where the oper-
ations are defined as insertion, deletion, or substitu-
tion of a single word.

The edit distance between path 1 and path 2 of
our example sentence is 2. We insertPROTX0and
conj and to path 1 to convert it to path 2.

1. PROTX1- nsubj - interacts - prepwith - insert (PROTX0)
- insert (conj and) – PROTX2

2. PROTX1 - nsubj - interacts - prepwith - PROTX0 -
conj and -PROTX2

We normalize edit distance by dividing it by the
length (number of words) of the longer path, so that
it takes values in the range[0, 1]. We convert the dis-
tance measure into a similarity measure as follows.

edit sim(pi, pj) = e−γ(edit distance(pi,pj)) (2)

Bunescu and Mooney (2005a) propose a similar
method for relation extraction in general. However,
their similarity measure is based on the number of
the overlapping words between two paths. When
two paths have different lengths, they assume the
similarity between them is zero. On the other hand,
our edit distance based measure can also account for
deletions and insertions of words.

4 Semi-Supervised Machine Learning
Approaches

4.1 kNN and Harmonic Functions

When a similarity measure is defined among the in-
stances of a learning problem, a simple and natural
choice is to use a nearest neighbor based approach
that classifies each instance by looking at the labels
of the instances that are most similar to it. Per-
haps the simplest and most popular similarity-based
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learning algorithm is the k-nearest neighbor classifi-
cation method (kNN). LetU be the set of unlabeled
instances, andL be the set of labeled instances in
a learning problem. Given an instancex ∈ U , let
NL

k (x) be the set of topk instances inL that are
most similar tox with respect to some similarity
measure. The kNN equation for a binary classifi-
cation problem can be written as:

y(x) =
∑

z∈NL
k

(x)

sim(x, z)y(z)
∑

z′∈NL
k

(x) sim(x, z′)
(3)

wherey(z) ∈ {0, 1} is the label of the instancez.2

Note thaty(x) can take any real value in the[0, 1]
interval. The final classification decision is made by
setting a threshold in this interval (e.g.0.5) and clas-
sifying the instances above the threshold as positive
and others as negative. For our problem, each in-
stance is a dependency path between the proteins in
the pair and the similarity function can be one of the
functions we have defined in Section 3.

Equation 3 can be seen as averaging the labels (0
or 1) of the nearest neighbors of each unlabeled in-
stance. This suggests a generalized semi-supervised
version of the same algorithm by incorporating un-
labeled instances as neighbors as well:

y(x) =
∑

z∈NL∪U
k

(x)

sim(x, z)y(z)
∑

z′∈NL∪U
k

(x) sim(x, z′)
(4)

Unlike Equation 3, the unlabeled instances are also
considered in Equation 4 when finding the nearest
neighbors. We can visualize this as an undirected
graph, where each data instance (labeled or unla-
beled) is a node that is connected to itsk nearest
neighbor nodes. The value ofy(·) is set to0 or 1
for labeled nodes depending on their class. For each
unlabeled nodex, y(x) is equal to the average of the
y(·) values of its neighbors. Such a function that
satisfies the average property on all unlabeled nodes
is called aharmonicfunction and is known to exist
and have a unique solution (Doyle and Snell, 1984).
Harmonic functions were first introduced as a semi-
supervised learning method by Zhuet al. (2003).
There are interesting alternative interpretations of

2Equation 3 is the weighted (orsoft) version of the kNN
algorithm. In the classicalvotingscheme,x is classified in the
category that the majority of its neighbors belong to.

a harmonic function on a graph. One of them can
be explained in terms of random walks on a graph.
Consider a random walk on a graph where at each
time point we move from the current node to one of
its neighbors. The next node is chosen among the
neighbors of the current node with probability pro-
portional to the weight (similarity) of the edge that
connects the two nodes. Assuming we start the ran-
dom walk from the nodex, y(x) in Equation 4 is
then equal to the probability that this random walk
will hit a node labeled1 before it hits a node labeled
0.

4.2 Transductive SVM

Support vector machines (SVM) is a supervised ma-
chine learning approach designed for solving two-
class pattern recognition problems. The aim is to
find the decision surface that separates the positive
and negative labeled training examples of a class
with maximum margin (Burges, 1998).

Transductive support vector machines (TSVM)
are an extension of SVM, where unlabeled data is
used in addition to labeled data. The aim now is
to assign labels to the unlabeled data and find a de-
cision surface that separates the positive and nega-
tive instances of the original labeled data and the
(now labeled) unlabeled data with maximum mar-
gin. Intuitively, the unlabeled data pushes the deci-
sion boundary away from the dense regions. How-
ever, unlike SVM, the optimization problem now
is NP-hard (Zhu, 2005). Pointers to studies for
approximation algorithms can be found in (Zhu,
2005).

In Section 3 we defined the similarity between
two instances based on the cosine similarity and
the edit distance based similarity between the paths
in the instances. Here, we use these path similar-
ity measures as kernels for SVM and TSVM and
modify theSV M light package (Joachims, 1999) by
plugging in our two kernel functions.

A well-defined kernel function should be sym-
metric positive definite. While cosine kernel is well-
defined, Corteset al. (2004) proved that edit kernel
is not always positive definite. However, it is pos-
sible to make the kernel matrix positive definite by
adjusting theγ parameter, which is a positive real
number. Li and Jiang (2005) applied the edit kernel
to predict initiation sites in eucaryotic mRNAs and
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obtained improved results compared to polynomial
kernel.

5 Experimental Results

5.1 Data Sets

One of the problems in the field of protein-protein
interaction extraction is that different studies gen-
erally use different data sets and evaluation met-
rics. Thus, it is difficult to compare their re-
sults. Bunescuet al. (2005) manually developed the
AIMED corpus3 for protein-protein interaction and
protein name recognition. They tagged199 Medline
abstracts, obtained from the Database of Interacting
Proteins (DIP) (Xenarios et al., 2001) and known to
contain protein interactions. This corpus is becom-
ing a standard, as it has been used in the recent stud-
ies by (Bunescu et al., 2005; Bunescu and Mooney,
2005b; Bunescu and Mooney, 2006; Mitsumori et
al., 2006; Yakushiji et al., 2005).

In our study we used theAIMED corpus and the
CB (Christine Brun) corpus that is provided as a re-
source by BioCreAtIvE II (Critical Assessment for
Information Extraction in Biology) challenge eval-
uation4. We pre-processed the CB corpus by first
annotating the protein names in the corpus automat-
ically and then, refining the annotation manually. As
discussed in Section 3, we pre-processed both of the
data sets as follows. We replicated each sentence
for each different protein pair. Forn different pro-
teins in a sentence,

(

n
2

)

new sentences are created,
as there are that many different pairs of proteins.
In each newly created sentence we marked the pro-
tein pair considered for interaction asPROTX1and
PROTX2, and all the remaining proteins in the sen-
tence asPROTX0. If a sentence describes an inter-
action betweenPROTX1andPROTX2, it is labeled
as positive, otherwise it is labeled as negative. The
summary of the data sets after pre-processing is dis-
played in Table 15.

Since previous studies that use AIMED corpus
perform 10-fold cross-validation. We also per-
formed 10-fold cross-validation in both data sets and
report the average results over the runs.

3ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
4http://biocreative.sourceforge.net/biocreative2.html
5The pre-processed data sets are available at

http://belobog.si.umich.edu/clair/biocreative

Data Set Sentences + Sentences - Sentences
AIMED 4026 951 3075

CB 4056 2202 1854

Table 1: Data Sets

5.2 Evaluation Metrics

We use precision, recall, and F-score as our metrics
to evaluate the performances of the methods. Preci-
sion (π) and recall (ρ) are defined as follows:

π =
TP

TP + FP
; ρ =

TP

TP + FN
(5)

Here, TP (True Positives) is the number of sen-
tences classified correctly as positive;FP (False
Positives) is the number of negative sentences that
are classified as positive incorrectly by the classifier;
andFN (False Negatives) is the number of positive
sentences that are classified as negative incorrectly
by the classifier.
F-score is the harmonic mean of recall and precision.

F -score =
2πρ

π + ρ
(6)

5.3 Results and Discussion

We evaluate and compare the performances of
the semi-supervised machine learning approaches
(TSVM and harmonic functions) with their super-
vised counterparts (SVM and kNN) for the task of
protein-protein interaction extraction. As discussed
in Section 3, we use cosine similarity and edit dis-
tance based similarity as similarity functions in har-
monic functions and kNN, and as kernel functions
in TSVM and SVM. Our instances consist of the
shortest paths between the protein pairs in the de-
pendency parse trees of the sentences. In our ex-
periments, we tuned theγ parameter of the edit
distance based path similarity function to4.5 with
cross-validation. The results in Table 2 and Table 3
are obtained with 10-fold cross-validation. We re-
port the average results over the runs.

Table 2 shows the results obtained for the AIMED
data set. Edit distance based path similarity function
performs considerably better than the cosine sim-
ilarity function with harmonic functions and kNN
and usually slightly better with SVM and TSVM.
We achieve our best F-score performance of 59.96%
with TSVM with edit kernel. While SVM with edit
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kernel achieves the highest precision of 77.52%, it
performs slightly worse than SVM with cosine ker-
nel in terms of F-score measure. TSVM performs
slightly better than SVM, both of which perform bet-
ter than harmonic functions. kNN is the worst per-
forming algorithm for this data set.

In Table 2, we also show the results obtained pre-
viously in the literature by using the same data set.
Yakushiji et al. (2005) use an HPSG parser to pro-
duce predicate argument structures. They utilize
these structures to automatically construct protein
interaction extraction rules. Mitsumoriet al. (2006)
use SVM with the unparsed text around the pro-
tein names as features to extract protein interac-
tion sentences. Here, we show their best result ob-
tained by using the three words to the left and to the
right of the proteins. The most closely related study
to ours is that by Bunescu and Mooney (2005a).
They define a kernel function based on the short-
est path between two entities of a relationship in
the dependency parse tree of a sentence (the SPK
method). They apply this method to the domain
of protein-protein interaction extraction in (Bunescu
and Mooney, 2006). Here, they also test the meth-
ods ELCS (Extraction Using Longest Common Sub-
sequences) (Bunescu et al., 2005) and SSK (Sub-
sequence Kernel) (Bunescu and Mooney, 2005b).
We cannot compare our results to theirs directly,
because they report their results as a precision-
recall graph. However, the best F-score in their
graph seems to be around0.50 and definitely lower
than the best F-scores we have achieved (≈ 0.59).
Bunescu and Mooney (2006) also use SVM as their
learning method in their SPK approach. They define
their similarity based on the number of overlapping
words between two paths and assign a similarity of
zero if the two paths have different lengths. Our
improved performance with SVM and the shortest
path dependency features may be due to the edit-
distance based kernel, which takes into account not
only the overlapping words, but also word order and
accounts for deletions and insertions of words. Our
results show that, SVM, TSVM, and harmonic func-
tions achieve better F-score and recall performances
than the previous studies by Yakushijiet al. (2005),
Mitsumori et al. (2006), and the SSK and ELCS ap-
proaches of Bunescu and Mooney (2006). SVM and
TSVM also achieve higher precision scores. Since,

Mitsumori et al.(2006) also use SVM in their study,
our improved results with SVM confirms our moti-
vation of using dependency paths as features.

Table 3 shows the results we got with the CB
data set. The F-score performance with the edit
distance based similarity function is always better
than that of cosine similarity function for this data
set. The difference in performances is considerable
for harmonic functions and kNN. Our best F-score
is achieved with TSVM with edit kernel (85.22%).
TSVM performs slightly better than SVM. When
cosine similarity function is used, kNN performs
better than harmonic functions. However, when edit
distance based similarity is used, harmonic functions
achieve better performance. SVM and TSVM per-
form better than harmonic functions. But, the gap in
performance is low when edit distance based simi-
larity is used with harmonic functions.

Method Precision Recall F-Score
SVM-edit 77.52 43.51 55.61
SVM-cos 61.99 54.99 58.09
TSVM-edit 59.59 60.68 59.96
TSVM-cos 58.37 61.19 59.62
Harmonic-edit 44.17 74.20 55.29
Harmonic-cos 36.02 67.65 46.97
kNN-edit 68.77 42.17 52.20
kNN-cos 40.37 49.49 44.36
(Yakushiji et al., 2005) 33.70 33.10 33.40
(Mitsumori et al., 2006) 54.20 42.60 47.70

Table 2: Experimental Results – AIMED Data Set

Method Precision Recall F-Score
SVM-edit 85.15 84.79 84.96
SVM-cos 87.83 81.45 84.49
TSVM-edit 85.62 84.89 85.22
TSVM-cos 85.67 84.31 84.96
Harmonic-edit 86.69 80.15 83.26
Harmonic-cos 72.28 70.91 71.56
kNN-edit 72.89 86.95 79.28
kNN-cos 65.42 89.49 75.54

Table 3: Experimental Results – CB Data Set

Semi-supervised approaches are usually more ef-
fective when there is less labeled data than unlabeled
data, which is usually the case in real applications.
To see the effect of semi-supervised approaches we
perform experiments by varying the amount of la-
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Figure 2: The F-score on the AIMED dataset with
varying sizes of training data

beled training sentences in the range[10, 3000]. For
each labeled training set size, sentences are selected
randomly among all the sentences, and the remain-
ing sentences are used as the unlabeled test set. The
results that we report are the averages over10 such
random runs for each labeled training set size. We
report the results for the algorithms when edit dis-
tance based similarity is used, as it mostly performs
better than cosine similarity. Figure 2 shows the
results obtained over the AIMED data set. Semi-
supervised approaches TSVM and harmonic func-
tions perform considerably better than their super-
vised counterparts SVM and kNN when we have
small number of labeled training data. It is inter-
esting to note that, although SVM is one of the best
performing algorithms with more training data, it is
the worst performing algorithm with small amount
of labeled training sentences. Its performance starts
to increase when number of training data is larger
than 200. Eventually, its performance gets close to
that of the other algorithms. Harmonic functions is
the best performing algorithm when we have less
than 200 labeled training data. TSVM achieves bet-
ter performance when there are more than 500 la-
beled training sentences.

Figure 3 shows the results obtained over the CB
data set. When we have less than 500 labeled sen-
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Figure 3: The F-score on the CB dataset with vary-
ing sizes of training data

tences, harmonic functions and TSVM perform sig-
nificantly better than kNN, while SVM is the worst
performing algorithm. When we have more than
500 labeled training sentences, kNN is the worst per-
forming algorithm, while the performance of SVM
increases and gets similar to that of TSVM and
slightly better than that of harmonic functions.

6 Conclusion

We introduced a relation extraction approach based
on dependency parsing and machine learning to
identify protein interaction sentences in biomedical
text. Unlike syntactic parsing, dependency parsing
captures the semantic predicate argument relation-
ships between the entities in addition to the syntac-
tic relationships. We extracted the shortest paths be-
tween protein pairs in the dependency parse trees of
the sentences and defined similarity functions (ker-
nels in SVM terminology) for these paths based on
cosine similarity and edit distance. Supervised ma-
chine learning approaches have been applied to this
domain. However, they rely only on labeled training
data, which is difficult to gather. To our knowledge,
this is the first effort in this domain to apply semi-
supervised algorithms, which make use of both la-
beled and unlabeled data. We evaluated and com-
pared the performances of two semi-supervised ma-
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chine learning approaches (harmonic functions and
TSVM), with their supervised counterparts (kNN
and SVM). We showed that, edit distance based sim-
ilarity function performs better than cosine simi-
larity function since it takes into account not only
common words, but also word order. Our 10-fold
cross validation results showed that, TSVM per-
forms slightly better than SVM, both of which per-
form better than harmonic functions. The worst per-
forming algorithm is kNN. We compared our results
with previous results published with the AIMED
data set. We achieved the best F-score performance
with TSVM with the edit distance kernel (59.96%)
which is significantly higher than the previously re-
ported results for the same data set.

In most real-world applications there are much
more unlabeled data than labeled data. Semi-
supervised approaches are usually more effective in
these cases, because they make use of both the la-
beled and unlabeled instances when making deci-
sions. To test this hypothesis for the application
of extracting protein interaction sentences from text,
we performed experiments by varying the number
of labeled training sentences. Our results show
that, semi-supervised algorithms perform consider-
ably better than their supervised counterparts, when
there are small number of labeled training sentences.
An interesting result is that, in such cases SVM per-
forms significantly worse than the other algorithms.
Harmonic functions achieve the best performance
when there are only a few labeled training sentences.
As number of labeled training sentences increases
the performance gap between supervised and semi-
supervised algorithms decreases.
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Abstract

We describe a discriminatively trained se-
quence alignment model based on the av-
eraged perceptron. In common with other
approaches to sequence modeling using per-
ceptrons, and in contrast with comparable
generative models, this model permits and
transparently exploits arbitrary features of
input strings. The simplicity of perceptron
training lends more versatility than compa-
rable approaches, allowing the model to be
applied to a variety of problem types for
which a learned edit model might be useful.
We enumerate some of these problem types,
describe a training procedure for each, and
evaluate the model’s performance on sev-
eral problems. We show that the proposed
model performs at least as well as an ap-
proach based on statistical machine transla-
tion on two problems of name translitera-
tion, and provide evidence that the combina-
tion of the two approaches promises further
improvement.

1 Introduction

Sequence alignment is a problem that crops up in
many forms, both in computational linguistics (CL)
and in other endeavors. The ability to find an op-
timal alignment between two sequences has found
application in a number of areas of CL, includ-
ing phonetic modeling (Ristad and Yianilos, 1998),
name transcription (Huang et al., 2004), and dupli-
cate detection or information integration (Bilenko

and Mooney, 2003; McCallum et al., 2005). Se-
quence alignment is a member of a broader class of
problems which we might call sequence transduc-
tion, to which one of the core CL challenges, ma-
chine translation, belongs.

Under the assumption that one string (the target)
is produced through a series of local edits to another
string (the source), and given an edit cost matrix,
the optimal sequence of edits can be efficiently com-
puted through dynamic programming (Needleman
and Wunsch, 1970). While the cost matrix tradition-
ally has been set by hand, several recent papers have
proposed determining edit costs empirically. These
proposals arise from a variety of learning paradigms,
including generative models (Ristad and Yianilos,
1998; Bilenko and Mooney, 2003), conditional ran-
dom fields (McCallum et al., 2005), maximum-
margin methods (Joachims, 2003), and gradient
boosting (Parker et al., 2006). While approaches
based on generative models support only limited fea-
ture engineering, discriminative approaches share
the advantage of allowing arbitrary features of the
input sequences.

We describe a new sequence alignment model
based on the averaged perceptron (Collins, 2002),
which shares with the above approaches the ability
to exploit arbitrary features of the input sequences,
but is distinguished from them by its relative sim-
plicity and the incremental character of its training
procedure. The fact that it is an online algorithm
makes it straightforward to adapt to a range of prob-
lems. To show this, we evaluate the approach on
several different tasks, some of them merely illus-
trative, but some with clear practical significance,
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particularly the problem of named entity transcrip-
tion.

2 The Algorithm

2.1 The Formalism

Suppose we are given two sequences, s
m
1 ∈ Σ∗

s

and t
n
1 ∈ Σ∗

t . We desire a real-valued function
A(s, t) which assigns high scores to pairs s, t with
high affinity, where affinity is an application-specific
notion (e.g., t is a likely phoneme sequence repre-
sented by the letter sequence s). If we stipulate that
this score is the sum of the individual scores of a
series of edits, we can find the highest-scoring such
series through a generalization of the standard edit
distance:

A(si
1, t

j
1) =

max











aε,tj (s, i, t, j) + A(si
1, t

j−1

1 )

asi,ε(s, i, t, j) + A(si−1
1 , t

j
1)

asi,tj (s, i, t, j) + A(si−1
1 , t

j−1

1 )

(1)

with A(∅, ∅) = 0. The function asi,tj (s, i, t, j) rep-
resents the score of substituting tj for si; aε,tj and
asi,ε represent insertion and deletion, respectively. If
we assume constant-time computation of primitive
edit costs, this recursive definition of A allows us to
find the highest scoring series of edits for a given
sequence pair in time proportional to the product of
their lengths. Note that a is indexed by the charac-
ters involved in an edit (i.e., inserting ‘e’ generally
has a different cost than inserting ‘s’). Note further
that the score associated with a particular operation
may depend on any features computable from the
respective positions in the two sequences.

In the experiments reported in this paper, we as-
sume that each local function a is defined in terms
of p + q features, {f1, · · · , fp, fp+1, · · · , fp+q},
and that these features have the functional form
Σ∗ ×N 7→ R. In other words, each feature takes
a sequence and an index and returns a real value.
The first p features are defined over sequences from
the source alphabet, while the remaining q are de-
fined over the target alphabet.1 In this paper we use
character n-gram indicator features.

1Of course, features that depend jointly on both sequences
may also be of interest.

1: Given a set S of source sequences
2: V ← [], an empty list
3: α← 0, a weight vector
4: for some number of iterations do
5: for s in S do
6: Pick t, t

′, t having higher affinity with s

7: 〈e, v〉 ← Aα(s, t)
8: 〈e′, v′〉 ← Aα(s, t′)
9: if v′ ≥ v then

10: α← α + Φ(s, t, e)− Φ(s, t′, e′)
11: end if
12: Append α to V

13: end for
14: end for
15: Return the mean α from V

Table 1: The training algorithm. Aα is the affinity
function under model parameters α, returning edit
sequence e and score v.

The score of a particular edit is a linear combina-
tion of the corresponding feature values:

a(s, i, t, j) =
p

∑

k=1

αk · fk(s, i) +
p+q
∑

k=p+1

αk · fk(t, j)

(2)
The weights αk are what we seek to optimize in or-
der to tune the model for our particular application.

2.2 A Perceptron-Based Edit Model

In this section we present a general-purpose exten-
sion of perceptron training for sequence labeling,
due to Collins (2002), to the problem of sequence
alignment. Take α to be a model parameterization,
and let Aα(s, t) return an optimal edit sequence e,
with its score v, given input sequences s and t un-
der α. Elements of sequence e are character pairs
〈cs, ct〉, with cs ∈ Σs ∪ {ε} and ct ∈ Σt ∪ {ε},
where ε represents the empty string. Let Φ(s, t, e)
be a feature vector, having the same dimensional-
ity as α, for a source, target, and corresponding edit
sequence. This feature vector is the sum of feature
vectors at each point in e as it is played out along
input sequences s and t.

Table 1 shows the basic algorithm. Starting with
a zero parameter vector, we iterate through the col-
lection of source sequences. For each sequence, we
pick two target sequences having unequal affinity
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with the source sequence (Line 6). If the scores re-
turned by our current model (Lines 7 and 8) agree
with our ordering, we do nothing. Otherwise, we
update the model using the perceptron training rule
(Line 10). Ultimately, we return α averaged over all
datapoint presentations.

2.3 Training Modes

The algorithm presented in Table 1 does not specify
how the two target sequences t and t

′ are to be cho-
sen in Line 6. The answer to this question depends
on the application. There are fundamentally two set-
tings, depending on whether or not target strings are
drawn from the same set as source strings; we will
call the setting in which source and target strings in-
habit the same set the affinity setting, and refer to the
the case where they form different sets as the trans-
duction setting. Here, we sketch four problem sce-
narios, two from each setting, and specify a target
selection procedure appropriate for each.

Affinity, ranking. The task poses a latent affinity
between strings, but we can measure it only indi-
rectly. In particular, we can order some of the target
sequences according to their affinity with a source
sequence s. In this case, we train as follows: Order
a sample of the target sequences according to this
partial order. Let t and t

′ be two sequences from
this order, such that t is ordered higher than t

′.
Affinity, classification. The sequences in Σ∗ can

be grouped into classes, and we wish the model to
assign high affinity to co-members of a class and
low affinity to members of different classes. Train
as follows: For each s, sample t from among its co-
members and t

′ from among the members of other
classes.

Transduction, ranking. The data is presented as
source-target pairs, where each t is a transduction
of the corresponding s. We wish to learn a model
which, given a novel s, will enable us to rank can-
didate transductions. Train as follows: Given s, let
t be the target sequence provided to us. Sample t

′

from among the other target sequences.
Transduction, generation. We are again given

source-target pairs. We wish to learn to generate a
probable target string, given a novel source string.
Train as follows: Generate a t

′ that is approximately
optimal according to the current model. Note that
since edit decisions are based in part on (arbitrary)

edit
ˆ
ing → STR

ˆ
INGS

fs,it ft,TR

fs,t ft,R

fs, in f∅
fs, i

Table 2: Features with non-zero value for an exam-
ple string pair and a model of order 2.

features of the target sequence, and since generation
involves construction of the target sequence, it is not
uncommon for a greedy generator to make edit de-
cisions which are locally optimal, but which result
several edits later in a partially constructed sequence
in which no good edits are available. Thus, the prob-
lem of generation does not correspond to a simple
recurrence relation like Equation 1. Consequently,
we experimented with several heuristic approaches
to generation and found that a beam search works
well.

3 Evaluation

To establish the effectiveness of the model, we
trained it on a range of problems, including instances
of each of the four settings enumerated above. Prob-
lems ranged from the merely illustrative to a non-
trivial application of computational linguistics.

3.1 Feature Construction

Without exception, the features we provide to the
algorithm are the same in all experiments. Given
a user-specified order k, we define a Boolean fea-
ture for every distinct character gram observed in the
data of length k or smaller. Recall that there are two
disjoint sets of features, those defined over strings
drawn from the source and target alphabets, respec-
tively. Given a source string and index, those fea-
tures have value 1 whose corresponding grams (of
size k or smaller) are observed preceding or follow-
ing the index (preceding features are distinct from
following ones); given a target string and index, we
observe only preceding grams. Although it is pos-
sible to observe following grams in the target string
in some settings, it is not possible in general (i.e.,
not when generating strings). We therefore adhere
to this restriction for convenience and uniformity.

An example will make this clear. In Table 2 we
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are midway through the conversion of the source
string “editing” into the target string “STRINGS”.
Below the two strings are those gram features which
have non-zero value at the indicated cursors. The
underbar character encodes on which side of the cur-
sor a gram is observed. Note that an empty-gram
feature, which always tests true, is also included, al-
lowing us to experiment with 0-order models.

3.2 Illustrative Problems

To test the ability of the model to recover known
edit affinities, we experimented with a simple artifi-
cial problem. Using a large list of English words,
we define an edit affinity that is sensitive only to
consonants. Specifically, the affinity between two
words is the maximum number of consonant self-
substitutions, with any substitutions involving the
first five consonants counting for five normal substi-
tutions. Thus, substituting ‘b’ for ‘b’ contributes 5 to
the score, substituting ‘z’ for ‘z’ contributes 1, while
operations other than self-subsitutions, and any op-
erations involving vowels, contribute 0.

One epoch of training is conducted as follows.
For each word s in the training set, we choose 10
other words from the set at random and sort these
words according to both the true and estimated affin-
ity. Let t be the string with highest true affinity; let
t′ (the decoy) be the string with highest estimated
affinity. We performed 3-fold cross-validation on a
collection of 33,432 words, in each fold training the
model for 5 epochs.2

Our performance metric is ranking accuracy, the
fraction of target string pairs to which the estimated
ranking assigns the same order as the true one. Dur-
ing testing, for each source string, we sample at ran-
dom 1000 other strings from the hold-out data, and
count the fraction of all pairs ordered correctly ac-
cording to this criterion.

A 0-order model successfully learns to rank
strings according to this affinity with 99.3% ac-
curacy, while ranking according to the unmodified
Levenshtein distance yields 76.4%. Table 3 shows
the 6 averaged weights with the highest magnitude

2Here and in other experiments involving the edit model, the
number of epochs was set arbitrarily, and not based on perfor-
mance on a development set. Beyond the number of epochs re-
quired for convergence, we have not observed much sensitivity
in test accuracy to the number of epochs.

〈d, d〉: f∅ 61.1
〈c, c〉: f∅ 60.6
〈g, g〉: f∅ 60.3
〈b, b〉: f∅ 59.1
〈f, f〉: f∅ 57.0
〈t, t〉: f∅ 18.6

Table 3: Largest weights in a consonant-preserving
edit affinity in which the first five consonants are
given 5 times as much weight as others.

from a model trained on one of the folds. In pre-
senting weights, we follow the formatting conven-
tion edit:feature. Since the model in question is of
order 0, all features in Table 3 are the “empty fea-
ture.” Note how idempotent substitutions involving
the 5 highly weighted consonants are weighted sig-
nificantly higher than the remaining operations.

3.3 Rhyming

While the above problem illustrates the ability of
the proposed algorithm to learn latent alignment
affinities, it is expressible as a order-0 model. A
somewhat more interesting problem is that of mod-
eling groups of rhyming words. This problem is
an instance of what we called the “classification”
scenario in Section 2.3. Because English letters
have long since lost their direct correspondence to
phonemes, the problem of distinguishing rhyming
English words is difficult for a knowledge-lean edit
model. What’s more, the importance of a letter is
dependent on context; letters near the end of a word
are more likely to be significant.

We derived groups of rhyming words from the
CMU pronouncing dictionary (CMU, 1995), dis-
carding any singleton groups. This yielded 21,396
words partitioned into 3,799 groups, ranging in size
from 464 words (nation, location, etc.) down to 2.
We then divided the words in this data set at random
into three groups for cross-validation.

Training was conducted as follows. For each
word in the training set, we selected at random up to
5 rhyming words and 5 non-rhyming words. These
words were ranked according to affinity with the
source word under the current model. Let t be
the lowest scoring rhyming word, and let t′ be the
highest-scoring non-rhyming word.
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Model Precision
Levenshtein 0.126
Longest common suffix 0.130
PTEM, Order 0 0.505
PTEM, Order 3 0.790

Table 4: Micro-averaged break-even precision on
the task of grouping rhyming English words.

For each word in the hold-out set, we scored and
ranked all rhyming words in the same set, as well
as enough non-rhyming words to total 1000. We
then recorded the precision at the point in this rank-
ing where recall and precision are most nearly equal.
Our summary statistic is the micro-averaged break-
even precision.

Table 4 presents the performance of the proposed
model and compares it with two simple baselines.
Not surprisingly, performance increases with in-
creasing order. The simple heuristic approaches fare
quite poorly by comparison, reflecting the subtlety
of the problem.

3.4 Transcription

Our work was motivated by the problem of named
entity transcription. Out-of-vocabulary (OOV)
terms are a persistent problem in statistical machine
translation. Often, such terms are the names of en-
tities, which typically have low corpus frequencies.
In translation, the appropriate handling of names is
often to transcribe them, to render them idiomati-
cally in the target language in a way that preserves,
as much as possible, their phonetic structure. Even
when an OOV term is not a name, transcribing it
preserves information that would otherwise be dis-
carded, leaving open the possibility that downstream
applications will be able to make use of it.

The state of the art in name transcription involves
some form of generative model, sometimes in com-
bination with additional heuristics. The generative
component may involve explicitly modeling pho-
netics. For example, Knight and Graehl (1998)
employ cascaded probabilistic finite-state transduc-
ers, one of the stages modeling the orthographic-
to-phonetic mapping. Subsequently, Al-Onaizan
and Knight (2002) find they can boost perfor-
mance by combining a phonetically-informed model

Task Train Dev Eval ELen FLen
A-E 8084 1000 1000 6.5 4.9
M-E 2000 430 1557 16.3 23.0

Table 5: Characteristics of the two transcription data
sets, Arabic-English (A-E) and Mandarin-English
(M-E), including number of training, development,
and evaluation pairs (Train, Dev, and Eval), and
mean length in characters of English and foreign
strings (ELen and FLen).

with one trained only on orthographic correspon-
dences. Huang et al. (2004), construct a probabilis-
tic Chinese-English edit model as part of a larger
alignment solution, setting edit weights in a heuris-
tic bootstrapped procedure.

In rendering unfamiliar written Arabic words or
phrases in English, it is generally impossible to
achieve perfect performance, because many sounds,
such as short vowels, diphthong markers, and dou-
bled consonants, are conventionally not written in
Arabic. We calculate from our experimental datasets
that approximately 25% of the characters in the En-
glish output must be inferred. Thus, a character error
rate of 25% can be achieved through simple translit-
eration.

3.4.1 Transcribing names

We experimented with a list of 10,084 personal
names distributed by the Linguistic Data Consor-
tium (LDC). Each entry in the database includes
an arabic name in transliterated ASCII (SATTS
method) and its English rendering. The Arabic
names appear as they would in conventional writ-
ten Arabic, i.e., lacking short vowels and other di-
acritics. We randomly segregated 1000 entries for
evaluation and used the rest for training. The A-E
row in Table 5 summarizes some of this data set’s
characteristics.

We trained the edit model as follows. For each
training pair the indicated English rendering con-
stitutes our true target (t), and we use the current
model to generate an alternate string (t′), updating
the model in the event t′ yields a higher score than t.
This was repeated for 10 epochs. We experimented
with a model of order 3.

Under this methodology, we observed a 1-best ac-
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〈p, h〉: ft,a 38.5
〈p, t〉: ft,a 30.8
〈p, h〉: ft,ya 11.8
〈p, t〉: fs, p<e> -8.6
〈p, h〉: ft,rya -12.1
〈p, t〉: ft,uba -14.4

Table 6: Some of the weights governing the han-
dling of the tah marbouta (

�
� ) in an order-3 Arabic-

English location name transcription model. Buck-
walter encoding of Arabic characters is used here for
purposes of display. The symbol “<e>” represents
end of string.

curacy of 0.552. It is difficult to characterize the
strength of this result relative to those reported in the
literature. Al-Onaizan and Knight (2002) report a 1-
best accuracy of 0.199 on a corpus of Arabic person
names (but an accuracy of 0.634 on English names),
using a “spelling-based” model, i.e., a model which
has no access to phonetic information. However,
the details of their experiment and model differ from
ours in a number of respects.

It is interesting to see how a learned edit model
handles ambiguous letters. Table 6 shows the
weights of some of the features governing the han-
dling of the character

�
� (tah marbouta) from exper-

iments with Arabic place names. This character,
which represents the “t” sound, typically appears at
the end of words. It is generally silent, but is spoken
in certain grammatical constructions. In its silent
form, it is typically transcribed “ah” (or “a”); in its
spoken form, it is transcribed “at”. The weights in
the table reflect this ambiguity and illustrate some
of the criteria by which the model chooses the ap-
propriate transcription. For example, the negative
weight on the feature fs, p<e> inhibits the produc-
tion of “t” at the end of a phrase, where “h” is almost
always more appropriate. Similarly, “h” is more
common following “ya” in the target string (often as
part of the larger suffix “iyah”). However, the pre-
ceding context “rya” is usually observed in the word
“qaryat”, meaning “village” as in “the village of ...”
In this grammatical usage, the tah marbouta is spo-
ken and therefore rendered with a “t”. Consequently,
the corresponding weight in the “h” interpretation is
inhibitory.

The Al-Onaizan and Knight spelling model can
be regarded as a statistical machine translation
(SMT) system which translates source language
characters to target language characters in the ab-
sence of phonetic information. For comparison
with state of the art, we used the RWTH phrase-
based SMT system (Zens et al., 2005) to build an
Arabic-to-English transliteration system. This sys-
tem frames the transcription problem as follows. We
are given a sequence of source language charac-
ters sm

1 representing a name, which is to be trans-
lated into a sequence of target language characters
tn1 . Among all possible target language character se-
quences, we will choose the character sequence with
the highest probability:

t̂n̂1 = argmax
n,tn

1

{Pr(tn1 |s
m
1 )} (3)

The posterior probability Pr(tn
1 |s

m
1 ) is modeled di-

rectly using a log-linear combination of several
models (Och and Ney, 2002), including a character-
based phrase translation model, a character-based
lexicon model, a 4-gram character sequence model,
a character penalty and a phrase penalty. The first
two models are used for both directions: Arabic
to English and English to Arabic. We do not use
any reordering model because the target character
sequence is always monotone with respect to the
source character sequence. More details about the
baseline system can be found in (Zens et al., 2005).

We remark in passing that while the perceptron-
based edit model is a general algorithm for learn-
ing sequence alignments using simple features, the
above SMT approach combines several models,
some of which have been the subject of research in
the fields of speech recognition and machine trans-
lation for several years. Furthermore, we made an
effort to optimize the performance of the SMT ap-
proach on the tasks presented here.

Table 7 compares this system with the edit model.
The difference between the 1-best accuracies of the
two systems is significant at the 95% level, using
the bootstrap for testing. However, we can improve
on both systems by combining them. We segregated
1000 training documents to form a development set,
and used it to learn linear combination coefficients
over our two systems, resulting in a combined sys-
tem that scored 0.588 on the evaluation set—a sta-
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Model 1best 5best
SMT 0.528 0.824
PTEM, Order 3 0.552 0.803

Linear combination 0.588 0.850

Table 7: 1-best and 5-best transcription accuracies.
The successive improvements in 1-best accuracy are
significant at the 95% confidence level.

tistically significant improvement over both systems
at the 95% confidence level.

3.4.2 Ranking transcriptions

In some applications, instead of transcribing a
name in one language into another, it is enough just
to rank candidate transcriptions. For example, we
may be in possession of comparable corpora in two
languages and the means to identify named entities
in each. If we can rank the likely transcriptions of
a name, we may be able to align a large portion of
the transliterated named entities, potentially extend-
ing the coverage of our machine translation system,
which will typically have been developed using a
smaller parallel corpus. This idea is at the heart of
several recent attempts to improve the handling of
named entities in machine translation (Huang et al.,
2004; Lee and Chang, 2003). A core component
of all such approaches is a generative model simi-
lar in structure to the “spelling” model proposed by
Al-Onaizan and Knight.

When ranking is the objective, we can adopt a
training procedure that is much less expensive than
the one used for generation. Let t be the correct tran-
scription for a source string (s). Sample some num-
ber of strings at random (200 in the following exper-
iments) from among the transcriptions in the training
set of strings other than s. Let t′ be the string having
highest affinity with s, updating the model, as usual,
if t′ scores higher than t.

In addition to the Arabic-English corpus, we also
experiment with a corpus distributed by the LDC
of full English names paired with their Mandarin
spelling. The M-E row of Table 5 summarizes char-
acteristics of this data set. Because we are inter-
ested in an approximate comparison with similar ex-
periments in the literature, we selected at random
2430 for training and 1557 for evaluation, which

are the data sizes used by Lee and Chang (2003)
for their experiments. In these experiments, the
Chinese names are represented as space-separated
pinyin without tonal markers.

Note that this problem is probably harder than the
Arabic one, for several reasons. For one thing, the
letters in a Mandarin transcription of a foreign name
represent syllables, leading to a somewhat lossier
rendering of foreign names in Mandarin than in Ara-
bic. On a more practical level, this data set is noisier,
occasionally containing character sequences in one
string for which corresponding characters are lack-
ing from its paired string. On the other hand, the
Mandarin problem contains full names, rather than
name components, which provides more context for
ranking.

We trained the edit model on both data sets us-
ing both the sampling procedure outlined above and
the self-generation training regime, in each case for
20 epochs, producing models of orders from 1 to 3.
However, we found that the efficiency of the phrase-
based SMT system described in the previous section
would be limited for this task, mainly due to two
reasons: the character-based phrase models due to
possible unseen phrases in an evaluation corpus, and
the character sequence model as all candidate tran-
scriptions confidently belong to the target language.
Therefore, to make the phrase-based SMT system
robust against data sparseness for the ranking task,
we also make use of the IBM Model 4 (Brown et
al., 1993) in both directions. The experiments show
that IBM Model 4 is a reliable model for the ranking
task. For each evaluation pair, we then ranked all
available evaluation transcriptions, recording where
in this list the true transcription fell.

Table 8 compares the various models, showing
the fraction of cases for which the true transcription
was ranked highest, and its mean reciprocal rank
(MRR). Both the phrase-based SMT model and the
edit model perform well on this task. While the best
configuration of PTEM out-performs the best SMT
model, the differences are not significant at the 95%
confidence level. However, compare these perfor-
mance scores to those returned by the system of Lee
and Chang (2003), who reported a peak MRR of
0.82 in similar experiments involving data different
from ours.

The PTEM rows in the table are separated into
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Model C-E Task A-E Task
ACC MRR ACC MRR

SMT 0.795 0.797 0.982 0.985
SMT w/o LM 0.797 0.798 0.983 0.985
IBM 4 0.961 0.971 0.978 0.987
SMT + IBM 4 0.971 0.977 0.991 0.994

PTEMG, Ord. 1 0.843 0.877 0.959 0.975
PTEMG, Ord. 2 0.970 0.978 0.968 0.980
PTEMG, Ord. 3 0.975 0.982 0.971 0.983

PTEMR, Ord. 1 0.961 0.973 0.992 0.995
PTEMR, Ord. 2 0.960 0.972 0.989 0.993
PTEMR, Ord. 3 0.960 0.972 0.989 0.994

Table 8: Performance on two transcription ranking
tasks, showing fraction of cases in which the correct
transcription was ranked highest, accuracy (ACC)
and mean reciprocal rank of the correct transcription
(MRR).

those in which the model was trained using the
same procedure as for generation (PTEMG), and
those in which the quicker ranking-specific train-
ing regime was used (PTEMR). The comparison is
interesting, inasmuch it does not support the con-
clusion that one regime is uniformly superior to the
other. While generation regime yields the best per-
formance on Arabic (using a high-order model), the
ranking regime scores best on Mandarin (with a low-
order model). When training a model to generate, it
seems clear that more context in the form of larger
n-grams is beneficial. This is particularly true for
Mandarin, where an order-1 model probably does
not have the capacity to generate plausible decoys.

4 Discussion

This paper is not the first to show that perceptron
training can be used in the solution of problems
involving transduction. Both Liang, et al (2006),
and Tillmann and Zhang (2006) report on effective
machine translation (MT) models involving large
numbers of features with discriminatively trained
weights. The training of these models is an in-
stance of the “Generation” scenario outlined in Sec-
tion 2.3. However, because machine translation is
a more challenging problem than name transcrip-
tion (larger vocabularies, higher levels of ambigu-

ity, non-monotonic transduction, etc.), our general-
purpose approach to generation training may be in-
tractable for MT. Instead, much of the focus of these
papers are the heuristics that are required in order to
train such a model in this fashion, including feature
selection using external resources (phrase tables),
staged training, and generating to BLEU-maximal
sequences, rather than the reference target.

Klementiev and Roth (2006) explore the use of a
perceptron-based ranking model for the purpose of
finding name transliterations across comparable cor-
pora. They do not calculate an explicit alignment be-
tween strings. Instead, they decompose a string pair
into a collection of features derived from charac-
ter n-grams heuristically paired based on their loca-
tions in the respective strings. Thus, Klementiev and
Roth, in common with the two MT approaches de-
scribed above, carefully control the features used by
the perceptron. In contrast to these approaches, our
algorithm discovers latent alignments, essentially
selecting those features necessary for good perfor-
mance on the task at hand.

As noted in the introduction, several previous pa-
pers have proposed general, discriminatively trained
sequence alignment models, as alternatives to the
generative model proposed by Ristad and Yianilos.
McCallum, et al. (2005), propose a conditional ran-
dom field for sequence alignment, designed for the
important problem of duplicate detection and infor-
mation integration. Comprising two sub-models,
one for matching strings and one for non-matching,
the model is trained on sequence pairs explicitly
labeled “match” or “non-match,” and some care
is apparently needed in selecting appropriate non-
matching strings. It is therefore unclear how this
model would be extended to problems involving
ranking or generation.

Joachims (2003) proposes SVM-align, a sequence
alignment model similar in structure to that de-
scribed here, but which sets weights through di-
rect numerical optimization. Training involves ex-
posing the model to sequence pairs, along with the
correct alignment and some number of “decoy” se-
quences. The reliance on an explicit alignment and
hand-chosen decoys yields a somewhat less flexi-
ble solution than that presented here. It is not clear
whether these features of the training regime are in-
dispensable, or whether they might be generalized to
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increase the approach’s scope. Note that where di-
rectly maximizing the margin is feasible, it has been
shown empirically to be superior to perceptron train-
ing (Altun et al., 2003).

Parker et al. (2006), propose to align sequences by
gradient tree boosting. This approach has the attrac-
tive characteristic that it supports a factored repre-
sentation of edits (a characteristic it shares with Mc-
Callum et al.). Although this paper does not evaluate
the method on any problems from computational lin-
guistics (the central problem is musical information
retrieval), gradient tree boosting has been shown to
be an effective technique for other sorts of sequence
modeling drawn from computational linguistics (Di-
etterich et al., 2004).

5 Conclusion

Motivated by the problem of Arabic-English tran-
scription of names, we adapted recent work in per-
ceptron learning for sequence labeling to the prob-
lem of sequence alignment. The resulting algorithm
shows clear promise not only for transcription, but
also for ranking of transcriptions and structural clas-
sification. We believe this versatility will lead to
other successful applications of the idea, both within
computational linguistics and in other fields involv-
ing sequential learning.
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Abstract

In this paper we propose an instance based
method for lexical entailment and apply
it to automatic ontology population from
text. The approach is fully unsupervised and
based on kernel methods. We demonstrate
the effectiveness of our technique largely
surpassing both the random and most fre-
quent baselines and outperforming current
state-of-the-art unsupervised approaches on
a benchmark ontology available in the liter-
ature.

1 Introduction

Textual entailment is formally defined as a relation-
ship between a coherent text T and a language ex-
pression, the hypothesis H . T is said to entail H ,
denoted by T → H , if the meaning of H can be in-
ferred from the meaning of T (Dagan et al., 2005;
Dagan and Glickman., 2004). Even though this no-
tion has been recently proposed in the computational
linguistics literature, it has already attracted a great
attention due to the very high generality of its set-
tings and to the indubitable usefulness of its (poten-
tial) applications.

In this paper, we concentrate on the problem of
lexical entailment, a textual entailment subtask in
which the system is asked to decide whether the sub-
stitution of a particular word w with the word e in a
coherent text Hw = H lwHr generates a sentence
He = H leHr such that Hw → He, where H l and
Hr denote the left and the right context of w, re-
spectively. For example, given the word ‘weapon’ a

system may substitute it with the synonym ‘arm’, in
order to identify relevant texts that denote the sought
concept using the latter term. A particular case of
lexical entailment is recognizing synonymy, where
both Hw → He and He → Hw hold.

In the literature, slight variations of this problem
are also referred to as sense matching (Dagan et al.,
2006), lexical reference (Glickman et al., 2006a)
and lexical substitution (Glickman et al., 2006b).
They have been applied to a wide variety of tasks,
such as semantic matching, subtitle generation and
Word Sense Disambiguation (WSD). Modeling lex-
ical entailment is also a prerequisite to approach the
SemEval-2007 lexical substitution task1, consisting
of finding alternative words that can occur in given
context.

In this paper, we propose to apply an approach for
lexical entailment to the ontology population task.
The basic idea is that if a word entails another one
in a given context then the former is an instance or
a subclass of the latter. This approach is intuitively
appealing because lexical entailment is intrinsically
an unsupervised task, therefore it does not require
lexical resources, seed examples or manually anno-
tated data sets. Unsupervised approaches are partic-
ularly suited for ontology population, whose goal is
to find instances of concepts from corpora, because
both corpus and the ontology sizes can scale up to
millions of documents and thousands of concepts,
preventing us from applying supervised learning. In
addition, the top level part of the ontology (i.e., the
Tbox in the Description Logics terminology) is very

1http://nlp.cs.swarthmore.edu/semeval/
tasks/task10/description.shtml
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often modified during the ontology engineering life-
cycle, for example by introducing new concepts and
restructuring the subclass of hierarchy according to
the renewed application needs required by the evo-
lution of the application domain. It is evident that
to preserve the consistency between the Tbox and
the Abox (i.e., the set of instances and their rela-
tions) in such a dynamic ontology engineering pro-
cess, supervised approaches are clearly inadequate,
as small changes in the TBox will be reflected into
dramatic annotation effort to keep instances in the
Abox aligned.

The problem of populating a predefined ontol-
ogy of concepts with novel instances implies a WSD
task, as the entities in texts are ambiguous with re-
spect to the domain ontology. For example, the en-
tity Washington is both the name of a state and the
name of a city. In the ontology population settings
traditional WSD approaches cannot be directly ap-
plied since entities are not reported into dictionar-
ies, making the lexical entailment alternative more
viable. In particular, we model the problem of on-
tology population as the problem of recognizing for
each mention of an entity of a particular coarse-
grained type (e.g., location) the fine-grained con-
cept (e.g., lake or mountain) that can be substi-
tuted in texts preserving the meaning. For example,
in the sentence “the first man to climb the Everest
without oxygen”, “Everest” can be substituted with
the word mountain preserving the meaning, while
the sentence is meaningless when “Everest” is re-
placed with the word lake. Following the lexical
entailment approach, the ontology population task
is transformed into the problem of recognizing the
term from a fine-grained set of categories (e.g., city,
country, river, lake and mountain) that can be substi-
tuted in the contexts where the entity is mentioned
(e.g., Everest in the example above).

The main contributions of this paper are summa-
rized as follows. First, we propose a novel approach
to lexical entailment, called Instance Based Lexi-
cal Entailment (IBLE), that allows approaching the
problem as a classification task, in which a given
target word (i.e., the entailing word) in a particu-
lar context is judged to entail a different word taken
from a (pre-defined) set of (possible) candidate en-
tailed words (see Section 3). Second, we exploit the
IBLE approach to model the ontology population

task as follows. Given a set of candidate concepts
belonging to generic ontological types (e.g., peo-
ple or locations), and a set of pre-recognized men-
tions of entities of these types in the corpus (e.g.,
Newton, Ontario), we assign the entity to the class
whose lexicalization is more frequently entailed in
the corpus. In particular, as training set to learn
the fine-grained category models, we use all the oc-
currences of their corresponding expressions in the
same corpus (e.g., we collected all occurrences in
context of the word scientist to describe the concept
scientist). Then, we apply the trained model
to classify the pre-recognized coarse-grained entities
into the fine-grained categories.

Our approach is fully unsupervised as for training
it only requires occurrences of the candidate entailed
words taken in their contexts. Restricted to the on-
tology population task, for each coarse-grained en-
tity (e.g., location), the candidate entailed words are
the terms corresponding to the fine-grained classes
(e.g., lake or mountain) and the entailing words are
mentions of entities (e.g., New York, Ontario) be-
longing to the coarse-grained class, recognized by
an entity tagger.

Experiments show that our method for recog-
nizing lexical entailment is effective for the on-
tology population task, reporting improvements
over a state-of-the-art unsupervised technique based
on contextual similarity measures (Cimiano and
Völker, 2005). In addition, we also compared it to
a supervised approach (Tanev and Magnini, 2006),
that we regarded as an upper bound, obtaining com-
parable results.

2 The Ontology Population Task

Populating concepts of a predefined ontology with
instances found in a corpus is a primary goal of
knowledge management systems. As concepts in
the ontology are generally structured into hierar-
chies belonging to a common ontological type (e.g.,
people or locations), the problem of populating on-
tologies can be solved hierarchically, firstly identi-
fying instances in texts as belonging to the topmost
concepts, and then assigning them to a fine-grained
class. Supervised named entity recognition (NER)
systems can be used for accomplishing the first step.
State-of-the-art NER systems are characterized by
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high accuracy, but they require a large amount of
training data. However, domain specific ontologies
generally contains many “fine-grained” categories
(e.g., particular categories of people, such as writ-
ers, scientists, and so on) and, as a consequence, su-
pervised methods cannot be used because the anno-
tation costs would become prohibitive.

Therefore, in the literature, the fine-grained clas-
sification task has been approached by adopting
weakly supervised (Tanev and Magnini, 2006; Fleis-
chman and Hovy, 2002) or unsupervised methods
(Cimiano and Völker, 2005). Tanev and Magnini
(2006) proposed a weakly supervised method that
requires as training data a list of terms without con-
text for each class under consideration. Such list can
be automatically acquired from existing ontologies
or other sources (i.e., database fields, web sites like
Wikipedia, etc.) since the approach imposes virtu-
ally no restrictions on them. Given a generic syntac-
tically parsed corpus containing at least each train-
ing entity twice, the algorithm learns, for each class,
a feature vector describing the contexts where those
entities occur. Then it compares the new (unknown)
entity with the so obtained feature vectors, assigning
it to the most similar class. Fleischman and Hovy
(2002) approached the ontology population problem
as a classification task, providing examples of in-
stances in their context as training examples for their
respective fine-grained categories.

The aforementioned approaches are clearly inad-
equate to recognize such fine-grained distinctions,
as they would require a time consuming and costly
annotation process for each particular class, that
is clearly infeasible when the number of concepts
in the ontology scales up. Therefore, most of the
present research in ontology population is focus-
ing on either unsupervised approaches (Cimiano
and Völker, 2005) or weakly supervised approaches
(Tanev and Magnini, 2006).

Unsupervised approaches are mostly based on
term similarity metrics. Cimiano and Völker (2005)
assign a particular entity to the fine-grained class
such that the contextual similarity is maximal among
the set of fine-grained subclasses of a coarse-grained
category. Contextual similarity has been measured
by adopting lexico-syntactic features provided by a
dependency parser, as proposed in (Lin, 1998).

3 Instance Based Lexical Entailment

Dagan et al. (2006) adapted the classical supervised
WSD setting to approach the sense matching prob-
lem (i.e., the binary lexical entailment problem of
deciding whether a word, such as position, entails
a different word, such as job, in a given context)
by defining a one-class learning algorithm based on
support vector machines (SVM). They train a one-
class model for each entailed word (e.g., all the oc-
currences of the word job in the corpus) and, then,
apply it to classify all the occurrences of the entail-
ing words (e.g., the word position), providing a bi-
nary decision criterion2. Similarly to the WSD case,
examples are represented by feature vectors describ-
ing their contexts, and then compared to the feature
vectors describing the context of the target word.

In this paper, we adopt a similar strategy to ap-
proach a multi-class lexical entailment problem.
The basic hypothesis is that if a word w entails
e in a particular context (Hw → He), then some
of the contexts T j

e in which e occurs in the train-
ing corpus are similar to Hw. Given a word w
and an (exhaustive) set of candidate entailed words
E = {e1, e2, . . . , en}, to which we refer hereafter
with the expression “substitution lexica”, our goal is
to select the word ei ∈ E that can be substituted to
w in the context Hw generating a sentence He such
that Hw → He. In the multi-class setting, super-
vised learning approaches can be used. In particular,
we can apply a one-versus-all learning methodology,
in which each class ei is trained from both positive
(i.e., all the occurrences of ei in the corpus) and neg-
ative examples (i.e., all the occurrences of the words
in the set {ej |j 6= i}).

Our approach is clearly a simplification of the
more general lexical entailment settings, where
given two generic words w and e, and a context
H = H lwHr, the system is asked to decide whether
w entails e or not. In fact, the latter is a binary
classification problem, while the former is easier as
the system is required to select “the best” option
among the substitution lexicon. Of course providing
such set could be problematic in many cases (e.g.,
it could be incomplete or simply not available for

2This approach resembles the pseudo-words technique pro-
posed to evaluate WSD algorithms at the earlier stages of the
WSD studies (Gale et al., 1992), when large scale sense tagged
corpora were not available for training supervised algorithms.
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many languages or rare words). On the other hand,
such a simplification is practically effective. First of
all, it allows us to provide both positive and nega-
tive examples, avoiding the use of one-class classi-
fication algorithms that in practice perform poorly
(Dagan et al., 2006). Second, the large availabil-
ity of manually constructed substitution lexica, such
as WordNet (Fellbaum, 1998), or the use of reposi-
tories based on statistical word similarities, such as
the database constructed by Lin (1998), allows us to
find an adequate substitution lexicon for each target
word in most of the cases.

For example, as shown in Table 1, the word job
has different senses depending on its context, some
of them entailing its direct hyponym position (e.g.,
“looking for permanent job”), others entailing the
word task (e.g., “the job of repairing”). The prob-
lem of deciding whether a particular instance of job
can be replaced by position, and not by the word
place, can be solved by looking for the most simi-
lar contexts where either position or place occur in
the training data, and then selecting the class (i.e.,
the entailed word) characterized by the most similar
ones, in an instance based style. In the first example
(see row 1), the word job is strongly associated to
the word position, because the contexts of the latter
in the examples 1 and 2 are similar to the context
of the former, and not to the word task, whose con-
texts (4, 5 and 6) are radically different. On the other
hand, the second example (see row 2) of the word
job is similar to the occurrences 4 and 5 of the word
task, allowing its correct substitution.

It is worthwhile to remark that, due to the ambi-
guity of the entailed words (e.g., position could also
entail either perspective or place), not every occur-
rence of them should be taken into account, in order
to avoid misleading predictions caused by the irrele-
vant senses. Therefore, approaches based on a more
classical contextual similarity technique (Lin, 1998;
Dagan, 2000), where words are described “globally”
by context vectors, are doomed to fail. We will pro-
vide empirical evidence of this in the evaluation sec-
tion.

Choosing an appropriate similarity function for
the contexts of the words to be substituted is a pri-
mary issue. In this work, we exploited similar-
ity functions already defined in the WSD literature,
relying on the analogy between the lexical entail-

ment and the WSD task. The state-of-the-art super-
vised WSD methodology, reporting the best results
in most of the Senseval-3 lexical sample tasks in dif-
ferent languages, is based on a combination of syn-
tagmatic and domain kernels (Gliozzo et al., 2005)
in a SVM classification framework. Therefore, we
adopted exactly the same strategy for our purposes.

A great advantage of this methodology is that it
is totally corpus based, as it does not require nei-
ther the availability of lexical databases, nor the use
of complex preprocessing steps such as parsing or
anaphora resolution, allowing us to apply it on dif-
ferent languages and domains once large corpora are
available for training. Therefore, we exploited ex-
actly the same strategy to implement the IBLE clas-
sifier required for our purposes, defining a kernel
composed by n simple kernels, each representing
a different aspect to be considered when estimating
contextual similarity among word occurrences. In
fact, by using the closure properties of the kernel
functions, it is possible to define the kernel combi-
nation schema as follows3:

KC(xi, xj) =
n∑

l=1

Kl(xi, xj)√
Kl(xj , xj)Kl(xi, xi)

, (1)

where Kl are valid kernel functions, measuring sim-
ilarity between the objects xi and xj from different
perspectives4.

One means to satisfy both the WSD and the lex-
ical entailment requirements is to consider two dif-
ferent aspects of similarity: domain aspects, mainly
related to the topic (i.e., the global context) of the
texts in which the word occurs, and syntagmatic as-
pects, concerning the lexico-syntactic pattern in the
local context. Domain aspects are captured by the
domain kernel, described in Section 3.1, while syn-
tagmatic aspects are taken into account by the syn-
tagmatic kernel, presented in Section 3.2.

3Some recent works (Zhao and Grishman, 2005; Gliozzo
et al., 2005) empirically demostrate the effectiveness of com-
bining kernels in this way, showing that the combined kernel
always improves the performance of the individual ones. In ad-
dition, this formulation allows evaluating the individual contri-
bution of each information source.

4An exhaustive discussion about kernel methods for NLP
can be found in (Shawe-Taylor and Cristianini, 2004).
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Entailed job Training
position ... looking for permanent academic job in ... 1 ... from entry-level through permanent positions.

2 My academic position ...
3 ... put the lamp in the left position ...

task The job of repairing 4 The task of setting up ...
5 Repairing the engine is an hard task.
6 ... task based evaluation.

Table 1: IBLE example.

3.1 The Domain Kernel

(Magnini et al., 2002) claim that knowing the do-
main of the text in which the word is located is a cru-
cial information for WSD. For example the (domain)
polysemy among the Computer Science and
the Medicine senses of the word virus can be
solved by simply considering the domain of the con-
text in which it is located. Domain aspects are also
crucial in recognizing lexical entailment. For exam-
ple, the term virus entails software agent in
the Computer Science domain (e.g., “The lap-
top has been infected by a virus”), while it entails
bacterium when located in the Medicine domain
(e.g., “HIV is a virus”). As argued in (Magnini et
al., 2002), domain aspects can be considered by an-
alyzing the lexicon in a large context of the word
to be disambiguated, regardless of the actual word
order. We refer to (Gliozzo et al., 2005) for a de-
tailed description of the domain kernel. The sim-
plest methodology to estimate the domain similar-
ity among two texts is to represent them by means
of vectors in the Vector Space Model (VSM), and
to exploit the cosine similarity. The VSM is a k-
dimensional space Rk, in which the text tj is rep-
resented by means of the vector ~tj such that the ith

component of ~tj is the term frequency of the term
wi in it. The similarity between two texts in the
VSM is estimated by computing the cosine between
them, providing the kernel function KV SM that can
be used as a basic tool to estimate domain similarity
between texts5.

5In (Gliozzo et al., 2005), in addition to the standard VSM,
a domain kernel, exploiting external information acquired from
unlabeled data, has been also used to reduce the amount of (la-
beled) training data. Here, given that our approach is fully un-
supervised, i.e., we can obtain as many examples as we need,
we do not use the domain kernel.

3.2 The Syntagmatic Kernel

Syntagmatic aspects are probably the most impor-
tant evidence for recognizing lexical entailment. In
general, the strategy adopted to model syntagmatic
relations in WSD is to provide bigrams and trigrams
of collocated words as features to describe local con-
texts (Yarowsky, 1994). The main drawback of this
approach is that non contiguous or shifted colloca-
tions cannot be identified, decreasing the general-
ization power of the learning algorithm. For ex-
ample, suppose that the word job has to be disam-
biguated into the sentence “. . . permanent academic
job in. . . ”, and that the occurrence “We offer per-
manent positions. . . ” is provided for training. A
traditional feature mapping would extract the con-
text words w−1:academic, w−2:permanent
to represent the former, and w−1:permanent,
w−2:offer to index the latter. Evidently such fea-
tures will not match, leading the algorithm to a mis-
classification.

The syntagmatic kernel, proposed by Gliozzo et
al. (2005), is an attempt to solve this problem. It
is based on a gap-weighted subsequences kernel
(Shawe-Taylor and Cristianini, 2004). In the spirit
of kernel methods, this kernel is able to compare
sequences directly in the input space, avoiding any
explicit feature mapping. To perform this opera-
tion, it counts how many times a (non-contiguous)
subsequence of symbols u of length n occurs in
the input string s, and penalizes non-contiguous oc-
currences according to the number of the contained
gaps. To define our syntagmatic kernel, we adapted
the generic definition of the sequence kernels to the
problem of recognizing collocations in local word
contexts. We refer to (Giuliano et al., 2006) for a
detailed description of the syntagmatic kernel.
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4 Lexical Entailment for Ontology
Population

In this section, we apply the IBLE technique, de-
scribed in Section 3, to recognize lexical entailment
for ontology population. To this aim, we cast ontol-
ogy population as a lexical entailment task, where
the fine-grained categories are the candidate entailed
words, and the named entities to be subcategorized
are the entailing words. Below, we present the main
steps of our algorithm in details.

Step 1 By using a state-of-the-art supervised NER
system, we recognize the named entities belonging
to a set of coarse-grained categories (e.g., location
and people) of interest for the domain.

Step 2 For all fine-grained categories belonging to
the same coarse-grained type, we extract from a do-
main corpus all the occurrences of their lexicaliza-
tions in context (e.g., for the category actor, we
extract all contexts where the term actor occurs),
and use them as input to train the IBLE classifier. In
this way, we obtain a multi-class classifier for each
ontological type. Then, we classify all the occur-
rences of the named entities recognized in the first
step. The output of this process is a list of tagged
named entities; where the elements of the list could
have been classified into different fine-grained cat-
egories even though they refer to the same phrase
(e.g., the occurrences of the entity “Jack London”
could have been classified both as writer and
actor, depending on the contexts where they oc-
cur).

Step 3 A distinct category is finally assigned to the
entities referring to the same phrase in the list. This
is done on the basis of the tags that have been as-
signed to all its occurrences during the previous step.
To this purpose, we implemented a voting mecha-
nism. The basic idea is that an entity belongs to a
specific category if its occurrences entail a particu-
lar superclass “more often than expected by chance”,
where the expectation is modeled on the basis of the
overall distribution of fine-grained category labels,
assigned during the second step, in the corpus. This
intuition is formalized by applying a statistical reli-
ability measure, that depends on the distribution of
positive assignments for each class, defined by the

following formula:

R(e, c) =
P (c|e)− µc

σc
, (2)

where P (c|e) is estimated by the relative frequency
of the fine-grained class c among the different oc-
currences of the entity e, µc and σc measure the
mean and the standard deviation of the distribution
P (c|E), and E is an (unlabeled) training set of in-
stances of the coarse-grained type classified by the
IBLE algorithm. Finally, each entity is assigned to
the category c∗ such that

c∗ = argmax
c

R(e, c). (3)

5 Evaluation

Evaluating a lexical entailment algorithm in itself
is rather complex. Therefore, we performed a task
driven evaluation of our system, measuring its use-
fulness in an ontology population task, for which
evaluation benchmarks are available, allowing us to
compare our technique to existing state-of-the-art
approaches.

As introduced in Section 4, the ontology popu-
lation task can be modeled as a lexical entailment
problem, in which the fine-grained classes are the
entailed words and the named entities belonging to
the coarse-grained ontological type are the entailing
words.

In the following, we first introduce the experimen-
tal settings (Section 5.1). Then we evaluate our tech-
nique by comparing it to state-of-the-art unsuper-
vised approaches for ontology population (Section
5.2).

5.1 Experimental Settings
For all experiments, we adopted the evaluation
benchmark proposed in (Tanev and Magnini, 2006).
It considers two high-level named entity cate-
gories both having five fine-grained sub-classes (i.e.,
mountain, lake, river, city, and country
as subtypes of LOCATION; statesman, writer,
athlete, actor, and inventor are subtypes of
PERSON). The authors used WordNet and Wikipedia
as primary data sources for populating the evaluation
ontology. In total, the ontology is populated with
280 instances which were not ambiguous (with re-
spect to the ontology) and appeared at least twice in
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the English CLEF corpus6. Even the evaluation task
is rather small and can be perceived as an artificial
experimental setting, it is the best available bench-
mark we can use to compare our system to existing
approaches in the literature, as we are not aware of
other available resources.

To perform NER we used CRFs (Lafferty et al.,
2001). We trained a first-order CRF on the MUC
data set to annotate locations and people. In our
experiments, we used the implementation provided
in MALLET (McCallum, 2002). We used a stan-
dard feature set inspired by the literature on text
chunking and NER (Tjong Kim Sang and Buch-
holz, 2000; Tjong Kim Sang and De Meulder, 2003;
Tjong Kim Sang, 2002) to train a first-order CRFs.
Each instance is represented by encoding all the
following families of features, all time-shifted by -
2,-1,0,1,2: (a) the word itself, (b) the PoS tag of
the token, (c) orthographic predicates, such as cap-
italization, upper-case, numeric, single character,
and punctuation, (d) gazetteers of locations, people
names and organizations, (e) character-n-gram pred-
icates for 2 6 n 6 3.

As an (unsupervised) training set for the fine-
grained categories, we exploited all occurrences in
context of their corresponding terms we found in
the CLEF corpus (e.g., for the category actor we
used all the occurrences of the term actor). We did
not use any prior estimation of the class frequency,
adopting a pure unsupervised approach. Table 2
lists the fine-grained concepts and the number of
the training examples found for each of them in the
CLEF corpus.

As a reference for a comparison of the outcomes
of this study, we used the results presented in (Tanev
and Magnini, 2006) for the Class-Word and Class-
Example approaches. The Class-Word approach ex-
ploits a similarity metric between terms and con-
cepts based on the comparison of the contexts where
they appear. Details of this technique can be found
in (Cimiano and Völker, 2005). Tanev and Magnini
(2006) proposed a variant of the Class-Word algo-
rithm, called Class-Example, that relies on syntactic
features extracted from corpus and uses as an addi-
tional input a set of training examples for each class.
Overall, it required 1, 194 examples to accomplish

6http://www.clef-campaign.org

this task.
All experiments were performed using the SVM

package LIBSVM7 customized to embed our own
kernel. In all the experiments, we used the default
parameter setting.

location person
mountain 1681 statesman 119

lake 730 writer 3436
river 1411 athlete 642
city 35000 actor 2356

country 15037 inventor 105

Table 2: Number of training examples for each class.

5.2 Results

Table 4 shows our results compared with two base-
lines (i.e., random and most frequent, estimated
from the test data) and the two alternative ap-
proaches for ontology population described in the
previous section. Our system outperforms both
baselines and largely surpasses the Class-Word un-
supervised method.

It is worthwhile to remark here that, being the
IBLE algorithm fully unsupervised, improving the
most frequent baseline is an excellent result, rarely
achieved in the literature on unsupervised methods
for WSD (McCarthy et al., 2004). In addition, our
system is also competitive when compared to super-
vised approaches, being it only 5 points lower than
the Class-Example method, while it does not require
seed examples and syntactic parsing. This charac-
teristic makes our system flexible and adaptable to
different languages and domains.

System Micro F1 Macro F1
RND Baseline 0.20 0.20
Class-Word 0.42 0.33
MF baseline 0.52 NA
IBLE 0.57 0.47
Class-Example 0.62 0.68

Table 3: Comparison of different ontology popula-
tion techniques.

7http://www.csie.ntu.edu.tw/∼cjlin/
libsvm/
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Finally, we performed a disaggregated evaluation
of our system, assessing the performance for differ-
ent ontological types and different concepts. Re-
sults show that our method performs better on larger
fine-grained classes (i.e., writer and country),
while the results on smaller categories are affected
by low recall, even if the predictions provided by
the system tends to be highly accurate. Taking into
consideration that our system is fully unsupervised,
this behavior is highly desirable because it implies
that it is somehow able to identify the predominant
class. In addition the high precision on the smaller
classes can be explained by our instance based ap-
proach.

Person N Prec Rec F1
Inventor 11 1 0.18 0.31
Statesman 20 1.0 0.05 0.10
Writer 88 0.61 0.89 0.72
Actor 25 0.57 0.68 0.62
Athlete 20 1 0.1 0.18
Micro 164 0.61 0.61 0.61
Macro 5 0.83 0.38 0.52

Table 4: Performance of the IBLE approach on peo-
ple.

Location N Prec Rec F1
City 23 0.35 0.26 0.30
Country 40 0.61 0.70 0.65
River 10 0.8 0.4 0.53
Mountain 5 0.25 0.2 0.22
Lake 4 0.2 0.5 0.29
Micro 82 0.50 0.50 0.50
Macro 5 0.44 0.41 0.42

Table 5: Performance of the IBLE approach on lo-
cations.

6 Conclusions and Future Work

In this paper, we presented a novel unsupervised
technique for recognizing lexical entailment in texts,
namely instance based lexical entailment, and we
exploited it to approach an ontology population task.
The basic assumption is that if a word is entailed
by another in a given context, then some of the

contexts of the entailed word should be similar to
that of the word to be disambiguated. Our tech-
nique is effective, as it largely surpasses both the
random and most frequent baselines. In addition, it
improves over the state-of-the-art for unsupervised
approaches, achieving performances close to the su-
pervised rivaling techniques requiring hundreds of
examples for each class.

Ontology population is only one of the possible
applications of lexical entailment. For the future,
we plan to apply our instance based approach to a
wide variety of tasks, e.g., lexical substitution, word
sense disambiguation and information retrieval. In
addition, we plan to exploit our lexical entailment as
a subcomponent of a more complex system to rec-
ognize textual entailment. Finally, we are going to
explore more elaborated kernel functions to recog-
nize lexical entailment and more efficient learning
strategies to apply our method to web-size corpora.
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Abstract

To date, work on Non-Local Dependencies
(NLDs) has focused almost exclusively on
English and it is an open research question
how well these approaches migrate to other
languages. This paper surveys non-local de-
pendency constructions in Chinese as repre-
sented in the Penn Chinese Treebank (CTB)
and provides an approach for generating
proper predicate-argument-modifier struc-
tures including NLDs from surface context-
free phrase structure trees. Our approach re-
covers non-local dependencies at the level
of Lexical-Functional Grammar f-structures,
using automatically acquired subcategorisa-
tion frames and f-structure paths linking an-
tecedents and traces in NLDs. Currently our
algorithm achieves 92.2% f-score for trace
insertion and 84.3% for antecedent recovery
evaluating on gold-standard CTB trees, and
64.7% and 54.7%, respectively, on CTB-
trained state-of-the-art parser output trees.

1 Introduction

A substantial number of linguistic phenomena such
as topicalisation, relativisation, coordination and
raising & control constructions, permit a constituent
in one position to bear the grammatical role asso-
ciated with another position. These relationships
are referred to Non-Local Dependencies (NLDs),
where the surface location of the constituent is
called/antecedent0, and the site where the an-
tecedent should be interpreted semantically is called/trace0. Capturing non-local dependencies is cru-
cial to the accurate and complete determination of
semantic interpretation in the form of predicate-
argument-modifier structures or deep dependencies.

However, with few exceptions (Model 3 of
Collins, 1999; Schmid, 2006), output trees pro-
duced by state-of-the-art broad coverage statistical
parsers (Charniak, 2000; Bikel, 2004) are only sur-
face context-free phrase structure trees (CFG-trees)
without empty categories and coindexation to repre-
sent displaced constituents. Because of the impor-
tance of non-local dependencies in the proper de-
termination of predicate-argument structures, recent
years have witnessed a considerable amount of re-
search on reconstructing such hidden relationships
in CFG-trees. Three strategies have been proposed:
(i) post-processing parser output with pattern match-
ers (Johnson, 2002), linguistic principles (Campbell,
2004) or machine learning methods (Higgins, 2003;
Levy and Manning, 2004; Gabbard et al., 2006) to
recover empty nodes and identify their antecedents;1

(ii) integrating non-local dependency recovery into
the parser by enriching a simple PCFG model with
GPSG-style gap features (Collins, 1999; Schmid,
2006); (iii) pre-processing the input sentence with
a finite-state trace tagger which detects empty nodes
before parsing, and identify the antecedents on the
parser output with the gap information (Dienes and
Dubey, 2003a; Dienes and Dubey, 2003b).

In addition to CFG-oriented approaches, a num-
ber of richer treebank-based grammar acquisition
and parsing methods based on HPSG (Miyao et
al., 2003), CCG (Clark and Hockenmaier, 2002),
LFG (Riezler et al., 2002; Cahill et al., 2004) and
Dependency Grammar (Nivre and Nilsson, 2005)
incorporate non-local dependencies into their deep
syntactic or semantic representations.

A common characteristic of all these approaches

1(Jijkoun, 2003; Jijkoun and Rijke, 2004) also describe post-
processing methods to recover NLDs, which are applied to syn-
tactic dependency structures converted from CFG-trees.
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is that, to date, the research has focused almost
entirely on English,2 despite the disparity in type
and frequency of non-local dependencies for vari-
ous languages. In this paper, we address recover-
ing non-local dependencies for Chinese, a language
drastically different from English and whose spe-
cial features such as lack of morphological inflection
make NLD recovery more challenging. Inspired by
(Cahill et al., 2004)’s methodology which was origi-
nally designed for English and Penn-II treebank, our
approach to Chinese non-local dependency recovery
is based on Lexical-Functional Grammar (LFG), a
formalism that involves both phrase structure trees
and predicate-argument structures. NLDs are re-
covered in LFG f-structures using automatically ac-
quired subcategorisation frames and finite approxi-
mations of functional uncertainty equations describ-
ing NLD paths at the level of f-structures.

The paper is structured as follows: in Section 2 we
outline the distinguishing features of Chinese non-
local dependencies compared to English. In Section
3 we review (Cahill et al., 2004)’s method for recov-
ering English NLDs in treebank-based LFG approx-
imations. In Section 4, we describe how we mod-
ify and substantially extend the previous method
to recover all types of NLDs for Chinese data.
We present experiments and provide a dependency-
based evaluation in Section 5. Finally we conclude
and summarise future work.

2 Non-Local Dependencies in Chinese

In the Penn Chinese Treebank (CTB) (Xue et al.,
2002) non-local dependencies are represented in
terms of empty categories (ECs) and (for some of
them) coindexation with antecedents, as exemplified
in Figure 1. Following previous work for English
and the CTB annotation scheme, we use/non-
local dependencies0as a cover term for all miss-
ing or dislocated elements represented in the CTB
as an empty category (with or without coindexa-
tion/antecedent), and our use of the term remains ag-
nostic about fine-grained distinctions between non-
local dependencies drawn in the theoretical linguis-
tics literature.

In order to give an overview on the character-

2 (Levy and Manning, 2004) is the only approach we are
aware of that has been applied to both English and German.

(1) Ø �¿u÷ ��k då � # �[
not want look-for train have potential DE new writer
‘(People) don’t want to look for and train new writers who
have potential.’

IP

NP-SBJ

-NONE-

*pro*

VP

ADVP

ADØ
not

VP

VV�¿
want

IP-OBJ

NP-SBJ

-NONE-

*PRO*

VP

VP

VVu÷
look for

NP-OBJ

-NONE-

*RNR*-2

PU! VP

VV��
train

NP-OBJ-2

CP

WHNP-1

-NONE-

*OP*

CP

IP

NP-SBJ

-NONE-

*T*-1

VP

VEk
have

NP

NNdå
potential

DEC�
DE

ADJP

JJ#
new

NP

NN�[
writer

Figure 1: Example of non-local annotations in CTB,
including dropped subject (*pro*), control subject
(*PRO*), relative clause (*T*), and coordination
(*RNR*).

istics of Chinese non-local dependencies, we ex-
tracted all empty categories together with coindexed
antecedents from the Penn Chinese Treebank ver-
sion 5.1 (CTB5.1). Table 1 gives a breakdown of the
most frequent types of empty categories and their
antecedents, which account for 43,791 of the total
43,954 (99.6%) ECs in CTB5.1.3

According to their different linguistics properties,
we divide the empty nodes listed in Table 1 into
three major types: null relative pronouns, locally
mediated dependencies, and long-distance depen-
dencies.

Null Relative Pronouns (lines 2, 7) themselves
are local dependencies, and thus are not coindexed
with an antecedent. But they mediate non-local de-
pendencies by functioning as antecedents for the dis-

3An extensive description of the types of empty categories
and the use of coindexation in CTB can be found in Section VI
of the bracketing guidelines.
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Antecedent POS Label Count Description

1 WHNP NP *T* 11670 WH trace (e.g. *OP*¥I/Chinau�/launch*T*�/DE¥(/satellite)
2 WHNP *OP* 11621 Empty relative pronouns (e.g.*OP*¥I/Chinau�/launch�/DE¥(/satellite)
3 NP *PRO* 10946 Control constructions (e.g.ùp/hereØ/notN/allow*PRO*Äë/smoke)
4 NP *pro* 7481 Pro-drop situations (e.g.*pro*Ø/notQ/ever��/encounter�/DE¯K/problem)
5 IP IP *T* 575 Topicalisation (e.g.·�/weU/canI/win§�/hè /say*T*)
6 WHPP PP *T* 337 WH trace (e.g. *OP*<�/population*T*�8/dense/«/area)
7 WHPP *OP* 337 Empty relative pronouns (e.g.*OP*<�/population�8/dense/«/area)
8 NP NP * 291 Raising & passive constructions (e.g.·�/we�/BEIüØ/exclude*3	/outside)
9 NP NP *RNR* 258 Coordinations (e.g.�y/encourage*RNR*Ú/and|±/supportÝ℄/investment)
10 CLP CLP *RNR* 182 Coordinations (e.g.Ê/five*RNR*�/to�/ten·/hundred million�/Yuan)
11 NP NP *T* 93 Topicalisation (e.g.�Y/salaryÑ/all^/use*T*5/for�W/pleasure)

Table 1: The distribution of the most frequent types of emptycategories and their antecedents in CTB5.1.
The types with frequency less than 30 are ignored.

located constituent inside a relative clause.4

Locally Mediated Dependencies are non-local as
they are projected through a third lexical item (such
as a control or raising verb) which involves a de-
pendency between two adjacent levels and they are
therefore bounded. This type encompasses: (line
8) raising constructions, and short-bei constructions
(passivisation); (line 3) control constructions, which
includes two different types: a generic *PRO* with
an arbitrary reading (approximately equals to unex-
pressed subjects ofto-infinitive and gerund verbs in
English); and a *PRO* with definite reference (sub-
ject or object control).5

Long-Distance Dependencies (LDDs) differ
from locally mediated dependencies, in that the
path linking the antecedent and trace might be
unbounded (also called unbounded, long-range
dependencies). LDDs include the following
phenomena:

Wh-traces in relative clauses, where an argument
(line 1) or adjunct (line 6)/moves0and is coin-
dexed with the/extraction0site.

Topicalisation (lines 5, 11) is one of the typical
LDDs in English, whereas in Chinese not all topics
involve displacement, for instance (2).

(2) �® ¢U � {
Beijing autumn most beautiful
‘Autumn is the most beautiful in Beijing.’

4Null relative pronouns used in the CTB annotation are to
distinguish relative clauses in which an argument or adjunct of
the embedded verb is/missing0from complement (apposi-
tive) clauses which do not involve non-local dependencies.

5However in this case the CTB annotation doesn’t coindex
the locus (trace) with its controller (antecedent).

Coordination is divided into two groups: right
node raising of an NP phrase which is an argument
shared by the coordinate predicates (line 9); and the
coordination of quantifier phrases (line 10) and ver-
bal phrases (3), in which the antecedent and trace
are both predicates and possibly take their own ar-
guments or adjuncts.

(3) ·Ú �©O � úi Ú *RNR* ��
I and he respectively go to company and *RNR* hospital
‘I went to the company and he went to the hospital re-
spectively.’

Pro-drop situations (line 4) are prominent in
Chinese because subject and object are only seman-
tically but not syntactically required. Nevertheless
we also treat pro-drop as a long-distance depen-
dency as in principle the dropped subjects can be
determined from the general (often inter-sentential)
context.

Table 2 gives a quantitative comparison of NLDs
between Chinese data in CTB5.1 and English in
Penn-II. The data reveals that: first, NLDs in Chi-
nese are much more frequent than in English (by
nearly 1.5 times); and moreover 69% are not explic-
itly linked to an antecedent, compared to 43% for
English, due to the high prevalence of pro-drop in
Chinese.

# of # of # of # non- % non-
sent EC EC/sent coindex coindex

Chinese 18,804 43,954 2.34 30,429 69.23
English 49,207 79,245 1.61 34,455 43.48

Table 2: Comparison of NLDs between Chinese data
in CTB5.1 and English in Penn-II .
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(4) a ·�^ 5�W
money we use to please
‘Money, we use for pleasure.’

IP

NP-TPC-1

NNa
money

NP-SBJ

PN·�
we

VP

VP

VV
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Figure 2: (a) the CTB tree; (b) LFG c-structure with functional equations; (c) corresponding f-structure.
(↑) in the functional annotation refers to the f-structure associated with the mother node and (↓) to that of
the local node.

3 NLD Recovery in LFG Approximations

3.1 Lexical Functional Grammar

Lexical Functional Grammar (Kaplan and Bres-
nan, 1982) is a constraint-based grammar formal-
ism which minimally involves two levels of syn-
tactic representation: c(onstituent)-structure and
f(unctional)-structure. C-structure takes the form of
CFG-trees and captures surface grammatical config-
urations. F-structure encodes more abstract gram-
matical functions (GFs) such asSUBJ(ect),OBJ(ect),
COMP(lement), ADJ(unct) and TOPIC etc., in the
form of Attribute Value Matrices which approxi-
mate to basic predicate-argument-adjunct structures
or dependency relations. C-structures are related to
f-structures by functional annotations (cf. Figure 2
(b) & (c)).

In LFG, non-local dependencies are captured at
f-structure level in terms of reentrancies, indicated
1 for the topicalisation and2 for the control con-

struction in Figure 2(c) obviating the need for traces
and coindexation in the c-structure (Figure 2(b)), un-
like in CTB trees (Figure 2(a)). LFG uses func-
tional uncertainty (FU) equations (regular expres-
sions) to specify paths in f-structures between the
trace and its antecedent. To account for the reen-
trancy 1 in the f-structure, a FU equation of the
form ↑TOPIC=↑COMP* OBJ is required (as the length
of the dependency might be unbounded). The equa-
tion states that the value of theTOPIC attribute is

token identical with the value of the finalOBJ argu-
ment along a path through the immediately enclos-
ing f-structure along zero or moreCOMP attributes.

In addition to FU equations, subcategorisation in-
formation is also a significant ingredient in LFG’s
account of non-local dependencies. Subcategorisa-
tion frames (subcat frames) specify the governable
grammatical functions (i.e. arguments) required by
a particular predicate. In Figure 2(c) each predicate
in the f-structure is followed by its subcat frame.

3.2 F-Structure Based NLD Recovery

(Cahill et al., 2004) presented a NLD recovery al-
gorithm operating at LFG f-structure for treebank-
based LFG approximations. The method automati-
cally converts Penn-II treebank trees with traces and
coindexation into proper f-structures where traces
and coindexation in treebank trees (Figure 2(a))
are represented as corresponding reentrances in f-
structures (Figure 2(c)), and from the f-structures
automatically extracts subcat frames by collecting
all arguments of the local predicate at each level of
the f-structures, and further acquires finite approxi-
mations of FU equations by extracting paths linking
the reentracies occurring in the f-structures.

(Cahill et al., 2004)’s approach for English re-
solves three LDD types in parser output trees with-
out traces and coindexation (Figure 2(b)), i.e. topi-
calisation (TOPIC), wh-movement in relative clauses
(TOPIC REL) and interrogatives (FOCUS). Given
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a set of subcat framess for lemmaw with prob-
abilities P (s|w), a set of pathsp linking reen-
trancies conditioned on the triggering antecedenta

(TOPIC, TOPIC REL or FOCUS) with probabilities
P (p|a), the core algorithm recursively traverses an
f-structuref to:

- find aTOPIC|TOPIC REL|FOCUS:g pair;

- traversef along pathp to the sub-f-structureh;

- retrieve the localPRED:w ath, and insertg to h

iff
* all GFs specified in the subcat frames ex-

ceptg are present ath (completeness con-
dition)

* no other governable GFs present ath are
specified ins (coherence condition)

- rank resolution candidates according to the
product of subcat frame and NLD path prob-
abilities (Eq. 1).

P (s|w) × P (p|a) (1)

4 NLD Recovery Algorithm for Chinese

4.1 Automatic F-Structure Generation

Our NLD recovery is done at the level of LFG f-
structures. Inspired by (Cahill et al., 2004; Burke et
al., 2004), we have implemented an f-structure anno-
tation algorithm to automatically obtain f-structures
from CFG-trees in the CTB5.1. The f-structure an-
notation algorithm, described below, is applied both
to the original CTB trees providing functional tags,
traces and coindexation to generate the training cor-
pus, and to the parser output trees without traces
and coindexation to provide the f-structure input for
NLD recovery.

1. The CFG-trees are head-lexicalised by head-
finding rules similar to (Collins, 1999), adapted
to CTB.

2. Each local subtree of depth one is partitioned
by the head into left and right context. Left-
right context rules exploiting configurational,
categorial and CTB functional tag information
are used to assign each left and right constituent
with appropriate functional equations.

3. Empty nodes and coindexation in the CTB trees
are automatically captured into corresponding
reentrances at f-structure via functional equa-
tions.

4. All the functional equations are collected and
then passed to a constraint solver to generate
f-structures.

4.2 Adaptation to Chinese

(Cahill et al., 2004)’s algorithm (Section 3.2) only
resolves certain NLDs with known types of an-
tecedents (TOPIC, TOPIC REL and FOCUS) at f-
structures. However, as illustrated in Section 2, ex-
cept for relative clauses, the antecedents in Chinese
NLDs do not systematically correspond to types of
grammatical function. Furthermore nearly 70% of
all empty categories are not coindexed with an an-
tecedent. In order to resolve all Chinese NLDs rep-
resented in the CTB, we modify and substantially
extend the (Cahill et al., 2004) (henceforth C04 for
short) algorithm as follows:

Given the set of subcat framess for the wordw,
and a set of pathsp for the tracet, the algorithm
traverses the f-structuref to:

- predict a dislocated argumentt at a sub-f-
structureh by comparing the localPRED:w to
w’s subcat framess

- t can be inserted ath if h together witht is
complete and coherent relative to subcat frame
s

- traversef starting fromt along the pathp

- link t to it’s antecedenta if p’s ending GFa

exists in a sub-f-structure withinf ; or leavet

without an antecedent if an empty path fort ex-
ists

In the modified algorithm, we condition the proba-
bility of NLD path p (including the empty path with-
out an antecedent) on the GF associated of the trace
t rather than the antecedenta as in C04. The path
probabilityP (p|t) is estimated as:

P (p|t) =
count(p, t)

∑n
i=1

count(pi, t)
(2)

In contrast even to English, Chinese has very lit-
tle morphological information. As a result, every
word in Chinese has a unique form regardless of its
syntactic distribution. For this reason we use more
syntactic featuresw feats in addition to word form
to discriminate between appropriate subcat framess.
For a given wordw, w feats include:
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- w pos: the part-of-speech ofw

- w gf: the grammatical function ofw

P (s|w,w feats) replaces C04’sP (s|w) as lexical
subcat frame probability and is estimated as:

P (s|w, w feats) =
count(s, w, w feats)

∑n

i=1
count(si, w, w feats)

(3)

As more conditioning features may cause sever
sparse-data problems, in order to increase the cov-
erage of the automatically acquired subcat frames,
the subcat frame frequenciescount(s,w,w feats)
are smoothed by backing off tow’s part-of-speech
w pos according to Eq. (4). P (s|w pos) is esti-
mated according to Eq. (5) and weighted by a param-
eterΘ. The lexical subcat frame probabilities are es-
timated from the smoothed frequencies as shown in
Eq. (6).

countbk(s, w, w feats) = count(s, w, w feats) (4)

+ΘP (s|w pos)

P (s|w pos) =
count(s, w pos, w gf)

∑

n

i=1
count(si, w pos, w gf)

(5)

Pbk(s|w, w feats) =
countbk(s, w, w feats)

∑

n

i=1
countbk(si, w, w feats)

(6)

Finally, NLD resolutions are ranked according to:

Pbk(s|w,w feats) ×
m
∏

j=1

P (p|tj) (7)

As, apart from the maximum number of arguments
in a subcat frame, there is no a priori limit on
the number of dislocated arguments in a local f-
structure, we rank resolutions with the product of
the path probabilities of each (ofm) missing argu-
ment(s).

4.3 A Hybrid Fine-Grained Strategy

As described in Section 2, there are three types
of NLDs in the CTB, and their different lin-
guistic properties may require fine-grained recov-
ery strategies. Furthermore, as the NLD recov-
ery method described in Section 4.2 is triggered
by/missing0subcategorisable grammatical func-
tions, a few cases of NLDs in which the trace is not
an argument in the f-structure, e.g. anADJUNCT or
TOPIC in relative clauses or an nullPRED in verbal

coordination, can not be recovered by the algorithm.
Table 3 shows the types of NLD that can be recov-
ered by C04 and by the algorithm presented in Sec-
tion 4.2. Table 3 shows that a hybrid methodology
is required to resolve all types of NLDs in the CTB.
The hybrid method involves four strategies:

• Applying a few simple heuristic rules to insert
the emptyPRED for coordinations and null rel-
ative pronouns for relative constructions. The
former is done by comparing the part-of-speech
of the local predicates and their arguments in
each coordinate; and the latter is triggered by
GF ADJUNCT REL in our system.

• Inserting an empty node with GFSUBJ for
short-bei construction, control and raising con-
structions, and relate it to the upper-level
SUBJor OBJ accordingly.

• Exploiting the C04 algorithm to resolve the wh-
trace in relativisation, including ungovernable
GFsTOPIC andADJUNCT.

• Using our modified algorithm (Section 4.2) to
resolve the remaining types, viz. long-distance
dependencies in Chinese.

Antecedent Trace
Topic Rel Other Null Argument Adjunct

C04
√ √ √

Ours
√ √ √ √

Table 3: Comparison of the ability of NLD recovery
for Chinese between C04 and our algorithm

5 Experiments and Evaluation

For all our experiments, we used the first 760
articles (chtb001.fid to chtb931.fid, 10,384 sen-
tences) of CTB5.1, from which 75 double-annotated
files (chtb001.fid to chtb043.fid and chtb900.fid
to chtb 931.fid, 1,046 sentences) were used as test
data,6 75 files (chtb306.fid to chtb325.fid and
chtb 400.fid to chtb454.fid, 1,082 sentences) were
held out as development data, while the other 610
files (8,256 sentences) were used as training data.
Experiments were carried out on two different kinds
of input: first on CTB gold standard trees stripped of
all empty nodes and coindexation information; and

6The complete list of double-annotated files can be found in
the documentation of CTB5.1.
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second, on the output trees of Bikel’s parser (Bikel,
2004).

The evaluation metric adopted by most previous
work used the label and string position of the trace
and its antecedent (Johnson, 2002). As pointed
out by (Campbell, 2004), this metric is insensitive
to the correct attachment of the EC into the parse
tree, and more importantly it is not clear whether
it adequately measures performance in predicate-
argument structure recovery. Therefore, we use
a predicate-argument based evaluation method in-
stead. The NLD recovery is represented as a triple in
the form ofREL(PRED : loc, GF : loc), whereREL is
the relation between the dislocatedGF and thePRED.
In the evaluation for insertion of traces, theGF is
represented by the empty category, and in the eval-
uation for antecedent recovery, theGF is realised by
the predicate of the antecedent, e.g.OBJ(^/use:3,a/money:1) in Figure 2(c). The antecedent and
PRED are both numbered with their string position
in the input sentence. Precision, recall and f-score
are calculated for the evaluation.

5.1 CTB-Based F-Structure and NLD
Resources Acquisition

5.1.1 Automatically Acquired F-Structures

As described in Section 4.1, we automatically
generate LFG f-structures from the CTB trees to ob-
tain the training data and generate f-structures from
the parser output trees, on which the NLDs will be
recovered. To evaluate the performance of the auto-
matic f-structure annotation algorithm, we randomly
selected 200 sentences from the test set and man-
ually annotated the f-structures to generate a gold
standard. The evaluation metric is the same as for
NLD recovery in terms of predicate-argument rela-
tions. Table 4 reports the results against the 200-
sentence gold standard given the original CTB trees
and trees output by Bikel’s parser.

Dependencies Precision Recall F-Score
CTB Trees 95.60 95.82 95.71
Parser Output 74.37 73.15 73.75

Table 4: Evaluation of f-structure annotation

5.1.2 Acquiring Subcat Frames and NLD Paths

From the automatically generated f-structure
training data, we extract 144,119 different lexical

subcat frames and 178 paths linking traces and an-
tecedents for NLD recovery. Tables 5 & 6 show
some examples of the automatically extracted sub-
cat frames and NLD paths respectively.

Word:POS-GF(Subcat Frames) Prob.Má:VV-adj rel([subj,obj]) 0.7655Má:VV-adj rel([subj]) 0.1537Má:VV-adj rel([subj,xcomp]) 0.0337
...... ...Má:VV-coord([subj,obj]) 0.7915Má:VV-coord([subj]) 0.0975
...... ...Má:VV-top([subj,obj]) 0.5247Má:VV-top([subj,comp]) 0.2077
...... ...

Table 5: Examples of subcat frames

Trace (Path) Prob.
adjunct(up-adjunct:down-topicrel) 0.9018
adjunct(up-adjunct:up-coord:down-topicrel) 0.0192
adjunct(NULL) 0.0128
...... ...
obj(up-obj:down-topicrel) 0.7915
obj(up-obj:up-coord:down-coord:down-obj) 0.1108
...... ...
subj(NULL) 0.3903
subj(up-subj:down-topicrel) 0.2092
...... ...

Table 6: Examples of NLD paths

5.2 The Basic Model

The basic algorithm described in Section 4.2 can
be used to indiscriminately resolve almost all NLD
types for Chinese including locally mediated de-
pendencies with few exceptions (traces with modi-
fier GFs, which accounts for about 1.5% of all NLDs
in CTB5.1). Table 7 shows the results of the basic al-
gorithm for trace insertion and antecedent recovery
on both stripped CTB trees and parser output trees.
For comparison, we implemented the C04 algorithm
on our data and evaluated the result. Since the ba-
sic algorithm focus on argument traces, results for
arguments only are given separately.

Table 7 shows that the C04 algorithm achieves a
high precision but as expected a low recall due to
its limitation to certain types of NLDs. By con-
trast, our basic algorithm scored higher recall but
lower precision, which is understandable as the C04
algorithm identifies the trace given a known an-
tecedent, whereas our algorithm tries to identify
both the trace and antecedent. Compared to trace
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Insertion Recovery
CTB Trees Parser Output CTB Trees Parser Output

Prec. Rec. F Prec. Rec. F Prec. Rec. F Prec. Rec. F
(Cahill et al., 2004)

overall 95.98 57.86 72.20 73.00 40.28 51.91 90.16 54.35 67.82 65.54 36.16 46.61
argsonly 98.64 42.03 58.94 82.69 30.54 44.60 86.36 36.80 51.61 66.08 24.40 35.64

Basic Model
overall 92.44 91.28 91.85 63.87 62.15 63.00 63.12 62.33 62.72 42.69 41.54 42.10
argsonly 89.42 92.95 91.15 60.89 63.45 62.15 47.92 49.81 48.84 31.41 32.73 32.06

Basic Model with Subject Path Constraint
overall 92.16 91.36 91.76 63.72 62.20 62.95 75.96 75.30 75.63 50.82 49.61 50.21
argsonly 89.04 93.08 91.02 60.69 63.52 62.07 66.15 69.15 67.62 42.77 44.76 44.76

Table 7: Evaluation of trace insertion and antecedent recovery for C04 algorithm, our basic algorithm and
basic algorithm with the subject path constraint.

Insertion Recovery
Basic Model Hybrid Model Basic Model Hybrid Model

Prec. Rec. F Prec. Rec. F Prec. Rec. F Prec. Rec. F
Overall 92.16 91.36 91.76 92.86 91.45 92.15 75.96 75.30 75.63 84.92 83.64 84.28
SUBJ 92.95 97.81 95.32 94.38 97.81 96.06 66.93 70.42 68.63 81.61 84.57 83.06
OBJ 65.28 64.98 65.13 78.95 55.30 65.04 61.57 61.29 61.43 75.66 53.00 62.33
ADJUNCT 0.0 0.0 0.0 38.24 25.49 30.59 0.0 0.0 0.0 38.24 25.49 30.59
TOPIC 0.0 0.0 0.0 33.33 35.14 34.21 0.0 0.0 0.0 33.33 35.14 34.21
TOPIC REL 99.85 99.39 99.62 99.85 99.39 99.62 99.85 99.39 99.62 99.85 99.39 99.62
COORD 90.00 100.00 94.74 90.00 100.00 94.74 90.00 100.00 94.74 90.00 100.00 94.74

Table 8: Breakdown of trace insertion and antecedent recovery results on stripped CTB trees for the hybrid
model by major grammatical functions.

insertion, the general results for antecedent identifi-
cation are rather poor. Examining the development
data, we found that most recovery errors were due
to wrongly treating missingSUBJs as a PRO (using
empty NLD paths). Since the subject in Chinese has
a very strong tendency to be omitted if it can be in-
ferred from context, the empty NLD path (without
any antecedent) has the greatest probability in all
resolution paths conditioned onSUBJ, and prevents
theSUBJ from finding a proper antecedent in certain
cases. To test the effect of the empty path onSUBJ,
we weighted non-empty paths forSUBJso as to sup-
press the empty path. After testing on the develop-
ment set, the optimal weight was found to be 1.9.
The subject path constraint model shows a dramatic
improvement of 12.9% and 8.1% for the overall re-
sult of antecedent recovery on CTB trees and parser
output trees.

5.3 The Hybrid Fine-Grained Model

As proposed in Section 4.3, we implemented a more
fine-grained strategy to capture specific linguistic
properties of different NLD types in the CTB. We

also combine our basic algorithm (Section 4.2) with
(Cahill et al., 2004)’s algorithm in order to resolve
the modifier-function traces. The two algorithms
may conflict due to (i) inserting the same trace at
the same site but related to different antecedents or
(ii) resolving the same antecedent to different traces.
We keep the traces inserted by the C04 algorithm
and abandon those inserted by our algorithm in case
of conflict, as the results in Section 5.2 suggest that
C04 has a higher precision than ours. Table 8 re-
ports the results of trace insertion and antecedent re-
covery, respectively, on stripped CTB trees, broken
down by major GFs.

The fine-grained hybrid model allows us to re-
cover NLDs with traces with modifier functions and,
more importantly it is sensitive to particular linguis-
tic properties of different NLD types. As the hybrid
model separates the locally mediated dependencies
from other long-distance dependencies, it increases
the f-score by 8.7% for antecedent recovery com-
pared with the basic model. Table 9 reports the
results of the hybrid model on parser output trees,
which shows an increase of 3.6% for antecedent re-
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covery (compared with Table 7).

Insertion Recovery
Prec. Rec. F Prec. Rec. F

overall 64.07 62.37 63.21 54.53 53.08 53.79

Table 9: Evaluation of hybrid model for trace inser-
tion and antecedent recovery on parser output trees.

5.4 Better Training for Parser Output

Our experiments show that although our NLD recov-
ery algorithm performs well on stripped CTB trees,
it is sensitive to the noise in parser output trees, with
a performance drop of about 30%. This is in con-
trast to English data, on which (Johnson, 2002) re-
ports a drop of 7-9% moving from treebank trees to
parser output trees. No doubt this is partially due to
the poor performance of the parser on Chinese data.
It is widely accepted that parsing Chinese is more
difficult than parsing other more configurational or
richer morphological languages, such as English.7

Our NLD recovery algorithm runs on automatically
generated LFG f-structures. The f-structure annota-
tion algorithm is highly tailored to the CTB brack-
eting scheme (using configurational, categorial and
functional tag information), and suffers consider-
ably from errors produced by the parser. Table 4
shows that performance of the f-structure annotation
decreases sharply (about 22%) for the parser output
trees and this contributes to the eventual trace inser-
tion and antecedent recovery performance drop.

Since the f-structures automatically generated
from parser output trees are substantially different
from those generated from the original CTB trees,
our method to obtain the NLD resolution training
data suffers from a serious drawback: the training
data come from perfect CTB trees, whereas test data
are derived from imperfect parser output trees. This
constitutes a serious drawback for machine learning
based approaches, such as ours: ideally, instances
seen during training should be similar to unseen test
data. To make training examples more similar to test
instances, we reparse the training set to obtain bet-
ter training data. To avoid running the parser on the
training data, we carried out 10-fold-cross training,
dividing the training data into 10 parts and parsing

7(Bikel, 2004) reports 89% f-score for English parsing of
Penn-II treebank data and 79% f-score for Chinese parsing on
CTB version 3.

each part in turn with the parser trained on the re-
maining 9 parts. The reparsed training data are more
similar to the test data than the original perfect CTB
trees. We then converted both the reparsed train-
ing data and the original CTB trees into f-structures,
and by comparing with the f-structures generated
from the original CTB trees, we recovered the empty
nodes and coindexation on the f-structures gener-
ated from the reparsed training data. We used parser
output based f-structures to train our NLD recovery
model and recovered NLDs for parser output trees
from the test data. Table 10 presents the results
for trace insertion and antecedent recovery on parser
output trees using the improved training method,
which shows a clear increase in precision and almost
the same recall over the normal training (Table 9).

Insertion Recovery
Prec. Rec. F Prec. Rec. F

overall 67.29 62.33 64.71 56.88 52.69 54.71

Table 10: Evaluation of hybrid model for trace inser-
tion and antecedent recovery on parser output trees
with better training.

6 Conclusion

We have presented an algorithm for recovering non-
local dependencies for Chinese. Our method revises
and considerably extends the approach of (Cahill et
al., 2004) originally designed for English, and, to
the best of our knowledge, is the first NLD recov-
ery algorithm for Chinese. The evaluation shows
that our algorithm considerably outperforms (Cahill
et al., 2004)’s with respect to Chinese data.

In future work, we will refine and extend the con-
ditioning features in our models to discriminate sub-
cat frames and explore the possibilities to use the
Chinese Propbank and Hownet to supplement our
automatically acquired subcat frames. We will in-
vestigate ways of closing the gap between the per-
formance of gold-standard and parer output trees,
including improving parsing result for Chinese. We
also plan to adapt other NLD recovery methods (Ji-
jkoun and Rijke, 2004; Schmid, 2006) to Chinese
and compare them with the current results.
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Abstract

We present a simple history-based model for
sentence generation from LFG f-structures,
which improves on the accuracy of previous
models by breaking down PCFG indepen-
dence assumptions so that more f-structure
conditioning context is used in the predic-
tion of grammar rule expansions. In addi-
tion, we present work on experiments with
named entities and other multi-word units,
showing a statistically significant improve-
ment of generation accuracy. Tested on sec-
tion 23 of the Penn Wall Street Journal Tree-
bank, the techniques described in this paper
improve BLEU scores from 66.52 to 68.82,
and coverage from 98.18% to 99.96%.

1 Introduction

Sentence generation, or surface realisation, is the
task of generating meaningful, grammatically cor-
rect and fluent text from some abstract semantic or
syntactic representation of the sentence. It is an im-
portant and growing field of natural language pro-
cessing with applications in areas such as transfer-
based machine translation (Riezler and Maxwell,
2006) and sentence condensation (Riezler et al.,
2003). While recent work on generation in restricted
domains, such as (Belz, 2007), has shown promising
results there remains much room for improvement
particularly for broad coverage and robust genera-
tors, like those of Nakanishi et al. (2005) and Cahill

∗ Now at the Institut für Maschinelle Sprachverarbeitung,
Universität Stuttgart, Azenbergstrae 12, D-70174 Stuttgart,
Germany. aoife.cahill@ims.uni-stuttgart.de

and van Genabith (2006), which do not rely on hand-
crafted grammars and thus can easily be ported to
new languages.

This paper is concerned with sentence genera-
tion from Lexical-Functional Grammar (LFG) f-
structures (Kaplan, 1995). We present improve-
ments in previous LFG-based generation models
firstly by breaking down PCFG independence as-
sumptions so that more f-structure conditioning con-
text is included when predicting grammar rule ex-
pansions. This history-based approach has worked
well in parsing (Collins, 1999; Charniak, 2000) and
we show that it also improves PCFG-based genera-
tion.

We also present work on utilising named entities
and other multi-word units to improve generation
results for both accuracy and coverage. There has
been a limited amount of exploration into the use
of multi-word units in probabilistic parsing, for ex-
ample in (Kaplan and King, 2003) (LFG parsing)
and (Nivre and Nilsson, 2004) (dependency pars-
ing). We are not aware of any similar work on gen-
eration. In the LFG-based generation algorithm pre-
sented by Cahill and van Genabith (2006) complex
named entities (i.e. those consisting of more than
one word token) and other multi-word units can be
fragmented in the surface realization. We show that
the identification of such units may be used as a sim-
ple measure to constrain the generation model’s out-
put.

We take the generator of (Cahill and van Gen-
abith, 2006) as our baseline generator. When tested
on f-structures for all sentences from Section 23 of
the Penn Wall Street Journal (WSJ) treebank (Mar-
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cus et al., 1993), the techniques described in this pa-
per improve BLEU score from 66.52 to 68.82. In
addition, coverage is increased from 98.18% to al-
most 100% (99.96%).

The remainder of the paper is structured as fol-
lows: in Section 2 we review related work on sta-
tistical sentence generation. Section 3 describes the
baseline generation model and in Section 4 we show
how the new history-based model improves over the
baseline. In Section 5 we describe the source of the
multi-word units (MWU) used in our experiments
and the various techniques we employ to make use
of these MWUs in the generation process. Section 6
gives experimental details and results.

2 Related Work on Statistical Generation

In (statistical) generators, sentences are generated
from an abstract linguistic encoding via the appli-
cation of grammar rules. These rules can be hand-
crafted grammar rules, such as those of (Langkilde-
Geary, 2002; Carroll and Oepen, 2005), created
semi-automatically (Belz, 2007) or, alternatively,
extracted fully automatically from treebanks (Ban-
galore and Rambow, 2000; Nakanishi et al., 2005;
Cahill and van Genabith, 2006).

Insofar as it is a broad coverage generator, which
has been trained and tested on sections of the WSJ
corpus, our generator is closer to the generators
of (Bangalore and Rambow, 2000; Langkilde-Geary,
2002; Nakanishi et al., 2005) than to those designed
for more restricted domains such as weather fore-
cast (Belz, 2007) and air travel domains (Ratna-
parkhi, 2000).

Another feature which characterises statistical
generators is the probability model used to select the
most probable sentence from among the space of all
possible sentences licensed by the grammar. One
generation technique is to first generate all possible
sentences, storing them in a word lattice (Langkilde
and Knight, 1998) or, alternatively, a generation for-
est, a packed represention of alternate trees proposed
by the generator (Langkilde, 2000), and then select
the most probable sequence of words via an n-gram
language model.

Increasingly syntax-based information is being
incorporated directly into the generation model. For
example, Carroll and Oepen (2005) describe a sen-

tence realisation process which uses a hand-crafted
HPSG grammar to generate a generation forest. A
selective unpacking algorithm allows the extraction
of an n-best list of realisations where realisation
ranking is based on a maximum entropy model. This
unpacking algorithm is used in (Velldal and Oepen,
2005) to rank realisations with features defined over
HPSG derivation trees. They achieved the best re-
sults when combining the tree-based model with an
n-gram language model.

Nakanishi et al. (2005) describe a treebank-
extracted HPSG-based chart generator. Importing
techniques developed for HPSG parsing, they apply
a log linear model to a packed representation of all
alternative derivation trees for a given input. They
found that a model which included syntactic infor-
mation outperformed a bigram model as well as a
combination of bigram and syntax model.

The probability model described in this paper also
incorporates syntactic information, however, unlike
the discriminative HPSG models just described, it
is a generative history- and PCFG-based model.
While Belz (2007) and Humphreys et al. (2001)
mention the use of contextual features for the rules
in their generation models, they do not provide de-
tails nor do they provide a formal probability model.
To the best of our knowledge this is the first paper
providing a probabilistic generative, history-based
generation model.

3 Surface Realisation from f-Structures

Cahill and van Genabith (2006) present a prob-
abilistic surface generation model for LFG (Ka-
plan, 1995). LFG is a constraint-based theory
of grammar, which analyses strings in terms of
c(onstituency)-structure and f(unctional)-structure
(Figure 1). C-structure is defined in terms of CFGs,
and f-structures are recursive attribute-value ma-
trices which represent abstract syntactic functions
(such as SUBJect, OBJect, OBLique, COMPlement
(sentential), ADJ(N)unct), agreement, control, long-
distance dependencies and some semantic informa-
tion (e.g. tense, aspect).

C-structures and f-structures are related in a pro-
jection architecture in terms of a piecewise corre-
spondence φ.1 The correspondence is indicated in

1Our formalisation follows (Kaplan, 1995).
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S
↑=↓

NP VP
(↑ SUBJ)= ↓ ↑=↓

NNP V NP
↑=↓ ↑=↓ (↑ OBJ)= ↓

Susan contacted PRP
(↑ PRED) = ‘Susan’ (↑ PRED) = ‘contact’ ↑=↓

(↑ NUM) = SG (↑ TENSE) = past
(↑ PERS) = 3 her

(↑ PRED) = ‘pro’
(↑ NUM) = SG

(↑ PERS) = 3

f1:













PRED ‘CONTACT〈(↑SUBJ)(↑OBJ)〉’

SUBJ f2:

[

PRED ‘SUSAN’
NUM SG

PERS 3

]

OBJ f2:

[

PRED ‘PRO’
NUM SG

PERS 3

]

TENSE PAST













Figure 1: C- and f-structures with φ links for the sentence Susan contacted her.

terms of the curvy arrows pointing from c-structure
nodes to f-structure components in Figure 1. Given
a c-structure node ni, the corresponding f-structure
component fj is φ(ni). F-structures and the c-
structure/f-structure correspondence are described
in terms of functional annotations on c-structure
nodes (CFG grammar rules). An equation of the
form (↑F) = ↓ states that the f-structure associated
with the mother of the current c-structure node (↑)
has an attribute (grammatical function) (F), whose
value is the f-structure of the current node (↓).
The up-arrows and down-arrows are shorthand for
φ(M(ni)) = φ(ni) where ni is the c-structure node
annotated with the equation.2

Treebest := argmaxTreeP (Tree|F-Str) (1)

P (Tree|F-Str) :=
∏

X → Y in Tree
Feats = {ai|∃vj(φ(X))ai = vj}

P (X → Y |X, Feats) (2)

The generation model of (Cahill and van Gen-
abith, 2006) maximises the probability of a tree
given an f-structure (Eqn. 1), and the string gener-
ated is the yield of the highest probability tree. The
generation process is guided by purely local infor-
mation in the input f-structure: f-structure annotated
CFG rules (LHS → RHS) are conditioned on their
LHSs and on the set of features/attributes Feats =
{ai|∃vjφ(LHS)ai = vj}

3 φ-linked to the LHS (Eqn.

2M is the mother function on CFG tree nodes.
3In words, Feats is the set of top level features/attributes

(those attributes ai for which there is a value vi) of the f-
structure φ linked to the LHS.

2). Table 1 shows a generation grammar rule and
conditioning features extracted from the example in
Figure 1. The probability of a tree is decomposed
into the product of the probabilities of the f-structure
annotated rules (conditioned on the LHS and local
Feats) contributing to the tree. Conditional proba-
bilities are estimated using maximum likelihood es-
timation.

grammar rule local conditioning features
S(↑=↓)→ NP(↑SUBJ=↓) VP(↑=↓) S(↑=↓), {SUBJ,OBJ,PRED,TENSE}

Table 1: Example grammar rule (from Figure 1).

Cahill and van Genabith (2006) note that condi-
tioning f-structure annotated generation rules on lo-
cal features (Eqn. 2) can sometimes cause the model
to make inappropriate choices. Consider the follow-
ing scenario where in addition to the c-/f-structure in
Figure 1, the training set contains the c-/f-structure
displayed in Figure 2.

From Figures 1 and 2, the model learns (among
others) the generation rules and conditional proba-
bilities displayed in Tables 2 and 3.

F-Struct Feats Grammar Rules Prob
{SUBJ, OBJ, PRED} S(↑=↓) → NP(↑SUBJ=↓) VP(↑=↓) 1
{SUBJ, OBJ, PRED} VP(↑=↓) → V(↑=↓) NP(↑OBJ=↓) 1
{NUM, PER, GEN} NP(↑SUBJ=↓) → NNP(↑=↓) 0.5
{NUM, PER, GEN} NP(↑SUBJ=↓) → PRP(↑=↓) 0.5
{NUM, PER, GEN} NP(↑OBJ=↓) → PRP(↑=↓) 1

Table 2: A sample of internal grammar rules ex-
tracted from Figures 1 and 2.

Given the input f-structure (for She
accepted) in Figure 3, (and assuming suit-
able generation rules for intransitive VPs and
accepted) the model would produce the inappro-
priate highest probability tree of Figure 4 with an
incorrect case for the pronoun in subject position.
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S
↑=↓

NP VP
(↑ SUBJ)= ↓ ↑=↓

PRP V NP
↑=↓ ↑=↓ (↑ OBJ)= ↓

She hired PRP
(↑ PRED) = ‘pro’ (↑ PRED) = ‘hire’ ↑=↓

(↑ NUM) = SG (↑ TENSE) = past
(↑ PERS) = 3 her

(↑ PRED) = ‘pro’
(↑ NUM) = SG

(↑ PERS) = 3

f1 :













PRED ‘HIRE〈(↑SUBJ)(↑OBJ)〉’

SUBJ f2 :

[

PRED ‘PRO’
NUM SG

PERS 3

]

OBJ f2 :

[

PRED ‘PRO’
NUM SG

PERS 3

]

TENSE PAST













Figure 2: C- and f-structures with φ links for the sentence She hired her.

F-Struct Feats Grammar Rules Prob
{PRED=PRO,NUM=SG PER=3, GEN=FEM} PRP(↑=↓)→ she 0.33
{PRED=PRO,NUM=SG PER=3, GEN=FEM} PRP(↑=↓)→ her 0.66

Table 3: A sample of lexical item rules extracted
from Figures 1 and 2.













SUBJ





PRED pro
NUM sg
PERS 3
GEND fem





PRED accept
TENSE past













Figure 3: Input f-structure for She accepted.

To solve the problem, Cahill and van Gen-
abith (2006) apply an automatic generation gram-
mar transformation to their training data: they au-
tomatically label CFG nodes with additional case
information and the model now learns the new im-
proved generation rules of Tables 4 and 5. Note
how the additional case labelling subverts the prob-
lematic independence assumptions of the probabil-
ity model and communicates the fact that a subject
NP has to be realised as nominative case from the
S → NP-nom VP production, via the intermediate
NP-nom → PRP-nom, down to the lexical produc-
tion PRP-nom → she. The labelling guarantees that,
given the example f-structure in Figure 3, the model
generates the correct string she accepted.

F-Struct Feats Grammar Rules
{SUBJ, OBJ, PRED} S(↑=↓) → NP-nom(↑SUBJ=↓) VP(↑=↓)
{SUBJ, OBJ, PRED} VP(↑=↓) → V(↑=↓) NP-acc(↑OBJ=↓)
{NUM, PER, GEN} NP-nom(↑SUBJ=↓) → PRP-nom(↑=↓)
{NUM, PER, GEN} NP-nom(↑SUBJ=↓) → NNP-nom(↑=↓)
{NUM, PER, GEN} NP-acc(↑OBJ=↓) → PRP-acc(↑=↓)

Table 4: Internal grammar rules with case markings.

S
↑=↓

NP VP
(↑ SUBJ)= ↓ ↑=↓

PRP V
↑=↓ ↑=↓

her accepted
(↑ PRED) = ‘pro’ (↑ PRED) = ‘hire’

(↑ NUM) = SG (↑ TENSE) = past
(↑ PERS) = 3

Figure 4: Inappropriate output: her accepted.

F-Struct Feats Grammar Rules
{PRED=PRO,NUM=SG PER=3, GEN=FEM} PRP-nom(↑=↓)→ she
{PRED=PRO,NUM=SG PER=3, GEN=FEM} PRP-acc(↑=↓)→ her

Table 5: Lexical item rules with case markings

4 A History-Based Generation Model

The automatic generation grammar transform pre-
sented in (Cahill and van Genabith, 2006) provides
a solution to coarse-grained and (in fact) inappropri-
ate independence assumptions in the basic genera-
tion model. However, there is a sense in which the
proposed cure improves on the symptoms, but not
the cause of the problem: it weakens independence
assumptions by multiplying and hence increasing
the specificity of conditioning CFG category labels.
There is another option available to us, and that is
the option we will explore in this paper: instead of
applying a generation grammar transform, we will
improve the f-structure-based conditioning of the
generation rule probabilities. In the original model,
rules are conditioned on purely local f-structure con-
text: the set of features/attributes φ-linked to the
LHS of a grammar rule. As a direct consequence
of this, the conditioning (and hence the model) can-
not not distinguish between NP, PRP and NNP rules
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appropriate to e.g. subject (SUBJ) or object con-
texts (OBJ) in a given input f-structure. However,
the required information can easily be incorporated
into the generation model by uniformly conditioning
generation rules on their parent (mother) grammati-
cal function, in addition to the local φ-linked feature
set. This additional conditioning has the effect of
making the choice of generation rules sensitive to
the history of the generation process, and, we argue,
provides a simpler, more uniform, general, intuitive
and natural probabilistic generation model obviating
the need for CFG-grammar transforms in the origi-
nal proposal of (Cahill and van Genabith, 2006).

In the new model, each generation rule is now
conditioned on the LHS rule CFG category, the set
of features φ-linked to LHS and the parent grammat-
ical function of the f-structure φ-linked to LHS. In a
given c-/f-structure pair, for a CFG node n, the par-
ent grammatical function of the f-structure φ-linked
to n is that grammatical function GF, which, if we
take the f-structure φ-linked to the mother M(n), and
apply it to GF, returns the f-structure φ-linked to n:
(φ(M(n))GF) = φ(n).

The basic idea is best explained by way of an
example. Consider again Figure 1. The mother
grammatical function of the f-structure f2 asso-
ciated with node NP(↑SUBJ=↓) and its daughter
NNP(↑=↓) (via the ↑=↓ functional annotation) is
SUBJ, as (φ(M(n2))SUBJ) = φ(n2), or equivalently
(f1SUBJ) = f2.

Given Figures 1 and 2 as training set, the im-
proved model learns the generation rules (the mother
grammatical function of the outermost f-structure is
assumed to be a dummy TOP grammatical function)
of Tables 6 and 7.

F-Struct Feats Grammar Rules
{SUBJ, OBJ, PRED, TOP} S(↑=↓) → NP(↑SUBJ=↓) VP(↑=↓)
{SUBJ, OBJ, PRED, TOP} VP(↑=↓) → V(↑=↓) NP(↑OBJ=↓)
{NUM, PER, GEN, SUBJ} NP(↑SUBJ=↓) → PRP(↑=↓)
{NUM, PER, GEN, OBJ} NP(↑OBJ=↓) → PRP(↑=↓)
{NUM, PER, GEN, SUBJ} NP(↑SUBJ=↓) → NNP(↑=↓)

Table 6: Grammar rules with extra feature extracted
from F-Structures.

Note, that for our example the effect of the uni-
form additional conditioning on mother grammat-
ical function has the same effect as the genera-
tion grammar transform of (Cahill and van Gen-
abith, 2006), but without the need for the gram-

F-Struct Feats Grammar Rules
{PRED=PRO,NUM=SG PER=3, GEN=FEM, SUBJ} PRP(↑=↓)→ she
{PRED=PRO,NUM=SG PER=3, GEN=FEM, OBJ} PRP(↑=↓)→ her

Table 7: Lexical item rules.

mar transform. Given the input f-structure in Fig-
ure 3, the model will generate the correct string
she accepted. In addition, uniform condition-
ing on mother grammatical function is more general
than the case-phenomena specific generation gram-
mar transform of (Cahill and van Genabith, 2006),
in that it applies to each and every sub-part of a
recursive input f-structure driving generation, mak-
ing available relevant generation history (context) to
guide local generation decisions.

The new history-based probabilistic generation
model is defined as:

P (Tree|F-Str) :=
∏

X → Y in Tree
Feats = {ai|∃vj(φ(X))ai = vj}

(φ(M(X)))GF = φ(X)

P (X → Y |X, Feats,GF) (3)

Note that the new conditioning feature, the f-
structure mother grammatical function, GF, is avail-
able from structure previously generated in the c-
structure tree. As such, it is part of the history of
the tree, i.e. it has already been generated in the top-
down derivation of the tree. In this way, the gen-
eration model resembles history-based models for
parsing (Black et al., 1992; Collins, 1999; Charniak,
2000). Unlike, say, the parent annotation for parsing
of (Johnson, 1998) the parent GF feature for a par-
ticular node expansion is not merely extracted from
the parent node in the c-structure tree, but is some-
times extracted from an ancestor node further up the
c-structure tree via intervening ↑=↓ functional an-
notations.

Section 6 provides evaluation results for the new
model on section 23 of the Penn treebank.

5 Multi-Word Units

In another effort to improve generator accuracy over
the baseline model we explored the use of multi-
word units in generation. We expect that the identi-
fication of MWUs may be useful in imposing word-
order constraints and reducing the complexity of the
generation task. Take, for example, the following
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Figure 5: Three different f-structure formats. From left to right: the original f-structure format; the MWU
chunk format; the MWU mark-up format.

two sentences which show the gold version of a sen-
tence followed by the version of the sentence pro-
duced by the generator:

Gold By this time , it was 4:30 a.m. in New York ,
and Mr. Smith fielded a call from a New York
customer wanting an opinion on the British
stock market , which had been having trou-
bles of its own even before Friday ’s New York
market break .

Test By this time , in New York , it was 4:30 a.m.
, and Mr. Smith fielded a call from New a
customer York , wanting an opinion on the
market British stock which had been having
troubles of its own even before Friday ’s New
York market break .

The gold version of the sentence contains a multi-
word unit, New York, which appears fragmented in
the generator output. If multi-word units were either
treated as one token throughout the generation pro-
cess, or, alternatively, if a constraint were imposed
on the generator such that multi-word units were al-
ways generated in the correct order, then this should
help improve generation accuracy. In Section 5.1
we describe the various techniques that were used
to incorporate multi-word units into the generation
process and in 5.2 we detail the different types and
sources of multi-word unit used in the experiments.
Section 6 provides evaluation results on test and de-
velopment sets from the WSJ treebank.

5.1 Incorporating MWUs into the Generation
Process

We carried out three types of experiment which, in
different ways, enabled the generation process to
respect the restrictions on word-order provided by
multi-word units. For the first experiments (type
1), the WSJ treebank training and test data were
altered so that multi-word units are concatenated
into single words (for example, New York becomes

New York). As in (Cahill and van Genabith, 2006) f-
structures are generated from the (now altered) tree-
bank and from this data, along with the treebank
trees, the PCFG-based grammar, which is used for
training the generation model, is extracted. Simi-
larly, the f-structures for the test and development
sets are created from Penn Treebank trees which
have been modified so that multi-word units form
single units. The leftmost and middle f-structures in
Figure 5 show an example of an original f-structure
format and a named-entity chunked format, respec-
tively. Strings output by the generator are then post-
processed so that the concatenated word sequences
are converted back into single words.

In the second experiment (type 2) only the test
data was altered with no concatenation of MWUs
carried out on the training data.

In the final experiments (type 3), instead of con-
catenating named entities, a constraint is introduced
to the generation algorithm which penalises the gen-
eration of sequences of words which violate the in-
ternal word order of named entities. The input is
marked-up in such a way that, although named en-
tities are no longer chunked together to form single
words, the algorithm can read which items are part
of named entities. See the rightmost f-structure in
Figure 5 for an example of an f-structure marked-
up in this way. The tag NE1 1, for example, indi-
cates that the sub-f-structure is part of a named iden-
tity with id number 1 and that the item corresponds
to the first word of the named entity. The baseline
generation algorithm, following Kay (1996)’s work
on chart generation, already contains the hard con-
straint that when combining two chart edges they
must cover disjoint sets of words. We added an ad-
ditional constraint which prevents edges from being
combined if this would result in the generation of
a string which contained a named entity which was
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either incomplete or where the words in the named
entity were generated in the wrong order.

5.2 Types of MWUs used in Experiments

We carry out experiments with multi-word units
from three different sources. First, we use the output
of the maximum entropy-based named entity recog-
nition system of (Chieu and Ng, 2003). This sys-
tem identifies four types of named entity: person,
organisation, location, and miscellaneous. Addition-
ally we use a dictionary of candidate multi-word ex-
pressions based on a list from the Stanford Multi-
word Expression Project4. Finally, we also carry out
experiments with multi-word units extracted from
the BBN Pronoun Coreference and Entity Type Cor-
pus (Weischedel and Brunstein, 2005). This supple-
ments the Penn WSJ treebank’s one million words of
syntax-annotated Wall Street Journal text with addi-
tional annotations of 23 named entity types, includ-
ing nominal-type named entities such as person, or-
ganisation, location, etc. as well as numeric types
such as date, time, quantity and money. Since the
BBN corpus data is very comprehensive and is hand-
annotated we take this be be a gold standard, repre-
senting an upper bound for any gains that might be
made by identifying complex named entities in our
experiments.5 Table 8 gives examples of the various
types of MWUs identified by the three sources.

For our purposes we are not concerned with the
distinctions between different types of named enti-
ties; we are merely exploiting the fact that they may
be treated as atomic units in the generation model. In
all cases we disregard multi-word units that cross the
original syntactic bracketing of the WSJ treebank.
An overview of the various types of multi-word units
used in our experiments is presented in Table 9.

6 Experimental Evaluation

All experiments were carried out on the WSJ tree-
bank with sections 02-21 for training, section 24 for
development and section 23 for final test results. The
LFG annotation algorithm of (Cahill et al., 2004)
was used to produce the f-structures for develop-
ment, test and training sets.

4mwe.stanford.edu
5Although it is possible there are other types of MWUs that

may be more suitable to the task than the named entities identi-
fied by BBN, so further gains might be possible.

MWU type Examples
Names Martha Matthews

Yoshio Hatakeyama

Organisations Rolls-Royce Motor Cars Inc.
Washington State University

Locations New York City
New Zealand

Time expressions October 19th
two years ago
the 21st century

Quantities $2.7 million to $3 million
about 25 %
60 mph

Prepositional expressions in fact
at the time
on average

Table 8: Examples of some of the types of MWU
from the three different sources.

average number average length
(Chieu and Ng, 2003) 0.61 2.40
Stanford MWE Project 0.10 2.48

BBN Corpus 1.15 2.66

Table 9: Average number of MWUs per sentence
and average MWU length in the WSJ treebank
grouped by MWU source.

Table 10 shows the final results for section 23. For
each test we present BLEU score results as well as
String Edit Distance and coverage. We measure sta-
tistical significance using two different tests. First
we use a bootstrap resampling method, popular for
machine translation evaluations, to measure the sig-
nificance of improvements in BLEU scores, with a
resampling rate of 1000.6 We also calculated the
significance of an increase in String Edit Distance
by carrying out a paired t-test on the mean differ-
ence of the String Edit Distance scores. In Table 10,
� means significant at level 0.005. > means signif-
icant at level 0.05.

In Table 10, Baseline gives the results of the
generation algorithm of (Cahill and van Genabith,
2006). HB Model refers to the improved model
with the increased history context, as described in
Section 4. The results, where for example the
BLEU score rises from 66.52 to 67.24, show that
even increasing the conditioning context by a limited

6Scripts for running the bootstrapping method carried
out in our evaluation are available for download at projec-
tile.is.cs.cmu.edu/research/public/tools/bootStrap/tutorial.htm
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Section 23 (2416 sentences)
Model BLEU StringEd Coverage BLEU Bootstrap Signif StringEd Paired T-Test
1. Baseline 66.52 68.69 98.18
2. HB Model 67.24 69.89 99.88 � 1 � 1
3. +MWU Best Automatic 67.81 70.36 99.92 � 2 � 2
4. MWU BBN 68.82 70.92 99.96 � 3 > 3

Table 10: Results on Section 23 for all sentence lengths.

amount increases the accuracy of the system signif-
icantly for both BLEU and String Edit Distance. In
addition, coverage goes up from 98.18% to 99.88%.

+MWU Best Automatic displays our best results
using automatically identified named entities. These
were achieved using experiment type 2, described
in Section 5, with the MWUs produced by (Chieu
and Ng, 2003). Results displayed in Table 10 up
to this point are cumulative. The final row in Ta-
ble 10, MWU BBN, shows the best results with BBN
MWUs: the history-based model with BBN multi-
word units incorporated in a type 1 experiment.

We now discuss the various MWU experiments
in more detail. See Table 11 for a breakdown of
the MWU experiment results on the development
set, WSJ section 24. Our baseline for these exper-
iments is the history-based generator presented in
Section 4. For each experiment type described in
Section 5.1 we ran three experiments, varying the
source of MWUs. First, MWUs came from the auto-
matic NE recogniser of (Chieu and Ng, 2003), then
we added the MWUs from the Stanford list and fi-
nally we ran tests with MWUs extracted from the
BBN corpus.

Our first set of experiments (type 1), where both
training data and development set data were MWU-
chunked, produced the worst results for the automat-
ically chunked MWUs. BLEU score accuracy actu-
ally decreased for the automatically chunked MWU
experiments. In an error analysis of type 1 ex-
periments with (Chieu and Ng, 2003) concatenated
MWUs, we inspected those sentences where accu-
racy had decreased from the baseline. We found
that for over half (51.5%) of these sentences, the in-
put f-structures contained no multi-word units at all.
The problem for these sentences therefore lay with
the probabilistic grammar extracted from the MWU-
chunked training data. When the source of MWU
for the type 1 experiments was the BBN, however,

accuracy improved significantly over the baseline
and the result is the highest accuracy achieved over
all experiment types. One possible reason for the
low accuracy scores in the type 1 experiments with
the (Chieu and Ng, 2003) MWU chunked data could
be noisy MWUs which negatively affect the gram-
mar. For example, the named entity recogniser
of (Chieu and Ng, 2003) achieves an accuracy of
88.3% on section 23 of the Penn Treebank.

In order to avoid changing the grammar through
concatenation of MWU components (as in exper-
iment type 1) and thus risking side-effects which
cause some heretofore likely constructions become
less likely and vice versa, we ran the next set of ex-
periments (type 2) which leave the original grammar
intact and alter the input f-structures only. These
experiments were more successful overall and we
achieved an improvement over the baseline for both
BLEU and String Edit Distance scores with all
MWU types. As can be seen from Table 11 the
best score for automatically chunked MWUs are
with the (Chieu and Ng, 2003) MWUs. Accuracy
decreases marginally when we added the Stanford
MWUs. In our final set of experiments (type 3) al-
though the accuracy for all three types of MWUs
improves over the baseline, accuracy is a little be-
low the type 2 experiments.

It is difficult to compare sentence generators since
the information contained in the input varies greatly
between systems, systems are evaluated on different
test sets and coverage also varies considerably. In
order to compare our system with those of (Nakan-
ishi et al., 2005) and (Langkilde-Geary, 2002) we
report our best results with automatically acquired
MWUs for sentences of ≤ 20 words in length on
section 23: our system gets coverage of 100% and a
BLEU score of 71.39. For the same test set Nakan-
ishi et al. (2005) achieved coverage of 90.75 and a
BLEU score of 77.33. Langkilde-Geary (2002) re-
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Section 24 (1346 sentences)
Model MWUs BLEU StringEd Coverage
HB Model 65.85 69.93 99.93
type 1 (Chieu and Ng, 2003) 65.81 70.34 99.93
(training and test data chunked) +Stanford MWEs 64.81 69.67 99.93

BBN 67.24 71.46 99.93
type 2 (Chieu and Ng, 2003) 66.37 70.26 99.93
(test data chunked) +Stanford MWEs 66.28 70.21 99.93

BBN 66.84 70.74 99.93
type 3 (Chieu and Ng, 2003) 66.30 70.12 100
(internal generation constraint) +Stanford MWEs 66.07 70.02 99.93

BBN 66.45 70.14 99.93

Table 11: Results on Section 24, all sentence lengths.

ports 82.7% coverage and a BLEU score of 75.7%
on the same test set with the ‘permute,no dir’ type
input. Langkilde-Geary (2002) report results for ex-
periments with varying levels of linguistic detail in
the input given to the generator. As with Nakanishi
et al. (2005) we find the ‘permute,no dir’ type of in-
put is most comparable to the level of information
contained in our input f-structures. Finally, the sym-
bolic generator of Callaway (2003) reports a Sim-
ple String Accuracy score of 88.84 and coverage of
98.7% on section 23 for all sentence lengths.

7 Conclusion and Future Work

We have presented techniques which improve the ac-
curacy of an already state-of-art surface generation
model. We found that a history-based model that
increases conditioning context in PCFG style rules
by simply including the grammatical function of the
f-structure parent, improves generator accuracy. In
the future we will experiment with increasing condi-
tioning context further and using more sophisticated
smoothing techniques to avoid sparse data problems
when conditioning is increased.

We have also demonstrated that automatically ac-
quired multi-word units can bring about moderate,
but significant, improvements in generator accuracy.
For automatically acquired MWUs, we found that
this could best be achieved by concatenating input
items when generating the f-structure input to the
generator, while training the input generation gram-
mar on the original (i.e. non-MWU concatenated)
sections of the treebank. Relying on the BBN cor-
pus as a source of multi-word units, we gave an up-
per bound to the potential usefulness of multi-word
units in generation and showed that automatically

acquired multi-word units, encouragingly, give re-
sults not far below the upper bound.
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Abstract

Given multiple translations of the same
source sentence, how to combine them to
produce a translation that is better than any
single system output? We propose a hier-
archical system combination framework for
machine translation. This framework inte-
grates multiple MT systems’ output at the
word-, phrase- and sentence- levels. By
boosting common word and phrase trans-
lation pairs, pruning unused phrases, and
exploring decoding paths adopted by other
MT systems, this framework achieves bet-
ter translation quality with much less re-
decoding time. The full sentence translation
hypotheses from multiple systems are addi-
tionally selected based on N-gram language
models trained on word/word-POS mixed
stream, which further improves the transla-
tion quality. We consistently observed sig-
nificant improvements on several test sets in
multiple languages covering different gen-
res.

1 Introduction

Many machine translation (MT) frameworks have
been developed, including rule-based transfer MT,
corpus-based MT (statistical MT and example-based
MT), syntax-based MT and the hybrid, statistical
MT augmented with syntactic structures. Different
MT paradigms have their strengths and weaknesses.

∗This work was done when the author was at IBM Research.

Systems adopting the same framework usually pro-
duce different translations for the same input, due
to their differences in training data, preprocessing,
alignment and decoding strategies. It is beneficial
to design a framework that combines the decoding
strategies of multiple systems as well as their out-
puts and produces translations better than any single
system output. More recently, within the GALE1

project, multiple MT systems have been developed
in each consortium, thus system combination be-
comes more important.

Traditionally, system combination has been con-
ducted in two ways: glass-box combination and
black-box combination. In the glass-box combi-
nation, each MT system provides detailed decod-
ing information, such as word and phrase transla-
tion pairs and decoding lattices. For example, in the
multi-engine machine translation system (Nirenburg
and Frederking, 1994), target language phrases from
each system and their corresponding source phrases
are recorded in a chart structure, together with their
confidence scores. A chart-walk algorithm is used
to select the best translation from the chart. To com-
bine words and phrases from multiple systems, it is
preferable that all the systems adopt similar prepro-
cessing strategies.

In the black-box combination, individual MT sys-
tems only output their top-N translation hypothe-
ses without decoding details. This is particularly
appealing when combining the translation outputs
from COTS MT systems. The final translation may
be selected by voted language models and appropri-
ate confidence rescaling schemes ((Tidhar and Kuss-

1http://www.darpa.mil/ipto/programs/gale/index.htm
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ner, 2000) and (Nomoto, 2004)). (Mellebeek et al.,
2006) decomposes source sentences into meaning-
ful constituents, translates them with component MT
systems, then selects the best segment translation
and combine them based on majority voting, lan-
guage models and confidence scores.

(Jayaraman and Lavie, 2005) proposed another
black-box system combination strategy. Given sin-
gle top-one translation outputs from multiple MT
systems, their approach reconstructs a phrase lat-
tice by aligning words from different MT hypothe-
ses. The alignment is based on the surface form
of individual words, their stems (after morphology
analysis) and part-of-speech (POS) tags. Aligned
words are connected via edges. The algorithm finds
the best alignment that minimizes the number of
crossing edges. Finally the system generates a new
translation by searching the lattice based on align-
ment information, each system’s confidence scores
and a language model score. (Matusov et al., 2006)
and (Rosti et al., 2007) constructed a confusion net-
work from multiple MT hypotheses, and a consen-
sus translation is selected by redecoding the lattice
with arc costs and confidence scores.

In this paper, we introduce our hierarchical sys-
tem combination strategy. This approach allows
combination on word, phrase and sentence levels.
Similar to glass-box combination, each MT sys-
tem provides detailed information about the trans-
lation process, such as which source word(s) gener-
ates which target word(s) in what order. Such in-
formation can be combined with existing word and
phrase translation tables, and the augmented phrase
table will be significantly pruned according to reli-
able MT hypotheses. We select an MT system to re-
translate the test sentences with the refined models,
and encourage search along decoding paths adopted
by other MT systems. Thanks to the refined trans-
lation models, this approach produces better transla-
tions with a much shorter re-decoding time. As in
the black-box combination, we select full sentence
translation hypotheses from multiple system outputs
based on n-gram language models. This hierarchical
system combination strategy avoids problems like
translation output alignment and confidence score
normalization. It seamlessly integrates detailed de-
coding information and translation hypotheses from
multiple MT engines, and produces better transla-

tions in an efficient manner. Empirical studies in a
later section show that this algorithm improves MT
quality by 2.4 BLEU point over the best baseline de-
coder, with a 1.4 TER reduction. We also observed
consistent improvements on several evaluation test
sets in multiple languages covering different genres
by combining several state-of-the-art MT systems.

The rest of the paper is organized as follows: In
section 2, we briefly introduce several baseline MT
systems whose outputs are used in the system com-
bination. In section 3, we present the proposed hi-
erarchical system combination framework. We will
describe word and phrase combination and pruning,
decoding path imitation and sentence translation se-
lection. We show our experimental results in section
4 and conclusions in section 5.

2 Baseline MT System Overview

In our experiments, we take the translation out-
puts from multiple MT systems. These include
phrase-based statistical MT systems (Al-Onaizan
and Papineni, 2006) (Block) and (Hewavitharana et
al., 2005) (CMUSMT) , a direct translation model
(DTM) system (Ittycheriah and Roukos, 2007) and a
hierarchical phrased-based MT system (Hiero) (Chi-
ang, 2005). Different translation frameworks are
adopted by different decoders: the DTM decoder
combines different features (source words, mor-
phemes and POS tags, target words and POS tags)
in a maximum entropy framework. These features
are integrated with a phrase translation table for
flexible distortion model and word selection. The
CMU SMT decoder extracts testset-specific bilin-
gual phrases on the fly with PESA algorithm. The
Hiero system extracts context-free grammar rules
for long range constituent reordering.

We select the IBM block decoder to re-translate
the test set for glass-box system combination. This
system is a multi-stack, multi-beam search decoder.
Given a source sentence, the decoder tries to find
the translation hypothesis with the minimum trans-
lation cost. The overall cost is the log-linear combi-
nation of different feature functions, such as trans-
lation model cost, language model cost, distortion
cost and sentence length cost. The translation cost
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between a phrase translation pair(f, e) is defined as

TM(e, f) =
∑

i

λiφ(i) (1)

where feature cost functionsφ(i) includes:
− log p(f |e), a target-to-source word translation

cost, calculated based on unnormalized IBM model1
cost (Brown et al., 1994);

p(f |e) =
∏

j

∑

i

t(fj|ei) (2)

wheret(fj|ei) is the word translation probabilities,
estimated based on word alignment frequencies over
all the training data.i andj are word positions in
target and source phrases.
− log p(e|f), a source-to-target word translation

cost, calculated similar to− log p(f |e);
S(e, f), a phrase translation cost estimated ac-

cording to their relative alignment frequency in the
bilingual training data,

S(e, f) = − log P (e|f) = − log
C(f, e)

C(f)
. (3)

λ’s in Equation 1 are the weights of different fea-
ture functions, learned to maximize development set
BLEU scores using a method similar to (Och, 2003).

The SMT system is trained with testset-specific
training data. This is not cheating. Given a test set,
from a large bilingual corpora we select parallel sen-
tence pairs covering n-grams from source sentences.
Phrase translation pairs are extracted from the sub-
sampled alignments. This not only reduces the size
of the phrase table, but also improves topic relevancy
of the extracted phrase pairs. As a results, it im-
proves both the efficiency and the performance of
machine translation.

3 Hierarchical System Combination
Framework

The overall system combination framework is
shown in Figure 1. The source text is translated
by multiple baseline MT systems. Each system pro-
duces both top-one translation hypothesis as well as
phrase pairs and decoding path during translation.
The information is shared through a common XML
file format, as shown in Figure 2. It demonstrates
how a source sentence is segmented into a sequence

of phrases, the order and translation of each source
phrase as well as the translation scores, and a vector
of feature scores for the whole test sentence. Such
XML files are generated by all the systems when
they translate the source test set.

We collect phrase translation pairs from each de-
coder’s output. Within each phrase pair, we iden-
tify word alignment and estimate word translation
probabilities. We combine the testset-specific word
translation model with a general model. We aug-
ment the baseline phrase table with phrase trans-
lation pairs extracted from system outputs, then
prune the table with translation hypotheses. We re-
translate the source text using the block decoder with
updated word and phrase translation models. Ad-
ditionally, to take advantage of flexible reordering
strategies of other decoders, we develop a word or-
der cost function to reinforce search along decod-
ing paths adopted by other decoders. With the re-
fined translation models and focused search space,
the block decoder efficiently produces a better trans-
lation output. Finally, the sentence hypothesis se-
lection module selects the best translation from each
systems’ top-one outputs based on language model
scores. Note that the hypothesis selection module
does not require detailed decoding information, thus
can take in any MT systems’ outputs.

3.1 Word Translation Combination

The baseline word translation model is too general
for the given test set. Our goal is to construct a
testset-specific word translation model, combine it
with the general model to boost consensus word
translations. Bilingual phrase translation pairs are
read from each system-generated XML file. Word
alignments are identified within a phrase pair based
on IBM Model-1 probabilities. As the phrase pairs
are typically short, word alignments are quite accu-
rate. We collect word alignment counts from the
whole test set translation, and estimate both source-
to-target and target-to-source word translation prob-
abilities. We combine such testset-specific transla-
tion model with the general model.

t′′(e|f) = γt′(e|f) + (1 − γ)t(e|f); (4)

wheret′(e|f) is the testset-specific source-to-target
word translation probability, andt(e|f) is the prob-
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<tr engine="XXX"> 
<s id="0"> <w> ������� </w><w> �	
� </w><w> ��� </w><w> �
	�� </w><w> ����� 

</w><w> �� </w><w> ������ </w><w> ����� </w><w> ��  </w><w> !��� "� </w><w> 
#�$%� </w></s> 

<hyp r="0" c="2.15357"> 
 <t>  
<p al="0-0" cost="0.0603734"> erdogan </p>  
<p al="1-1" cost="0.367276"> emphasized </p>  
<p al="2-2" cost="0.128066"> that </p>  
<p al="3-3" cost="0.0179338"> turkey </p>  
<p al="4-5" cost="0.379862"> would reject any </p>  
<p al="6-6" cost="0.221536"> pressure </p>  
<p al="7-7" cost="0.228264"> to urge them </p>  
<p al="8-8" cost="0.132242"> to</p>  
<p al="9-9" cost="0.113983"> recognize </p>  
<p al="10-10" cost="0.133359"> Cyprus </p>  
</t> 
<sco> 
19.6796 8.40107 0.333514 0.00568583 0.223554 0 0.352681 0.01 -0.616 0.009 0.182052     
</sco> 
</hyp> 
</tr> 

 
Figure 2: Sample XML file format. This includes a source sentence (segmented as a sequence of source
phrases), their translations as well as a vector of feature scores (language model scores, translation model
scores, distortion model scores and a sentence length score).

ability from general model.γ is the linear combi-
nation weight, and is set according to the confidence
on the quality of system outputs. In our experiments,
we setγ to be 0.8. We combine both source-to-
target and target-to-source word translation models,
and update the word translation costs,− log p(e|f)
and− log p(f |e), accordingly.

3.2 Phrase Translation Combination and
Pruning

Phrase translation pairs can be combined in two dif-
ferent ways. We may collect and merge testset-
specific phrase translation tables from each system,
if they are available. Essentially, this is similar to
combining the training data of multiple MT systems.
The new phrase translation probability is calculated
according to the updated phrase alignment frequen-
cies:

P ′(e|f) =
Cb(f, e) +

∑
αmCm(f, e)

Cb(f) +
∑

αmCm(f)
, (5)

whereCb is the phrase pair count from the baseline
block decoder, andCm is the count from other MT
systems.αm is a system-specific linear combination
weight. If not all the phrase tables are available, we

collect phrase translation pairs from system outputs,
and merge them withCb. In such case, we may ad-
just α to balance the small counts from system out-
puts and large counts fromCb.

The corresponding phrase translation cost is up-
dated as

S′(e, f) = − log P ′(e|f). (6)

Another phrase combination strategy works on
the sentence level. This strategy relies on the con-
sensus of different MT systems when translating the
same source sentence. It collects phrase translation
pairs used by different MT systems to translate the
same sentence. Similarly, it boosts common phrase
pairs that are selected by multiple decoders.

S′′(e, f) =
β

|C(f, e)|
× S′(e, f), (7)

whereβ is a boosting factor,0 < β ≤ 1 . |C(f, e)|
is the number of systems that use phrase pair(f, e)
to translate the input sentence. A phrase translation
pair selected by multiple systems is more likely a
good translation, thus costs less.

The combined phrase table contains multiple
translations for each source phrase. Many of them
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are unlikely translations given the context. These
phrase pairs produce low-quality partial hypothe-
ses during hypothesis expansion, incur unnecessary
model cost calculation and larger search space, and
reduce the translation efficiency. More importantly,
the translation probabilities of correct phrase pairs
are reduced as some probability mass is distributed
among incorrect phrase pairs. As a result, good
phrase pairs may not be selected in the final trans-
lation.

Oracle experiments show that if we prune the
phrase table and only keep phrases that appear in
the reference translations, we can improve the trans-
lation quality by 10 BLEU points. This shows the
potential gain by appropriate phrase pruning. We
developed a phrase pruning technique based on self-
training. This approach reinforces phrase transla-
tions learned from MT system output. Assuming
we have reasonable first-pass translation outputs, we
only keep phrase pairs whose target phrase is cov-
ered by existing system translations. These phrase
pairs include those selected in the final translations,
as well as their combinations or sub-phrases. As
a result, the size of the phrase table is reduced by
80-90%, and the re-decoding time is reduced by
80%. Because correct phrase translations are as-
signed higher probabilities, it generates better trans-
lations with higher BLEU scores.

3.3 Decoding Path Imitation

Because of different reordering models, words in the
source sentence can be translated in different orders.
The block decoder has local reordering capability
that allows source words within a given window to
jump forward or backward with a certain cost. The
DTM decoder takes similar reordering strategy, with
some variants like dynamic window width depend-
ing on the POS tag of the current source word. The
Hiero system allows for long range constituent re-
ordering based on context-free grammar rules. To
combine different reordering strategies from vari-
ous decoders, we developed a reordering cost func-
tion that encourages search along decoding paths
adopted by other decoders.

From each system’s XML file, we identify the or-
der of translating source words based on word align-
ment information. For example, given the following
hypothesis path,

<p al=”0-1”> izzat ibrahim </p> <p al=”2-
2”> receives </p> <p al=”3-4”> an economic
official </p> <p al=”5-6”> in </p> <p al=”7-
7”> baghdad </p>

We find the source phrase containing words [0,1]
is first translated into a target phrase “izzat ibrahim”,
which is followed by the translation from source
word 2 to a single target word “receives”, etc.. We
identify the word alignment within the phrase trans-
lation pairs based on IBM model-1 scores. As a re-
sult, we get the following source word translation
sequence from the above hypothesis (note: source
word 5 is translated as NULL):

0 < 1 < 2 < 4 < 3 < 6 < 7
Such decoding sequence determines the transla-

tion order between any source word pairs, e.g., word
4 should be translated before word 3, 6 and 7. We
collect such ordered word pairs from all system out-
puts’ paths. When re-translating the source sen-
tence, for each partially expanded decoding path, we
compute the ratio of word pairs that satisfy such or-
dering constraints2.

Specifically, given a partially expanded pathP =
{s1 < s2 < · · · < sm}, word pair(si < sj) implies
si is translated beforesj. If word pair (si < sj) is
covered by a full decoding pathQ (from other sys-
tem outputs), we denote the relationship as(si <

sj) ∈ Q.
For any ordered word pair(si < sj) ∈ P , we de-

fine its matching ratio as the percentage of full de-
coding paths that cover it:

R(si < sj) =
|Q|

N
, {Q|(si < sj) ∈ Q} (8)

whereN is the total number of full decoding paths.
We define the path matching cost function:

L(P ) = − log

∑
∀(si<sj)∈P R(si < sj)

∑
∀(si<sj)∈P 1

(9)

The denominator is the total number of ordered
word pairs in pathP . As a result, partial paths are
boosted if they take similar source word translation
orders as other system outputs. This cost function is
multiplied with a manually tuned model weight be-
fore integrating into the log-linear cost model frame-
work.

2We set no constraints for source words that are translated
into NULL.
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3.4 Sentence Hypothesis Selection

The sentence hypothesis selection module only takes
the final translation outputs from individual systems,
including the output from the glass-box combina-
tion. For each input source sentence, it selects the
“optimal” system output based on certain feature
functions.

We experiment with two feature functions. One
is a typical 5-gram word language model (LM). The
optimal translation outputE′ is selected among the
top-one hypothesis from all the systems according
to their LM scores. Letei be a word in sentenceE:

E′ = arg min
E

− log P5glm(E) (10)

= arg min
E

∑

i

− log p(ei|e
i−1
i−4),

where ei−1
i−4 is the n-gram history,

(ei−4, ei−3, ei−2, ei−1).
Another feature function is based on the 5-gram

LM score calculated on the mixed stream of word
and POS tags of the translation output. We run POS
tagging on the translation hypotheses. We keep the
word identities of topN frequent words (N=1000
in our experiments), and the remaining words are re-
placed with their POS tags. As a result, the mixed
stream is like a skeleton of the original sentence, as
shown in Figure 3.

With this model, the optimal translation outputE∗

is selected based on the following formula:

E∗ = arg min
E

− log Pwplm(E) (11)

= arg min
E

∑

i

− log p(T (ei)|T (e)i−1
i−4)

where the mixed stream tokenT (e) = e whene ≤
N , andT (e) = POS(e) whene > N . Similar to
a class-based LM, this model is less prone to data
sparseness problems.

4 Experiments

We experiment with different system combination
strategies on the NIST 2003 Arabic-English MT
evaluation test set. Testset-specific bilingual data
are subsampled, which include 260K sentence pairs,
10.8M Arabic words and 13.5M English words. We
report case-sensitive BLEU (Papineni et al., 2001)

BLEUr4n4c TER

sys1 0.5323 43.11
sys4 0.4742 46.35

Tstcom 0.5429 42.64
Tstcom+Sentcom 0.5466 42.32

Tstcom+Sentcom+Prune 0.5505 42.21

Table 1: Translation results with phrase combination
and pruning.

and TER (Snover et al., 2006) as the MT evaluation
metrics. We evaluate the translation quality of dif-
ferent combination strategies:

• WdCom: Combine testset-specific word trans-
lation model with the baseline model, as de-
scribed in section 3.1.

• PhrCom: Combine and prune phrase trans-
lation tables from all systems, as described
in section 3.2. This include testset-specific
phrase table combination (Tstcom), sen-
tence level phrase combination (Sentcom) and
phrase pruning based on translation hypotheses
(Prune).

• Path: Encourage search along the decoding
paths adopted by other systems via path match-
ing cost function, as described in section 3.3.

• SenSel: Select whole sentence translation hy-
pothesis among all systems’ top-one outputs
based on N-gram language models trained on
word stream (word) and word-POS mixed
stream(wdpos).

Table 1 shows the improvement by combining
phrase tables from multiple MT systems using dif-
ferent combination strategies. We only show the
highest and lowest baseline system scores. By com-
bining testset-specific phrase translation tables (Tst-
com), we achieved 1.0 BLEU improvement and 0.5
TER reduction. Sentence-level phrase combination
and pruning additionally improve the BLEU score
by 0.7 point and reduce TER by 0.4 percent.

Table 2 shows the improvement with differ-
ent sentence translation hypothesis selection ap-
proaches. The word-based LM is trained with about
1.75G words from newswire text. A distributed
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BLEUr4n4c TER

sys1 0.5323 43.11
sys2 0.5320 43.06

SentSel-word: 0.5354 42.56
SentSel-wpmix: 0.5380 43.06

Table 2: Translation results with different sentence
hypothesis selection strategies.

BLEUr4n4c TER

sys1 0.5323 43.11
sys2 0.5320 43.06
sys3 0.4922 46.03
sys4 0.4742 46.35

WdCom 0.5339 42.60
WdCom+PhrCom 0.5528 41.98

WdCom+PhrCom+Path 0.5543 41.75
WdCom+PhrCom+Path+SenSel 0.5565 41.59

Table 3: Translation results with hierarchical system
combination strategy.

large-scale language model architecture is devel-
oped to handle such large training corpora3, as de-
scribed in (Emami et al., 2007). The word-based LM
shows both improvement in BLEU scores and error
reduction in TER. On the other hand, even though
the word-POS LM is trained with much less data
(about 136M words), it improves BLEU score more
effectively, though there is no change in TER.

Table 3 shows the improvements from hierarchi-
cal system combination strategy. We find that word-
based translation combination improves the baseline
block decoder by 0.16 BLEU point and reduce TER
by 0.5 point. Phrase-based translation combina-
tion (including phrase table combination, sentence-
level phrase combination and phrase pruning) fur-
ther improves the BLEU score by 1.9 point (another
0.6 drop in TER). By encouraging the search along
other decoder’s decoding paths, we observed addi-
tional 0.15 BLEU improvement and 0.2 TER reduc-
tion. Finally, sentence translation hypothesis selec-
tion with word-based LM led to 0.2 BLEU point
improvement and 0.16 point reduction in TER. To

3The same LM is also used during first pass decoding by
both the block and the DTM decoders.

BLEUr4n4c TER

sys1 0.3205 60.48
sys2 0.3057 59.99
sys3 0.2787 64.46
sys4 0.2823 59.19
sys5 0.3028 62.16

syscom 0.3409 58.89

Table 4: System combination results on Chinese-
English translation.

BLEUr1n4c TER

sys1 0.1261 71.70
sys2 0.1307 77.52
sys3 0.1282 70.82
sys4 0.1259 70.20

syscom 0.1386 69.23

Table 5: System combination results for Arabic-
English web log translation.

summarize, with the hierarchical system combina-
tion framework, we achieved 2.4 BLEU point im-
provement over the best baseline system, and reduce
the TER by 1.4 point.

Table 4 shows the system combination results on
Chinese-English newswire translation. The test data
is NIST MT03 Chinese-English evaluation test set.
In addition to the 4 baseline MT systems, we also
add another phrase-based MT system (Lee et al.,
2006). The system combination improves over the
best baseline system by 2 BLEU points, and reduce
the TER score by 1.6 percent. Thanks to the long
range constituent reordering capability of different
baseline systems, the path imitation improves the
BLEU score by 0.4 point.

We consistently notice improved translation qual-
ity with system combination on unstructured text
and speech translations, as shown in Table 5 and 6.
With one reference translation, we notice 1.2 BLEU
point improvement over the baseline block decoder
(with 2.5 point TER reduction) on web log transla-
tion and about 2.1 point BLEU improvement (with
0.9 point TER reduction) on Broadcast News speech
translation.
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BLEUr1n4c TER

sys1 0.2011 61.46
sys2 0.2211 66.32
sys3 0.2074 61.21
sys4 0.1258 85.45

syscom 0.2221 60.54

Table 6: System combination results for Arabic-
English speech translation.

5 Related Work

Many system combination research have been done
recently. (Matusov et al., 2006) computes consen-
sus translation by voting on a confusion network,
which is created by pairwise word alignment of mul-
tiple baseline MT hypotheses. This is similar to the
sentence- and word- level combinations in (Rosti
et al., 2007), where TER is used to align multi-
ple hypotheses. Both approaches adopt black-box
combination strategy, as target translations are com-
bined independent of source sentences. (Rosti et al.,
2007) extracts phrase translation pairs in the phrase
level combination. Our proposed method incorpo-
rates bilingual information from source and target
sentences in a hierarchical framework: word, phrase
and decoding path combinations. Such information
proves very helpful in our experiments. We also de-
veloped a path matching cost function to encourage
decoding path imitation, thus enable one decoder to
take advantage of rich reordering models of other
MT systems. We only combine top-one hypothesis
from each system, and did not apply system confi-
dence measure and minimum error rate training to
tune system combination weights. This will be our
future work.

6 Conclusion

Our hierarchical system combination strategy effec-
tively integrates word and phrase translation com-
binations, decoding path imitation and sentence hy-
pothesis selection from multiple MT systems. By
boosting common word and phrase translation pairs
and pruning unused ones, we obtain better transla-
tion quality with less re-decoding time. By imitat-
ing the decoding paths, we take advantage of various
reordering schemes from different decoders. The

sentence hypothesis selection based on N-gram lan-
guage model further improves the translation qual-
ity. The effectiveness has been consistently proved
in several empirical studies with test sets in different
languages and covering different genres.
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Figure 1: Hierarchical MT system combination ar-
chitecture. The top dot-line rectangle is similar to
the glass-box combination, and the bottom rectangle
with sentence selection is similar to the black-box
combination.

 

 

Original Sentence: 

  
 
 
 
 
Word-POS mixed stream: 

 
 
 

 

in short , making a good plan at the 
beginning of the construction is the crucial 
measure for reducing haphazard economic 
development . 

in JJ , making a good plan at the NN of the 
construction is the JJ NN for VBG JJ 
economic development . 

Figure 3: Sentence with Word-POS mixed stream.
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Abstract 

This paper proposes a method using the ex-
isting Rule-based Machine Translation 
(RBMT) system as a black box to produce 
synthetic bilingual corpus, which will be 
used as training data for the Statistical Ma-
chine Translation (SMT) system. We use 
the existing RBMT system to translate the 
monolingual corpus into synthetic bilingual 
corpus. With the synthetic bilingual corpus, 
we can build an SMT system even if there 
is no real bilingual corpus. In our experi-
ments using BLEU as a metric, the system 
achieves a relative improvement of 11.7% 
over the best RBMT system that is used to 
produce the synthetic bilingual corpora. 
We also interpolate the model trained on a 
real bilingual corpus and the models 
trained on the synthetic bilingual corpora. 
The interpolated model achieves an abso-
lute improvement of 0.0245 BLEU score 
(13.1% relative) as compared with the in-
dividual model trained on the real bilingual 
corpus. 

1 Introduction 

Within the Machine Translation (MT) field, by far 
the most dominant paradigm is SMT, but many 
existing commercial systems are rule-based. In this 
research, we are interested in answering the ques-
tion of whether the existing RBMT systems could 
be helpful to the development of an SMT system. 
To find the answer, let us first consider the follow-
ing facts: 

• Existing RBMT systems are usually pro-
vided as a black box. To make use of such 
systems, the most convenient way might 
be working on the translation results di-
rectly. 

• SMT methods rely on bilingual corpus. As 
a data driven method, SMT usually needs 
large bilingual corpus as the training data. 

Based on the above facts, in this paper we pro-
pose a method using the existing RBMT system as 
a black box to produce a synthetic bilingual cor-
pus1, which will be used as the training data for the 
SMT system. 

For a given language pair, the monolingual cor-
pus is usually much larger than the real bilingual 
corpus. We use the existing RBMT system to 
translate the monolingual corpus into synthetic 
bilingual corpus. Then, even if there is no real bi-
lingual corpus, we can train an SMT system with 
the monolingual corpus and the synthetic bilingual 
corpus. If there exist n available RBMT systems 
for the desired language pair, we use the n systems 
to produce n synthetic bilingual corpora, and n 
translation models are trained with the n corpora 
respectively. We name such a model the synthetic 
model. An interpolated translation model is built 
by linear interpolating the n synthetic models. In 
our experiments using BLEU (Papineni et al., 2002) 
as the metric, the interpolated synthetic model 
achieves a relative improvement of 11.7% over the 
best RBMT system that is used to produce the syn-
thetic bilingual corpora.  
                                                 
1 In this paper, to be distinguished from the real bilingual cor-
pus, the bilingual corpus generated by the RBMT system is 
called a synthetic bilingual corpus.  
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Moreover, if a real bilingual corpus is available 
for the desired language pair, we build another 
translation model, which is named the standard 
model. Then we can build an interpolated model 
by interpolating the standard model and the syn-
thetic models. Experimental results show that the 
interpolated model achieves an absolute improve-
ment of 0.0245 BLEU score (13.1% relative) as 
compared with the standard model. 

The remainder of this paper is organized as fol-
lows. In section 2 we summarize the related work. 
We then describe our method Using RBMT sys-
tems to produce bilingual corpus for SMT in sec-
tion 3. Section 4 describes the resources used in the 
experiments. Section 5 presents the experiment 
result, followed by the discussion in section 6. Fi-
nally, we conclude and present the future work in 
section 7. 

2 Related Work 

In the MT field, by far the most dominant 
paradigm is SMT. SMT has evolved from the 
original word-based approach (Brown et al., 1993) 
into phrase-based approaches (Koehn et al., 2003; 
Och and Ney, 2004) and syntax-based approaches 
(Wu, 1997; Alshawi et al., 2000; Yamada and 
Knignt, 2001; Chiang, 2005). On the other hand, 
much important work continues to be carried out in 
Example-Based Machine Translation (EBMT) 
(Carl et al., 2005; Way and Gough, 2005), and 
many existing commercial systems are rule-based. 

Although we are not aware of any previous at-
tempt to use an existing RBMT system as a black 
box to produce synthetic bilingual training corpus 
for general purpose SMT systems, there exists a 
great deal of work on MT hybrids and Multi-
Engine Machine Translation (MEMT). 

Research into MT hybrids has increased over the 
last few years. Some research focused on the hy-
brid of various corpus-based MT methods, such as 
SMT and EBMT (Vogel and Ney, 2000; Marcu, 
2001; Groves and Way, 2006; Menezes and Quirk, 
2005). Others tried to exploit the advantages of 
both rule-based and corpus-based methods. Habash 
et al. (2006) built an Arabic-English generation-
heavy MT system and boosted it with SMT com-
ponents. METIS-II is a hybrid machine translation 
system, in which insights from SMT, EBMT, and 
RBMT are used (Vandeghinste et al., 2006). Seneff 
et al. (2006) combined an interlingual translation 

framework with phrase-based SMT for spoken 
language translation in a limited domain. They 
automatically generated a corpus of English-
Chinese pairs from the same interlingual represen-
tation by parsing the English corpus and then para-
phrasing each utterance into both English and Chi-
nese. 

Frederking and Nirenburg (1994) produced the 
first MEMT system by combining outputs from 
three different MT engines based on their knowl-
edge of the inner workings of the engines. Nomoto 
(2004) used voted language models to select the 
best output string at sentence level. Some recent 
approaches to MEMT used word alignment tech-
niques for comparison between the MT systems 
(Jayaraman and Lavie, 2005; Zaanen and Somers, 
2005; Matusov et al. 2006). All the above MEMT 
systems operate on MT outputs for complete input 
sentences. Mellebeek et al. (2006) presented a dif-
ferent approach, using a recursive decomposition 
algorithm that produces simple chunks as input to 
the MT engines. A consensus translation is pro-
duced by combining the best chunk translation. 

This paper uses RBMT outputs to improve the 
performance of SMT systems. Instead of RBMT 
outputs, other researchers have used SMT outputs 
to boost translation quality. Callision-Burch and 
Osborne (2003) used co-training to extend existing 
parallel corpora, wherein machine translations are 
selectively added to training corpora with multiple 
source texts. They also created training data for a 
language pair without a parallel corpus by using 
multiple source texts. Ueffing (2006) explored 
monolingual source-language data to improve an 
existing machine translation system via self-
training. The source data is translated by a SMT 
system, and the reliable translations are automati-
cally identified. Both of the methods improved 
translation quality. 

3 Method 

In this paper, we use the synthetic and real bilin-
gual corpus to train the phrase-based translation 
models. 

3.1  Phrase-Based Models 

According to the translation model presented in 
(Koehn et al., 2003), given a source sentence f , 
the best target translation  can be obtained 
using the following model 

beste
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Where )|( ii efφ  is the phrase translation prob-
ability.  denotes the start position of the source 
phrase that was translated into the ith target phrase, 
and  denotes the end position of the source 
phrase translated into the (i-1)th target phrase. 

 is the distortion probability. 
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),|( aefp iiw  is the lexical weight, and λ  is the 
strength of the lexical weight. 

3.2 Interpolated Models 

We train synthetic models with the synthetic bilin-
gual corpus produced by the RBMT systems. We 
can also train a translation model, namely standard 
model, if a real bilingual corpus is available. In 
order to make full use of these two kinds of cor-
pora, we conduct linear interpolation between them. 

In this paper, the distortion probability in equa-
tion (2) is estimated during decoding, using the 
same method as described in Pharaoh (Koehn, 
2004). For the phrase translation probability and 
lexical weight, we interpolate them as shown in (3) 
and (4). 

∑
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Where )|(0 efφ  and ),|( aefpw,0  denote the 
phrase translation probability and lexical weight 
trained with the real bilingual corpus, respectively. 

)|( efiφ  and ),|( aefp iw,  ( ) are the 
phrase translation probability and lexical weight 
estimated by n  synthetic corpora produced by the 
RBMT systems. 
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4 Resources Used in Experiments 

4.1 Data 

In the experiments, we take English-Chinese trans-
lation as a case study. The real bilingual corpus 
includes 494,149 English-Chinese bilingual sen-
tence pairs. The monolingual English corpus is 
selected from the English Gigaword Second Edi-
tion, which is provided by Linguistic Data Consor-
tium (LDC) (catalog number LDC2005T12). The 
selected monolingual corpus includes 1,087,651 
sentences. 

For language model training, we use part of the 
Chinese Gigaword Second Edition provided by 
LDC (catalog number LDC2005T14). We use 
41,418 documents selected from the ZaoBao 
Newspaper and 992,261 documents from the Xin-
Hua News Agency to train the Chinese language 
model, amounting to 5,398,616 sentences. 

The test set and the development set are from 
the corpora distributed for the 2005 HTRDP 2  
evaluation of machine translation.  It can be ob-
tained from Chinese Linguistic Data Consortium 
(catalog number 2005-863-001). We use the same 
494 sentences in the test set and 278 sentences in 
the development set. Each source sentence in the 
test set and the development set has 4 different ref-
erences. 

4.2 Tools 

In this paper, we use two off-the-shelf commercial 
English to Chinese RBMT systems to produce the 
synthetic bilingual corpus. 

We also need a trainer and a decoder to perform 
phrase-based SMT. We use Koehn's training 
scripts 3  to train the translation model, and the 
SRILM toolkit (Stolcke, 2002) to train language 
model. For the decoder, we use Pharaoh (Koehn, 
2004). We run the decoder with its default settings 
(maximum phrase length 7) and then use Koehn's 
implementation of minimum error rate training 
(Och, 2003) to tune the feature weights on the de-
                                                 
2 The full name of HTRDP is National High Technology Re-
search and Development Program of China, also named as 863 
Program. 

3  It is located at http://www.statmt.org/wmt06/shared-
task/baseline.html. 
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velopment set. The translation quality is evaluated 
using a well-established automatic measure: BLEU 
score (Papineni et al., 2002). We use the same 
method described in (Koehn and Monz, 2006) to 
perform the significance test. 

5 Experimental Results 

5.1 Results on Synthetic Corpus Only 

With the monolingual English corpus and the Eng-
lish side of the real bilingual corpus, we translate 
them into Chinese using the two commercial 
RBMT systems and produce two synthetic bilin-
gual corpora. With the corpora, we train two syn-
thetic models as described in section 3.1. Based on 
the synthetic models, we also perform linear inter-
polation as shown in section 3.2, without the stan-
dard models. We tune the interpolation weights 
using the development set, and achieve the best 
performance when 58.01 =α , 42.02 =α , 

58.01 =β , and 42.02 =β . The translation results 
on the test set are shown in Table 1. Synthetic 
model 1 and 2 are trained using the synthetic bilin-
gual corpora produced by RBMT system 1 and 
RBMT system 2, respectively. 

Method BLEU 
RBMT system 1 0.1681 
RBMT system 2 0.1453 

Synthetic Model 1 0.1644 
Synthetic Model 2 0.1668 

Interpolated Synthetic Model 0.1878 

Table 1. Translation Results Using Synthetic Bi-
lingual Corpus 

From the results, it can be seen that the interpo-
lated synthetic model obtains the best result, with 
an absolute improvement of the 0.0197 BLEU 
(11.7% relative) as compared with RBMT system 
1, and 0.0425 BLEU (29.2% relative) as compared 
with RBMT system 2. It is very promising that our 
method can build an SMT system that significantly 
outperforms both of the two RBMT systems, using 
the synthetic bilingual corpus produced by two 
RBMT systems. 

5.2 Results on Real and Synthetic Corpus 

With the real bilingual corpus, we build a standard 
model. We interpolate the standard model with the 
two synthetic models built in section 5.1 to obtain 

interpolated models. The translation results are 
shown in Table 2. The interpolation coefficients 
are both for phrase table probabilities and lexical 
weights. They are also tuned using the develop-
ment set.  

From the results, it can be seen that all the three 
interpolated models perform not only better than 
the RBMT systems but also better than the SMT 
system trained on the real bilingual corpus. The 
interpolated model combining the standard model 
and the two synthetic models performs the best, 
achieving a statistically significant improvement of 
about 0.0245 BLEU (13.1% relative) as compared 
with the standard model with no synthetic corpus. 
It also achieves 26.1% and 45.8% relative im-
provement as compared with the two RBMT sys-
tems respectively. The results indicate that using 
the corpus produced by RBMT systems, the per-
formance of the SMT system can be greatly im-
proved. The results also indicate that the more the 
RBMT systems are used, the better the translation 
quality is. 

Interpolation Coefficients 
Standard 

model 
Synthetic 
Model 1 

Synthetic 
Model 2 

BLEU 

1 — — 0.1874 
0.90 0.10 — 0.2056 
0.86 — 0.14 0.2040 
0.70 0.12 0.18 0.2119 

Table 2. Translation Results Using Standard and 
Synthetic Bilingual Corpus 

5.3 Effect of Synthetic Corpus Size 

To explore the relationship between the translation 
quality and the scale of the synthetic bilingual cor-
pus, we interpolate the standard model with the 
synthetic models trained with synthetic bilingual 
corpus of different sizes. In order to simplify the 
procedure, we only use RBMT system 1 to trans-
late the 1,087,651 monolingual English sentences 
to produce the synthetic bilingual corpus.  

We randomly select 20%, 40%, 60%, 80%, and 
100% of the synthetic bilingual corpus to train dif-
ferent synthetic models. The translation results of 
the interpolated models are shown in Figure 1. The 
results indicate that the larger the synthetic bilin-
gual corpus is, the better translation performance 
would be. 
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Figure 1. Comparison of Translation Results Using 

Synthetic Bilingual Corpus of Different Sizes 
Figure 2. Comparison of Translation Results Using 

Real Bilingual Corpus of Different Sizes 

5.4 Effect of Real Corpus Size Interpolation Coefficients 
Standard 

model 
Synthetic 
Model 1 

Synthetic 
Model 2 

BLEU 

1 — — 0.1874 
— 1 — 0.1560 
— — 1 0.1522 

0.80 0.10 0.10 0.1972 

Another issue is the relationship between the SMT 
performance and the size of the real bilingual cor-
pus. To train different standard models, we ran-
domly build five corpora of different sizes, which 
contain 20%, 40%, 60%, 80%, and 100% sentence 
pairs of the real bilingual corpus, respectively. As 
to the synthetic model, we use the same synthetic 
model 1 that is described in section 5.1. Then we 
build five interpolated models by performing linear 
interpolation between the synthetic model and the 
five standard models respectively.  The translation 
results are shown in Figure 2.  

Table 3. Translation Results without Additional 
Monolingual Corpus 

 Standard 
Model 

Synthetic 
Model 1 

Synthetic 
Model 2 

Standard 
Model 6,105,260 — — 

Synthetic 
Model 1 356,795 12,062,068 — 

Synthetic 
Model 2 357,489 881,921 9,216,760

From the results, we can see that the larger the 
real bilingual corpus is, the better the performance 
of both standard models and interpolated models 
would be. The relative improvement of BLEU 
scores is up to 27.5% as compared with the corre-
sponding standard models. 

Table 4. Numbers of Phrase Pairs  5.5 Results without Additional Monolingual 
Corpus cant improvement of about 0.01 BLEU (5.2% rela-

tive) as compared with the standard model without 
using the synthetic corpus. In all the above experiments, we use an additional 

English monolingual corpus to get more synthetic 
bilingual corpus. We are also interested in the re-
sults without the additional monolingual corpus. In 
such case, the only English monolingual corpus is 
the English side of the real bilingual corpus. We 
use this smaller size of monolingual corpus and the 
real bilingual corpus to conduct similar experi-
ments as in section 5.2. The translation results are 
shown in Table 3. 

In order to further analyze the translation results, 
we examine the overlap and the difference among 
the phrase tables. The analytic results are shown in 
Table 4. More phrase pairs are extracted by the 
synthetic models, about twice by the synthetic 
model 1 in particular, than those extracted by the 
standard model. The overlap between each model 
is very low. For example, about 6% phrase pairs 
extracted by the standard model make appearance 
in both the standard model and the synthetic model 
1. This also explains why the interpolated model 
outperforms that of the standard model in Table 3.  

From the results, it can be seen that our method 
works well even if no additional monolingual cor-
pus is available. We achieve a statistically signifi- 
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Methods English Sentence / Chinese Translations BLEU

 

This move helps spur the enterprise to strengthen technical innovation, man-
agement innovation and the creation of a brand name and to strengthen mar-
keting, after-sale service, thereby fundamentally enhance the enterprise's 
competitiveness; 

 

Standard 
model 

这 一 举措 有助于 促进 企业 加强 技术 创新 、 管理 创新 和 建立 品牌 

销售 、 服务 ， 从而 从 根本 上 提高 企业 的 竞争力 ， 并 加强 售后 
0.5022

RBMT Sys-
tem 1 

这种 行动 帮助 刺激 企业 加强 技术 地 革新 ， 管理 革新 和 创造 一个 

名牌 并且 加强 销售 ， 在 销售 服务 ， 基本上 进而 提高 企业 的 竞

争 。 

0.1535

RBMT Sys-
tem 2 

这项 行动 帮助 刺激 这家 企业 加强 技术 发明 、 管理 创新 和 一 个 

商标 的 创造 并 加强 市场 销售 ， 因此 售后服务 根本 增强 这家 企业 

的 竞争 。 

0.1485

Interpolated 
Model 

这 一 举措 有助于 促进 企业 加强 技术 创新 、 管理 革新 和 创造 品牌 

和 加强 市场 营销 、 售后服务 ， 从而 从 根本 上 提高 企业 的 竞争

力 。 

0.7198

Table 5. Translation Example 

This move  这 一 举措 This move  这 一 举措 
helps  有助于 helps  有助于 
spur  促进 spur  促进 

the enterprise  企业 the enterprise  企业 
to strengthen  加强 to strengthen  加强 

technical  技术 technical  技术 
innovation  创新 innovation  创新 

, management  、 管理 , management  、 管理 
innovation  创新 innovation  革新 

and the creation of a  和 建立 and the creation of  和 创造 
  (he jianli)  (he chuangzao) 

brand name  品牌 a brand name  品牌 
  (pinpai)  (pinpai) 

and to strengthen  销售 、 and to strengthen  和 加强 
marketing ,  服务 marketing ,  市场 营销 、 

  (fuwu) after-sale service  售后服务 
after-sale  ， 从而  (shouhoufuwu) 

service  从 根本 上 , thereby  ， 从而 
, thereby  提高 fundamentally  从 根本 上 

fundamentally  企业 enhance the  提高 
enhance  的 竞争力 enterprise 's  企业 的 

the enterprise  ， competitiveness  竞争力 
's competitiveness  并 加强 ;  。 

;  售后   
  (shouhou)   

(a) Results Produced by the Standard Model (b) Results Produced by the Interpolated Model 

Figure 3. Phrase Pairs Used for Translation 
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6 Discussion 

6.1 Model Interpolation vs. Corpus Merge 

In section 5, we make use of the real bilingual cor-
pus and the synthetic bilingual corpora by perform-
ing model interpolation. Another available way is 
directly combining these two kinds of corpora to 
train a translation model, namely corpus merge. In 
order to compare these two methods, we use 
RBMT system 1 to translate the 1,087,651 mono-
lingual English sentences to produce synthetic bi-
lingual corpus. Then we train an SMT system with 
the combination of this synthetic bilingual corpus 
and the real bilingual corpus. The BLEU score of 
such system is 0.1887, while that of the model in-
terpolation system is 0.2020. It indicates that the 
model interpolation method is significantly better 
than the corpus merge method. 

6.2 Result Analysis 

As discussed in Section 5.5, the number of the 
overlapped phrase pairs among the standard model 
and the synthetic models is very small. The newly 
added phrase pairs from the synthetic models can 
assist to improve the translation results of the in-
terpolated model. In this section, we will use an 
example to further discuss the reason behind the 
improvement of the SMT system by using syn-
thetic bilingual corpus. Table 5 shows an English 
sentence and its Chinese translations produced by 
different methods. And Figure 3 shows the phrase 
pairs used for translation. The results show that 
imperfect translations of RBMT systems can be 
also used to boost the performance of an SMT sys-
tem. 

 Phrase 
Pairs 

Phrase 
Pairs 
Used 

New 
Pairs 
Used 

Standard 
Model 6,105,260 5,509 — 

Interpolated 
Model 73,221,525 5,306 1993 

Table 6. Statistics of Phrase Pairs 

Further analysis is shown in Table 6. After add-
ing the synthetic corpus produced by the RBMT 
systems, the interpolated model outperforms the 
standard models mainly for the following two rea-
sons: (1) some new phrase pairs are added into the 
interpolated model. 37.6% phrase pairs (1993 out 

of 5306) are newly learned and used for translation. 
For example, the phrase pair "after-sale service <-> 
售后服务 (shouhoufuwu)" is added; (2) The prob-
ability distribution of the phrase pairs is changed. 
For example, the probabilities of the two pairs "a 
brand name <-> 品牌 (pinpai)" and "and the crea-
tion of <-> 和 创造 (he chuangzao)" increase. The 
probabilities of the other two pairs "brand name <-
> 品牌 (pinpai)" and "and the creation of a <-> 和 
建立  (he jianli)" decrease. We found that 930 
phrase pairs, which are also in the phrase table of 
the standard model, are used by the interpolated 
model for translation but not used by the standard 
model. 

6.3 Human Evaluation 

According to (Koehn and Monz, 2006; Callison-
Burch et al., 2006), the RBMT systems are usually 
not adequately appreciated by BLEU. We also 
manually evaluated the RBMT systems and SMT 
systems in terms of both adequacy and fluency as 
defined in (Koehn and Monz, 2006). The evalua-
tion results show that the SMT system with the 
interpolated model, which achieves the highest 
BLEU scores in Table 2, achieves slightly better 
adequacy and fluency scores than the two RBMT 
systems. 

7 Conclusion and Future Work 

We presented a method using the existing RBMT 
system as a black box to produce synthetic bilin-
gual corpus, which was used as training data for 
the SMT system. We used the existing RBMT sys-
tem to translate the monolingual corpus into a syn-
thetic bilingual corpus. With the synthetic bilingual 
corpus, we could build an SMT system even if 
there is no real bilingual corpus. In our experi-
ments using BLEU as the metric, such a system 
achieves a relative improvement of 11.7% over the 
best RBMT system that is used to produce the syn-
thetic bilingual corpora. It indicates that using the 
existing RBMT systems to produce a synthetic bi-
lingual corpus, we can build an SMT system that 
outperforms the existing RBMT systems. 

We also interpolated the model trained on a real 
bilingual corpus and the models trained on the syn-
thetic bilingual corpora, the interpolated model 
achieves an absolute improvement of 0.0245 
BLEU score (13.1% relative) as compared with the 
individual model trained on the real bilingual cor-

293



pus. It indicates that we can build a better SMT 
system by leveraging the real and the synthetic bi-
lingual corpus. 

Further result analysis shows that after adding 
the synthetic corpus produced by the RBMT sys-
tems, the interpolated model outperforms the stan-
dard models mainly because of two reasons: (1) 
some new phrase pairs are added to the interpo-
lated model; (2) the probability distribution of the 
phrase pairs is changed. 

In the future work, we will investigate the possi-
bility of training a reverse SMT system with the 
RBMT systems. For example, we will investigate 
to train Chinese-to-English SMT system based on 
natural English and RBMT-generated synthetic 
Chinese. 
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Abstract
This paper investigates why the HMMs es-
timated by Expectation-Maximization (EM)
produce such poor results as Part-of-Speech
(POS) taggers. We find that the HMMs es-
timated by EM generally assign a roughly
equal number of word tokens to each hid-
den state, while the empirical distribution
of tokens to POS tags is highly skewed.
This motivates a Bayesian approach using
a sparse prior to bias the estimator toward
such a skewed distribution. We investigate
Gibbs Sampling (GS) and Variational Bayes
(VB) estimators and show that VB con-
verges faster than GS for this task and that
VB significantly improves 1-to-1 tagging ac-
curacy over EM. We also show that EM does
nearly as well as VB when the number of
hidden HMM states is dramatically reduced.
We also point out the high variance in all
of these estimators, and that they require
many more iterations to approach conver-
gence than usually thought.

1 Introduction

It is well known that Expectation-Maximization
(EM) performs poorly in unsupervised induction
of linguistic structure (Carroll and Charniak, 1992;
Merialdo, 1994; Klein, 2005; Smith, 2006). In ret-
rospect one can certainly find reasons to explain this
failure: after all, likelihood does not appear in the
wide variety of linguistic tests proposed for identi-
fying linguistic structure (Fromkin, 2001).

This paper focuses on unsupervised part-of-
speech (POS) tagging, because it is perhaps the sim-

plest linguistic induction task. We suggest that one
reason for the apparent failure of EM for POS tag-
ging is that it tends to assign relatively equal num-
bers of tokens to each hidden state, while the em-
pirical distribution of POS tags is highly skewed,
like many linguistic (and non-linguistic) phenomena
(Mitzenmacher, 2003). We focus on first-order Hid-
den Markov Models (HMMs) in which the hidden
state is interpreted as a POS tag, also known as bitag
models.

In this setting we show that EM performs poorly
when evaluated using a “1-to-1 accuracy” evalua-
tion, where each POS tag corresponds to at most one
hidden state, but is more competitive when evaluated
using a “many-to-1 accuracy” evaluation, where sev-
eral hidden states may correspond to the same POS
tag. We explain this by observing that the distribu-
tion of hidden states to words proposed by the EM-
estimated HMMs is relatively uniform, while the
empirical distribution of POS tags is heavily skewed
towards a few high-frequency tags. Based on this,
we propose a Bayesian prior that biases the sys-
tem toward more skewed distributions and show that
this raises the 1-to-1 accuracy significantly. Finally,
we show that a similar increase in accuracy can be
achieved by reducing the number of hidden states in
the models estimated by EM.

There is certainly much useful information that
bitag HMMs models cannot capture. Toutanova et
al. (2003) describe a wide variety of morphologi-
cal and distributional features useful for POS tag-
ging, and Clark (2003) proposes ways of incorporat-
ing some of these in an unsupervised tagging model.
However, bitag models are rich enough to capture
at least some distributional information (i.e., the tag
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for a word depends on the tags assigned to its neigh-
bours). Moreover, more complex models add addi-
tional complicating factors that interact in ways still
poorly understood; for example, smoothing is gen-
erally regarded as essential for higher-order HMMs,
yet it is not clear how to integrate smoothing into un-
supervised estimation procedures (Goodman, 2001;
Wang and Schuurmans, 2005).

Most previous work exploiting unsupervised
training data for inferring POS tagging models has
focused on semi-supervised methods in the in which
the learner is provided with a lexicon specifying the
possible tags for each word (Merialdo, 1994; Smith
and Eisner, 2005; Goldwater and Griffiths, 2007)
or a small number of “prototypes” for each POS
(Haghighi and Klein, 2006). In the context of semi-
supervised learning using a tag lexicon, Wang and
Schuurmans (2005) observe discrepencies between
the empirical and estimated tag frequencies similar
to those observed here, and show that constraining
the estimation procedure to preserve the empirical
frequencies improves tagging accuracy. (This ap-
proach cannot be used in an unsupervised setting
since the empirical tag distribution is not available).
However, as Banko and Moore (2004) point out, the
accuracy achieved by these unsupervised methods
depends strongly on the precise nature of the su-
pervised training data (in their case, the ambiguity
of the tag lexicon available to the system), which
makes it more difficult to understand the behaviour
of such systems.

2 Evaluation

All of the experiments described below have the
same basic structure: an estimator is used to infer
a bitag HMM from the unsupervised training cor-
pus (the words of Penn Treebank (PTB) Wall Street
Journal corpus (Marcus et al., 1993)), and then the
resulting model is used to label each word of that
corpus with one of the HMM’s hidden states. This
section describes how we evaluate how well these
sequences of hidden states correspond to the gold-
standard POS tags for the training corpus (here, the
PTB POS tags). The chief difficulty is determining
the correspondence between the hidden states and
the gold-standard POS tags.

Perhaps the most straightforward method of es-
tablishing this correspondence is to deterministically
map each hidden state to the POS tag it co-occurs

most frequently with, and return the proportion of
the resulting POS tags that are the same as the POS
tags of the gold-standard corpus. We call this the
many-to-1 accuracy of the hidden state sequence be-
cause several hidden states may map to the same
POS tag (and some POS tags may not be mapped
to by any hidden states at all).

As Clark (2003) points out, many-to-1 accuracy
has several defects. If a system is permitted to posit
an unbounded number of hidden states (which is not
the case here) then it can achieve a perfect many-to-
1 accuracy by placing every word token into its own
unique state. Cross-validation, i.e., identifying the
many-to-1 mapping and evaluating on different sub-
sets of the data, would answer many of these objec-
tions. Haghighi and Klein (2006) propose constrain-
ing the mapping from hidden states to POS tags so
that at most one hidden state maps to any POS tag.
This mapping is found by greedily assigning hidden
states to POS tags until either the hidden states or
POS tags are exhausted (note that if the number of
hidden states and POS tags differ, some will be unas-
signed). We call the accuracy of the POS sequence
obtained using this map its 1-to-1 accuracy.

Finally, several authors have proposed using
information-theoretic measures of the divergence
between the hidden state and POS tag sequences.
Goldwater and Griffiths (2007) propose using the
Variation of Information (VI) metric described by
Meilǎ (2003). We regard the assignments of hid-
den states and POS tags to the words of the cor-
pus as two different ways of clustering those words,
and evaluate the conditional entropy of each clus-
tering conditioned on the other. The VI is the sum
of these conditional entropies. Specifically, given a
corpus labeled with hidden states and POS tags, if
p̃(y), p̃(t) and p̃(y, t) are the empirical probabilities
of a hidden state y, a POS tag t, and the cooccurance
of y and t respectively, then the mutual information
I , entropies H and variation of information VI are
defined as follows:

H(Y ) = −
∑
y

p̃(y) log p̃(y)

H(T ) = −
∑

t

p̃(t) log p̃(t)

I(Y, T ) =
∑
y,t

p̃(y, t) log
p̃(y, t)
p̃(y)p̃(t)

H(Y |T ) = H(Y )− I(Y, T )

297



H(T |Y ) = H(T )− I(Y, T )
VI (Y, T ) = H(Y |T ) +H(T |Y )

As Meilǎ (2003) shows, VI is a metric on the space
of probability distributions whose value reflects the
divergence between the two distributions, and only
takes the value zero when the two distributions are
identical.

3 Maximum Likelihood via
Expectation-Maximization

There are several excellent textbook presentations of
Hidden Markov Models and the Forward-Backward
algorithm for Expectation-Maximization (Jelinek,
1997; Manning and Schütze, 1999; Bishop, 2006),
so we do not cover them in detail here. Conceptu-
ally, a Hidden Markov Model generates a sequence
of observations x = (x0, . . . , xn) (here, the words
of the corpus) by first using a Markov model to gen-
erate a sequence of hidden states y = (y0, . . . , yn)
(which will be mapped to POS tags during evalua-
tion as described above) and then generating each
word xi conditioned on its corresponding state yi.
We insert endmarkers at the beginning and ending
of the corpus and between sentence boundaries, and
constrain the estimator to associate endmarkers with
a state that never appears with any other observation
type (this means each sentence can be processed in-
dependently by first-order HMMs; these endmarkers
are ignored during evaluation).

In more detail, the HMM is specified by multi-
nomials θy and φy for each hidden state y, where
θy specifies the distribution over states following y
and φy specifies the distribution over observations x
given state y.

yi | yi−1 = y ∼ Multi(θy)
xi | yi = y ∼ Multi(φy)

(1)

We used the Forward-Backward algorithm to per-
form Expectation-Maximization, which is a proce-
dure that iteratively re-estimates the model param-
eters (θ, φ), converging on a local maximum of the
likelihood. Specifically, if the parameter estimate at
time ` is (θ(`), φ(`)), then the re-estimated parame-
ters at time `+ 1 are:

θ
(`+1)
y′|y = E[ny′,y]/E[ny] (2)

φ
(`+1)
x|y = E[nx,y]/E[ny]
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Figure 1: Variation in negative log likelihood with
increasing iterations for 10 EM runs from different
random starting points.

where nx,y is the number of times observation x oc-
curs with state y, ny′,y is the number of times state
y′ follows y and ny is the number of occurences of
state y; all expectations are taken with respect to the
model (θ(`), φ(`)).

We took care to implement this and the other al-
gorithms used in this paper efficiently, since optimal
performance was often only achieved after several
hundred iterations. It is well-known that EM often
takes a large number of iterations to converge in like-
lihood, and we found this here too, as shown in Fig-
ure 1. As that figure makes clear, likelihood is still
increasing after several hundred iterations.

Perhaps more surprisingly, we often found dra-
matic changes in accuracy in the order of 5% occur-
ing after several hundred iterations, so we ran 1,000
iterations of EM in all of the experiments described
here; each run took approximately 2.5 days compu-
tation on a 3.6GHz Pentium 4. It’s well-known that
accuracy often decreases after the first few EM it-
erations (which we also observed); however in our
experiments we found that performance improves
again after 100 iterations and continues improving
roughly monotonically. Figure 2 shows how 1-to-1
accuracy varies with iteration during 10 runs from
different random starting points. Note that 1-to-1
accuracy at termination ranges from 0.38 to 0.45; a
spread of 0.07.

We obtained a dramatic speedup by working di-
rectly with probabilities and rescaling after each ob-
servation to avoid underflow, rather than working
with log probabilities (thanks to Yoshimasa Tsu-
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Figure 2: Variation in 1-to-1 accuracy with increas-
ing iterations for 10 EM runs from different random
starting points.

ruoka for pointing this out). Since we evaluated
the accuracy of the estimated tags after each iter-
ation, it was important that decoding be done effi-
ciently as well. While most researchers use Viterbi
decoding to find the most likely state sequence, max-
imum marginal decoding (which labels the observa-
tion xi with the state yi that maximizes the marginal
probability P(yi|x, θ, φ)) is faster because it re-uses
the forward and backward tables already constructed
by the Forward-Backward algorithm. Moreover, in
separate experiments we found that the maximum
marginal state sequence almost always scored higher
than the Viterbi state sequence in all of our evalua-
tions, and at modest numbers of iterations (up to 50)
often scored more than 5% better.

We also noticed a wide variance in the perfor-
mance of models due to random initialization (both
θ and φ are initially jittered to break symmetry); this
wide variance was observed with all of the estima-
tors investigated in this paper. This means we cannot
compare estimators on the basis of single runs, so we
ran each estimator 10 times from different random
starting points and report both mean and standard
deviation for all scores.

Finally, we also experimented with annealing, in
which the parameters θ and φ are raised to the power
1/T , where T is a “temperature” parameter that is
slowly lowered toward 1 at each iteration accord-
ing to some “annealing schedule”. We experimented
with a variety of starting temperatures and annealing
schedules (e.g., linear, exponential, etc), but were
unable to find any that produced models whose like-
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Figure 3: The average number of words labeled with
each hidden state or tag for the EM, VB (with αx =
αy = 0.1) and EM-25 estimators (EM-25 is the EM
estimator with 25 hidden states).

lihoods were significantly higher (i.e., the models fit
better) than those found without annealing.

The evaluation of the models produced by the
EM and other estimators is presented in Table 1.
It is difficult to compare these with previous work,
but Haghighi and Klein (2006) report that in a
completely unsupervised setting, their MRF model,
which uses a large set of additional features and a
more complex estimation procedure, achieves an av-
erage 1-to-1 accuracy of 41.3%. Because they pro-
vide no information about the variance in this accu-
racy it is difficult to tell whether there is a signifi-
cant difference between their estimator and the EM
estimator, but it is clear that when EM is run long
enough, the performance of even very simple mod-
els like the bitag HMM is better than generally rec-
ognized.

As Table 1 makes clear, the EM estimator pro-
duces models that are extremely competitive in
many-to-1 accuracy and Variation of Information,
but are significantly worse in 1-to-1 accuracy. We
can understand these results by comparing the dis-
tribution of words to hidden states to the distribution
of words to POS tags in the gold-standard evaluation
corpus. As Figure 3 shows, the distribution of words
to POS tags is highly skewed, with just 6 POS tags,
NN, IN, NNP, DT, JJ and NNS, accounting for over
55% of the tokens in the corpus. By contrast, the
EM distribution is much flatter. This also explains
why the many-to-1 accuracy is so much better than
the one-to-one accuracy; presumably several hidden
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Estimator 1-to-1 Many-to-1 VI H(T |Y ) H(Y |T )
EM (50) 0.40 (0.02) 0.62 (0.01) 4.46 (0.08) 1.75 (0.04) 2.71 (0.06)

VB(0.1, 0.1) (50) 0.47 (0.02) 0.50 (0.02) 4.28 (0.09) 2.39 (0.07) 1.89 (0.06)
VB(0.1, 10−4) (50) 0.46 (0.03) 0.50 (0.02) 4.28 (0.11) 2.39 (0.08) 1.90 (0.07)
VB(10−4, 0.1) (50) 0.42 (0.02) 0.60 (0.01) 4.63 (0.07) 1.86 (0.03) 2.77 (0.05)

VB(10−4, 10−4) (50) 0.42 (0.02) 0.60 (0.01) 4.62 (0.07) 1.85 (0.03) 2.76 (0.06)
GS(0.1, 0.1) (50) 0.37 (0.02) 0.51 (0.01) 5.45 (0.07) 2.35 (0.09) 3.20 (0.03)

GS(0.1, 10−4) (50) 0.38 (0.01) 0.51 (0.01) 5.47 (0.04) 2.26 (0.03) 3.22 (0.01)
GS(10−4, 0.1) (50) 0.36 (0.02) 0.49 (0.01) 5.73 (0.05) 2.41 (0.04) 3.31 (0.03)

GS(10−4, 10−4) (50) 0.37 (0.02) 0.49 (0.01) 5.74 (0.03) 2.42 (0.02) 3.32 (0.02)
EM (40) 0.42 (0.03) 0.60 (0.02) 4.37 (0.14) 1.84 (0.07) 2.55 (0.08)
EM (25) 0.46 (0.03) 0.56 (0.02) 4.23 (0.17) 2.05 (0.09) 2.19 (0.08)
EM (10) 0.41 (0.01) 0.43 (0.01) 4.32 (0.04) 2.74 (0.03) 1.58 (0.05)

Table 1: Evaluation of models produced by the various estimators. The values of the Dirichlet prior param-
eters for αx and αy appear in the estimator name for the VB and GS estimators, and the number of hidden
states is given in parentheses. Reported values are means over all runs, followed by standard deviations.
10 runs were performed for each of the EM and VB estimators, while 5 runs were performed for the GS
estimators. Each EM and VB run consisted of 1,000 iterations, while each GS run consisted of 50,000 it-
erations. For the estimators with 10 runs, a 3-standard error 95% confidence interval is approximately the
same as the standard deviation.

states are being mapped onto a single POS tag. This
is also consistent with the fact that the cross-entropy
H(T |Y ) of tags given hidden states is relatively low
(i.e., given a hidden state, the tag is relatively pre-
dictable), while the cross-entropy H(Y |T ) is rela-
tively high.

4 Bayesian estimation via Gibbs Sampling
and Variational Bayes

A Bayesian estimator combines a likelihood term
P(x|θ, φ) and a prior P(θ, φ) to estimate the poste-
rior probability of a model or hidden state sequence.
We can use a Bayesian prior to bias our estimator
towards models that generate more skewed distri-
butions. Because HMMs (and PCFGs) are prod-
ucts of multinomials, Dirichlet distributions are a
particularly natural choice for the priors since they
are conjugate to multinomials, which simplifies both
the mathematical and computational aspects of the
problem. The precise form of the model we investi-
gated is:

θy | αy ∼ Dir(αy)
φy | αx ∼ Dir(αx)
yi | yi−1 = y ∼ Multi(θy)
xi | yi = y ∼ Multi(φy)

Informally, αy controls the sparsity of the state-to-

state transition probabilities while αx controls the
sparsity of the state-to-observation emission proba-
bilities. As αx approaches zero the prior strongly
prefers models in which each hidden state emits
as few words as possible. This captures the intu-
ition that most word types only belong to one POS,
since the minimum number of non-zero state-to-
observation transitions occurs when each observa-
tion type is emitted from only one state. Similarly,
as αy approaches zero the state-to-state transitions
become sparser.

There are two main techniques for Bayesian esti-
mation of such models: Markov Chain Monte Carlo
(MCMC) and Variational Bayes (VB). MCMC en-
compasses a broad range of sampling techniques,
including component-wise Gibbs sampling, which
is the MCMC technique we used here (Robert and
Casella, 2004; Bishop, 2006). In general, MCMC
techniques do not produce a single model that char-
acterizes the posterior, but instead produce a stream
of samples from the posterior. The application of
MCMC techniques, including Gibbs sampling, to
HMM inference problems is relatively well-known:
see Besag (2004) for a tutorial introduction and
Goldwater and Griffiths (2007) for an application
of Gibbs sampling to HMM inference for semi-
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supervised and unsupervised POS tagging.
The Gibbs sampler produces state sequences y

sampled from the posterior distribution:

P(y|x, α) ∝
∫

P(x,y|θ, φ)P(θ|αy)P(φ|αx) dθ dφ

Because Dirichlet priors are conjugate to multino-
mials, it is possible to integrate out the model pa-
rameters θ and φ to yield the conditional distribu-
tion for yi shown in Figure 4. For each observation
xi in turn, we resample its state yi conditioned on
the states y−i of the other observations; eventually
the distribution of state sequences converges to the
desired posterior.

Each iteration of the Gibbs sampler is much faster
than the Forward-Backward algorithm (both take
time linear in the length of the string, but for an
HMM with s hidden states, each iteration of the
Gibbs sampler takes O(s) time while each iteration
of the Forward-Backward algorithm takes O(s2)
time), so we ran 50,000 iterations of all samplers
(which takes roughly the same elapsed time as 1,000
Forward-Backward iterations).

As can be seen from Table 1, the posterior state
sequences we obtained are not particularly good.
Further, when we examined how the posterior like-
lihoods varied with increasing iterations of Gibbs
sampling, it became apparent that the likelihood was
still increasing after 50,000 iterations. Moreover,
when comparing posterior likelihoods from differ-
ent runs with the same prior parameters but differ-
ent random number seeds, none of the likelihoods
crossed, which one would expect if the samplers
had converged and were mixing well (Robert and
Casella, 2004). Just as with EM, we experimented
with a variety of annealing regimes, but were unable
to find any which significantly improved accuracy or
posterior likelihood.

We also experimented with evaluating state se-
quences found using maximum posterior decoding
(i.e., model parameters are estimated from the pos-
terior sample, and used to perform maximum poste-
rior decoding) rather than the samples from the pos-
terior produced by the Gibbs sampler. We found that
the maximum posterior decoding sequences usually
scored higher than the posterior samples, but the
scores converged after the first thousand iterations.
Since the posterior samples are produced as a by-
product of Gibbs sampling while maximum poste-

rior decoding requires an additional time consuming
step that does not have much impact on scores, we
used the posterior samples to produce the results in
Table 1.

In contrast to MCMC, Variational Bayesian in-
ference attempts to find the function Q(y, θ, φ) that
minimizes an upper bound of the negative log likeli-
hood (Jordan et al., 1999):

− log P(x)

= − log
∫
Q(y, θ, φ)

P(x,y, θ, φ)
Q(y, θ, φ)

dy dθ dφ

≤ −
∫
Q(y, θ, φ) log

P(x,y, θ, φ)
Q(y, θ, φ)

dy dθ dφ(3)

The upper bound in (3) is called the Variational Free
Energy. We make a “mean-field” assumption that
the posterior can be well approximated by a factor-
ized modelQ in which the state sequence y does not
covary with the model parameters θ, φ (this will be
true if, for example, there is sufficient data that the
posterior distribution has a peaked mode):

P(x,y, θ, φ) ≈ Q(y, θ, φ) = Q1(y)Q2(θ, φ)

The calculus of variations is used to minimize the
KL divergence between the desired posterior distri-
bution and the factorized approximation. It turns
out that if the likelihood and conjugate prior be-
long to exponential families then the optimalQ1 and
Q2 do too, and there is an EM-like iterative pro-
cedure that finds locally-optimal model parameters
(Bishop, 2006).

This procedure is especially attractive for HMM
inference, since it involves only a minor modifica-
tion to the M-step of the Forward-Backward algo-
rithm. MacKay (1997) and Beal (2003) describe
Variational Bayesian (VB) inference for HMMs in
detail, and Kurihara and Sato (2006) describe VB
for PCFGs (which only involves a minor modifica-
tion to the M-step of the Inside-Outside algorithm).
Specifically, the E-step for VB inference for HMMs
is the same as in EM, while the M-step is as follows:

θ̃
(`+1)
y′|y = f(E[ny′,y] + αy)/f(E[ny] + sαy) (4)

φ̃
(`+1)
x|y = f(E[nx,y] + αx)/f(E[ny] +mαx)

f(v) = exp(ψ(v))
ψ(v) = (v > 7) ? g(v − 1

2
) : (ψ(v + 1)− 1)/v

g(x) ≈ log(x) + 0.04167x−2 + 0.00729x−4

+0.00384x−6 − 0.00413x−8 . . . (5)
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P(yi|x,y−i, α) ∝
(
nxi,yi + αx

nyi +mαx

) (
nyi,yi−1 + αy

nyi−1 + sαy

) (
nyi+1,yi + I(yi−1 = yi = yi+1) + αy

nyi + I(yi−1 = yi)

)

Figure 4: The conditional distribution for state yi used in the Gibbs sampler, which conditions on the states
y−i for all observations except xi. Here m is the number of possible observations (i.e., the size of the
vocabulary), s is the number of hidden states and I(·) is the indicator function (i.e., equal to one if its
argument is true and zero otherwise), nx,y is the number of times observation x occurs with state y, ny′,y is
the number of times state y′ follows y, and ny is the number of times state y occurs; these counts are from
(x−i,y−i), i.e., excluding xi and yi.

 0
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 0  1  2

Figure 5: The scaling function y = f(x) =
expψ(x) (curved line), which is bounded above by
the line y = x and below by the line y = x− 0.5.

where ψ is the digamma function (the derivative of
the log gamma function; (5) gives an asymptotic ap-
proximation), and the remaining quantities are just
as in the EM updates (2), i.e., nx,y is the number of
times observation x occurs with state y, ny′,y is the
number of times state y′ follows y, ny is the number
of occurences of state y, s is the number of hidden
states and m is the number of observations; all ex-
pectations are taken with respect to the variational
parameters (θ̃(`), φ̃(`)).

A comparison between (4) and (2) reveals two dif-
ferences between the EM and VB updates. First,
the Dirichlet prior parameters α are added to the
expected counts. Second, these posterior counts
(which are in fact parameters of the Dirichlet pos-
terior Q2) are passed through the function f(v) =
expψ(v), which is plotted in Figure 5. When v �
0, f(v) ≈ v − 0.5, so roughly speaking, VB for
multinomials involves adding α−0.5 to the expected

counts when they are much larger than zero, where
α is the Dirichlet prior parameter. Thus VB can
be viewed as a more principled version of the well-
known ad hoc technique for approximating Bayesian
estimation with EM that involves adding α−1 to the
expected counts. However, in the ad hoc approach
the expected count plus α−1 may be less than zero,
resulting in a value of zero for the corresponding pa-
rameter (Johnson et al., 2007; Goldwater and Grif-
fiths, 2007). VB avoids this problem because f(v) is
always positive when v > 0, even when v is small.
Note that because the counts are passed through f ,
the updated values for θ̃ and φ̃ in (4) are in general
not normalized; this is because the variational free
energy is only an upper bound on the negative log
likelihood (Beal, 2003).

We found that in general VB performed much bet-
ter than GS. Computationally it is very similar to
EM, and each iteration takes essentially the same
time as an EM iteration. Again, we experimented
with annealing in the hope of speeding convergence,
but could not find an annealing schedule that signifi-
cantly lowered the variational free energy (the quan-
tity that VB optimizes). While we had hoped that the
Bayesian prior would bias VB toward a common so-
lution, we found the same sensitivity to initial condi-
tions as we found with EM, so just as for EM, we ran
the estimator for 1,000 iterations with 10 different
random initializations for each combination of prior
parameters. Table 1 presents the results of VB runs
with several different values for the Dirichlet prior
parameters. Interestingly, we obtained our best per-
formance on 1-to-1 accuracy when the Dirchlet prior
αx = 0.1, a relatively large number, but best per-
formance on many-to-1 accuracy was achieved with
a much lower value for the Dirichlet prior, namely
αx = 10−4. The Dirichlet prior αy that controls
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sparsity of the state-to-state transitions had little ef-
fect on the results. We did not have computational
resources to fully explore other values for the prior
(a set of 10 runs for one set of parameter values takes
25 computer days).

As Figure 3 shows, VB can produce distributions
of hidden states that are peaked in the same way that
POS tags are. In fact, with the priors used here, VB
produces state sequences in which only a subset of
the possible HMM states are in fact assigned to ob-
servations. This shows that rather than fixing the
number of hidden states in advance, the Bayesian
prior can determine the number of states; this idea is
more fully developed in the infinite HMM of Beal et
al. (2002) and Teh et al. (2006).

5 Reducing the number of hidden states

EM already performs well in terms of the many-to-1
accuracy, but we wondered if there might be some
way to improve its 1-to-1 accuracy and VI score. In
section 3 we suggested that one reason for its poor
performance in these evaluations is that the distri-
butions of hidden states it finds tend to be fairly
flat, compared to the empirical distribution of POS
tags. As section 4 showed, a suitable Bayesian prior
can bias the estimator towards more peaked distribu-
tions, but we wondered if there might be a simpler
way of achieving the same result.

We experimented with dramatic reductions in the
number of hidden states in the HMMs estimated
by EM. This should force the hidden states to be
more densely populated and improve 1-to-1 accu-
racy, even though this means that there will be no
hidden states that can possibly map onto the less fre-
quent POS tags (i.e., we will get these words wrong).
In effect, we abandon the low-frequency POS tags
in the hope of improving the 1-to-1 accuracy of the
high-frequency tags.

As Table 1 shows, this markedly improves both
the 1-to-1 accuracy and the VI score. A 25-state
HMM estimated by EM performs effectively as well
as the best VB model in terms of both 1-to-1 accu-
racy and VI score, and runs 4 times faster because it
has only half the number of hidden states.

6 Conclusion and future work

This paper studied why EM seems to do so badly in
HMM estimation for unsupervised POS tagging. In

fact, we found that it doesn’t do so badly at all: the
bitag HMM estimated by EM achieves a mean 1-to-
1 tagging accuracy of 40%, which is approximately
the same as the 41.3% reported by (Haghighi and
Klein, 2006) for their sophisticated MRF model.

Then we noted the distribution of words to hidden
states found by EM is relatively uniform, compared
to the distribution of words to POS tags in the eval-
uation corpus. This provides an explanation of why
the many-to-1 accuracy of EM is so high while the
1-to-1 accuracy and VI of EM is comparatively low.
We showed that either by using a suitable Bayesian
prior or by simply reducing the number of hidden
states it is possible to significantly improve both the
1-to-1 accuracy and the VI score, achieving a 1-to-1
tagging accuracy of 46%.

We also showed that EM and other estimators take
much longer to converge than usually thought, and
often require several hundred iterations to achieve
optimal performance. We also found that there is
considerable variance in the performance of all of
these estimators, so in general multiple runs from
different random starting points are necessary in or-
der to evaluate an estimator’s performance.

Finally, there may be more sophisticated ways of
improving the 1-to-1 accuracy and VI score than
the relatively crude methods used here that primar-
ily reduce the number of available states. For ex-
ample, we might obtain better performance by us-
ing EM to infer an HMM with a large number of
states, and then using some kind of distributional
clustering to group similar HMM states; these clus-
ters, rather than the underlying states, would be in-
terpreted as the POS tag labels. Also, the Bayesian
framework permits a wide variety of different priors
besides Dirichlet priors explored here. For example,
it should be possible to encode linguistic knowledge
such markedness preferences in a prior, and there
are other linguistically uninformative priors, such
the “entropic priors” of Brand (1999), that may be
worth exploring.
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Abstract

This paper describes a probabilistic model
for coordination disambiguation integrated
into syntactic and case structure analy-
sis. Our model probabilistically assesses
the parallelism of a candidate coordinate
structure using syntactic/semantic similari-
ties and cooccurrence statistics. We inte-
grate these probabilities into the framework
of fully-lexicalized parsing based on large-
scale case frames. This approach simulta-
neously addresses two tasks of coordination
disambiguation: the detection of coordinate
conjunctions and the scope disambiguation
of coordinate structures. Experimental re-
sults on web sentences indicate the effective-
ness of our approach.

1 Introduction

Coordinate structures are a potential source of syn-
tactic ambiguity in natural language. Since their in-
terpretation directly affects the meaning of the text,
their disambiguation is important for natural lan-
guage understanding.

Coordination disambiguation consists of the fol-
lowing two tasks:

• the detection of coordinate conjunctions,

• and finding the scope of coordinate structures.

In English, for example, coordinate structures are
triggered by coordinate conjunctions, such as and
and or. In a coordinate structure that consists of

more than two conjuncts, commas, which have var-
ious usages, also function like coordinate conjunc-
tions. Recognizing true coordinate conjunctions
from such possible coordinate conjunctions is a task
of coordination disambiguation (Kurohashi, 1995).
The other is the task of identifying the range of co-
ordinate phrases or clauses.

Previous work on coordination disambiguation
has focused on the task of addressing the scope am-
biguity (e.g., (Agarwal and Boggess, 1992; Gold-
berg, 1999; Resnik, 1999; Chantree et al., 2005)).
Kurohashi and Nagao proposed a similarity-based
method to resolve both of the two tasks for Japanese
(Kurohashi and Nagao, 1994). Their method, how-
ever, heuristically detects coordinate conjunctions
by considering only similarities between possible
conjuncts, and thus cannot disambiguate the follow-
ing cases1:

(1) a. kanojo-to
she-cmi

gakkou-ni
school-acc

itta
went

(φ went to school with her)

b. kanojo-to
she-cnj

watashi-ga
I-nom

goukaku-shita
passed an exam

(she and I passed an exam)

In sentence (1a), postposition “to” is used as a comi-
tative case marker, but in sentence (1b), postposition
“to” is used as a coordinate conjunction.

To resolve this ambiguity, predicative case frames
are required. Case frames describe what kinds of

1In this paper, we use the following abbreviations:
nom (nominative), acc (accusative), abl (ablative), cmi (comi-
tative), cnj (conjunction) and TM (topic marker).
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Table 1: Case frame examples (Examples are writ-
ten in English. Numbers following each example
represent its frequency.).

CS Examples
ga I:18, person:15, craftsman:10, · · ·

yaku (1) wo bread:2484, meat:1521, cake:1283, · · ·
(broil) de oven:1630, frying pan:1311, · · ·

yaku (2) ga teacher:3, government:3, person:3, · · ·
(have wo fingers:2950

difficulty) ni attack:18, action:15, son:15, · · ·
ga maker:1, distributor:1

yaku (3) wo data:178, file:107, copy:9, · · ·
(burn) ni R:1583, CD:664, CDR:3, · · ·

...
...

...
ga dolphin:142, student:50, fish:28, · · ·

oyogu (1) wo sea:1188, underwater:281, · · ·
(swim) de crawl:86, breaststroke:49, stroke:24, · · ·

...
...

...
ga I:4, man:4, person:4, · · ·

migaku (1) wo tooth:5959, molar:27, foretooth:12
(brush) de brush:38, salt:13, powder:12, · · ·

...
...

...

nouns are related to each predicate. For example, a
case frame of “iku” (go) has a “to” case slot filled
with the examples such as “kanojo” (she) or human.
On the other hand, “goukaku-suru” (pass an exam)
does not have a “to” case slot but does have a “ga”
case slot filled with “kanojo” (she) and “watashi”
(I). These case frames provide the information for
disambiguating the postpositions “to” in sentences
(1a) and (1b): (1a) is not coordinate and (1b) is co-
ordinate.

This paper proposes a method for integrating co-
ordination disambiguation into probabilistic syntac-
tic and case structure analysis. This method simul-
taneously addresses the two tasks of coordination
disambiguation by utilizing syntactic/semantic par-
allelism in possible coordinate structures and lexi-
cal preferences in large-scale case frames. We use
the case frames that were automatically constructed
from the web (Table 1). In addition, cooccurrence
statistics of coordinate conjuncts are incorporated
into this model.

2 Related Work

Previous work on coordination disambiguation has
focused mainly on finding the scope of coordinate
structures.

Agarwal and Boggess proposed a method for
identifying coordinate conjuncts (Agarwal and
Boggess, 1992). Their method simply matches parts
of speech and hand-crafted semantic tags of the
head words of the coordinate conjuncts. They tested
their method using the Merck Veterinary Manual
and found their method had an accuracy of 81.6%.

Resnik described a similarity-based approach for
coordination disambiguation of nominal compounds
(Resnik, 1999). He proposed a similarity measure
based on the notion of shared information content.
He conducted several experiments using the Penn
Treebank and reported an F-measure of approxi-
mately 70%.

Goldberg applied a cooccurrence-based proba-
bilistic model to determine the attachments of am-
biguous coordinate phrases with the form “n1 p n2
cc n3” (Goldberg, 1999). She collected approxi-
mately 120K unambiguous pairs of two coordinate
words from a raw newspaper corpus for a one-year
period and estimated parameters from these statis-
tics. Her method achieved an accuracy of 72% using
the Penn Treebank.

Chantree et al. presented a binary classifier for co-
ordination ambiguity (Chantree et al., 2005). Their
model is based on word distribution information
obtained from the British National Corpus. They
achieved an F-measure (β = 0.25) of 47.4% using
their own test set.

The previously described methods focused on co-
ordination disambiguation. Some research has been
undertaken that integrated coordination disambigua-
tion into parsing.

Kurohashi and Nagao proposed a Japanese pars-
ing method that included coordinate structure detec-
tion (Kurohashi and Nagao, 1994). Their method
first detects coordinate structures in a sentence, and
then heuristically determines the dependency struc-
ture of the sentence under the constraints of the de-
tected coordinate structures. Their method correctly
analyzed 97 Japanese sentences out of 150.

Charniak and Johnson used some features of syn-
tactic parallelism in coordinate structures for their
MaxEnt reranking parser (Charniak and Johnson,
2005). The reranker achieved an F-measure of
91.0%, which is higher than that of their genera-
tive parser (89.7%). However, they used a numer-
ous number of features, and the contribution of the
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Table 2: Expressions that indicate coordinate struc-
tures.

(a) coordinate noun phrase:
,(comma) to ya toka katsu oyobi ka aruiwa ...

(b) coordinate predicative clause:
-shi ga oyobi ka aruiwa matawa ...

(c) incomplete coordinate structure:
,(comma) oyobi narabini aruiwa ...

parallelism features is unknown.
Dubey et al. proposed an unlexicalized PCFG

parser that modified PCFG probabilities to condi-
tion the existence of syntactic parallelism (Dubey
et al., 2006). They obtained an F-measure increase
of 0.4% over their baseline parser (73.0%). Experi-
ments with a lexicalized parser were not conducted
in their work.

A number of machine learning-based approaches
to Japanese parsing have been developed. Among
them, the best parsers are the SVM-based depen-
dency analyzers (Kudo and Matsumoto, 2002; Sas-
sano, 2004). In particular, Sassano added some fea-
tures to improve his parser by enabling it to detect
coordinate structures (Sassano, 2004). However, the
added features did not contribute to improving the
parsing accuracy. This failure can be attributed to
the inability to consider global parallelism.

3 Coordination Ambiguity in Japanese

In Japanese, the bunsetsu is a basic unit of depen-
dency that consists of one or more content words and
the following zero or more function words. A bun-
setsu corresponds to a base phrase in English and
“eojeol” in Korean.

Coordinate structures in Japanese are classified
into three types. The first type is the coordinate noun
phrase.

(2) nagai
long

enpitsu-to
pencil-cnj

keshigomu-wo
eraser-acc

katta
bought

(bought a long pencil and an eraser)

We can find these phrases by referring to the words
listed in Table 2-a.

The second type is the coordinate predicative
clause, in which two or more predicates form a co-
ordinate structure.

bn

An: Partial matrix

A = (a(i, j))

Coordination key bunsetsu

a(n, m)

a(pm-n, n+1)

a path

Similarity between
bn and bm

Figure 1: Method using triangular matrix.

(3) kanojo-to
she-cmi

kekkon-shi
married

ie-wo
house-acc

katta
bought

(married her and bought a house)

We can find these clauses by referring to the words
and ending forms listed in Table 2-b.

The third type is the incomplete coordinate struc-
ture, in which some parts of coordinate predicative
clauses are present.

(4) Tom-wa
Tom-TM

inu-wo,
dog-acc

Jim-wa
Jim-TM

neko-wo
cat-acc

kau
buys

(Tom (buys) a dog, and Jim buys a cat)

We can find these structures by referring to the
words listed in Table 2-c and also the correspon-
dence of case-marking postpositions.

For all of these types, we can detect the possibility
of a coordinate structure by looking for a coordina-
tion key bunsetsu that accompanies one of the words
listed in Table 2 (in total, we have 52 coordination
expressions). That is to say, the left and right sides of
a coordination key bunsetsu constitute possible pre-
and post-conjuncts, and the key bunsetsu is located
at the end of the pre-conjunct. The size of the con-
juncts corresponds to the scope of the coordination.

4 Calculating Similarity between Possible
Coordinate Conjuncts

We assess the parallelism of potential coordinate
structures in a probabilistic parsing model. In this
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puroguramingu gengo-wa 2 2 0 2 2 2 0 0 2 0 (prog. language)
mondai kaiketsu-no 2 0 2 4 2 0 0 2 0 (problem solution)

arugorizumu-wo 0 2 2 4 0 0 2 0 (algorithm)
hyogen dekiru 0 0 0 2 4 0 2 (can express)

kijutsuryoku-to 2 2 0 0 2 0 (descriptive power)
keisanki-no 2 0 0 2 0 (computer)

kinou-wo 0 0 2 0 (function)
jubun-ni 2 0 2 (sufficiently)

kudou dekiru 0 2 (can drive)
wakugumi-ga 0 (framework)

hitsuyou-dearu. (require)

(Programming language requires descriptive power to express an algorithm for 
solving problems and a framework to sufficiently drive functions of a computer.)

post-conjunct

pre-conjunct

Figure 2: Example of calculating path scores.

section, we describe a method for calculating simi-
larities between potential coordinate conjuncts.

To measure the similarity between potential pre-
and post-conjuncts, a lot of work on the coordi-
nation disambiguation used the similarity between
conjoined heads. However, not only the conjoined
heads but also other components in conjuncts have
some similarity and furthermore structural paral-
lelism. Therefore, we use a method to calculate the
similarity between two whole coordinate conjuncts
(Kurohashi and Nagao, 1994). The remainder of this
section contains a brief description of this method.

To calculate similarity between two series of bun-
setsus, a triangular matrix, A, is used (illustrated in
Figure 1).

A = (a(i, j)) (0 ≤ i ≤ l; i ≤ j ≤ l) (1)

where l is the number of bunsetsus in a sentence,
diagonal element a(i, j) is the i-th bunsetsu, and el-
ement a(i, j) (i < j) is the similarity value between
bunsetsus bi and bj . A similarity value between
two bunsetsus is calculated on the basis of POS
matching, exact word matching, and their semantic
closeness in a thesaurus tree (Kurohashi and Nagao,
1994). We use the Bunruigoihyo thesaurus, which
contains 96,000 Japanese words (The National In-
stitute for Japanese Language, 2004).

To detect a coordinate structure involving a key
bunsetsu, bn, we consider only a partial matrix (de-
noted An), that is, the upper right part of bn (Figure
1).

An = (a(i, j)) (0 ≤ i ≤ n;n + 1 ≤ j ≤ l) (2)

To specify correspondences between bunsetsus in

potential pre- and post-conjuncts, a path is defined
as follows:

path ::= (a(p1,m), a(p2, m− 1), . . . ,

a(pm−n, n + 1)) (3)

where n+1 ≤ m ≤ l, a(p1,m) 6= 0, p1 = n, pi ≥
pi+1, (1 ≤ i ≤ m− n− 1).
That is, a path represents a series of elements from
a non-zero element in the lowest row in An to an
element in the leftmost column in An. The path has
an only element in each column and extends toward
the upper left. The series of bunsetsus on the left side
of the path and the series under the path are potential
conjuncts for key bn. Figure 2 shows an example of
a path.

A path score is defined based on the following cri-
teria:

• the sum of each element’s points on the path

• penalty points when the path extends non-
diagonally (which causes conjuncts of unbal-
anced lengths)

• bonus points on expressions signaling the be-
ginning or ending of a coordinate structure,
such as “kaku“ (each) and nado” (and so on)

• the total score of the above criteria is divided
by the square root of the number of bunsetsus
covered by the path for normalization

The score of each path is calculated using a dy-
namic programming method. We consider each path
as a candidate of pre- and post-conjuncts.
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5 Integrated Probabilistic Model for
Syntactic, Coordinate and Case
Structure Analysis

This section describes a method of integrating coor-
dination disambiguation into a probabilistic parsing
model. The integrated model is based on a fully-
lexicalized probabilistic model for Japanese syntac-
tic and case structure analysis (Kawahara and Kuro-
hashi, 2006b).

5.1 Outline of the Model
This model gives a probability to each possible de-
pendency structure, T , and case structure, L, of the
input sentence, S, and outputs the syntactic, coordi-
nate and case structure that have the highest proba-
bility. That is to say, the model selects the syntactic
structure, T best, and the case structure, Lbest, that
maximize the probability, P (T,L|S):

(T best, Lbest) = argmax (T,L)P (T,L|S)

= argmax (T,L)
P (T,L, S)

P (S)
= argmax (T,L)P (T,L, S) (4)

The last equation is derived because P (S) is con-
stant.

The model considers a clause as a generation unit
and generates the input sentence from the end of the
sentence in turn. The probability P (T,L, S) is de-
fined as the product of probabilities for generating
clause Ci as follows:

P (T,L, S) =
∏

i=1..nP (Ci, relihi
|Chi

) (5)

where n is the number of clauses in S, Chi
is Ci’s

modifying clause, and relihi
is the dependency re-

lation between Ci and Chi
. The main clause, Cn,

at the end of a sentence does not have a modify-
ing head, but a virtual clause Chn = EOS (End Of
Sentence) is inserted. Dependency relation relihi

is
first classified into two types C (coordinate) and D
(normal dependency), and C is further divided into
five classes according to the binned similarity (path
score) of conjuncts. Therefore, relihi

can be one of
the following six classes.

relihi
= {D,C0, C1, C2, C3, C4} (6)

For instance, C0 represents a coordinate relation
with a similarity of less than 1, and C4 represents
a coordinate relation with a similarity of 4 or more.

bentou-wa

tabete-te

kaet-ta
(go home)

bentou-wa

tabete-te

kaet-ta
(go home) EOSEOS

)|,( EOSDtakaetP − )|,( EOSDtakaetwabentouP −−

)|,( takaetDtetabewabentouP −−− )|,( takaetwabentouDtetabeP −−−

(eat)

(lunchbox)

(eat)

(lunchbox)

)|,( EOSDtakaetP − )|,( EOSDtakaetwabentouP −−

)|0,( takaetCtetabewabentouP −−− )|0,( takaetwabentouCtetabeP −−−

(1) (3)

(4)(2)

Dependency structure Dependency structure21,TT 43 ,TT

DT :1

0:2 CT
DT :3

0:4 CT

Figure 3: Example of probability calculation.

For example, consider the sentence shown in Fig-
ure 3. There are four possible dependency structures
in this figure, and the product of the probabilities
for each structure indicated below the tree is calcu-
lated. Finally, the model chooses the structure with
the highest probability (in this case T 1 is chosen).

Clause Ci is decomposed into its clause type,
f i, (including the predicate’s inflection and function
words) and its remaining content part Ci

′. Clause
Chi

is also decomposed into its content part, Chi
′,

and its clause type, fhi
.

P (Ci, relihi
|Chi

) = P (Ci
′, f i, relihi

|Chi

′, fhi
)

= P (Ci
′, relihi

|f i, Chi

′, fhi
)× P (f i|Chi

′, fhi
)

≈ P (Ci
′, relihi

|f i, Chi

′)× P (f i|fhi
) (7)

Equation (7) is derived because the content part, Ci
′,

is usually independent of its modifying head type,
fhi

, and in most cases, the type, f i, is independent
of the content part of its modifying head, Chi

.
We call P (Ci

′, relihi
|f i, Chi

′) generative prob-
ability of a case and coordinate structure, and
P (f i|fhi

) generative probability of a clause type.
The latter is the probability of generating func-
tion words including topic markers and punctuation
marks, and is estimated using a syntactically an-
notated corpus in the same way as (Kawahara and
Kurohashi, 2006b).

The generative probability of a case and coordi-
nate structure can be rewritten as follows:

P (Ci
′, relihi

|f i, Chi

′)
= P (Ci

′|relihi
, f i, Chi

′)× P (relihi
|f i, Chi

′)
≈ P (Ci

′|relihi
, f i, Chi

′)× P (relihi
|f i) (8)
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Equation (8) is derived because dependency rela-
tions (coordinate or not) heavily depend on mod-
ifier’s types including coordination keys. We call
P (Ci

′|relihi
, f i, Chi

′) generative probability of a
case structure, and P (relihi

|f i) generative proba-
bility of a coordinate structure. The following two
subsections describe these probabilities.

5.2 Generative Probability of Coordinate
Structure

The most important feature to decide whether two
clauses are coordinate is coordination keys. There-
fore, we consider a coordination key, ki, as clause
type f i. The generative probability of a coordinate
structure, P (relihi

|f i), is defined as follows:

P (relihi
|f i) = P (relihi

|ki) (9)

We classified coordination keys into 52 classes ac-
cording to the classification proposed by (Kurohashi
and Nagao, 1994). If type f i does not contain a co-
ordination key, the relation is always D (normal de-
pendency), that is P (relihi

|f i) = P (D|φ) = 1.
The generative probability of a coordinate struc-

ture was estimated from a syntactically annotated
corpus using maximum likelihood. We used the
Kyoto Text Corpus (Kurohashi and Nagao, 1998),
which consists of 40K Japanese newspaper sen-
tences.

5.3 Generative Probability of Case Structure

We consider that a case structure consists of a pred-
icate, vi, a case frame, CF l, and a case assignment,
CAk. Case assignment CAk represents correspon-
dences between the input case components and the
case slots shown in Figure 4. Thus, the generative
probability of a case structure is decomposed as fol-
lows:

P (Ci
′|relihi

, f i, Chi

′)
= P (vi, CF l, CAk|relihi

, f i, Chi

′)
= P (vi|relihi

, f i, Chi

′)
× P (CF l|relihi

, f i, Chi

′, vi)
× P (CAk|relihi

, f i, Chi

′, vi, CF l)
≈ P (vi|relihi

, f i, whi
)

× P (CF l|vi)
× P (CAk|CF l, f i) (10)

bentou-watabete(lunchbox)
(eat) … lunchbox, bread, …wo man, student, …gataberu1 (eat)

Case Frame CFl
Case AssignmentCAk

(no correspondence)Dependency Structure of S

Figure 4: Example of case assignment.

The above approximation is given because it is nat-
ural to consider that the predicate vi depends on its
modifying head whi

instead of the whole modifying
clause, that the case frame CF l only depends on the
predicate vi, and that the case assignment CAk de-
pends on the case frame CF l and the clause type f i.

The generative probabilities of case frames and
case assignments are estimated from case frames
themselves in the same way as (Kawahara and Kuro-
hashi, 2006b). The remainder of this section de-
scribes the generative probability of a predicate,
P (vi|relihi

, f i, whi
).

The generative probability of a predicate cap-
tures cooccurrences of coordinate or non-coordinate
phrases. This kind of information is not handled
in case frames, which aggregate only predicate-
argument relations.

The generative probability of a predicate mainly
depends on a coordination key in the clause type, f i,
as well as the generative probability of a coordinate
structure. We define this probability as follows:

P (vi|relihi
, f i, whi

) = P (vi|relihi
, ki, whi

)

If Ci
′ is a nominal clause and consists of a noun

ni, we consider the following probability in stead of
equation (10):

Pn(Ci
′|relihi

, f i, Chi

′) ≈ P (ni|relihi
, f i, whi

)

This is because a noun does not have a case frame
and any case components in the current framework.

To estimate these probabilities, we first applied a
conventional parsing system with coordination dis-
ambiguation to a huge corpus, and collected coor-
dinate bunsetsus from the parses. We used KNP2

(Kurohashi and Nagao, 1994) as the parser and a
web corpus consisting of 470M Japanese sentences
(Kawahara and Kurohashi, 2006a). The generative
probability of a predicate was estimated from the

2http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp-e.html
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collected coordinate bunsetsus using maximum like-
lihood.

5.4 Practical Issue
The proposed model considers all the possible de-
pendency structures including coordination ambigu-
ities. To reduce this high computational cost, we in-
troduced the CKY framework to the search.

Each parameter in the model is smoothed by using
several back-off levels in the same way as (Collins,
1999). Smoothing parameters are optimized using a
development corpus.

6 Experiments

We evaluated the coordinate structures and depen-
dency structures that were outputted by our model.
The case frames used in this paper were automati-
cally constructed from 470M Japanese sentences ob-
tained from the web. Some examples of the case
frames are listed in Table 1 (Kawahara and Kuro-
hashi, 2006a).

In this work, the parameters related to unlexical
types are calculated from a small tagged corpus of
newspaper articles, and lexical parameters are ob-
tained from a huge web corpus. To evaluate the ef-
fectiveness of our fully-lexicalized model, our ex-
periments are conducted using web sentences. As
the test corpus, we prepared 759 web sentences 3.
The web sentences were manually annotated using
the same criteria as the Kyoto Text Corpus. We also
used the Kyoto Text Corpus as a development corpus
to optimize the smoothing parameters. The system
input was automatically tagged using the JUMAN
morphological analyzer 4.

We used two baseline systems for comparative
purposes: the rule-based dependency parser, KNP
(Kurohashi and Nagao, 1994), and the probabilis-
tic model of syntactic and case structure analysis
(Kawahara and Kurohashi, 2006b), in which coor-
dination disambiguation is the same as that of KNP.

6.1 Evaluation of Detection of Coordinate
Structures

First, we evaluated detecting coordinate structures,
namely whether a coordination key bunsetsu triggers

3The test set was not used to construct case frames and esti-
mate probabilities.

4http://nlp.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html

Table 3: Experimental results of detection of coor-
dinate structures.

baseline proposed
precision 366/460 (79.6%) 361/435 (83.0%)

recall 366/447 (81.9%) 361/447 (80.8%)
F-measure – (80.7%) – (81.9%)

a coordinate structure. Table 3 lists the experimen-
tal results. The F-measure of our method is slightly
higher than that of the baseline method (KNP). In
particular, our method achieved good precision.

6.2 Evaluation of Dependency Parsing

Secondly, we evaluated the dependency structures
analyzed by the proposed model. Evaluating the
scope ambiguity of coordinate structures is sub-
sumed within this dependency evaluation. The de-
pendency structures obtained were evaluated with
regard to dependency accuracy — the proportion of
correct dependencies out of all dependencies except
for the last dependency in the sentence end 5. Ta-
ble 4 lists the dependency accuracy. In this table,
“syn” represents the rule-based dependency parser,
KNP, “syn+case” represents the probabilistic parser
of syntactic and case structure (Kawahara and Kuro-
hashi, 2006b), and “syn+case+coord” represents our
proposed model. The proposed model significantly
outperformed both of the baseline systems (McNe-
mar’s test; p < 0.01).

In the table, the dependency accuracies are clas-
sified into four types on the basis of the bunsetsu
classes (PB: predicate bunsetsu and NB: noun bun-
setsu) of a dependent and its head. “syn+case”
outperformed “syn”. In particular, the accuracy
of predicate-argument relations (“NB→PB”) was
improved, but the accuracies of “NB→NB” and
“PB→PB” decreased. “syn+case+coord” outper-
formed the two baselines for all of the types. Not
only the accuracy of predicate-argument relations
(“NB→PB”) but also the accuracies of coordinate
noun/predicate bunsetsus (related to “NB→NB” and
“PB→PB”) were improved. These improvements
are conduced by the integration of coordination dis-
ambiguation and syntactic/case structure analysis.

5Since Japanese is head-final, the second last bunsetsu un-
ambiguously depends on the last bunsetsu, and the last bunsetsu
has no dependency.
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Table 4: Experimental results of dependency parsing.
syn syn+case syn+case+coord

all 3,833/4,436 (86.4%) 3,852/4,436 (86.8%) 3,893/4,436 (87.8%)
NB→PB 1,637/1,926 (85.0%) 1,664/1,926 (86.4%) 1,684/1,926 (87.4%)
NB→NB 1,032/1,136 (90.8%) 1,029/1,136 (90.6%) 1,037/1,136 (91.3%)
PB→PB 654/817 (80.0%) 647/817 (79.2%) 659/817 (80.7%)
PB→NB 510/557 (91.6%) 512/557 (91.9%) 513/557 (92.1%)

To compare our results with a state-of-the-art dis-
criminative dependency parser, we input the same
test corpus into an SVM-based Japanese dependency
parser, CaboCha6(Kudo and Matsumoto, 2002).
Its dependency accuracy was 86.3% (3,829/4,436),
which is equivalent to that of “syn” (KNP). This low
accuracy is attributed to the out-of-domain training
corpus. That is, the parser is trained on a newspa-
per corpus, whereas the test corpus is obtained from
the web, because of the non-availability of a tagged
web corpus that is large enough to train a supervised
parser.

6.3 Discussion

Figure 5 shows some analysis results, where the
dotted lines represent the analysis by the baseline,
“syn+case”, and the solid lines represent the analysis
by the proposed method, “syn+case+coord”. These
sentences are incorrectly analyzed by the baseline
but correctly analyzed by the proposed method. For
instance, in sentence (1), the noun phrase coordina-
tion of “apurikeesyon” (application) and “doraiba”
(driver) can be correctly analyzed. This is because
the case frame of “insutooru-sareru” (installed) is
likely to generate “doraiba”, and “apurikeesyon”
and “doraiba” are likely to be coordinated.

One of the causes of errors in dependency parsing
is the mismatch between analysis results and anno-
tation criteria. As per the annotation criteria, each
bunsetsu has only one modifying head. Therefore, in
some cases, even if analysis results are semantically
correct, they are judged as incorrect from the view-
point of the annotation. For example, in sentence
(4) in Figure 6, the baseline method, “syn”, correctly
recognized the head of “iin-wa” (commissioner-TM)
as “hirakimasu” (open). However, the proposed
method incorrectly judged it as “oujite-imasuga”
(offer). Both analysis results can be considered to
be semantically correct, but from the viewpoint of

6http://chasen.org/˜taku/software/cabocha/

our annotation criteria, the latter is not a syntactic
relation (i.e., incorrect), but an ellipsis relation. This
kind of error is caused by the strong lexical prefer-
ence considered in our method.

To address this problem, it is necessary to simul-
taneously evaluate not only syntactic relations but
also indirect relations, such as ellipses and anaphora.
This kind of mismatch also occurred for the detec-
tion of coordinate structures.

Another errors were caused by an inherent char-
acteristic of generative models. Generative models
have some advantages, such as their application to
language models. However, it is difficult to incor-
porate various features that seem to be useful for
addressing syntactic and coordinate ambiguity. We
plan to apply discriminative reranking to the n-best
parses produced by our generative model in the same
way as (Charniak and Johnson, 2005).

7 Conclusion

This paper has described an integrated probabilistic
model for coordination disambiguation and syntac-
tic/case structure analysis. This model takes advan-
tage of lexical preference of a huge raw corpus and
large-scale case frames and performs coordination
disambiguation and syntactic/case analysis simulta-
neously. The experiments indicated the effective-
ness of our model. Our future work involves incor-
porating ellipsis resolution to develop an integrated
model for syntactic, case, and ellipsis analysis.
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Abstract

We cannot use non-local features with cur-
rent major methods of sequence labeling
such as CRFs due to concerns about com-
plexity. We propose a new perceptron algo-
rithm that can use non-local features. Our
algorithm allows the use of all types of
non-local features whose values are deter-
mined from the sequence and the labels. The
weights of local and non-local features are
learned together in the training process with
guaranteed convergence. We present experi-
mental results from the CoNLL 2003 named
entity recognition (NER) task to demon-
strate the performance of the proposed algo-
rithm.

1 Introduction

Many NLP tasks such as POS tagging and named
entity recognition have recently been solved as se-
quence labeling. Discriminative methods such as
Conditional Random Fields (CRFs) (Lafferty et al.,
2001), Semi-Markov Random Fields (Sarawagi and
Cohen, 2004), and perceptrons (Collins, 2002a)
have been popular approaches for sequence label-
ing because of their excellent performance, which is
mainly due to their ability to incorporate many kinds
of overlapping and non-independent features.

However, the common limitation of these meth-
ods is that the features are limited to “local” fea-
tures, which only depend on a very small number
of labels (usually two: the previous and the current).
Although this limitation makes training and infer-
ence tractable, it also excludes the use of possibly
useful “non-local” features that are accessible after
all labels are determined. For example, non-local
features such as “same phrases in a document do not

have different entity classes” were shown to be use-
ful in named entity recognition (Sutton and McCal-
lum, 2004; Bunescu and Mooney, 2004; Finkel et
al., 2005; Krishnan and Manning, 2006).

We propose a new perceptron algorithm in this pa-
per that can use non-local features along with lo-
cal features. Although several methods have al-
ready been proposed to incorporate non-local fea-
tures (Sutton and McCallum, 2004; Bunescu and
Mooney, 2004; Finkel et al., 2005; Roth and Yih,
2005; Krishnan and Manning, 2006; Nakagawa and
Matsumoto, 2006), these present a problem that
the types of non-local features are somewhat con-
strained. For example, Finkel et al. (2005) enabled
the use of non-local features by using Gibbs sam-
pling. However, it is unclear how to apply their
method of determining the parameters of a non-local
model to other types of non-local features, which
they did not used. Roth and Yih (2005) enabled
the use of hard constraints on labels by using inte-
ger linear programming. However, this is equivalent
to only allowing non-local features whose weights
are fixed to negative infinity. Krishnan and Manning
(2006) divided the model into two CRFs, where the
second model uses the output of the first as a kind of
non-local information. However, it is not possible
to use non-local features that depend on the labels
of the very candidate to be scored. Nakagawa and
Matsumoto (2006) used a Bolzmann distribution to
model the correlation of the POS of words having
the same lexical form in a document. However, their
method can only be applied when there are conve-
nient links such as the same lexical form.

Since non-local features have not yet been exten-
sively investigated, it is possible for us to find new
useful non-local features. Therefore, our objective
in this study was to establish a framework, where all
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types of non-local features are allowed.
With non-local features, we cannot use efficient

procedures such as forward-backward procedures
and the Viterbi algorithm that are required in train-
ing CRFs (Lafferty et al., 2001) and perceptrons
(Collins, 2002a). Recently, several methods (Collins
and Roark, 2004; Daumé III and Marcu, 2005; Mc-
Donald and Pereira, 2006) have been proposed with
similar motivation to ours. These methods allevi-
ate this problem by using some approximation in
perceptron-type learning.

In this paper, we follow this line of research and
try to solve the problem by extending Collins’ per-
ceptron algorithm (Collins, 2002a). We exploited
the not-so-familiar fact that we can design a per-
ceptron algorithm with guaranteed convergence if
we can find at least one wrong labeling candidate
even if we cannot perform exact inference. We first
ran the A* search only using local features to gen-
erate n-best candidates (this can be efficiently per-
formed), and then we only calculated the true score
with non-local features for these candidates to find
a wrong labeling candidate. The second key idea
was to update the weights of local features during
training if this was necessary to generate sufficiently
good candidates. The proposed algorithm combined
these ideas to achieve guaranteed convergence and
effective learning with non-local features.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the Collins’ perceptron
algorithm. Although this algorithm is the starting
point for our algorithm, its baseline performance is
not outstanding. Therefore, we present a margin ex-
tension to the Collins’ perceptron in Section 3. This
margin perceptron became the direct basis of our al-
gorithm. We then explain our algorithm for non-
local features in Section 4. We report the experi-
mental results using the CoNLL 2003 shared task
dataset in Section 6.

2 Perceptron Algorithm for Sequence
Labeling

Collins (2002a) proposed an extension of the per-
ceptron algorithm (Rosenblatt, 1958) to sequence
labeling. Our aim in sequence labeling is to as-
sign label yi ∈ Y to each word xi ∈ X in a
sequence. We denote sequence x1, . . . , xT as x

and the corresponding labels as y. We assume
weight vector α ∈ Rd and feature mapping Φ
that maps each (x, y) to feature vector Φ(x, y) =
(Φ1(x,y), · · · , Φd(x,y)) ∈ Rd. The model deter-
mines the labels by:

y′ = argmaxy∈Y|x|Φ(x, y) ·α,

where · denotes the inner product. The aim
of the learning algorithm is to obtain an ap-
propriate weight vector, α, given training set
{(x1, y

∗
1), · · · , (xL, y∗

L)}.
The learning algorithm, which is illustrated in

Collins (2002a), proceeds as follows. The weight
vector is initialized to zero. The algorithm passes
over the training examples, and each sequence is de-
coded using the current weights. If y′ is not the cor-
rect answer y∗, the weights are updated according to
the following rule.

αnew = α + Φ(x,y∗)− Φ(x,y′).

This algorithm is proved to converge (i.e., there are
no more updates) in the separable case (Collins,
2002a).1 That is, if there exist weight vector U (with
||U || = 1), δ (> 0), and R (> 0) that satisfy:

∀i,∀y ∈ Y |xi| Φ(xi, yi
∗) ·U − Φ(xi, y) ·U ≥ δ,

∀i,∀y ∈ Y |xi| ||Φ(xi, yi
∗)− Φ(xi, y)|| ≤ R,

the number of updates is at most R2/δ2.
The perceptron algorithm only requires one can-

didate y′ for each sequence xi, unlike the training of
CRFs where all possible candidates need to be con-
sidered. This inherent property is the key to train-
ing with non-local features. However, note that the
tractability of learning and inference relies on how
efficiently y′ can be found. In practice, we can find
y′ efficiently using a Viterbi-type algorithm only
when the features are all local, i.e., Φs(x, y) can be
written as the sum of (two label) local features φs as
Φs(x, y) =

∑T
i φs(x, yi−1, yi). This locality con-

straint is also required to make the training of CRFs
tractable (Lafferty et al., 2001).

One problem with the perceptron algorithm de-
scribed so far is that it offers no treatment for over-
fitting. Thus, Collins (2002a) also proposed an av-
eraged perceptron, where the final weight vector is

1Collins (2002a) also provided proof that guaranteed “good”
learning for the non-separable case. However, we have only
considered the separable case throughout the paper.
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Algorithm 3.1: Perceptron with margin for
sequence labeling (parameters: C)

α ← 0
until no more updates do

for i ← 1 to L do
8

>

>

>

>

>

<

>

>

>

>

>

:

y′ = argmaxyΦ(xi, y) · α
y′′ = 2nd-bestyΦ(xi, y) · α
if y′ ̸= y∗

i then
α = α + Φ(xi, y

∗
i )− Φ(xi, y

′)
else if Φ(xi, y

∗
i ) · α − Φ(xi, y

′′) · α ≤ C then
α = α + Φ(xi, y

∗
i )− Φ(xi, y

′′)

the average of all weight vectors during training.
Howerver, we found in our experiments that the av-
eraged perceptron performed poorly in our setting.
We therefore tried to make the perceptron algorithm
more robust to overfitting. We will describe our ex-
tension to the perceptron algorithm in the next sec-
tion.

3 Margin Perceptron Algorithm for
Sequence Labeling

We extended a perceptron with a margin (Krauth and
Mézard, 1987) to sequence labeling in this study, as
Collins (2002a) extended the perceptron algorithm
to sequence labeling.

In the case of sequence labeling, the margin is de-
fined as:

γ(α) = min
xi

min
y ̸=y∗

i

Φ(xi, yi
∗) ·α− Φ(xi,y) ·α

||α||

Assuming that the best candidate, y′, equals the cor-
rect answer, y∗, the margin can be re-written as:

= min
xi

Φ(xi, yi
∗) ·α− Φ(xi, y

′′) ·α
||α||

,

where y′′ = 2nd-bestyΦ(xi, y) ·α. Using this rela-
tion, the resulting algorithm becomes Algorithm 3.1.
The algorithm tries to enlarge the margin as much as
possible, as well as make the best scoring candidate
equal the correct answer.

Constant C in Algorithm 3.1 is a tunable param-
eter, which controls the trade-off between the mar-
gin and convergence time. Based on the proofs
in Collins (2002a) and Li et al. (2002), we can
prove that the algorithm converges within (2C +
R2)/δ2 updates and that γ(α) ≥ δC/(2C + R2) =
(δ/2)(1 − (R2/(2C + R2))) after training. As can
be seen, the margin approaches at least half of true

margin δ (at the cost of infinite training time), as
C →∞.

Note that if the features are all local, the second-
best candidate (generally n-best candidates) can also
be found efficiently by using an A* search that uses
the best scores calculated during a Viterbi search as
the heuristic estimation (Soong and Huang, 1991).

There are other methods for improving robustness
by making margin larger for the structural output
problem. Such methods include ALMA (Gentile,
2001) used in (Daumé III and Marcu, 2005)2, MIRA
(Crammer et al., 2006) used in (McDonald et al.,
2005), and Max-Margin Markov Networks (Taskar
et al., 2003). However, to the best of our knowledge,
there has been no prior work that has applied a per-
ceptron with a margin (Krauth and Mézard, 1987)
to structured output.3 Our method described in this
section is one of the easiest to implement, while
guaranteeing a large margin. We found in the experi-
ments that our method outperformed the Collins’ av-
eraged perceptron by a large margin.

4 Algorithm

4.1 Definition and Basic Idea
Having described the basic perceptron algorithms,
we will know explain our algorithm that learns the
weights of local and non-local features in a unified
way.

Assume that we have local features and non-
local features. We use the superscript, l, for
local features as Φl

i(x, y) and g for non-local
features as Φg

i (x,y). Then, feature mapping is
written as Φa(x, y) = Φl(x,y) + Φg(x, y) =
(Φl

1(x,y), · · · , Φl
n(x, y), Φg

n+1(x, y), · · · , Φg
d(x, y)).

Here, we define:

Φl(x, y) = (Φl
1(x, y), · · · , Φl

n(x,y), 0, · · · , 0)
Φg(x, y) = (0, · · · , 0, Φg

n+1(x, y), · · · , Φg
d(x, y))

Ideally, we want to determine the labels using the
whole feature set as:

y′ = argmaxy∈Y|x|Φa(x, y) ·α.
2(Daumé III and Marcu, 2005) also presents the method us-

ing the averaged perceptron (Collins, 2002a)
3For re-ranking problems, Shen and Joshi (2004) proposed

a perceptron algorithm that also uses margins. The difference is
that our algorithm trains the sequence labeler itself and is much
simpler because it only aims at labeling.
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Algorithm 4.1: Candidate algorithm (parameters:
n, C)

α ← 0
until no more updates do

for i ← 1 to L do
8
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>
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>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

{yn} = n-bestyΦl(xi, y) · α
y′ = argmaxy∈{yn}Φ

a(xi, y) · α
y′′ = 2nd-besty∈{yn}Φ

a(xi, y) · α
if y′ ̸= yi

∗

& Φa(xi, y
∗
i ) · α − Φa(xi, y

′) · α ≤ C then
α = α + Φa(xi, y

∗
i )− Φa(xi, y

′)
else if Φa(xi, y

∗
i ) ·α − Φa(xi, y

′′) · α ≤ C then
α = α + Φa(xi, y

∗
i )− Φa(xi, y

′′)

However, if there are non-local features, it is impos-
sible to find the highest scoring candidate efficiently,
since we cannot use the Viterbi algorithm. Thus,
we cannot use the perceptron algorithms described
in the previous sections. The training of CRFs is
also intractable for the same reason.

To deal with this problem, we first relaxed our ob-
jective. The modified objective was to find a good
model from those with the form:

{yn} = n-bestyΦl(x, y) ·α
y′ = argmaxy∈{yn}Φ

a(x, y) ·α, (1)

That is, we first generate n-best candidates {yn}
under the local model, Φl(x, y) · α. This can be
done efficiently using the A* algorithm. We then
find the best scoring candidate under the total model,
Φa(x, y) ·α, only from these n-best candidates. If n
is moderately small, this can also be done in a prac-
tical amount of time.

This resembles the re-ranking approach (Collins
and Duffy, 2002; Collins, 2002b). However, unlike
the re-ranking approach, the local model, Φl(x, y) ·
α, and the total model, Φa(x, y) ·α, correlate since
they share a part of the vector and are trained at
the same time in our algorithm. The re-ranking ap-
proach has the disadvantage that it is necessary to
use different training corpora for the first model and
for the second, or to use cross validation type train-
ing, to make the training for the second meaning-
ful. This reduces the effective size of training data
or increases training time substantially. On the other
hand, our algorithm has no such disadvantage.

However, we are no longer able to find the high-
est scoring candidate under Φa(x, y) · α exactly
with this approach. We cannot thus use the percep-
tron algorithms directly. However, by examining the

Algorithm 4.2: Perceptron with local and
non-local features (parameters: n, Ca, Cl)

α ← 0
until no more updates do

for i ← 1 to L do
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>

:

{yn} = n-bestyΦl(xi, y) · α
y′ = argmaxy∈{yn}Φ

a(xi, y) · α
y′′ = 2nd-besty∈{yn}Φ

a(xi, y) · α
if y′ ̸= y∗

i

& Φa(xi, y
∗
i ) · α − Φa(xi, y

′) · α ≤ Ca then
α = α + Φa(xi, y

∗
i )− Φa(xi, y

′) (A)
else if Φa(xi, y

∗
i ) ·α − Φa(xi, y

′′) · α ≤ Ca then
α = α + Φa(xi, y

∗
i )− Φa(xi, y

′′) (A)
else

(B)

8

>

>

<

>

>

:

if y1 ̸= yi
∗ then (y1 represents the best in {yn})

α = α + Φl(xi, y
∗
i )− Φl(xi, y

1)
else if Φl(xi, y

∗
i ) · α − Φl(xi, y

2) · α ≤ Cl then
α = α + Φl(xi, y

∗
i )− Φl(xi, y

2)

proofs in Collins (2002a), we can see that the essen-
tial condition for convergence is that the weights are
always updated using some y (̸= y∗) that satisfies:

Φ(xi, y
∗
i ) ·α− Φ(xi, y) ·α ≤ 0

(≤ C in the case of a perceptron with a margin). (2)

That is, y does not necessarily need to be the exact
best candidate or the exact second-best candidate.
The algorithm also converges in a finite number of
iterations even with Eq. (1) as long as Eq. (2) is
satisfied.

4.2 Candidate Algorithm

The algorithm we came up with first based on the
above idea, is Algorithm 4.1. We first find the n-
best candidates using the local model, Φl(x, y) · α.
At this point, we can determine the value of the non-
local features, Φg(x, y), to form the whole feature
vector, Φa(x, y), for the n-best candidates. Next,
we re-score and sort them using the total model,
Φa(x, y) · α, to find a candidate that violates the
margin condition. We call this algorithm the “can-
didate algorithm”. After the training has finished,
Φa(xi, y

∗
i ) · α − Φa(xi, y) · α > C is guaran-

teed for all (xi, y) where y ∈ {yn}, y ̸= y∗.
At first glance, this seems sufficient condition for
good models. However, this is not true because if
y∗ ̸∈ {yn}, the inference defined by Eq. (1) is not
guaranteed to find the correct answer, y∗. In fact,
this algorithm does not work well with non-local
features as we found in the experiments.
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4.3 Final Algorithm

Our idea for improving the above algorithm is that
the local model, Φl(x, y)·α, must at least be so good
that y∗ ∈ {yn}. To achieve this, we added a modi-
fication term that was intended to improve the local
model when the local model was not good enough
even when the total model was good enough.

The final algorithm resulted in Algorithm 4.2. As
can be seen, the part marked (B) has been added. We
call this algorithm the “proposed algorithm”. Note
that the algorithm prioritizes the update of the to-
tal model, (A), over that of the local model, (B), al-
though the opposite is also possible. Also note that
the update of the local model in (B) is “aggressive”
since it updates the weights until the best candidate
output by the local model becomes the correct an-
swer and satisfies the margin condition. A “conser-
vative” updating, where we cease the update when
the n-best candidates contain the correct answer, is
also possible from our idea above. We made these
choices since they worked better than the other al-
ternatives.

The tunable parameters are the local margin pa-
rameter, C l, the total margin parameter, Ca, and n
for the n-best search. We used C = C l = Ca in this
study to reduce the search space.

We can prove that the algorithm in Algorithm 4.2
also converges in a finite number of iterations. It
converges within (2C + R2)/δ2 updates, assuming
that there exist weight vector U l (with ||U l|| = 1
and U l

i = 0 (n+1 ≤ i ≤ d)), δ (> 0), and R (> 0)
that satisfy:

∀i,∀y ∈ Y |xi| Φl(xi, yi
∗)·U l−Φl(xi, y)·U l ≥ δ,

∀i,∀y ∈ Y |xi| ||Φa(xi, yi
∗)− Φa(xi, y)|| ≤ R.

In addition, we can prove that γ′(α) ≥ δC/(2C +
R2) for the margin after convergence, where γ′(α)
is defined as:

min
xi

min
y∈{yn},̸=y∗

i

Φa(xi, yi
∗) ·α− Φa(xi,y) ·α

||α||

See Appendix A for the proofs.
We also incorporated the idea behind Bayes point

machines (BPMs) (Herbrich and Graepel, 2000) to
improve the robustness of our method further. BPMs
try to cancel out overfitting caused by the order of

examples, by training several models by shuffling
the training examples.4 However, it is very time
consuming to run the complete training process sev-
eral times. We thus ran the training in only one pass
over the shuffled examples several times, and used
the averaged output weight vectors as a new initial
weight vector, because we thought that the early part
of training would be more seriously affected by the
order of examples. We call this “BPM initializa-
tion”. 5

5 Named Entity Recognition and
Non-Local Features

We evaluated the performance of the proposed algo-
rithm using the named entity recognition task. We
adopted IOB (IOB2) labeling (Ramshaw and Mar-
cus, 1995), where the first word of an entity of class
“C” is labeled “B-C”, the words in the entity are la-
beled “I-C”, and other words are labeled “O”.

We used non-local features based on Finkel et al.
(2005). These features are based on observations
such as “same phrases in a document tend to have
the same entity class” (phrase consistency) and “a
sub-phrase of a phrase tends to have the same entity
class as the phrase” (sub-phrase consistency). We
also implemented the “majority” version of these
features as used in Krishnan and Manning (2006).
In addition, we used non-local features, which are
based on the observation that “entities tend to have
the same entity class if they are in the same con-
junctive or disjunctive expression” as in “· · · in U.S.,
EU, and Japan” (conjunction consistency). This type
of non-local feature was not used by Finkel et al.
(2005) or Krishnan and Manning (2006).

6 Experiments

6.1 Data and Setting

We used the English dataset of the CoNLL 2003
named entity shared task (Tjong et al., 2003) for
the experiments. It is a corpus of English newspa-
per articles, where four entity classes, PER, LOC,
ORG, and MISC are annotated. It consists of train-
ing, development, and testing sets (14,987, 3,466,

4The results for the perceptron algorithms generally depend
on the order of the training examples.

5Note that we can prove that the perceptron algorithms con-
verge even though the weight vector is not initialized as α = 0.
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and 3,684 sentences, respectively). Automatically
assigned POS tags and chunk tags are also provided.
The CoNLL 2003 dataset contains document bound-
ary markers. We concatenated the sentences in the
same document according to these markers.6 This
generated 964 documents for the training set, 216
documents for the development set, and 231 docu-
ments for the testing set. The documents generated
as above become the sequence, x, in the learning
algorithms.

We first evaluated the baseline performance of
a CRF model, the Collins’ perceptron, and the
Collins’ averaged perceptron, as well as the margin
perceptron, with only local features. We next eval-
uated the performance of our perceptron algorithm
proposed for non-local features.

We used the local features summarized in Table
1, which are similar to those used in other studies
on named entity recognition. We omitted features
whose surface part listed in Table 1 occurred less
than twice in the training corpus.

We used CRF++ (ver. 0.44)7 as the basis of our
implementation. We implemented scaling, which
is similar to that for HMMs (see such as (Rabiner,
1989)), in the forward-backward phase of CRF train-
ing to deal with very long sequences due to sentence
concatenation.8

We used Gaussian regularization (Chen and
Rosenfeld, 2000) for CRF training to avoid overfit-
ting. The parameter of the Gaussian, σ2, was tuned
using the development set. We also tuned the margin
parameter, C, for the margin perceptron algorithm.9

The convergence of CRF training was determined by
checking the log-likelihood of the model. The con-
vergence of perceptron algorithms was determined
by checking the per-word labeling error, since the

6We used sentence concatenation even when only using lo-
cal features, since we found it does not degrade accuracy (rather
we observed a slight increase).

7http://chasen.org/˜taku/software/CRF++
8We also replaced the optimization module in the original

package with that used in the Amis maximum entropy estima-
tor (http://www-tsujii.is.s.u-tokyo.ac.jp/amis) since we encoun-
tered problems with the provided module in some cases.

9For the Gaussian parameter, we tested {13, 25, 50, 100,
200, 400, 800} (the accuracy did not change drastically among
these values and it seems that there is no accuracy hump even
if we use smaller values). We tested {500, 1000, 1414, 2000,
2828, 4000, 5657, 8000, 11313, 16000, 32000} for the margin
parameters.

Table 1: Local features used. The value of a node
feature is determined from the current label, y0, and
a surface feature determined only from x. The value
of an edge feature is determined by the previous la-
bel, y−1, the current label, y0, and a surface feature.
Used surface features are the word (w), the down-
cased word (wl), the POS tag (pos), the chunk tag
(chk), the prefix of the word of length n (pn), the
suffix (sn), the word form features: 2d - cp (these are
based on (Bikel et al., 1999)), and the gazetteer fea-
tures: go for ORG, gp for PER, and gm for MISC.
These represent the (longest) match with an entry in
the gazetteer by using IOB2 tags.

Node features:
{””, x−2, x−1, x0, x+1, x+2} × y0

x =, w, wl, pos, chk, p1, p2, p3, p4, s1, s2, s3,
s4, 2d, 4d, d&a, d&-, d&/, d&,, d&., n, ic, ac,
l, cp, go, gp, gm
Edge features:
{””, x−2, x−1, x0, x+1, x+2} × y−1 × y0

x =, w, wl, pos, chk, p1, p2, p3, p4, s1, s2, s3,
s4, 2d, 4d, d&a, d&-, d&/, d&,, d&., n, ic, ac,
l, cp, go, gp, gm
Bigram node features:
{x−2x−1, x−1x0, x0x+1} × y0

x = wl, pos, chk, go, gp, gm
Bigram edge features:
{x−2x−1, x−1x0, x0x+1} × y−1 × y0

x = wl, pos, chk, go, gp, gm

number of updates was not zero even after a large
number of iterations in practice. We stopped train-
ing when the relative change in these values became
less than a pre-defined threshold (0.0001) for at least
three iterations.

We used n = 20 (n of the n-best) for training
since we could not use too a large n because it would
have slowed down training. However, we could ex-
amine a larger n during testing, since the testing time
did not dominate the time for the experiment. We
found an interesting property for n in our prelimi-
nary experiment. We found that an even larger n in
testing (written as n′) achieved higher accuracy, al-
though it is natural to assume that the same n that
was used in training would also be appropriate for
testing. We thus used n′ = 100 to evaluate perfor-
mance during parameter tuning. After finding the
best C with n′ = 100, we varied n′ to investigate its
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Table 2: Summary of performance (F1).

Method dev test C (or σ2)
local features

CRF 91.10 86.26 100
Perceptron 89.01 84.03 -
Averaged perceptron 89.32 84.08 -
Margin perceptron 90.98 85.64 11313

+ non-local features
Candidate (n′ = 100) 90.71 84.90 4000
Proposed (n′ = 100) 91.95 86.30 5657

Table 3: Effect of n′.

Method dev test C
Proposed (n′ = 20) 91.76 86.19 5657
Proposed (n′ = 100) 91.95 86.30 5657
Proposed (n′ = 400) 92.13 86.39 5657
Proposed (n′ = 800) 92.09 86.39 5657
Proposed (n′ = 1600) 92.13 86.46 5657
Proposed (n′ = 6400) 92.19 86.38 5657

effects further.

6.2 Results

Table 2 compares the results. CRF outperformed
the perceptron by a large margin. Although the av-
eraged perceptron outperformed the perceptron, the
improvement was slight. However, the margin per-
ceptron greatly outperformed compared to the aver-
aged perceptron. Yet, CRF still had the best baseline
performance with only local features.

The proposed algorithm with non-local features
improved the performance on the test set by 0.66
points over that of the margin perceptron without
non-local features. The row “Candidate” refers to
the candidate algorithm (Algorithm 4.1). From the
results for the candidate algorithm, we can see that
the modification part, (B), in Algorithm 4.2 was es-
sential to make learning with non-local features ef-
fective.

We next examined the effect of n′. As can be
seen from Table 3, an n′ larger than that for train-
ing yields higher performance. The highest perfor-
mance with the proposed algorithm was achieved
when n′ = 6400, where the improvement due to
non-local features became 0.74 points.

The performance of the related work (Finkel et
al., 2005; Krishnan and Manning, 2006) is listed in
Table 4. We can see that the final performance of our
algorithm was worse than that of the related work.

We changed the experimental setting slightly
to investigate our algorithm further. Instead of

Table 4: The performance of the related work.

Method dev test
Finkel et al., 2005 (Finkel et al., 2005)

baseline CRF - 85.51
+ non-local features - 86.86
Krishnan and Manning, 2006 (Krishnan and Manning, 2006)
baseline CRF - 85.29
+ non-local features - 87.24

Table 5: Summary of performance with POS/chunk
tags by TagChunk.

Method dev test C (or σ2)
local features

CRF 91.39 86.30 200
Perceptron 89.36 84.35 -
Averaged perceptron 89.76 84.50 -
Margin perceptron 91.06 86.24 32000

+ non-local features
Proposed (n′ = 100) 92.23 87.04 5657
Proposed (n′ = 6400) 92.54 87.17 5657

the POS/chunk tags provided in the CoNLL 2003
dataset, we used the tags assigned by TagChunk
(Daumé III and Marcu, 2005)10 with the intention
of using more accurate tags. The results with this
setting are summarized in Table 5. Performance was
better than that in the previous experiment for all al-
gorithms. We think this was due to the quality of
the POS/chunk tags. It is interesting that the ef-
fect of non-local features rose to 0.93 points with
n′ = 6400, even though the baseline performance
was also improved. The resulting performance of
the proposed algorithm with non-local features is
higher than that of Finkel et al. (2005) and compara-
ble with that of Krishnan and Manning (2006). This
comparison, of course, is not fair because the setting
was different. However, we think the results demon-
strate a potential of our new algorithm.

The effect of BPM initialization was also exam-
ined. The number of BPM runs was 10 in this
experiment. The performance of the proposed al-
gorithm dropped from 91.95/86.30 to 91.89/86.03
without BPM initialization as expected in the set-
ting of the experiment of Table 2. The perfor-
mance of the margin perceptron, on the other hand,
changed from 90.98/85.64 to 90.98/85.90 without
BPM initialization. This result was unexpected from
the result of our preliminary experiment. However,
the performance was changed from 91.06/86.24 to

10http://www.cs.utah.edu/˜hal/TagChunk/
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Table 6: Comparison with re-ranking approach.
Method dev test C

local features
Margin Perceptron 91.06 86.24 32000

+ non-local features
Re-ranking 1 (n′ = 100) 91.62 86.57 4000
Re-ranking 1 (n′ = 80) 91.71 86.58 4000
Re-ranking 2 (n′ = 100) 92.08 86.86 16000
Re-ranking 2 (n′ = 800) 92.26 86.95 16000
Proposed (n′ = 100) 92.23 87.04 5657
Proposed (n′ = 6400) 92.54 87.17 5657

Table 7: Comparison of training time (C = 5657).
Method dev test time (sec.)

local features
Margin Perceptron 91.04 86.28 15,977

+ non-local features
Re-ranking 1 (n′ = 100) 91.48 86.53 86,742
Re-ranking 2 (n′ = 100) 92.02 86.85 112,138
Proposed (n′ = 100) 92.23 87.04 28,880

91.17/86.08 (i.e., dropped for the evaluation set as
expected), in the setting of the experiment of Table
5. Since the effect of BPM initialization is not con-
clusive only from these results, we need more exper-
iments on this.

6.3 Comparison with re-ranking approach
Finally, we compared our algorithm with the re-
ranking approach (Collins and Duffy, 2002; Collins,
2002b), where we first generate the n-best candi-
dates using a model with only local features (the
first model) and then re-rank the candidates using
a model with non-local features (the second model).

We implemented two re-ranking models, “re-
ranking 1” and “re-ranking 2”. These models dif-
fer in how to incorporate the local information in the
second model. “re-ranking 1” uses the score of the
first model as a feature in addition to the non-local
features as in Collins (2002b). “re-ranking 2” uses
the same local features as the first model11 in addi-
tion to the non-local features. The first models were
trained using the margin perceptron algorithm in Al-
gorithm 3.1. The second models were trained using
the algorithm, which is obtained by replacing {yn}
with the n-best candidates by the first model. The
first model used to generate n-best candidates for the
development set and the test set was trained using
the whole training data. However, CRFs or percep-
trons generally have nearly zero error on the train-
ing data, although the first model should mis-label

11The weights were re-trained for the second model.

to some extent to make the training of the second
model meaningful. To avoid this problem, we adopt
cross-validation training as used in Collins (2002b).
We split the training data into 5 sets. We then trained
five first models using 4/5 of the data, each of which
was used to generate n-best candidates for the re-
maining 1/5 of the data.

As in the previous experiments, we tuned C using
the development set with n′ = 100 and then tested
other values for n′. Table 6 shows the results. As can
be seen, re-ranking models were outperformed by
our proposed algorithm, although they also outper-
formed the margin perceptron with only local fea-
tures (“re-ranking 2” seems better than “re-ranking
1”). Table 7 shows the training time of each algo-
rithm.12 Our algorithm is much faster than the re-
ranking approach that uses cross-validation training,
while achieving the same or higher level of perfor-
mance.

7 Discussion

As we mentioned, there are some algorithms simi-
lar to ours (Collins and Roark, 2004; Daumé III and
Marcu, 2005; McDonald and Pereira, 2006; Liang
et al., 2006). The differences of our algorithm from
these algorithms are as follows.

Daumé III and Marcu (2005) presented the
method called LaSO (Learning as Search Optimiza-
tion), in which intractable exact inference is approx-
imated by optimizing the behavior of the search pro-
cess. The method can access non-local features
at each search point, if their values can be deter-
mined from the search decisions already made. They
provided robust training algorithms with guaranteed
convergence for this framework. However, a differ-
ence is that our method can use non-local features
whose value depends on all labels throughout train-
ing, and it is unclear whether the features whose val-
ues can only be determined at the end of the search
(e.g., majority features) can be learned effectively
with such an incremental manner of LaSO.

The algorithm proposed by McDonald and
Pereira (2006) is also similar to ours. Their tar-
get was non-projective dependency parsing, where
exact inference is intractable. Instead of using

12Training time was measured on a machine with 2.33 GHz
QuadCore Intel Xeons and 8 GB of memory. C was fixed to
5657.
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n-best/re-scoring approach as ours, their method
modifies the single best projective parse, which
can be found efficiently, to find a candidate with
higher score under non-local features. Liang et al.
(2006) used n candidates of a beam search in the
Collins’ perceptron algorithm for machine transla-
tion. Collins and Roark (2004) proposed an approxi-
mate incremental method for parsing. Their method
can be used for sequence labeling as well. These
studies, however, did not explain the validity of their
updating methods in terms of convergence.

To achieve robust training, Daumé III and Marcu
(2005) employed the averaged perceptron (Collins,
2002a) and ALMA (Gentile, 2001). Collins and
Roark (2004) used the averaged perceptron (Collins,
2002a). McDonald and Pereira (2006) used MIRA
(Crammer et al., 2006). On the other hand, we em-
ployed the margin perceptron (Krauth and Mézard,
1987), extending it to sequence labeling. We demon-
strated that this greatly improved robustness.

With regard to the local update, (B), in Algo-
rithm 4.2, “early updates” (Collins and Roark, 2004)
and “y-good” requirement in (Daumé III and Marcu,
2005) resemble our local update in that they tried to
avoid the situation where the correct answer cannot
be output. Considering such commonality, the way
of combining the local update and the non-local up-
date might be one important key for further improve-
ment.

It is still open whether these differences are ad-
vantages or disadvantages. However, we think our
algorithm can be a contribution to the study for in-
corporating non-local features. The convergence
guarantee is important for the confidence in the
training results, although it does not mean high per-
formance directly. Our algorithm could at least im-
prove the accuracy of NER with non-local features
and it was indicated that our algorithm was supe-
rior to the re-ranking approach in terms of accu-
racy and training cost. However, the achieved accu-
racy was not better than that of related work (Finkel
et al., 2005; Krishnan and Manning, 2006) based
on CRFs. Although this might indicate the limita-
tion of perceptron-based methods, it has also been
shown that there is still room for improvement in
perceptron-based algorithms as our margin percep-
tron algorithm demonstrated.

8 Conclusion

In this paper, we presented a new perceptron algo-
rithm for learning with non-local features. We think
the proposed algorithm is an important step towards
achieving our final objective. We would like to in-
vestigate various types of new non-local features us-
ing the proposed algorithm in future work.

Appendix A: Convergence of Algorithm 4.2

Let αk be a weight vector before the kth update and
ϵk be a variable that takes 1 when the kth update is
done in (A) and 0 when done in (B). The update rule
can then be written as αk+1 = αk + ϵk(Φa∗−Φa +
(1− ϵk)(Φl∗ − Φl).13 First, we obtain

αk+1 ·U l = αk ·U l + ϵk(Φa∗ ·U l − Φa ·U l)
+(1− ϵk)(Φl∗ ·U l − Φl ·U l)

≥ αk ·U l + ϵkδ + (1− ϵk)δ
= αk ·U l + δ ≥ α1 ·U l + kδ = kδ

Therefore, (kδ)2 ≤ (αk+1 · U l)2 ≤
(||αk+1||||U l||)2 = ||αk+1||2 — (1). On the
other hand, we also obtain

||αk+1||2 ≤ ||αk||2 + 2ϵkα
k(Φa∗ − Φa)

+2(1− ϵk)αk(Φl∗ − Φl)
+{ϵk(Φa∗ − Φa) + (1− ϵk)(Φl∗ − Φl)}2

≤ ||αk||2 + 2C + R2

≤ ||α1||2 + k(R2 + 2C) = k(R2 + 2C)— (2)

We used αk(Φa∗ − Φa) ≤ Ca, αk(Φl∗ − Φl) ≤
C l and C l = Ca = C to derive 2C in the second
inequality. We used ||Φl∗−Φl|| ≤ ||Φa∗−Φa|| ≤ R
to derive R2.

Combining (1) and (2), we obtain k ≤ (R2 +
2C)/δ2. Substituting this into (2) gives ||αk|| ≤
(R2+2C)/δ. Since y∗ = y′ and Φa∗ ·α−Φa′′ ·α >
C after convergence, we obtain

γ′(α) = min
xi

Φa∗ ·α− Φa′′ ·α
||α||

≥ Cδ/(2C + R2).

13We use the shorthand Φa∗ = Φa(xi, y
∗
i ), Φa =

Φa(xi, y), Φl∗ = Φl(xi, y
∗
i ), and Φl = Φl(xi, y) where y

represents the candidate used to update (y′ , y′′ , y1, or y2).
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Abstract 

In this paper, we address a unique problem 

in Chinese language processing and report 

on our study on extending a Chinese the-

saurus with region-specific words, mostly 

from the financial domain, from various 

Chinese speech communities.  With the 

larger goal of automatically constructing a 

Pan-Chinese lexical resource, this work 

aims at taking an existing semantic classi-

ficatory structure as leverage and incorpo-

rating new words into it.  In particular, it is 

important to see if the classification could 

accommodate new words from heterogene-

ous data sources, and whether simple simi-

larity measures and clustering methods 

could cope with such variation.  We use the 

cosine function for similarity and test it on 

automatically classifying 120 target words 

from four regions, using different datasets 

for the extraction of feature vectors.  The 

automatic classification results were evalu-

ated against human judgement, and the per-

formance was encouraging, with accuracy 

reaching over 85% in some cases.  Thus 

while human judgement is not straightfor-

ward and it is difficult to create a Pan-

Chinese lexicon manually, it is observed 

that combining simple clustering methods 

with the appropriate data sources appears 

to be a promising approach toward its 

automatic construction. 

1 Introduction 

Large-scale semantic lexicons are important re-

sources for many natural language processing 

(NLP) tasks.  For a significant world language 

such as Chinese, it is especially critical to capture 

the substantial regional variation as an important 

part of the lexical knowledge, which will be useful 

for many NLP applications, including natural lan-

guage understanding, information retrieval, and 

machine translation.  Existing Chinese lexical re-

sources, however, are often based on language use 

in one particular region and thus lack the desired 

comprehensiveness. 

Toward this end, Tsou and Kwong (2006) pro-

posed a comprehensive Pan-Chinese lexical re-

source, based on a large and unique synchronous 

Chinese corpus as an authentic source for lexical 

acquisition and analysis across various Chinese 

speech communities.  To allow maximum versatil-

ity and portability, it is expected to document the 

core and universal substances of the language on 

the one hand, and also the more subtle variations 

found in different communities on the other.  Dif-

ferent Chinese speech communities might share 

lexical items in the same form but with different 

meanings.  For instance, the word 居屋 refers to 

general housing in Mainland China but specifically 

to housing under the Home Ownership Scheme in 

Hong Kong; and while the word 住房 is similar to 

居屋 to mean general housing in Mainland China, 

it is rarely seen in the Hong Kong context. 

Hence, the current study aims at taking an exist-

ing Chinese thesaurus, namely the Tongyici Cilin 

同義詞詞林 , as leverage and extending it with 

lexical items specific to individual Chinese speech 

communities.  In particular, the feasibility depends 

on the following issues:  (1) Can lexical items from 

various Chinese speech communities, that is, from 

such heterogeneous sources, be classified as effec-

tively with methods shown to work for clustering 
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closely related words from presumably the same, 

or homogenous, source?  (2) Could existing se-

mantic classificatory structures accommodate con-

cepts and expressions specific to individual Chi-

nese speech communities? 

Measuring similarity will make sense only if the 

feature vectors of the two words under comparison 

are directly comparable.  There is usually no prob-

lem if both words and their contextual features are 

from the same data source.  Since Tongyici Cilin 

(or simply Cilin hereafter) is based on the vocabu-

lary used in Mainland China, it is not clear how 

often these words will be found in data from other 

places, and even if they are found, how well the 

feature vectors extracted could reflect the expected 

usage or sense.  Our hypothesis is that it will be 

more effective to classify new words from 

Mainland China with respect to Cilin categories, 

than to do the same on new words from regions 

outside Mainland China.  Furthermore, if this hy-

pothesis holds, one would need to consider sepa-

rate mechanisms to cluster heterogeneous region-

specific words in the Pan-Chinese context. 

Thus in the current study we sampled 30 target 

words specific to each of Beijing, Hong Kong, 

Singapore, and Taipei, from the financial domain; 

and used the cosine similarity function to classify 

them into one or more of the semantic categories in 

Cilin.  The automatic classification results were 

compared with a simple baseline method, against 

human judgement as the gold standard.  In general, 

an accuracy of up to 85% could be reached with 

the top 15 candidates considered.  It turns out that 

our hypothesis is supported by the Taipei test data, 

whereas the data heterogeneity effect is less obvi-

ous in Hong Kong and Singapore test data, though 

the effect on individual test items varies. 

In Section 2, we will briefly review related work 

and highlight the innovations of the current study.  

In Sections 3 and 4, we will describe the materials 

used and the experimental setup respectively.  Re-

sults will be presented and discussed with future 

directions in Section 5, followed by a conclusion in 

Section 6. 

2 Related Work 

To build a semantic lexicon, one has to identify the 

relation between words within a semantic 

hierarchy, and to group similar words together into 

a class.  Previous work on automatic methods for 

building semantic lexicons could be divided into 

two main groups.  One is automatic thesaurus 

acquisition, that is, to identify synonyms or 

topically related words from corpora based on 

various measures of similarity (e.g. Riloff and 

Shepherd, 1997; Thelen and Riloff, 2002).  For 

instance, Lin (1998) used dependency relation as 

word features to compute word similarities from 

large corpora, and compared the thesaurus created 

in such a way with WordNet and Roget classes.  

Caraballo (1999) selected head nouns from 

conjunctions and appositives in noun phrases, and 

used the cosine similarity measure with a bottom-

up clustering technique to construct a noun 

hierarchy from text.  Curran and Moens (2002) 

explored a new similarity measure for automatic 

thesaurus extraction which better compromises 

with the speed/performance tradeoff.  You and 

Chen (2006) used a feature clustering method to 

create a thesaurus from a Chinese newspaper 

corpus. 

Another line of research, which is more closely 

related with the current study, is to extend existing 

thesauri by classifying new words with respect to 

their given structures (e.g. Tokunaga et al., 1997; 

Pekar, 2004).  An early effort along this line is 

Hearst (1992), who attempted to identify hypo-

nyms from large text corpora, based on a set of 

lexico-syntactic patterns, to augment and critique 

the content of WordNet.  Ciaramita (2002) com-

pared several models in classifying nouns with re-

spect to a simplified version of WordNet and signi-

fied the gain in performance with morphological 

features.  For Chinese, Tseng (2003) proposed a 

method based on morphological similarity to as-

sign a Cilin category to unknown words from the 

Sinica corpus which were not in the Chinese Elec-

tronic Dictionary and Cilin; but somehow the test 

data were taken from Cilin, and therefore could not 

really demonstrate the effectiveness with unknown 

words found in the Sinica corpus. 

The current work attempts to classify new words 

with an existing thesaural classificatory structure.  

However, the usual practice in past studies is to 

test with a portion of data from the thesaurus itself 

and evaluate the results against the original classi-

fication of those words.  This study is thus differ-

ent in the following ways: (1) The test data (i.e. the 

target words to be classified) were not taken from 

the thesaurus, but extracted from corpora and these 

words were unknown to the thesaurus.  (2) The 

326



target words were not limited to nouns.  (3) Auto-

matic classification results were compared with a 

baseline method and with the manual judgement of 

several linguistics students constituting the gold 

standard.  (4) In view of the heterogeneous nature 

of the Pan-Chinese context, we experimented with 

extracting feature vectors from different datasets. 

3 Materials 

3.1 The Tongyici Cilin 

The Tongyici Cilin (同義詞詞林) (Mei et al., 1984) 

is a Chinese synonym dictionary, or more often 

known as a Chinese thesaurus in the tradition of 

the Roget’s Thesaurus for English.  The Roget’s 

Thesaurus has about 1,000 numbered semantic 

heads, more generally grouped under higher level 

semantic classes and subclasses, and more 

specifically differentiated into paragraphs and 

semicolon-separated word groups.  Similarly, some 

70,000 Chinese lexical items are organized into a 

hierarchy of broad conceptual categories in Cilin.  

Its classification consists of 12 top-level semantic 

classes, 94 subclasses, 1,428 semantic heads and 

3,925 paragraphs.  It was first published in the 

1980s and was based on lexical usages mostly of 

post-1949 Mainland China.  The Appendix shows 

some example subclasses.  In the following 

discussion, we will mainly refer to the subclass 

level and semantic head level. 

3.2 The LIVAC Synchronous Corpus 

LIVAC (http://www.livac.org) stands for Linguis-

tic Variation in Chinese Speech Communities.  It is 

a synchronous corpus developed and dynamically 

maintained by the Language Information Sciences 

Research Centre of the City University of Hong 

Kong since 1995 (Tsou and Lai, 2003).  The cor-

pus consists of newspaper articles collected regu-

larly and synchronously from six Chinese speech 

communities, namely Hong Kong, Beijing, Taipei, 

Singapore, Shanghai, and Macau.  Texts collected 

cover a variety of domains, including front page 

news stories, local news, international news, edito-

rials, sports news, entertainment news, and finan-

cial news.  Up to December 2006, the corpus has 

already accumulated over 200 million character 

tokens which, upon automatic word segmentation 

and manual verification, amount to over 1.2 mil-

lion word types. 

For the present study, we made use of the sub-

corpora collected over the 9-year period 1995-2004 

from Beijing (BJ), Hong Kong (HK), Singapore 

(SG), and Taipei (TW).  In particular, we made use 

of the financial news sections in these subcorpora, 

from which we extracted feature vectors for com-

paring similarity between a given target word and a 

thesaurus class, which is further explained in Sec-

tion 4.3.  Table 1 shows the sizes of the subcorpora. 

3.3 Test Data 

Instead of using a portion of Cilin as the test data, 

we extracted unique lexical items from the various 

subcorpora above, and classified them with respect 

to the Cilin classification. 

Kwong and Tsou (2006) observed that among 

the unique lexical items found from the individual 

subcorpora, only about 30-40% are covered by 

Cilin, but not necessarily in the expected senses.  

In other words, Cilin could in fact be enriched with 

over 60% of the unique items from various regions. 

In the current study, we sampled the most fre-

quent 30 words from each of these unique item 

lists for testing.  Classification was based on their 

similarity with each of the Cilin subclasses, com-

pared by the cosine measure, as discussed in Sec-

tion 4.3. 

 

 

Subcorpus Size of Financial News Sections 

(rounded to nearest 1K) 

 Word Token Word Type 

BJ 232K 20K 

HK 970K 38K 

SG 621K 28K 

TW 254K 22K 

Table 1  Sizes of Individual Subcorpora 

 

4 Experiments 

4.1 Human Judgement 

Three undergraduate linguistics students and one 

research student on computational linguistics from 

the City University of Hong Kong were asked to 

do the task.  The undergraduate students were 

raised in Hong Kong and the research student in 

Mainland China.  They were asked to assign what 

they consider the most appropriate Cilin category 

(up to the semantic head level, i.e. third level in the 
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Cilin structure) to each of the 120 target words.  

The inter-annotator agreement was measured by 

the Kappa statistic (Siegel and Castellan, 1988), at 

both the subclass and semantic head levels.  Re-

sults on the human judgement are discussed in Sec-

tion 5.1. 

4.2 Creating Gold Standard 

The “gold standard” was set at both the subclass 

level and semantic head level.  For each level, we 

formed a “strict” standard for which we considered 

all categories assigned by at least two judges to a 

word; and a “loose” standard for which we consid-

ered all categories assigned by one or more judges.  

For evaluating the automatic classification in this 

study, however, we only experimented with the 

loose standard at the subclass level. 

4.3 Automatic Classification 

Each target word was automatically classified with 

respect to the Cilin subclasses based on the similar-

ity between the target word and each subclass. 

We compute the similarity by the cosine be-

tween the two corresponding feature vectors.  The 

feature vector of a given target word contains all 

its co-occurring content words in the corpus within 

a window of ±5 words (excluding many general 

adjectives and adverbs, and numbers and proper 

names were all ignored).  The feature vector of a 

Cilin subclass is based on the union of the features 

(i.e. co-occurring words in the corpus) from all 

individual members in the subclass. 

The cosine of two feature vectors is computed as 

 

wv

wv
wv vv

vv
vv ⋅
=),cos(  

 

In view of the difference in the feature space of a 

target word and a whole class of words, and thus 

the potential difference in the number of occur-

rence of individual features, we experimented with 

two versions of the cosine measurement, namely 

binary vectors and real-valued vectors. 

In addition, as mentioned in previous sections, 

we also experimented with the following condi-

tions: whether feature vectors for the Cilin sub-

classes were extracted from the subcorpus where a 

given target word originates, or from the Beijing 

subcorpus which is assumed to be representative of 

language use in Mainland China.  All automatic 

classification results were evaluated against the 

gold standard based on human judgement. 

4.4 Baseline 

To evaluate the effectiveness of the automatic clas-

sification, we adopted a simple baseline measure 

by ranking the 94 subclasses in descending order 

of the number of words they cover.  In other words, 

assuming the bigger the subclass size, the more 

likely it covers a new term, thus we compared the 

top-ranking subclasses with the classifications ob-

tained from the automatic method using the cosine 

measure. 

5 Results and Discussion 

5.1 Response from Human Judges 

All human judges reported difficulties in various 

degrees in assigning Cilin categories to the target 

words.  The major problem comes from the re-

gional specificity and thus the unfamiliarity of the 

judges with the respective lexical items and con-

texts.  For instance, students grown up in Hong 

Kong were most familiar with the Hong Kong data, 

and slightly less so with the Beijing data, but more 

often had the least ideas for the Taipei and Singa-

pore data.  The research student from Mainland 

China had no problem with Beijing data and the 

lexical items in Cilin, but had a hard time figuring 

out the meaning for words from Hong Kong, 

Taipei and Singapore.  For example, all judges re-

ported problem with the term 自撮, one of the tar-

get words from Singapore referring to 自撮股市 

(CLOB in the Singaporean stock market), which is 

really specific to Singapore. 

The demand on cross-cultural knowledge thus 

poses a challenge for building a Pan-Chinese 

lexical resource manually.  Cilin, for instance, is 

quite biased in language use in Mainland China, 

and it requires experts with knowledge of a wide 

variety of Chinese terms to be able to manually 

classify lexical items specific to other Chinese 

speech communities.  It is therefore even more 

important to devise robust ways for automatic 

acquisition of such a resource. 

Notwithstanding the difficulty, the inter-

annotator agreement was quite satisfactory.  At the 

subclass level, we found K=0.6870.  At the seman-

tic head level, we found K=0.5971.  Both figures 

are statistically significant. 
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5.2 Gold Standard 

As mentioned, we set up a loose standard and a 

strict standard at both the subclass and semantic 

head level.  In general, the judges managed to 

reach some consensus in all cases, except for two 

words from Singapore.  For these two cases, we 

considered all categories assigned by any of the 

judges for both standards. 

The gold standards were verified by the authors.  

Although in several cases the judges did not reach 

complete agreement with one another, we found 

that their decisions reflected various possible per-

spectives to classify a given word with respect to 

the Cilin classification; and the judges’ assign-

ments, albeit varied, were nevertheless reasonable 

in one way or another. 

5.3 Evaluating Automatic Classification 

In the following discussion, we will refer to the 

various testing conditions for each group of target 

words with labels in the form of Cos-<Vector 

Type>-<Target Words>-<Cilin Feature Source>.  

Thus the label Cos-Bin-hk-hk means testing on 

Hong Kong target words with binary vectors and 

extracting features for the Cilin words from the 

Hong Kong subcorpus; and the label Cos-RV-sg-bj 

means testing on Singapore target words with real-

valued vectors and extracting features for the Cilin 

words from the Beijing subcorpus.  For each target 

word, we evaluated the automatic classification 

(and the baseline ranking) by matching the human 

decisions with the top N candidates.  If any of the 

categories suggested by the human judges is cov-

ered, the automatic classification is considered ac-

curate.  The results are shown in Figure 1 for test 

data from individual regions. 

Overall speaking, the results are very encourag-

ing, especially in view of the number of categories 

(over 90) we have at the subclass level.  An accu-

racy of 80% or more is obtained in general if the 

top 15 candidates were considered, which is much 

higher than the baseline result in all cases.  Table 2 

shows some examples with appropriate classifica-

tion within the Top 3 candidates.  The two-letter 

codes in the “Top 3” column in Table 2 refer to the 

subclass labels, and the code in bold is the one 

matching human judgement. 

In terms of the difference between binary vec-

tors and real-valued vectors in the similarity meas-

urement, the latter almost always gave better re-

sults.  This was not surprising as we expected by 

using real-valued vectors we could be less affected 

by the potential huge difference in the feature 

space and the number of occurrence of the features 

for a Cilin subclass and a target word. 

As for extracting features for Cilin subclasses 

from the Beijing subcorpus or other subcorpora, 

the difference is more obvious for the Singapore 

and Taipei target words.  We will discuss the re-

sults for each group of target words in detail below. 

5.4  Performance on Individual Sources 

Target words from Beijing were expected to have a 

relatively higher accuracy because they are ho-

mogenous with the Cilin content.  It turned out, 

however, the accuracy only reached 73% with top 

15 candidates and 83% with top 20 candidates 

even under the Cos-RV-bj-bj condition.  Words 

like 非典 (SARS), 節水 (save water), 產業化 (in-

dustrialize / industrialization), 合格率 (passing rate) 

and 傳銷 (multi-level marketing) could not be suc-

cessfully classified. 

Results were surprisingly good for target words 

from the Hong Kong subcorpus.  Under the Cos-

RV-hk-hk condition, the accuracy was 87% with 

top 15 candidates and even over 95% with top 20 

candidates considered.  Apart from this high accu-

racy, another unexpected observation is the lack of 

significant difference between Cos-RV-hk-hk and 

Cos-RV-hk-bj.  One possible reason is that the 

relatively larger size of the Hong Kong subcorpus 

might have allowed enough features to be ex-

tracted even for the Cilin words.  Nevertheless, the 

similar results from the two conditions might also 

suggest that the context in which Cilin words are 

used might be relatively similar in the Hong Kong 

subcorpus and the Beijing subcorpus, as compared 

with other communities.  

Similar trends were observed from the Singa-

pore target words.  Looking at Cos-RV-sg-sg and 

Cos-RV-sg-bj, it appears that extracting feature 

vectors for the Cilin words from the Singapore 

subcorpus leads to better performance than extract-

ing them from the Beijing subcorpus.  It suggests 

that although the Singapore subcorpus shares those 

words in Cilin, the context in which they are used 

might be slightly different from their use in 

Mainland China.  Thus extracting their contextual 

features from the Singapore subcorpus might better 

reflect their usage and makes it more comparable 
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with the unique target words from Singapore.  

Such possible difference in contextual features 

with shared lexical items between different Chi-

nese speech communities would require further 

investigation, and will form part of our future work 

as discussed below.  Despite the above observation 

from the accuracy figures, the actual effect, how-

ever, seems to vary on individual lexical items.  

Table 3 shows some examples of target words 

which received similar (with white cells) and very 

different (with shaded cells) classification respec-

tively under the two conditions.  It appears that the 

region-specific but common concepts like 寫字樓 

(office), 組 屋  (apartment), 私 宅  (private resi-

dence), which relate to building or housing, were 

affected most. 

Taipei data, on the contrary, seems to be more 

affected by the different testing conditions.  Cos-

Bin-tw-bj and Cos-RV-tw-bj produced similar re-

sults, and both conditions showed better results 

than Cos-RV-tw-tw.  This supports our hypothesis 

that the effect of data heterogeneity is so apparent 

that it is much harder to classify target words 

unique to Taipei with respect to the Cilin catego-

ries.  In addition, as Kwong and Tsou (2006) ob-

served, Beijing and Taipei data share the least 

number of lexical items, among the four regions 

under investigation.  Hence, words in Cilin might 

not have the appropriate contextual feature vectors 

extracted from the Taipei subcorpus. 

The different results for individual regions 

might be partly due to the endocentric and exocen-

tric nature of influence in lexical innovation (e.g. 

Tsou, 2001) especially with respect to the financial 

domain and the history of capitalism in individual 

regions.  This factor is worth further investigation. 

 

 

 
Figure 1  Classification Results with Top N Candidates 
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No. Region Word Top 3 

1 BJ 退耕還林 Di  Gb  Df 

2 BJ 面料 Bq  Ae  Hd 

3 BJ 煤礦 Bm  Hi  Hd 

4 BJ 抓好 Hj  Di  Hd 

5 BJ 下崗 Aa  If  Ae 

6 HK 銷情 Da  Cb  Bi 

7 HK 寬頻 Bb  Jc  Hi 

8 HK 紅籌 Dj  Da  Hi 

9 HK 息率 Bi  Dj  Dn 

10 HK 地產股 Bi  Dj  Gb 

11 SG 財年 Ca  Dm  Hi 

12 SG 賣空 Ig  He  Dj 

13 SG 獻議 Dm  Dj  Hi 

14 SG 脫售 Dm  Dj  He 

15 SG 准將 Hi  Hg  Af 

16 TW 金控 Dm  Hd  Hi 

17 TW 個股 Jb  Dn  Dj 

18 TW 房市 Ja  Ca  He 

19 TW 現金卡 Hf  Dj  Dm 

20 TW 存底 Dj  Ed  Ca 

Table 2  Examples of Correct Classification (Top 3)
1
 

  

5.5 General Discussions and Future Work 

As mentioned in a previous section, the test data in 

this study were not taken from the thesaurus itself, 

but were unknown words to the thesaurus.  They 

were extracted from corpora, and were not limited 

to nouns.  We found in this study that the simple 

cosine measure, which used to be applied for clus-

tering contextually similar words from homoge-

nous sources, performs quite well in general for 

classifying these unseen words with respect to the 

Cilin subclasses.  The automatic classification re-

sults were compared with the manual judgement of 

several linguistics students.  In addition to provid-

ing a gold standard for evaluating the automatic 

classification results in this study, the human 

                                                 
1
 English gloss: 1-restoring agricultural lands for affore-

station, 2-material, 3-coal mine, 4-to seize (an opportu-

nity), 5-unemployed, 6-sales performance, 7-broadband, 

8-red chip, 9-interest rate, 10-property stocks, 11-

financial year, 12-sell short, 13-proposal, 14-sell, 15-

brigadier general, 16-financial holdings, 17-individual 

stocks, 18-property market, 19-cash card, 20-stub. 

judgement on the one hand proves that the Cilin 

classificatory structure could accommodate region-

specific lexical items; but on the other hand also 

suggests how difficult it would be to construct such 

a Pan-Chinese lexicon manually as rich cultural 

and linguistic knowledge would be required.  

Moreover, we started with Cilin as the established 

semantic classification and attempted to classify 

words specific to Beijing, Hong Kong, Singapore, 

and Taipei respectively.  The heterogeneity of 

sources did not seem to hamper the similarity 

measure on the whole, provided appropriate data-

sets are used for feature extraction, although the 

actual effect seemed to vary on individual lexical 

items. 

 
No. Source Word Ranking of 

1st appropriate class 

   Cos-RV-hk-hk, 

etc. 

Cos-RV-hk-bj, 

etc. 

1 HK 銷情 1 1 

2 HK 寬頻 1 1 

3 HK 紅籌 1 1 

4 HK 加推 2 10 

5 HK 低位 19 5 

6 HK 寫字樓 13 30 

7 SG 財政年 2 2 

8 SG 賣空 2 1 

9 SG 附加股 5 4 

10 SG 組屋 1 12 

11 SG 容積率 1 9 

12 SG 私宅 8 26 

13 TW 存底 1 1 

14 TW 個股 4 3 

15 TW 金控 5 1 

16 TW 投信 18 4 

17 TW 成長率 12 5 

18 TW 現金卡 8 2 

Table 3  Different Impact on Individual Items
2
 

 

Despite the encouraging results with the top 15 

candidates in the current study, it is desirable to 

improve the accuracy for the system to be useful in 

                                                 
2
 English gloss: 1-sales performance, 2-broadband, 3-

red chip, 4-add (supply to market), 5-low level, 6-office, 

7-financial year, 8-sell short, 9-rights issue, 10-

apartment, 11-holding space rate, 12-private residence, 

13-stub, 14-individual stocks, 15-financial holdings, 16-

investment trust, 17-growth rate, 18-cash card. 

331



practice.  Hence our next step is to expand the test 

data size and to explore alternative methods such 

as using a nearest neighbour approach.  In addition, 

we plan to further the investigation in the follow-

ing directions.  First, we will experiment with the 

automatic classification at the Cilin semantic head 

level, which is much more fine-grained than the 

subclasses.  The fine-grainedness might make the 

task more difficult, but at the same time the more 

specialized grouping might pose less ambiguity for 

classification.  Second, we will further experiment 

with classifying words from other special domains 

like sports, as well as the general domain.  Third, 

we will study the classification in terms of the part-

of-speech of the target words, and their respective 

requirements on the kinds of features which give 

best classification performance. 

The current study only dealt with presumably 

Modern Standard Chinese in different communities, 

and it could potentially be expanded to handle 

various dialects within a common resource, even-

tually benefiting speech lexicons and applications 

at large. 

6 Conclusion 

In this paper, we have reported our study on a 

unique problem in Chinese language processing, 

namely extending a Chinese thesaurus with new 

words from various Chinese speech communities, 

including Beijing, Hong Kong, Singapore and 

Taipei.  The critical issues include whether the ex-

isting classificatory structure could accommodate 

concepts and expressions specific to various Chi-

nese speech communities, and whether the differ-

ence in textual sources might pose difficulty in us-

ing conventional similarity measures for the auto-

matic classification.  Our experiments, using the 

cosine function to measure similarity and testing 

with various sources for extracting contextual vec-

tors, suggest that the classification performance 

might depend on the compatibility between the 

words in the thesaurus and the sources from which 

the target words are drawn.  Evaluated against hu-

man judgement, an accuracy of over 85% was 

reached in some cases, which were much higher 

than the baseline and were very encouraging in 

general.  While human judgement is not straight-

forward and it is difficult to create a Pan-Chinese 

lexicon manually, combining simple classification 

methods with the appropriate data sources seems to 

be a promising approach toward its automatic 

construction. 
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Appendix 

The following table shows some examples of the 

Cilin subclasses: 

 

Class Subclasses 
A 人 (Human) Aa … Ae 職業 (Occupation)  Af

身份 (Identity) … An 

B 物 (Things) Ba … Bb 擬狀物 (Shape) … Bi 動

物 (Animal)… Bm 材料 (Mate-

rial)…Bq 衣物 (Clothing) … Br 
C 時間與空間 

(Time and Space) 

Ca 時間 (Time)  Cb 空間 (Space) 

D 抽象事物 

(Abstract entities) 

Da 事情 情況 (Condition) … Df 

意識 (Ideology) … Di 社會 政法 

(Society) Dj 經濟 (Economics) … 

Dm 機構 (Organization) Dn 數量 

單位 (Quantity) 

E 特徵 

(Characteristics) 

Ea … Ed 性質 (Property)… Ef 

F 動作 (Action) Fa … Fd 

G 心理活動 

(Psychological 

activities) 

Ga … Gb 心理活動 (Psychologi-

cal activities)… Gc 

H 活動 

(Activities) 

Ha … He 經濟活動 (Economic 

activities) … Hd 生產 (Produc-

tion) … Hf 交通運輸 (Transporta-

tion) Hg 教衛科研 (Scientific re-

search)… Hi 社交 (Social contact) 

Hj 生活 (Livelihood) 

I 現象與狀態 

(Phenomenon and 

state) 

Ia … If 境遇 (Circumstance)  Ig 始

末 (Process)… Ih 

J 關聯 

(Association) 

Ja 聯繫 (Liaison)  Jb 異同 (Simi-

larity and Difference) Jc 配合 

(Matching) … Je 

K 助語 

(Auxiliary words) 

Ka … Kf 

L 敬語 

(Respectful ex-

pressions) 
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Abstract 

Product reviews posted at online shopping 

sites vary greatly in quality. This paper ad-

dresses the problem of detecting low-

quality product reviews. Three types of bi-

ases in the existing evaluation standard of 

product reviews are discovered. To assess 

the quality of product reviews, a set of spe-

cifications for judging the quality of re-

views is first defined. A classification-

based approach is proposed to detect the 

low-quality reviews. We apply the pro-

posed approach to enhance opinion sum-

marization in a two-stage framework. Ex-

perimental results show that the proposed 

approach effectively (1) discriminates low-

quality reviews from high-quality ones and 

(2) enhances the task of opinion summari-

zation by detecting and filtering low-

quality reviews. 

1 Introduction 

In the past few years, there has been an increasing 

interest in mining opinions from product reviews 

(Pang, et al, 2002; Liu, et al, 2004; Popescu and 

Etzioni, 2005). However, due to the lack of 

editorial and quality control, reviews on products 

vary greatly in quality. Thus, it is crucial to have a 

mechanism capable of assessing the quality of 

reviews and detecting low-quality/noisy reviews.  

Some shopping sites already provide a function 

of assessing the quality of reviews. For example, 

Amazon
1
 allows users to vote for the helpfulness 

of each review and then ranks the reviews based on 

the accumulated votes. However, according to our 

survey in Section 3, users’ votes at Amazon have 

three kinds of biases as follows: (1) imbalance vote 

bias, (2) winner circle bias, and (3) early bird bias. 

Existing studies (Kim et al, 2006; Zhang and Va-

radarajan, 2006) used these users’ votes for train-

ing ranking models to assess the quality of reviews, 

which therefore are subject to these biases.  

In this paper, we demonstrate the aforemen-

tioned biases and define a standard specification to 

measure the quality of product reviews. We then 

manually annotate a set of ground-truth with real 

world product review data conforming to the speci-

fication.  

To automatically detect low-quality product re-

views, we propose a classification-based approach 

learned from the annotated ground-truth. The pro-

posed approach explores three aspects of product 

reviews, namely informativeness, readability, and 

subjectiveness.  

We apply the proposed approach to opinion 

summarization, a typical opinion mining task. The 

proposed approach enhances the existing work in a 

two-stage framework, where the low-quality re-

view detection is applied right before the summari-

zation stage.  

Experimental results show that the proposed ap-

proach can discriminate low-quality reviews from 

high-quality ones effectively. In addition, the task 

of opinion summarization can be enhanced by de-

tecting and filtering low-quality reviews. 

                                                 
1 http://www.amazon.com 
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The rest of the paper is organized as follows: 

Section 2 introduces the related work. In Section 3, 

we define the quality of product reviews. In Sec-

tion 4, we present our approach to detecting low-

quality reviews. In Section 5, we empirically verify 

the effectiveness of the proposed approach and its 

use for opinion summarization. Section 6 summa-

rizes our work in this paper and points out the fu-

ture work. 

2 Related Work 

2.1 Evaluating Helpfulness of Reviews 

The problem of evaluating helpfulness of reviews 

(Kim et al, 2006), also known as learning utility of 

reviews (Zhang and Varadarajan, 2006), is quite 

similar to our problem of assessing the quality of 

reviews.  

In practice, researchers in this area considered 

the problem as a ranking problem and solved it 

with regression models. In the process of model 

training and testing, they used the ground-truth 

derived from users’ votes of helpfulness provided 

by Amazon. As we will show later in Section 3, 

these models all suffered from three types of vot-

ing bias.  

In our work, we avoid using users’ votes by de-

veloping a specification on the quality of reviews 

and building a ground-truth according to the speci-

fication.  

2.2 Mining Opinions from Reviews 

One area of research on opinion mining from 

product reviews is to judge whether a review 

expresses a positive or a negative opinion. For 

example, Turney (2006) presented a simple 

unsupervised learning algorithm in judging 

reviews as “thumbs up” (recommended) or 

“thumbs down” (not recommended). Pang et al 

(2002) considered the same problem and presented 

a set of supervised machine learning approaches to 

it. For other work see also Dave et al. (2003), Pang 

and Lee (2004, 2005). 

Another area of research on opinion mining is to 

extract and summarize users’ opinions from prod-

uct reviews (Hu and Liu, 2004; Liu et al., 2005; 

Popescu and Etzioni, 2005). Typically, a sentence 

or a text segment in the reviews is treated as the 

basic unit. The polarity of users’ sentiments on a 

product feature in each unit is extracted. Then the 

aggregation of the polarities of individual senti-

ments is presented to users so that they can have an 

at-a-glance view on how other experienced users 

rated on a certain product. The major weakness in 

the existing studies is that all the reviews, includ-

ing low-quality ones, are taken into consideration 

and treated equally for generating the summary. In 

this paper, we enhance the application by detecting 

and filtering low-quality reviews. In order to 

achieve that, we first define what the quality of 

reviews is. 

3 Quality of Product Reviews 

In this section, we will first show three biases of 

users’ votes observed on Amazon, and then present 

our specification on the quality of product reviews. 

3.1 Amazon Ground-truth 

In our study, we use the product reviews on digital 

cameras crawled from Amazon as our data set. The 

data set consists of 23,141 reviews on 946 digital 

cameras. At the Amazon site, users could vote for 

a review with a “helpful” or “unhelpful” label. 

Thus, for each review there are two numbers 

indicating the statistics of these two labels, namely 

the number of “helpful” votes and that of 

“unhelpful” ones. Kim et al (2006) used the 

percentage of “helpful” votes as the measure of 

evaluating the “quality of reviews” in their 

experiments. We call the ground-truth based on 

this measure as “Amazon ground-truth”. 

Certainly, the ground-truth has the advantage of 

convenience. However, we identify three types of 

biases that make the Amazon ground-truth not al-

ways suitable for determining the quality of re-

views. We describe these biases in details in the 

rest of this section. 

3.1.1 Imbalance Vote Bias 

 

Figure 1. Reviews’ percentage scores 

At the Amazon site, users tend to value others’ 

opinions positively rather than negatively. From 

Figure 1, we can see that a half of the 23,141 
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reviews (corresponding to the two bars on the right 

of the figure) have more than 90% “helpful” votes, 

including 9,100 reviews with 100% “helpful” 

votes. From an in-depth investigation on these 

highly-voted reviews, we observed that some did 

not really have as good quality as the votes hint. 

For example, in Figure 2, the review about Canon 

PowerShot S500 receives 40 “helpful” votes out of 

40 votes although it only gives very brief 

description on the product features in its second 

paragraph. We call this type of bias “imbalance 

vote” bias. 
 

This is my second Canon digital elph camera. Both were great 

cameras. Recently upgraded to the S500. About 6 months later I get 
the dreaded E18 error. I searched the Internet and found numerous 

people having problems. When I determined the problem to be the 

lens not fully extending I decided to give it a tug. It clicked and the 
camera came on, ready to take pictures. Turning it off and on pro-

duced the E18 again. While turning it on I gave it a nice little bump 

on the side (where the USB connector is) and the lens popped out 
on its own. No problems since. 

 It’s a nice compact and light camera and takes great photos and 

videos. Only complaint (other than E18) is the limit of 30-second 
videos on 640x480 mode. I've got a 512MB compact flash card, I 

should be able to take as much footage as I have memory in one 

take. 

Figure 2. An example review 

3.1.2 Winner Circle Bias 

 
Figure 3. Votes of the top-50 ranked reviews 

There also exists a bootstrapping effect of “hot” 

reviews at the Amazon site. Figure 3 shows the 

“helpful” votes for the top 50 ranked reviews. The 

numbers are averaged over 127 digital cameras 

which have no less than 50 reviews. As shown in 

this figure, the top two reviews hold more than 250 

and 140 votes respectively on average; while the 

numbers of votes held by lower-ranked reviews 

decrease exponentially. This is so-called the 

“winner circle” bias: the more votes a review 

gains, the more default authority it would appear to 

the readers, which in turn will influence the 

objectivity of the readers’ votes. Also, the higher 

ranked reviews would attract more eyeballs and 

therefore gain more people’s votes. This mutual 

influence among labelers should be avoided when 

the votes are used as the evaluation standard. 

3.1.3 Early Bird Bias 
 

   

Figure 4. Dependency on publication date 

Publication date can influence the accumulation of 

users’ votes. In Figure 4, the n’th publication date 

represents the n’th month after the product is 

released. The number in the figure is averaged over 

all the digital cameras in the data set. We can 

observe a clear trend that the earlier a review is 

posted, the more votes it will get. This is simply 

because reviews posted earlier are exposed to users 

for a longer time. Therefore, some high quality 

reviews may get fewer users’ vote because of later 

publication. We call this “early bird” bias. 

3.2 Specification of Quality 

Besides these aforementioned biases, using the raw 

rating from readers directly also fails to provide a 

clear guideline for what a good review consists of. 

In this section, we provide such a guideline, which 

we name as the specification (SPEC). 

In the SPEC, we define four categories of re-

view quality which represent different values of 

the reviews to users’ purchase decision: “best re-

view”, “good review”, “fair review”, and “bad re-

view”. A generic description of the SPEC is as fol-

lows: 

A best review must be a rather complete and de-

tailed comment on a product. It presents several 

aspects of a product and provides convincing opi-

nions with enough evidence. Usually a best review 

could be taken as the main reference that users on-

ly need to read before making their purchase deci-

sion on a certain product. The first review in Fig-

ure 5 is a best review. It presents several product 

features and provides convincing opinions with 

sufficient evidence. It is also in a good format for 

readers to easily understand. Note that we omit 

some words in the example to save the space. 
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A good review is a relatively complete comment 

on a product, but not with as much supporting evi-

dence as necessary. It could be used as a strong 

and influential reference, but not as the only rec-

ommendation. The second review in Figure 5 is 

such an example. 

A fair review contains a very brief description 

on a product. It does not supply detailed evaluation 

on the product, but only comments on some as-

pects of the product. For example, the third review 

in Figure 5 mainly talks about “the delay between 

pictures”, but less about other aspects of the cam-

era. 

A bad review is usually an incorrect description 

of a product with misleading information. It talks 

little about a specific product but much about some 

general topics (e.g. photography). For example, the 

last review in Figure 5 talks about the topic of “ge-

neric battery”, but does not specify any digital 

camera. A bad review is an “unhelpful” review that 

can be ignored.  
 

Best Review: 

I purchased this camera about six months ago after my Kodak 

Easyshare camera completely died on me. I did a little research 

and read only good things about this Canon camera so I decided to 
go with it because it was very reasonably priced (about $200). Not 

only did the camera live up to my expectations, it surpassed them 

by leaps and bounds! Here are the things I have loved about this 
camera: 

 

BATTERY - this camera has the best battery of any digital cam-
era I have ever owned or used. … 

 

EASY TO USE - I was able to … 
 

PICTURE QUALITY - all of the pictures I've taken and printed 

out have been great. … 
 

FEATURES - I love the ability to quickly and easily … 

 
LCD SCREEN - I was hoping … 

 

SD MEMORY CARD - I was also looking for a camera that used 
SD memory cards. Mostly because… 

 
I cannot stress how highly I recommend this camera. I will never 

buy another digital camera besides Canon again. And the A610 (as 

well as the A620 - the 7.0MP version) is the best digital camera I've 
ever used. 

Good Review: 

The Sony DSC "P10" Digital Camera is the top pick for CSC. 
Running against cameras like Olympus stylus, Canon Powereshot, 

Sony V1, Nikon, Fuji, and More. The new release of 5.0 mega pix-

els has shot prices for digital cameras up to $1000+. This camera I 
purchased through a Private Dealer cost me $400.86. The Retail 

Price is Running $499.00 to $599.00. Purchase this camera from a 

wholesale dealer for the best price $377.00. Great Photo Even in 
dim light w/o a flash. The p10 is very compact. Can easily fit into 

any pocket. The camera can record 90 minutes of mpeg like a home 

movie. There are a lot of great digital cameras on the market that 
shoot good pictures and video. What makes the p10 the top pick is 

it comes with a rechargeable lithium battery. Many use AA batte-

ries, the digital camera consumes theses AA batteries in about two 
hours time while the unit is on. That can add continuous expense to 

the camera. It's also the best resolution on the market. 6.0 megapix 

is out, though only a few. And the smallest that we found. Also the 
best price for a major brand. 

Fair Review: 

There is nothing wrong with the 2100 except for the very notice-

able delay between pics. The camera's digital processor takes 
about 5 seconds after a photo is snapped to ready itself for the next 

one. Otherwise, the optics, the 3X optical zoom and the 2 megapixel 

resolution are fine for anything from Internet apps to 8" x 10" print 
enlarging. It is competent, not spectacular, but it gets the job done 

at an agreeable price point. 

Bad Review: 

I want to point out that you should never buy a generic battery, 

like the person from San Diego who reviewed the S410 on May 15, 

2004, was recommending. Yes you'd save money, but there have 
been many reports of generic batteries exploding when charged for 

too long. And don't think if your generic battery explodes you can 

sue somebody and win millions. These batteries are made in sweat-
shops in China, India and Korea, and I doubt you can find anybody 

to sue. So play it safe, both for your own sake and the camera's 

sake. If you want a spare, get a real Canon one. 

Figure 5. Example reviews 

3.3 Annotation of Quality 

According to the SPEC defined above, we built a 

ground-truth from the Amazon data set. We 

randomly selected 100 digital cameras and 50 

reviews for each camera. Totally we have 4,909 

reviews since some digital cameras have fewer 

than 50 unique reviews. Then we hired two 

annotators to label the reviews with the SPEC as 

their guideline. As the result, we have two 

independent copies of annotations on 4,909 

reviews, with the labels of “best”, “good”, “fair”, 

and “bad”. Table 1 shows the confusion matrix 

between the two copies of annotation. The value of 

the kappa statistic (Cohen, 1960) calculated from 

the matrix is 0.8142. This shows that the two 

annotators achieved highly consistent results by 

following the SPEC, although they worked 

independently.  

 Annota-

tion 1 

Annotation 2 

best good fair bad total 

best 294 44 2 0 340 

good 66 639 113 0 818 

fair 0 200 1,472 113 1,785 

bad 1 2 78 1,885 1,966 

total 361 885 1,665 1,998 4,909 

Table 1. Confusion matrix bet. the annotations 
 

In order to examine the difference between our 

annotations and Amazon ground-truth, we evaluate 

the Amazon ground-truth against the annotations, 
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with the measure of “error rate of preference pairs” 

(Herbrich et al, 1999).  

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
|𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑎𝑖𝑟𝑠 |

|𝑎𝑙𝑙 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑎𝑖𝑟𝑠|
 (1) 

where the “preference pair” is defined as a pair of 

reviews with a order. For example, a best review 

and a good review correspond to a preference pair 

with the order of “best review preferring to good 

review”. The “all preference pairs” are collected 

from one of the annotations (the annotation 1 or 

the annotation 2) by ignoring the pairs from the 

same category. The “incorrect preference pairs” 

are the preference pairs collected from the Ama-

zon ground-truth but not with the same order as 

that in the all preference pairs. The order of the 

preference pair collected from the Amazon 

ground-truth is evaluated on the basis of the per-

centage score as described in Section 3.1.  

The error rate of preference pairs based on the 

annotation 1 and that based on the annotation 2 are 

0.448 and 0.446, respectively, averaged over 100 

digital cameras. The high error rate of preference 

pairs demonstrates that the Amazon ground-truth 

diverges from the annotations (our ground-truth) 

significantly. 

To discover which kind of ground-truth is more 

reasonable, we ask an additional annotator (the 

third annotator) to compare these two kinds of 

ground-truth. More specifically, we randomly se-

lected 100 preference pairs whose orders the two 

kinds of ground-truth don’t agree on (called incor-

rect preference pairs in the evaluation above). As 

for our ground-truth, we choose the Annotation 1 

in the new test. Then, the third annotator is asked 

to assign a preference order for each selected pair. 

Note that the third annotator is blind to both our 

specification and the existing preference order.  

Last, we evaluate the two kinds of ground-truth 

with the new annotation. Among 100 pairs, our 

ground-truth agrees to the new annotation on 85 

pairs while the Amazon ground-truth agrees to the 

new annotation on 15 pairs. To confirm the result, 

yet another annotator (the fourth annotator) is 

called to repeat the same annotation independently 

as the third one. And we obtain the same statistical 

result (85 vs. 15) although the fourth annotator 

does not agree with the third annotator on some 

pairs. 

In practice, we treat the reviews in the first three 

categories (“best”, “good” and “fair”) as high-

quality reviews and those in the “bad” category as 

low-quality reviews, since our goal is to identify 

low quality reviews that should not be considered 

when creating product review summaries. 

4 Classification of Product Reviews  

We employ a statistical machine learning approach 

to address the problem of detecting low-quality 

products reviews.  

Given a training data set 𝐷 =  𝑥𝑖 , 𝑦𝑖 1
𝑛 , we 

construct a model that can minimize the error in 

prediction of y given x (generalization error). Here 

𝑥𝑖 ∈ 𝑋  and 𝑦𝑖 = {𝑕𝑖𝑔𝑕 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 , 𝑙𝑜𝑤 𝑞𝑢𝑎𝑙𝑖𝑡𝑦} 

represents a product review and a label, 

respectively. When applied to a new instance x, the 

model predicts the corresponding y and outputs the 

score of the prediction. 

4.1 The Learning Model 

In our study, we focus on differentiating low-

quality product reviews from high-quality ones. 

Thus, we treat the task as a binary classification 

problem.  

We employ SVM (Support Vector Machines) 

(Vapnik, 1995) as the model of classification. 

Given an instance x (product review), SVM assigns 

a score to it based on 

𝑓 𝑥 = 𝑤𝑇𝑥 + 𝑏 (2) 

where w denotes a vector of weights and b denotes 

an intercept. The higher the value of f(x) is, the 

higher the quality of the instance x is. In 

classification, the sign of f(x) is used. If it is 

positive, then x is classified into the positive 

category (high-quality reviews), otherwise into the 

negative category (low-quality reviews). 

The construction of SVM needs labeled training 

data (in our case, the categories are “high-quality 

reviews” and “low-quality reviews”). Briefly, the 

learning algorithm creates the “hyper plane” in (2), 

such that the hyper plane separates the positive and 

negative instances in the training data with the 

largest “margin”.  

4.2 Product Feature Resolution 

Product features (e.g., “image quality” for digital 

camera) in a review are good indicators of review 

quality. However, different product features may 

refer to the same meaning (e.g., “battery life” and 

“power”), which will bring redundancy in the 

study. In this paper, we formulize the problem as 

the “resolution of product features”. Thus, the 
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problem is reduced to how to determine the equi-

valence of a product feature in different forms.  

In (Hu and Liu, 2004), the matching of different 

product features is mentioned briefly and ad-

dressed by fuzzy matching. However, there exist 

many cases where the method fails to match the 

multiple mentions, e.g., “battery life” and “power”, 

because it only considers string similarity. In this 

paper we propose to resolve the problem by leve-

raging two kinds of evidence: one is “surface string” 

evidence, the other is “contextual evidence”.  

We use edit distance (Ukkonen, 1985) to com-

pare the similarity between the surface strings of 

two mentions, and use contextual similarity to re-

flect the semantic similarity between two mentions. 

When using contextual similarity, we split all 

the reviews into sentences. For each mention of a 

product feature, we take it as a query and search 

for all the relevant sentences. Then we construct a 

vector for the mention, by taking each unique term 

in the relevant sentences as a dimension of the vec-

tor. The cosine similarity between two vectors of 

mentions is then present to measure the contextual 

similarity between two mentions.  

4.3 Feature Development for Learning 

To detect low-quality reviews, our proposed 

approach explores three aspects of product reviews, 

namely informativeness, subjectiveness, and 

readability. We denote the features employed for 

learning as “learning features”, discriminative from 

the “product features” we discussed above. 

4.3.1 Features on Informativeness 

As for informativeness, the resolution of product 

features is employed when we generate the 

learning features as listed below. Pairs mapping to 

the same product feature will be treated as the 

same product feature, when we calculate the 

frequency and the number of product features. We 

apply the approach proposed in (Hu and Liu, 2004) 

to extract product features.  

We also use a list of product names and a list of 

brand names to generate the learning features. Both 

lists can be collected from the Amazon site be-

cause they are relatively stable within a time inter-

val. 

The learning features on the informativeness of 

a review are as follows. 

 Sentence level (SL) 

 The number of sentences in the review 

 The average length of sentences  

 The number of sentences with product features 

 Word level (WL) 

 The number of words in the review 

 The number of products (e.g., DMC-FZ50, 

EX-Z1000) in the review 

 The number of products in the title of a review  

 The number of brand names (e.g., Canon, Sony) 

in the review  

 The number of brand names in the title of a 

review 

 Product feature level (PFL) 

 The number of product features in the review 

 The total frequency of product features in the 

review 

 The average frequency of product features in 

the review 

 The number of product features in the title of a 

review 

  The total frequency of product features in the 

title of a review 

4.3.2 Features on Readability 

We make use of several features at paragraph level 

which indicate the underlying structure of the 

reviews.  These features include, 

 The number of paragraphs in the review 

 The average length of paragraphs in the review 

 The number of paragraph separators in the re-

view 

Here, we refer to the keywords, such as “Pros” 

vs. “Cons” as “paragraph separators”. The key-

words usually appear at the beginning of para-

graphs for categorizing two contrasting aspects of 

a product. We extract the nouns and noun phrases 

at the beginning of each paragraph from the 4,909 

reviews and use the most frequent 30 pairs of key-

words as paragraph separators. Table 2 provides 

some examples of the extracted separators. 

Separators Separators 

Positive Negative Positive Negative 

Pros Cons The Good The Bad 

Strength Weakness Thumb up Bummer 

PLUSES MINUSES Positive Negative 

Advantages Drawbacks Likes Dislikes 

The  upsides Downsides 
GOOD 

THINGS 

BAD 

THINGS 

Table 2. Examples of paragraph separators 
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4.3.3 Features on Subjectiveness 

We also take the subjectiveness of reviews into 

consideration. Unlike previous work (Kim et al, 

2006; Zhang and Varadarajan, 2006) using shallow 

syntactic information directly, we use a sentiment 

analysis tool (Hu and Liu, 2004) which aggregates 

a set of shallow syntactic information. The tool is a 

classifier capable of determining the sentiment 

polarity of each sentence. We create three learning 

features regarding the subjectiveness of reviews. 

 The percentage of positive sentences in the 

review 

 The percentage of negative sentences in the 

review 

 The percentage of subjective sentences (re-

gardless of positive or negative) in the review 

5 Experiments 

In this section, we describe our experiments with 

the proposed classification-based approach to low-

quality review detection, and its effectiveness on 

the task of opinion summarization. 

5.1 Detecting Low-quality Reviews 

In our proposed approach, the problem of assessing 

quality of reviews is formalized as a binary classi-

fication problem. We conduct experiments by tak-

ing reviews in the categories of “best”, “good”, and 

“fair” as high-quality reviews and those in the 

“bad” category as low-quality reviews.  

As for classification model, we utilize the 

SVMLight toolkit (Joachims, 2004). We randomly 

divide the 100 queries of digital cameras into two 

sets, namely a training set of 50 queries and a test 

set of 50 queries. For the two copies of annota-

tions, we use the same division. We use the train-

ing set from “annotation 1” to train the model and 

apply the model to the test sets from both “annota-

tion 1” and “annotation 2”, respectively. Table 3 

reports the accuracies of our approach to review 

classification. The accuracy is defined as the per-

centage of correctly classified reviews. 

We take the approach that utilizes only the cate-

gory of features on sentence level (SL) as the base-

line, and incrementally add other categories of fea-

tures on informativeness, readability and subjec-

tiveness. We can see that both the features on word 

level (WL) and those on product feature level (PFL) 

can improve the performance of classification 

much. The features on readability can still increase 

the accuracy although the contribution is much 

less. The features on subjectiveness, however, 

make no contribution.   
 

Feature Category Annotation1 Annotation2 

Informative-

ness  

SL 73.59% 72.81% 

WL 80.41% 79.15% 

PFL 83.30% 82.37% 

Readability 83.93% 82.91% 

Subjectiveness 83.84% 82.96% 

Table 3. Low-quality reviews detection 

We also conduct a more detailed analysis on 

each individual feature. Two categories of features 

on “title” and “brand name” have poor perfor-

mance, which is due to the lack of information in 

the title and the low coverage of brand names in a 

review, respectively. 

5.2 Summarizing Sentiments of Reviews 

One potential application of low-quality review 

detection is the opinion summarization of reviews.  

The process of opinion summarization of re-

views with regards to a query of a product consists 

of the following steps (Liu et al, 2005): 

1. From each of the reviews, identify every text 

segment with opinion in the review, and de-

termine the polarities of the opinion segments. 

2. For each product feature, generate a positive 

opinion set and a negative opinion set of opi-

nion segments, denoted as POS(𝑓) 

and NOS(𝑓). 

3. For each product feature, aggregate the num-

bers of segments in POS(𝑓)  andNOS(𝑓) , as 

opinion summarization on the product feature. 

In this process, all the reviews contribute the 

same. However, different reviews do hold different 

authorities. A positive/negative opinion from a 

high-quality review should not have the same 

weight as that from a low-quality review.  

We use a two-stage approach to enhance the re-

liability of summarization. That is, we add a 

process of low-quality review detection before the 

summarization process, so that the summarization 

result is obtained based on the high-quality reviews 

only. We are to demonstrate how much difference 

the proposed two-stage approach can bring into the 

opinion summarization. 

We use the best classification model trained as 

described in Section 5.1 to filter low-quality re-

views, and do summarization on the high-quality 
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reviews associated to the 50 test queries. We de-

note the proposed approach and the old approach 

as “two-stage” and “one-stage”, respectively. Due 

to the limited space, we only give a visual compar-

ison of the two approaches on “image quality” in 

Figure 6. The upper figure shows the summariza-

tion of positive opinions and the lower figure 

shows that of negative opinions. From the figures 

we can see that the two-stage approach preserves 

fewer text segments as the result of filtering out 

many low-quality product reviews. 
 

 

 

Figure 6. Summarization on “image quality” 

To show the comparison on more features in a 

compressed space, we give the statistic ratio of 

change between two approaches instead. As for the 

evaluation measure, we define “RatioOfChange” 

(ROC) on a feature f as, 
 

ROC 𝑓 =
Rateone −stage  𝑓 − Ratetwo −stage (𝑓)

Rateone −stage (𝑓)
 (3) 

 

where Rate *(f) is defined as, 
  

Rate∗(𝑓) =
|POS(𝑓)|

|POS(𝑓)| + |NOS(𝑓)|
 (4) 

 

Table 4 shows some statistic results on ROC on 

five product features, namely “image quality”(IQ), 

“battery”, “LCD screen” (LCD), “flash” and “mov-

ie mode” (MM). The values in the cells are the 

percentage of queries whose ROC is larger/smaller 

than the respective thresholds. We can see that a 

large portion of queries have big changes on the 

values of ROC. This means that the result achieved 

by the two-stage approach is substantially different 

from that achieved by the one-stage approach. 
 

%Query 
RatioOfChange (+) 

>0.30 >0.25 >0.20 >0.15 >0.10 >0.05 

IQ 2% 4% 4% 10% 14% 22% 

Battery 10% 14% 18% 30% 38% 50% 

LCD  12% 18% 20% 22% 24% 28% 

Flash  6% 10% 16% 20% 26% 42% 

MM 6% 8% 8% 12% 18% 26% 

%Query 
RatioOfChange (-) 

<-0.30 <-0.25 <-0.20 <-0.15 <-0.10 <-0.05 

IQ 4% 6% 10% 14% 18% 44% 

Battery 2% 4% 4% 10% 14% 22% 

LCD  4% 4% 8% 12% 22% 28% 

Flash  4% 6% 8% 16% 18% 28% 

MM 8% 10% 16% 18% 34% 42% 

Table 4. RatioOfChange on five features 

There is no standard way to evaluate the quality 

of opinion summarization as it is rather a subjec-

tive problem. In order to demonstrate the impact of 

the two-stage approach, we turn to external author-

itative sources other than Amazon.com as the ob-

jective evaluation reference. We observe that 

CNET
2
 provides a professional “editor’s review” 

for many products, which gives a rating in the 

range of 1~10 on product features. 9 digital cam-

eras out of the 50 test queries are found to have the 

editor’s rating on “image quality” at CNET. We 

use this rating to compare with the results of our 

opinion summarization. We rescale the Rate scores 

obtained by both the one-stage approach and the 

two-stage approach into the range of 1-10 in order 

to perform the comparison.  

Figure 7 provides the visual comparison. We 

can see that the result achieved by the two-stage 

approach has a much better (closer) resemblance to 

CNET rating than one-stage approach does. This 

indicates that our two-stage approach can achieve a 

more consistent summarization result to the profes-

sional evaluations by the editors. Although the 

CNET rating is not the absolute standard for prod-

uct evaluation, it provides a professional yet objec-

tive evaluation of the products. Therefore, the ex-

perimental results demonstrate that our proposed 

approach could achieve more reliable opinion 

summarization which is closer to the generic eval-

uation from authoritative sources. 
 

                                                 
2 http://www.cnet.com 
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Figure 7. Comparison with CNET rating 

6 Conclusion 

In this paper, we studied the problem of detecting 

low-quality product reviews. Our contribution can 

be summarized in two-fold: (1) we discovered 

three types of biases in the ground-truth used ex-

tensively in the existing work, and proposed a spe-

cification on the quality of product reviews. The 

three biases that we discovered are imbalance vote 

bias, winner circle bias, and early bird bias. (2) 

Rooting on the new ground-truth (conforming to 

the proposed specification), we proposed a classi-

fication-based approach to low-quality product 

review detection, which yields better performance 

of opinion summarization. 

We hope to explore our future work in several 

areas, such as further consolidating the new 

ground-truth from different points of view and ve-

rifying the effectiveness of low-quality review de-

tection with other applications. 

References 

Jacob Cohen. 1960. A coefficient of agreement for no-

minal scales, Educational and Psychological Mea-

surement 20: 37–46.  

Kushal Dave, Steve Lawrence, and David M. Pennock. 

2003. Mining the peanut gallery: opinion extraction 

and semantic classification of product reviews. 

WWW’03. 

Harris Drucker, Chris J.C., Burges Linda Kaufman, 

Alex Smola and Vladimir Vapnik. 1997. Support 

vector regression machines. Advances in Neural In-

formation Processing Systems.  

Christiane Fellbaum. 1998. WordNet: an Electronic 

Lexical Database, MIT Press. 

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 

1999. Support Vector Learning for Ordinal Regres-

sion. In Proc. of the 9th International Conference on 

Artificial Neural Networks. 

Minqing Hu and Bing Liu. 2004a. Mining and Summa-

rizing Customer Reviews. KDD’04.  

Minqing Hu and Bing Liu. 2004b. Mining Opinion Fea-

tures in Customer Reviews. AAAI’04. 

Kalervo Jarvelin & Jaana Kekalainen. 2000. IR: evalua-

tion methods for retrieving highly relevant docu-

ments. SIGIR’00.  

Nitin Jindal and Bing Liu. 2006. Identifying Compara-

tive Sentences in Text Documents. SIGIR’06. 

Nitin Jindal and Bing Liu. 2006. Mining comparative 

sentences and relations. AAAI’06. 

Thorsten Joachims. SVMlight -- Support Vector Ma-

chine. http://svmlight.joachims.org/, 2004. 

Soo-Min Kim, Patrick Pantel, Tim Chklovski, Marco 

Pennacchiotti. 2006. Automatically Assessing Re-

view Helpfulness. EMNLP’06. 

Dekang Lin. 1998, Automatic retrieval and clustering of 

similar words. COLING-ACL’98. 

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005. 

Opinion observer: analyzing and comparing opinions 

on the web. WWW ’05.  

Bo Pang and Lillian Lee. 2004. A sentimental educa-

tion: Sentiment analysis using subjectivity summari-

zation based on minimum cuts. ACL’04. 

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting 

class relationships for sentiment categorization with 

respect to rating scales. ACL’05. 

Bo Pang and Lillian Lee, and S. Vaithyanathan. 2002. 

Thumbs up? sentiment classification using machine 

learning techniques. EMNLP’02.  

Ana-Maria Popescu and O Etzioni. 2005. Extracting 

product    features and opinions from reviews. HLT-

EMNLP’05.  

Peter D. Turney. 2001. Thumbs up or thumbs down?: 

semantic orientation applied to unsupervised classifi-

cation of reviews. ACL’02  

Esko Ukkonen. 1985. Algorithms for approximate string 

matching. Information and Control, pp. 100 – 118. 

Vladimir N. Vapnik. 1995. The Nature of Statistical 

Learning Theory. Springer. 

Zhu Zhang and Balaji Varadarajan. 2006. Utility Scor-

ing of Product Reviews. CIKM’06 

 

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

R
at

in
g 

Sc
o

re

QueryID

One-stage
Two-stage
CNET Ground-truth

342



Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 343–350, Prague, June 2007. c©2007 Association for Computational Linguistics

Improving Statistical Machine Translation Performance by         
Training Data Selection and Optimization 

Yajuan Lü, Jin Huang and Qun Liu 
Key Laboratory of Intelligent Information Processing 

Institute of Computing Technology 
Chinese Academy of Sciences 

P.O. Box 2704, Beijing 100080, China 
{lvyajuan, huangjin,liuqun}@ict.ac.cn 

 

Abstract 

Parallel corpus is an indispensable resource 
for translation model training in statistical 
machine translation (SMT). Instead of col-
lecting more and more parallel training 
corpora, this paper aims to improve SMT 
performance by exploiting full potential of 
the existing parallel corpora. Two kinds of 
methods are proposed: offline data optimi-
zation and online model optimization. The 
offline method adapts the training data by 
redistributing the weight of each training 
sentence pairs. The online method adapts 
the translation model by redistributing the 
weight of each predefined submodels. In-
formation retrieval model is used for the 
weighting scheme in both  methods. Ex-
perimental results show that without using 
any additional resource, both methods can 
improve SMT performance significantly.   

1 Introduction 

Statistical machine translation relies heavily on the 
available training data.  Typically, the more data is 
used to estimate the parameters of the translation 
model, the better it can approximate the true trans-
lation probabilities, which will obviously lead to a 
higher translation performance. However, large 
corpora are not easily available. The collected cor-
pora are usually from very different areas. For 
example, the parallel corpora provided by LDC 
come from quite different domains, such as 
Hongkong laws, Hangkong Hansards and 
Hongkong news. This results in the problem that a 
translation system trained on data from a particular 

domain(e.g. Hongkong Hansards) will perform 
poorly when translating text from a different 
domain(e.g. news articles). Our experiments also 
show that simply putting all these domain specific 
corpora together will not always improve 
translation quality. From another aspect, larger 
amount of training data also requires larger 
computational resources. With the increasing of 
training data, the improvement of translation 
quality will become smaller and smaller. Therefore, 
while keeping collecting more and more parallel 
corpora, it is also important to seek effective ways 
of making better use of available parallel training 
data.  

There are two cases when we train a SMT 
system. In one case, we know the target test set or 
target test domain, for example, when building a 
specific domain SMT system or when participating 
the NIST MT evaluation1. In the other case, we are 
unaware of any information of the testing data. 
This paper presents two methods to exploit full 
potential of the available parallel corpora in the 
two cases. For the first case, we try to optimize the 
training data offline to make it match the test data 
better in domain, topic and style, thus improving 
the translation performance. For the second case, 
we first divide the training data into several do-
mains and train submodels for each domain. Then, 
in the translation process, we try to optimize the 
predefined models according to the online input 
source sentence. Information retrieval model is 
used for similar sentences retrieval in both meth-
ods. Our preliminary experiments show that both 
methods can improve SMT performance without 
using any additional data.  

                                                 
1 http://www.nist.gov/speech/tests/mt/ 
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The remainder of this paper is organized as fol-
lows: Section 2 describes the offline data selection 
and optimization method. Section 3 describes the 
online model optimization method. The evaluation 
and discussion are given in section 4. Related work 
is introduced before concluding.  

2 Offline training data optimization 

In offline training data optimization, we assume 
that the target test data or target test domain is 
known before building the translation model. We 
first select sentences similar to the test text using 
information retrieval method to construct a small 
and adapted training data. Then the extracted simi-
lar subset is used to optimize the distribution of the 
whole training data. The adapted and the optimized 
training data will be used to train new translation 
models.  

2.1 Similar data selection using TF-IDF 

We use information retrieval method for similar 
data retrieval. The standard TF-IDF (Term Fre-
quency and Inverse Document Frequency) term 
weighting scheme is used to measure the similarity 
between the test sentence and the training sentence. 

TF-IDF is a similarity measure widely used in in-
formation retrieval. Each document i is represented 
as a vector  ,  is the size of the 
vocabulary.  is calculate as follows: 

D
),...,,( 21 inii www n

ijw
)log( jijij idftfw ×=  

where,  
ij  is the term frequency(TF) of the j-th word 

in the vocabulary in the document , i.e. the 
number of occurrences;  

tf
iD

j  is the inverse document frequency(IDF) 
of the j-th word calculated as below: 
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#
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The similarity between two documents is then 
defined as the cosine of the angle between the two 
vectors. 

We perform information retrieval using the Le-
mur toolkit2. The source language part of the par-
allel training data is used as the document collec-
tion. Each sentence represents one document. Each 
sentence from the test data or test domain is used 
as one separate query. In the sentence retrieval 
                                                 
2 http://www.cs.cmu.edu/~lemur/

process, both the query and the document are con-
verted into vectors by assigning a term weight to 
each word. Then the cosine similarity is calculated 
proportional to the inner product of the two vectors. 
All retrieved sentences are ranked according to 
their similarity with the query. We pair each of the 
retrieved sentences with the corresponding target 
part and the top N most similar sentences pairs are 
put together to form an adapted parallel data. N 
ranges from one to several thousand in our experi-
ments. Since Lemur toolkit gives the similarity 
score for each retrieved sentences, it is also possi-
ble to select the most similar sentences according 
to the similarity score. 

Note that the selected similar data can contain 
duplicate sentences as the top N retrieval results 
for different test sentences can contain the same 
training sentences. The duplicate sentences will 
force the translation probability towards the more 
often seen words. Intuitively, this could help. In 
experiment section, we will compare experimental 
results by keeping or removing duplicates to see 
how the duplicate sentences affect the translations.  

The selected subset contains the similar sen-
tences with the test data or test domain. It matches 
the test data better in domain, topic and style. 
Hopefully, training translation model using this 
adapted parallel data may helpful for improving 
translation performance. In addition, the translation 
model trained using the selected subset is usually 
much smaller than that trained using the whole 
translation data. Limiting the size of translation 
model is very important for some real applications. 
Since SMT systems usually require large computa-
tion resource. The complexity of standard training 
and decoding algorithm depends mainly on the size 
of the parallel training data and the size of the 
translation model. Limiting the size of the training 
data with the similar translation performance 
would also reduce the memories and speed up the 
translations.  

In the information retrieval process, we only use 
the source language part for document indexing 
and query generating. It is easy to get source part 
of the test data. This is different from the common 
language model adaptation methods, which have to 
do at lease one pass machine translation to get the 
candidate English translation as query(Zhao 2004, 
Zhang 2006). So our method has the advantage 
that it is independent from the quality of baseline 
translation system.  
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2.2 Training data optimization  

There are two factors on training data that influ-
ence the translation performance of SMT system: 
the scale and the quality. In some sense, we im-
prove the quality of the training data by selecting 
the similar sentence to form an adapted training set. 
However, we also reduce the scale of the training 
data at the same time. Although this is helpful for 
some small device applications, it is also possible 
to induce the data sparseness problem.  Here, we 
introduce a method to optimize between the scale 
and the quality of the training data.  

The basic idea is that we still use all the avail-
able training data; by redistributing the weight of 
each sentence pairs we adapt the whole training 
data to the test domain. In our experiments, we 
simply combine the selected small similar subset 
and the whole training data. The weights of each 
sentence pairs are changed accordingly. Figure 1 
shows the procedure of the optimization.  

 
Figure 1. Training data optimization 

As can be seen, through the optimization, the 
weight of the similar sentence pairs are increased, 
while the general sentence pairs still have an ordi-
nary weight. This make the translation model in-
clined to give higher probabilities to the adapted 
words, and at the same time avoid the data sparse-
ness problem. Since we only change the weight of 
the sentence pairs, and no new training data is in-
troduced, the translation model size trained on the 
optimized data will keep as the same as the origi-
nal one. We use GIZA++ toolkit3 for word align-

                                                 
3 http://www.fjoch.com/GIZA++.html

ment training in the training process. The input 
training file formats for GIZA++ is as follows: 
Each training sentence pair is stored in three lines. 
The first line is the number of times this sentence 
pair occurred. The second line is the source sen-
tence where each token is replaced by its unique 
integer id and the third is the target sentence in the 
same format. To deal with our optimized training 
data, we only need to change the number of sen-
tence pairs in the first line accordingly. This will 
not call for extra training time and memory for the 
whole training process.  

It might be beneficial to investigate other so-
phisticated weighting schemes under the similar 
idea, such as to give more precise fractional 
weights to the sentences according the retrieval 
similarity scores. 

3 Online model optimization  

In most circumstances, we don’t know exactly the 
test data or the test domain when we train a ma-
chine translation system. This results in the fact 
that the performance of the translation system 
highly depends on the training data and the test 
data it is used in. To alleviate this blindfold status 
and maximize the potential of the available train-
ing corpora, we propose a novel online model op-
timization method.  
     The basic idea is that: several candidate transla-
tion models are prepared in training stage. In par-
ticularly, a general model is also prepared. Then, in 
the translation process, the similarity between the 
input sentence and the predefined models is calcu-
lated online to get the weights of each model. The 
optimized model is used to translate the input sen-
tence.  

There are two problems in the method: how to 
prepare submodels in training process and how to 
optimize the model weight online in translation 
process.  

3.1 Prepare the submodels  

There are several ways to prepare submodels in 
training process. If the training data comes from 
very different sources, we can divide the data ac-
cording to its origins. Otherwise, we can use clus-
tering method to separate the training corpus into 
several classes. In addition, our offline data adapta-
tion method can also be used for submodel prepa-
ration. For each candidate domain, we can use the 
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source side of a small corpus as queries to extract a 
domain specific training set. In this case, a sen-
tence pair in the training data may occur in several 
sub training data, but this doesn’t matter. The gen-
eral model is used when the online input is not 
similar to any prepared submodels. We can use all 
available training data to train the general model 
since generally larger data can get better model 
even there are some noises.   

3.2 Online model weighting 

We also use TF-IDF information retrieval method 
for online model weighting. The procedure is as 
follows: 

For each input sentence: 
 1. Do IR on training data collection, using the 

input sentence as query.  
 2. Determine the weights of submodels accord-

ing to the retrieved sentences.  
 3. Use the optimized model to translate the sen-

tence.  
The information retrieval process is the same as 

the offline data selection except that each retrieved 
sentence is attached with the sub-corpus informa-
tion, i.e. it belongs to which sub-models in the 
training process.   

With the sub-corpus information, we can calcu-
late the weights of submodels. We get the top N 
most similar sentences, and then calculate propor-
tions of each submodel’s sentences. The proportion 
can be calculated use the count of the sentences or 
the similarity score of the sentences. The weight of 
each submodel can be determined according to the 
proportions.  

Our optimized model is the log linear interpola-
tion of the sub-models as follows: 

∏
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where, 0 is the probability of general model, ip is 
the probability of submodel i. 0

p
δ is the weight of 

general model. iδ is the weight of submodel i. Each 
model i is also implemented using log linear model in 
our SMT system. So after the log operation, the sub-
models are interpolated linearly.  

In our experiments, the interpolation factor iδ  is 
determined using the following four simple weight-
ing schemes:   

Weighting scheme 1:  

  ;0     ;1     ;00 === ≠max_modelimax_model δδδ  

Weighting scheme 2:  

      if  Proportion(max_model) > 0.5 
          Use weighting scheme1; 
     else 

  ;0    ;1     0 == iδδ  
Weighting scheme 3:  
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Weighting scheme 4:  

       if  Proportion(max_model) > 0.5 
           Use weighting scheme3; 
       else 

 );( Proportion5.0     
  ;5.0     0

ii model×=
=

δ
δ  

where, modeli is the i-th submodel, . 
Proportion (model

)...1( Mi =
i) is the proportion of modeli in 

the retrieved results. We use count for proportion 
calculation. max_model is the submodel with the 
max proportion score. 

The training and translation procedure of online 
model optimization is illustrated in Figure 2. 

Figure 2. Online model optimization 
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      The online model optimization method makes 
it possible to select suitable models for each indi-
vidual test sentence. Since the IR process is done 
on a fixed training data, the size of the index data 
is quite small compared with the web IR. The IR 
process will not take much time in the translation.  

4 Experiments and evaluation 

4.1 Experimental setting 

We conduct our experiments on Chinese-to-
English translation tasks. The baseline system is a 
variant of the phrase-base SMT system, imple-
mented using log-linear translation model (He et al. 
2006). The baseline SMT system is used in all ex-
periments. The only difference between them is 
that they are trained on different parallel training 
data.  

In training process, we use GIZA++4 toolkit for 
word alignment in both translation directions, and 
apply “grow-diag-final” method to refine it (Koehn 
et al., 2003). We change the preprocess part of 
GIZA++ toolkit to make it accept the weighted 
training data. Then we use the same criterion as 
suggested in (Zens et al., 2002) to do phrase ex-
traction. For the log-linear model training, we take 
minimum-error-rate training method as described 
in (Och, 2003). The language model is trained us-
ing Xinhua portion of Gigaword with about 190M 
words. SRI Language Modeling toolkit5 is used to 
train a 4-gram model with modified Kneser-Ney 
smoothing(Chen and Goodman, 1998). All ex-
periments use the same language model. This en-
sures that any differences in performance are 
caused only by differences in the parallel training 
data. 

Our training data are from three LDC corpora as 
shown in Table 1. We random select 200,000 sen-
tence pairs from each corpus and combine them 
together as the baseline corpus, which includes 
16M Chinese words and 19M English words in 
total. This is the usual case when we train a SMT 
system, i.e. we simply combine all corpora from 
different origins to get a larger training corpus. 

We use the 2002 NIST MT evaluation test data 
as our development set, and the 2005 NIST MT 
test data as the test set in offline data optimization 
experiments. In both data, each sentence has four 

                                                 
4 http://www.fjoch.com/GIZA++.html
5 http://www.speech.sri.com/projects/srilm/

human translations as references. The translation 
quality is evaluated by BLEU metric (Papineni et 
al., 2002), as calculated by mteval-v11b.pl6 with 
case-sensitive matching of n-grams. 

Corpus LDC No. Description # sent. pairs

FBIS LDC2003E14 FBIS Multilanguage Texts 200000 

HK_Hansards LDC2004T08 Hong Kong Hansards Text 200000 

HK_News LDC2004T08 Hong Kong News Text 200000 

Baseline - All above data 600000 

Table 1. Training corpora 

4.2 Baseline experiments 

We first train translation models on each sub train-
ing corpus and the baseline corpus. The develop-
ment set is used to tune the feature weights. The 
results on test set are shown in Table 2.   

System BLEU on dev set BLEU on test set 

FBIS 0.2614 0.2331 

HK_Hansards 0.1679 0.1624 

HK_News 0.1748 0.1608  

Baseline 0.2565 0.2363 

Table 2. Baseline results 

From the results we can see that although the 
size of each sub training corpus is similar, the 
translation results from the corresponding system 
are quite different on the same test set. It seems 
that the FBIS corpus is much similar to the test set 
than the other two corpora.  In fact, it is the case. 
The FBIS contains text mainly from China 
mainland news stories, while the 2005 NIST test 
set also include lots of China news text. The results 
illustrate the importance of selecting suitable train-
ing data.  

When combining all the sub corpora together, 
the baseline system gets a little better result than 
the sub systems. This indicates that larger data is 
useful even it includes some noise data. However, 
compared with the FBIS corpus, the baseline cor-
pus contains three times larger data, while the im-
provement of translation result is not significant. 
This indicates that simply putting different corpora 
together is not a good way to make use of the 
available corpora.  

                                                 
6http://www.nist.gov/speech/tests/mt/resources/scoring.htm  

347



4.3 Offline data optimization experiments 

We use baseline corpus as initial training corpus, 
and take Lemur toolkit to build document index on 
Chinese part of the corpus. The Chinese sentences 
in development set and test set are used as queries. 
For each query, N = 100, 200, 500, 1000, 2000 
similar sentences are retrieved from the indexed 
collection. The extracted similar sentence pairs are 
used to train the new adapted translation models. 
Table 3 illustrates the results. We give the distinct 
pair numbers for each adapted set and compare the 
size of the translation models. To illustrate the ef-
fect of duplicate sentences, we also give the results 
with duplicates and without duplicates (distinct). 

System Distinct 
pairs 

Size of 
trans model 

BLEU on 
duplicates

BLEU on 
distinct

Baseline 600000 2.41G 0.2363 0.2363 

Top100 91804 0.43G 0.2306 0.2346 

Top200 150619 0.73G 0.2360 0.2345 

Top500 261003 1.28G 0.2415 0.2370 

Top1000 357337 1.74G 0.2463 0.2376 

Top2000 445890 2.11G 0.2351 0.2346 

Table 3. Offline data adaptation results 

The results show that: 
1. By using similar data selection, it is possible 

to use much smaller training data to get compara-
ble or even better results than the baseline system. 
When N=200, using only 1/4 of the training data 
and 1/3 of the model size, the adapted translation 
model achieves comparable result with the baseline 
model. When N=500, the adapted model outper-
forms the baseline model with much less training 
data. The results indicate that relevant data is better 
data. The method is particular useful for SMT ap-
plications on small device.  

2. In general, using duplicate data achieves bet-
ter results than using distinct data. This justifies 
our idea that give a higher weight to more similar 
data will benefit.  

3. With the increase of training data size,   the 
translation performance tends to improve also. 
However, when the size of corpus achieves a cer-
tain scale, the performance may drop. This maybe 
because that with the increase of the data, noisy 
data may also be included. More and more in-
cluded noises may destroy the data. It is necessary 
to use a development set to determine an optimal 
size of N. 

We combine each adapted data with the baseline 
corpus to get the optimized models. The results are 
shown in Table 4. We also compare the adapted 
models (TopN) and the optimized models (TopN+) 
in the table.   

Without using any additional data, the optimized 
models achieve significant better results than the 
baseline model by redistributing the weight of 
training sentences. The optimized models also out-
perform adapted models when the size of the 
adapted data is small since they make use of all the 
available data which decrease the influence of data 
sparseness. However, with the increase of the 
adapted data, the performance of optimized models 
is similar to that of the adapted models.  

System 
Distinct 

pairs 
BLEU on 

TopN 
BLEU on 

TopN+ 

Baseline 600000 0.2363 0.2363 

Top100+ 600000 0.2306 0.2387 

Top200+ 600000 0.2360 0.2443 

Top500+ 600000 0.2415 0.2461 

Top1000+ 600000 0.2463 0.2431 

Top2000+ 600000 0.2351 0.2355 

Table 4. Offline data optimization results 

4.4 Online model optimization experiments 

Since 2005 NIST MT test data tends bias to FBIS 
corpus too much, we build a new test set to evalu-
ate the online model optimization method. We ran-
domly select 500 sentences from extra part of FBIS, 
HK_Hansards and HK_News corpus respectively 
(i.e the selected 1500 test sentences are not in-
cluded in any of the training set). The correspond-
ing English part is used as translation reference. 
Note that there is only one reference for each test 
sentence. We also include top 500 sentence and 
their first reference translation of 2005 NIST MT 
test data in the new test set. So in total, the new test 
contains 2000 test sentences with one translation 
reference for each sentence.  The test set is used to 
simulate SMT system’s online inputs which may 
come from various domains.   

The baseline translation results are shown in Ta-
ble 5. We also give results on each sub test set (de-
notes as Xcorpus_part). Please note that the abso-
lute BLEU scores are not comparable to the previ-
ous experiments since there is only one reference 
in this test set.  
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As expected, using the same domain data for 
training and testing achieves the best results as in-
dicate by bold fonts.  The results demonstrate 
again that relevant data is better data.  

To test our online model optimization method, 
we divide the baseline corpus according to the ori-
gins of sub corpus. That is, the FBIS, HK_ Han-
sards and HK_News models are used as three sub-
models and the baseline model is used as general 
model. The four weighting schemes described in 
section 3.2 are used as online weighting schemes 
individually. The experimental results are shown in 
Table 6. S_i indicates the system using weighting 
scheme i.   

      System 
Test data FBIS HK_ 

Hansards 
HK_
News Baseline

FBIS-part 0.1096 0.0687 0.0622 0.1030
HK_Hans_part 0.0726 0.0918 0.0846 0.0897
HK_News_part 0.0664 0.0801 0.0936 0.0870

MT05_part 0.1130 0.0805 0.0776 0.1116
Whole test set 0.0937 0.0799 0.0781 0.0993

Table 5. Baseline results on new test set 
      System 

Test data S_1 S_2 S_3 S_4 

FBIS-part 0.1090 0.1090 0.1089 0.1089
HK_Hans_part 0.0906 0.0903 0.0902 0.0902
HK_News_part 0.0952 0.0950 0.0933 0.0934

MT05_part 0.1119 0.1123 0.1149 0.1151
Whole test set 0.1034 0.1034 0.1038 0.1038

Table 6. Online model optimization results 

Different weighting schemes don’t show signifi-
cant improvements from each other. However, all 
the four weighting schemes achieve better results 
than the baseline system. The improvements are 
shown not only on the whole test set but also on 
each part of the sub test set. The results justify the 
effectiveness of our online model optimization 
method.  

5 Related work 

Most previous research on SMT training data is 
focused on parallel data collection. Some work 
tries to acquire parallel sentences from web (Nie et 
al. 1999; Resnik and Smith 2003; Chen et al. 2004). 
Others extract parallel sentences from comparable 
or non-parallel corpora (Munteanu and Marcu 
2005, 2006). These work aims to collect more 

parallel training corpora, while our work aims to 
make better use of existing parallel corpora.  

Some research has been conducted on parallel 
data selection and adaptation. Eck et al. (2005) 
propose a method to select more informative sen-
tences based on n-gram coverage. They use n-
grams to estimate the importance of a sentence. 
The more previously unseen n-grams in the sen-
tence the more important the sentence is. TF-IDF 
weighting scheme is also tried in their method, but 
didn’t show improvements over n-grams. This 
method is independent of test data. Their goal is to 
decrease the amount of training data to make SMT 
system adaptable to small devices. Similar to our 
work, Hildebrand et al. (2005) also use information 
retrieval method for translation model adaptation.  
They select sentences similar to the test set from 
available in-of-domain and out-of-domain training 
data to form an adapted translation model. Differ-
ent from their work, our method further use the 
small adapted data to optimize the distribution of 
the whole training data. It takes the full advantage 
of larger data and adapted data. In addition, we 
also propose an online translation model optimiza-
tion method, which make it possible to select 
adapted translation model for each individual sen-
tence. 

Since large scale monolingual corpora are easier 
to obtain than parallel corpora. There has some 
research on language model adaptation recent 
years. Zhao et al. (2004) and Eck et al.(2004) in-
troduce information retrieval method for language 
model adaptation. Zhang et al.(2006)  and  Mauser 
et al.(2006) use adapted language model for SMT 
re-ranking. Since language model is built for target 
language in SMT, one pass translation is usually 
needed to generate n-best translation candidates in 
language model adaptation. Translation model ad-
aptation doesn’t need a pre-translation procedure. 
Comparatively, it is more direct. Language model 
adaptation and translation model adaptation are 
good complement to each other. It is possible that 
combine these two adaptation approaches could 
further improve machine translation performance. 

6 Conclusion and future work 

This paper presents two new methods to im-
prove statistical machine translation performance 
by making better use of the available parallel train-
ing corpora. The offline data selection method 
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adapts the training corpora to the test domain by 
retrieving similar sentence pairs and redistributing 
their weight in the training data. Experimental re-
sults show that the selected small subset achieves 
comparable or even better performance than the 
baseline system with much less training data. The 
optimized training data can further improve trans-
lation performance without using any additional 
resource. The online model optimization method 
adapts the translation model to the online test 
sentence by redistributing the weight of each 
predefined submodels. Preliminary results show 
the effectiveness of the method. Our work also 
demonstrates that in addition to larger training data, 
more relevant training data is also important for 
SMT model training. 

In future work, we will improve our methods in 
several aspects. Currently, the similar sentence re-
trieval model and the weighting schemes are very 
simple. It might work better by trying other sophis-
ticated similarity measure models or using some 
optimization algorithms to determine submodel’s 
weights. Introducing language model optimization 
into our system might further improve translation 
performance.  
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Abstract

We present a domain-independent unsuper-
vised topic segmentation approach based on
hybrid document indexing. Lexical chains
have been successfully employed to evalu-
ate lexical cohesion of text segments and to
predict topic boundaries. Our approach is
based in the notion of semantic cohesion. It
uses spectral embedding to estimate seman-
tic association between content nouns over a
span of multiple text segments. Our method
significantly outperforms the baseline on the
topic segmentation task and achieves perfor-
mance comparable to state-of-the-art meth-
ods that incorporate domain specific infor-
mation.

1 Introduction

The goal of topic segmentation is to discover story
boundaries in the stream of text or audio recordings.
Story is broadly defined as segment of text contain-
ing topically related sentences. In particular, the
task may require segmenting a stream of broadcast
news, addressed by the Topic Detection and Track-
ing (TDT) evaluation project (Wayne, 2000; Allan,
2002). In this case topically related sentences belong
to the same news story. While we are considering
TDT data sets in this paper, we would like to pose
the problem more broadly and consider a domain-
independent approach to topic segmentation.

Previous research on topic segmentation has
shown that lexical coherence is a reliable indicator
of topical relatedness. Therefore, many approaches

have concentrated on different ways of estimating
lexical coherence of text segments, such as seman-
tic similarity between words (Kozima, 1993), sim-
ilarity between blocks of text (Hearst, 1994), and
adaptive language models (Beeferman et al., 1999).
These approaches use word repetitions to evaluate
coherence. Since the sentences covering the same
story represent a coherent discourse segment, they
typically contain the same or related words. Re-
peated words build lexical chains that are conse-
quently used to estimate lexical coherence. This can
be done either by analyzing the number of overlap-
ping lexical chains (Hearst, 1994) or by building a
short-range and long-range language model (Beefer-
man et al., 1999). More recently, topic segmentation
with lexical chains has been successfully applied to
segmentation of news stories, multi-party conversa-
tion and audio recordings (Galley et al., 2003).

When the task is to segment long streams of text
containing stories which may continue at a later
point in time, for example developing news stories,
building of lexical chains becomes intricate. In ad-
dition, the word repetitions do not account for syn-
onymy and semantic relatedness between words and
therefore may not be able to discover coherence of
segments with little word overlap.

Our approach aims at discovering semantic relat-
edness beyond word repetition. It is based on the
notion of semantic cohesion rather than lexical cohe-
sion. We propose to use a similarity metric between
segments of text that takes into account semantic as-
sociations between words spanning a number of seg-
ments. This method approximates lexical chains by
averaging the similarity to a number of previous text
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segments and accounts for synonymy by using a hy-
brid document indexing scheme. Our text segmen-
tation experiments show a significant performance
improvement over the baseline.

The rest of the paper is organized as follows. Sec-
tion 2 discusses hybrid indexing. Section 3 describes
our segmentation algorithm. Section 5 reports the
experimental results. We conclude in section 6.

2 Hybrid Document Indexing

For the topic segmentation task we would like to de-
fine a similarity measure that accounts for synonymy
and semantic association between words. This simi-
larity measure will be used to evaluate semantic co-
hesion between text units and the decrease in seman-
tic cohesion will be used as an indicator of a story
boundary. First, we develop a document representa-
tion which supports this similarity measure.

Capturing semantic relations between words in
a document representation is difficult. Different
approaches tried to overcome the term indepen-
dence assumption of the bag-of-words representa-
tion (Salton and McGill, 1983) by using distribu-
tional term clusters (Slonim and Tishby, 2000) and
expanding the document vectors with synonyms, see
(Levow et al., 2005). Since content words can be
combined into semantic classes there has been a
considerable interest in low-dimensional representa-
tions. Latent Semantic Analysis (LSA) (Deerwester
et al., 1990) is one of the best known dimension-
ality reduction algorithms. In the LSA space doc-
uments are indexed with latent semantic concepts.
LSA maps all words to low dimensional vectors.
However, the notion of semantic relatedness is de-
fined differently for subsets of the vocabulary. In ad-
dition, the numerical information, abbreviations and
the documents’ style may be very good indicators of
their topic. However, this information is no longer
available after the dimensionality reduction.

We use a hybrid approach to document indexing
to address these issues. We keep the notion of la-
tent semantic concepts and also try to preserve the
specifics of the document collection. Therefore, we
divide the vocabulary into two sets: nouns and the
rest of the vocabulary. The set of nouns does not
include proper nouns. We use a method of spec-
tral embedding, as described below and compute a

low-dimensional representation for documents using
only the nouns. We also compute atf-idf represen-
tation for documents using the other set of words.
Since we can treat each latent semantic concept in
the low-dimensional representation as part of the vo-
cabulary, we combine the two vector representations
for each document by concatenating them.

2.1 Spectral Embedding

A vector space representation for documents and
sentences is convenient and makes the similarity
metrics such as cosine and distance readily avail-
able. However, those metrics will not work if they
don’t have a meaningful linguistic interpretation.

Spectral methods comprise a family of algo-
rithms that embed terms and documents in a low-
dimensional vector space. These methods use pair-
wise relations between the data points encoded in a
similarity matrix. The main step is to find an embed-
ding for the data that preserves the original similari-
ties.

GLSA We use Generalized Latent Semantic Anal-
ysis (GLSA) (Matveeva et al., 2005) to compute
spectral embedding for nouns. GLSA computes
term vectors and since we would like to use spectral
embedding for nouns, it is well-suited for our ap-
proach. GLSA extends the ideas of LSA by defining
different ways to obtain the similarities matrix and
has been shown to outperform LSA on a number of
applications (Matveeva and Levow, 2006).

GLSA begins with a matrix of pair-wise term sim-
ilaritiesS, computes its eigenvectorsU and uses the
first k of them to represent terms and documents, for
details see (Matveeva et al., 2005). The justifica-
tion for this approach is the theorem by Eckart and
Young (Golub and Reinsch, 1971) stating that inner
product similarities between the term vectors based
on the eigenvectors ofS represent the best element-
wise approximation to the entries inS. In other
words, the inner product similarity in the GLSA
space preserves the semantic similarities inS.

Since our representation will try to preserve se-
mantic similarities inS it is important to have a ma-
trix of similarities which is linguistically motivated.
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Word Nearest Neighbors in GLSA Space
witness testify prosecutor trial testimony juror eyewitness
finance fund bank investment economy crisis category
broadcast television TV satellite ABC CBS radio
hearing hearing judge voice chatter sound appeal
surprise announcement disappointment stunning shock reaction astonishment
rest stay remain keep leave portion economy

Table 1: Words’ nearest neighbors in the GLSA semantic space.

2.2 Distributional Term Similarity

PMI Following (Turney, 2001; Matveeva et al.,
2005), we use point-wise mutual information (PMI)
to compute the matrixS. PMI between random vari-
ables representing the wordswi andwj is computed
as

PMI(wi, wj) = log
P (Wi = 1,Wj = 1)

P (Wi = 1)P (Wj = 1)
. (1)

Thus, for GLSA,S(wi, wj) = PMI(wi, wj).

Co-occurrence Proximity An advantage of PMI
is the notion of proximity. The co-occurrence statis-
tics for PMI are typically computed using a sliding
window. Thus, PMI will be large only for words that
co-occur within a small context of fixed size.

Semantic Association vs. Synonymy Although
GLSA was successfully applied to synonymy in-
duction (Matveeva et al., 2005), we would like to
point out that the GLSA discovers semantic associ-
ation in a broad sense. Table 1 shows a few words
from the TDT2 corpus and their nearest neighbors
in the GLSA space. We can see that for “witness”,
“finance” and “broadcast” words are grouped into
corresponding semantic classes. The nearest neigh-
bors for “hearing” and “stay” represent their differ-
ent senses. Interestingly, even for the abstract noun
“surprise” the nearest neighbors are meaningful.

2.3 Document Indexing

We have two sets of the vocabulary terms: a set of
nouns,N , and the other words,T . We computetf-idf
document vectors indexed with the words inT :

~di = (αi(w1), αi(w2), ..., αi(w|T |)), (2)

whereαi(wt) = tf(wt, di) ∗ idf(wt).

We also compute ak-dimensional representation
with latent conceptsci as a weighted linear combi-
nation of GLSA term vectors~wt:

~di = (c1, ..., ck) =
∑

t=1:|N |

αi(wt) ∗ ~wt, (3)

We concatenate these two representations to gener-
ate a hybrid indexing of documents:

~di = (αi(w1), ..., αi(w|T |), c1, ...ck) (4)

In our experiments, we compute document
and sentence representation using three indexing
schemes: thetf-idf baseline, the GLSA represen-
tation and the hybrid indexing. The GLSA index-
ing computes term vectors for all vocabulary words;
document and sentence vectors are generated as lin-
ear combinations of term vectors, as shown above.

2.4 Document similarity

One can define document similarity at different lev-
els of semantic content. Documents can be similar
because they discuss the same people or events and
because they discuss related subjects and contain se-
mantically related words. Hybrid Indexing allows
us to combine both definitions of similarity. Each
representation supports a different similarity mea-
sure.tf-idf uses term-matching, the GLSA represen-
tation uses semantic association in the latent seman-
tic space computed for all words, and hybrid index-
ing uses a combination of both: term-matching for
named entities and content words other than nouns
combined with semantic association for nouns.

In the GLSA space, the inner product between
document vectors contains all pair-wise inner prod-
uct between their words, which allows one to detect
semantic similarity beyond term matching:

〈~di, ~dj〉 =
∑

w∈di

∑

v∈dj

αi(w)αj(v)〈~w,~v〉 (5)
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If documents contain words which are different but
semantically related, the inner product between the
term vectors will contribute to the document similar-
ity, as illustrated with an example in section 5.

When we compare two documents indexed with
the hybrid indexing scheme, we compute a combi-
nation of similarity measures:

〈~di, ~dj〉 =
∑

nk∈di

∑

nm∈dj

αi(nk)αj(nm)〈 ~nk, ~nm〉+

∑

t∈T

αi(t) ∗ αj(t).

(6)

Document similarity contains semantic association
between all pairs of nouns and uses term-matching
for the rest of the vocabulary.

3 Topic Segmentation with Semantic
Cohesion

Our approach to topic segmentation is based on
semantic cohesion supported by the hybrid index-
ing. Topic segmentation approaches use either sen-
tences (Galley et al., 2003) or blocks of words as
text units (Hearst, 1994). We used both variants
in our experiments. When using blocks, we com-
puted blocks of a fixed size (typically 20 words) slid-
ing over the documents in a fixed step size (10 or
5 words). The algorithm predicts a story boundary
when the semantic cohesion between two consecu-
tive units drops. Blocks can cross story boundaries,
thus many predicted boundaries will be displaced
with respect to the actual boundary.

Averaged similarity In our preliminary experi-
ments we used the largest difference in score to pre-
dict story boundary, following the TextTiling ap-
proach (Hearst, 1994). We found, however, that in
our document collection the word overlap between
sentences was often not large and pair-wise similar-
ity could drop to zero even for sentences within the
same story, as will be illustrated below. We could
not obtain satisfactory results with this approach.

Therefore, we used the average similarity by us-
ing a history of fixed sizen. The semantic cohesion
score was computed for the position between two

text units,ti andtj as follows:

score(ti, tj) =
1

n

n−1∑

k=0

〈ti−k, tj〉 (7)

Our approach predicts story boundaries at the min-
ima of the semantic cohesion score.

Approximating Lexical Chains One of the mo-
tivations for our cohesion score is that it approxi-
mates lexical chains, as for example in (Galley et al.,
2003). Galley et al. (Galley et al., 2003) define lex-
ical chainsR1, .., RN by considering repetitions of
termst1, .., tN and assigning larger weights to short
and compact chains. Then the lexical cohesion score
between two text unitsti andtj is based on the num-
ber of chains that overlap both of them:

score(ti, tj) =
N∑

k=1

wk(ti)wk(tj), (8)

wherewk(ti) = score(Rj) if the chainRj over-
lapsti and zero otherwise. Our cohesion score takes
into account only the chains for words that occur in
tj and have another occurrence withinn previous
sentences. Due to this simplification, we compute
the score based on inner products. Once we make
the transition to inner products, we can use hybrid
indexing and compute semantic cohesion score be-
yond term repetition.

4 Related Approaches

We compare our approach to the LCseg algorithm
which uses lexical chains to estimate topic bound-
aries (Galley et al., 2003). Hybrid indexing allows
us to compute semantic cohesion score rather than
the lexical cohesion score based on word repetitions.

Choi at al. used LSA for segmentation (Choi et
al., 2001). LSA (Deerwester et al., 1990) is a spe-
cial case of spectral embedding and Choi at al. (Choi
et al., 2001) used all vocabulary words to com-
pute low-dimensional document vectors. We use
GLSA (Matveeva et al., 2005) because it computes
term vectors as opposed to the dual document-term
representation with LSA and uses a different ma-
trix of pair-wise similarities. Furthermore, Choi
at al. (Choi et al., 2001) used clustering to predict
boundaries whereas we used the average similarity
scores.
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s1: TheCuban news agency Prensa Latina called Clinton ’s announcement Friday that Cubans picked up

at sea will be taken to Guantanamo Bay naval base a “ new and dangerous element ” in U S immigration policy.

s2: TheCuban government has not yet publicly reacted to Clinton ’s announcement that Cuban rafters

will be turned away from the United States and taken to the U S base on the southeast tip of Cuba.

s5: The arrival ofCuban emigrants could be an “ extraordinary aggravation ” to the situation , Prensa Latina said.

s6: It noted thatCuba had already denounced the use of the base as a camp for Haitianrefugees.

whom it had for many years encouraged to come to the United States.

s8: Cuba considers the land at the naval base , leased to the United States at the turn of the century,

to be illegally occupied.

s10:General Motors Corp said Friday it was recalling 5,600 1993-94 model Chevrolet Lumina, Pontiac

Trans Sport and Oldsmobile Silhouette minivans equipped with a power sliding door and built-in child seats.

s14: If this occurs , the shoulder belt may not properly retract , thecarmaker said.

s15:GM is the only company to offer the power-sliding door.

s16: Thecompany said it was not aware of any accidents or injuries related to the defect.

s17: To correct the problem ,GM said dealers will install a modified interior trim piece thatwill reroute the seat belt.

Table 2: TDT. The first 17 sentences in the first file.

Existing approaches to hybrid indexing used dif-
ferent weights for proper nouns, nouns phrase heads
and use WordNet synonyms to expand the docu-
ments, for example (Hatzivassiloglou et al., 2000;
Hatzivassiloglou et al., 2001). Our approach does
not require linguistic resources and learning the
weights. The semantic associations between nouns
are estimated using spectral embedding.

5 Experiments

5.1 Data

The first TDT collection is part of the LCseg
toolkit1 (Galley et al., 2003) and we used it to com-
pare our approach to LCseg. We used the part of this
collection with 50 files with 22 documents each.

We also used the TDT2 collection2 of news arti-
cles from six news agencies in 1998. We used only
9,738 documents that are assigned to one topic and
have length more than 50 words. We used the Lemur
toolkit3 with stemming and stop words list for the
tf-idf indexing; we used Bikel’s parser4 to obtain
the POS-tags and select nouns; we used the PLA-
PACK package (Bientinesi et al., 2003) to compute
the eigenvalue decomposition.

1http://www1.cs.columbia.edu/ galley/tools.html
2http://nist.gov/speech/tests/tdt/tdt98/
3http://www.lemurproject.org/
4http://www.cis.upenn.edu/ dbikel/software.html

Evaluation For the TDT data we use the error
metric pk (Beeferman et al., 1999) and WindowD-
iff (Pevzner and Hearst, 2002) which are imple-
mented in the LCseg toolkit. We also used the
TDT cost metric Cseg5, with the default parameters
P(seg)=0.3, Cmiss=1, Cfa=0.3 and distance of 50
words. All these measures look at two units (words
or sentences)N units apart and evaluate how well
the algorithm can predict whether there is a bound-
ary between them or not. Lower values mean better
performance for all measures.

Global vs. Local GLSA Similarity To obtain the
PMI values we used the TDT2 collection, denoted as
GLSAlocal. Since co-occurrence statistics based on
larger collections give a better approximation to lin-
guistic similarities, we also used 700,000 documents
from the English GigaWord collection, denoted as
GLSA. We used a window of size 8.

5.2 Topic Segmentation

The first set of experiments was designed to evaluate
the advantage of the GLSA representation over the
baseline. We compare our approach to the LCseg
algorithm (Galley et al., 2003) and use sentences as
segmentation unit. To avoid the issue of parameters
setting when the number of boundaries is not known,
we provide each algorithm with the actual numbers

5www.nist.gov/speech/tests/tdt/tdt98/doc/
tdt2.eval.plan.98.v3.7.ps
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Figure 1: TDT. Pair-wise sentence similarities fortf-idf (left), GLSA (middle); x-axis shows story bound-
aries. Details for the first 20 sentences, table 2 (right).
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Figure 2: TDT. Pair-wise sentence similarities fortf-idf (left), GLSA (middle) averaged over 10 preceeding
sentences; LCseg lexical cohesion scores (right). X-axis shows story boundaries.

of boundaries.

TDT We use the LCseg approach and our ap-
proach with the baselinetf-idf representation and the
GLSA representation to segment this corpus. Ta-
ble 2 shows a few sentences. Many content words
are repeated, so the lexical chains is definitely a
sound approach. As shown in Table 2, in the first
story the word “Cuba” or “Cuban” is repeated in ev-
ery sentence thus generating a lexical chain. On the
topic boundary, the word overlap between sentences
is very small. At the same time, the repetition of
words may also be interrupted within a story: sen-
tence 5, 6 and sentences 14, 15, 16 have little word
overlap. LCseg deals with this by defining several
parameters to control chain length and gaps. This
simple example illustrates the potential benefit of se-
mantic cohesion. Table 2 shows that “General Mo-
tors” or “GM” are not repeated in every sentence of
the second story. However, “GM”, “carmaker” and

“company” are semantically related. Making this
information available to the segmentation algorithm
allows it to establish a connection between each sen-
tence of the second story.

We computed pair-wise sentence similarities be-
tween pairs of consecutive sentences in thetf-idf and
GLSA representations. Figure 1 shows the similar-
ity values plotted for each sentence break. The pair-
wise similarities based on term-matching are very
spiky and there are many zeros within the story. The
GLSA-based similarity makes the dips in the simi-
larities at the boundaries more prominent. The last
plot gives the details for the sentences in table 2.
In the tf-idf representation sentences without word
overlap receive zero similarity but the GLSA repre-
sentation is able to use the semantic association be-
tween between “emigrants” and “refugees” for sen-
tences 5 and 6, and also the semantic association be-
tween “carmaker” and “company” for sentences 14
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Measure tf-idf GLSA LCseg
Pmiss 0.29 0.19 N/A
Pfa 0.14 0.09 N/A
Cseg 0.18 0.08 N/A
pk 0.24 0.17 0.07
wd 0.27 0.21 0.10

Table 3: TDT segmentation results.

and 15.
This effect increases as we use the semantic cohe-

sion score as in equation 7. Figure 2 shows the simi-
larity values fortf-idf and GLSA and also the lexical
cohesion scores computed by LCseg. The GLSA-
based similarities are not quite as smooth as the LC-
seg scores, but they correctly discover the bound-
aries. LCseg parameters are fine-tuned for this doc-
ument collection. We used a general TDT2 GLSA
representation for this collection, and the only seg-
mentation parameter we used is to avoid placing
next boundary withinn=3 sentences of the previ-
ous one. For this reason the predicted boundary may
be one sentence off the actual boundary. These re-
sults are summarized in Table 3. The GLSA repre-
sentation performs significantly better than thetf-idf
baseline. Itspk and WindowDiff scores with default
parameters for LCseg are worse than for LCseg. We
attribute it to the fact that we did not fine-tuned our
method to this collection and that boundaries are of-
ten placed one position off the actual boundary.

TDT2 For this collection we used three different
indexing schemes: thetf-idf baseline, the GLSA rep-
resentation and the hybrid indexing. Each represen-
tation supports a different similarity measure. Our
TDT experiments showed that the semantic cohe-
sion score based on the GLSA representation im-
proves the segmentation results. The variant of
the TDT corpus we used is rather small and well-
balanced, see (Galley et al., 2003) for details. In
the second phase of experiments we evaluate our ap-
proach on the larger TDT2 corpus. The experiments
were designed to address the following issues:

• performance comparison between GLSA and
Hybrid indexing representations. As men-
tioned before, GLSA embeds all words in
a low-dimensional space. Whereas semantic

#b known
Method Pmiss Pfa Cseg
tf-idf 0.52 0.14 0.19
GLSA 0.4 0.1 0.14
GLSA local 0.44 0.12 0.16
Hybrid 0.34 0.10 0.12
Hybrid local 0.38 0.09 0.13
LCseg 0.80 0.19 0.28

#b unknown
Method Pmiss Pfa Cseg
tf-idf 0.42 0.2 0.17
GLSA 0.37 0.13 0.14
GLSA local 0.35 0.19 0.14
Hybrid 0.26 0.16 0.11
Hybrid local 0.27 0.18 0.12

Table 4: TDT2 segmentation results. Sliding blocks
with size 20 and stepsize 10; similarity averaged
over 10 preceeding blocks.

classes for nouns have theoretical linguistic jus-
tification, it is harder to motivate a latent space
representation for example for proper nouns.
Therefore, we want to evaluate the advantage
of using spectral embedding only for nouns.

• collection dependence of similarities. The sim-
ilarity matrix S is computed using the TDT2
corpus (GLSAlocal) and using the larger Giga-
Word corpus. The larger corpus provides more
reliable co-occurrence statistics. On the other
hand, word distribution is different from that
in the TDT2 corpus. We wanted to evaluate
whether semantic similarities are collection in-
dependent.

Table 4 shows the performance evaluation. We show
the results computed using blocks containing 20
words (after preprocessing) with step size 10. We
tried other parameter values but did not achieve bet-
ter performance, which is consistent with other re-
search (Hearst, 1994; Galley et al., 2003). We show
the results for two settings: predict a known num-
ber of boundaries, and predict boundaries using a
threshold. In our experiments we used the average
of the smallestN scores as threshold,N = 4000
showing best results.
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The spectral embedding based representations
(GLSA, Hybrid) significantly outperform the base-
line. This confirms the advantage of the semantic
cohesion score vs. term-matching. Hybrid index-
ing outperforms the GLSA representation support-
ing our intuition that semantic association is best de-
fined for nouns.

We used the GigaWord corpus to obtain the pair-
wise word associations for the GLSA and Hybrid
representations. We also computed GLSAlocal and
Hybridlocal using the TDT2 corpus to obtain the
pair-wise word associations. The co-occurrence
statistics based on the GigaWord corpus provide
more reliable estimations of semantic association
despite the difference in term distribution. The dif-
ference is larger for the GLSA case when we com-
pute the embedding for all words, GLSA performs
better than GLSAlocal. Hybridlocal performs only
slightly worse than Hybrid. This seems to support
the claim that semantic associations between nouns
are largely collection independent. On the other
hand, semantic associations for proper names are
collection dependent at least because the collections
are static but the semantic relations of proper names
may change over time. The semantic space for a
name of a president, for example, is different for the
period of time of his presidency and for the time be-
fore and after that.

Disappointingly, we could not achieve good re-
sults with LCseg. It tends to split stories into short
paragraphs. Hybrid indexing could achieve results
comparable to state-of-the art approaches, see (Fis-
cus et al., 1998) for an overview.

6 Conclusion and Future Work

We presented a topic segmentation approach based
on semantic cohesion scores. Our approach is do-
main independent, does not require training or use
of lexical resources. The scores are computed based
on the hybrid document indexing which uses spec-
tral embedding in the space of latent concepts for
nouns and keeps proper nouns and other specifics of
the documents collections unchanged. We approxi-
mate the lexical chains approach by simplifying the
definition of a chain which allows us to use inner
products as basis for the similarity score. The simi-
larity score takes into account semantic relations be-

tween nouns beyond term matching. This semantic
cohesion approach showed good results on the topic
segmentation task.

We intend to extend the hybrid indexing approach
by considering more vocabulary subsets. Syntactic
similarity is more appropriate for verbs, for exam-
ple, than co-occurrence. As a next step, we intend to
embed verbs using syntactic similarity. It would also
be interesting to use lexical chains for proper names
and learn the weights for different similarity scores.
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Abstract

We present a method for improving word
alignment for statistical syntax-based ma-
chine translation that employs a syntacti-
cally informed alignment model closer to
the translation model than commonly-used
word alignment models. This leads to ex-
traction of more useful linguistic patterns
and improved BLEU scores on translation
experiments in Chinese and Arabic.

1 Methods of statistical MT

Roughly speaking, there are two paths commonly
taken in statistical machine translation (Figure 1).
The idealistic path uses an unsupervised learning
algorithm such as EM (Demptser et al., 1977)
to learn parameters for some proposed translation
model from a bitext training corpus, and then di-
rectly translates using the weighted model. Some
examples of the idealistic approach are the direct
IBM word model (Berger et al., 1994; Germann
et al., 2001), the phrase-based approach of Marcu
and Wong (2002), and the syntax approaches of Wu
(1996) and Yamada and Knight (2001). Idealistic
approaches are conceptually simple and thus easy to
relate to observed phenomena. However, as more
parameters are added to the model the idealistic ap-
proach has not scaled well, for it is increasingly dif-
ficult to incorporate large amounts of training data
efficiently over an increasingly large search space.
Additionally, the EM procedure has a tendency to
overfit its training data when the input units have
varying explanatory powers, such as variable-size
phrases or variable-height trees.

The realistic path also learns a model of transla-
tion, but uses that model only to obtain Viterbi word-
for-word alignments for the training corpus. The
bitext and corresponding alignments are then used
as input to a pattern extraction algorithm, which
yields a set of patterns or rules for a second trans-
lation model (which often has a wider parameter
space than that used to obtain the word-for-word
alignments). Weights for the second model are then
set, typically by counting and smoothing, and this
weighted model is used for translation. Realistic ap-
proaches scale to large data sets and have yielded
better BLEU performance than their idealistic coun-
terparts, but there is a disconnect between the first
model (hereafter, thealignment model) and the sec-
ond (thetranslation model). Examples of realistic
systems are the phrase-based ATS system of Och
and Ney (2004), the phrasal-syntax hybrid system
Hiero (Chiang, 2005), and the GHKM syntax sys-
tem (Galley et al., 2004; Galley et al., 2006). For
an alignment model, most of these use the Aachen
HMM approach (Vogel et al., 1996), the implemen-
tation of IBM Model 4 in GIZA++ (Och and Ney,
2000) or, more recently, the semi-supervised EMD
algorithm (Fraser and Marcu, 2006).

The two-model approach of the realistic path has
undeniable empirical advantages and scales to large
data sets, but new research tends to focus on devel-
opment of higher order translation models that are
informed only by low-order alignments. We would
like to add the analytic power gained from mod-
ern translation models to the underlying alignment
model without sacrificing the efficiency and empiri-
cal gains of the two-model approach. By adding the
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u n s u p e r v i s e dl e a r n i n gt a r g e ts e n t e n c e ss o u r c es e n t e n c e s
u n w e i g h t e dm o d e l w e i g h t e dm o d e l

p a t t e r n s( u n w e i g h t e dm o d e l )c o u n t i n ga n ds m o o t h i n g w e i g h t e dm o d e l d e c o d e rs o u r c es e n t e n c e s
t a r g e ts e n t e n c e s

p a t t e r ne x t r a c t i o nt a r g e ts e n t e n c e ss o u r c es e n t e n c e s
V i t e r b ia l i g n m e n t s

I d e a l i s t i cS y s t e m
R e a l i s t i cS y s t e m

d e c o d e rs o u r c es e n t e n c e st a r g e ts e n t e n c e s

Figure 1: General approach to idealistic and realistic statistical MT systems

syntactic information used in the translation model
to our alignment model we may improve alignment
quality such that rule quality and, in turn, system
quality are improved. In the remainder of this work
we show how a touch of idealism can improve an
existing realistic syntax-based translation system.

2 Multi-level syntactic rules for syntax MT

Galley et al. (2004) and Galley et al. (2006) de-
scribe a syntactic translation model that relates En-
glish trees to foreign strings. The model describes
joint production of a (tree, string) pair via a non-
deterministic selection of weighted rules. Each rule
has an English tree fragment with variables and a
corresponding foreign string fragment with the same
variables. A series of rules forms an explanation (or
derivation) of the complete pair.

As an example, consider the parsed English and
corresponding Chinese at the top of Figure 2. The
three columns underneath the example are different
rule sequences that can explain this pair; there are
many other possibilities. Note how rules specify ro-
tation (e.g. R10, R5), direct translation (R12, R8),
insertion and deletion (R11, R1), and tree traversal
(R7, R15). Note too that the rules explain variable-

size fragments (e.g. R6 vs. R14) and thus the possi-
ble derivation trees of rules that explain a sentence
pair have varying sizes. The smallest such deriva-
tion tree has a single large rule (which does not ap-
pear in Figure 2; we leave the description of such
a rule as an exercise for the reader). A string-to-
tree decoder constructs aderivation forest of deriva-
tion trees where the right sides of the rules in a tree,
taken together, explain a candidate source sentence.
It then outputs the English tree corresponding to the
highest-scoring derivation in the forest.

3 Introducing syntax into the alignment
model

We now lay the ground for a syntactically motivated
alignment model. We begin by reviewing an align-
ment model commonly seen in realistic MT systems
and compare it to a syntactically-aware alignment
model.

3.1 The traditional IBM alignment model

IBM Model 4 (Brown et al., 1993) learns a set of 4
probability tables to computep(f |e) given a foreign
sentencef and its target translatione via the follow-
ing (greatly simplified) generative story:
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Figure 2: A (English tree, Chinese string) pair and three different sets of multilevel tree-to-string rules that
can explain it; the first set is obtained from bootstrap alignments, the secondfrom this paper’s re-alignment
procedure, and the third is a viable, if poor quality, alternative that is not learned.
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Figure 3: The impact of a bad alignment on rule extraction. Including the alignment link indicated by the
dotted line in the example leads to the rule set in the second row. The re-alignment procedure described in
Section 3.2 learns to prefer the rule set at bottom, which omits the bad link.

1. A fertility y for each wordei in e is chosen
with probabilitypfert(y|ei).

2. A null word is inserted next to each
fertility-expanded word with probability
pnull.

3. Each tokenei in the fertility-expanded
word and null string is translated into
some foreign wordfi in f with probability
ptrans(fi|ei).

4. The position of each foreign word
fi that was translated fromei is
changed by∆ (which may be posi-
tive, negative, or zero) with probability

pdistortion(∆|A(ei),B(fi)), whereA and
B are functions over the source and target
vocabularies, respectively.

Brown et al. (1993) describes an EM algorithm
for estimating values for the four tables in the gener-
ative story. However, searching the space of all pos-
sible alignments is intractable for EM, so in practice
the procedure is bootstrapped by models with nar-
rower search space such as IBM Model 1 (Brown et
al., 1993) or Aachen HMM (Vogel et al., 1996).
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3.2 A syntax re-alignment model

Now let us contrast this commonly used model for
obtaining alignments with a syntactically motivated
alternative. We recall the rules described in Section
2. Our model learns a single probability table to
computep(etree, f) given a foreign sentencef and
a parsed target translationetree. In the following
generative story we assume a starting variable with
syntactic typev.

1. Choose a ruler to replacev, with proba-
bility prule(r|v).

2. For each variable with syntactic typevi in
the partially completed (tree, string) pair,
continue to choose rulesri with probabil-
ity prule(ri|vi) to replace these variables
until there are no variables remaining.

In Section 5.1 we discuss an EM learning proce-
dure for estimating these rule probabilities.

As in the IBM approach, we must miti-
gate intractability by limiting the parameter space
searched, which is potentially much wider than in
the word-to-word case. We would like to supply to
EM all possible rules that explain the training data,
but this implies a rule relating each possible tree
fragment to each possible string fragment, which is
infeasible. We follow the approach of bootstrapping
from a model with a narrower parameter space as is
done in, e.g. Och and Ney (2000) and Fraser and
Marcu (2006).

To reduce the model space we employ the rule ac-
quisition technique of Galley et al. (2004), which
obtains rules given a (tree, string) pair as well as
an initial alignment between them. We are agnos-
tic about the source of this bootstrap alignment and
in Section 5 present results based on several differ-
ent bootstrap alignment qualities. We require an ini-
tial set of alignments, which we obtain from a word-
for-word alignment procedure such as GIZA++ or
EMD. Thus, we are not aligning input data, but
ratherre-aligning it with a syntax model.

4 The appeal of a syntax alignment model

Consider the example of Figure 2 again. The left-
most derivation is obtained from the bootstrap align-
ment set. This derivation is reasonable but there are
some poorly motivated rules, from a linguistic stand-
point. The Chinese wordÜÜÜ��� roughly means “the

SENTENCE PAIRS

DESCRIPTION CHINESE ARABIC

TUNE NIST 2002 short 925 696
TEST NIST 2003 919 663

Table 1: Tuning and testing data sets for the MT
system described in Section 5.2.

two shores” in this context, but the rule R6 learned
from the alignment incorrectly includes “between”.
However, other sentences in the training corpus have
the correct alignment, which yields rule R16. Mean-
while, rules R13 and R14, learned from yet other
sentences in the training corpus, handle theóóó ...¥¥¥
structure (which roughly translates to “in between”),
thus allowing the middle derivation.

EM distributes rule probabilities in such a way as
to maximize the probability of the training corpus.
It thus prefers to use one rule many times instead
of several different rules for the same situation over
several sentences, if possible. R6 is a possible rule
in 46 of the 329,031 sentence pairs in the training
corpus, while R16 is a possible rule in 100 sentence
pairs. Well-formed rules are more usable than ill-
formed rules and the partial alignments behind these
rules, generally also well-formed, become favored
as well. The top row of Figure 3 contains an exam-
ple of an alignment learned by the bootstrap align-
ment model that includes an incorrect link. Rule
R24, which is extracted from this alignment, is a
poor rule. A set of commonly seen rules learned
from other training sentences provide a more likely
explanation of the data, and the consequent align-
ment omits the spurious link.

5 Experiments

In this section, we describe the implementation of
our semi-idealistic model and our means of evaluat-
ing the resulting re-alignments in an MT task.

5.1 The re-alignment setup

We begin with a training corpus of Chinese-English
and Arabic-English bitexts, the English side parsed
by a reimplementation of the standard Collins model
(Bikel, 2004). In order to acquire a syntactic rule set,
we also need a bootstrap alignment of each training
sentence. We use an implementation of the GHKM
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BOOTSTRAPGIZA CORPUS RE-ALIGNMENT EXPERIMENT

ENGLISH WORDS CHINESE WORDS TYPE RULES TUNE TEST

9,864,294 7,520,779
baseline 19,138,252 39.08 37.77
initial 18,698,549 39.49 38.39

adjusted 26,053,341 39.76 38.69

Table 2: A comparison of Chinese BLEU performance between the GIZA baseline (no re-alignment), re-
alignment as proposed in Section 3.2, and re-alignment as modified in Section 5.4

algorithm (Galley et al., 2004) to obtain a rule set for
each bootstrap alignment.

Now we need an EM algorithm for learn-
ing the parameters of the rule set that maximize∏

corpus

p(tree, string). Such an algorithm is pre-

sented by Graehl and Knight (2004). The algorithm
consists of two components: DERIV, which is a pro-
cedure for constructing a packed forest of derivation
trees of rules that explain a (tree, string) bitext cor-
pus given that corpus and a rule set, and TRAIN,
which is an iterative parameter-setting procedure.

We initially attempted to use the top-down DE-
RIV algorithm of Graehl and Knight (2004), but as
the constraints of the derivation forests are largely
lexical, too much time was spent on exploring dead-
ends. Instead we build derivation forests using the
following sequence of operations:

1. Binarize rules using the synchronous bina-
rization algorithm for tree-to-string trans-
ducers described in Zhang et al. (2006).

2. Construct a parse chart with a CKY parser
simultaneously constrained on the foreign
string and English tree, similar to the
bilingual parsing of Wu (1997)1.

3. Recover all reachable edges by traversing
the chart, starting from the topmost entry.

Since the chart is constructed bottom-up, leaf lex-
ical constraints are encountered immediately, result-
ing in a narrower search space and faster running
time than the top-down DERIV algorithm for this
application. Derivation forest construction takes
around 400 hours of cumulative machine time (4-
processor machines) for Chinese. The actual run-
ning of EM iterations (which directly implements
the TRAIN algorithm of Graehl and Knight (2004))

1In the cases where a rule is not synchronous-binarizable
standard left-right binarization is performed and proper permu-
tation of the disjoint English tree spans must be verified when
building the part of the chart that uses this rule.

takes about 10 minutes, after which the Viterbi
derivation trees are directly recoverable. The Viterbi
derivation tree tells us which English words produce
which Chinese words, so we can extract a word-
to-word alignment from it. We summarize the ap-
proach described in this paper as:

1. Obtain bootstrap alignments for a training
corpus using GIZA++.

2. Extract rules from the corpus and align-
ments using GHKM, noting the partial
alignment that is used to extract each rule.

3. Construct derivation forests for each (tree,
string) pair, ignoring the alignments, and
run EM to obtain Viterbi derivation trees,
then use the annotated partial alignments
to obtain Viterbi alignments.

4. Use the new alignments as input to the MT
system described below.

5.2 The MT system setup

A truly idealistic MT system would directly apply
the rule weight parameters learned via EM to a ma-
chine translation task. As mentioned in Section 1,
we maintain the two-model, or realistic approach.
Below we briefly describe the translation model, fo-
cusing on comparison with the previously described
alignment model. Galley et al. (2006) provides a
more complete description of the translation model
and DeNeefe et al. (2007) provides a more complete
description of the end-to-end translation pipeline.

Although in principle the re-alignment model and
translation model learn parameter weights over the
same rule space, in practice we limit the rules used
for re-alignment to the set of smallest rules that ex-
plain the training corpus and are consistent with the
bootstrap alignments. This is a compromise made
to reduce the search space for EM. The translation
model learns multiple derivations of rules consistent
with the re-alignments for each sentence, and learns
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(a) Chinese re-alignment corpus has 9,864,294 English and 7,520,779 Chinese words

BOOTSTRAPGIZA CORPUS RE-ALIGNMENT EXPERIMENT

ENGLISH WORDS CHINESE WORDS TYPE RULES TUNE TEST

9,864,294 7,520,779
baseline 19,138,252 39.08 37.77

re-alignment 26,053,341 39.76 38.69

221,835,870 203,181,379
baseline 23,386,535 39.51 38.93

re-alignment 33,374,646 40.17 39.96

(b) Arabic re-alignment corpus has 4,067,454 English and 3,147,420Arabic words

BOOTSTRAPGIZA CORPUS RE-ALIGNMENT EXPERIMENT

ENGLISH WORDS ARABIC WORDS TYPE RULES TUNE TEST

4,067,454 3,147,420
baseline 2,333,839 47.92 47.33

re-alignment 2,474,737 47.87 47.89

168,255,347 147,165,003
baseline 3,245,499 49.72 49.60

re-alignment 3,600,915 49.73 49.99

Table 3: Machine Translation experimental results evaluated with case-insensitive BLEU4.

weights for these by counting and smoothing. A
dozen other features are also added to the rules. We
obtain weights for the combinations of the features
by performing minimum error rate training (Och,
2003) on held-out data. We then use a CKY decoder
to translate unseen test data using the rules and tuned
weights. Table 1 summarizes the data used in tuning
and testing.

5.3 Initial results

An initial re-alignment experiment shows a reason-
able rise in BLEU scores from the baseline (Table
2), but closer inspection of the rules favored by EM
implies we can do even better. EM has a tendency
to favor few large rules over many small rules, even
when the small rules are more useful. Referring to
the rules in Figure 2, note that possible derivations
for (taiwan ’s,ÑÑÑlll)2 are R2, R11-R12, and R17-
R18. Clearly the third derivation is not desirable,
and we do not discuss it further. Between the first
two derivations, R11-R12 is preferred over R2, as
the conditioning for possessive insertion is not re-
lated to the specific Chinese word being inserted.
Of the 1,902 sentences in the training corpus where
this pair is seen, the bootstrap alignments yield the
R2 derivation 1,649 times and the R11-R12 deriva-
tion 0 times. Re-alignment does not change the re-
sult much; the new alignments yield the R2 deriva-
tion 1,613 times and again never choose R11-R12.
The rules in the second derivation themselves are

2The Chinese gloss is simply “taiwan”.

not rarely seen – R11 is in 13,311 forestsother than
those where R2 is seen, and R12 is in 2,500 addi-
tional forests. EM gives R11 a probability ofe−7.72

– better than 98.7% of rules, and R12 a probability
of e−2.96. But R2 receives a probability ofe−6.32

and is preferred over the R11-R12 derivation, which
has a combined probability ofe−10.68.

5.4 Making EM fair

The preference for shorter derivations containing
large rules over longer derivations containing small
rules is due to a general tendency for EM to pre-
fer derivations with few atoms. Marcu and Wong
(2002) note this preference but consider the phe-
nomenon a feature, rather than a bug. Zollmann
and Sima’an (2005) combat the overfitting aspect
for parsing by using a held-out corpus and a straight
maximum likelihood estimate, rather than EM. We
take a modeling approach to the phenomenon.

As the probability of a derivation is determined by
the product of its atom probabilities, longer deriva-
tions with more probabilities to multiply have an in-
herent disadvantage against shorter derivations, all
else being equal. EM is an iterative procedure and
thus such a bias can lead the procedure to converge
with artificially raised probabilities for short deriva-
tions and the large rules that comprise them. The
relatively rare applicability of large rules (and thus
lower observed partial counts) does not overcome
the inherent advantage of large coverage. To com-
bat this, we introduce size terms into our generative
story, ensuring that all competing derivations for the
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LANGUAGE PAIR TYPE RULES TUNE TEST

CHINESE-ENGLISH
baseline 55,781,061 41.51 40.55

EMD re-align 69,318,930 41.23 40.55

ARABIC-ENGLISH
baseline 8,487,656 51.90 51.69

EMD re-align 11,498,150 51.88 52.11

Table 4: Re-alignment performance with semi-supervised EMD bootstrap alignments

same sentence contain the same number of atoms:

1. Choose a rule sizes with costcsize(s)
s−1.

2. Choose a ruler (of sizes) to replace the
start symbol with probabilityprule(r|s, v).

3. For each variable in the partially com-
pleted (tree, string) pair, continue to
choose sizes followed by rules, recur-
sively to replace these variables until there
are no variables remaining.

This generative story changes the derivation com-
parison from R2 vs R11-R12 to S2-R2 vs R11-R12,
where S2 is the atom that represents the choice of
size 2 (the size of a rule in this context is the number
of non-leaf and non-root nodes in its tree fragment).
Note that the variable number of inclusions implied
by the exponent in the generative story above en-
sures that all derivations have the same size. For ex-
ample, a derivation with one size-3 rule, a derivation
with one size-2 and one size-1 rule, and a deriva-
tion with three size-1 rules would each have three
atoms. With this revised model that allows for fair
comparison of derivations, the R11-R12 derivation
is chosen 1636 times, and S2-R2 is not chosen. R2
does, however, appear in the translation model, as
the expanded rule extraction described in Section 5.2
creates R2 by joining R11 and R12.

The probability of size atoms, like that of rule
atoms, is decided by EM. The revised generative
story tends to encourage smaller sizes by virtue of
the exponent. This does not, however, simply ensure
the largest number of rules per derivation is used in
all cases. Ill-fitting and poorly-motivated rules such
as R22, R23, and R24 in Figure 2 are not preferred
over R16, even though they are smaller. However,
R14 and R16 are preferred over R6, as the former
are useful rules. Although the modified model does
not sum to 1, it leads to an improvement in BLEU
score, as can be seen in the last row of Table 2.

5.5 Results

We performed primary experiments on two different
bootstrap setups in two languages: the initial exper-
iment uses the same data set for the GIZA++ initial
alignment as is used in the re-alignment, while an
experiment on better quality bootstrap alignments
uses a much larger data set. For each bootstrap-
ping in each language we compared the baseline
of using these alignments directly in an MT sys-
tem with the experiment of using the alignments ob-
tained from the re-alignment procedure described in
Section 5.4. For each experiment we report: the
number of rules extracted by the expanded GHKM
algorithm of Galley et al. (2006) for the translation
model, converged BLEU scores on the tuning set,
and finally BLEU performance on the held-out test
set. Data set specifics for the GIZA++ bootstrapping
and BLEU results are summarized in Table 3.

5.6 Discussion

The results presented demonstrate we are able to
improve on unsupervised GIZA++ alignments by
about 1 BLEU point for Chinese and around 0.4
BLEU point for Arabic using an additional unsu-
pervised algorithm that requires no human aligned
data. If human-aligned data is available, the EMD
algorithm provides higher baseline alignments than
GIZA++ that have led to better MT performance
(Fraser and Marcu, 2006). As a further experi-
ment we repeated the experimental conditions from
Table 3, this time bootstrapped with the semi-
supervised EMD method, which uses the larger
bootstrap GIZA corpora described in Table 3 and
an additional 64,469/48,650 words of hand-aligned
English-Chinese and 43,782/31,457 words of hand-
aligned English-Arabic. The results of this advanced
experiment are in Table 4. We show a 0.42 gain in
BLEU for Arabic, but no movement for Chinese. We
believe increasing the size of the re-alignment cor-
pora will increase BLEU gains in this experimental
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condition, but leave those results for future work.
We can see from the results presented that the im-

pact of the syntax-aware re-alignment procedure of
Section 3.2, coupled with the addition of size param-
eters to the generative story from Section 5.4 serves
to remove links from the bootstrap alignments that
cause less useful rules to be extracted, and thus in-
crease the overall quality of the rules, and hence the
system performance. We thus see the benefit to in-
cluding syntax in an alignment model, bringing the
two models of the realistic machine translation path
somewhat closer together.
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Abstract

In this paper we explore the use of se-
lectional preferences for detecting non-
compositional verb-object combinations. To
characterise the arguments in a given gram-
matical relationship we experiment with
three models of selectional preference. Two
use WordNet and one uses the entries from
a distributional thesaurus as classes for rep-
resentation. In previous work on selectional
preference acquisition, the classes used for
representation are selected according to the
coverage of argument tokens rather than be-
ing selected according to the coverage of
argument types. In our distributional the-
saurus models and one of the methods us-
ing WordNet we select classes for represent-
ing the preferences by virtue of the number
of argument types that they cover, and then
only tokens under these classes which are
representative of the argument head data are
used to estimate the probability distribution
for the selectional preference model. We
demonstrate a highly significant correlation
between measures which use these ‘type-
based’ selectional preferences and composi-
tionality judgements from a data set used in
previous research. The type-based models
perform better than the models which use to-
kens for selecting the classes. Furthermore,
the models which use the automatically ac-
quired thesaurus entries produced the best
results. The correlation for the thesaurus
models is stronger than any of the individ-

ual features used in previous research on the
same dataset.

1 Introduction

Characterising the semantic behaviour of phrases in
terms of compositionality has particularly attracted
attention in recent years (Lin, 1999; Schone and Ju-
rafsky, 2001; Bannard, 2002; Bannard et al., 2003;
Baldwin et al., 2003; McCarthy et al., 2003; Ban-
nard, 2005; Venkatapathy and Joshi, 2005). Typi-
cally the phrases are putative multiwords and non-
compositionality is viewed as an important feature
of many such “words with spaces” (Sag et al., 2002).
For applications such as paraphrasing, information
extraction and translation, it is essential to take the
words of non-compositional phrases together as a
unit because the meaning of a phrase cannot be ob-
tained straightforwardly from the constituent words.
In this work we are investigate methods of deter-
mining semantic compositionality of verb-object 1

combinations on a continuum following previous
research in this direction (McCarthy et al., 2003;
Venkatapathy and Joshi, 2005).

Much previous research has used a combination
of statistics and distributional approaches whereby
distributional similarity is used to compare the con-
stituents of the multiword with the multiword itself.
In this paper, we will investigate the use of selec-
tional preferences of verbs. We will use the pref-
erences to find atypical verb-object combinations as
we anticipate that such combinations are more likely
to be non-compositional.

1We use object to refer to direct objects.
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Selectional preferences of predicates have been
modelled using the man-made thesaurus Word-
Net (Fellbaum, 1998), see for example (Resnik,
1993; Li and Abe, 1998; Abney and Light, 1999;
Clark and Weir, 2002). There are also distribu-
tional approaches which use co-occurrence data to
cluster distributionally similar words together. The
cluster output can then be used as classes for se-
lectional preferences (Pereira et al., 1993), or one
can directly use frequency information from distri-
butionally similar words for smoothing (Grishman
and Sterling, 1994).

We used three different types of probabilistic
models, which vary in the classes selected for rep-
resentation over which the probability distribution of
the argument heads 2 is estimated. Two use WordNet
and the other uses the entries in a thesaurus of distri-
butionally similar words acquired automatically fol-
lowing (Lin, 1998). The first method is due to Li and
Abe (1998). The classes over which the probabil-
ity distribution is calculated are selected according
to the minimum description length principle (MDL)
which uses the argument head tokens for finding the
best classes for representation. This method has pre-
viously been tried for modelling compositionality of
verb-particle constructions (Bannard, 2002).

The other two methods (we refer to them as ‘type-
based’) also calculate a probability distribution us-
ing argument head tokens but they select the classes
over which the distribution is calculated using the
number of argument head types (of a verb in a cor-
pus) in a given class, rather than the number of ar-
gument head tokens in contrast to previous WordNet
models (Resnik, 1993; Li and Abe, 1998; Clark and
Weir, 2002). For example, if the object slot of the
verb park contains the argument heads { car, car,
car, car, van, jeep } then the type-based models use
the word type “car” only once when determining the
classes over which the probability distribution is to
be estimated. Classes are selected which maximise
the number of types that they cover, rather than the
number of tokens. This is done to avoid the selec-
tional preferences being heavily influenced by noise
from highly frequent arguments which may be poly-
semous and some or all of their meanings may not be

2Argument heads are the nouns occurring in the object slot
of the target verb.

semantically related to the ‘prototypical’ arguments
of the verb. For example car has a gondola sense in
WordNet.

The third method uses entries in a distributional
thesaurus rather than classes from WordNet. The en-
tries used as classes for representation are selected
by virtue of the number of argument types they en-
compass. As with the WordNet models, the tokens
are used to estimate a probability distribution over
these entries.

In the next section, we discuss related work on
identifying compositionality. In section 3, we de-
scribe the methods we are using for acquiring our
models of selectional preference. In section 4, we
test our models on a dataset used in previous re-
search. We compare the three types of models in-
dividually and also investigate the best performing
model when used in combination with other features
used in previous research. We conclude in section 5.

2 Related Work

Most previous work using distributional approaches
to compositionality either contrasts distributional
information of candidate phrases with constituent
words (Schone and Jurafsky, 2001; Bannard et al.,
2003; Baldwin et al., 2003; McCarthy et al., 2003)
or uses distributionally similar words to detect non-
productive phrases (Lin, 1999).

Lin (1999) used his method (Lin, 1998) for au-
tomatic thesaurus construction. He identified can-
didate phrases involving several open-class words
output from his parser and filtered these by the log-
likelihood statistic. Lin proposed that if there is a
phrase obtained by substitution of either the head
or modifier in the phrase with a ‘nearest neighbour’
from the thesaurus then the mutual information of
this and the original phrase must be significantly dif-
ferent for the original phrase to be considered non-
compositional. He evaluated the output manually.

As well as distributional similarity, researchers
have used a variety of statistics as indicators of
non-compositionality (Blaheta and Johnson, 2001;
Krenn and Evert, 2001). Fazly and Stevenson (2006)
use statistical measures of syntactic behaviour to
gauge whether a verb and noun combination is likely
to be a idiom. Although they are not specifically
detecting compositionality, there is a strong corre-
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lation between syntactic rigidity and semantic id-
iosyncrasy.

Venkatapathy and Joshi (2005) combine differ-
ent statistical and distributional methods using sup-
port vector machines (SVMs) for identifying non-
compositional verb-object combinations. They ex-
plored seven features as measures of compositional-
ity:

1. frequency

2. pointwise mutual information (Church and
Hanks, 1990),

3. least mutual information difference with simi-
lar collocations, based on (Lin, 1999) and us-
ing Lin’s thesaurus (Lin, 1998) for obtaining
the similar collocations.

4. The distributed frequency of an object, which
takes an average of the frequency of occurrence
with an object over all verbs occurring with the
object above a threshold.

5. distributed frequency of an object, using the
verb, which considers the similarity between
the target verb and the verbs occurring with the
target object above the specified threshold.

6. a latent semantic approach (LSA) based
on (Schütze, 1998; Baldwin et al., 2003) and
considering the dissimilarity of the verb-object
pair with its constituent verb

7. the same LSA approach, but considering the
similarity of the verb-object pair with the ver-
bal form of the object (to capture support verb
constructions e.g. give a smile

Venkatapathy and Joshi (2005) produced a dataset
of verb-object pairs with human judgements of com-
positionality. We say more about this dataset and
Venkatapathy and Joshi’s results in section 4 since
we use the dataset for our experiments.

In this paper, we investigate the use of selec-
tional preferences to detect compositionality. Ban-
nard (2002) did some pioneering work to try and
establish a link between the compositionality of
verb particle constructions and the selectional pref-
erences of the multiword and its constituent verb.

His results were hampered by models based on (Li
and Abe, 1998) which involved rather uninforma-
tive models at the roots of WordNet. There are
several reasons for this. The classes for the model
are selected using MDL by compromising between a
simple model with few classes and one which ex-
plains the data well. The models are particularly
affected by the quantity of data available (Wagner,
2002). Also noise from frequent but idiosyncratic or
polysemous arguments weakens the signal. There
is scope for experimenting with other approaches
such as (Clark and Weir, 2002), however, we feel
a type-based approach is worthwhile to avoid the
noise introduced from frequent but polysemous ar-
guments and bias from highly frequent arguments
which might be part of a multiword rather than a pro-
totypical argument of the predicate in question, for
example eat hat. In contrast to Bannard, our experi-
ments are with verb-object combinations rather than
verb particle constructions. We compare Li and Abe
models with WordNet models which use the num-
ber of argument types to obtain the classes for rep-
resentation of the selectional preferences. In addi-
tion to experiments with these WordNet models, we
propose models using entries in distributional the-
sauruses for representing preferences.

3 Three Methods for Acquiring Selectional
Preferences

All models were acquired from verb-object data ex-
tracted using the RASP parser (Briscoe and Carroll,
2002) from the 90 million words of written English
from the BNC (Leech, 1992). We extracted verb and
common noun tuples where the noun is the argu-
ment head of the object relation. The parser was also
used to extract the grammatical relation data used
for acquisition of the thesaurus described below in
section 3.3.

3.1 TCMs

This approach is a reimplementation of Li and Abe
(1998). Each selectional preference model (referred
to as a tree cut model, or TCM) comprises a set of
disjunctive noun classes selected from all the pos-
sibilities in the WordNet hyponym hierarchy 3 us-
ing MDL (Rissanen, 1978). The TCM covers all the

3We use WordNet version 2.1 for the work in this paper.
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noun senses in the WordNet hierarchy and is associ-
ated with a probability distribution over these noun
senses in the hierarchy reflecting the argument head
data occurring in the given grammatical relationship
with the specified verb. MDL finds the classes in the
TCM by considering the cost measured in bits of de-
scribing both the model and the argument head data
encoded in the model. A compromise is made by
having as simple a model as possible using classes
further up the hierarchy whilst also providing a good
model for the set of argument head tokens (TK).

The classes are selected by recursing from the top
of the WordNet hierarchy comparing the cost (or de-
scription length) of using the mother class to the cost
of using the hyponym daughter classes. In any path,
the mother is preferred unless using the daughters
would reduce the cost. If using the daughters for the
model is less costly than the mother then the recur-
sion continues to compare the cost of the hyponyms
beneath.

The cost (or description length) for a set of classes
is calculated as the model description length (mdl)
and the data description length (ddl) 4 :-

mdl + ddl

k

2
× log |TK| +−

∑
tk∈TK log p(tk) (1)

k, is the number of WordNet classes being cur-
rently considered for the TCM minus one. The MDL
method uses the size of TK on the assumption that
a larger dataset warrants a more detailed model. The
cost of describing the argument head data is calcu-
lated using the log of the probability estimate from
the classes currently being considered for the model.
The probability estimate for a class being considered
for the model is calculated using the cumulative fre-
quency of all the hyponym nouns under that class
that occur in TK , divided by the number of noun
senses that these nouns have, to account for their
polysemy. This cumulative frequency is also divided
by the total number of noun hyponyms under that
class in WordNet to obtain a smoothed estimate for
all nouns under the class. The probability of the
class is obtained by dividing this frequency estimate
by the total frequency of the argument heads. The
algorithm is described fully by Li and Abe (1998).

4See (Li and Abe, 1998) for a full explanation.
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Figure 1: portion of the TCM for the objects of park.

A small portion of the TCM for the object slot of
park is shown in figure 1. WordNet classes are dis-
played in boxes with a label which best reflects the
meaning of the class. The probability estimates are
shown for the classes on the TCM. Examples of the
argument head data are displayed below the Word-
Net classes with dotted lines indicating membership
at a hyponym class beneath these classes. We can-
not show the full TCM due to lack of space, but we
show some of the higher probability classes which
cover some typical nouns that occur as objects of
park. Note that probability under the classes ab-
stract entity, way and location arise because of a
systematic parsing error where adverbials such as
distance in park illegally some distance from the
railway station are identified by the parser as ob-
jects. Systematic noise from the parser has an im-
pact on all the selectional preference models de-
scribed in this paper.

3.2 WNPROTOs

We propose a method of acquiring selectional pref-
erences which instead of covering all the noun
senses in WordNet, just gives a probability distribu-
tion over a portion of prototypical classes, we refer
to these models as WNPROTOs. A WNPROTO con-
sists of classes within the noun hierarchy which have
the highest proportion of word types occurring in
the argument head data, rather than using the num-
ber of tokens, or frequency, as is used for the TCMs.
This allows less frequent, but potentially informa-
tive arguments to have some bearing on the models
acquired to reduce the impact of highly frequent but
polysemous arguments. We then used the frequency
data to populate these selected classes.
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The classes (C) in the WNPROTO are selected
from those which include at least a threshold of 2
argument head types 5 occurring in the training data.
Each argument head in the training data is disam-
biguated according to whichever of the WordNet
classes it occurs at or under which has the highest
‘type ratio’. Let TY be the set of argument head
types in the object slot of the verb for which we are
acquiring the preference model. The type ratio for a
class (c) is the ratio of noun types (ty ∈ TY ) occur-
ring in the training data also listed at or beneath that
class in WordNet to the total number of noun types
listed at or beneath that particular class in WordNet
(wnty ∈ c). The argument types attested in the
training data are divided by the number of Word-
Net classes that the noun (classes(ty)) belongs to,
to account for polysemy in the training data.

type ratio(c) =

∑
ty∈TY ∈c

1
|classes(ty)|

|wnty ∈ c|
(2)

If more than one class has the same type ratio then
the argument is not used for calculating the probabil-
ity of the preference model. In this way, only argu-
ments that can be disambiguated are used for calcu-
lating the probability distribution. The advantage of
using the type ratio to determine the classes used to
represent the model and to disambiguate the argu-
ments is that it prevents high frequency verb noun
combinations from masking the information from
prototypical but low frequency arguments. We wish
to use classes which are as representative of the ar-
gument head types as possible to help detect when
an argument head is not related to these classes and
is therefore more likely to be non-compositional.

For example, the class motor vehicle is selected
for the WNPROTO model of the object slot of park
even though there are 5 meanings of car in WordNet
including elevator car and gondola. There are 174
occurrences of car which overwhelms the frequency
of the other objects (e.g. van 11, vehicle 8) but by
looking for classes with a high proportion of types
(rather than word tokens) car is disambiguated ap-
propriately and the class motor vehicle is selected
for representation.

5We have experimented with a threshold of 3 and obtained
similar results.
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Figure 2: Part of WNPROTO for the object slot of
park

The relative frequency of each class is obtained
from the set of disambiguated argument head tokens
and used to provide the probability distribution over
this set of classes. Note that in WNPROTO, classes
can be subsumed by others in the hyponym hierar-
chy. The probability assigned to a class is appli-
cable to any descendants in the hyponym hierarchy,
except those within any hyponym classes within the
WNPROTO. The algorithm for selecting C and cal-
culating the probability distribution is shown as Al-
gorithm 1. Note that we use brackets for comments.

In figure 2 we show a small portion of the WN-
PROTO for park. Again, WordNet classes are dis-
played in boxes with a label which best reflects the
meaning of the class. The probability estimates are
shown in the boxes for all the classes included in
the WNPROTO. The classes in the WNPROTO model
are shown with dashed lines. Examples of the ar-
gument head data are displayed below the WordNet
classes with dotted lines indicating membership at
a hyponym class beneath these classes. We cannot
show the full WNPROTO due to lack of space, but
we show some of the classes with higher probability
which cover some typical nouns that occur as objects
of park.
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Algorithm 1 WNPROTO algorithm
C = (){classes in WNPROTO}
D = () {disambiguated ty ∈ TY }
fD = 0 {frequency of disambiguated items}
TY = argument head types {nouns occurring as objects of verb, with associated frequencies}
C1 ∈ WordNet
where |ty ∈ TY occurring in c ∈ C1| > 1
for all ty ∈ TY do

find c ∈ classes(ty) ∈ C1 where c = argmaxc typeratio(c)
if c & c /∈ C then

add c to C
add ty ↔ c to D {Disambiguated ty with c}

end if
end for
for all c ∈ C do

if |ty ↔ c ∈ D| > 1 then
fD = fD + frequency(ty){sum frequencies of types under classes to be used in model}

else
remove c from C {classes with less than two disambiguated nouns are removed}

end if
end for
for all c ∈ C do

p(c) = frequency-of-all-tys-disambiguated-to-class(c,D)
fD

{calculating class probabilities}
end for

Algorithm 2 DSPROTO algorithm
C = (){classes in DSPROTO}
D = () {disambiguated ty ∈ TY }
fD = 0 {frequency of disambiguated items}
TY = argument head types {nouns occurring as objects of verb, with associated frequencies}
C1 = cty ∈ TY where num-types-in-thesaurus(cty, TY ) > 1
order C1 by num-types-in-thesaurus(cty, TY ) {classes ordered by coverage of argument head types}
for all cty ∈ ordered C1 do

Dcty = () {disambiguated for this class}
for all ty ∈ TY where in-thesaurus-entry(cty, ty) do

if ty /∈ D then
add ty to Dcty {types disambiguated to this class only if not disambiguated by a class used already}

end if
end for
if |Dcty| > 1 then

add cty to C
for all ty ∈ Dcty do

add ty ↔ cty to D {Disambiguated ty with cty}
fD = fD + frequency(ty)

end for
end if

end for
for all cty ∈ C do

p(cty) = frequency-of-all-tys-disambiguated-to-class(cty,D)
fD

{calculating class probabilities}
end for
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3.3 DSPROTOs

We use a thesaurus acquired using the method
proposed by Lin (1998). For input we used the
grammatical relation data from automatic parses of
the BNC. For each noun we considered the co-
occurring verbs in the object and subject relation,
the modifying nouns in noun-noun relations and
the modifying adjectives in adjective-noun relations.
Each thesaurus entry consists of the target noun and
the 50 most similar nouns, according to Lin’s mea-
sure of distributional similarity, to the target.

The argument head noun types (TY ) are used
to find the entries in the thesaurus as the ‘classes’
(C) of the selectional preference for a given verb.
As with WNPROTOs, we only cover argument types
which form coherent groups with other argument
types since we wish i) to remove noise and ii) to
be able to identify argument types which are not re-
lated with the other types and therefore may be non-
compositional. As our starting point we only con-
sider an argument type as a class for C if its entry in
the thesaurus covers at least a threshold of 2 types. 6

To select C we use a best first search. This method
processes each argument type in TY in order of the
number of the other argument types from TY that it
has in its thesaurus entry of 50 similar nouns. An ar-
gument head is selected as a class for C (cty ∈ C) 7

if it covers at least 2 of the argument heads that are
not in the thesaurus entries of any of the other classes
already selected for C . Each argument head is dis-
ambiguated by whichever class in C under which it
is listed in the thesaurus and which has the largest
number of the TY in its thesaurus entry. When the
algorithm finishes processing the ordered argument
heads to select C , all argument head types are dis-
ambiguated by C apart from those which after dis-
ambiguation occur in isolation in a class without
other argument types. Finally a probability distri-
bution over C is estimated using the frequency (to-
kens) of argument types that occur in the thesaurus
entries for any cty ∈ C . If an argument type oc-
curs in the entry of more than one cty then it is as-
signed to whichever of these has the largest number

6As with the WNPROTOs, we experimented with a value of
3 for this threshold and obtained similar results.

7We use cty for the classes of the DSPROTO. These classes
are simply groups of nouns which occur under the entry of a
noun (ty) in the thesaurus.

class (p(c)) disambiguated objects (freq)
van (0.86) car (174) van (11) vehicle (8) . . .
mile (0.05) street (5) distance (4) mile (1) . . .
yard (0.03) corner (4) lane (3) door (1)
backside (0.02) backside (2) bum (1) butt (1) . . .

Figure 3: First four classes of DSPROTO model for
park

of disambiguated argument head types and its token
frequency is attributed to that class. We show the
algorithm as Algorithm 2.

The algorithms for WNPROTO algorithm 1 and
DSPROTO (algorithm 2) differ because of the na-
ture of the inventories of candidate classes (Word-
Net and the distributional thesaurus). There are a
great many candidate classes in WordNet. The WN-
PROTO algorithm selects the classes from all those
that the argument heads belong to directly and indi-
rectly by looping over all argument types to find the
class that disambiguates each by having the largest
type ratio calculated using the undisambiguated ar-
gument heads. The DSPROTO only selects classes
from the fixed set of argument types. The algorithm
loops over the argument types with at least two ar-
gument heads in the thesaurus entry and ordered by
the number of undisambiguated argument heads in
the thesaurus entry. This is a best first search to min-
imise the number of argument heads used in C but
maximise the coverage of argument types.

In figure 3, we show part of a DSPROTO model for
the object of park. 8 Note again that the class mile
arises because of a systematic parsing error where
adverbials such as distance in park illegally some
distance from the railway station are identified by
the parser as objects.

4 Experiments

Venkatapathy and Joshi (2005) produced a dataset of
verb-object pairs with human judgements of com-
positionality. They obtained values of rs between
0.111 and 0.300 by individually applying the 7 fea-
tures described above in section 2. The best corre-
lation was given by feature 7 and the second best
was feature 3. They combined all 7 features using
SVMs and splitting their data into test and training
data and achieve a rs of 0.448, which demonstrates

8We cannot show the full model due to lack of space.
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significantly better correlation with the human gold-
standard than any of the features in isolation

We evaluated our selectional preference models
using the verb-object pairs produced by Venkatapa-
thy and Joshi (2005). 9 This dataset has 765 verb-
object collocations which have been given a rat-
ing between 1 and 6, by two annotators (both flu-
ent speakers of English). Kendall’s Tau (Siegel and
Castellan, 1988) was used to measure agreement,
and a score of 0.61 was obtained which was highly
significant. The ranks of the two annotators gave a
Spearman’s rank-correlation coefficient (rs) of 0.71.

The Verb-Object pairs included some adjectives
(e.g. happy, difficult, popular), pronouns and com-
plements e.g. become director. We used the sub-
set of 638 verb-object pairs that involved common
nouns in the object relationship since our preference
models focused on the object relation for common
nouns. For each verb-object pair we used the pref-
erence models acquired from the RASP parses of the
BNC to obtain the probability of the class that this
object occurs under. Where the object noun is a
member of several classes (classes(noun) ∈ C)
in the model, the class with the largest probability
is used. Note though that for WNPROTOs we have
the added constraint that a hyponym class from C is
selected in preference to a hypernym in C . Compo-
sitionality of an object noun and verb is computed
as:-

comp(noun, verb) = maxc∈classes(noun)∈C p(c|verb) (3)

We use the probability of the class, rather than an
estimate of the probability of the object, because we
want to determine how likely any word belonging
to this class might occur with the given verb, rather
than the probability of the specific noun which may
be infrequent, yet typical, of the objects that occur
with this verb. For example, convertible may be
an infrequent object of park, but it is quite likely
given its membership of the class motor vehicle.
We do not want to assume anything about the fre-
quency of non-compositional verb-object combina-
tions, just that they are unlikely to be members of
classes which represent prototypical objects. We

9This verb-object dataset is available from
http://www.cis.upenn.edu/˜sriramv/mywork.html.

method rs p < (one tailed)
selectional preferences

TCM 0.090 0.0119
WNPROTO 0.223 0.00003
DSPROTO 0.398 0.00003

features from V&J
frequency (f1) 0.141 0.00023
MI (f2) 0.274 0.00003
Lin99 (f3) 0.139 0.00023
LSA2 (f7) 0.209 0.00003

combination with SVM
f2,3,7 0.413 0.00003
f1,2,3,7 0.419 0.00003
DSPROTO f1,2,3,7 0.454 0.00003

Table 1: Correlation scores for 638 verb object pairs

will contrast these models with a baseline frequency
feature used by Venkatapathy and Joshi.

We use our selectional preference models to pro-
vide the probability that a candidate is represen-
tative of the typical objects of the verb. That is,
if the object might typically occur in such a rela-
tionship then this should lessen the chance that this
verb-object combination is non-compositional. We
used the probability of the classes from our 3 selec-
tional preference models to rank the pairs and then
used Spearman’s rank-correlation coefficient (rs) to
compare these ranks with the ranks from the gold-
standard.

Our results for the three types of preference mod-
els are shown in the first section of table 1. 10 All the
correlation values are significant, but we note that
using the type based selectional preference mod-
els achieves a far greater correlation than using the
TCMs. The DSPROTO models achieve the best re-
sults which is very encouraging given that they only
require raw data and an automatic parser to obtain
the grammatical relations.

We applied 4 of the features used by Venkatapa-
thy and Joshi (2005) 11 and described in section 2
to our subset of 638 items. These features were ob-

10We show absolute values of correlation following (Venkat-
apathy and Joshi, 2005).

11The other 3 features performed less well on this dataset so
we do not report the details here. This seems to be because they
worked particularly well with the adjective and pronoun data in
the full dataset.
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tained using the same BNC dataset used by Venkat-
apathy and Joshi which was obtained using Bikel’s
parser (Bikel, 2004). We obtained correlation val-
ues for these features as shown in table 1 under
V&J. These features are feature 1 frequency, feature
2 pointwise mutual information, feature 3 based on
(Lin, 1999) and feature 7 LSA feature which consid-
ers the similarity of the verb-object pair with the ver-
bal form of the object. Pointwise mutual informa-
tion did surprisingly well on this 84% subset of the
data, however the DSPROTO preferences still out-
performed this feature. We combined the DSPROTO
and V&J features with an SVM ranking function and
used 10 fold cross validation as Venkatapathy and
Joshi did. We contrast the result with the V&J fea-
tures without the preference models. The results in
the bottom section of table 1 demonstrate that the
preference models can be combined with other fea-
tures to produce optimal results.

5 Conclusions and Directions for Future
Work

We have demonstrated that the selectional prefer-
ences of a verbal predicate can be used to indi-
cate if a specific combination with an object is non-
compositional. We have shown that selectional pref-
erence models which represent prototypical argu-
ments and focus on argument types (rather than to-
kens) do well at the task. Models produced from
distributional thesauruses are the most promising
which is encouraging as the technique could be ap-
plied to a language without a man-made thesaurus.
We find that the probability estimates from our
models show a highly significant correlation, and
are very promising for detecting non-compositional
verb-object pairs, in comparison to individual fea-
tures used previously.

Further comparison of WNPROTOs and
DSPROTOs to other WordNet models are war-
ranted to contrast the effect of our proposal for
disambiguation using word types with iterative
approaches, particularly those of Clark and Weir
(2002). A benefit of the DSPROTOs is that they
do not require a hand-crafted inventory. It would
also be worthwhile comparing the use of raw data
directly, both from the BNC and from google’s
Web 1T corpus (Brants and Franz, 2006) since

web counts have been shown to outperform the
Clark and Weir models on a pseudo-disambiguation
task (Keller and Lapata, 2003).

We believe that preferences should NOT be used
in isolation. Whilst a low preference for a noun
may be indicative of peculiar semantics, this may
not always be the case, for example chew the fat.
Certainly it would be worth combining the prefer-
ences with other measures, such as syntactic fixed-
ness (Fazly and Stevenson, 2006). We also believe it
is worth targeting features to specific types of con-
structions, for example light verb constructions un-
doubtedly warrant special treatment (Stevenson et
al., 2003)

The selectional preference models we have pro-
posed here might also be applied to other tasks. We
hope to use these models in tasks such as diathesis
alternation detection (McCarthy, 2000; Tsang and
Stevenson, 2004) and contrast with WordNet mod-
els previously used for this purpose.
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Abstract

Most of the text summarization research car-
ried out to date has been concerned with
the summarization of short documents (e.g.,
news stories, technical reports), and very lit-
tle work if any has been done on the sum-
marization of very long documents. In this
paper, we try to address this gap and ex-
plore the problem of book summarization.
We introduce a new data set specifically de-
signed for the evaluation of systems for book
summarization, and describe summarization
techniques that explicitly account for the
length of the documents.

1 Introduction

Books represent one of the oldest forms of written
communication and have been used since thousands
of years ago as a means to store and transmit
information. Despite this fact, given that a large
fraction of the electronic documents available online
and elsewhere consist of short texts such as Web
pages, news articles, scientific reports, and others,
the focus of natural language processing techniques
to date has been on the automation of methods tar-
geting short documents. We are witnessing however
a change: an increasingly larger number of books
become available in electronic format, in projects
such as Gutenberg (http://www.gutenberg.org),
Google Book Search (http://books.google.com),
or the Million Books project
(http://www.archive.org/details/millionbooks).
Similarly, a large number of the books published in
recent years are often available – for purchase or
through libraries – in electronic format. This means

that the need for language processing techniques
able to handle very large documents such as books
is becoming increasingly important.

In this paper, we address the problem ofbook
summarization. While there is a significant body
of research that has been carried out on the task
of text summarization, most of this work has been
concerned with the summarization ofshort doc-
uments, with a particular focus on news stories.
However, books are different in both length and
genre, and consequently different summarization
techniques are required. In fact, the straight-forward
application of a current state-of-the-art summariza-
tion tool leads to poor results – a mere 0.348 F-
measure compared to the baseline of 0.325 (see the
following sections for details). This is not surprising
since these systems were developed specifically for
the summarization of short news documents.

The paper makes two contributions. First, we
introduce a new data set specifically designed for
the evaluation of book summaries. We describe
the characteristics of a new benchmark consisting
of books with manually constructed summaries, and
we calculate and provide lower and upper perfor-
mance bounds on this data set. Second, after briefly
describing a summarization system that has been
successfully used for the summarization of short
documents, we show how techniques that take into
account the length of the documents can be used to
significantly improve the performance of this sys-
tem.

2 Related Work

Automatic summarization has received a lot of atten-
tion from the natural language processing commu-
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nity, ever since the early approaches to automatic ab-
straction that laid the foundations of the current text
summarization techniques (Luhn, 1958; Edmunson,
1969). The literature typically distinguishes be-
tweenextraction, concerned with the identification
of the information that is important in the input text;
andabstraction, which involves a generation step to
add fluency to a previously compressed text (Hovy
and Lin, 1997). Most of the efforts to date have been
concentrated on the extraction step, which is perhaps
the most critical component of a successful summa-
rization algorithm, and this is the focus of our cur-
rent work as well.

To our knowledge, no research work to date was
specifically concerned with the automatic summa-
rization of books. There is, however, a large and
growing body of work concerned with the summa-
rization of short documents, with evaluations typ-
ically focusing on news articles. In particular, a
significant number of summarization systems have
been proposed during the recent Document Under-
standing Conference exercises (DUC) – annual eval-
uations that usually draw the participation of 20–30
teams every year.

There are two main trends that can be identified
in the summarization literature:supervisedsystems,
that rely on machine learning algorithms trained on
pre-existing document-summary pairs, andunsuper-
visedtechniques, based on properties and heuristics
derived from the text.

Among the unsupervised techniques, typical sum-
marization methods account for both the weight of
the words in sentences, as well as the sentence posi-
tion inside a document. These techniques have been
successfully implemented in the centroid approach
(Radev et al., 2004), which extends the idea oftf.idf
weighting (Salton and Buckley, 1997) by introduc-
ing word centroids, as well as integrating other fea-
tures such as position, first-sentence overlap and
sentence length. More recently, graph-based meth-
ods that rely on sentence connectivity have also been
found successful, using algorithms such as node de-
gree (Salton et al., 1997) or eigenvector centrality
(Mihalcea and Tarau, 2004; Erkan and Radev, 2004;
Wolf and Gibson, 2004).

In addition to unsupervised methods, supervised
machine learning techniques have also been used
with considerable success. Assuming the avail-

ability of a collection of documents and their cor-
responding manually constructed summaries, these
methods attempt to identify the key properties of a
good summary, such as the presence of named enti-
ties, positional scores, or the location of key phrases.
Such supervised techniques have been successfully
used in the systems proposed by e.g. (Teufel and
Moens, 1997; Hirao et al., 2002; Zhou and Hovy,
2003; D’Avanzo and Magnini, 2005).

In addition to short news documents, which have
been the focus of most of the summarization systems
proposed to date, work has been also carried out on
the summarization of other types of documents. This
includes systems addressing the summarization of e-
mail threads (Wan and McKeown, 2004), online dis-
cussions (Zhou and Hovy, 2005), spoken dialogue
(Galley, 2006), product reviews (Hu and Liu, 2004),
movie reviews (Zhuang et al., 2006), or short literary
fiction stories (Kazantseva and Szpakowicz, 2006).
As mentioned before, we are not aware of any work
addressing the task of automatic book summariza-
tion.

3 A Data Set for the Evaluation of
Book Summarization

A first challenge we encountered when we started
working on the task of book summarization was the
lack of a suitable data set, designed specifically for
the evaluation of summaries of long documents. Un-
like the summarization of short documents, which
benefits from the data sets made available through
the annual DUC evaluations, we are not aware of
any publicly available data sets that can be used for
the evaluation of methods for book summarization.

The lack of such data sets is perhaps not sur-
prising since even for humans the summarization of
books is more difficult and time consuming than the
summarization of short news documents. Moreover,
books are often available in printed format and are
typically protected by copyright laws that do not al-
low their reproduction in electronic format, which
consequently prohibits their public distribution.

We constructed a data set starting from the ob-
servation that several English and literature courses
make use of books that are sometimes also avail-
able in the form of abstracts – meant to ease the
access of students to the content of the books. In
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particular, we have identified two main publish-
ers that make summaries available online for books
studied in the U.S. high-school and college sys-
tems: Grade Saver (http://www.gradesaver.com) and
Cliff’s Notes (http://www.cliffsnotes.com/). Fortu-
nately, many of these books are classics that are al-
ready in the public domain, and thus for most of
them we were able to find the online electronic ver-
sion of the books on sites such as Gutenberg or On-
line Literature (http://www.online-literature.com).

For instance, the following is an example drawn
from Cliff’s Notes summary ofBleak Houseby
Charles Dickens.

On a raw November afternoon, London is en-

shrouded in heavy fog made harsher by chimney

smoke. The fog seems thickest in the vicinity of

the High Court of Chancery. The court, now in ses-

sion, is hearing an aspect of the case of Jarndyce

and Jarndyce. A ”little mad old woman” is, as al-

ways, one of the spectators. Two ruined men, one

a ”sallow prisoner,” the other a man from Shrop-

shire, appear before the court – to no avail. Toward

the end of the sitting, the Lord High Chancellor an-

nounces that in the morning he will meet with ”the

two young people” and decide about making them

wards of their cousin....

Starting with the set of books that had a sum-
mary available from Cliff’s Notes, we removed all
the books that did not have an online version, and
further eliminated those that did not have a summary
available from Grade Saver. This left us with a “gold
standard” data set of 50 books, each of them with
two manually created summaries.
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Figure 1: Summary and book lengths for 50 books

The books in this collection have an average
length of 92,000 words, with summaries with an
average length of 6,500 words (Cliff’s Notes) and
7,500 words (Grade Saver). Figure 1 plots the length
of the summaries (averaged over the two manual
summaries) with respect to the length of the books.
As seen in the plot, most of the books have a length
of 50,000-150,000 words, with a summary of 2,000–
6,000 words, corresponding to a compression rate of
about 5-15%. There are also a few very long books,
with more than 150,000 words, for which the sum-
maries tend to become correspondingly longer.

3.1 Evaluation Metrics

For the evaluation, we use the ROUGE evaluation
toolkit. ROUGE is a method based on Ngram statis-
tics, found to be highly correlated with human eval-
uations (Lin and Hovy, 2003).1 Throughout the pa-
per, the evaluations are reported using the ROUGE-
1 setting, which seeks unigram matches between
the generated and the reference summaries, and
which was found to have high correlation with hu-
man judgments at a 95% confidence level. Addi-
tionally, the final system is also evaluated using the
ROUGE-2 (bigram matches) and ROUGE-SU4 (non-
contiguous bigrams) settings, which have been fre-
quently used in the DUC evaluations.

In most of the previous summarization evalua-
tions, the data sets were constructed specifically for
the purpose of enabling system evaluations, and thus
the length of the reference and the generated sum-
maries was established prior to building the data set
and prior to the evaluations. For instance, some
of the previous DUC evaluations provided refer-
ence summaries of 100-word each, and required the
participating systems to generate summaries of the
same length.

However, in our case we have to deal with
pre-existing summaries, with large summary-length
variations across the 50 books and across the two
reference summaries. To address this problem, we
decided to keep one manual summary as the main
reference (Grade Saver), and use the other summary
(Cliff’s Notes) as a way to decide on the length of
the generated summaries. This means that for a
given book, the Cliff’s Notes summary and all the

1ROUGE is available at http://haydn.isi.edu/ROUGE/
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automatically generated summaries have the same
length, and they are all evaluated against the (pos-
sibly with a different length) Grade Saver summary.
This way, we can also calculate an upper bound by
comparing the two manual summaries against each
other, and at the same time ensure a fair comparison
between the automatically generated summaries and
this upper bound.2

3.2 Lower and Upper Bounds

To determine the difficulty of the task on the 50 book
data set, we calculate and report lower and upper
bounds. The lower bound is determined by using a
baseline summary constructed by including the first
sentences in the book (also known in the literature
as thelead baseline).3 As mentioned in the previ-
ous section, all the generated summaries – includ-
ing this baseline – have a length equal to the Cliff’s
Notes manual summary. The upper bound is calcu-
lated by evaluating Cliff’s Notes manual summary
against the reference Grade Saver summary. Table
1 shows the precision (P), recall (R), and F-measure
(F) for these lower and upper bounds, calculated as
average across the 50 books.

P R F
Lower bound (lead baseline) 0.380 0.284 0.325
Upper bound (manual summary)0.569 0.493 0.528

Table 1: Lower and upper bounds for the book sum-
marization task, calculated on the 50 book data set

An automatic system evaluated on this data set is
therefore expected to have an F-measure higher than
the lower bound of 0.325, and it is unlikely to exceed
the upper bound of 0.528 obtained with a human-
generated summary.

4 An Initial Summarization System

Our first book summarization experiment was done
using a re-implementation of an existing state-of-
the-art summarization system. We decided to use the

2An alternative solution would be to determine the length
of the generated summaries using a predefined compression
rate (e.g., 10%). However, this again implies great variations
across the lengths of the generated versus the manual sum-
maries, which can result in large and difficult to interpret varia-
tions across the ROUGE scores.

3A second baseline that accounts for text segments is also
calculated and reported in section 6.

centroid-based method implemented in the MEAD

system (Radev et al., 2004), for three main reasons.
First, MEAD was shown to lead to good perfor-
mance in several DUC evaluations, e.g., (Radev et
al., 2003; Li et al., 2005). Second, it is an unsuper-
vised method which, unlike supervised approaches,
does not require training data (not available in our
case). Finally, the centroid-based techniques imple-
mented in MEAD can be optimized and made very
efficient, which is an important aspect in the sum-
marization of very long documents such as books.

The latest version of MEAD4 uses features, clas-
sifiers and re-rankers to determine the sentences to
include in the summary. The default features are
centroid, position and sentence length. The centroid
value of a sentence is the sum of the centroid val-
ues of the words in the sentence. The centroid value
of a word is calculated by multiplying the term fre-
quency (tf) of a word by the word’s inverse docu-
ment frequency (idf) obtained from the Topic Detec-
tion and Tracking (TDT) corpus. Thetf of a word
is calculated by dividing the frequency of a word in
a document cluster by the number of documents in
the cluster. The positional valuePi of a sentence is
calculated using the formula (Radev et al., 2004):

Pi =
n − i + 1

n
∗ Cmax (1)

wheren represents the number of sentences in the
document,i represents the position of the sentence
inside the text, andCmax is the score of the sentence
that has the maximum centroid value.

The summarizer combines these features to give
a score to each sentence. The default setting con-
sists of a linear combination of features that assigns
equal weights to the centroid and the positional val-
ues, and only scores sentences that have more than
nine words. After the sentences are scored, the re-
rankers are used to modify the scores of a sentence
depending on its relation with other sentences. The
default re-ranker implemented in MEAD first ranks
the sentences by their scores in descending order
and iteratively adds the top ranked sentence if the
sentence is nottoo similar to the already added sen-
tences. This similarity is computed as a cosine sim-
ilarity and by default the sentences that exhibit a co-
sine similarity higher than 0.7 are not added to the

4MEAD 3.11, http://www.summarization.com/mead/
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summary. Note that although the MEAD distribution
also includes an optional feature calculated using the
LexRank graph-based algorithm (Erkan and Radev,
2004), this feature could not be used since it takes
days to compute for very long documents such as
ours, and thus its application was not tractable.

Although the MEAD system is publicly available
for download, in order to be able to make continu-
ous modifications easily and efficiently to the system
as we develop new methods, we decided to write
our own implementation. Our implementation dif-
fers from the original one in certain aspects. First,
we determine document frequency counts using the
British National Corpus (BNC) rather than the TDT
corpus. Second, we normalize the sentence scores
by dividing the score of a sentence by the length of
the sentence, and instead we eliminate the sentence
length feature used by MEAD. Note also that we do
not take stop words into account when calculating
the length of a sentence. Finally, since we are not
doingmulti-document summarization, we do not use
a re-ranker in our implementation.

P R F
MEAD (original download) 0.423 0.296 0.348
MEAD (our implementation) 0.435 0.323 0.369

Table 2: Summarization results using the MEAD

system

Table 2 shows the results obtained on the 50 book
data set using the original MEAD implementation,
as well as our implementation. Although the per-
formance of this system is clearly better than the
baseline (see Table 1), it is nonetheless far below the
upper bound. In the following section, we explore
techniques for improving the quality of the gener-
ated summaries by accounting for the length of the
documents.

5 Techniques for Book Summarization

We decided to make several changes to our initial
system, in order to account for the specifics of the
data set we work with. In particular, our data set
consists ofvery largedocuments, and correspond-
ingly the summarization of such documents requires
techniques that account for their length.

5.1 Sentence Position In Very Large
Documents

The general belief in the text summarization litera-
ture (Edmunson, 1969; Mani, 2001) is that the posi-
tion of sentences in a text represents one of the most
important sources of information for a summariza-
tion system. In fact, a summary constructed using
the lead sentences was often found to be a compet-
itive baseline, with only few systems exceeding this
baseline during the recent DUC summarization eval-
uations.

Although the position of sentences in a document
seems like a pertinent heuristic for the summariza-
tion of short documents, and in particular for the
newswire genre as used in the DUC evaluations, our
hypothesis is that this heuristic may not hold for
the summarization of very long documents such as
books. The style and topic may change several times
throughout a book, and thus the leading sentences
will not necessarily overlap with the essence of the
document.

To test this hypothesis, we modified our initial
system so that it does not account for the position
of the sentences inside a document, but it only ac-
counts for the weight of the constituent words. Cor-
respondingly, the score of a sentence is determined
only as a function of the word centroids, and ex-
cludes the positional score. Table 3 shows the av-
erage ROUGE scores obtained using the summariza-
tion system with and without the position scores.

P R F
With positional scores 0.435 0.323 0.369
Without positional scores 0.459 0.329 0.383

Table 3: Summarization results with and without po-
sitional scores

As suspected, removing the position scores leads
to a better overall performance, with an increase ob-
served in both the precision and the recall of the
system. Although the position in a document is a
heuristic that helps the summarization of news sto-
ries and other short documents, it appears that the
sentences located toward the beginning of a book are
not necessarily useful for building the summary of a
book.
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5.2 Text Segmentation

A major difference between short and long docu-
ments stands in the frequent topic shifts typically
observed in the later. While short stories are usu-
ally concerned with one topic at a time, long doc-
uments such as books often cover more than one
topic. Thus, the intuition is that a summary should
include content covering the important aspects of
all the topics in the document, as opposed to only
generic aspects relevant to the document as a whole.
A system for the summarization oflong documents
should therefore extract key concepts from all the
topics in the document, and this task is better per-
formed when the topic boundaries are known prior
to the summarization step.

To accomplish this, we augment our system with
a text segmentation module that attempts to deter-
mine the topic shifts, and correspondingly splits
the document into smaller segments. Note that al-
though chapter boundaries are available in some of
the books in our data set, this is not always the case
as there are also books for which the chapters are not
explicitly identified. To ensure an uniform treatment
of the entire data set, we decided not to use chap-
ter boundaries, and instead apply an automatic text
segmentation algorithm.

While several text segmentation systems have
been proposed to date, we decided to use a graph-
based segmentation algorithm using normalized-
cuts (Malioutov and Barzilay, 2006), shown to ex-
ceed the performance of alternative segmentation
methods. Briefly, the segmentation algorithm starts
by modeling the text as a graph, where sentences
are represented as nodes in the graph, and inter-
sentential similarities are used to draw weighted
edges. The similarity between sentences is calcu-
lated using cosine similarity, with a smoothing fac-
tor that adds the counts of the words in the neighbor
sentences. Words are weighted using an adaptation
of the tf.idf metric, where a document is uniformly
split into chunks that are used for thetf.idf computa-
tion. There are two parameters that have to be set in
this algorithm: (1) the length in words of the blocks
approximating sentences; and (2) the cut-off value
for drawing edges between nodes. Since the method
was originally developed for spoken lecture segmen-
tation, we were not able to use the same parameters

as suggested in (Malioutov and Barzilay, 2006). In-
stead, we used a development set of three books, and
determined the optimal sentence word-length as 20
and the optimal cut-off value as 25, and these are the
values used throughout our experiments.

Once the text is divided into segments, we gener-
ate a separate summary for each segment, and con-
sequently create a final summary by collecting sen-
tences from the individual segment summaries in
a round-robin fashion. That is, starting with the
ranked list of sentences generated by the summa-
rization algorithm for each segment, we pick one
sentence at a time from each segment summary until
we reach the desired book-summary length.

A useful property of the normalized-cut segmen-
tation algorithm is that one can decide apriori the
number of segments to be generated, and so we can
evaluate the summarization algorithm for different
segmentation granularities. Figure 2 shows the av-
erage ROUGE-1 F-measure score obtained for sum-
maries generated using one to 50 segments.
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Figure 2: Summarization results for different seg-
mentation granularities.

As seen in the figure, segmenting the text helps
the summarization process. The average ROUGE-1
F-measure score raises to more than 0.39 F-measure
for increasingly larger number of segments, with a
plateau reached at approximately 15–25 segments,
followed by a decrease when more than 30 segments
are used.

In all the following evaluations, we segment each
book into a constant number of 15 segments; in fu-
ture work, we plan to consider more sophisticated
methods for finding the optimal number of segments
individually for each book.
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5.3 Modified Term Weighting

An interesting characteristic of documents with
topic shifts is that words do not have an uniform dis-
tribution across the entire document. Instead, their
distribution can vary with the topic, and thus the
weight of the words should change accordingly.

To account for the distribution of the words in-
side the entire book, as well as inside the individual
topics (segments), we devised a weighting scheme
that accounts for four factors: thesegment term
frequency (stf), calculated as the number of occur-
rences of a word inside a segment; thebook term
frequency (tf), determined as the number of occur-
rences of a word inside a book; theinverse segment
frequency (isf), measured as the inverse of the num-
ber of segments containing the word; and finally, the
inverse document frequency (idf), which takes into
account the distribution of a word in a large exter-
nal corpus (as before, we use the BNC corpus). A
word weight is consequently determined by multi-
plying the book term frequency with the segment
term frequency, and the result is then multiplied with
the inverse segment frequency and the inverse docu-
ment frequency. We refer to this weighting scheme
astf.stf.idf.isf.

Using this weighting scheme, we prevent a word
from having the same score across the entire book,
and instead we give a higher weight to its occur-
rences in segments where the word has a high fre-
quency. For instance, the worddoctor occurs 30
times in one of the books in our data set, which leads
to a constanttf.idf score of 36.76 across the entire
book. Observing that from these 30 occurrences, 19
appear in just one segment, thetf.stf.idf.isfweight-
ing scheme will lead to a weight of 698.49 for that
segment, much higher than e.g. the weight of 36
calculated for other segments that have only a few
occurrences of this word.

P R F
tf.idf weighting 0.463 0.339 0.391
tf.stf.idf.isfweighting 0.464 0.349 0.398

Table 4: Summarization results using a weighting
scheme accounting for the distribution of words in-
side and across segments

Table 4 shows the summarization results obtained
for the new weighting scheme (recall that all the re-

sults are calculated for a text segmentation into 15
segments).

5.4 Combining Summarization Methods

The next improvement we made was to bring an
additional source of knowledge into the system, by
combining the summarization provided by our cur-
rent system with the summarization obtained from a
different method.

We implemented a variation of a centrality graph-
based algorithm for unsupervised summarization,
which was successfully used in the past for the
summarization of short documents. Very briefly,
the TextRank system (Mihalcea and Tarau, 2004)
– similar in spirit with the concurrently proposed
LexRank method (Erkan and Radev, 2004) – works
by building a graph representation of the text, where
sentences are represented as nodes, and weighted
edges are drawn using inter-sentential word overlap.
An eigenvector centrality algorithm is then applied
on the graph (e.g., PageRank), leading to a rank-
ing over the sentences in the document. An imped-
iment we encountered was the size of the graphs,
which become intractably large and dense for very
large documents such as books. In our implemen-
tation we decided to use a cut-off value for drawing
edges between nodes, and consequently removed all
the edges between nodes that are farther apart than
a given threshold. We use a threshold value of 75,
found to work best using the same development set
of three books used before.

P R F
Our system 0.464 0.349 0.398
TextRank 0.449 0.356 0.397
COMBINED 0.464 0.363 0.407

Table 5: Summarization results for individual and
combined summarization algorithms

Using the same segmentation as before (15 seg-
ments), the TextRank method by itself did not lead to
improvements over our current centroid-based sys-
tem. Instead, since we noticed that the summaries
generated with our system and with TextRank cov-
ered different sentences, we implemented a method
that combines the top ranked sentences from the
two methods. Specifically, the combination method
picks one sentence at a time from the summary gen-
erated by our system for each segment, followed by
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one sentence selected from the summary generated
by the TextRank method, and so on. The combi-
nation method also specifically avoids redundancy.
Table 5 shows the results obtained with our current
centroid-based system the TextRank method, as well
as the combined method.

5.5 Segment Ranking

In the current system, all the segments identified in
a book have equal weight. However, this might not
always be the case, as there are sometimes topics
inside the book that have higher importance, and
which consequently should be more heavily repre-
sented in the generated summaries.

To account for this intuition, we implemented a
segment ranking method that assigns to each seg-
ment a score reflecting its importance inside the
book. The ranking is performed with a method sim-
ilar to TextRank, using a random-walk model over
a graph representing segments and segment simi-
larities. The resulting segment scores are multi-
plied with the sentence scores obtained from the
combined method described before, normalized over
each segment, resulting in a new set of scores. The
top ranked sentences over the entire book are then
selected for inclusion in the summary. Table 6 shows
the results obtained by using segment ranking.

P R F
COMBINED 0.464 0.363 0.407
COMBINED + Segment Ranking 0.472 0.366 0.412

Table 6: Summarization results using segment rank-
ing

6 Discussion

In addition to the ROUGE-1 metric, the quality of the
summaries generated with our final summarization
system was also evaluated using the ROUGE-2 and
the ROUGE-SU4 metrics, which are frequently used
in the DUC evaluations. Table 7 shows the figures
obtained with ROUGE-1, ROUGE-2 and ROUGE-
SU4 for our final system, for the original MEAD

download, as well as for the lower and upper bounds.
The table also shows an additional baseline deter-
mined by selecting the first sentences in each seg-
ment, using the segmentation into 15 segments as
determined before. As it can be seen from the F-

P R F
ROUGE-1

Lower bound 0.380 0.284 0.325 [0.306,0.343]
Segment baseline 0.402 0.301 0.344 [0.328,0.366]
MEAD 0.423 0.296 0.348 [0.329,0.368]
Our system 0.472 0.366 0.412 [0.394,0.428]
Upper bound 0.569 0.493 0.528 [0.507,0.548]

ROUGE-2
Lower bound 0.035 0.027 0.031 [0.027,0.035]
Segment baseline 0.040 0.031 0.035 [0.031,0.038]
MEAD 0.039 0.029 0.033 [0.028,0.037]
Our system 0.069 0.054 0.061 [0.055,0.067]
Upper bound 0.112 0.097 0.104 [0.096,0.111]

ROUGE-SU4
Lower bound 0.096 0.073 0.083 [0.076,0.090]
Segment baseline 0.102 0.079 0.089 [0.082,0.093]
MEAD 0.106 0.076 0.088 [0.081,0.095]
Our system 0.148 0.115 0.129 [0.121,0.138]
Upper bound 0.210 0.182 0.195 [0.183,0.206]

Table 7: Evaluation of our final book summariza-
tion system using different ROUGE metrics. The ta-
ble also shows: the lower bound (first sentences in
the book); the segment baseline (first sentences in
each segment); MEAD (original system download);
the upper bound (manual summary). Confidence in-
tervals for F-measure are also included.

measure confidence intervals also shown in the ta-
ble, the improvements obtained by our system with
respect to both baselines and with respect to the
MEAD system are statistically significant (as the
confidence intervals do not overlap).

Additionally, to determine the robustness of the
results with respect to the number of reference sum-
maries, we ran a separate evaluation where both the
Grade Saver and the Cliff’s Notes summaries were
used as reference. As before, the length of the gener-
ated summaries was determined based on the Cliff’s
Notes summary. The F-measure figures obtained
in this case using our summarization system were
0.402, 0.057 and 0.127 using ROUGE-1, ROUGE-2
and ROUGE-SU4 respectively. The F-measure fig-
ures calculated for the baseline using the first sen-
tences in each segment were 0.340, 0.033 and 0.085.
These figures are very close to those listed in Table
7 where only one summary was used as a reference,
suggesting that the use of more than one reference
summary does not influence the results.

Regardless of the evaluation metric used, the per-
formance of our book summarization system is sig-
nificantly higher than the one of an existing summa-
rization system that has been designed for the sum-
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marization of short documents (MEAD). In fact, if
we account for the upper bound of 0.528, the rela-
tive error rate reduction for the ROUGE-1 F-measure
score obtained by our system with respect to MEAD

is a significant 34.44%.

The performance of our system is mainly due to
features that account for the length of the document:
exclusion of positional scores, text segmentation and
segment ranking, and a segment-based weighting
scheme. An additional improvement is obtained by
combining two different summarization methods. It
is also worth noting that our system is efficient, tak-
ing about 200 seconds to apply the segmentation al-
gorithm, plus an additional 65 seconds to generate
the summary of one book.5

To assess the usefulness of our system with re-
spect to the length of the documents, we analyzed
the individual results obtained for books of different
sizes. Averaging the results obtained for the shorter
books in our collection, i.e., 17 books with a length
between 20,000 and 50,000 words, the lead base-
line gives a ROUGE-1 F-measure score of 0.337,
our system leads to 0.378, and the upper bound is
measured at 0.498, indicating a relative error rate
reduction of 25.46% obtained by our system with
respect to the lead baseline (accounting for the max-
imum achievable score given by the upper bound).
Instead, when we consider only the books with a
length over 100,000 words (16 books in our data set
fall under this category), the lead baseline is deter-
mined as 0.347, our system leads to 0.418, and the
upper bound is calculated as 0.552, which results in
a higher 34.64% relative error rate reduction. This
suggests that our system is even more effective for
longer books, due perhaps to the features that specif-
ically take into account the length of the books.

There are also cases where our system does not
improve over the baseline. For instance, for the sum-
marization ofCandideby François Voltaire, our sys-
tem achieves a ROUGE-1 F-measure of 0.361, which
is slightly worse than the lead baseline of 0.368. In
other cases however, the performance of our system
comes close to the upper bound, as it is the case with
the summarization ofThe House of the Seven Gables
by Nathaniel Hawthorne, which has a lead baseline

5Running times measured on a Pentium IV 3GHz, 2GB
RAM.

of 0.296, an upper bound of 0.457, and our system
obtains 0.404. This indicates that a possible avenue
for future research is to account for the characteris-
tics of a book, and devise summarization methods
that can adapt to the specifics of a given book such
as length, genre, and others.

7 Conclusions

Although there is a significant body of work that has
been carried out on the task of text summarization,
most of the research to date has been concerned with
the summarization ofshortdocuments. In this paper,
we tried to address this gap and tackled the problem
of book summarization.

We believe this paper made two important con-
tributions. First, it introduced a new summariza-
tion benchmark, specifically targeting the evalua-
tion of systems for book summarization.6 Second,
it showed that systems developed for the summa-
rization of short documents do not fare well when
applied to very long documents such as books, and
instead a better performance can be achieved with
a system that accounts for the length of the docu-
ments. In particular, the book summarization sys-
tem we developed was found to lead to more than
30% relative error rate reduction with respect to an
existing state-of-the-art summarization tool.

Given the increasingly large number of books
available in electronic format, and correspondingly
the growing need for tools for book summarization,
we believe that the topic of automatic book sum-
marization will become increasingly important. We
hope that this paper will encourage and facilitate the
development of an active line of research concerned
with book summarization.
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Abstract

We demonstrate an approach for inducing a
tagger for historical languages based on ex-
isting resources for their modern varieties.
Tags from Present Day English source text
are projected to Middle English text using
alignments on parallel Biblical text. We
explore the use of multiple alignment ap-
proaches and a bigram tagger to reduce the
noise in the projected tags. Finally, we train
a maximum entropy tagger on the output of
the bigram tagger on the target Biblical text
and test it on tagged Middle English text.
This leads to tagging accuracy in the low
80’s on Biblical test material and in the 60’s
on other Middle English material. Our re-
sults suggest that our bootstrapping meth-
ods have considerable potential, and could
be used to semi-automate an approach based
on incremental manual annotation.

1 Introduction

Annotated corpora of historical texts provide an im-
portant resource for studies of syntactic variation
and change in diachronic linguistics. For example,
the Penn-Helsinki Parsed Corpus of Middle English
(PPCME) (Kroch and Taylor, 2000) has been used
to show the existence of syntactic dialectal differ-
ences between northern and southern Middle En-
glish (Kroch et al., 2000) and to examine the syn-
tactic evolution of the English imperative construc-
tion (Han, 2000). However, their utility rests on their
having coverage of a significant amount of annotated

material from which to draw patterns for such stud-
ies, and creating resources such as the PPCME re-
quire significant time and cost to produce. Corpus
linguists interested in diachronic language studies
thus need efficient ways to produce such resources.

One approach to get around the annotation bottle-
neck is to use semi-automation. For example, when
producing part-of-speech tags for the Tycho Brahe
corpus of Historical Portuguese (Britto et al., 2002),
a set of seed sentences was manually tagged, and the
Brill tagger (Brill, 1995) was then trained on those
and consequently used to tag other sentences. The
output was inspected for errors, the tagger was re-
trained and used again to tag new sentences, for sev-
eral iterations.

We also seek to reduce the human effort involved
in producing part-of-speech tags for historical cor-
pora. However, our approach does so by leveraging
existing resources for a language’s modern varieties
along with parallel diachronic texts to produce accu-
rate taggers. This general technique has worked well
for bilingual bootstrapping of language processing
resources for one language based on already avail-
able resources from the other. The first to explore
the idea were Yarowsky and Ngai (2001), who in-
duced a part-of-speech tagger for French and base
noun phrase detectors for French and Chinese via
transfer from English resources. They built a highly
accurate POS tagger by labeling English text with an
existing tagger (trained on English resources), align-
ing that text with parallel French, projecting the au-
tomatically assigned English POS tags across these
alignments, and then using the automatically labeled
French text to train a new French tagger. This tech-
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nique has since been used for other languages and
tasks, e.g. morphological analysis (Yarowsky et al.,
2001), fine-grained POS tagging for Czech (Drábek
and Yarowsky, 2005), and tagging and inducing syn-
tactic dependencies for Polish (Ozdowska, 2006).

This methodology holds great promise for pro-
ducing tools and annotated corpora for processing
diachronically related language pairs, such as Mod-
ern English to Middle or Old English. Historical
languages suffer from a paucity of machine readable
text, inconsistencies in orthography, and grammati-
cal diversity (in the broadest sense possible). This
diversity is particularly acute given that diachronic
texts of a given language encompass texts and gen-
res spanning across centuries or millenia with a
plethora of extra-linguistic influences to complicate
the data. Furthermore, even in historically contem-
poraneous texts, possible dialectal variations further
amplify the differences in already idiosyncratic or-
thographies and syntactic structure.

The present study goes further than Britto et al.
(2002) by fully automating the alignment, POS tag
induction, and noise elimination process. It is able to
utilize the source language to a greater degree than
the previously mentioned studies that attempted lan-
guage neutrality; that is, it directly exploits the ge-
netic similarity between the source and target lan-
guage. Some amount of surface structural similarity
between a diachronic dialect and its derivatives is to
be expected, and in the case of Middle English and
Modern English, such similarities are not negligible.

The automation process is further aided through
the use of two versions of the Bible, which obviates
the need for sentence alignment. The modern Bible
is tagged using the C&C maximum entropy tagger
(Curran and Clark, 2003), and these tags are trans-
ferred from source to target through high-confidence
alignments aquired from two alignment approaches.
A simple bigram tagger is trained from the resulting
target texts and then used to relabel the same texts as
Middle English training material for the C&C tag-
ger. This tagger utilizes a rich set of features and a
wider context, so it can exploit surface similarities
between the source and target language. By train-
ing it with both the original (Modern English) Penn
Treebank Wall Street Journal (WSJ) material and
our automatically tagged Middle English Wycliffe
material, we achieve an accuracy of 84.8% on pre-

dicting coarse tags, improving upon a 63.4% base-
line of training C&C on the WSJ sentences alone.
Furthermore, we show that the bootstrapped tagger
greatly reduces the error rate on out-of-domain, non-
Biblical Middle English texts.

2 Data

English provides an ideal test case for our study be-
cause of the existence of publically accessible di-
achronic texts of English and their translations in
electronic format and because of the availability of
the large, annotated Penn-Helsinki Parsed Corpus of
Middle English. The former allows us to create a
POS tagger via alignment and projection; the latter
allows us to evaluate the tagger on large quantities
of human-annotated tags.

2.1 The Bible as a parallel corpus

We take two versions of the Bible as our parallel cor-
pus. For modern English, we utilize the NET Bible1.
For Middle English (ME), we utilize John Wycliffe’s
Bible2. The first five lines of Genesis in both Bibles
are shown in Figure 1.

The Bible offers some advantages beyond its
availability. All its translations are numbered, fa-
cilitating assessment of accuracy for sentence align-
ment models. Also, the Bible is quite large for
a single text: approximately 950,000 words for
Wycliffe’s version and 860,000 words for the NET
bible. Finally, Wycliffe’s Bible was released in the
late 14th century, a period when the transition of En-
glish from a synthetic to analytical language was
finalized. Hence, word order was much closer to
Modern English and less flexible than Old English;
also, nominal case distinctions were largely neutral-
ized, though some verbal inflections such as dis-
tinctions for the first and second person singular in
the present tense were still in place (Fennell, 2001).
This places Wycliffe’s Bible as far back as possible
without introducing extreme nominal and verbal in-
flections in word alignment.

The two Bibles were cleaned and processed for
the present task and then examined for levels of
correspondence. The two texts were compared for

1The New English Translation Bible, which may be down-
loaded from http://www.bible.org/page.php?pageid=3086.

2Available for download at:
http://wesley.nnu.edu/biblicalstudies/wycliffe.
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1 In the beginning God created the heavens and the earth.
2 Now the earth was without shape and empty, and darkness was over the surface of the watery

deep, but the Spirit of God was moving over the surface of the water.
3 God said, “Let there be light.” And there was light!
4 God saw that the light was good, so God separated the light from the darkness.
5 God called the light day and the darkness night. There was evening, and there was morning,

marking the first day.

1 In the bigynnyng God made of nouyt heuene and erthe.
2 Forsothe the erthe was idel and voide, and derknessis werenon the face of depthe; and the Spiryt

of the Lord was borun on the watris.
3 And God seide, Liyt be maad, and liyt was maad.
4 And God seiy the liyt, that it was good, and he departide the liyt fro derknessis; and he clepide

the liyt,
5 dai, and the derknessis, nyyt. And the euentid and morwetidwas maad, o daie.

Figure 1: The first five verses of Genesis the NET Bible (top) and Wycliffe’s Bible (below).

whether there were gaps in the chapters and whether
one version had more chapters over the other. If dis-
crepancies were found, the non-corresponding chap-
ters were removed. Next, because we assume sen-
tences are already aligned in our approach, discrep-
ancies in verses between the two Bibles were culled.
A total of some two hundred lines were removed
from both Bibles. This processing resulted in a total
of 67 books3, with 920,000 words for the Wycliffe
Bible and 840,000 words for the NET Bible.

2.2 The Penn-Helsinki Parsed Corpus of
Middle English

The Penn-Helsinki Parsed Corpus of Middle En-
glish is a collection of text samples derived from
manuscripts dating 1150–1500 and composed dur-
ing the same period or earlier. It is based on and
expands upon the Diachronic Part of the Helsinki
Corpus of English Texts. It contains approximately
1,150,000 words of running text from 55 sources.
The texts are provided in three forms: raw, POS
tagged, and parsed.

Among the texts included are portions of the
Wycliffe Bible. They comprise partial sections of
GenesisandNumbersfrom the Old Testament and
John I.1–XI.56from the New Testament. In total,

366 books shared by the churches and one book from the
Apocrypha. A comparison of the two Bibles revealed that
the NET Bible contained the Apocrypha, but only Baruch was
shared between the two versions.

the sections of Wycliffe annotated in PPCME have
some 25,000 words in 1,845 sentences. This was
used as part of the test material. It is important to
note that there are significant spelling differences
from the full Wycliffe text that we use for alignment
– this is a common issue with early writings that
makes building accurate taggers for them more diffi-
cult than for the clean and consistent, edited modern
texts typically used to evaluate taggers.

2.3 Tagsets

The PPCME uses a part-of-speech tag set that has
some differences from that used for the Penn Tree-
bank, on which modern English taggers are gener-
ally trained. It has a total of 84 word tags compared
to the widely used Penn Treebank tag set’s 36 word
tags.4 One of the main reasons for the relative diver-
sity of the PPCME tag set is that it maintains distinc-
tions between thedo, have, andbeverbs in addition
to non-auxiliary verbs. The tag set is further com-
plicated by the fact that composite POS tags are al-
lowed as inanotherD+OTHER, midnyghtADJ+N,
or armholesN+NS.

To measure tagging accuracy, we consider two
different tag sets:PTB, and COARSE. A measure-
ment of accuracy is not possible with a direct com-
parison to the PPMCE tags since our approach la-

4In our evaluations, we collapse the many different punctu-
ation tags down to a single tag,PUNC.

392



bels target text in Middle English with tags from
the Penn Treebank. Therefore, withPTB, all non-
corresponding PPCME tags were conflated if neces-
sary and mapped to the Penn Treebank tag set. Be-
tween the two sets, only 8 tags,EX, FW, MD, TO, VB,
VBD, VBN, VBP, were found to be fully identical.
In cases where tags from the two sets denoted the
same category/subcategory, one was simply mapped
to the other. When a PPCME tag made finer dis-
tinctions than a related Penn tag and could be con-
sidered a subcategory of that tag, it was mapped ac-
cordingly. For example, the aforementioned auxil-
iary verb tags in the PPMCE were all mapped to cor-
responding subcategories of the largerVB tag group,
a case in point being the mapping of the perfect par-
ticiple of haveHVN to VBN, a plain verbal partici-
ple. For COARSE, the PTB tags were even further
reduced to 15 category tags,5 which is still six more
than the core consensus tag set used in Yarkowsky
and Ngai (2001). Specifically,COARSE was mea-
sured by comparing the first letter of each tag. For
example,NNandNNSare conflated toN.

2.4 Penn Treebank Release 3

The POS tagged Wall Street Journal, sections 2 to
21, from the Penn Treebank Release 3 (Marcus et
al., 1994) was used to train a Modern English tagger
to automatically tag the NET Bible. It was also used
to enhance the maximum likelihood estimates of a
bigram tagger used to label the target text.

3 Approach

Our approach involves three components: (1) pro-
jecting tags from Modern English to Middle English
through alignment; (2) training a bigram tagger; and
(3) bootstrapping the C&C tagger on Middle En-
glish texts tagged by the bigram tagger. This section
describes these components in detail.

3.1 Bootstrapping via alignment

Yarowsky and Ngai (2001) were the first to propose
the use of parallel texts to bootstrap the creation of
taggers. The approach first requires an alignment
to be induced between the words of the two texts;

5Namely, adjective, adverb, cardinal number, complemen-
tizer/preposition, conjunction, determiner, existential there, for-
eign word, interjection, infinitivalto, modal, noun, pronoun,
verb, andwh-words.

tags are then projected from words of the source lan-
guage to words of the target language. This natu-
rally leads to the introduction of noise in the target
language tags. Yarowsky and Ngai deal with this
by (a) assuming that each target word can have at
most two tags and interpolating the probability of
tags given a word between the probabilities of the
two most likely tags for that word and (b) interpo-
lating between probabilities for tags projected from
1-to-1 alignments and those from 1-to-n alignments.
Each of these interpolated probabilities is parame-
terized by a single variable; however, Yarowsky and
Ngai do not provide details for how the two param-
eter values were determined/optimized.

Here, we overcome much of the noise by using
two alignment approaches, one of which exploits
word level similarities (present in genetically de-
rived languages such as Middle English and Present
Day English) and builds a bilingual dictionary be-
tween them. We also fill in gaps in the alignment
by using a bigram tagger that is trained on the noisy
tags and then used to relabel the entire target text.

The C&C tagger (Curran and Clark, 2003) was
trained on the Wall Street Journal texts in the Penn
Treebank and then used to tag the NET Bible (the
source text). The POS tags were projected from the
source to the Wycliffe Bible based on two alignment
approaches, the Dice coefficient and Giza++, as de-
scribed below.

3.1.1 Dice alignments

A dictionary file is built using the variation of
the Dice Coefficient (Dice (1945)) used by Kay and
Röscheisen (1993):

D(v,w) =
2c

NA(v) + NB(w)
≥ θ

Here,c is the number of cooccurring positions and
NT (x) is the number of occurrences of wordx in
corpusT . c is calculated only once for redundant
occurrences in an aligned sentence pair. For exam-
ple, it is a given thatthe will generally occur more
than once in each aligned sentence. However, even if
theoccurs more than once in each of the sentences in
aligned pairsA andsB, c is incremented only once.
v andw are placed in the word alignment table if
they exceed the threshold valueθ, which is an em-
pirically determined, heuristic measure.
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The dictionary was structured to establish a sur-
jective relation from the target language to the
source language. Therefore, no lexeme in the
Wycliffe Bible was matched to more than one lex-
eme in the NET Bible. The Dice Coefficient was
modified so that for a given target wordv

Dv = arg max
w

D(v,w)

would be mapped to a corresponding word from the
source text, such that the Dice Coefficient would be
maximized. Dictionary entries were further culled
by removing(v,w) pairs whose maximum Dice Co-
efficient was lower than theθ threshold, for which
we used the value 0.5. Finally, each word which had
a mapping from the target was sequentially mapped
to a majority POS tag. For example, the wordlike
which had been assigned four different POS tags,
IN, NN, RB, VB, by the C&C tagger in the NET
Bible was only mapped toIN since the pairings of
the two occurred the most frequently. The result is
a mapping from one or more target lexemes to a
source lexeme to a majority POS tag. In the case
of like, two words from the target,asand lijk , were
mapped thereto and to the majority tagIN.

Later, we will refer to the Wycliffe text (partially)
labeled with tags projected using the Dice coeffi-
cient as DICE 1TO1.

3.1.2 GIZA++ alignments

Giza++ (Och and Ney, 2003) was also used to de-
rive 1-to-n word alignments between the NET Bible
and the Wycliffe Bible. This produces a tagged ver-
sion of the Wycliffe text which we will refer to as
GIZA 1TON. In our alignment experiment, we used
a combination of IBM Model 1, Model 3, Model 4,
and an HMM model in configuring Giza++.

GIZA 1TON was further processed to remove
noise from the transferred tag set by creating a 1-to-1
word alignment: each word in the target Middle En-
glish text was given its majority tag based on the as-
signment of tags to GIZA 1TON as a whole. We call
this version of the tagged Wycliffe text GIZA 1TO1.

3.2 Bigram tagger

Note that because the projected tags in the Wycliffe
materials produced from the alignments are incom-
plete, there are words in the target text which have

no tag. Nonetheless, a bigram tagger can be trained
from maximum likelihood estimates for the words
and tag sequences which were successfully pro-
jected. This serves two functions: (1) it creates a
useable bigram tagger and (2) the bigram tagger can
be used to fill in the gaps so that the more powerful
C&C tagger can be trained on the target text.

A bigram tagger selects the most likely tag se-
quenceT for a word sequenceW by:

arg max
T

P (T |W ) = P (W |T )P (T )

Computing these terms requires knowing the transi-
tion probabilitiesP (ti|ti−1) and the emission proba-
bilities P (wi|ti). We use straightforward maximum
likelihood estimates from data with projected tags:

P (ti|ti−1) =
f(ti−1, ti)

f(ti−1)

P (wi|ti) =
f(wi, ti)

f(ti)

Estimates for unseen events were obtained
through add-one smoothing.

In order to diversify the maximum likelihood es-
timates and provide robustness against the errors
of any one alignment method, we concatenate sev-
eral tagged versions of the Wycliffe Bible with tags
projected from each of our methods (DICE 1TO1,
GIZA 1TON, and GIZA 1TO1) and theNET Bible
(and its tags from the C&C tagger).

3.3 Training C&C on projected tags

The bigram tagger learned from the aligned text has
very limited context and cannot use rich features
such as prefixes and suffixes of words in making its
predictions. In contrast, the C&C tagger, which is
based on that of Ratnaparkhi (1996), utilizes a wide
range of features and a larger contextual window in-
cluding the previous two tags and the two previous
and two following words. However, the C&C tagger
cannot train on texts which are not fully tagged for
POS, so we use the bigram tagger to produce a com-
pletely labeled version of the Wycliffe text and train
the C&C tagger on this material. The idea is that
even though it is training on imperfect material, it
will actually be able to correct many errors by virtue
of its greater discriminitive power.
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Evaluate on Evaluate on
PPCME Wycliffe PPCME Test

Model PTB COARSE PTB COARSE

(a) Baseline, tag NN 9.0 17.7 12.6 20.1
(b) C&C, trained on gold WSJ 56.2 63.4 56.2 62.3
(c) Bigram, trained on DICE 1TO1 and GIZA 1TON 68.0 73.1 43.9 49.8
(d) Bigram, trained on DICE 1TO1 and GIZA 1TO1 74.8 80.5 58.0 63.9
(e) C&C, trained onBOOTSTRAP(920k words) 78.8 84.1 61.3 67.8
(f) C&C, trained onBOOTSTRAPand WSJ and NET 79.5 84.8 61.9 68.5
(g) C&C, trained on (gold) PPCME Wycliffe (25k words) n/a n/a 71.0 76.0
(h) C&C, trained on (gold) PPCME training set (327k words)95.9 96.9 93.7 95.1

Figure 2: Tagging results. See section 4 for discussion.

We will refer to the version of the Wycliffe text
(fully) tagged in this way asBOOTSTRAP.

4 Experiments

The M3 and M34 subsections6 of the Penn Helsinki
corpus were chosen for testing since it is not only
from the same period as the Wycliffe Bible but since
it also includes portions of the Wycliffe Bible. A
training set of 14 texts comprising 330,000 words
was selected to train the C&C tagger and test the
cost necessary to equal or exceed the automatic im-
plementation. The test set consists of 4 texts with
110,000 words. The sample Wycliffe Bible with the
gold standard tags has some 25,000 words.

The results of the various configurations are given
in Figure 2, and are discussed in detail below.

4.1 Baselines

We provide two baselines. The first is the result of
giving every word the common tagNN . The sec-
ond baseline was established by directly applying
the C&C tagger, trained on the Penn Treebank, to
the PPCME data. The results are given in lines (a)
and (b) of Figure 2 for the first and second baselines,
respectively. As can be seen, the use of the Mod-
ern English tagger already provides a strong starting
point for both evaluation sets.

6Composition dates and manuscript dates for M3 are 1350-
1420. The composition dates for M34 are the same but the
manuscripts date 1420-1500

4.2 Bigram taggers

In section 3.1, we discuss three versions of the
Wycliffe target text labeled with tags projected
across alignments from the NET Bible. The
most straightforward of these were DICE 1TO1 and
GIZA 1TON which directly use the alignments from
the methods. Training a bigram tagger on these
two sources leads to a large improvement over the
C&C baseline on the PPCME Wycliffe sentences,
as can be seen by comparing line (c) to line (b)
in Figure 2. However, performance drops on the
PPCME Test sentences, which come from different
domains than the bigram tagger’s automatically pro-
duced Wycliffe training material. This difference is
likely to do good estimates ofP (wi|ti), but poor es-
timates ofP (ti|ti−1) due to the noise introduced in
GIZA 1TON.

More conservative tags projection is thus likely
to have a large effect on the out-of-domain perfor-
mance of the learned taggers. To test this, we trained
a bigram tagger on DICE 1TO1 and the more con-
servative GIZA 1TO1 projection. This produces fur-
ther gains for the PPCME Wycliffe, and enormous
improvements on the PPCME Test data (see line (d)
of Figure 2). This result confirms that conservativity
beats wild guessing (at the risk of reduced coverage)
for bootstrapping taggers in this way. This is very
much in line with the methodology of Yarowksy and
Ngai (2001), who project a small number of tags out
of all those predicted by alignment. They achieve
this restriction by directly adjusting the probabality
mass assigned to projected tags; we do it by using
two versions of the target text with tags projected in
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two different 1-to-1 ways.

4.3 Bootstrapping the C&C tagger

As described in section 3.3, a bigram tagger trained
on DICE 1TO1 and GIZA 1TO1 (i.e., the tagger of
line (d)), was used to relabel the entire Wycliffe tar-
get text to produce training material for C&C, which
we callBOOTSTRAP. The intention is to see whether
the more powerful tagger can bootstrap off imper-
fect tags and take advantage of its richer features to
produce a more accurate tagger. As can be seen in
row (e) of Figure 2, it provides a 3-4% gain across
the board over the bigram tagger which produced its
training material (row (d)).

We also considered whether using all available
(non-PPCME) training material would improve tag-
ging accuracy by training C&C onBOOTSTRAP,
the Modern English Wall Street Journal (from the
Penn Treebank), and the automatically tagged NET
text7 It did produce slight gains on both test sets
over C&C trained onBOOTSTRAP alone. This is
likely due to picking up some words that survived
unchanged to the Modern English. Of course, the
utility of modern material used directly in this man-
ner will likely vary a great deal depending on the
distance between the two language variants. What is
perhaps most interesting is that adding the modern
material did nothurt performance.

4.4 Upperbounds

It is apparent from the results that there is a strong
domain effect on the performance of both the bigram
and C&C taggers which have been trained on auto-
matically projected tags. There is thus a question of
how well we could ever hope to perform on PPCME
Test given perfect tags from the Wycliffe texts. To
test this, C&C was trained on thePPCMEversion of
Wycliffe, which has human annotated standard tags,
and then applied on the PPCME test set. We also
compare this to training on PPCME texts which are
similar to those in PPCME Test.

The results, given in lines (g) and (h) of Figure
2, indicate that there is a likely performance cap on
non-Biblical texts when bootstrapping from parallel
Biblical texts. The results in line (h) also show that
the non-Biblical texts are more difficult, even with

7This essentially is partial self-training since C&C trained
on WSJ was used to produce the NET tags.

gold training material. This is likely due to the wide
variety of authors and genres contained in these texts
– in a sense, everything is slightly out-of-domain.

4.5 Learning curves with manual annotation

The upperbounds raise two questions. One is
whether the performance gap between (g) and (h) in
Figure 2 on PPCME Test is influenced by the signif-
icant difference in the size of their training sets. The
other is how much gold-standard PPCME training
material would be needed to match the performance
of our best bootstrapped tagger (line (f)). This is a
natural question to ask, as it hits at the heart of the
utility of our essentially unsupervised approach ver-
sus annotating target texts manually.

To examine the cost of manually annotating the
target language as compared to our unsupervised
method, the C&C tagger was also trained on ran-
domly selected sets of sentences from PPCME (dis-
joint from PPCME Test). Accuracy was measured
on PPCME Wycliffe and Test for a range of training
set sizes, sampled at exponentially increasing values
(25, 50, 100, . . . , 12800). Though we trained on and
predicted the full tagset used by the PPCME, it was
evaluated onPTB to give an accurate comparison.8

The learning curves on both test sets are shown
in Figure 3. The accuracy of the C&C tagger in-
creases rapidly, and the accuracy exceeds our auto-
mated method on PPCME Test with just 50 labeled
sentences and on the PPCME Wycliffe with 400 ex-
amples. This shows the domain of the target text is
served much better with the projection approach.

To see how much gold-standard PPCME Wycliffe
material is necessary to beat our best bootstrapped
tagger, we trained the tagger as in (g) of Figure 2
with varying amounts of material. Roughly 600 la-
beled sentences were required to beat the perfor-
mance of 61.9%/68.5% (line (f), on both metrics).

These learning curves suggest that when the do-
main for which one wishes to produce a tagger is
significantly different from the aligned text one has
available (in this and in many cases, the Bible), then
labeling a small number of examples by hand is a
quite reasonable approach (provided random sam-
pling is used). However, if one is not careful, con-
siderable effort could be put into labeling sentences

8Evaluation with the full PPCME set produces accuracy fig-
ures about 1% lower.
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Figure 3: Learning curve showing the accuracy for
PTB tags of the C&C tagger on both Bible and Test
as it is given more gold-standard PPCME training
sentences.

that are not optimal overall (imagine getting unlucky
and starting out by manually annotating primarily
Wycliffe sentences). The automated methods we
present here start producing good taggers immedi-
ately, and there is much room for improving them
further. Additionally, they could be used to aid man-
ual annotation by proposing high-confidence labels
even before any annotation has begun.

5 Related work

Despite the fact that the Bible has been translated
into many languages and that it constitutes a solid
source for studies in NLP with a concentration on
machine translation or parallel text processing, the
number of studies involving the Bible is fairly lim-
ited. A near exhaustive list is Chew et al.(2006),
Melamed(1998), Resnik et al.(1999), and Yarowsky
et al.(2001).

Yarowsky and Ngai (2001) is of central rele-
vance to this study. The study describes an unsu-
pervised method for inducing a monolingual POS
tagger, base noun-phrase bracketer, named-entity
tagger and morphological analyzers from training
based on parallel texts, among many of which the
Bible was included. This is particularly useful given
that no manually annotated data is necessary in the
target language and that it works for two languages
from different families such as French and Chinese.
In the case of POS tagging, only the results for

English-French are given and an accuracy of 96% is
achieved. Even though this accuracy figure is based
on a reduced tag set smaller than theCOARSEused
in this study, it is still a significant increase over that
achieved here. However, their method had the ad-
vantage of working in a domain that overlaps with
the training data for their POS tagger. Second, the
the French tag set utilized in that study is consider-
ably smaller than the Penn Helsinki tag set, a possi-
ble source of greater noise due to its size.

Drábek and Yarowsky (2005) create a fine-
grained tagger for Czech and French by enriching
the tagset for parallel English text with additional
morphological information, which, though not di-
rectly attested by the impoverished English morpho-
logical system (e.g. number on adjectives), typically
does appear in other languages.

6 Conclusion

The purpose of the study was to implement a POS
tagger for diachronic texts of maximal accuracy with
minimal cost in terms of labor, regardless of the
shortcuts taken. Such taggers are the building blocks
in the design of higher level tools which depend
on POS data such as morphological analyzers and
parsers, all of which are certain to contribute to di-
achronic language studies and genetic studies of lan-
guage change.

We showed that using two conservative methods
for projecting tags through alignment significantly
improves bigram POS tagging accuracies over a
baseline of applying a Modern English tagger to
Middle English text. Results were improved further
by training a more powerful maximum entropy tag-
ger on the predictions of the bootstrapped bigram
tagger, and we observed a further, small boost by
using Modern English tagged material in addition to
the projected tags when training the maximum en-
tropy tagger.

Nonetheless, our results show that there is still
much room for improvement. A manually annotated
training set of 400–800 sentences surpassed our best
bootstrapped tagger. However, it should be noted
that the learning curve approach was based on do-
main neutral, fully randomized, incremental texts,
which are not easily replicated in real world appli-
cations. The domain effect is particularly evident in
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training on the sample Wycliffe and tagging on the
test PPCME set. Of course, our approach can be in-
tegrated with one based on annotation by using our
bootstrapped taggers to perform semi-automated an-
notation, evenbeforethe first human-annotated tag
has been labeled.

It is not certain how our method would fare on the
far more numerous parallel diachronic texts which
do not come prealigned. It is also questionable
whether it would still be robust on texts predating
Middle English, which might as well be written in
a foreign language when compared to Modern En-
glish. These are all limitations that need to be ex-
plored in the future.

Immediate improvements can be sought for the al-
gorithms themselves. By restricting the mapping of
words to only one POS tag in the Wycliffe Bible,
this seriously handicapped the utility of a bigram
tagger. It should be relatively straightforward to
transfer the probability mass of multiple POS tags
in a modern text to corresponding words in a di-
achronic text and include this modified probability
in the bigram tagger. When further augmented for
automatic parameter adjustment with the forward-
backward algorithm, accuracy rates might increase
further. Furthermore, different algorithms might be
better able to take advantage of similarities in or-
thography and syntactic structure when constructing
word alignment tables. Minimum Edit Distance al-
gorithms seem particularly promising in this regard.

Finally, it is evident that the utility of the Bible
as a potential resource of parallel texts has largely
gone untapped in NLP research. Considering that
it has probably been translated into more languages
than any other single text, and that this richness
of parallelism holds not only for synchrony but di-
achrony, its usefulness would apply not only to the
most immediate concern of building language tools
for many of the the world’s underdocumented lan-
guages, but also to cross-linguistic studies of un-
precedented scope at the level of language genera.
This study shows that despite the fact that any two
Bibles are rarely in a direct parallel relation, stan-
dard NLP methods can be applied with success.
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Appendix

Figure 4 provides the full mapping from PPCME
tags to the Penn Treebank Tags used in our evalu-
ation.

PPCME→PTB PPCME→PTB
ADJR→JJR N→NN
ADJS→JJS N$→NN
ADV→RB NEG→RB

ADVR→RBR NPR→NNP
ADVS→RBS NPR$→NNP
ALSO→RB NPRS→NNPS

BAG→VBG NPRS$→NNPS
BE→VB NS→NNS

BED→VBD NS$→NNS
BEI→VB NUM→CD

BEN→VBN NUM$→CD
BEP→VBZ ONE→PRP

C→IN ONE$→PRP$
CODE→CODE OTHER→PRP
CONJ→CC OTHER$→PRP

D→DT OTHERS→PRP
DAG→VBG OTHERS$→PRP
DAN→VBN P→IN

DO→VB PRO→PRP
DOD→VBD PRO$→PRP$
DOI→VB Q→JJ

DON→VBN Q$→JJ
DOP→VBP QR→RBR
E S→E S QS→RBS

ELSE→RB RP→RB
EX→EX SUCH→RB

FOR→IN TO→TO
FOR+TO→IN VAG→VBG

FP→CC VAN→VBN
FW→FW VB→VB

HAG→VBG VBD→VBD
HAN→VBN VBI→VB

HV→VB VBN→VBN
HVD→VBD VBP→VBP
HVI→VB WADV→WRB

HVN→VBN WARD→WARD
HVP→VBP WD→WDT

ID→ID WPRO→WP
INTJ→UH WPRO$→WP$

MAN→PRP WQ→IN
MD→MD X→X

MD0→MD

Figure 4: Table of mappings from PPCME tags to
Penn Treebank Tags.
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Abstract

In this paper, we consider the computational
modelling of human plausibility judgements
for verb-relation-argument triples, a task
equivalent to the computation of selectional
preferences. Such models have applications
both in psycholinguistics and in computa-
tional linguistics.

By extending a recent model, we obtain
a completely corpus-driven model for this
task which achieves significant correlations
with human judgements. It rivals or exceeds
deeper, resource-driven models while exhibit-
ing higher coverage. Moreover, we show that
our model can be combined with deeper mod-
els to obtain better predictions than from ei-
ther model alone.

1 Introduction

One fundamental and intuitive finding in experimen-
tal psycholinguistics is that humans judge the plau-
sibility of a verb-argument pair vastly differently de-
pending on the semantic relation in the pair. Table 1
lists example human judgements which McRae et
al. (1998) elicited by asking about the plausibility of,
e.g., a hunter shooting (relation agent) or being shot
(relation patient). McRae et al. found that “hunter” is
judged to be a very plausible agent of “shoot” and
an implausible patient, while the reverse is true for
“deer”. In linguistics, this phenomenon is explained
by selectional preferences on verbs’ argument po-
sitions; we use plausibility and fit with selectional
preferences interchangeably.

Verb Relation Noun Plausibility
shoot agent hunter 6.9
shoot patient hunter 2.8
shoot agent deer 1.0
shoot patient deer 6.4

Table 1: Verb-relation-noun triples with plausibility
judgements on a 7-point scale (McRae et al., 1998)

In this paper, we consider computational mod-
els that predict human plausibility ratings, or the
fit of selectional preferences and argument, for
such (verb, relation, argument), in short, (v, r, a),
triples. Being able to model this type of data is rel-
evant in a number of ways. From the point of view
of psycholinguistics, selectional preferences have an
important effect in human sentence processing (e.g.,
McRae et al. (1998), Trueswell et al. (1994)), and
models of selectional preferences are therefore nec-
essary to inform models of this process (Padó et al.,
2006). In computational linguistics, a multitude of
tasks is sensitive to selectional preferences, such as
the resolution of ambiguous attachments (Hindle and
Rooth, 1993), word sense disambiguation (McCarthy
and Carroll, 2003), semantic role labelling (Gildea
and Jurafsky, 2002), or testing the applicability of
inference rules (Pantel et al., 2007).

A number of approaches has been proposed to
model selectional preference data (Padó et al., 2006;
Resnik, 1996; Clark and Weir, 2002; Abe and Li,
1996). These models generally operate by general-
ising from seen (v, r, a) triples to unseen ones. By
relying on resources like corpora with semantic role
annotation or the WordNet ontology, these models
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generally share two problems: (a), limited coverage;
and (b), the resource (at least partially) predetermines
the generalisations that they can make.

In this paper, we investigate whether it is possi-
ble to predict the plausibility of (v, r, a) triples in
a completely corpus-driven way. We build on a re-
cent selectional preference model (Erk, 2007) that
bases its generalisations on word similarity in a vec-
tor space. While that model relies on corpora with
semantic role annotation, we show that it is possible
to predict plausibility ratings solely on the basis of a
parsed corpus, by using shallow cues and a suitable
vector space specification.

For evaluation, we use two balanced data sets of
human plausibility judgements, i.e., datasets where
each verb is paired both with a good agent and a good
patient, and where both nouns are presented in either
semantic relation (as in Table 1). Using balanced test
data is a particularly difficult task, since it forces
the models to account reliably both for the influence
of the semantic relation (agent/patient) and of the
argument head (“hunter”/“deer”).

We obtain three main results: (a), our model is able
to match the superior performance of the model pro-
posed by Padó et al. (2006), while retaining the high
coverage of the model proposed by Resnik (1996);
(b), using parsing as a preprocessing step improves
the model’s performance significantly; and (c), a com-
bination of our model with the Padó model exceeds
both individual models in accuracy.

Plan of the paper. In Section 2, we give an
overview of existing selectional preferences and vec-
tor space models. Section 3 introduces our model and
discusses its parameters. Sections 4 and 5 present our
experimental setup and results. Section 6 concludes.

2 Related Work

Modelling Selectional Preferences with Gram-
matical Functions. The idea of inducing selec-
tional preferences from corpora was introduced by
Resnik (1996). He approximated the semantic verb-
argument relations in (v, r, a) triples by grammatical
functions, which are readily available for large train-
ing corpora. His basic two-step procedure was fol-
lowed by all later approaches: (1), extract argument
headwords for a given predicate and relation from
a corpus; (2), generalise to other, similar words us-

ing the WordNet noun hierarchy. Other models also
relying on the WordNet resource include Abe and
Li (1996) and Clark and Weir (2002).

We present Resnik’s model in some detail, since
we will use it for comparison below. Resnik first
computes the overall selectional preference strength
for each verb-relation pair, i.e. the degree of “con-
strainedness” of each relation. This quantity is esti-
mated as the difference (in terms of the Kullback-
Leibler divergence D) between the distribution over
WordNet argument classes given the relation, p(c|r),
and the distribution of argument classes given the
current verb-relation combination, p(c|v, r). The in-
tuition is that a verb-relation pair that only allows
for a limited range of argument heads will have a
probability distribution over argument classes that
strongly diverges from the prior distribution.

Next, the selectional association of the triple,
A(v, r, c), is computed as the ratio of the selectional
preference strength for this particular class, divided
by the overall selectional preference strength of the
verb-relation pair. This is shown in Equation 1.

A(v, r, c) =
p(c|v, r)log p(c|v,r)

p(c|r)

D(p(c|r)||p(c|v, r))
(1)

Finally, the selectional preference between a verb,
a relation, and an argument head is taken to be the
selectional association of the verb and relation with
the most strongly associated WordNet ancestor class
of the argument.

WordNet-based approaches however face two
problems. One is a coverage problem due to the lim-
ited size of the resource (see the task-based evalu-
ation in Gildea and Jurafsky (2002)). The other is
that the shape of the WordNet hierarchy determines
the generalisations that the models make. These are
not always intuitive. For example, Resnik (1996) ob-
serves that (answer, obj, tragedy) receives a high
preference because “tragedy” in WordNet is a type
of written communication, which is a preferred argu-
ment class of “answer”.

Rooth et al. (1999) present a fundamentally dif-
ferent approach to selectional preference induction
which uses soft clustering to form classes for general-
isation and does not take recourse to any hand-crafted
resource. We will argue in Section 6 that our model
allows more control over the generalisations made.
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Modelling Selectional Preferences with Thematic
Roles. Padó et al. (2006) present a deeper model
for the plausibility of (v, r, a) triples that approxi-
mates the relations with thematic roles. It estimates
the selectional preferences of a verb-role pair with
a generative probability model that equates the plau-
sibility of a (v, r, a) triple with the joint probability
of seeing the thematic role with the verb-argument
pair. In addition, the model also considers the verb’s
sense s and the grammatical function gf of the ar-
gument; however, since the model is generative, it
can make predictions even when not all variables are
instantiated. The final model is shown in Equation 2.

Plausibilityv,r,a = P (v, s, r, a, gf ) (2)

The induction of this model from the FrameNet cor-
pus of semantically annotated training data (Fillmore
et al., 2003) encounters a serious sparse data prob-
lem, which is approached by the application of word-
class-based and Good-Turing re-estimation smooth-
ing. The resulting model’s plausibility predictions
are significantly correlated to human judgements, but
because of the use of verb-specific thematic roles,
the model’s coverage is still restricted by the verb
coverage of the training corpus.

Vector Space Models. Another class of models
that has found wide application in lexical semantics
is the family of vector space models. In a vector space
model, each target word is represented as a vector,
typically constructed from co-occurrence counts with
context words in a large corpus (the so-called basis
elements). The underlying assumption is that words
with similar meanings occur in similar contexts, and
will be assigned similar vectors. Thus, the distance
between the vectors of two target words, as given by
some distance measure (e.g., Cosine or Jaccard), is a
measure of their semantic similarity.

Vector space models are simple to construct, and
the semantic similarity they provide has found a wide
range of applications. Examples in NLP include in-
formation retrieval (Salton et al., 1975), automatic
thesaurus extraction (Grefenstette, 1994), and pre-
dominant sense identification (McCarthy et al., 2004).
In cognitive science, they have been used to account
for the influence of context on human lexical pro-
cessing (McDonald and Brew, 2004), and to model
lexical priming (Lowe and McDonald, 2000).

A drawback of vector space models is the diffi-
culty of interpreting what some degree of “generic
semantic similarity” between two target words means
in linguistic terms. In particular, this similarity is
not sensitive to selectional preferences over specific
semantic relations, and thus cannot model the plau-
sibility data we are interested in. The next section
demonstrates how the integration of ideas from se-
lectional preference induction makes this distinction
possible.

3 The Vector Similarity Model:
Corpus-Based Modelling of Plausibility

3.1 Model Architecture

Our model builds on the architecture of Erk (2007). It
combines the idea underlying the selectional prefer-
ence models from Section 2, namely to predict plau-
sibility by generalising over head words, with vector
space similarity. The fundamental idea of our model
is to model the plausibility of the triple (v, r, a) by
comparing the argument head a to other headwords
a′ which we have already seen in a corpus for the
same verb-relation pair (v, r), and which we there-
fore assume to be plausible. We write Seenr(v) for
the set of seen headwords. Our intuition is that if a
is similar to the words in Seenr(v), then the triple
(v, r, a) is plausible; conversely, if it is very dissimi-
lar, then the triple is implausible.

Concretely, we judge the plausibility of the triple
by averaging over the similarity of the vector for a to
all vectors for the seen headwords in Seenr(v):

Pl(v, r, a) =
∑

a′∈Seenr(v)

w(a′) · sim(a, a′)
|Seenr(v)|

(3)

where w is a weight factor specific to each a′. w can
be used to implement different weighting schemes
that encode prior knowledge, e.g., about the reliabil-
ity of different words in Seenr(v). In this paper, we
only consider a very simple weighting factor, namely
the frequency of the seen headwords. This encodes
the assumption that similarity to frequent head words
is more important than similarity to infrequent ones:

Pl(v, r, a) =
∑

a′∈Seenr(v)

f(a′) · sim(a, a′)
|Seenr(v)|

(4)
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deer

lion

hunter
poacher

director

seen patients
of "shoot"

seen agents
of "shoot"

Figure 1: A vector space for estimating the
plausibilities of (shoot, agent, hunter) and
(shoot, patient, hunter).

This model can be seen as a straightforward imple-
mentation of the selectional preference induction pro-
cess of generalising from seen headwords to other,
similar words. By using vector space representations
to judge the similarity of words, we obtain a com-
pletely corpus-driven model that does not require any
additional resources and is very flexible. A comple-
mentary view on this model is as a generalisation of
traditional vector space models that computes simi-
larity not between two vectors, but between a vector
and a set of other vectors. By using the vectors for
seen headwords of a given relation as this set, the
similarity we compute is specific to this relation.

Example. Figure 1 shows an example vector space.
Consider v = “shoot”, r = agent, and a = “hunter”.
In order to judge whether a hunter is a plausible agent
of “shoot”, the vector space representation of “hunter”
is compared to all representations of known agents
of "shoot”, namely “poacher” and “director”. Due
to the nearness of the vector for “hunter” to these
two vectors, “hunter” will be judged a fairly good
agent of “shoot”. Compare this with the result for the
role patient : “hunter” is further away from “lion” and
“deer”, and will therefore be found to be a rather bad
patient of “shoot”. However, “hunter” is still more
plausible as a patient of “shoot” than e.g., “director”.

3.2 Instantiating the Model: Unparsed
vs. Parsed Corpora

The two major tasks which need to be addressed to
obtain an instance of this model are (a), determining
the sets of seen head words Seenr(v), and (b), the

construction of a vector space. Erk (2007) extracted
the set of seen head words from corpora with se-
mantic role annotation, and used only a single vector
space representation. In this paper, we eliminate the
reliance on special annotation by considering shallow
approximations of the semantic relations in question.
In addition, we discuss in detail which properties of
the vector space are crucial for the prediction of plau-
sibility ratings, a much more fine-grained task than
the pseudo-word disambiguation task presented in
Erk (2007) that is more closely related to semantic
role labelling. The goal of our exposition is thus to
develop a model that can use more training data, and
represent the corpus information optimally in order
to obtain superior coverage.

In fact, tasks (a) and (b) can be solved on the basis
of unparsed corpora, but we would expect the results
to be rather noisy. Fortunately, the state of the art in
broad-coverage (Lin, 1993) and unsupervised (Klein
and Manning, 2004) dependency parsing allows us to
treat dependency parsing merely as a preprocessing
step. We therefore describe two instantiations of our
model: one based on an unprocessed corpus, and one
based on a dependency-based parsed corpus. By com-
paring the models, we can gauge whether syntactic
preprocessing improves model performance. In the
following, we describe the strategies the two models
adopt for (a) and (b).

Identifying seen head words for relations. Re-
call that the set Seenr(v) is supposed to contain
known head words a that are observed in the corpus
as triples (v, r, a). In a parsed corpus, we can approx-
imate the relation agent by the dependency relation
of subject provided by the parser, and the relation
patient by the dependency relation of object. In
an unparsed corpus, these grammatical relations are
unavailable, and the only straightforward evidence
we can use is word order. In this case, we assume
that words directly adjacent to the left of a predicate
are subjects, and therefore agents, whereas words
directly to its right are objects, and thus patients.

Vector space topology. The success of our method
depends directly on the topology of the vector space.
More specifically, two words should only be assigned
similar vectors if they are in fact of similar plausibil-
ity. If this is not the case, there is no guarantee that a
word a that is similar to the words in Seenr(v) forms
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`````````````̀Basis elements
Target

deer hunter

shoot 10 10
escape 12 12

`````````````̀Basis elements
Target

deer hunter

shoot-SUBJ 0 8
shoot-OBJ 10 2
escape-SUBJ 10 5
escape-OBJ 2 7

Figure 2: Two vector spaces, using as basis elements
either context words (above) or words paired with
grammatical functions (below)

a plausible triple (v, r, a) itself (cf. Figure 1).

The topology, in turn, is related to the choice of
basis elements. Traditional vector space models use
context words as basis elements of the space. The
top table in Figure 2 illustrates our intuition that such
spaces are problematic: “deer” and “hunter” receive
identical vectors, even though they show complemen-
tary plausibility ratings (cf. Table 1). The reason is
that “deer” and “hunter” often co-occur quite closely
to one another (e.g., in the vicinity of “shoot”), and
thus show a very similar profile in terms of context
words. In preliminary experiments, we found that vec-
tor spaces with context words as basis elements are
in fact unable to distinguish such word pairs reliably.

In contrast, the bottom table in Figure 2 indicates
that this problem can be alleviated by using context
words combined with the grammatical relation to
the target word as basis elements. Target words now
receive different representations, depending on the
grammatical function in which they occur with con-
text words. In consequence, resulting spaces can dis-
tinguish, for example, between “hunter” and “deer”.

We adopt word-function pairs as basis elements for
the vector spaces in all our models. In a dependency-
parsed corpus, the basis elements can be directly read
off the syntactic structure. In an unparsed corpus, we
again fall back on word order, appending to each
context word its relative position to the target word.

4 Experimental Setup

Experimental Materials. In order to make our
evaluation comparable to the earlier modelling study
by Padó et al. (2006), we present evaluations on the
two plausibility judgement datasets used there.1

The first dataset consists of 100 data points from
McRae et al. (1998). Our example in Table 1, which
is taken from this dataset, demonstrates its balanced
structure: 25 verbs are paired with two arguments
and two relations each, such that each argument is
highly plausible in one relation, but implausible in
the other. The resulting distribution of ratings is thus
highly bimodal. Models can only reliably predict the
human ratings in this data set if they can capture the
difference between verb argument slots as well as as
between individual fillers.

The second, larger dataset is less strictly balanced,
since its triples are constructed on the basis of corpus
co-occurrences (Padó et al., 2006). 18 verbs are com-
bined with the three most frequent subjects and ob-
jects from both the Penn Treebank and the FrameNet
corpus. Each verb-argument pair was rated both as
an agent and as a patient, which leads to a total of
24 rated triples per verb. The dataset contains ratings
for a total of 414 triples, due to overlap between cor-
pora. The resulting judgements show a more even
distribution of ratings than the McRae data.

Vector Similarity Models. Following our exposi-
tion in the last section, we construct two instantia-
tions of our vector similarity model, one using un-
parsed and one parsed data. Both are trained on the
complete British National Corpus (Burnard, 1995,
BNC) with more than six million sentences.

The unparsed model (Unparsed) uses the BNC
without any pre-processing. We first construct the
set of known headwords, Seenr(v), as follows: All
words up to 2 words to the left of instances of v
are assumed to be subjects, and thus agents; vice
versa for patients to the right. Then, we construct
semantic space representations for the experimental
arguments and known headwords, adopting optimal
parameter settings from the literature (Padó and Lap-
ata, 2007). This means a context window of 5 words
to either side and 2,000 basis elements (dimensions),
which are formed by the most frequent 1,000 words

1We are grateful to Ken McRae for his dataset.
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in the BNC, combined with each of the relations
agent and patient. All counts are log-likelihood trans-
formed (Lowe, 2001).

To construct the parsed model (Parsed), we
dependency-parsed the BNC with Minipar (Lin,
1993). We first obtain the seen headwords Seenr(v)
by using all subjects and objects of v as agents and pa-
tients, respectively. We then construct a vector space
for the experimental arguments and known head-
words.2 We use 2,000 dimensions again, but adopt the
most frequent (head , grammatical function) pairs
in the BNC as basis elements. The context window
is formed by subject and object dependencies.
All counts are log-likelihood transformed.

We experiment with two distance measures to com-
pute vector similarity, namely the Jaccard Coefficient
and Cosine Distance, both of which have been shown
to yield good performance in NLP tasks (Lee, 1999;
McDonald and Lowe, 1998).

Evaluation Procedure. We evaluate our models
by correlating the predicted plausibility values with
the human judgements, which range between 1 and
7. Since the human judgement data is not normally
distributed, we use Spearman’s ρ, a non-parametric
rank-order test. We determine the statistical signif-
icance of differences in correlation strength using
the method described in Raghunathan (2003). This
method can deal with missing values and thus allows
us to compare models with different coverage.

It is difficult to specify a straightforward baseline
for our correlation-based evaluation. In contrast to
classification tasks, where models choose one out of
a fixed number of classes, our model predicts contin-
uous data. This task is more difficult to approximate,
e.g., using frequency information.

With respect to upper bounds, we hold that au-
tomatic models of plausibility cannot be expected
to surpass the typical agreement on the plausibility
judgement task between human participants. Thus,
we assume an upper bound of ρ ≈ 0.7.

Comparison against Other Models. We compare
our performance to two models from the literature dis-
cussed in Section 2. The first model (Pado) is the the-

2This space was computed using the
DependencyVectors software described in Padó and
Lapata (2007). This software can be downloaded from http:
//www.coli.uni-saarland.de/~pado/dv.html.

Model Coverage Spearman’s ρ

Unparsed Cosine 90% 0.023, ns
Unparsed Jaccard 90% 0.044, ns
Parsed Cosine 91% 0.218, *
Parsed Jaccard 91% 0.129, ns
Resnik 94% 0.028, ns
Pado 56% 0.415, **

Table 2: Model performance on McRae data.
*: p < 0.05, **: p < 0.01

matic role-based model by Padó et al. (2006) trained
on the FrameNet (Fillmore et al., 2003) release 1.2 ex-
ample sentences, a subset of the BNC annotated with
semantic roles. This corpus contains about 57,000
sentences, which corresponds to roughly 1% of the
BNC data.

The second model (Resnik) is the WordNet-based
selectional preference model by Resnik (1996),
trained on the dependency-parsed BNC (see above).

5 Experimental Evaluation

The McRae Dataset. Table 2 summarises our re-
sults on the McRae dataset. The upper part shows
the results for our two vector similarity models
(Parsed/Unparsed), combined with the two distance
measures (Cosine/Jaccard). The lower part shows the
two resource-based models we use for comparison.

We find that all vector similarity models exhibit
high coverage (above 90%), and one model (Parsed
Cosine) can predict human judgements with a signifi-
cant correlation. The instantiation of the model has
a significant impact on the performance: The Parsed
models clearly outperform the Unparsed models. The
effect of the distance measure is less clear-cut, since
the Unparsed models perform better with Jaccard,
while the Parsed models prefer Cosine.

The deep semantic plausibility model (Pado)
makes predictions only for slightly more than half of
the data. This low coverage is a direct result of the
small overlap in verbs between the McRae dataset
and the FrameNet corpus. However, on the data
points it covers, it achieves a significant correlation
to human judgements. The correlation coefficient is
numerically much higher than that of the Parsed Co-
sine model, but due to the large coverage difference,
the two models are not statistically distinguishable.
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Model Coverage Spearman’s ρ

Unparsed Cosine 98% 0.117, *
Unparsed Jaccard 98% 0.149, **
Parsed Cosine 98% 0.479, ***
Parsed Jaccard 98% 0.120, *
Resnik 98% 0.237, ***
Pado 97% 0.515, ***

Table 3: Model performance on Pado data.
*: p < 0.05, **: p < 0.01, ***: p < 0.001

Resnik’s WordNet-based model shows a coverage
that is comparable to the vector similarity models,
but does not achieve a significant correlation to the
human judgements.

The Pado Dataset. Table 3 summarises the results
for the Pado dataset. Since all verbs in this dataset are
covered in FrameNet, the deep Pado model shows a
coverage comparable to all other models, at >95%.

The main difference to the McRae dataset lies in
the models’ performance. We find that all models,
including the Unparsed vector models and Resnik,
manage to achieve significant correlations with the
human judgements. Within the vector similarity mod-
els, the same trends hold as for the McRae dataset:
Parsed outperforms Unparsed, and the best combina-
tion is Parsed Cosine. The models fall into two clearly
separated groups: The Pado and Parsed Cosine mod-
els achieve a highly significant correlation, and are
statistically indistinguishable. They significantly out-
perform the second group (p < 0.001), formed by
all other models. Within this second group, Resnik is
numerically the best model and shows a significant
correlation with human data; nevertheless, the differ-
ence to the first group is evident from its substantially
lower correlation coefficient.

The construction of the Pado dataset allows a fur-
ther analysis. As mentioned in Section 4, the dataset
consists of verb-argument pairs drawn from two dif-
ferent corpora. Therefore, each verb is combined
both with some arguments that are seen in FrameNet,
and some that are not. Our hypothesis is that the
FrameNet-trained Pado model performs consider-
ably better on the 216 “FN-Seen” data points (verb-
argument pairs observed in FrameNet in at least one
relation) than on the 198 “FN-Unseen” data points
(verb-argument pairs unseen in both relations).

Table 4 shows the results of this analysis for the
best-performing models. We observe a pattern corre-
sponding to our expectations: The performance of the
Pado model is clearly worse for FN-Unseen than for
FN-Seen, while the Resnik and Parsed Cosine mod-
els perform more evenly across both datasets. While
the Pado model is significantly better on the FN-Seen
dataset, it is numerically outperformed by the Parsed
Cosine model for the FN-Unseen data points. We
conclude that the deep model is more accurate within
the coverage of its resources, but loses its advantage
when it has to resort to smoothing.

Model combination. Our last analysis indicates
that the models have complementary strengths: the
thematic role-based Pado model is the best plausi-
bility predictor on the data points it has seen, while
the Parsed cosine model overall predicts human data
only numerically worse, and with better coverage.
We therefore suggest to combine the predictions of
the two models to combine their respective strengths.

For the moment, we only consider a naive backoff
scheme: For each data point, we use the prediction
of the Pado model if the data point is “FN-Seen” (cf.
the last paragraph), and the prediction of the Parsed
Cosine model otherwise. Note that this criterion does
not consider the predictions of the models themselves,
only properties of the underlying training set.

The actual combination requires a normalisation
of the respective predictions, since one of the models
(Pado) is probabilistic, while the other one (Parsed
Cosine) is similarity-based, and their predictions are
not directly comparable. We perform a simple nor-
malisation by z-transforming the complete predic-
tions of each model.3 The combination of the scaled
predictions in fact results in an improved correlation
with the human data. The correlation coefficient of
ρ=0.552 numerically exceeds either base model, and
the coverage of 98% corresponds to the coverage of
the more robust Parsed Cosine model.

We take this result as evidence that even a simple
combination technique can lead to improved predic-
tions. Unfortunately, our naive backoff scheme does
not directly carry over to the McRae dataset, where
only 2 out of 100 data points are “FN-Seen”, and the
Pado model would thus hardly contribute.

3The z transformation scales a dataset to a mean of 0 and a
standard deviation of 1.
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Model FN-Seen Data FN-Unseen Data
Parsed Cosine 94% 0.426, *** 100% 0.461, ***
Resnik 96% 0.217, ** 100% 0.263, ***
Pado 97% 0.569, *** 96% 0.383, ***

Table 4: Performance on data points seen and unseen in FrameNet (Pado dataset). **: p < 0.01 ***: p < 0.001

Discussion. We have verified experimentally that
our vector similarity model is able to match the per-
formance of a deep plausibility model, exceeding it
in coverage, and to outperform a WordNet-based se-
lectional preference model. We conclude that a com-
pletely corpus-driven approach constitutes a viable
alternative to resource-based models.

One insight from our experiments is that vec-
tor similarity models constructed from dependency-
parsed corpora perform significantly better than un-
parsed models. This indicates that dependency rela-
tions like subject and object are reliable syntac-
tic correlates of semantic relations like agent and pa-
tient, but that their approximation in terms of word or-
der introduces considerable noise. The Parsed models
are best combined with Cosine Distance. We surmise
that Cosine, which tends to consider low-frequency
words more than Jaccard, is more susceptible to the
additional noise in unparsed corpora.

Furthermore, the choice of basis elements for the
vector space is vital: Plausibilities could only be pre-
dicted successfully with word-relation pairs as basis
elements. This is in contrast to recent results on pre-
dominant sense acquisition, the task of identifying
the most frequent sense for a given word in an un-
supervised manner (McCarthy et al., 2004). On that
task, Padó and Lapata (2007) found vector spaces
with words as basis elements are in fact competitive
with models using word-relation pairs. This diver-
gence underlines an interesting difference between
the two tasks. Evidently, predominant senses identi-
fication, as a WSD-related task, can succeed on the
basis of topical information, which is represented
well in word-based spaces. In contrast, plausibility
judgments can only be predicted by a space based
on word-relation pairs which can represent the finer-
grained distinctions arising from different relations
between verb and noun.

A second important finding is that the relative per-
formance of the different models is the same on the

McRae and Pado datasets. The Pado model performs
best, followed by our Parsed Cosine vector similarity
model, followed by the Unparsed and Resnik models.

The McRae dataset, however, is much more diffi-
cult to account for than the Pado data, independent of
the model. This effect was already noted by Padó et
al. (2006), who attributed it to the very limited over-
lap between the McRae dataset and FrameNet. While
this explanation can account for the difference for the
Pado model, we observe the same pattern across all
models. This suggests that a more general frequency
effect is at work here: The median frequency of the
hand-selected McRae nouns is 1,356 in the BNC, as
opposed to 8,184 for the corpus-derived Pado nouns.
The resulting sparseness affects all model families,
since all ultimately rely on co-occurrences.

The performance difference between the two
datasets is particularly large for the WordNet-based
selectional preference model (Resnik). A further
analysis of the model’s predictions shows that
the model has difficulty in distinguishing between
verb-relation-argument triples that differ only in
the argument, such as (shoot, agent, hunter) and
(shoot, agent, deer). Recall that it is crucial for the
prediction of the McRae data to make this distinc-
tion, since the arguments for each relation are cho-
sen to differ widely in plausibility. The reason for
the Resnik model’s difficulty is that arguments are
mapped onto WordNet synsets, and whenever two
arguments are mapped onto closely related synsets,
their plausibility ratings are similar. This problem is
graver for the McRae test set, where all arguments are
animates, and thus more similar in terms of WordNet,
than for the Pado set, which also contains a portion of
inanimate arguments with animate counterparts. This
analysis highlights again the fundamental problem
of resource-based models, where design decisions of
the underlying resource may limit, or even mislead,
the models’ generalisations.

Finally, we have shown in a first experiment that
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the syntax-based vector similarity model can be com-
bined with the role-base model to obtain a combined
model that performs superior to both. In this com-
bined model, the shallow model’s better coverage sup-
plements the accurate predictions of the deep model.

6 Conclusions

In this paper, we have considered the computational
modelling of human plausibility judgements for verb-
relation-argument triples, a task equivalent to the
computation of selectional preferences. We have ex-
tended a recent proposal (Erk, 2007) which com-
bines ideas from selectional preference induction and
vector space models. Our model can be constructed
from a large corpus with partial syntactic information
(specifically, subject and object relations) from which
it builds an optimally informative vector space.

We have demonstrated that the successful evalua-
tion of the model in Erk (2007) on the coarse-grained
pseudo-word disambiguation task carries over to the
prediction of human plausibility judgments which re-
quires relatively fine-grained, relation-based distinc-
tions. Our model is competitive with existing “deep”
models while exhibiting a higher coverage. We have
also shown that our vector similarity model can be
combined with a “deep” model so that the combined
model outperforms both base models. A thorough
investigation of strategies for prediction combination
and scaling remains future work.

The strategy of our model to derive generalisations
directly from corpus data, without recourse to re-
sources, is similar to another family of corpus-driven
selectional preference models, namely EM-based
clustering models (Rooth et al., 1999). However, we
believe that our model has a number of advantages.
(1), It is conceptually simple and implements the
intuition behind selectional preference models, “gen-
eralise from known headwords to unknown ones”,
particularly directly through the comparison of new
headwords to known ones according to a given defini-
tion of similarity. (2), The separation of the similarity
computation and the acquisition of seen headwords
gives the experimenter fine-grained control over the
types and sources of information which inform the
construction of the model. (3), The instantiation of
the similarity computation with a vector space makes
it possible to integrate additional linguistic informa-

tion beyond verb-argument co-occurrences into the
model, building on a large body of work in vector
space construction. In sum, our modular model pro-
vides a higher degree of control than one-step models
like the EM-based proposal.

An important avenue of further research is the
ability of the vector plausibility model to model finer-
grained distinctions between semantic relations be-
yond the agent/patient dichotomy, as thematic role-
based models are able to. Excluding the direct use of
role-annotated corpora like FrameNet for coverage
reasons, the most promising strategy is to extend our
present scheme of approximating semantic relations
by grammatical realisations. How much noise this
approximation introduces when finer role sets are
used is an open research question.
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Abstract
We present V-measure, an external entropy-
based cluster evaluation measure. V-
measure provides an elegant solution to
many problems that affect previously de-
fined cluster evaluation measures includ-
ing 1) dependence on clustering algorithm
or data set, 2) the “problem of matching”,
where the clustering of only a portion of data
points are evaluated and 3) accurate evalu-
ation and combination of two desirable as-
pects of clustering, homogeneity and com-
pleteness. We compare V-measure to a num-
ber of popular cluster evaluation measures
and demonstrate that it satisfies several de-
sirable properties of clustering solutions, us-
ing simulated clustering results. Finally, we
use V-measure to evaluate two clustering
tasks: document clustering and pitch accent
type clustering.

1 Introduction
Clustering techniques have been used successfully
for many natural language processing tasks, such
as document clustering (Willett, 1988; Zamir and
Etzioni, 1998; Cutting et al., 1992; Vempala and
Wang, 2005), word sense disambiguation (Shin and
Choi, 2004), semantic role labeling (Baldewein et
al., 2004), pitch accent type disambiguation (Levow,
2006). They are particularly appealing for tasks
in which there is an abundance of language data
available, but manual annotation of this data is
very resource-intensive. Unsupervised clustering
can eliminate the need for (full) manual annotation
of the data into desired classes, but often at the cost
of making evaluation of success more difficult.

External evaluation measures for clustering can
be applied when class labels for each data point in
some evaluation set can be determineda priori. The

clustering task is then to assign these data points to
any number of clusters such that each cluster con-
tains all and only those data points that are members
of the same class Given the ground truth class la-
bels, it is trivial to determine whether this perfect
clustering has been achieved. However, evaluating
how far from perfect an incorrect clustering solution
is a more difficult task (Oakes, 1998) and proposed
approaches often lack rigor (Meila, 2007).

In this paper, we describe a new entropy-based
external cluster evaluation measure, V-MEASURE1,
designed to address the problem of quantifying such
imperfection. Like all external measures, V-measure
compares a target clustering — e.g., a manually an-
notated representative subset of the available data —
against an automatically generated clustering to de-
termine now similar the two are. We introduce two
complementary concepts, completeness and homo-
geneity, to capture desirable properties in clustering
tasks.

In Section 2, we describe V-measure and how it
is calculated in terms of homogeneity and complete-
ness. We describe several popular external cluster
evaluation measures and draw some comparisons to
V-measure in Section 3. In Section 4, we discuss
how some desirable properties for clustering are sat-
isfied by V-measure vs. other measures. In Sec-
tion 5, we present two applications of V-measure, on
document clustering and on pitch accent type clus-
tering.

2 V-Measure and Its Calculation
V-measure is an entropy-based measure which ex-
plicitly measures how successfully the criteria of ho-
mogeneity and completeness have been satisfied. V-
measure is computed as the harmonic mean of dis-
tinct homogeneity and completeness scores, just as

1The ‘V’ stands for “validity”, a common term used to de-
scribe the goodness of a clustering solution.
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precision and recall are commonly combined into
F-measure (Van Rijsbergen, 1979). As F-measure
scores can be weighted, V-measure can be weighted
to favor the contributions of homogeneity or com-
pleteness.

For the purposes of the following discussion, as-
sume a data set comprisingN data points, and two
partitions of these: a set of classes,C = {ci|i =
1, . . . , n} and a set of clusters,K = {ki|1, . . . ,m}.
LetA be the contingency table produced by the clus-
tering algorithm representing the clustering solution,
such thatA = {aij} whereaij is the number of data
points that are members of classci and elements of
clusterkj .

To discuss cluster evaluation measures we intro-
duce two criteria for a clustering solution: homo-
geneity and completeness. A clustering result sat-
isfies homogeneity if all of its clusters contain only
data points which are members of a single class. A
clustering result satisfies completeness if all the data
points that are members of a given class are elements
of the same cluster. The homogenity and complete-
ness of a clustering solution run roughly in opposi-
tion: Increasing the homogeneity of a clustering so-
lution often results in decreasing its completeness.
Consider, two degenerate clustering solutions. In
one, assigning every datapoint into a single cluster,
guarantees perfect completeness — all of the data
points that are members of the same class are triv-
ially elements of the same cluster. However, this
cluster is asunhomogeneous as possible, since all
classes are included in this single cluster. In an-
other solution, assigning each data point to a dis-
tinct cluster guarantees perfect homogeneity — each
cluster trivially contains only members of a single
class. However, in terms of completeness, this so-
lution scores very poorly, unless indeed each class
contains only a single member. We define the dis-
tance from a perfect clustering is measured as the
weighted harmonic mean of measures of homogene-
ity and completeness.

Homogeneity:
In order to satisfy our homogeneity criteria, a

clustering must assignonly those datapoints that are
members of a single class to a single cluster. That is,
the class distribution within each cluster should be
skewed to a single class, that is, zero entropy. We de-
termine how close a given clustering is to this ideal

by examining the conditional entropy of the class
distribution given the proposed clustering. In the
perfectly homogeneous case, this value,H(C|K),
is 0. However, in an imperfect situation, the size of
this value, in bits, is dependent on the size of the
dataset and the distribution of class sizes. There-
fore, instead of taking the raw conditional entropy,
we normalize this value by the maximum reduction
in entropy the clustering information could provide,
specifically,H(C).

Note thatH(C|K) is maximal (and equalsH(C))
when the clustering provides no new information —
the class distribution within each cluster is equal to
the overall class distribiution.H(C|K) is 0 when
each cluster contains only members of a single class,
a perfectly homogenous clustering. In the degen-
erate case whereH(C) = 0, when there is only a
single class, we define homogeneity to be 1. For a
perfectly homogenous solution, this normalization,
H(C|K)
H(C) , equals 0. Thus, to adhere to the convention

of 1 being desirable and 0 undesirable, we define ho-
mogeneity as:

h =

{

1 if H(C,K) = 0

1− H(C|K)
H(C) else

(1)

where

H(C|K) = −

|K|
∑

k=1

|C|
∑

c=1

ack

N
log

ack
∑|C|

c=1 ack

H(C) = −

|C|
∑

c=1

∑|K|
k=1 ack

n
log

∑|K|
k=1 ack

n

Completeness:
Completeness is symmetrical to homogeneity. In

order to satisfy the completeness criteria, a cluster-
ing must assignall of those datapoints that are mem-
bers of a single class to a single cluster. To eval-
uate completeness, we examine the distribution of
cluster assignments within each class. In a perfectly
complete clustering solution, each of these distribu-
tions will be completely skewed to a single cluster.
We can evaluate this degree of skew by calculat-
ing the conditional entropy of the proposed cluster
distribution given the class of the component dat-
apoints,H(K|C). In the perfectly complete case,
H(K|C) = 0. However, in the worst case scenario,
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each class is represented by every cluster with a dis-
tribution equal to the distribution of cluster sizes,
H(K|C) is maximal and equalsH(K). Finally, in
the degenerate case whereH(K) = 0, when there
is a single cluster, we define completeness to be 1.
Therefore, symmetric to the calculation above, we
define completeness as:

c =

{

1 if H(K,C) = 0

1− H(K|C)
H(K) else

(2)

where

H(K|C) = −

|C|
∑

c=1

|K|
∑

k=1

ack

N
log

ack
∑|K|

k=1 ack

H(K) = −

|K|
∑

k=1

∑|C|
c=1 ack

n
log

∑|C|
c=1 ack

n

Based upon these calculations of homogeneity
and completeness, we then calculate a clustering
solution’s V-measure by computing the weighted
harmonic mean of homogeneity and completeness,
Vβ = (1+β)∗h∗c

(β∗h)+c . Similarly to the familiar F-
measure, ifβ is greater than 1 completeness is
weighted more strongly in the calculation, ifβ is less
than 1, homogeneity is weighted more strongly.

Notice that the computations of homogeneity,
completeness and V-measure are completely inde-
pendent of the number of classes, the number of
clusters, the size of the data set and the clustering al-
gorithm used. Thus these measures can be applied to
and compared across any clustering solution, regard-
less of the number of data points (n-invariance), the
number of classes or the number of clusters. More-
over, by calculating homogeneity and completeness
separately, a more precise evaluation of the perfor-
mance of the clustering can be obtained.

3 Existing Evaluation Measures
Clustering algorithms divide an input data set into
a number of partitions, or clusters. For tasks where
some target partition can be defined for testing pur-
poses, we define a “clustering solution” as a map-
ping from each data point to its cluster assignments
in both the target and hypothesized clustering. In the
context of this discussion, we will refer to the target
partitions, or clusters, asCLASSES, referring only to
hypothesized clusters asCLUSTERS.

Two commonly used external measures for as-
sessing clustering success arePurity andEntropy
(Zhao and Karypis, 2001), defined as,

Purity =
∑k

r=1
1
n maxi(n

i
r)

Entropy =
∑k

r=1
nr

n (− 1
log q

∑q
i=1

ni
r

nr
log ni

r

nr
)

whereq is the number of classes,k the number
of clusters,nr is the size of clusterr, andni

r is the
number of data points in classi clustered in cluster
r.

Both these approaches represent plausable ways
to evaluate the homogeneity of a clustering solution.
However, our completeness criterion is not mea-
sured at all. That is, they do not address the ques-
tion of whether all members of a given class are in-
cluded in a single cluster. Therefore thePurity and
Entropy measures are likely to improve (increased
Purity, decreasedEntropy) monotonically with
the number of clusters in the result, up to a degen-
erate maximum where there are as many clusters as
data points. However, clustering solutions rated high
by either measure may still be far from ideal.

Another frequently used external clustering eval-
uation measure is commonly refered to as “cluster-
ing accuracy”. The calculation of this accuracy is
inspired by the information retrieval metric of F-
Measure (Van Rijsbergen, 1979). The formula for
this clustering F-measure as described in (Fung et
al., 2003) is shown in Figure 3.

Let N be the number of data points,C the set of classes,K
the set of clusters andnij be the number of members of class
ci ∈ C that are elements of clusterkj ∈ K.

F (C, K) =
X

ci∈C

|ci|

N
max
kj∈K

{F (ci, kj)} (3)

F (ci, kj) =
2 ∗ R(ci, kj) ∗ P (ci, kj)

R(ci, kj) + P (ci, kj)

R(ci, kj) =
nij

|ci|

P (ci, kj) =
nij

|kj |

Figure 1: Calculation of clustering F-measure

This measure has a significant advantage over
Purity andEntropy, in that it does measure both
the homogeneity and the completeness of a cluster-
ing solution. Recall is calculated as the portion of
items from classi that are present in clusterj, thus
measuring how complete clusterj is with respect to
classi. Similarly, Precision is calculated as the por-
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Solution A Solution B
F-Measure=0.5 F-Measure=0.5
V-Measure=0.14 V-Measure=0.39

Solution C Solution D
F-Measure=0.6 F-Measure=0.6
V-Measure=0.30 V-Measure=0.41

Figure 2: Examples of the Problem of Matching

tion of clusterj that is a member of classi, thus mea-
suring how homogenous clusterj is with respect to
classi.

Like some other external cluster evaluation tech-
niques (misclassification index (MI) (Zeng et al.,
2002),H (Meila and Heckerman, 2001),L (Larsen
and Aone, 1999),D (van Dongen, 2000), micro-
averaged precision and recall (Dhillon et al., 2003)),
F-measure relies on a post-processing step in which
each cluster is assigned to a class. These techniques
share certain problems. First, they calculate the
goodness not only of the given clustering solution,
but also of the cluster-class matching. Therefore, in
order for the goodness of two clustering solutions to
be compared using one these measures, an identical
post-processing algorithm must be used. This prob-
lem can be trivially addressed by fixing the class-
cluster matching function and including it in the def-
inition of the measure as inH. However, a second
and more critical problem is the “problem of match-
ing” (Meila, 2007). In calculating the similarity be-
tween a hypothesized clustering and a ‘true’ cluster-
ing, these measures only consider the contributions
from those clusters that are matched to a target class.
This is a major problem, as two significantly differ-
ent clusterings can result in identical scores.

In figure 2, we present some illustrative examples
of the problem of matching. For the purposes of this
discussion we will be using F-Measure as the mea-
sure to describe the problem of matching, however,

these problems affect any measure which requires a
mapping from clusters to classes for evaluation.

In the figures, the shaded regions representCLUS-
TERS, the shapes representCLASSES. In a perfect
clustering, each shaded region would contain all and
only the same shapes. The problem of matching
can manifest itself either by not evaluating the en-
tire membership of a cluster, or by not evaluating
every cluster. The former situation is presented in
the figures A and B in figure 2. The F-Measure of
both of these clustering solutions in 0.6. (The preci-
sion and recall for each class is3

5 .) That is, for each
class, the best or “matched” cluster contains 3 of 5
elements of the class (Recall) and 3 of 5 elements of
the cluster are members of the class (Precision). The
make up of the clusters beyond the majority class is
not evaluated by F-Measure. Solution B is a better
clustering solution than solution A, in terms of both
homogeneity (crudely, “each cluster contains fewer2

classes”) and completeness (“each class is contained
in fewer clusters”). Indeed, the V-Measure of so-
lution B (0.387) is greater than that of solution A
(0.135). Solutions C and D represent a case in which
not every cluster is considered in the evaluation of
F-Measure. In this example, the F-Measure of both
solutions is 0.5 (the harmonic mean of3

5 and3
7 ). The

small “unmatched” clusters are not measured at all
in the calculation of F-Measure. Solution D is a bet-
ter clustering than solution C – there are no incorrect
clusterings of different classes in the small clusters.
V-Measure reflects this, solution C has a V-measure
of 0.30 while the V-measure of solution D is 0.41.

A second class of clustering evaluation techniques
is based on a combinatorial approach which exam-
ines the number of pairs of data points that are clus-
tered similarly in the target and hypothesized clus-
tering. That is, each pair of points can either be 1)
clustered together in both clusterings (N11), 2) clus-
tered separately in both clusterings (N00), 3) clus-
tered together in the hypothesized but not the tar-
get clustering (N01) or 4) clustered together in the
target but not in the hypothesized clustering (N10).
Based on these 4 values, a number of measures have
been proposed, including Rand Index (Rand, 1971),

2Homogeneity is not measured by V-measure as a count of
the number of classes contained by a cluster but “fewer” is an
acceptable way to conceptualize this criterion for the purposes
of these examples.
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Adjusted Rand Index (Hubert and Arabie, 1985),Γ
statistic (Hubert and Schultz, 1976), Jaccard (Mil-
ligan et al., 1983), Fowlkes-Mallows (Fowlkes and
Mallows, 1983) and Mirkin (Mirkin, 1996). We il-
lustrate this class of measures with the calculation of
Rand Index.Rand(C,K) = N11+N00

n(n−1)/2 Rand Index
can be interpreted as the probability that a pair of
points is clustered similarly (together or separately)
in C andK.

Meila (2007) describes a number of poten-
tial problems of this class of measures posed by
(Fowlkes and Mallows, 1983) and (Wallace, 1983).
The most basic is that these measures tend not to
vary over the interval of[0, 1]. Transformations like
those applied by the adjusted Rand Index and a mi-
nor adjustment to the Mirkin measure (see Section
4) can address this problem. However, pair match-
ing measures also suffer from distributional prob-
lems. The baseline for Fowlkes-Mallows varies sig-
nificantly between0.6 and0 when the ratio of data
points to clusters is greater than 3 — thus includ-
ing nearly all real-world clustering problems. Simi-
larly, the Adjusted Rand Index, as demonstrated us-
ing Monte Carlo simulations in (Fowlkes and Mal-
lows, 1983), varies from0.5 to 0.95. This variance
in the measure’s baseline prompts Meila to ask if the
assumption of linearity following normalization can
be maintained. If the behavior of the measure is so
unstable before normalization can users reasonably
expect stable behaviorfollowing normalization?

A final class of cluster evaluation measures are
based on information theory. These measures an-
alyze the distribution of class and cluster member-
ship in order to determine how successful a given
clustering solution is or how different two parti-
tions of a data set are. We have already examined
one member of this class of measures,Entropy.
From a coding theory perspective,Entropy is the
weighted average of the code lengths of each clus-
ter. Our V-measure is a member of this class of clus-
tering measures. One significant advantage that in-
formation theoretic evaluation measures have is that
they provide an elegant solution to the “problem of
matching”. By examining the relative sizes of the
classes and clusters being evaluated, these measures
all evaluate the entire membership of each cluster —
not just a ‘matched’ portion.

Dom’sQ0 measure (Dom, 2001) uses conditional

entropy, H(C|K) to calculate the goodness of a
clustering solution. That is, given the hypothesized
partition, what is the number of bits necessary to
represent the true clustering?

However, this term – like thePurity and
Entropy measures – only evaluates the homogene-
ity of a solution. To measure the completeness of the
hypothesized clustering, Dom includes a model cost
term calculated using a coding theory argument. The
overall clustering quality measure presented is the
sum of the costs of representing the data (H(C|K))
and the model. The motivation for this approach
is an appeal to parsimony: Given identical condi-
tional entropies,H(C|K), the clustering solution
with the fewest clusters should be preferred. Dom
also presents a normalized version of this term,Q2,
which has a range of(0, 1] with greater scores being
representing more preferred clusterings.

Q0(C,K) = H(C|K)+
1

n

|K|
∑

k=1

log

(

h(k) + |C| − 1

|C| − 1

)

whereC is the target partition,K is the hypothe-
sized partition andh(k) is the size of clusterk.

Q2(C,K) =

1
n

∑|C|
c=1 log

(h(c)+|C|−1
|C|−1

)

Q0(C,K)

We believe that V-measure provides two significant
advantages overQ0 that make it a more useful diag-
nostic tool. First,Q0 does not explicitly calculate the
degree of completeness of the clustering solution.
The cost term captures some of this information,
since a partition with fewer clusters is likely to be
more complete than a clustering solution with more
clusters. However,Q0 does not explicitly address
the interaction between the conditional entropy and
the cost of representing the model. While this is
an application of theminimum description length
(MDL) principle (Rissanen, 1978; Rissanen, 1989),
it does not provide an intuitive manner for assessing
our two competing criteria of homogeneity and com-
pleteness. That is, at what point does an increase in
conditional entropy (homogeneity) justify a reduc-
tion in the number of clusters (completeness).

Another information-based clustering measure
is variation of information (V I) (Meila, 2007),
V I(C,K) = H(C|K)+H(K|C). V I is presented
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as a distance measure for comparing partitions (or
clusterings) of the same data. It therefore does not
distinguish between hypothesized and target cluster-
ings. V I has a number of useful properties. First,
it satisfies the metric axioms. This quality allows
users to intuitively understand howV I values com-
bine and relate to one another. Secondly, it is “con-
vexly additive”. That is to say, if a cluster is split,
the distance from the new cluster to the original is
the distance induced by the split times the size of
the cluster. This property guarantees that all changes
to the metric are “local”: the impact of splitting or
merging clusters is limited to only those clusters in-
volved, and its size is relative to the size of these
clusters. Third, VI isn-invariant: the number of
data points in the cluster do not affect the value of
the measure.V I depends on the relative sizes of the
partitions ofC andK, not on the number of points
in these partitions. However,V I is bounded by the
maximum number of clusters inC or K, k∗. With-
out manual modification however,k∗ = n, where
each cluster contains only a single data point. Thus,
while technicallyn-invariant, the possible values of
V I are heavily dependent on the number of data
points being clustered. Thus, it is difficult to com-
pareV I values across data sets and clustering algo-
rithms without fixingk∗, asV I will vary over differ-
ent ranges. It is a trivial modification to modifyV I
such that it varies over [0,1]. Normalizing,V I by
log n or 1/2 log k∗ guarantee this range. However,
Meila (2007) raises two potential problems with this
modification. The normalization should not be ap-
plied if data sets of different sizes are to be com-
pared — it negates then-invariance of the measure.
Additionally, if two authors apply the latter normal-
ization and do not use the same value fork∗, their
results will not be comparable.

While V I has a number of very useful distance
properties when analyzing a single data set across a
number of settings, it has limited utility as a general
purpose clustering evaluation metric for use across
disparate clusterings of disparate data sets. Our
homogeneity (h) and completeness (c) terms both
range over [0,1] and are completelyn-invariant and
k∗-invariant. Furthermore, measuring each as a ra-
tio of bit lengths has greater intuitive appeal than a
more opportunistic normalization.

V-measure has another advantage as a clustering

evaluation measure overV I and Q0. By evaluat-
ing homogeneity and completeness in a symmetri-
cal, complementary manner, the calculation of V-
measure makes their relationship clearly observable.
Separate analyses of homogeneity and complete-
ness are not possible with any other cluster evalu-
ation measure. Moreover, by using the harmonic
mean to combine homogeneity and completeness,
V-measure is unique in that it can also prioritize one
criterion over another, depending on the clustering
task and goals.

4 Comparing Evaluation Measures
Dom (2001) describes a parametric technique for
generating example clustering solutions. He then
proceeds to define five “desirable properties” that
clustering accuracy measures should display, based
on the parameters used to generate the clustering so-
lution. To compare V-measure more directly to alter-
native clustering measures, we evaluate V-measure
and other measures against these and two additional
desirable properties.

The parameters used in generating a clustering so-
lution are as follows.

• |C| The number of classes

• |K| The number of clusters

• |Knoise| Number of “noise” clusters;
|Knoise| < |K|

• |Cnoise| Number of “noise” classes;|Cnoise| <
|C|

• ǫ Error probability;ǫ = ǫ1 + ǫ2 + ǫ3.

• ǫ1 The error mass within “useful” class-cluster
pairs

• ǫ2 The error mass within noise clusters

• ǫ3 The error mass within noise classes

The construction of a clustering solution begins
with a matching of “useful” clusters to “useful”
classes3. There are|Ku| = |K| − |Knoise| “useful”
clusters and|Cu| = |C| − |Cnoise| “useful” classes.
The claim is useful classes and clusters are matched
to each other and matched pairs contain more data
points than unmatched pairs. Probability mass of
1 − ǫ is evenly distributed across each match. Er-
ror mass ofǫ1 is evenly distributed across each pair

3The operation of this matching is omitted in the interest of
space. Interested readers should see (Dom, 2001).
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of non-matching useful class/cluster pairs. Noise
clusters are those that contain data points equally
from each cluster. Error mass ofǫ2 is distributed
across every “noise”-cluster/ “useful”-class pair. We
extend the parameterization technique described in
(Dom, 2001) in with|Cnoise| andǫ3. Noise classes
are those that contain data points equally from each
cluster. Error mass ofǫ3 is distributed across every
“useful”-cluster/“noise”-class pair. An example so-
lution, along with its generating parameters is given
in Figure 3.

C1 C2 C3 Cnoise1

K1 12 12 2 3
K2 2 2 12 3
Knoise1 4 4 4 0

Figure 3: Sample parametric clustering solution
with n = 60, |K| = 3, |Knoise| = 1, |C| =
3, |Cnoise| = 1, ǫ1 = .1, ǫ2 = .2, ǫ3 = .1

The desirable properties proposed by Dom are
given as P1-P5 in Table 1. We include two addi-
tional properties (P6,P7) relating the examined mea-
sure value to the number of ‘noise’ classes andǫ3.

P1 For |Ku| < |C| and ∆|Ku| ≤ (|C| − |Ku|),
∆M

∆|Ku|
> 0

P2 For |Ku| ≥ |C|, ∆M
∆|Ku|

< 0

P3 ∆M
∆|Knoise|

< 0, if ǫ2 > 0

P4 δM
δǫ1

≤ 0, with equality only if|Ku| = 1

P5 δM
δǫ2

≤ 0, with equality only if|Knoise| = 0

P6 ∆M
∆|Cnoise|

< 0, if ǫ3 > 0

P7 δM
δǫ3

≤ 0, with equality only if|Cnoise| = 0

Table 1: Desirable Properties of a cluster evaluation
measureM

To evaluate how different clustering measures sat-
isfy each of these properties, we systematically var-
ied each parameter, keeping|C| = 5 fixed.

• |Ku|: 10 values: 2, 3,. . . , 11

• |Knoise|: 7 values: 0, 1,. . . , 6

• |Cnoise|: 7 values: 0, 1,. . . , 6

• ǫ1: 4 values: 0, 0.033, 0.066, 0.1

• ǫ2: 4 values: 0, 0.066, 0.133, 0.2

• ǫ3: 4 values: 0, 0.066, 0.133, 0.2

We evaluated the behavior of V-Measure, Rand,
Mirkin, Fowlkes-Mallows, Gamma, Jaccard, VI,
Q0, F-Measure against the desirable properties P1-
P74. Based on the described systematic modification
of each parameter, only V-measure, VI andQ0 em-
pirically satisfy all of P1-P7 in all experimental con-
ditions. Full results reporting how frequently each
evaluated measure satisfied the properties based on
these experiments can be found in table 2.

All evaluated measures satisfy P4 and P7. How-
ever, Rand, Mirkin, Fowlkes-Mallows, Gamma, Jac-
card and F-Measure all fail to satisfy P3 and P6 in
at least one experimental configuration. This indi-
cates that the number of ‘noise’ classes or clusters
can be increased without reducing any of these mea-
sures. This implies a computational obliviousness to
potentially significant aspects of an evaluated clus-
tering solution.

5 Applying V-measure
In this section, we present two clustering experi-
ments. We describe a document clustering experi-
ment and evaluate its results using V-measure, high-
lighting the interaction between homogeneity and
completeness. Second, we present a pitch accent
type clustering experiment. We present results from
both of these experiments in order to show how V-
measure can be used to drawn comparisons across
data sets.

5.1 Document Clustering
Clustering techniques have been used widely to sort
documents into topic clusters. We reproduce such
an experiment here to demonstrate the usefulness
of V-measure. Using a subset of the TDT-4 cor-
pus (Strassel and Glenn, 2003) (1884 English news
wire and broadcast news documents manually la-
beled with one of 12 topics), we ran clustering
experiments using k-means clustering (McQueen,
1967) and evaluated the results using V-Measure,
VI and Q0 – those measures that satisfied the de-
sirable properties defined in section 4. The top-
ics and relative distributions are as follows: Acts

4The inequalities in the desirable properties are inverted in
the evaluation of VI,Q0 and Mirkin as they are defined as dis-
tance, as opposed to similarity, measures.
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Property Rand Mirkin Fowlkes Γ Jaccard F-measure Q0 VI V-Measure
P1 0.18 0.22 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P2 1.0 1.0 0.76 1.0 0.89 0.98 1.0 1.0 1.0
P3 0.0 0.0 0.30 0.19 0.21 0.0 1.0 1.0 1.0
P4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P5 0.50 0.57 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P6 0.20 0.20 0.41 0.26 0.52 0.87 1.0 1.0 1.0
P7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Rates of satisfaction of desirable properties

of Violence/War (22.3%), Elections (14.4%), Diplo-
matic Meetings (12.9%), Accidents (8.75%), Natu-
ral Disasters (7.4%), Human Interest (6.7%), Scan-
dals (6.5%), Legal Cases (6.4%), Miscellaneous
(5.3%), Sports (4.7), New Laws (3.2%), Science and
Discovery (1.4%).

We employed stemmed (Porter, 1980), tf*idf-
weighted term vectors extracted for each document
as the clustering space for these experiments, which
yielded a very high dimension space. To reduce
this dimensionality, we performed a simple feature
selection procedure including in the feature vector
only those terms that represented the highest tf*idf
value for at least one data point. This resulted in a
feature vector containing 484 tf*idf values for each
document. Results from k-means clustering are are
shown in Figure 4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1  10  100  1000
 3

 3.5

 4

 4.5

 5

 5.5

V
-m

ea
su

re
 a

nd
 Q

2 
va

lu
es

V
I v

al
ue

s

number of clusters

V-Measure
VI

Q2

Figure 4: Results of document clustering measured
by V-Measure, VI andQ2

The first observation that can be drawn from these
results is the degree to which VI is dependent on the
number of clusters (k). This dependency severely
limits the usefulness of VI: it is inappropriate in se-
lecting an appropriate parameter fork or for evalu-
ating the distance between clustering solutions gen-
erated using different values ofk.

V-measure andQ2 demonstrate similar behavior
in evaluating these experimental results. They both
reach a maximal value with 35 clusters, however,Q2

shows a greater descent as the number of clusters in-
creases. We will discuss this quality in greater detail
in section 5.2.

5.2 Pitch Accent Clustering
Pitch accent is how speakers of many languages
make a word intonational prominent. In most
pitch accent languages, words can also be ac-
cented in different ways to convey different mean-
ings (Hirschberg, 2002). In the ToBI labeling con-
ventions for Standard American English (Silverman
et al., 1992), for example, there are five different ac-
cent types (H*, L*, H+!H*, L+H*, L*+H).

We extracted a number of acoustic features from
accented words within the read portion of the Boston
Directions Corpus (BDC) (Nakatani et al., 1995) and
examined how well clustering in these acoustic di-
mensions correlates to manually annotated pitch ac-
cent types. We obtained a very skewed distribution,
with a majority of H* pitch accents.5 We there-
fore included only a randomly selected 10% sample
of H* accents, providing a more even distribution
of pitch accent types for clustering: H* (54.4%),
L*(32.1%), L+H* (26.5%), L*+H (2.8%), H+!H*
(2.1%).

We extracted ten acoustic features from each ac-
cented word to serve as the clustering space for
this experiment. Using Praat’s (Boersma, 2001) Get
Pitch (ac)... function, we calculated the mean F0
and∆F0, as well as z-score speaker normalized ver-
sions of the same. We included in the feature vector
the relative location of the maximum pitch value in
the word as well as the distance between this max-

5Pitch accents containing a high tone may also be down-
stepped, or spoken in a compressed pitch range. Here we col-
lapsed allDOWNSTEPPEDinstances of each pitch accent with
the corresponding non-downstepped instances.
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imum and the point of maximum intensity. Finally,
we calculated the raw and speaker normalized slope
from the start of the word to the maximum pitch, and
from the maximum pitch to the end of the word.

Using this feature vector, we performed k-means
clustering and evaluate how successfully these di-
mensions represent differences between pitch accent
types. The resulting V-measure, VI andQ0 calcula-
tions are shown in Figure 5.
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Figure 5: Results of pitch accent clustering mea-
sured by V-Measure, VI andQ0

In evaluating the results from these experiments,
Q2 and V-measure reveal considerably different be-
haviors. Q2 shows a maximum atk = 10, and de-
scends atk increases. This is an artifact of theMDL
principle. Q2 makes the claim that a clustering so-
lution based on fewer clusters is preferable to one
using more clusters, and that the balance between
the number of clusters and the conditional entropy,
H(C|K), should be measured in terms of coding
length. With V-measure, we present a different argu-
ment. We contend that the a high value ofk does not
inherently reduce the goodness of a clustering solu-
tion. Using these results as an example, we find that
at approximately 30 clusters an increase of clusters
translates to an increase in V-Measure. This is due to
an increased homogeneity (H(C|K)

H(C) ) and a relatively

stable completeness (H(K|C)
H(K) ). That is, inclusion of

more clusters leads to clusters with a more skewed
within-cluster distribution and a equivalent distribu-
tion of cluster memberships within classes. This is
intuitively preferable – one criterion is improved, the
other is not reduced – despite requiring additional
clusters. This is an instance in which theMDL prin-

ciple limits the usefulness ofQ2. We again (see sec-
tion 5.1) observe the close dependency of VI andk.
Moreover, in considering figures 5 and 4, simulta-
neously, we see considerably higher values achieved
by the document clustering experiments. Given the
naı̈ve approaches taken in these experiments, this is
expected – and even desired – given the previous
work on these tasks: document clustering has been
notably more successfully applied than pitch accent
clustering. These examples allow us to observe how
transparently V-measure can be used to compare the
behavior across distinct data sets.

6 Conclusion

We have presented a new external cluster evaluation
measure, V-measure, and compared it with existing
clustering evaluation measures. V-measure is based
upon two criteria for clustering usefulness, homo-
geneity and completeness, which capture a cluster-
ing solution’s success in including all and only data-
points from a given class in a given cluster. We have
also demonstrated V-measure’s usefulness in com-
paring clustering success across different domains
by evaluating document and pitch accent cluster-
ing solutions. We believe that V-measure addresses
some of the problems that affect other cluster mea-
sures. 1) It evaluates a clustering solution indepen-
dent of the clustering algorithm, size of the data set,
number of classes and number of clusters. 2) It does
not require its user to map each cluster to a class.
Therefore, it only evaluates the quality of the cluster-
ing, not a post-hoc class-cluster mapping. 3) It eval-
uates the clustering of every data point, avoiding the
“problem of matching”. 4) By evaluating the criteria
of both homogeneity and completeness, V-measure
is more comprehensive than those that evaluate only
one. 5) Moreover, by evaluating these criteria sepa-
rately and explicitly, V-measure can serve as an el-
egant diagnositic tool providing greater insight into
clustering behavior.
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Abstract

In this paper, we proposed a novel prob-
abilistic generative model to deal with ex-
plicit multiple-topic documents: Parametric
Dirichlet Mixture Model(PDMM). PDMM
is an expansion of an existing probabilis-
tic generative model: Parametric Mixture
Model(PMM) by hierarchical Bayes model.
PMM models multiple-topic documents by
mixing model parameters of each single
topic with an equal mixture ratio. PDMM
models multiple-topic documents by mix-
ing model parameters of each single topic
with mixture ratio following Dirichlet dis-
tribution. We evaluate PDMM and PMM
by comparing F-measures using MEDLINE
corpus. The evaluation showed that PDMM
is more effective than PMM.

1 Introduction

Documents, such as those seen on Wikipedia and
Folksonomy, have tended to be assigned with ex-
plicit multiple topics. In this situation, it is impor-
tant to analyze a linguistic relationship between doc-
uments and the assigned multiple topics . We at-
tempt to model this relationship with a probabilistic
generative model. A probabilistic generative model
for documents with multiple topics is a probability
model of the process of generating documents with
multiple topics. By focusing on modeling the gener-
ation process of documents and the assigned multi-
ple topics, we can extract specific properties of doc-
uments and the assigned multiple topics. The model

can also be applied to a wide range of applications
such as automatic categorization for multiple topics,
keyword extraction and measuring document simi-
larity, for example.

A probabilistic generative model for documents
with multiple topics is categorized into the following
two models. One model assumes a topic as a latent
topic. We call this model the latent-topic model. The
other model assumes a topic as an explicit topic. We
call this model the explicit-topic model.

In a latent-topic model, a latent topic indicates
not a concrete topic but an underlying implicit
topic of documents. Obviously this model uses
an unsupervised learning algorithm. Representa-
tive examples of this kind of model are Latent
Dirichlet Allocation(LDA)(D.M.Blei et al., 2001;
D.M.Blei et al., 2003) and Hierarchical Dirichlet
Process(HDP)(Y.W.Teh et al., 2003).

In an explicit-topic model, an explicit topic indi-
cates a concrete topic such as economy or sports, for
example. A learning algorithm for this model is a
supervised learning algorithm. That is, an explicit
topic model learns model parameter using a training
data set of tuples such as (documents, topics). Rep-
resentative examples of this model are Parametric
Mixture Models(PMM1 and PMM2)(Ueda, N. and
Saito, K., 2002a; Ueda, N. and Saito, K., 2002b). In
the remainder of this paper, PMM indicates PMM1
because PMM1 is more effective than PMM2.

In this paper, we focus on the explicit topic model.
In particular, we propose a novel model that is based
on PMM but fundamentally improved.

The remaining part of this paper is organized as
follows. Sections 2 explains terminology used in the
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following sections. Section 3 explains PMM that is
most directly related to our work. Section 4 points
out the problem of PMM and introduces our new
model. Section 5 evaluates our new model. Section
6 summarizes our work.

2 Terminology

This section explains terminology used in this paper.
K is the number of explicit topics. V is the number
of words in the vocabulary. V = {1, 2, · · · , V } is
a set of vocabulary index. Y = {1, 2, · · · ,K} is a
set of topic index. N is the number of words in a
document. w = (w1, w2, · · · , wN ) is a sequence of
N words where wn denotes the nth word in the se-
quence. w is a document itself and is called words
vector. x = (x1, x2, · · · , xV ) is a word-frequency
vector, that is, BOW(Bag Of Words) representation
where xv denotes the frequency of word v. wv

n

takes a value of 1(0) when wn is v ∈ V (is not
v ∈ V ). y = (y1, y2, · · · , yK) is a topic vector
into which a document w is categorized, where yi

takes a value of 1(0) when the ith topic is (not) as-
signed with a document w. Iy ⊂ Y is a set of topic
index i, where yi takes a value of 1 in y.

∑
i∈Iy

and Πi∈Iy denote the sum and product for all i in
Iy, respectively. Γ(x) is the Gamma function and
Ψ is the Psi function(Minka, 2002). A probabilistic
generative model for documents with multiple top-
ics models a probability of generating a document w
in multiple topics y using model parameter Θ, i.e.,
models P (w|y,Θ). A multiple categorization prob-
lem is to estimate multiple topics y∗ of a document
w∗ whose topics are unknown. The model parame-
ters are learned by documents D = {(wd, yd)}Md=1,
where M is the number of documents.

3 Parametric Mixture Model

In this section, we briefly explain Parametric Mix-
ture Model(PMM)(Ueda, N. and Saito, K., 2002a;
Ueda, N. and Saito, K., 2002b).

3.1 Overview

PMM models multiple-topic documents by mixing
model parameters of each single topic with an equal
mixture ratio, where the model parameter θiv is the
probability that word v is generated from topic i.
This is because it is impractical to use model param-

eter corresponding to multiple topics whose num-
ber is 2K − 1(all combination of K topics). PMM
achieved more useful results than machine learn-
ing methods such as Naive Bayes, SVM, K-NN and
Neural Networks (Ueda, N. and Saito, K., 2002a;
Ueda, N. and Saito, K., 2002b).

3.2 Formulation
PMM employs a BOW representation and is formu-
lated as follows.

P (w|y, θ) = ΠV
v=1(ϕ(v,y, θ))xv (1)

θ is a K × V matrix whose element is θiv =
P (v|yi = 1). ϕ(v,y, θ) is the probability that word
v is generated from multiple topics y and is de-
fined as the linear sum of hi(y) and θiv as follows:
ϕ(v,y, θ) =

∑K
i=1 hi(y)θiv

hi(y) is a mixture ratio corresponding to topic i
and is formulated as follows:

hi(y) = yi∑K
j=1 yj

,
∑K

i=1 hi(y) = 1.

(if yi = 0, then hi(y) = 0)

3.3 Learning Algorithm of Model Parameter
The learning algorithm of model parameter θ in
PMM is an iteration method similar to the EM al-
gorithm. Model parameter θ is estimated by max-
imizing ΠM

d=1P (wd|yd, θ) in training documents
D = {(wd, yd)}Md=1. Function g corresponding to
a document d is introduced as follows:

gd
iv(θ) =

h(yd)θiv∑K
j=1 hj(yd)θjv

(2)

The parameters are updated along with the following
formula.

θ
(t+1)
iv =

1
C

(
M∑
d

xdvg
d
iv(θ

(t)) + ζ − 1) (3)

xdv is the frequency of word v in document d. C
is the normalization term for

∑V
v=1 θiv = 1. ζ is

a smoothing parameter that is Laplace smoothing
when ζ is set to two. In this paper, ζ is set to two
as the original paper.

4 Proposed Model

In this section, firstly, we mention the problem re-
lated to PMM. Then, we explain our solution of the
problem by proposing a new model.
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4.1 Overview
PMM estimates model parameter θ assuming that
all of mixture ratios of single topic are equal. It is
our intuition that each document can sometimes be
more weighted to some topics than to the rest of the
assigned topics. If the topic weightings are averaged
over all biases in the whole document set, they could
be canceled. Therefore, model parameter θ learned
by PMM can be reasonable over the whole of docu-
ments.

However, if we compute the probability of gener-
ating an individual document, a document-specific
topic weight bias on mixture ratio is to be consid-
ered. The proposed model takes into account this
document-specific bias by assuming that mixture ra-
tio vector π follows Dirichlet distribution. This is
because we assume the sum of the element in vec-
tor π is one and each element πi is nonnegative.
Namely, the proposed model assumes model param-
eter of multiple topics as a mixture of model pa-
rameter on each single topic with mixture ratio fol-
lowing Dirichlet distribution. Concretely, given a
document w and multiple topics y , it estimates
a posterior probability distribution P (π|x, y) by
Bayesian inference. For convenience, the proposed
model is called PDMM(Parametric Dirichlet Mix-
ture Model).

In Figure 1, the mixture ratio(bias) π =
(π1, π2, π3),

∑3
i=1 πi = 1, πi > 0 of three topics is

expressed in 3-dimensional real space R3. The mix-
ture ratio(bias) π constructs 2D-simplex in R3. One
point on the simplex indicates one mixture ratio π of
the three topics. That is, the point indicates multiple
topics with the mixture ratio. PMM generates doc-
uments assuming that each mixture ratio is equal.
That is, PMM generates only documents with mul-
tiple topics that indicates the center point of the 2D-
simplex in Figure 1. On the contrary, PDMM gen-
erates documents assuming that mixture ratio π fol-
lows Dirichlet distribution. That is, PDMM can gen-
erate documents with multiple topics whose weights
can be generated by Dirichlet distribution.

4.2 Formulation
PDMM is formulated as follows:

P (w|y, α, θ)

=
∫

P (π|α, y)ΠV
v=1(ϕ(v,y, θ, π))xvdπ (4)

Figure 1: Topic Simplex for Three Topics

π is a vector whose element is πi(i ∈ Iy). πi is a
mixture ratio(bias) of model parameter correspond-
ing to single topic i where πi > 0,

∑
i∈Iy

πi = 1.
πi can be considered as a probability of topic i , i.e.,
πi = P (yi = 1|π). P (π|α, y) is a prior distri-
bution of π whose index i is an element of Iy, i.e.,
i ∈ Iy. We use Dirichlet distribution as the prior. α
is a parameter vector of Dirichlet distribution corre-
sponding to πi(i ∈ Iy). Namely, the formulation is
as follows.

P (π|α, y) =
Γ(

∑
i∈Iy

αi)

Πi∈IyΓ(αi)
Πi∈Iyπ

αi−1
i (5)

ϕ(v,y, θ, π) is the probability that word v is gener-
ated from multiple topics y and is denoted as a linear
sum of πi(i ∈ Iy) and θiv(i ∈ Iy) as follows.

ϕ(v,y, θ, π) =
∑
i∈Iy

πiθiv (6)

=
∑
i∈Iy

P (yi = 1|π)P (v|yi = 1, θ) (7)

4.3 Variational Bayes Method for Estimating
Mixture Ratio

This section explains a method to estimate the
posterior probability distribution P (π|w, y, α, θ)
of a document-specific mixture ratio. Basically,
P (π|w, y, α, θ) is obtained by Bayes theorem us-
ing Eq.(4). However, that is computationally im-
practical because a complicated integral computa-
tion is needed. Therefore we estimate an approx-
imate distribution of P (π|w, y, α, θ) using Varia-
tional Bayes Method(H.Attias, 1999). The concrete
explanation is as follows
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Use Eqs.(4)(7).
P (w, π|y, α, θ) =
P (π|α, y)ΠV

v=1(
∑
i∈Iy

P (yi = 1|π)P (v|yi = 1, θ))xv

Transform document expression of above equa-
tion into words vector w = (w1, w2, · · · , wN ).
P (w, π|y, α, θ) =
P (π|α, y)ΠN

n=1

∑
in∈Iy

P (yin = 1|π)P (wn|yin = 1, θ)

By changing the order of
∑

and Π, we have
P (w, π|y, α, θ) =
P (π|α, y)

∑
i∈IN

y

ΠN
n=1P (yin = 1|π)P (wn|yin = 1, θ)

(
∑
i∈IN

y

≡
∑
i1∈Iy

∑
i2∈Iy

· · ·
∑

iN∈Iy

)

Express yin = 1 as zn = i.

P (w|y, α, θ) =∫ ∑
z∈IN

y

P (π|α, y)ΠN
n=1P (zn|π)P (wn|zn, θ)dπ

(
∑
z∈IN

y

≡
∑

z1∈Iy

∑
z2∈Iy

· · ·
∑

zN∈Iy

) (8)

Eq.(8) is regarded as Eq.(4) rewritten by introducing
a new latent variable z = (z1, z2, · · · , zN ).

P (w|y, α, θ) =
∫ ∑
z∈IN

y

P (π, z, w|y, α, θ)dπ (9)

Use Eqs.(8)(9)
P (π, z, w|y, α, θ)
= P (π|α, y)ΠN

n=1P (zn|π)P (wn|zn, θ) (10)

Hereafter, we explain Variational Bayes Method
for estimating an approximate distribution of
P (π, z|w, y, α, θ) using Eq.(10). This approach is
the same as LDA(D.M.Blei et al., 2001; D.M.Blei et
al., 2003). The approximate distribution is assumed
to be Q(π, z|γ, φ). The following assumptions are
introduced.

Q(π, z|γ, φ) = Q(π|γ)Q(z|φ) (11)

Q(π|γ) =
Γ(

∑
i∈Iy

γi)

Πi∈IyΓ(γi)
Πi∈Iyπ

γi−1
i (12)

Q(z|φ) = ΠN
n=1Q(zn|φ) (13)

Q(zn|φ) = ΠK
i=1(φni)zi

n (14)

Q(π|γ) is Dirichlet distribution where γ is its pa-
rameter. Q(zn|φ) is Multinomial distribution where
φni is its parameter and indicates the probability
that the nth word of a document is topic i, i.e.
P (yin = 1). zi

n is a value of 1(0) when zn is (not)
i. According to Eq.(11), Q(π|γ) is regarded as an
approximate distribution of P (π|w, y, α, θ)

The log likelihood of P (w|y, α, θ) is derived as
follows.

log P (w|y, α, θ)

=
∫ ∑
z∈IN

y

Q(π, z|γ, φ)dπ log P (w|y, α, θ)

=
∫ ∑
z∈IN

y

Q(π, z|γ, φ) log
P (π, z, w|y, α, θ)

Q(π, z|γ, φ)
dπ

+
∫ ∑
z∈IN

y

Q(π, z|γ, φ) log
Q(π, z|γ, φ)

P (π, z|w, y, α, θ)
dπ

log P (w|y, α, θ) = F [Q] + KL(Q,P ) (15)

F [Q] = ∫ ∑
z∈IN

y
Q(π,z|γ,φ) log

P (π,z,w|y,α,θ)
Q(π,z|γ,φ)

dπ

KL(Q,P ) = ∫ ∑
z∈IN

y
Q(π,z|γ,φ) log

Q(π,z|γ,φ)
P (π,z|w,y,α,θ)dπ

KL(Q,P ) is the Kullback-Leibler Divergence
that is often employed as a distance between
probability distributions. Namely, KL(Q,P )
indicates a distance between Q(π, z|γ, φ) and
P (π, z|w, y, α, θ). log P (w|y, α, θ) is not
relevant to Q(π, z|γ, φ). Therefore, Q(π, z|γ, φ)
that maximizes F [Q] minimizes KL(Q,P ),
and gives a good approximate distribution of
P (π, z|w, y, α, θ).

We estimate Q(π, z|γ, φ), concretely its param-
eter γ and φ, by maximizing F [Q] as follows.

Using Eqs.(10)(11).

F [Q] =
∫

Q(π|γ) log P (π|α, y)dθ (16)

+
∫ ∑
z∈IN

y

Q(π|γ)Q(z|φ) log ΠN
n=1P (zn|π)dθ (17)

+
∑
z∈IN

y

Q(z|φ) log ΠN
n=1P (wn|zn, θ) (18)

−
∫

Q(π|γ) log Q(π|γ)dθ (19)

−
∑
z∈IN

y

Q(z|φ) log Q(z|φ) (20)
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= log Γ(
∑

i∈Iy
αj)−

∑
i∈Iy

log Γ(αi)

+
∑

i∈Iy
(αi − 1)(Ψ(γi)−Ψ(

∑
j∈Iy

γj))(21)

+
N∑

n=1

∑
i∈Iy

φni(Ψ(γi)−Ψ(
∑
j∈Iy

γj)) (22)

+
N∑

n=1

∑
i∈Iy

V∑
j=1

φniw
j
n log θij (23)

− log Γ(
∑
j∈Iy

γj) +
∑
i∈Iy

log Γ(
∑
j∈Iy

γj)

−
∑
i∈Iy

(γi − 1)(Ψ(γi)−Ψ(
∑
j∈Iy

γj)) (24)

−
N∑

n=1

∑
i∈Iy

φni log φni (25)

F [Q] is known to be a function of γi and φni from
Eqs.(21) through (25). Then we only need to re-
solve the maximization problem of nonlinear func-
tion F [Q] with respect to γi and φni. In this case,
the maximization problem can be resolved by La-
grange multiplier method.

First, regard F [Q] as a function of γi, which
is denoted as F [γi]. Then ,γi does not have con-
straints. Therefore we only need to find the follow-
ing γi, where ∂F [γi]

∂γi
= 0. The resultant γi is ex-

pressed as follows.

γi = αi +
N∑

n=1

φni (i ∈ Iy) (26)

Second, regard F [Q] as a function of φni, which is
denoted as F [φni]. Then, considering the constraint
that

∑
i∈Iy

φni = 1, Lagrange function L[φni] is ex-
pressed as follows:

L[φni] = F [φni] + λ(
∑
i∈Iy

φni − 1) (27)

λ is a so-called Lagrange multiplier.
We find the following φni where ∂L[φni]

∂φni = 0.

φni =
θiwn

C
exp(Ψ(γi)−Ψ(

∑
j∈Iy

γj)) (i ∈ Iy)) (28)

C is a normalization term. By Eqs.(26)(28), we ob-
tain the following updating formulas of γi and φni.

γ
(t+1)
i = αi +

N∑
n=1

φ
(t)
ni (i ∈ Iy) (29)

φ
(t+1)
ni =

θiwn

C
exp(Ψ(γ(t+1)

i )−Ψ(
∑
j∈Iy

γ
(t+1)
j )) (30)

Using the above updating formulas , we can es-
timate parameters γ and φ, which are specific to a
document w and topics y. Last of all , we show a
pseudo code :vb(w, y) which estimates γ and φ. In
addition , we regard α , which is a parameter of a
prior distribution of π, as a vector whose elements
are all one. That is because Dirichlet distribution
where each parameter is one becomes Uniform dis-
tribution.
• Variational Bayes Method for PDMM————

function vb(w, y):

1. Initialize αi← 1 ∀i ∈ Iy

2. Compute γ(t+1), φ(t+1) using Eq.(29)(30)
3. if ‖ γ(t+1) − γ(t) ‖< ε

& ‖ φ(t+1) − φ(t) ‖< ε
4. then return (γ(t+1), φ(t+1)) and halt
5. else t← t + 1 and goto step (2)

————————————————————

4.4 Computing Probability of Generating
Document

PMM computes a probability of generating a docu-
ment w on topics y and a set of model parameter Θ
as follows:

P (w|y,Θ) = ΠV
v=1(ϕ(v,y, θ))xv (31)

ϕ(v,y, θ) is the probability of generating a word
v on topics y that is a mixture of model parame-
ter θiv(i ∈ Iy) with an equal mixture ratio. On the
other hand, PDMM computes the probability of gen-
erating a word v on topics y using θiv(i ∈ Iy) and
an approximate posterior distribution Q(π|γ) as fol-
lows:
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ϕ(v,y, θ, γ)

=
∫

(
∑
i∈Iy

πiθiv)Q(π|γ)dπ (32)

=
∑
i∈Iy

∫
πiQ(π|γ)dπθiv (33)

=
∑
i∈Iy

π̃iθiv (34)

π̃i =
∫

πiQ(π|γ)dπ = γi∑
j∈Iy

γj
(C.M.Bishop,

2006)
The above equation regards the mixture ratio of

topics y of a document w as the expectation π̃i(i ∈
Iy) of Q(π|γ). Therefore, a probability of gener-
ating w P (w|y,Θ) is computed with ϕ(v,y, θ, γ)
estimated in the following manner:

P (w|y,Θ) = ΠV
v=1(ϕ(v,y, θ, γ)))xv (35)

4.5 Algorithm for Estimating Multiple Topics
of Document

PDMM estimates multiple topics y∗ maximizing
a probability of generating a document w∗, i.e.,
Eq.(35). This is the 0-1 integer problem(i.e., NP-
hard problem), so PDMM uses the same approxi-
mate estimation algorithm as PMM does. But it is
different from PMM’s estimation algorithm in that
it estimates the mixture ratios of topics y by Varia-
tional Bayes Method as shown by vb(w,y) at step 6
in the following pseudo code of the estimation algo-
rithm:
• Topics Estimation Algorithm———————–

function prediction(w):

1. Initialize S ← {1, 2, · · · }, yi ← 0 for
i(1, 2 · · · ,K)

2. vmax ← −∞
3. while S is not empty do
4. foreach i ∈ S do
5. yi ← 1, yj∈S\i ← 0
6. Compute γ by vb(w, y)
7. v(i)← P (w|y)
8. end foreach
9. i∗ ← argmax v(i)

10. if v(i∗) > vmax

11. yi∗ ← 1, S ← S\i∗, vmax ← v(i∗)
12. else
13. return y and halt

————————————————————

5 Evaluation

We evaluate the proposed model by using F-measure
of multiple topics categorization problem.

5.1 Dataset

We use MEDLINE1 as a dataset. In this experiment,
we use five thousand abstracts written in English.
MEDLINE has a metadata set called MeSH Term.
For example, each abstract has MeSH Terms such as
RNA Messenger and DNA-Binding Proteins. MeSH
Terms are regarded as multiple topics of an abstract.
In this regard, however, we use MeSH Terms whose
frequency are medium(100-999). We did that be-
cause the result of experiment can be overly affected
by such high frequency terms that appear in almost
every abstract and such low frequency terms that ap-
pear in very few abstracts. In consequence, the num-
ber of topics is 88. The size of vocabulary is 46,075.
The proportion of documents with multiple topics on
the whole dataset is 69.8%, i.e., that of documents
with single topic is 30.2%. The average of the num-
ber of topics of a document is 3.4. Using TreeTag-
ger2, we lemmatize every word. We eliminate stop
words such as articles and be-verbs.

5.2 Result of Experiment

We compare F-measure of PDMM with that of
PMM and other models.

F-measure(F) is as follows:
F = 2PR

P+R , P = |Nr∩Ne|
|Ne| , R = |Nr∩Ne|

|Nr| .

Nr is a set of relevant topics . Ne is a set of esti-
mated topics. A higher F-measure indicates a better
ability to discriminate topics. In our experiment, we
compute F-measure in each document and average
the F-measures throughout the whole document set.

We consider some models that are distinct in
learning model parameter θ. PDMM learns model
parameter θ by the same learning algorithm as
PMM. NBM learns model parameter θ by Naive
Bayes learning algorithm. The parameters are up-
dated according to the following formula: θiv =
Miv+1

C . Miv is the number of training documents
where a word v appears in topic i. C is normaliza-
tion term for

∑V
v=1 θiv = 1.

1http://www.nlm.nih.gov/pubs/factsheets/medline.html
2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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The comparison of these models with respect to
F-measure is shown in Figure 2. The horizontal axis
is the proportion of test data of dataset(5,000 ab-
stracts). For example, 2% indicates that the number
of documents for learning model is 4,900 and the
number of documents for the test is 100. The vertical
axis is F-measure. In each proportion, F-measure is
an average value computed from five pairs of train-
ing documents and test documents randomly gener-
ated from dataset.

F-measure of PDMM is higher than that of other
methods on any proportion, as shown in Figure
2. Therefore, PDMM is more effective than other
methods on multiple topics categorization.

Figure 3 shows the comparison of models with
respect to F-measure, changing proportion of mul-
tiple topic document for the whole dataset. The pro-
portion of document for learning and test are 40%
and 60%, respectively. The horizontal axis is the
proportion of multiple topic document on the whole
dataset. For example, 30% indicates that the pro-
portion of multiple topic document is 30% on the
whole dataset and the remaining documents are sin-
gle topic , that is, this dataset is almost single topic
document. In 30%. there is little difference of F-
measure among models. As the proportion of mul-
tiple topic and single topic document approaches
90%, that is, multiple topic document, the differ-
ences of F-measure among models become appar-
ent. This result shows that PDMM is effective in
modeling multiple topic document.

Figure 2: F-measure Results

5.3 Discussion

In the results of experiment described in section
5.2, PDMM is more effective than other models in

Figure 3: F-measure Results changing Proportion of
Multiple Topic Document for Dataset

multiple-topic categorization. If the topic weight-
ings are averaged over all biases in the whole of
training documents, they could be canceled. This
cancellation can lead to the result that model pa-
rameter θ learned by PMM is reasonable over the
whole of documents. Moreover, PDMM computes
the probability of generating a document using a
mixture of model parameter, estimating the mixture
ratio of topics. This estimation of the mixture ra-
tios, we think, is the key factor to achieve the re-
sults better than other models. In addition, the es-
timation of a mixture ratio of topics can be effec-
tive from the perspective of extracting features of
a document with multiple topics. A mixture ratio
of topics assigned to a document is specific to the
document. Therefore, the estimation of the mixture
ratio of topics is regarded as a projection from a
word-frequency space of QV where Q is a set of
integer number to a mixture ratio space of topics
[0, 1]K in a document. Since the size of vocabu-
lary is much more than that of topics, the estima-
tion of the mixture ratio of topics is regarded as a
dimension reduction and an extraction of features in
a document. This can lead to analysis of similarity
among documents with multiple topics. For exam-
ple, the estimated mixture ratio of topics [Compara-
tive Study]C[Apoptosis] and [Models,Biological] in
one MEDLINE abstract is 0.656C0.176 and 0.168,
respectively. This ratio can be a feature of this doc-
ument.

Moreover, we can obtain another interesting re-
sults as follows. The estimation of mixture ratios of
topics uses parameter γ in section 4.3. We obtain
interesting results from another parameter φ that
needs to estimate γ. φni is specific to a document. A
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Table 1: Word List of Document X whose Topics are
[Female], [Male] and [Biological Markers]

Ranking Top10 Ranking Bottom10
1(37) biomarkers 67(69) indicate
2(19) Fusarium 68(57) problem
3(20) non-Gaussian 69(45) use
4(21) Stachybotrys 70(75) %
5(7) chrysogenum 71(59) correlate
6(22) Cladosporium 72(17) population
7(3) mould 73(15) healthy
8(35) Aspergillus 7433) response
9(23) dampness 75(56) man
10(24) 1SD 76(64) woman

φni indicates the probability that a word wn belongs
to topic i in a document. Therefore we can compute
the entropy on wn as follows:

entropy(wn) =
∑K

i=1 φni log(φni)

We rank words in a document by this entropy. For
example, a list of words in ascending order of the
entropy in document X is shown in Table 1. A value
in parentheses is a ranking of words in decending or-
der of TF-IDF(= tf · log(M/df),where tf is term
frequency in a test document, df is document fre-
quency and M is the number of documents in the set
of doucuments for learning model parameters) (Y.
Yang and J. Pederson, 1997) . The actually assigned
topics are [Female] , [Male] and [Biological Mark-
ers], where each estimated mixture ratio is 0.499 ,
0.460 and 0.041, respectively.

The top 10 words seem to be more technical than
the bottom 10 words in Table 1. When the entropy of
a word is lower, the word is more topic-specific ori-
ented, i.e., more technical . In addition, this ranking
of words depends on topics assigned to a document.
When we assign randomly chosen topics to the same
document, generic terms might be ranked higher.
For example, when we rondomly assign the topics
[Rats], [Child] and [Incidence], generic terms such
as ”use” and ”relate” are ranked higher as shown
in Table 2. The estimated mixture ratio of [Rats],
[Child] and [Incidence] is 0.411, 0.352 and 0.237,
respectively.

For another example, a list of words in ascending
order of the entropy in document Y is shown in Ta-
ble 3. The actually assigned topics are Female, An-
imals, Pregnancy and Glucose.. The estimated mix-
ture ratio of [Female], [Animals] ,[Pregnancy] and

Table 2: Word List of Document X whose Topics are
[Rats], [Child] and [Incidence]

Ranking Top10 Ranking Bottom10
1(69) indicate 67(56) man
2(63) relate 68(47) blot
3(53) antigen 69(6) exposure
4(45) use 70(54) distribution
5(3) mould 71(68) evaluate
6(4) versicolor 72(67) examine
7(35) Aspergillus 73(59) correlate
8(7) chrysogenum 74(58) positive
9(8) chartarum 75(1) IgG
10(9) herbarum 76(60) adult

[Glucose] is 0.442, 0.437, 0.066 and 0.055, respec-
tively In this case, we consider assigning sub topics
of actual topics to the same document Y.

Table 4 shows a list of words in document Y as-
signed with the sub topics [Female] and [Animals].
The estimated mixture ratio of [Female] and [An-
imals] is 0.495 and 0.505, respectively. Estimated
mixture ratio of topics is chaged. It is interesting
that [Female] has higher mixture ratio than [Ani-
mals] in actual topics but [Female] has lower mix-
ture ratio than [Animals] in sub topics [Female] and
[Animals]. According to these different mixture ra-
tios, the ranking of words in docment Y is changed.

Table 5 shows a list of words in document Y as-
signed with the sub topics [Pregnancy] and [Glu-
cose]. The estimated mixture ratio of [Pregnancy]
and [Glucose] is 0.502 and 0.498, respectively. It
is interesting that in actual topics, the ranking of
gglucose-insulinh and ”IVGTT” is high in document
Y but in the two subset of actual topics, gglucose-
insulinh and ”IVGTT” cannot be find in Top 10
words.

The important observation known from these ex-
amples is that this ranking method of words in a doc-
ument can be assosiated with topics assigned to the
document. φ depends on γ seeing Eq.(28). This is
because the ranking of words depends on assigned
topics, concretely, mixture ratios of assigned topics.
TF-IDF computed from the whole documents can-
not have this property. Combined with existing the
extraction method of keywords, our model has the
potential to extract document-specific keywords us-
ing information of assigned topics.
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Table 3: Word List of Document Y whose Ac-
tual Topics are [Femaile],[Animals],[Pregnancy]
and [Glucose]

Ranking Top 10 Ranking Bottom 10
1(2) glucose-insulin 94(93) assess
2(17) IVGTT 95(94) indicate
3(11) undernutrition 96(74) CT
4(12) NR 97(28) %
5(13) NRL 98(27) muscle
6(14) GLUT4 99(85) receive
7(56) pregnant 100(80) status
8(20) offspring 101(100) protein
9(31) pasture 102(41) age
10(32) singleton 103(103) conclusion

Table 4: Word List of Document Y whose Topics are
[Femaile]and [Animals]

Ranking Top 10 Ranking Bottom 10
1(31) pasture 94(65) insulin
2(32) singleton 95(76) reduced
3(33) insulin-signaling 96(27) muscle
4(34) CS 97(74) CT
5(35) euthanasia 98(68) feed
6(36) humane 99(100) protein
7(37) NRE 100(80) status
8(38) 110-term 101(85) receive
9(50) insert 102(41) age
10(11) undernutrition 103(103) conclusion

6 Concluding Remarks

We proposed and evaluated a novel probabilistic
generative models, PDMM, to deal with multiple-
topic documents. We evaluated PDMM and other
models by comparing F-measure using MEDLINE
corpus. The results showed that PDMM is more ef-
fective than PMM. Moreover, we indicate the poten-
tial of the proposed model that extracts document-
specific keywords using information of assigned
topics.
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Abstract

We address the problem of smoothing trans-
lation probabilities in a bilingual N-gram-
based statistical machine translation system.
It is proposed to project the bilingual tuples
onto a continuous space and to estimate the
translation probabilities in this representa-
tion. A neural network is used to perform the
projection and the probability estimation.

Smoothing probabilities is most important
for tasks with a limited amount of training
material. We consider here the BTEC task
of the 2006 IWSLT evaluation. Improve-
ments in all official automatic measures are
reported when translating from Italian to En-
glish. Using a continuous space model for
the translation model and the target language
model, an improvement of 1.5 BLEU on the
test data is observed.

1 Introduction

The goal of statistical machine translation (SMT) is
to produce a target sentencee from a source sen-
tencef . Among all possible target language sen-
tences the one with the highest probability is chosen:

e
∗ = arg max

e
Pr(e|f) = arg max

e
Pr(f |e) Pr(e)

wherePr(f |e) is the translation model andPr(e)
is the target language model. This approach is
usually referred to as thenoisy source-channel ap-
proach in statistical machine translation (Brown et
al., 1993).

During the last few years, the use of context
in SMT systems has provided great improvements
in translation. SMT has evolved from the origi-
nal word-based approach to phrase-based translation
systems (Och et al., 1999; Koehn et al., 2003). A
phrase is defined as a group of source wordsf̃ that
should be translated together into a group of target
wordsẽ. The translation model in phrase-based sys-
tems includes the phrase translation probabilities in
both directions, i.e.P (ẽ|f̃) andP (f̃ |ẽ).

The use of a maximum entropy approach simpli-
fies the introduction of several additional models ex-
plaining the translation process :

e
∗ = arg max p(e|f)

= arg max
e
{exp(

∑

i

λihi(e, f))} (1)

The feature functionshi are the system models and
theλi weights are typically optimized to maximize
a scoring function on a development set (Och and
Ney, 2002).

The phrase translation probabilitiesP (ẽ|f̃ ) and
P (f̃ |ẽ) are usually obtained using relative frequency
estimates. Statistical learning theory, however, tells
us that relative frequency estimates have several
drawbacks, in particular high variance and low bias.
Phrase tables may contain several millions of en-
tries, most of which appear only once or twice,
which means that we are confronted with a data
sparseness problem. Surprisingly, there seems to be
little work addressing the issue of smoothing of the
phrase table probabilities.

On the other hand, smoothing of relative fre-
quency estimates was extensively investigated in the
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area of language modeling. A systematic compari-
son can be for instance found in (Chen and Good-
man, 1999). Language models and phrase tables
have in common that the probabilities of rare events
may be overestimated. However, in language mod-
eling probability mass must be redistributed in order
to account for the unseenn-grams. Generalization
to unseen events is less important in phrase-based
SMT systems since the system searches only for the
best segmentation and the best matching phrase pair
among the existing ones.

We are only aware of one work that performs a
systematic comparison of smoothing techniques in
phrase-based machine translation systems (Foster et
al., 2006). Two types of phrase-table smoothing
were compared: black-box and glass-box methods.
Black-methods do not look inside phrases but in-
stead treat them as atomic objects. By these means,
all the methods developed for language modeling
can be used. Glass-box methods decomposeP (ẽ|f̃)
into a set of lexical distributionsP (e|f̃ ). For in-
stance, it was suggested to use IBM-1 probabili-
ties (Och et al., 2004), or other lexical translation
probabilities (Koehn et al., 2003; Zens and Ney,
2004). Some form of glass-box smoothing is now
used in all state-of-the-art statistical machine trans-
lation systems.

Another approach related to phrase table smooth-
ing is the so-called N-gram translation model
(Mariño et al., 2006). In this model, bilingual tu-
ples are used instead of the phrase pairs andn-gram
probabilities are considered rather than relative fre-
quencies. Therefore, smoothing is obtained us-
ing the standard techniques developed for language
modeling. In addition, a context dependence of the
phrases is introduced. On the other hand, some
restrictions on the segmentation of the source sen-
tence must be used. N-gram-based translation mod-
els were extensively compared to phrase-based sys-
tems on several tasks and typically achieve compa-
rable performance.

In this paper we propose to investigate improved
smoothing techniques in the framework of the N-
gram translation model. Despite the undeniable suc-
cess ofn-graam back-off models, these techniques
have several drawbacks from a theoretical point of
view: the words are represented in a discrete space,
the vocabulary. This prevents “true interpolation” of

the probabilities of unseenn-grams since a change
in this word space can result in an arbitrary change
of the n-gram probability. An alternative approach
is based on acontinuous representation of the words
(Bengio et al., 2003). The basic idea is to convert
the word indices to a continuous representation and
to use a probability estimator operating in this space.
Since the resulting distributions are smooth func-
tions of the word representation, better generaliza-
tion to unknownn-grams can be expected. Prob-
ability estimation and interpolation in a continuous
space is mathematically well understood and numer-
ous powerful algorithms are available that can per-
form meaningful interpolations even when only a
limited amount of training material is available. This
approach was successfully applied to language mod-
eling in large vocabulary continuous speech recogni-
tion (Schwenk, 2007) and to language modeling in
phrase-based SMT systems (Schwenk et al., 2006).

In this paper, we investigate whether this ap-
proach is useful to smooth the probabilities involved
in the bilingual tuple translation model. Reliable es-
timation of unseenn-grams is very important in this
translation model. Most of the trigram tuples en-
countered in the development or test data were never
seen in the training data. N-gram hit rates are re-
ported in the results section of this paper. We report
experimental results for the BTEC corpus as used
in the 2006 evaluations of the international work-
shop on spoken language translation IWSLT (Paul,
2006). This task provides a very limited amount
of resources in comparison to other tasks like the
translation of journal texts (NIST evaluations) or of
parliament speeches (TC-STAR evaluations). There-
fore, new techniques must be deployed to take the
best advantage of the limited resources. Among the
language pairs tested in this years evaluation, Ital-
ian to English gave the best BLEU results in this
year evaluation. The better the translation quality is,
the more it is challenging to outperform it without
adding more data. We show that a new smoothing
technique for the translation model achieves a sig-
nificant improvement in the BLEU score for a state-
of-the-art statistical translation system.

This paper is organized as follows. In the next
section we first describe the baseline statistical ma-
chine translation systems. Section 3 presents the ar-
chitecture and training algorithms of the continuous
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space translation model and section 4 summarizes
the experimental evaluation. The paper concludes
with a discussion of future research directions.

2 N-gram-based Translation Model

The N -gram-based translation model has been de-
rived from the finite-state perspective; more specif-
ically, from the work of Casacuberta (2001). How-
ever, different from it, where the translation model
is implemented by using a finite-state transducer,
the N -gram-based system implements a bilingual
N -gram model. It actually constitutes a language
model of bilingual units, referred to as tuples, which
approximates the joint probability between source
and target languages by usingN -grams, such as de-
scribed by the following equation:

p(e, f) ≈
K
∏

k=1

p((e, f)k|(e, f)k−1, . . . , (e, f)k−4)

(2)
wheree refers to target,f to source and(e, f)k to
thekth tuple of a given bilingual sentence pair.

Bilingual units (tuples) are extracted from any
word-to-word alignment according to the following
constraints:

• a monotonic segmentation of each bilingual
sentence pairs is produced,

• no word inside the tuple is aligned to words
outside the tuple, and

• no smaller tuples can be extracted without vio-
lating the previous constraints.

As a consequence of these constraints, only one
segmentation is possible for a given sentence pair.

Two important issues regarding this translation
model must be considered. First, it often occurs that
a large number of single-word translation probabil-
ities are left out of the model. This happens for all
words that are always embedded in tuples contain-
ing two or more words, then no translation probabil-
ity for an independent occurrence of these embed-
ded words will exist. To overcome this problem, the
tuple trigram model is enhanced by incorporating
1-gram translation probabilities for all the embed-
ded words detected during the tuple extraction step.

These 1-gram translation probabilities are computed
from the intersection of both the source-to-target and
the target-to-source alignments.

The second issue has to do with the fact that some
words linked to NULL end up producing tuples with
NULL source sides. Since no NULL is actually ex-
pected to occur in translation inputs, this type of tu-
ple is not allowed. Any target word that is linked to
NULL is attached either to the word that precedes
or the word that follows it. To determine this, an ap-
proach based on the IBM1 probabilities was used, as
described in (Mariño et al., 2006).

2.1 Additional features

The following feature functions were used in the N-
gram-based translation system:

• A target language model. In the baseline sys-
tem, this feature consists of a4-gram back-off
model of words, which is trained from the tar-
get side of the bilingual corpus.

• A source-to-target lexicon model and a
target-to-source lexicon model. These fea-
ture, which are based on the lexical parameters
of the IBM Model1, provide a complementary
probability for each tuple in the translation ta-
ble.

• A word bonus function. This feature intro-
duces a bonus based on the number of target
words contained in the partial-translation hy-
pothesis. It is used to compensate for the sys-
tem’s preference for short output sentences.

All these models are combined in the de-
coder. Additionally, the decoder allows for a
non-monotonic search with the following distorsion
model.

• A word distance-baseddistorsion model.

P (tK1 ) = exp(−
K
∑

k=1

dk)

wheredk is the distance between the first word
of the kth tuple (unit), and the last word+1 of
the(k − 1)th tuple.
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Figure 1:Comparing regular and unfolded tuples.

Distance are measured in words referring to the units
source side.

To reduce the computational cost we place lim-
its on the search using two parameters: the distor-
tion limit (the maximum distance measured in words
that a tuple is allowed to be reordered,m) and the
reordering limit (the maximum number of reorder-
ing jumps in a sentence,j). Tuples need to be ex-
tracted by an unfolding technique (Mariño et al.,
2006). This means that the tuples are broken into
smaller tuples, and these are sequenced in the order
of the target words. In order not to lose the infor-
mation on the correct order, the decoder performs a
non-monotonic search. Figure 1 shows an example
of tuple unfolding compared to the monotonic ex-
traction. The unfolding technique produces a differ-
ent bilingualn-gram language model with reordered
source words.

In order to combine the models in the decoder
suitably, an optimization tool based on the Simplex
algorithm is used to compute log-linear weights for
each model.

3 Continuous Space N-gram Models

The architecture of the neural networkn-gram
model is shown in Figure 2. A standard
fully-connected multi-layer perceptron is
used. The inputs to the neural network are
the indices of then−1 previous units (words
or tuples) in the vocabulary hj=wj−n+1,
. . . , wj−2, wj−1 and the outputs are the poste-
rior probabilities ofall units of the vocabulary:

projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

N

wj−1 P

H

N

P (wj =1|hj)
wj−n+1

wj−n+2

P (wj =i|hj)

P (wj =N|hj)

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 2: Architecture of the continuous space LM.
hj denotes the contextwj−n+1, . . . , wj−1. P is the
size of one projection andH,N is the size of the
hidden and output layer respectively. When short-
lists are used the size of the output layer is much
smaller than the size of the vocabulary.

P (wj = i|hj) ∀i ∈ [1,N ] (3)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., theith unit of
the vocabulary is coded by setting theith element of
the vector to 1 and all the other elements to 0. The
ith line of theN ×P dimensional projection matrix
corresponds to the continuous representation of the
ith unit. Let us denotecl these projections,dj the
hidden layer activities,oi the outputs,pi their soft-
max normalization, andmjl, bj, vij andki the hid-
den and output layer weights and the corresponding
biases. Using these notations, the neural network
performs the following operations:

dj = tanh

(

∑

l

mjl cl + bj

)

(4)

oi =
∑

j

vij dj + ki (5)

pi = eoi /
N
∑

r=1

eor (6)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj).
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Training is performed with the standard back-
propagation algorithm minimizing the following er-
ror function:

E =
N
∑

i=1

ti log pi + β





∑

jl

m2
jl +

∑

ij

v2
ij



 (7)

whereti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next unit in the training
sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from over-fitting the train-
ing data (weight decay). The parameterβ has to be
determined experimentally. Training is done using
a re-sampling algorithm as described in (Schwenk,
2007).

It can be shown that the outputs of a neural net-
work trained in this manner converge to the posterior
probabilities. Therefore, the neural network directly
minimizes the perplexity on the training data. Note
also that the gradient is back-propagated through the
projection-layer, which means that the neural net-
work learns the projection of the units onto the con-
tinuous space that is best for the probability estima-
tion task.

In general, the complexity to calculate one prob-
ability with this basic version of the neural network
n-gram model is dominated by the dimension of the
output layer since the size of the vocabulary (10k
to 64k) is usually much larger than the dimension of
the hidden layer (200 to 500). Therefore, in previous
applications of the continuous spacen-gram model,
the output was limited to thes most frequent units,s
ranging between 2k and 12k (Schwenk, 2007). This
is called a short-list.

Sents Words

Train (bitexts) 20k 155.4/166.3k
Dev 489 5.2k
Eval 500 6k

Table 1: Available data in thesupplied resources of
the 2006 IWSLT evaluation.

4 Experimental Evaluation

In this work we report results on theBasic Travel-
ing Expression Corpus (BTEC) as used in the 2006
evaluations of the international workshop on spoken
language translation (IWSLT). This corpus consists
of typical sentences from phrase books for tourists in
several languages (Takezawa et al., 2002). We report
results on the supplied development corpus of 489
sentences and the official test set of the IWSLT’06
evaluation. The main measure is the BLEU score,
using seven reference translations. The scoring is
case insensitive and punctuations are ignored. De-
tails on the available data are summarized in Table 1.
We concentrated first on the translation from Ital-
ian to English. All participants in the IWSLT evalua-
tion achieved much better performances for this lan-
guage pair than for the other considered translation
directions. This makes it more difficult to achieve
additional improvements.

A non-monotonic search was performed follow-
ing a local reordering named in Section 2, setting
m = 5 andj = 3. Also we used histogram prun-
ing in the decoder, i.e. the maximum number of hy-
potheses in a stack is limited to 50.

4.1 Language-dependent preprocessing

Italian contracted prepositions have been separated
into preposition + article, such as ’alla’→’a la’,
’degli’→’di gli’ or ’dallo’ →’da lo’, among others.

4.2 Model training

The training and development data for the bilingual
back-off and neural network translation model were
created as follows. Given the alignment of the train-
ing parallel corpus, we perform a unique segmenta-
tion of each parallel sentence following the criterion
of unfolded segmentation seen in Section 2. This
segmentation is used in a sequence as training text
for building the language model. As an example,
given the alignment and the unfold extraction of Fig-
ure 1, we obtain the following training sentence:

<s> how long#cuánto does#NULL last#dura
the#el flight#vuelo</s>

The reference bilingual trigram back-off transla-
tion model was trained on these bilingual tuples us-
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ing the SRI LM toolkit (Stolcke, 2002). Different
smoothing techniques were tried, and best results
were obtained using Good-Turing discounting.

The neural network approach was trained on ex-
actly the same data. A context of two tuples was
used (trigram model). The training corpus contains
about 21,500 different bilingual tuples. We decided
to limit the output of the neural network to the 8k
most frequent tuples (short-list). This covers about
90% of the requested tuplen-grams in the training
data.

Similar to previous applications, the neural net-
work is not used alone but interpolation is performed
to combine severaln-gram models. First of all, the
neural network and the reference back-off model are
interpolated together - this always improved perfor-
mance since both seem to be complementary. Sec-
ond, four neural networks with different sizes of the
continuous representation were trained and interpo-
lated together. This usually achieves better general-
ization behavior than training one larger neural net-
work. The interpolation coefficients were calculated
by optimizing perplexity on the development data,
using an EM procedure. The obtained values are
0.33 for the back-off translation model and about
0.16 for each neural network model respectively.
This interpolation is used in all our experiments. For
the sake of simplicity we will still call this the con-
tinuous space translation model.

Each network was trained independently using
early stopping on the development data. Conver-
gence was achieved after about 10 iterations through
the training data (less than 20 minutes of processing
on a standard Linux machine). The other parameters
are as follows:

• Context of two tuples (trigram)

• The dimension of the continuous representation
of the tuples werec =120,140,150 and 200,

• The dimension of the hidden layer was set to
P = 200,

• The initial learning rate was 0.005 with an ex-
ponential decay,

• The weight decay coefficient was set toβ =
0.00005.

N-gram models are usually evaluated using per-
plexity on some development data. In our case, i.e.
using bilingual tuples as basic units (“words”), it is
less obvious if perplexity is a useful measure. Nev-
ertheless, we provide these numbers for complete-
ness. The perplexity on the development data of the
trigram back-off translation model is 227.0. This
could be reduced to 170.4 using the neural network.
It is also very informative to analyze then-gram
hit-rates of the back-off model on the development
data: 10% of the probability requests are actually a
true trigram, 40% a bigram and about 49% are fi-
nally estimated using unigram probabilities. This
means that only a limited amount of phrase con-
text is used in the standard N-gram-based translation
model. This makes this an ideal candidate to ap-
ply the continuous space model since probabilities
are interpolated for all possible contexts and never
backed-up to shorter contexts.

4.3 Results and analysis

The incorporation of the neural translation model
is done usingn-best list. Each hypothesis is com-
posed of a sequence of bilingual tuples and the cor-
responding scores of all the feature functions. Fig-
ure 3 shows an example of such an n-best list. The
neural trigram translation model is used to replace
the scores of the trigram back-off translation model.
This is followed by a re-optimization of the coef-
ficients of all feature functions, i.e. maximization
of the BLEU score on the development data using
the numerical optimization tool CONDOR (Berghen
and Bersini, 2005). An alternative would be to add
a feature function and to combine both translation
models under the log-linear model framework, us-
ing maximum BLEU training.

Another open question is whether it might by
better to already use the continuous space transla-
tion model during decoding. The continuous space
model has a much higher complexity than a back-
off n-gram. However, this can be heavily optimized
when rescoringn-best lists, i.e. by grouping to-
gether all calls in the wholen-best list with the same
context, resulting in only one forward pass through
the neural network. This is more difficult to per-
form when the continuous space translation model
is used during decoding. Therefore, this was not in-
vestigated in this work.
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spiacente#sorry tutto occupato#it ’s full
spiacente#i ’m sorry tutto occupato#it ’s full
spiacente#i ’m afraid tutto occupato#it ’s full
spiacente#sorry tutto#all occupato#busy
spiacente#sorry tutto#all occupato#taken

Figure 3: Example of sentences in the n-best list of
bilingual tuples. The special character ’#’ is used to
separate the source and target sentence words. Sev-
eral words in one tuple a grouped together using ’.’

In all our experiments 1000-best lists were used.
In order to evaluate the quality of these n-best lists,
an oracle trigram back-off translation model was
build on the development data. Rescoring the n-
best lists with this translation model resulted in an
increase of the BLEU score of about 10 points (see
Table 2). While there is an decrease of about 6%
for the position dependent word error rate (mWER),
a smaller change in the position independent word
error rate was observed (mPER). This suggests that
most of the alternative translation hypothesis re-
sult in word reorderings and not in many alternative
word choices. This is one of the major drawbacks
of phrase- and N-gram-based translation systems:
only translations observed in the training data can
be used. There is no generalization to new phrase
pairs.

Back-off Oracle Neural
BLEU 42.34 52.45 43.87

mWER 41.6% 35.6% 40.3%
mPER 31.5% 28.2% 30.7%

Table 2: Comparison of different N-gram-
translation models on the development data.

When the 1000-best lists are rescored with the
neural network translation model the BLEU score
increases by 1.5 points (42.34 to 43.87). Similar im-
provements were observed in the word error rates
(see Table 2). For comparison, a 4-gram back-off
translation model was also built, but no change of
the BLEU score was observed. This suggests that
careful smoothing is more important than increasing
the context when estimating the translation probabil-
ities in an N-gram-based statistical machine transla-
tion system.

In previous work, we have investigated the use of
the neural network approach to modeling the target
language for the IWSLT task (Schwenk et al., 2006).
We also applied this technique to this improved N-
gram-based translation system. In our implemen-
tation, the neural network target 4-gram language
model gives an improvement of 1.3 points BLEU
on the development data (42.34 to 43.66), in com-
parison to 1.5 points for the neural translation model
(see Table 3).

Back-off neural neural neural
TM+LM TM LM TM+LM

BLEU 42.34 43.87 43.66 44.83

Table 3: Combination of a neural translation model
(TM) and a neural language model (LM). BLEU
scores on the development data.

The neural translation and target language model
were also applied to the test data, using of course the
same feature function coefficients as for the devel-
opment data. The results are given in Table 4 for all
the official measures of the IWSLT evaluation. The
new smoothing method of the translation probabili-
ties achieves improvement in all measures. It gives
also an additional gain (again in all measures) when
used together with a neural target language model.
Surprisingly, neural TM and neural LM improve-
ments almost add up: when both techniques are used
together, the BLEU scores increases by 1.5 points
(36.97→ 38.50). Remember that the reference N-
gram-based translation system already uses a local
reordering approach.

Back-off neural neural neural
TM+LM TM LM TM+LM

BLEU 36.97 37.21 38.04 38.50
mWER 48.10 47.42 47.83 47.61
mPER 38.21 38.07 37.26 37.12
NIST 8.3 8.3 8.6 8.7

Meteor 63.16 63.40 64.70 65.20

Table 4: Test set scores for the combination of a
neural translation model (TM) and a neural language
model (LM).
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5 Discussion

Phrase-based approaches are the de-facto standard
in statistical machine translation. The phrases are
extracted automatically from the word alignments
of parallel texts, and the different possible transla-
tions of a phrase are weighted using relative fre-
quency. This can be problematic when the data is
sparse. However, there seems to be little work on
possible improvements of the relative frequency es-
timates by some smoothing techniques. It is today
common practice to use additional feature functions
like IBM-1 scores to obtain some kind of smoothing
(Och et al., 2004; Koehn et al., 2003; Zens and Ney,
2004), but better estimation of the phrase probabili-
ties is usually not addressed.

An alternative way to represent phrases is to de-
fine bilingual tuples. Smoothing, and context de-
pendency, is obtained by using ann-gram model on
these tuples. In this work, we have extended this
approach by using a new smoothing technique that
operates on a continuous representation of the tu-
ples. Our method is distinguished by two charac-
teristics: better estimation of the numerous unseen
n-grams, and adiscriminative estimation of the tu-
ple probabilities. Results are provided on the BTEC

task of the 2006 IWSLT evaluation for the translation
direction Italian to English. This task provides very
limited amount of resources in comparison to other
tasks. Therefore, new techniques must be deployed
to take the best advantage of the limited resources.
We have chosen the Italian to English task because it
is challenging to enhance a good quality translation
task (over 40 BLEU percentage). Using the continu-
ous space model for thetranslation andtarget lan-
guage model, an improvement of 2.5 BLEU on the
development data and 1.5 BLEU on the test data was
observed.

Despite these encouraging results, we believe that
additional research on improved estimation of prob-
abilities in N-gram- or phrase-based statistical ma-
chine translation systems is needed. In particu-
lar, the problem ofgeneralization to new trans-
lations seems to be promising to us. This could
be addressed by the so-called factored phrase-based
model as implemented in the Moses decoder (Koehn
et al., 2007). In this approach words are decom-
posed into several factors. These factors are trans-

lated and a target phrase is generated. This model
could be complemented by a factored continuous
tuple N-gram. Factored word language models
were already successfully used in speech recogni-
tion (Bilmes and Kirchhoff, 2003; Alexandrescu and
Kirchhoff, 2006) and an extension to machine trans-
lation seems to be promising.

The described smoothing method was explicitly
developed to tackle the data sparseness problem in
tasks like the BTEC corpus. It is well known from
language modeling that careful smoothing is less im-
portant when large amounts of data are available.
We plan to investigate whether this also holds for
smoothing of the probabilities in phrase- or tuple-
based statistical machine translation systems.
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Abstract

Morphological analysis and disambiguation
are crucial stages in a variety of natural
language processing applications, especially
when languages with complex morphology
are concerned. We present a system which
disambiguates the output of a morphologi-
cal analyzer for Hebrew. It consists of sev-
eral simple classifiers and a module which
combines them under linguistically moti-
vated constraints. We investigate a number
of techniques for combining the predictions
of the classifiers. Our best result, 91.44% ac-
curacy, reflects a 25% reduction in error rate
compared with the previous state of the art.

1 Introduction

Morphological analysis and disambiguation are cru-
cial pre-processing steps for a variety of natural lan-
guage processing applications, from search and in-
formation extraction to machine translation. For
languages with complex morphology these are non-
trivial processes. This paper presents a morphologi-
cal disambiguation module for Hebrew which uses
a sophisticated combination of classifiers to rank
the analyses produced by a morphological analyzer.
This work has a twofold contribution: first, our sys-
tem achieves over 91% accuracy on the full disam-
biguation task, reducing the error rate of the pre-
vious state of the art by 25%. More generally, we
explore several ways for combining the predictions
of simple classifiers under constraints; the insight
gained from these experiments will be useful for
other applications of machine learning to complex
(morphological and other) problems.

In the remainder of this section we discuss the
complexity of Hebrew morphology, the challenge
of morphological disambiguation and related work.
We describe our methodology in Section 2: we use
basic, näıve classifiers (Section 3) to predict some
components of the analysis, and then combine them
in several ways (Section 4) to predict a consistent re-
sult. We analyze the errors of the system in Section 5
and conclude with suggestions for future work.

1.1 Linguistic background

Hebrew morphology is rich and complex.1 The ma-
jor word formation machinery is root-and-pattern,
and inflectional morphology is highly productive
and consists of prefixes, suffixes and circumfixes.
Nouns, adjectives and numerals inflect for number
(singular, plural and, in rare cases, also dual) and
gender (masculine or feminine). In addition, all
these three types of nominals have two phonologi-
cally and morphologically distinct forms, known as
the absoluteand constructstates. In the standard
orthography approximately half of the nominals ap-
pear to have identical forms in both states, a fact
which substantially increases the ambiguity. In ad-
dition, nominals take possessive pronominal suffixes
which inflect for number, gender and person.

Verbs inflect for number, gender and person (first,
second and third) and also for a combination of tense
and aspect/mood, referred to simply as ‘tense’ be-
low. Verbs can also take pronominal suffixes, which
are interpreted as direct objects, and in some cases
can also take nominative pronominal suffixes. A pe-
culiarity of Hebrew verbs is that the participle form

1To facilitate readability we use a straight-forward translit-
eration of Hebrew using ASCII characters, where the characters
(in Hebrew alphabetic order) are: abgdhwzxviklmnsypcqr$t.
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can be used as present tense, but also as a noun or an
adjective.

These matters are complicated further due to two
sources: first, the standard Hebrew orthography
leaves most of the vowels unspecified. On top of
that, the script dictates that many particles, includ-
ing four of the most frequent prepositions, the def-
inite article, the coordinating conjunction and some
subordinating conjunctions, all attach to the words
which immediately follow them. When the definite
article h is prefixed by one of the prepositionsb, k
or l, it is assimilated with the preposition and the
resulting form becomes ambiguous as to whether
or not it is definite. For example,bth can be read
either asb+th “in tea” or asb+h+th “in the tea”.
Thus, the form$bth can be read as an inflected stem
(the verb “capture”, third person singular feminine
past), as$+bth “that+field”, $+b+th “that+in+tea”,
$+b+h+th “that in the tea”,$bt+h “her sitting” or
even as$+bt+h “that her daughter”.

An added complexity stems from the fact that
there are two main standards for the Hebrew script:
one in which vocalization diacritics, known as
niqqud “dots”, decorate the words, and another in
which the dots are missing, and other characters rep-
resent some, but not all of the vowels. Most of the
texts in Hebrew are of the latter kind; unfortunately,
different authors use different conventions for the
undotted script. Thus, the same word can be writ-
ten in more than one way, sometimes even within
the same document. This fact adds significantly to
the degree of ambiguity.

Our departure point in this work is HAMSAH
(Yona and Wintner, 2007), a wide coverage, lin-
guistically motivated morphological analyzer of He-
brew, which was recently re-implemented in Java
and made available from the Knowledge Cen-
ter for Processing Hebrew (http://mila.cs.
technion.ac.il/ ). The output that HAMSAH
produces for the form$bth is illustrated in Table 1.
In general, it includes the part of speech (POS)
as well as sub-category, where applicable, along
with several POS-dependent features such as num-
ber, gender, tense, nominal state, definitness, etc.

1.2 The challenge of disambiguation

Identifying the correct morphological analysis of a
given word in a given context is an important and

non-trivial task. Unlike POS tagging, the task does
not involve assigning an analysis to words which the
analyzer does not recognize. However, selecting an
analysis immediately induces a POS tagging for the
target word (by projecting the analysis on the POS
coordinate). Our main contribution in this work is a
system that solves this problem with high accuracy.

Compared with POS tagging of English, morpho-
logical disambiguation of Hebrew is a much more
complex endeavor due to the following factors:

SegmentationA single token in Hebrew can ac-
tually be a sequence of more than one lexi-
cal item. For example, analysis 4 of Table 1
($+b+h+th “that+in+the+tea”) corresponds to
the tag sequence IN+IN+DT+NN.

Large tagset The number of different tags in a lan-
guage such as Hebrew (where the POS, mor-
phological features and prefix and suffix parti-
cles are considered) is huge. HAMSAH pro-
duces 22 different parts of speech, some with
subcategories; 6 values for the number feature
(including disjunctions of values), 4 for gender,
5 for person, 7 for tense and 3 for nominal state.
Possessive pronominal suffixes can have 15 dif-
ferent values, and prefix particle sequences can
theoretically have hundreds of different forms.
While not all the combinations of these values
are possible, we estimate the number of possi-
ble analyses to be in the thousands.

Ambiguity Hebrew is highly ambiguous: HAM-
SAH outputs on average approximately 2.64
analyses per word token. Oftentimes two or
more alternative analyses share the same part
of speech, and in some cases two or more anal-
yses are completely identical, except for their
lexeme (see analyses 7 and 8 in Table 1). Mor-
phological disambiguation of Hebrew is hence
closer to the problem of word sense disam-
biguation than to standard POS tagging.

Anchors, which are often function words, are al-
most always morphologically ambiguous in
Hebrew. These include most of the high-
frequency forms. Many of the function words
which help boost the performance of English
POS tagging are actually prefix particles which
add to the ambiguity in Hebrew.
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# Lexical ID lexeme POS Num Gen Per Ten Stat Def Pref Suf

1 17280 $bt noun sing fem N/A N/A abs no h
2 1379 bt noun sing fem N/A N/A abs no $ h
3 19130 bth noun sing fem N/A N/A abs no $
4 19804 th noun sing masc N/A N/A abs yes $+b+h
5 19804 th noun sing masc N/A N/A abs no $+b
6 19804 th noun sing masc N/A N/A cons no $+b
7 1541 $bh verb sing fem 3 past N/A N/A
8 9430 $bt verb sing fem 3 past N/A N/A

Table 1: The analyses of the form$bth

Word order in Hebrew is freer than in English.

1.3 Related work

The idea of using short context for morphological
disambiguation dates back to Choueka and Lusig-
nan (1985). Levinger et al. (1995) were the first
to apply it to Hebrew, but their work was ham-
pered by the lack of annotated corpora for training
and evaluation. The first work which uses stochas-
tic contextual information for morphological disam-
biguation in Hebrew is Segal (1999): texts are an-
alyzed using the morphological analyzer of Segal
(1997); then, each word in a text is assigned its
most likely analysis, defined by probabilities com-
puted from a small tagged corpus. In the next phase
the system corrects its own decisions by using short
context (one word to the left and one to the right
of the target word). The corrections are also au-
tomatically learned from the tagged corpus (using
transformation-based learning). In the last phase,
the analysis is corrected by the results of a syntac-
tic analysis of the sentence. The reported results
are excellent: 96.2% accuracy. More reliable tests,
however, reveal accuracy of 85.5% only (Lember-
ski, 2003, page 85). Furthermore, the performance
of the program is unacceptable (the reported running
time on “two papers” is thirty minutes).

Bar-Haim et al. (2005) use Hidden Markov Mod-
els (HMMs) to implement a segmenter and a tag-
ger for Hebrew. The main innovation of this work is
that it models word-segments (morphemes: prefixes,
stem and suffixes), rather than full words. The accu-
racy of this system is 90.51% for POS tagging (a
tagset of 21 POS tags is used) and 96.74% for seg-
mentation (which is defined as identifying all pre-
fixes, including a possibly assimilated definite arti-

cle). As noted above, POS tagging does not amount
to full morphological disambiguation.

Recently, Adler and Elhadad (2006) presented an
unsupervised, HMM-based model for Hebrew mor-
phological disambiguation, using a morphological
analyzer as the only resource. A morpheme-based
model learns both segmentation and tagging in par-
allel from a large (6M words) un-annotated corpus.
Reported results are 92.32% for POS tagging and
88.5% for full morphological disambiguation. We
refer to this result as the state of the art and use the
same data for evaluation.

A supervised approach to morphological disam-
biguation ofArabic is given by Habash and Rambow
(2005), who use two corpora of 120K words each
to train several classifiers. Each morphological fea-
ture is predicted separately and then combined into a
full disambiguation result. The accuracy of the dis-
ambiguator is 94.8%-96.2% (depending on the test
corpus). Note, however, the high baseline of each
classifier (96.6%-99.9%, depending on the classi-
fier) and the full disambiguation task (87.3%-92.1%,
depending on the corpus). We use a very similar ap-
proach below, but we experiment with more sophis-
ticated methods for combining simple classifiers to
induce a coherent prediction.

2 Methodology

For training and evaluation, we use a corpus of
approximately 90,000 word tokens, consisting of
newspaper texts, which was automatically analyzed
using HAMSAH and then manually annotated (El-
hadad et al., 2005). Annotation consists simply of
selecting the correct analysis produced by the an-
alyzer, or an indication that no such analysis ex-
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ists. When the analyzer does not produce the cor-
rect analysis, it is added manually. This is the exact
setup of the experiments reported by Adler and El-
hadad (2006).

Table 2 lists some statistics of the corpus, and a
histogram of analyses is given in Table 3. Table 4
lists the distribution of POS in the corpus.

Tokens 89347
Types 23947
Tokens with no correct analysis 8218
Tokens with no analysis 130
Degree of ambiguity 2.64

Table 2: Statistics of training corpus

# analyses # tokens # analyses # tokens
1 38468 7 1977
2 15480 8 1309
3 11194 9 785
4 9934 10 622
5 5341 11 238
6 3472 >12 397

Table 3: Histogram of analyses

In all the experiments described in this paper we
use SNoW (Roth, 1998) as the learning environ-
ment, with winnow as the update rule (usingper-
ceptronyielded very similar results). SNoW is a
multi-class classifier that is specifically tailored for
learning in domains in which the potential number
of information sources (features) taking part in de-
cisions is very large, of which NLP is a principal
example. It works by learning a sparse network of
linear functions over the feature space. SNoW has
already been used successfully as the learning vehi-
cle in a large collection of natural language related
tasks and compared favorably with other classifiers
(Punyakanok and Roth, 2001; Florian, 2002). Typi-
cally, SNoW is used as a classifier, and predicts us-
ing a winner-take-all mechanism over the activation
values of the target classes. However, in addition to
the prediction, it provides a reliable confidence level
in the prediction, which enables its use in an infer-
ence algorithm that combines predictors to produce
a coherent inference.

Following Daya et al. (2004) and Habash and

POS # tokens % tokens
Noun 25836 28.92
Punctuation 13793 15.44
Proper Noun 7238 8.10
Verb 7192 8.05
Preposition 7164 8.02
Adjective 5855 6.55
Participle 3213 3.60
Pronoun 2688 3.01
Adverb 2226 2.49
Conjunction 2021 2.26
Numeral 1972 2.21
Quantifier 951 1.06
Negation 848 0.95
Interrogative 80 0.09
Prefix 29 0.03
Interjection 12 0.01
Foreign 6 0.01
Modal 5 0.01

Table 4: POS frequencies

Rambow (2005), we approach the problem of mor-
phological disambiguation as a complex classifica-
tion task. We train a classifier for each of the at-
tributes that can contribute to the disambiguation
of the analyses produced by HAMSAH (e.g., POS,
tense, state). Each classifier predicts a small set of
possible values and hence can be highly accurate.
In particular, the basic classifiers do not suffer from
problems of data sparseness. Of course, each sim-
ple classifier cannot fully disambiguate the output
of HAMSAH, but it does induce a ranking on the
analyses (see Table 6 below for the level of ambigu-
ity which remains after each simple classifier is ap-
plied). Then, we combine the outcomes of the sim-
ple classifiers to produce a consistent ranking which
induces a linear order on the analyses.

For evaluation we consider only the words that
have at least one correct analysis in the annotated
corpus.Accuracyis defined as the ratio between the
number of words classified correctly and the total
number of words in the test corpus that have a cor-
rect analysis. Theremaining level of ambiguityis
defined as the average number of analyses per word
whose score is equal to the score of the top ranked
analysis. This is greater than 1 only for the simple
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classifiers, where more than one analysis can have
the same tag. In all the experiments we perform 10-
fold cross-validation runs and report the average of
the 10 runs, both on the entire corpus and on a subset
of the corpus in which we only test on words which
donotoccur in the training corpus.

The baseline tag of the tokenwi is the most
prominent tag of all the occurrences ofwi in the
corpus. The baseline for the combination is the most
prominent analysis of all the occurrences ofwi in the
corpus. Ifwi does not occur in the corpus, we back
off and select the most prominent tag in the corpus
independently of the wordwi. For the combination
baseline, we select the analysis of the most promi-
nent lexical ID, chosen from the list of all possible
lexical IDs ofwi. If there is more than one possible
value, one top-ranking value is chosen at random.

3 Basic Classifiers

The simple classifiers are all built in the same way.
They are trained on feature vectors that are gener-
ated from the output of the morphological analyzer,
and tested on a clean output of the same analyzer.
We defined several classifiers for the attributes of
the morphological analyses. Since some attributes
do not apply to all the analyses, we add a value of
‘N/A’ for the inapplicable attributes. An annotated
corpus was needed in all those classifiers for train-
ing. We list the basic classifiers below.

POS 22 values (only 18 in our corpus), see Table 4.

Gender ‘Masculine’, ‘Feminine’, ‘Masculine and
feminine’, ‘N/A’.

Number ‘Singular’, ‘Plural’, ‘Dual’, ‘N/A’.

Person ‘First’, ‘Second’, ‘Third’, ‘N/A’.

Tense ‘Past’, ‘Present’, ‘Participle’, ‘Future’, ‘Im-
perative’, ‘Infinitive’, ‘Bare Infinitive’, ‘N/A’.

Definite Article ‘Def’, ‘indef’, ‘N/A’. Identifies
also implicit (assimilated) definiteness.

Status ‘Absolute’, ‘Construct’ and ‘N/A’.

SegmentationPredicts the number of letters which
are prefix particles. Possible values are [0-6], 6
being the length of longest possible prefix se-
quence. Does not identify implicit definiteness.

Has properties A binary classifier which distin-
guishes between atomic POS categories (e.g.,
conjunction or negation) and categories whose
words have attributes (such as nouns or verbs).

Each word in the training corpus induces features
that are generated for itself and its immediate neigh-
bors, using the output of the morphological ana-
lyzer. For each word in the window, we generate
the following features: POS, number, gender, per-
son, tense, state, definiteness, prefixes (where each
possible prefix is a binary feature), suffix (binary: is
there word suffixed?), number/gender/person of suf-
fix, surface form, lemma, conjunction of the surface
form and the POS, conjunction of the POS and the
POS of prefixes and suffixes, and some disjunctions
of POS. The total number of features for each exam-
ple is huge (millions), but feature vectors are very
sparse.

The simple classifiers can be configured in several
ways. First, the size of the window around the target
word had to be determined, and we experimented
with several sizes, up to±3 words. Another issue
is feature generation. It is straight-forward during
training, but during evaluation and testing the fea-
ture extractor is presented only with the set of anal-
yses produced by HAMSAH for each word, and has
no access to thecorrectanalysis. We experimented
with two methods for tackling this problem: produce
theunionof all possible values for each feature; or
select a single analysis, the baseline one, for each
word, and generate only the features induced by this
analysis. While this problem is manifested only dur-
ing testing, it impacts also the training procedure,
and so we experimented with feature generation at
training using the correct analysis, the union of the
analyses or the baseline analysis. The results of the
experiments for the POS classifier are shown in Ta-
ble 5. The best configuration uses a window of two
words before and one word after the target word. For
both testing and training we generate features using
the baseline analysis.

With this setup, the accuracy of all the classifiers
is shown in Table 6. We report results on two tasks:
the entire test corpus; and words in the test corpus
which do not occur in the training corpus, a much
harder task. We list theaccuracy, remaining level
of ambiguityand reduction in error rateERR, com-
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Training Testing 1 - 2 2 - 1 2 - 2 1 - 3 3 - 1 2 - 3 3 - 2 3 - 3
correct baseline 91.37 91.53 91.69 91.55 91.69 91.83 91.75 92.01
correct all 79.15 79.55 80.53 80.07 80.13 80.75 81.00 82.07
all baseline 93.41 93.38 93.22 93.42 93.53 93.59 93.51 93.61
all all 93.37 93.42 93.28 93.2 93.61 93.05 93.48 93.15
baseline baseline 94.93 94.97 94.8 94.86 94.84 94.72 94.67 94.61
baseline all 84.48 84.78 84.82 85.65 84.97 85.13 85.03 85.45

Table 5: Architectural configurations of the POS classifier: columns reflect the window size, rows refer to
training and testing feature generation

All words Unseen words
baseline classifier baseline classifier
accuracy accuracy ambiguity ERR accuracy accuracy ERR

POS 93.01 94.97 1.46 28.04 84.67 88.65 25.96
Gender 96.34 96.74 1.86 10.93 92.15 94.38 28.41
Number 96.79 97.92 1.91 35.20 92.35 95.91 46.54
Person 98.14 98.62 2.25 25.81 94.04 96.50 41.28
Tense 98.40 98.69 2.21 18.12 94.80 96.37 30.19
Definite Article 93.90 95.76 1.83 30.49 85.38 91.77 43.71
Status 92.73 95.06 1.57 32.05 84.46 89.85 34.68
Segmentation 99.12 97.80 2.25 — 97.67 97.66 —
Has properties 97.63 98.11 2.26 20.25 95.91 95.97 1.47

Table 6: Accuracy of the simple classifiers: ERR is reduction in error rate, compared with the baseline

pared with the baseline.

4 Combination of Classifiers

Given a set of simple classifiers, we now investi-
gate various ways for combining their predictions.
These predictions may be contradicting (for exam-
ple, the POS classifier can predict ‘noun’ while the
tense classifier predicts ‘past’), and we use the con-
straints imposed by the morphological analyzer to
enforce a consistent analysis.

First, we define a naı̈ve combination along the
lines of Habash and Rambow (2005). The scores
assigned by the simple classifiers (except segmenta-
tion, for which we use the baseline) to each analysis
are accumulated, and the score of the complete anal-
ysis is their sum (experiments with different weights
to the various classifiers proved futile). Even after
the combination, the remaining level of ambiguity
is 1.05; in ambiguous cases back off to the baseline
analysis, and then choose at random one of the top-
ranking analyses. The result of the combination is
shown in Table 7.

baseline classifier ERR

All words 86.11 90.26 29.88
Unseen words 67.53 78.52 33.85

Table 7: Results of the naı̈ve combination

Next, we define a hierarchical combination in
which we try to incorporate more linguistic knowl-
edge pertaining to the dependencies between the
classifiers. As a pre-processing step we classify the
target word to one of two groups, using thehas prop-
ertiesclassifier. Then, we predict the main POS of
the target word, and take this prediction to be true;
we then apply only the subset of the other classifiers
that are relevant to the main POS.

The results of the hierarchical combination are
shown in Table 8. As can be seen, the hierarchical
combination performs worse than the naı̈ve one. We
conjecture that this is because the hierarchical com-
bination does not fully disambiguate, and a random
top-ranking analysis is chosen more often than in the
case of the näıve combination.
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näıve hierarchical ERR

All words 90.26 89.61 —
Unseen words 78.52 78.08 —

Table 8: Results of the hierarchial combination

The combination of independent classifiers un-
der the constraints imposed by the possible mor-
phological analyses is intended to capture context-
dependent constraints on possible sequences of anal-
yses. Such constraints are stochastic in nature, but
linguistic theory tells us that severalhard (determin-
istic) constraints also exist which rule out certain se-
quences of otherwise possible analyses. We now ex-
plore the utility of implementing such constraints to
filter out linguistically impossible sequences.

Using several linguistic sources, we defined a set
of constraints, each of which is a linguistically im-
possible sequence of analyses (all sequences are of
length 2, although in principle longer ones could
have been defined). We then checked the annotated
corpus for violations of these constraints; we used
the corpus to either verify the correctness of a con-
straint or further refine it (or abandon it altogether,
in some cases). We then re-iterated the process with
the new set of constraints.

The result was a small set of six constraints which
are not violated in our annotated corpus. We used
the constraints to rule out some of the paths de-
fined by the possible outcomes of the morphologi-
cal analyzer on a sequence of words. Each of the
constraints below contributes a non-zero reduction
in the error rate of the disambiguation module.The
(slightly simplified) constraints are:

1. A verb in any tense but present cannot be fol-
lowed by the genitive preposition ‘$l’ (of).

2. A preposition with no attached pronomial suf-
fix must be followed by a nominal phrase. This
rule is relaxed for some prepositions which can
be followed by the prefix ‘$’.

3. The preposition ‘at’ must be followed by a def-
inite nominal phrase.

4. Construct-state words must be followed by a
nominal phrase.

5. A sequence of two verbs is only allowed if: one
of them is the verb ‘hih’ (be); one of them has
a prefix; the second is infinitival; or the first is
imperative and the second is in future tense.

6. A non-numeral quantifier must be followed by
either a nominal phrase or a punctuation.

Imposing the linguistically motivated constraints
on the classifier combination improved the results to
some extent, as depicted in Table 9. The best results
are obtained when the constraints are applied to the
hierarchical combination.

5 Error analysis

We conducted extensive error analysis of both the
simple classifiers and the combination module. The
analysis was performed over one fold of the anno-
tated corpus (8933 tokens). Table 10 depicts, for
some classifiers, a subset of the confusion matrix:
it lists thecorrect tag, thechosen, or predicted, tag,
the number of occurrences of the specific error and
the total number of errors made by the classifier.

classifier correct chosen # total

has props
yes no 110

167
no yes 57

segmentation 1 0 160 176
state const abs 154 412
definiteness def indef 98 300

Table 10: Simple classifiers, confusion matrix

Several patterns can be observed in Table 10. The
‘has properties’ classifier is biased towards predict-
ing ‘yes’ instead of ‘no’. The ‘segmentation’ clas-
sifier, which predicts the length of the prefix, also
displays a clear bias. In almost 90% of its errors it
predicts no prefix instead of a prefix of length one.
‘Status’ and ‘definiteness’ are among the weakest
classifiers, biased towards the default.

Other classifiers make more sporadic types of er-
rors. Of particular interest is the POS classifier.
Here, when adjectives are mis-predicted, they are
predicted as nouns. This can be explained by the
morphological similarity of the two categories, and
in particular by the similar syntactic contexts in
which they occur. Similarly, almost 90% of mis-
predicted verbs are predicted to be either nouns
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näıve näıve+ consts ERR hier. hier.+ cons ERR

All words 90.26 90.90 6.57 89.61 91.44 17.61
Unseen words 78.52 79.56 4.84 78.08 81.74 16.70

Table 9: Accuracy results of various combination architectures.ERRis reduction in error rate due to the
hard constraints. The best results are obtained using the hierarchical combination with hard constraints.

or adjectives, probably resulting from present-tense
verbs in the training corpus which, in Hebrew, have
similar distribution to nouns and adjectives.

The analysis of errors in the combination is more
interesting. On the entire corpus, the disambigua-
tor makes 7927 errors. Of those, 1476 (19%) are
errors in which the correct analysis differs from the
chosen oneonly in the value of the ‘state’ feature.
Furthermore, in 1341 of the errors (17%) the system
picks the correct analysis up to the value of ‘definite-
ness’; of those, 1275 (16% of the errors) are words
in which the definite article is assimilated in a prepo-
sition. In sum, many of the errors seem to be in the
real tough cases.

6 Conclusions

Morphological disambiguation of Hebrew is a dif-
ficult task which involves, in theory, thousands of
possible tags. We reconfirm the results of Daya
et al. (2004) and Habash and Rambow (2005),
which show that decoupling complex morphologi-
cal tasks into several simple tasks improves the ac-
curacy of classification. Our best result, 91.44%
accuracy, reflects a reduction of 25% in error rate
compared to the previous state of the art (Adler
and Elhadad, 2006), and almost 40% compared
to the baseline. We also show that imposing
few context-dependent constraints on possible se-
quences of analyses improves the accuracy of the
disambiguation. The disambiguation module will
be made available through the Knowledge Cen-
ter for Processing Hebrew (http://mila.cs.
technion.ac.il/ ).

We believe that these results can be further im-
proved in various ways. The basic classifiers can
benefit from more detailed feature engineering and
careful tuning of the parameters of the learning en-
vironment. There are various ways in which inter-
related classifiers can be combined; we only ex-
plored three here. Using other techniques, such as

inference-based training, in which the feature gen-
eration for training is done step by step, using infor-
mation inferred in the previous step, is likely to yield
better accuracy. We also believe that further linguis-
tic exploration, based on deeper error analysis, will
result in more hard constraints which can reduce the
error rate of the combination module. Finally, we
are puzzled by the differences between Hebrew and
Arabic (for which the baseline and the current state
of the art are significantly higher) on this task. We
intend to investigate the linguistic sources for this
puzzle in the future.
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Abstract

We present a new approach to automatic
summarization based on neural nets, called
NetSum. We extract a set of features from
each sentence that helps identify its impor-
tance in the document. We apply novel
features based on news search query logs
and Wikipedia entities. Using the RankNet
learning algorithm, we train a pair-based
sentence ranker to score every sentence in
the document and identify the most impor-
tant sentences. We apply our system to
documents gathered from CNN.com, where
each document includes highlights and an
article. Our system significantly outper-
forms the standard baseline in the ROUGE-1
measure on over 70% of our document set.

1 Introduction

Automatic summarization was first studied almost
50 years ago by Luhn (Luhn, 1958) and has contin-
ued to be a steady subject of research. Automatic
summarization refers to the creation of a shortened
version of a document or cluster of documents by
a machine, see (Mani, 2001) for details. The sum-
mary can be an abstraction or extraction. In an ab-
stract summary, content from the original document
may be paraphrased or generated, whereas in an ex-
tract summary, the content is preserved in its original
form, i.e., sentences. Both summary types can in-
volve sentence compression, but abstracts tend to be
more condensed. In this paper, we focus on produc-
ing fully automated single-document extract sum-
maries of newswire articles.

To create an extract, most automatic systems use
linguistic and/or statistical methods to identify key
words, phrases, and concepts in a sentence or across
single or multiple documents. Each sentence is then
assigned a score indicating the strength of presence
of key words, phrases, and so on. Sentence scoring
methods utilize both purely statistical and purely se-
mantic features, for example as in (Vanderwende et
al., 2006; Nenkova et al., 2006; Yih et al., 2007).

Recently, machine learning techniques have been
successfully applied to summarization. The meth-
ods include binary classifiers (Kupiec et al., 1995),
Markov models (Conroy et al., 2004), Bayesian
methods (Daumé III and Marcu, 2005; Aone et al.,
1998), and heuristic methods to determine feature
weights (Schiffman, 2002; Lin and Hovy, 2002).
Graph-based methods have also been employed
(Erkan and Radev, 2004a; Erkan and Radev, 2004b;
Mihalcea, 2005; Mihalcea and Tarau, 2005; Mihal-
cea and Radev, 2006).

In 2001–02, the Document Understanding Con-
ference (DUC, 2001), issued the task of creat-
ing a 100-word summary of a single news article.
The best performing systems (Hirao et al., 2002;
Lal and Ruger, 2002) used various learning and
semantic-based methods, although no system could
outperform the baseline with statistical significance
(Nenkova, 2005). After 2002, the single-document
summarization task was dropped.

In recent years, there has been a decline in stud-
ies on automatic single-document summarization,
in part because the DUC task was dropped, and in
part because the task of single-document extracts
may be counterintuitively more difficult than multi-
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document summarization (Nenkova, 2005). How-
ever, with the ever-growing internet and increased
information access, we believe single-document
summarization is essential to improve quick ac-
cess to large quantities of information. Recently,
CNN.com (CNN.com, 2007a) added “Story High-
lights” to many news articles on its site to allow
readers to quickly gather information on stories.
These highlights give a brief overview of the arti-
cle and appear as 3–4 related sentences in the form
of bullet points rather than a summary paragraph,
making them even easier to quickly scan.

Our work is motivated by both the addition of
highlights to an extremely visible and reputable on-
line news source, as well as the inability of past
single-document summarization systems to outper-
form the extremely strong baseline of choosing the
first n sentences of a newswire article as the sum-
mary (Nenkova, 2005). Although some recent sys-
tems indicate an improvement over the baseline (Mi-
halcea, 2005; Mihalcea and Tarau, 2005), statistical
significance has not been shown. We show that by
using a neural network ranking algorithm and third-
party datasets to enhance sentence features, our sys-
tem, NetSum, can outperform the baseline with sta-
tistical significance.

Our paper is organized as follows. Section 2 de-
scribes our two studies: summarization and high-
light extraction. We describe our dataset in detail in
Section 3. Our ranking system and feature vectors
are outlined in Section 4. We present our evaluation
measure in Section 5. Sections 6 and 7 report on our
results on summarization and highlight extraction,
respectively. We conclude in Section 8 and discuss
future work in Section 9.

2 Our Task

In this paper, we focus on single-document summa-
rization of newswire documents. Each document
consists of three highlight sentences and the article
text. Each highlight sentence is human-generated,
but is based on the article. In Section 4 we discuss
the process of matching a highlight to an article sen-
tence. The output of our system consists of purely
extracted sentences, where we do not perform any
sentence compression or sentence generation. We
leave such extensions for future work.

We develop two separate problems based on our
document set. First, can we extract three sentences
that best “match” the highlights as a whole? In
this task, we concatenate the three sentences pro-
duced by our system into a single summary orblock,
and similarly concatenate the three highlight sen-
tences into a single summary orblock. We then
compare our system’s block against the highlight
block. Second, can we extract three sentences that
best “match” the three highlights, such that order-
ing is preserved? In this task, we produce three sen-
tences, where the first sentence is compared against
the first highlight, the second sentence is compared
against the second highlight, and the third sentence
is compared against the third highlight. Credit is
not given for producing three sentences that match
the highlights, but are out of order. The second task
considers ordering and compares sentences on an in-
dividual level, whereas the first task considers the
three chosen sentences as a summary or block and
disregards sentence order. In both tasks, we assume
the title has been seen by the reader and will be listed
above the highlights.

3 Evaluation Corpus

Our data consists of1365 news documents gathered
from CNN.com (CNN.com, 2007a). Each document
was extracted by hand, where a maximum of 50
documents per day were collected. The documents
were hand-collected on consecutive days during the
month of February.

Each document includes the title, timestamp,
story highlights, and article text. The timestamp
on articles ranges from December 2006 to Febru-
ary 2007, since articles remain posted on CNN.com
for up to several months. The story highlights are
human-generated from the article text. The number
of story highlights is between 3–4. Since all articles
include at least 3 story highlights, we consider only
the task of extracting three highlights from each ar-
ticle.

4 Description of Our System

Our goal is to extract three sentences from a single
news document that best match various characteris-
tics of the three document highlights. One way to
identify the best sentences is to rank the sentences
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TIMESTAMP: 1:59 p.m. EST, January 31, 2007

TITLE: Nigeria reports first human death from bird flu

HIGHLIGHT 1: Government boosts surveillance after woman dies

HIGHLIGHT 2: Egypt, Djibouti also have reported bird flu in humans

HIGHLIGHT 3: H5N1 bird flu virus has killed 164 worldwide since2003

ARTICLE: 1. Health officials reported Nigeria’s first cases ofbird flu in humans on Wednesday,

saying one woman had died and a family member had been infected but was responding to

treatment. 2. The victim, a 22-year old woman in Lagos, died January 17, Information Minister

Frank Nweke said in a statement. 3. He added that the government was boosting surveillance

across Africa’s most-populous nation after the infectionsin Lagos, Nigeria’s biggest city. 4.

The World Health Organization had no immediate confirmation. 5. Nigerian health officials

earlier said 14 human samples were being tested. 6. Nweke made no mention of those cases on

Wednesday. 7. An outbreak of H5N1 bird flu hit Nigeria last year, but no human infections had

been reported until Wednesday. 8. Until the Nigerian report, Egypt and Djibouti were the only

African countries that had confirmed infections among people. 9. Eleven people have died in

Egypt. 10. The bird flu virus remains hard for humans to catch,but health experts fear H5N1

may mutate into a form that could spread easily among humans and possibly kill millions in

a flu pandemic. 11. Amid a new H5N1 outbreak reported in recentweeks in Nigeria’s north,

hundreds of miles from Lagos, health workers have begun a cull of poultry. 12. Bird flu is

generally not harmful to humans, but the H5N1 virus has claimed at least 164 lives worldwide

since it began ravaging Asian poultry in late 2003, according to the WHO. 13. The H5N1 strain

had been confirmed in 15 of Nigeria’s 36 states. 14. By September, when the last known case

of the virus was found in poultry in a farm near Nigeria’s biggest city of Lagos, 915,650 birds

had been slaughtered nationwide by government veterinary teams under a plan in which the

owners were promised compensation. 15. However, many Nigerian farmers have yet to receive

compensation in the north of the country, and health officials fear that chicken deaths may be

covered up by owners reluctant to slaughter their animals. 16. Since bird flu cases were first

discovered in Nigeria last year, Cameroon, Djibouti, Niger, Ivory Coast, Sudan and Burkina

Faso have also reported the H5N1 strain of bird flu in birds. 17. There are fears that it has

spread even further than is known in Africa because monitoring is difficult on a poor continent

with weak infrastructure. 18. With sub-Saharan Africa bearing the brunt of the AIDS epidemic,

there is concern that millions of people with suppressed immune systems will be particularly

vulnerable, especially in rural areas with little access tohealth facilities. 19. Many people keep

chickens for food, even in densely populated urban areas.

Figure 1: Example document containing highlights
and article text. Sentences are numbered by their
position. Article is from (CNN.com, 2007b).

using a machine learning approach, for example as
in (Hirao et al., 2002). A train set is labeled such
that the labels identify the best sentences. Then a
set of features is extracted from each sentence in the
train and test sets, and the train set is used to train
the system. The system is then evaluated on the test
set. The system learns from the train set the distri-
bution of features for the best sentences and outputs
a ranked list of sentences for each document. In this
paper, we rank sentences using a neural network al-
gorithm called RankNet (Burges et al., 2005).

4.1 RankNet

From the labels and features for each sentence, we
train a model that, when run on a test set of sen-
tences, can infer the proper ranking of sentences
in a document based on information gathered dur-
ing training about sentence characteristics. To ac-
complish the ranking, we use RankNet (Burges et
al., 2005), a ranking algorithm based on neural net-
works.

RankNet is a pair-based neural network algorithm
used to rank a set of inputs, in this case, the set
of sentences in a given document. The system is
trained on pairs of sentences(Si, Sj), such thatSi

should be ranked higher or equal toSj. Pairs are
generated between sentences in a single document,
not across documents. Each pair is determined from
the input labels. Since our sentences are labeled us-
ing ROUGE (see Section 4.3), if the ROUGE score
of Si is greater than the ROUGE score ofSj, then
(Si, Sj) is one input pair. The cost function for
RankNet is the probabilistic cross-entropy cost func-
tion. Training is performed using a modified version
of the back propagation algorithm for two layer nets
(Le Cun et al., 1998), which is based on optimiz-
ing the cost function by gradient descent. A simi-
lar method of training on sentence pairs in the con-
text of multi-document summarization was recently
shown in (Toutanova et al., 2007).

Our system, NetSum, is a two-layer neural net
trained using RankNet. To speed up the performance
of RankNet, we implement RankNet in the frame-
work of LambdaRank (Burges et al., 2006). For de-
tails, see (Burges et al., 2006; Burges et al., 2005).
We experiment with between 5 and 15 hidden nodes
and with an error rate between10−2 and10−7.

We implement 4 versions of NetSum. The first
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version, NetSum(b), is trained for our first sum-
marization problem (b indicates block). The pairs
are generated using the maximum ROUGE scores
l1 (see Section 4.3). The other three rankers are
trained to identify the sentence in the document
that best matches highlightn. We train one ranker,
NetSum(n), for each highlightn, for n = 1, 2, 3,
resulting in three rankers. NetSum(n) is trained us-
ing pairs generated from thel1,n ROUGE scores be-
tween sentenceSi and highlightHn (see Section
4.3).

4.2 Matching Extracted to Generated
Sentences

In this section, we describe how to determine which
sentence in the document best matches a given high-
light. Choosing three sentences most similar to the
three highlights is very challenging since the high-
lights include content that has been gathered across
sentences and even paragraphs, and furthermore in-
clude vocabulary that may not be present in the
text. Jing showed, for 300 news articles, that 19%
of human-generated summary sentences contain no
matching article sentence (Jing, 2002). In addition,
only 42% of the summary sentences match the con-
tent of a single article sentence, where there are still
semantic and syntactic transformations between the
summary sentence and article sentence.. Since each
highlight is human generated and does not exactly
match any one sentence in the document, we must
develop a method to identify how closely related a
highlight is to a sentence. We use the ROUGE (Lin,
2004b) measure to score the similarity between an
article sentence and a highlight sentence. We antic-
ipate low ROUGE scores for both the baseline and
NetSum due to the difficulty of finding a single sen-
tence to match a highlight.

4.3 ROUGE

Recall-Oriented Understudy for Gisting Evaluation
(Lin, 2004b), known as ROUGE, measures the qual-
ity of a model-generated summary or sentence by
comparing it to a “gold-standard”, typically human-
generated, summary or sentence. It has been shown
that ROUGE is very effective for measuring both
single-document summaries and single-document
headlines (Lin, 2004a).

ROUGE-N is aN -gram recall between a model-

generated summary and a reference summary. We
use ROUGE-N , for N = 1, for labeling and evalua-
tion of our model-generated highlights.1 ROUGE-
1 and ROUGE-2 have been shown to be statisti-
cally similar to human evaluations and can be used
with a single reference summary (Lin, 2004a). We
have only one reference summary, the set of human-
generated highlights, per document. In our work,
the reference summary can be a single highlight sen-
tence or the highlights as a block. We calculate
ROUGE-N as

∑
gramj∈R∩Si

Count(gramj)
∑

gramj∈R Count(gramj)
, (1)

whereR is the reference summary,Si is the model-
generated summary, andN is the length of theN -
gram gramj .2 The numerator cannot excede the
number ofN -grams (non-unique) inR.

We label each sentenceSi by its ROUGE-1 score.
For the first problem of matching the highlights
as a block, we label eachSi by l1, the maximum
ROUGE-1 score betweenSi and each highlightHn,
for n = 1, 2, 3, given byl1 = maxn(R(Si,Hn)).

For the second problem of matching three sen-
tences to the three highlights individually, we label
each sentenceSi by l1,n, the ROUGE-1 score be-
tweenSi andHn, given byl1,n = R(Si,Hn). The
ranker for highlightn, NetSum(n), is passed sam-
ples labeled usingl1,n.

4.4 Features

RankNet takes as input a set of samples, where each
sample contains a label and feature vector. The la-
bels were previously described in Section 4.3. In this
section, we describe each feature in detail and moti-
vate in part why each feature is chosen. We generate
10 features for each sentenceSi in each document,
listed in Table 1. Each feature is chosen to identify
characteristics of an article sentence that may match
those of a highlight sentence. Some of the features
such as position andN -gram frequencies are com-
monly used for scoring. Sentence scoring based on

1We use an implementation of ROUGE that does not per-
form stemming or stopword removal.

2ROUGE is typically used when the length of the reference
summary is equal to length of the model-generated summary.
Our reference summary and model-generated summary are dif-
ferent lengths, so there is a slight bias toward longer sentences.
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Symbol Feature Name

F (Si) Is First Sentence
Pos(Si) Sentence Position
SB(Si) SumBasic Score
SBb(Si) SumBasic Bigram Score
Sim(Si) Title Similarity Score
NT (Si) Average News Query Term Score
NT+(Si) News Query Term Sum Score
NTr(Si) Relative News Query Term Score
WE(Si) Average Wikipedia Entity Score
WE+(Si) Wikipedia Entity Sum Score

Table 1: Features used in our model.

sentence position, terms common with the title, ap-
pearance of keyword terms, and other cue phrases
is known as the Edmundsonian Paradigm (Edmund-
son, 1969; Alfonesca and Rodriguez, 2003; Mani,
2001). We use variations on these features as well
as a novel set of features based on third-party data.

Typically, news articles are written such that the
first sentence summarizes the article. Thus, we in-
clude a binary featureF (Si) that equals 1 ifSi is
the first sentence of the document:F (Si) = δi,1,
whereδ is the Kronecker delta function. This fea-
ture is used only for NetSum(b) and NetSum(1).

We include sentence position since we found in
empirical studies that the sentence to best match
highlightH1 is on average10% down the article, the
sentence to best matchH2 is on average20% down
the article, and the sentence to best matchH3 is31%
down the article.3 We calculate the position ofSi in
documentD as

Pos(Si) =
i

ℓ
, (2)

wherei = {1, . . . , ℓ} is the sentence number andℓ

is the number of sentences inD.
We include the SumBasic score (Nenkova et al.,

2006) of a sentence to estimate the importance of a
sentence based on word frequency. We calculate the
SumBasic score ofSi in documentD as

SB(Si) =

∑
w∈Si

p(w)

|Si|
, (3)

3Though this is not always the case, as the sentence to match
H2 precedes that to matchH1 in 22.03% of documents, and the
sentence to matchH3 precedes that to matchH2 in 29.32% of
and precedes that to matchH1 in 28.81% of documents.

wherep(w) is the probability of wordw and|Si| is
the number of words in sentenceSi. We calculate
p(w) asp(w) = Count(w)

|D| , whereCount(w) is the
number of times wordw appears in documentD and
|D| is the number of words in documentD. Note
that the score of a sentence is the average probability
of a word in the sentence.

We also include the SumBasic score over bi-
grams, wherew in Eq 3 is replaced by bigrams and
we normalize by the number of bigrams inSi.

We compute the similarity of a sentenceSi in doc-
umentD with the titleT of D as the relative proba-
bility of title termst ∈ T in Si as

Sim(Si) =

∑
t∈Si

p(t)

|Si|
, (4)

wherep(t) = Count(t)
|T | is the number of times termt

appears inT over the number of terms inT .
The remaining features we use are based on third-

party data sources. Previously, third-party sources
such as WordNet (Fellbaum, 1998), the web (Ja-
galamudi et al., 2006), or click-through data (Sun
et al., 2005) have been used as features. We pro-
pose using news query logs and Wikipedia entities
to enhance features. We base several features on
query terms frequently issued to Microsoft’s news
search engine http://search.live.com/news, and enti-
ties4 found in the online open-source encyclopedia
Wikipedia (Wikipedia.org, 2007). If a query term or
Wikipedia entity appears frequently in a CNN docu-
ment, then we assume highlights should include that
term or entity since it is important on both the doc-
ument and global level. Sentences containing query
terms or Wikipedia entities therefore contain impor-
tant content. We confirm the importance of these
third-party features in Section 7.

We collected several hundred of the most fre-
quently queried terms in February 2007 from the
news query logs. We took the daily top 200 terms
for 10 days. Our hypothesis is that a sentence with
a higher number of news query terms should be a
better candidate highlight. We calculate the average
probability of news query termsq in Si as

NT (Si) =

∑
q∈Si

p(q)

|q ∈ Si|
, (5)

4We define an entity as a title of a Wikipedia page.
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wherep(q) is the probability of a news termq and
|q ∈ Si| is the number of news terms inSi. p(q) =
Count(q)
|q∈D| , whereCount(q) is the number of times

term q appears inD and |q ∈ D| is the number of
news query terms inD.

We also include the sum of news query terms in
Si, given byNT+(Si) =

∑
q∈Si

p(q), and the rela-
tive probability of news query terms inSi, given by

NTr(Si) =

∑
q∈Si

p(q)

|Si|
.

We perform term disambiguation on each doc-
ument using an entity extractor (Cucerzan, 2007).
Terms are disambiguated to a Wikipedia entity
only if they match a surface form in Wikipedia.
Wikipedia surface forms are terms that disambiguate
to a Wikipedia entity and link to a Wikipedia page
with the entity as its title. For example, “WHO” and
“World Health Org.” both refer to the World Health
Organization, and should disambiguate to the entity
“World Health Organization”. Sentences in CNN
documentD that contain Wikipedia entities that fre-
quently appear in CNN documentD are considered
important. We calculate the average Wikipedia en-
tity score forSi as

WE(Si) =

∑
e∈Si

p(e)

|e ∈ Si|
, (6)

wherep(e) is the probability of entitye, given by
p(e) = Count(e)

|e∈D| , whereCount(e) is the number of
times entitye appears in CNN documentD and|e ∈
D| is the total number of entities in CNN document
D.

We also include the sum of Wikipedia entities,
given byWE+(Si) =

∑
e∈Si

p(e).
Note that all features except position features are

a variant of SumBasic over different term sets. All
features are computed over sentences where every
word has been lowercased and punctuation has been
removed after sentence breaking. We examined us-
ing stemming, but found stemming to be ineffective.

5 Evaluation

We evaluate the performance of NetSum using
ROUGE and by comparing against a baseline sys-
tem. For the first summarization task, we compare
against the baseline of choosing the first three sen-
tences as the block summary. For the second high-

lights task, we compare NetSum(n) against the base-
line of choosing sentencen (to match highlightn).
Both tasks are novel in attempting to match high-
lights rather than a human-generated summary.

We consider ROUGE-1 to be the measure of im-
portance and thus train our model on ROUGE-1 (to
optimize ROUGE-1 scores) and likewise evaluate
our system on ROUGE-1. We list ROUGE-2 scores
for completeness, but do not expect them to be sub-
stantially better than the baseline since we did not
directly optimize for ROUGE-2.5

For every document in our corpus, we compare
NetSum’s output with the baseline output by com-
puting ROUGE-1 and ROUGE-2 between the high-
light block and NetSum and between the highlight
block and the block of sentences. Similarly, for each
highlight, we compute ROUGE-1 and ROUGE-2
between highlightn and NetSum(n) and between
highlight n and sentencen, for n = 1, 2, 3. For
each task, we calculate the average ROUGE-1 and
ROUGE-2 scores of NetSum and of the baseline.
We also report the percent of documents where the
ROUGE-1 score of NetSum is equal to or better than
the ROUGE-1 score of the baseline.

We perform all experiments using five-fold cross-
validation on our dataset of 1365 documents. We
divide our corpus into five random sets and train on
three combined sets, validate on one set, and test on
the remaining set. We repeat this procedure for ev-
ery combination of train, validation, and test sets.
Our results are the micro-averaged results on the five
test sets. For all experiments, Table 3 lists the statis-
tical tests performed and the significance of perfor-
mance differences between NetSum and the baseline
at95% confidence.

6 Results: Summarization

We first find three sentences that, as a block, best
match the three highlights as a block. NetSum(b)
produces a ranked list of sentences for each docu-
ment. We create a block from the top 3 ranked sen-
tences. The baseline is the block of the first 3 sen-
tences of the document. A similar baseline outper-

5NetSum can directly optimize for any measure by training
on it, such as training on ROUGE-2 or on a weighted sum of
ROUGE-1 and ROUGE-2 to optimize both. Thus, ROUGE-2
scores could be further improved. We leave such studies for
future work.
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System Av. ROUGE-1 Av. ROUGE-2

Baseline 0.4642 ± 0.0084 0.1726 ± 0.0064

NetSum(b) 0.4956 ± 0.0075 0.1775 ± 0.0066

Table 2: Results on summarization task with stan-
dard error at 95% confidence. Bold indicates signif-
icance under paired tests.

ROUGE-1 ROUGE-2
System 1 2 3 1 2 3

NetSum(b) x x x x o o
NetSum(1) x x x o o o
NetSum(2) x x x x o x
NetSum(3) x x x x x x

Table 3: Paired tests for statistical significance
at 95% confidence between baseline and NetSum
performance; 1: McNemar, 2: Paired t-test, 3:
Wilcoxon signed-rank. “x” indicates pass, “o” in-
dicates fail. Since our studies are pair-wise, tests
listed here are more accurate than error bars reported
in Tables 2–5.

forms all previous systems for news article summa-
rization (Nenkova, 2005) and has been used in the
DUC workshops (DUC, 2001).

For each block produced by NetSum(b) and the
baseline, we compute the ROUGE-1 and ROUGE-2
scores of the block against the set of highlights as a
block. For73.26% of documents, NetSum(b) pro-
duces a block with a ROUGE-1 score that is equal
to or better than the baseline score. The two systems
produce blocks of equal ROUGE-1 score for24.69%
of documents. Under ROUGE-2, NetSum(b) per-
forms equal to or better than the baseline on73.19%
of documents and equal to the baseline on40.51%
of documents.

Table 2 shows the average ROUGE-1 and
ROUGE-2 scores obtained with NetSum(b) and the
baseline. NetSum(b) produces a higher quality
block on average for ROUGE-1.

Table 4 lists the sentences in the block produced
by NetSum(b) and the baseline block, for the arti-
cles shown in Figure 1. The NetSum(b) summary
achieves a ROUGE-1 score of 0.52, while the base-
line summary scores only 0.36.

System Sent. # ROUGE-1

Baseline S1, S2, S3 0.36
NetSum(b) S1, S7, S15 0.52

Table 4: Block results for the block produced by
NetSum(b) and the baseline block for the exam-
ple article. ROUGE-1 scores computed against the
highlights as a block are listed.

7 Results: Highlights

Our second task is to extract three sentences from
a document that best match the three highlights in
order. To accomplish this, we train NetSum(n) for
each highlightn = 1, 2, 3. We compare NetSum(n)
with the baseline of picking thenth sentence of the
document. We perform five-fold cross-validation
across our 1365 documents. Our results are reported
for the micro-average of the test results. For each
highlight n produced by both NetSum(n) and the
baseline, we compute the ROUGE-1 and ROUGE-
2 scores against thenth highlight.

We expect that beating the baseline forn = 1 is a
more difficult task than forn = 2 or 3 since the first
sentence of a news article typically acts as a sum-
mary of the article and since we expect the first high-
light to summarize the article. NetSum(1), however,
produces a sentence with a ROUGE-1 score that is
equal to or better than the baseline score for93.26%
of documents. The two systems produce sentences
of equal ROUGE-1 scores for82.84% of documents.
Under ROUGE-2, NetSum(1) performs equal to or
better than the baseline on94.21% of documents.

Table 5 shows the average ROUGE-1 and
ROUGE-2 scores obtained with NetSum(1) and the
baseline. NetSum(1) produces a higher quality sen-
tence on average under ROUGE-1.

The content of highlights 2 and 3 is typically from
later in the document, so we expect the baseline to
not perform as well in these tasks. NetSum(2) out-
performs the baseline since it is able to identify sen-
tences from further down the document as impor-
tant. For77.73% of documents, NetSum(2) pro-
duces a sentence with a ROUGE-1 score that is equal
to or better than the score for the baseline. The two
systems produce sentences of equal ROUGE-1 score
for 33.92% of documents. Under ROUGE-2, Net-
Sum(2) performs equal to or better than the baseline
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System Av. ROUGE-1 Av. ROUGE-2

Baseline(1) 0.4343 ± 0.0138 0.1833 ± 0.0095

NetSum(1) 0.4478 ± 0.0133 0.1857 ± 0.0085

Baseline(2) 0.2451 ± 0.0128 0.0814 ± 0.0106

NetSum(2) 0.3036 ± 0.0117 0.0877 ± 0.0107

Baseline(3) 0.1707 ± 0.0103 0.0412 ± 0.0069

NetSum(3) 0.2603 ± 0.0133 0.0615 ± 0.0075

Table 5: Results on ordered highlights task with
standard error at 95% confidence. Bold indicates
significance under paired tests.

System Sent. # ROUGE-1

Baseline S1 0.167
NetSum(1) S1 0.167

Baseline S2 0.111
NetSum(2) S1 0.556

Baseline S3 0.000
NetSum(3) S15 0.400

Table 6: Highlight results for highlightn produced
by NetSum(n) and highlightn produced by the base-
line for the example article. ROUGE-1 scores com-
puted against highlightn are listed.

84.84% of the time. For81.09% of documents, Net-
Sum(3) produces a sentence with a ROUGE-1 score
that is equal to or better than the score for the base-
line. The two systems produce sentences of equal
ROUGE-1 score for28.45% of documents. Under
ROUGE-2, NetSum(3) performs equal to or better
than the baseline89.91% of the time.

Table 5 shows the average ROUGE-1 and
ROUGE-2 scores obtained for NetSum(2), Net-
Sum(3), and the baseline. Both NetSum(2) and Net-
Sum(3) produce a higher quality sentence on aver-
age under both measures.

Table 6 gives highlights produced by NetSum(n)
and the highlights produced by the baseline, for the
article shown in Figure 1. The NetSum(n) highlights
produce ROUGE-1 scores equal to or higher than the
baseline ROUGE-1 scores.

In feature ablation studies, we confirmed that the
inclusion of news-based and Wikipedia-based fea-
tures improves NetSum’s peformance. For example,
we removed all news-based and Wikipedia-based
features in NetSum(3). The resulting performance

moderately declined. Under ROUGE-1, the base-
line produced a better highlight on22.34% of docu-
ments, versus only18.91% when using third-party
features. Similarly, NetSum(3) produced a sum-
mary of equal or better ROUGE-1 score on only
77.66% of documents, compared to81.09% of doc-
uments when using third-party features. In addi-
tion, the average ROUGE-1 score dropped to0.2182
and the average ROUGE-2 score dropped to0.0448.
The performance of NetSum with third-party fea-
tures over NetSum without third-party features is
statistically significant at95% confidence. However,
NetSum still outperforms the baseline without third-
party features, leading us to conclude that RankNet
and simple position and term frequency features
contribute the maximum performance gains, but in-
creased ROUGE-1 and ROUGE-2 scores are a clear
benefit of third-party features.

8 Conclusions

We have presented a novel approach to automatic
single-document summarization based on neural
networks, called NetSum. Our work is the first
to use both neural networks for summarization and
third-party datasets for features, using Wikipedia
and news query logs. We have evaluated our sys-
tem on two novel tasks: 1) producing a block of
highlights and 2) producing three ordered highlight
sentences. Our experiments were run on previously
unstudied data gathered from CNN.com. Our sys-
tem shows remarkable performance over the base-
line of choosing the firstn sentences of the docu-
ment, where the performance difference is statisti-
cally significant under ROUGE-1.

9 Future Work

An immediate future direction is to further explore
feature selection. We found third-party features
beneficial to the performance of NetSum and such
sources can be mined further. In addition, feature se-
lection for each NetSum system could be performed
separately since, for example, highlight 1 has differ-
ent characteristics than highlight 2.

In our experiments, ROUGE scores are fairly low
because a highlight rarely matches the content of a
single sentence. To improve NetSum’s performance,
we must consider extracting content across sentence
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boundaries. Such work requires a system to produce
abstract summaries. We hope to incorporate sen-
tence simplification and sentence splicing and merg-
ing in a future version of NetSum.

Another future direction is the identification of
“hard” and “easy” inputs. Although we report av-
erage ROUGE scores, such measures can be mis-
leading since some highlights are simple to match
and some are much more difficult. A better system
evaluation measure would incorporate the difficulty
of the input and weight reported results accordingly.
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Abstract

Textual records of business-oriented conver-
sations between customers and agents need
to be analyzed properly to acquire useful
business insights that improve productivity.
For such an analysis, it is critical to iden-
tify appropriate textual segments and ex-
pressions to focus on, especially when the
textual data consists of complete transcripts,
which are often lengthy and redundant. In
this paper, we propose a method to iden-
tify important segments from the conversa-
tions by looking for changes in the accuracy
of a categorizer designed to separate differ-
ent business outcomes. We extract effective
expressions from the important segments to
define various viewpoints. In text mining a
viewpoint defines the important associations
between key entities and it is crucial that the
correct viewpoints are identified. We show
the effectiveness of the method by using real
datasets from a car rental service center.

1 Introduction

“Contact center” is a general term for customer ser-
vice centers, help desks, and information phone
lines. Many companies operate contact centers to
sell their products, handle customer issues, and ad-
dress product-related and services-related issues. In
contact centers, analysts try to get insights for im-
proving business processes from stored customer
contact data. Gigabytes of customer contact records
are produced every day in the form of audio record-
ings of speech, transcripts, call summaries, email,

etc. Though analysis by experts results in insights
that are very deep and useful, such analysis usually
covers only a very small (1-2%) fraction of the total
call volume and yet requires significant workload.
The demands for extracting trends and knowledge
from the whole text data collection by using text
mining technology, therefore, are increasing rapidly.

In order to acquire valuable knowledge through
text mining, it is generally critical to identify im-
portant expressions to be monitored and compared
within the textual data. For example, given a large
collection of contact records at the contact center
of a manufacturer, the analysis of expressions for
products and expressions for problems often leads to
business value by identifying specific problems in a
specific product. If 30% of the contact records with
expressions for a specific product such as “ABC”
contain expressions about a specific trouble such
as “cracked”, while the expressions about the same
trouble appear in only 5% of the contact records for
similar products, then it should be a clue that the
product “ABC” may actually have a crack-related
problem. An effective way to facilitate this type
of analysis is to register important expressions in a
lexicon such as “ABC” and “cracked” as associated
respectively with their categories such as “product”
and “problem” so that the behavior of terms in the
same category can be compared easily. It is actu-
ally one of the most important steps of text mining
to identify such relevant expressions and their cate-
gories that can potentially lead to some valuable in-
sights. A failure in this step often leads to a failure
in the text mining. Also, it has been considered an
artistic task that requires highly experienced consul-
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tants to define such categories, which are often de-
scribed as the viewpoint for doing the analysis, and
their corresponding expressions through trial and er-
ror.

In this paper, we propose a method to identify im-
portant segments of textual data for analysis from
full transcripts of conversations. Compared to the
written summary of a conversation, a transcription
of an entire conversation tends to be quite lengthy
and contains various forms of redundancy. Many
of the terms appearing in the conversation are not
relevant for specific analysis. For example, the
terms for greeting such as “Hello” and “Welcome
to (Company A)” are unlikely to be associated with
specific business results such as purchased-or-not
and satisfied-or-not, especially because the conver-
sation is transcribed without preserving the nonver-
bal moods such as tone of voice, emotion etc. Thus
it is crucial to identify key segments and notable
expressions within conversations for analysis to ac-
quire valuable insights.

We exploit the fact that business conversations
follow set patterns such as an opening followed by a
request and the confirmation of details followed by
a closing, etc. By taking advantage of this feature of
business conversations, we have developed a method
to identify key segments and the notable expressions
within conversations that tend to discriminate be-
tween the business results. Such key segments, the
trigger segments, and the notable expressions asso-
ciated with certain business results lead us to easily
understand appropriate viewpoints for analysis.

Application of our method for analyzing nearly
one thousand conversations from a rental car reser-
vation office enabled us to acquire novel insights for
improving agent productivity and resulted in an ac-
tual increase in revenues.

Organization of the Paper: We start by describ-
ing the properties of the conversation data used in
this paper. Section 3 describes the method for iden-
tifying useful viewpoints and expressions that meet
the specified purpose. Section 4 provides the results
using conversational data. After the discussion in
Section 5, we conclude the paper in Section 6.

2 Business-Oriented Conversation Data

We consider business-oriented conversation data
collected at contact centers handling inbound tele-
phone sales and reservations. Such business oriented
conversations have the following properties.

• Each conversation is a one-to-one interaction
between a customer and an agent.

• For many contact center processes the conver-
sation flow is well defined in advance.

• There are a fixed number of outcomes and each
conversation has one of these outcomes.

For example, in car rentals, the following conversa-
tion flow is pre-defined for the agent. In practice
most calls to a car rental center follow this call flow.

• Opening - contains greeting, brand name, name
of agent

• Pick-up and return details - agent asks location,
dates and times of pick up and return, etc.

• Offering car and rate - agent offers a car spec-
ifying rate and mentions applicable special of-
fers.

• Personal details - agent asks for customer’s in-
formation such as name, address, etc.

• Confirm specifications - agent recaps reserva-
tion information such as name, location, etc.

• Mandatory enquiries - agent verifies clean driv-
ing record, valid license, etc.

• Closing - agent gives confirmation number and
thanks the customer for calling.

In these conversations the participants speak in turns
and the segments can be clearly identified. Figure 1
shows part of a transcribed call.

Each call has a specific outcome. For example,
each car rental transaction has one of two call types,
reservation or unbooked, as an outcome.

Because the call process is pre-defined, the con-
versations look similar in spite of having different
results. In such a situation, finding the differences in
the conversations that have effects on the outcomes
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is very important, but it is very expensive and dif-
ficult to find such unknown differences by human
analysis. We show that it is possible to define proper
viewpoints and corresponding expressions leading
to insights on how to change the outcomes of the
calls.

AGENT: Welcome to CarCompanyA. My name is Albert. How may I

help you?

.........

AGENT: Allright may i know the location you want to pick the

car from.

CUSTOMER: Aah ok I need it from SFO.

AGENT: For what date and time.

.........

AGENT: Wonderful so let me see ok mam so we have a 12 or 15

passenger van avilable on this location on those dates and

for that your estimated total for those three dates just

300.58$ this is with Taxes with surcharges and with free

unlimited free milleage.

.........

AGENT : alright mam let me recap the dates you want to pick

it up from SFO on 3rd August and drop it off on august 6th in

LA alright

CUSTOMER : and one more questions Is it just in states or

could you travel out of states

.........

AGENT : The confirmation number for your booking is 221 384.

CUSTOMER : ok ok Thank you

Agent : Thank you for calling CarCompanyA and you have a

great day good bye

Figure 1: Transcript of a car rental dialog (partial)

3 Trigger Segment Detection and Effective
Expression Extraction

In this section, we describe a method for automat-
ically identifying valuable segments and concepts
from the data for the user-specified difference anal-
ysis. First, we present a model to represent the con-
versational data. After that we introduce a method
to detect the segments where the useful concepts for
the analysis appear. Finally, we select useful expres-
sions in each detected trigger segment.

3.1 Data Model

Each conversational data record in the collectionD
is defined asdi. Eachdi can be seen as a sequence
of conversationalturns in the conversational data,

and thendi can be divided as

di = d1
i + d2

i + · · ·+ dMi
i , (1)

wheredk
i is thek-th turn in di andMi is the total

number of turns indi. The+ operator in the above
equation can be seen as an equivalent of the string
concatenation operator. We defined∼j

i as the por-
tion of di from the beginning to turnj. Using the
same notation,d∼j

i = d1
i + d2

i + · · · + dj
i . The

collection ofd∼mk
i constitutes theChronologically

Cumulative Dataup to turnmk (Dk). Dk is repre-
sented as

Dk = (d∼mk
1 , d∼mk

2 , . . . , d∼mk
n ). (2)

Figure 2 shows an image of the data model. We set
somemk and prepare the chronologically cumula-
tive data set as shown in Figure 3. We represent bi-
nary mutually exclusive business outcomes such as
success and failure resulting from the conversations
as “A” and “not A”.

di= di
1+…+di

Mi

Number of turns
0 1 2 3 Mi

di
1 di

2 di
3 di

Mi

mk

di
~mk= di

1+…+di
mk

Figure 2: Conversation data model

m5

turn
m1 m2 m3 m4

0 1 2 5 10 15

D
di

di
~m5

D5
di

~m4

D4

di
~m3

D3

D2

D1

di
~m2

di
~m1

m1=1, m2=2, m3=5, m4=10, m5=15

Figure 3: Chronologically cumulative conversa-
tional data

3.2 Trigger Segment Detection

Trigger segments can be viewed as portions of the
data which have important features which distin-
guish data of class “A” from data of class “not A”.
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To detect such segments, we divide each chrono-
logically cumulative data setDk into two data sets,
training dataDtraining

k and test dataDtest
k . Start-

ing from D1, for eachDk we trained a classifier
using Dtraining

k and evaluated it onDtest
k . Using

accuracy, the fraction of correctly classified docu-
ments, as a metric of performance (Yang and Liu,
1999), we denote the evaluation result of the cat-
egorization asacc(categorizer(Dk)) for eachDk

and plot it along with its turn. Figure 4 shows the
effect of gradually increasing the training data for
the classification. The distribution of expressions

m1 m2 m3 m4 m5

acc(categorizer(Di))

trigger trigger

D1

D2
D3

D4

D5
D all

turn

Figure 4: Plot ofacc(categorizer(Dk))

in a business-oriented conversation will change al-
most synchronously because the call flow is pre-
defined. Thereforeacc(categorizer(Dk)) will in-
crease if features that contribute to the categorization
appear inDk. In contrast,acc(categorizer(Dk))
will decrease if no features that contribute to
the categorization are inDk. Therefore, from
the transitions ofacc(categorizer(Dk)), we can
identify the segments with increases as triggers
where the features that have an effect on the out-
come appear. We denote a trigger segment as
seg(start position, end position). Because the to-
tal numbers of turns can be different, we do not
detect the last section as a trigger. In Figure 4,
seg(m1,m2) and seg(m4,m5) are triggers. It is
important to note that using the cumulative data is
key to the detection of trigger segments. Using non-
cumulative segment data would give us the catego-
rization accuracy for the features within that seg-
ment but would not tell us whether the features of
this segment are improving the accuracy or decreas-
ing it. It is this gradient information between seg-
ments that is key to identifying trigger segments.

Many approaches have been proposed for docu-

ment classification (Yang and Liu, 1999). In this
research, however, we are not interested in the clas-
sification accuracy itself but in the increase and de-
crease of the accuracy within particular segments.
For example, the greeting, or the particular method
of payment may not affect the outcome, but the
mention of a specific feature of the product may
have an effect on the outcome. Therefore in our
research we are interested in identifying the partic-
ular portion of the call where this product feature
is mentioned, along with its mention, which has an
effect on the outcome of the call. In our experi-
ments we used the SVM (Support Vector Machine)
classifier (Joachims, 1998), but almost any classifier
should work because our approach does not depend
on the classification method.

3.3 Effective Expression Extraction

In this section, we describe our method to extract
effective expressions from the detected trigger seg-
ments.

The effective expressions inDk are those which
are representative in the selected documents and
appear for the first time in the trigger segments
seg(mi, mj). Numerous methods to select features
exist (Hisamitsu and Niwa, 2002) (Yang and Ped-
ersen, 1997). We use theχ2 statistic for each ex-
pression inDk as a representative metric. For the
two-by-two contingency table of a expressionw and
a class ”A” shown in Table 1, theχ2 statistic is cal-
culated as

Table 1: Contingency table for calculating theχ2

statistic

# of documents # of documents
includingw not includingw

A n11 n12

not-A n21 n22

χ2 =
N(n11n22 − n12n21)

2

(n11 + n12)(n11 + n21)(n12 + n22)(n21 + n22)
(3)

whereN is the number of documents. This statis-
tic can be compared to theχ2 distribution with one
degree of freedom to judge representativeness.

We also want to extract the expressions that have
not had an effect on the outcome beforeDk. To de-
tect the new expressions inDk, we define the metric
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new(w) =
w(Dk)

max(w(Dk−1), 1)
/

mk

mk−1

×sign(w(DA
k )− w(DnotA

k )), (4)

wherew(Dk) is the frequency of expressionw in
the chronologically cumulative dataDk, max(a, b)
selects the larger value in the arguments,mk is the
number of turns inDk, w(DA

k ) is the frequency of
w in Dk with the outcome of the corresponding data
being “A”, andsign(·) is the signum function. When
w in class “A” appears inDk much more frequently
than Dk−1 compared with the ratio of their turns,
this metric will be more than 1. We detect signifi-
cant expressions by considering the combined score
χ2(w) · new(w). Using this combined score, we
can filter out the representative expressions that have
already appeared beforeDk and distinguish signifi-
cant expressions that first appear inDk for each class
“A” and “not A”.

3.4 Appropriate Viewpoint Selection
In a text mining system, to get an association that
leads to a useful insight, we have to define appro-
priate viewpoints. Viewpoints refer to objects in re-
lation to other objects. In analysis using a conven-
tional text mining system (Nasukawa and Nagano,
2001), the viewpoints are selected based on expres-
sions in user dictionaries prepared by domain ex-
perts. We have identified important segments of the
conversations by seeing changes in the accuracy of a
categorizer designed to segregate different business
outcomes. We have also been able to extract effec-
tive expressions from thesetrigger segments to de-
fine various viewpoints. Hence, viewpoint selection
is now based on the trigger segments and effective
expressions identified automatically based on speci-
fied business outcomes. In the next section we apply
our technique to a real life dataset and show that we
can successfully select useful viewpoints.

4 Experiments and Results
4.1 Experiment Data and System

We collected 914 recorded calls from the car rental
help desk and manually transcribed them. Figure 1
shows part of a call that has been transcribed.

There are three types of calls:

1. Reservation Calls:Calls which gotconverted.
Here, “converted” means the customer made a
reservation for a car. Reserved cars can get
picked-upor not picked-up, so some reserved
cars do not eventually get picked-up by cus-
tomers (no shows and cancellations).

2. Unbooked Calls: Calls which did not get con-
verted.

3. Service Calls: Customers changing or enquir-
ing about a previous booking.

The distribution of the calls is given in Table 2.

Table 2: Distribution of calls

Unbooked Calls 461

Reservation Calls (Picked-Up) 72

Reservation Calls (Not Picked-Up) 65

Service Calls 326

Total Calls 914

The reservation calls are most important in this
context, so we focus on those 137 calls. In the reser-
vation calls, there are two types of outcomes, car
picked-up and car not picked-up. All reservation
calls look similar in spite of having different out-
comes (in terms of pick up). The reservation hap-
pens during the call but the pick up happens at a
later date. If we can find differences in the conver-
sation that affect the outcome, it is expected that we
could improve the agent productivity. Reservation
calls follow the pre-defined reservation call flow that
we mentioned in Section 2 and it is very difficult
to find differences between them manually. In this
experiment, by using the proposed method, we try
to extract trigger segments and expressions to find
viewpoints that affect the outcome of the reservation
calls.

For the analysis, we constructed a text mining sys-
tem for the difference analysis “picked-up” vs. “not
picked-up”. The experimental system consists of
two parts, an information extraction part and a text
mining part. In the information extraction part we
define dictionaries and templates to identify useful
expressions. In the text mining part we define appro-
priate viewpoints based on the identified expressions
to get useful associations leading to useful insights.
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4.2 Results of Trigger Segment Detection and
Effective Expression Extraction

Based on the pre-defined conversation flow de-
scribed in Section 2, we setm1=1, m2=2,
m3=5, m4=10, m5=15, andm6=20 and prepared
D1, . . . , D6 and D. The features ofdi consist of
nouns, compound nouns, specified noun phrases
(e.g. adjective+noun), and verbs. For eachDk

we calculatedacc(categorizer(Dk)) for the classes
“picked-up” and “not picked-up.” In this process, we
use a SVM-based document categorizer (Joachims,
2002). Of the 137 calls, we used 100 calls for
training the categorizer and 37 calls for trigger
segment detection. Figure 5 shows the results of
acc(categorizer(Dk)) for picked-up. The accuracy
of classification using the data of entire conversa-
tions (acc(categorizer(D)) is 67.6% but we are try-
ing to detect important segments by considering not
the accuracy values themselves but the gradients be-
tween segments. From these results,seg(1, 2) and
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Figure 5: Result ofacc(categorizer(Dk))

seg(10, 15) are detected as trigger segments. We
now know that these segments are highly correlated
to the outcome of the call.

For each detected trigger segment, we extract ef-
fective expressions in each class using the metric de-
scribed in Section 3.3. Table 3 shows some expres-
sions with high values for the metric for each trigger.
In this table, ”just NUMERIC dollars” is a canonical
expression and an expression such as ”just 160 dol-
lars” is mapped to this canonical expression in the
information extraction process. From this result, in
seg(1, 2), “make”, “reservation” are correlated with
“pick up” and “rate” and “check” are correlated with

Table 3: Selected expressions in trigger segments
Trigger Selected expressions

pick up not picked up
seg(1, 2) make, return, tomorrow, rate, check, see

day, airport, look, want, week
assist, reservation, tonight

seg(10, 15) number, corporate program,go, impala
contract, card, have,
tax surcharge,
just NUMERIC dollars,
discount, customer club,
good rate, economy

“not-picked up”. By looking at some documents
containing these expressions, we found customer in-
tention phrases such as “would like to make a reser-
vation”, “want to check a rate”, etc. Therefore, it
can be induced that the way a customer starts the
call may have an impact on the outcome. From ex-
pressions inseg(10, 15), it can be said that discount-
related phrases and mentions of the good rates by the
agent can have an effect on the outcome.

We can directly apply the conventional methods
for representative feature selection toD. The fol-
lowing expressions were selected as the top 20 ex-
pressions from whole conversational data by using
theχ2 metric defined in (3).

corporate program, contract, counter, September,
mile, rate, economy, last name,
valid driving license,BRAND NAME, driving,
telephone, midsize, tonight, use, credit, moment,
airline, afternoon

From these results, we see that looking at the call as
a whole does not point us to the fact that discount-
related phrases, or the first customers-utterance, af-
fect the outcome. Detecting trigger segments and
extracting important expressions from each trigger
segment are key to identifying subtle differences be-
tween very similar looking calls that have entirely
opposite outcomes.

4.3 Results of Text Mining Analysis using
Selected Viewpoints and Expressions

From the detected segments and expressions we de-
termined that the customer’s first utterance along
with discount phrases and value selling phrases af-
fected the call outcomes. Under these hypotheses,
we prepared the following semantic categories.
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• Customer intention at start of call: From the
customer’s first utterance, we extract the fol-
lowing intentions based on the patterns.

– strong start:would like to make a booking,
need to pick up a car, . . .

– weak start:would like to check the rates,
want to know the rate for vans, . . .

Under our hypotheses, the customer with a
strong start has the intention of booking a car
and we classify such a customer as abook-
ing customer. The customer with a weak start
usually just wants to know the rates and is clas-
sified as arates customer.

• discount-related phrases:discount, corporate
program, motor club, buying club. . . are reg-
istered into the domain dictionary as discount-
related phrases.

• value selling phrases: we extract phrases men-
tioning good rates and good vehicles by match-
ing patterns related to such utterances.

– mentions of good rates:good rate, won-
derful price, save money, just need to pay
this low amount, . . .

– mentions of good vehicles:good car, fan-
tastic car, latest model, . . .

Using these three categories, we tried to find insights
to improve agent productivity.

Table 4 shows the result of two-dimensional as-
sociation analysis for 137 reservation calls. This ta-
ble shows the association between customer types
based on customer intention at the start of a call
and pick up information. From these results, 67%

Table 4: Association between customer types and
pick up information

Customer types extracted from texts Pick up information
based on customer intent at start of callpick up not-picked up
bookingcustomer (w/ strong start) (70) 47 23

ratescustomer (w/ weak start) (37) 13 24

(47 out of 70) of the bookingcustomers picked up
the reserved car and only 35% (13 out of 37) of the
ratescustomers picked it up. This supports our hy-
pothesis and means that pick up is predictable from
the customer’s first or second utterance.

It was found that cars booked by ratescustomers
tend to be “not picked up,” so if we can find any

actions by agents that convert such customers into
“pick up,” then the revenue will improve. In the
bookingcustomer case, to keep the “pick up” high,
we need to determine specific agent actions that con-
cretize the customer’s intent.

Table 5 shows how mentioning discount-related
phrases affects the pick up ratios for ratescustomers
and bookingcustomers. From this table, it can

Table 5: Association between mention of discount
phrases and pick up information

Rates customer Pick up information
Mention of discount phrases by agentspick up not-picked up

yes (21) 10 11
no (16) 3 13

Booking customer Pick up information
Mention of discount phrases by agentspick up not picked up

yes (40) 30 10
no (30) 17 13

be seen that mentioning discount phrases affects
the final status of both types of customers. In the
ratescustomer case, the probability that the booked
car will be picked up,P (pick-up) is improved to
0.476 by mentioning discount phrases. This means
customers are attracted by offering discounts and
this changes their intention from “just checking rate”
to “make a reservation here”. We found similar
trends for the association between mention of value
selling phrases and pick up information.

4.4 Improving Agent Productivity

From the results of the text mining analysis experi-
ment, we derived the following actionable insights:

• There are two types of customers in reservation
calls.

– Booking customer (with strong start)
tends to pick up the reserved car.

– Ratescustomer (with weak start) tends
not to pick up the reserved car.

• In the rates customer case, “pick up” is im-
proved by mentioning discount phrases.

By implementing the actionable insights derived
from the analysis in an actual car rental process, we
verified improvements in pick up. We divided the
83 agents in the car rental reservation center into
two groups. One of them, consisting of 22 agents,
was trained based on the insights from the text min-
ing analysis. The remaining 61 agents were not
told about these findings. By comparing these two
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groups over a period of one month we hoped to see
how the actionable insights contributed to improv-
ing agent performance. As the evaluation metric, we
used the pick up ratio - that is the ratio of the number
of “pick-ups” to the number of reservations.

Following the training the pick up ratio of the
trained agents increased by 4.75%. The average
pick up ratio for the remaining agents increased by
2.08%. Before training the ratios of both groups
were comparable. The seasonal trends in this indus-
try mean that depending on the month the bookings
and pickups may go up or down. We believe this
is why the average pick up ratio for the remaining
agents also increased. Considering this, it can be es-
timated that by implementing the actionable insights
the pick up ratio for the pilot group was improved by
about 2.67%. We confirmed that this difference is
meaningful because the p-value of the t-test statistic
is 0.0675 and this probability is close to the stan-
dard t-test (α=0.05). Seeing this, the contact center
trained all of its agents based on the insights from
the text mining analysis.

5 Discussion
There has been a lot of work on specific tools for
analyzing the conversational data collected at con-
tact centers. These include call type classification
for the purpose of categorizing calls (Tang et al.,
2003) (Zweig et al., 2006), call routing (Kuo and
Lee, 2003) (Haffner et al., 2003), obtaining call log
summaries (Douglas et al., 2005), agent assisting
and monitoring (Mishne et al., 2005), and building
of domain models (Roy and Subramaniam, 2006).
Filtering problematic dialogs automatically from an
automatic speech recognizer has also been studied
(Hastie et al., 2002) (Walker et al., 2002). In con-
trast to these technologies, in this paper we con-
sider the task of trying to find insights from a col-
lection of complete conversations. In (Nasukawa
and Nagano, 2001), such an analysis was attempted
for agent-entered call summaries of customer con-
tacts by extracting phrases based on domain-expert-
specified viewpoints. In our work we have shown
that even for conversational data, which is more
complex, we could identify proper viewpoints and
prepare expressions for each viewpoint. Call sum-
maries by agents tend to mask the customers’ inten-
tion at the start of the call. We get more valuable

insights from the text mining analysis of conversa-
tional data. For such an analysis of conversational
data, our proposed method has an important role.
With our method, we find the important segments
in the data for doing analyses. Also our analyses are
closely linked to the desired outcomes.

In trigger detection, we created a chronologically
cumulative data set based on turns. We can also
use the segment information such as the “opening”
and “enquiries” described in Section 2. We prepared
data with segment information manually assigned,
made the chronologically cumulative data and ap-
plied our trigger detection method. Figure 6 shows
the results ofacc(categorizer(Dk)). The trend in

4045505560
call start -->opening call start -->details call start -->offering call start -->personaldetails call start -->confirmation,mandatoryquestions,closingConversation flow

Accuracy [%]
Figure 6: Result ofacc(categorizer(Dk)) using
segment information

Figure 6 is similar to that in Figure 5. From this
result, it is observed that ”opening” and ”offering”
segments are trigger segments. Usually, segmenta-
tion is not done in advance and to assign such infor-
mation automatically we need data with labeled seg-
mentation information. The results show that even
in the absence of labeled data our trigger detection
method identifies the trigger segments. In the exper-
iments in Section 4, we set turns for each chrono-
logically cumulative data by taking into account the
pre-defined call flow.

In Figure 5 we observe that the accuracy of the
categorizer is decreasing even when using increas-
ing parts of the call. Even the accuracy using the
complete call is less than using only the first turn.
This indicates that the first turn is very informative,
but it also indicates that thefeaturesare not being
used judiciously. In a conventional classification
task, the number of features are sometimes restricted
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when constructing a categorizer. It is known that se-
lecting only significant features improves the clas-
sification accuracy (Yang and Pedersen, 1997). We
usedInformation Gainfor selecting features from
the document collection. This method selects the
most discriminative features between two classes.
As expected the classification accuracy improved
significantly as we reduced the total number of fea-
tures from over 2,000 to the range of 100 to 300.
Figure 7 shows the changes in accuracy. In the pro-
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Figure 7: Result ofacc(categorizer(Dk)) with top
100 to 300 features selected using information gain

posed method, we detect trigger segments using the
increases and decreases of the classification accu-
racy. By selecting features, the noisy features are not
added in the segments. Decreasing portions, there-
fore are not observed. In this situation, as a trigger
segment, we can detect the portion where the gra-
dient of the accuracy curve increases. Also using
feature selection, we find that the classification ac-
curacy is highest when using the entire document,
which is expected. However, we notice that the trig-
ger segments obtained with and without feature se-
lection are almost the same.

In the experiment, we use manually transcribed
data. As future work we would like to use the noisy
output of an automatic speech recognition system to
obtain viewpoints and expressions.

6 Conclusion
In this paper, we have proposed methods for iden-
tifying appropriate segments and expressions auto-
matically from the data for user specified difference
analysis. We detected the trigger segments using the
property that a business-oriented conversation fol-

lows a pre-defined flow. After that, we identified
the appropriate expressions from each trigger seg-
ment. It was found that in a long business-priented
conversation there are important segments affecting
the outcomes that can not been easily detected by
just looking through the conversation, but such seg-
ments can be detected by monitoring the changes
of the categorization accuracy. For the trigger seg-
ment detection, we do not use semantic segment in-
formation but only the positional segment informa-
tion based on the conversational turns. Because our
method does not rely on the semantic information in
the data, therefore our method can be seen as robust.
Through experiments with real conversational data,
using identified segments and expressions we were
able to define appropriate viewpoints and concepts
leading to insights for improving the car rental busi-
ness process.
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Abstract

A Bloom filter (BF) is a randomised data
structure for set membership queries. Its
space requirements fall significantly below
lossless information-theoretic lower bounds
but it produces false positives with some
quantifiable probability. Here we present
a general framework for deriving smoothed
language model probabilities from BFs.

We investigate how a BF containing n-gram
statistics can be used as a direct replacement
for a conventional n-gram model. Recent
work has demonstrated that corpus statistics
can be stored efficiently within a BF, here
we consider how smoothed language model
probabilities can be derived efficiently from
this randomised representation. Our pro-
posal takes advantage of the one-sided error
guarantees of the BF and simple inequali-
ties that hold between related n-gram statis-
tics in order to further reduce the BF stor-
age requirements and the error rate of the
derived probabilities. We use these models
as replacements for a conventional language
model in machine translation experiments.

1 Introduction

Language modelling (LM) is a crucial component in
statistical machine translation (SMT). Standard n-
gram language models assign probabilities to trans-
lation hypotheses in the target language, typically
as smoothed trigram models (Chiang, 2005). Al-
though it is well-known that higher-order language

models and models trained on additional monolin-
gual corpora can significantly improve translation
performance, deploying such language models is not
trivial. Increasing the order of an n-gram model can
result in an exponential increase in the number of
parameters; for the English Gigaword corpus, for
instance, there are 300 million distinct trigrams and
over 1.2 billion distinct five-grams. Since a language
model is potentially queried millions of times per
sentence, it should ideally reside locally in memory
to avoid time-consuming remote or disk-based look-
ups.

Against this background, we consider a radically
different approach to language modelling. Instead
of explicitly storing all distinct n-grams from our
corpus, we create an implicit randomised represen-
tation of these statistics. This allows us to drastically
reduce the space requirements of our models. In
this paper, we build on recent work (Talbot and Os-
borne, 2007) that demonstrated how the Bloom filter
(Bloom (1970); BF), a space-efficient randomised
data structure for representing sets, could be used to
store corpus statistics efficiently. Here, we propose
a framework for deriving smoothed n-gram models
from such structures and show via machine trans-
lation experiments that these smoothed Bloom filter
language models may be used as direct replacements
for standard n-gram models in SMT.

The space requirements of a Bloom filter are quite
spectacular, falling significantly below information-
theoretic error-free lower bounds. This efficiency,
however, comes at the price of false positives: the fil-
ter may erroneously report that an item not in the set
is a member. False negatives, on the other hand, will
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never occur: the error is said to be one-sided. Our
framework makes use of the log-frequency Bloom
filter presented in (Talbot and Osborne, 2007), and
described briefly below, to compute smoothed con-
ditional n-gram probabilities on the fly. It takes
advantage of the one-sided error guarantees of the
Bloom filter and certain inequalities that hold be-
tween related n-gram statistics drawn from the same
corpus to reduce both the error rate and the compu-
tation required in deriving these probabilities.

2 The Bloom filter
In this section, we give a brief overview of the
Bloom filter (BF); refer to Broder and Mitzenmacher
(2005) for a more in detailed presentation. A BF rep-
resents a set S = {x1, x2, ..., xn} with n elements
drawn from a universe U of size N . The structure is
attractive when N � n. The only significant stor-
age used by a BF consists of a bit array of size m.
This is initially set to hold zeroes. To train the filter
we hash each item in the set k times using distinct
hash functions h1, h2, ..., hk. Each function is as-
sumed to be independent from each other and to map
items in the universe to the range 1 to m uniformly
at random. The k bits indexed by the hash values
for each item are set to 1; the item is then discarded.
Once a bit has been set to 1 it remains set for the life-
time of the filter. Distinct items may not be hashed
to k distinct locations in the filter; we ignore col-
lisons. Bits in the filter can, therefore, be shared by
distinct items allowing significant space savings but
introducing a non-zero probability of false positives
at test time. There is no way of directly retrieving or
ennumerating the items stored in a BF.

At test time we wish to discover whether a given
item was a member of the original set. The filter is
queried by hashing the test item using the same k
hash functions. If all bits referenced by the k hash
values are 1 then we assume that the item was a
member; if any of them are 0 then we know it was
not. True members are always correctly identified,
but a false positive will occur if all k corresponding
bits were set by other items during training and the
item was not a member of the training set.

The probability of a false postive, f , is clearly the
probability that none of k randomly selected bits in
the filter are still 0 after training. Letting p be the
proportion of bits that are still zero after these n ele-

ments have been inserted, this gives,

f = (1− p)k.

As n items have been entered in the filter by hashing
each k times, the probability that a bit is still zero is,

p
′
=

(
1− 1

m

)kn

≈ e−
kn
m

which is the expected value of p. Hence the false
positive rate can be approximated as,

f = (1− p)k ≈ (1− p
′
)k ≈

(
1− e−

kn
m

)k
.

By taking the derivative we find that the number of
functions k∗ that minimizes f is,

k∗ = ln 2 · m
n

,

which leads to the intuitive result that exactly half
the bits in the filter will be set to 1 when the optimal
number of hash functions is chosen.

The fundmental difference between a Bloom fil-
ter’s space requirements and that of any lossless rep-
resentation of a set is that the former does not depend
on the size of the (exponential) universe N from
which the set is drawn. A lossless representation
scheme (for example, a hash map, trie etc.) must de-
pend on N since it assigns a distinct representation
to each possible set drawn from the universe.

3 Language modelling with Bloom filters
Recent work (Talbot and Osborne, 2007) presented a
scheme for associating static frequency information
with a set of n-grams in a BF efficiently.1

3.1 Log-frequency Bloom filter
The efficiency of the scheme for storing n-gram
statistics within a BF presented in Talbot and Os-
borne (2007) relies on the Zipf-like distribution of
n-gram frequencies: most events occur an extremely
small number of times, while a small number are
very frequent. We assume that raw counts are quan-
tised and employ a logarithmic codebook that maps
counts, c(x), to quantised counts, qc(x), as follows,

qc(x) = 1 + blogb c(x)c. (1)
1Note that as described the Bloom filter is not an associative

data structure and provides only a Boolean function character-
ising the set that has been stored in it.
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Algorithm 1 Training frequency BF
Input: Strain, {h1, ...hk} and BF = ∅
Output: BF
for all x ∈ Strain do

c(x)← frequency of n-gram x in Strain

qc(x)← quantisation of c(x) (Eq. 1)
for j = 1 to qc(x) do

for i = 1 to k do
hi(x)← hash of event {x, j} under hi

BF [hi(x)]← 1
end for

end for
end for
return BF

The precision of this codebook decays exponentially
with the raw counts and the scale is determined by
the base of the logarithm b; we examine the effect
of this parameter on our language models in experi-
ments below.

Given the quantised count qc(x) for an n-gram
x, the filter is trained by entering composite events
consisting of the n-gram appended by an integer
counter j that is incremented from 1 to qc(x) into
the filter. To retrieve an n-gram’s frequency, the n-
gram is first appended with a counter set to 1 and
hashed under the k functions; if this tests positive,
the counter is incremented and the process repeated.
The procedure terminates as soon as any of the k
hash functions hits a 0 and the previous value of the
counter is reported. The one-sided error of the BF
and the training scheme ensure that the actual quan-
tised count cannot be larger than this value. As the
counts are quantised logarithmically, the counter is
usually incremented only a small number of times.

We can then approximate the original frequency
of the n-gram by taking its expected value given the
quantised count retrieved,

E[c(x)|qc(x) = j] =
bj−1 + bj − 1

2
. (2)

These training and testing routines are repeated here
as Algorithms 1 and 2 respectively.

As noted in Talbot and Osborne (2007), errors for
this log-frequency BF scheme are one-sided: fre-
quencies will never be underestimated. The prob-
ability of overestimating an item’s frequency decays

Algorithm 2 Test frequency BF
Input: x, MAXQCOUNT , {h1, ...hk} and BF
Output: Upper bound on c(x) ∈ Strain

for j = 1 to MAXQCOUNT do
for i = 1 to k do

hi(x)← hash of event {x, j} under hi

if BF [hi(x)] = 0 then
return E[c(x)|qc(x) = j − 1] (Eq. 2)

end if
end for

end for

exponentially with the size of the overestimation er-
ror d (i.e. as fd for d > 0) since each erroneous
increment corresponds to a single false positive and
d such independent events must occur together.

The efficiency of the log-frequency BF scheme
can be understood from an entropy encoding per-
spective under the distribution over frequencies of
n-gram types: the most common frequency (the sin-
gleton count) is assigned the shortest code (length k)
while rarer frequencies (those for more common n-
grams) are assigned increasingly longer codes (k ×
qc(x)).

3.2 Smoothed BF language models
A standard n-gram language model assigns condi-
tional probabilities to target words given a certain
context. In practice, most standard n-gram language
models employ some form of interpolation whereby
probabilities conditioned on the most specific con-
text consisting usually of the n − 1 preceding to-
kens are combined with more robust estimates based
on less specific conditioning events. To compute
smoothed language model probabilities, we gener-
ally require access to the frequencies of n-grams of
length 1 to n in our training corpus. Depending on
the smoothing scheme, we may also need auxiliary
statistics regarding the number of distinct suffixes
for each n-gram (e.g., Witten-Bell and Kneser-Ney
smoothing) and the number of distinct prefixes or
contexts in which they appear (e.g., Kneser-Ney).
We can use a single BF to store these statistics but
need to distinguish each type of event (e.g., raw
counts, suffix counts, etc.). Here we use a distinct
set of k hash functions for each such category.

Our motivation for storing the corpus statistics

470



directly rather than precomputed probabilities is
twofold: (i) the efficiency of the scheme described
above for storing frequency information together
with items in a BF relies on the frequencies hav-
ing a Zipf-like distribution; while this is definitely
true for corpus statistics, it may well not hold for
probabilities estimated from them; (ii) as will be-
come apparent below, by using the corpus statistics
directly, we will be able to make additional savings
in terms of both space and error rate by using simple
inequalities that hold for related information drawn
consistently from the same corpus; it is not clear
whether such bounds can be established for proba-
bilities computed from these statistics.

3.2.1 Proxy items
There is a potential risk of redundancy if we rep-

resent related statistics using the log-frequency BF
scheme presented in Talbot and Osborne (2007). In
particular, we do not need to store information ex-
plicitly that is necessarily implied by the presence
of another item in the training set, if that item can
be identified efficiently at query time when needed.
We use the term proxy item to refer to items whose
presence in the filter implies the existence of another
item and that can be efficiently queried given the im-
plied item. In using a BF to store corpus statistics
for language modelling, for example, we can use the
event corresponding to an n-gram and the counter
set to 1 as a proxy item for a distinct prefix, suffix or
context count of 1 for the same n-gram since (ignor-
ing sentence boundaries) it must have been preceded
and followed by at least one distinct type, i.e.,

qc(w1, ..., wn) ≥ 1 ∈ BF ⇒ s(w1, ..., wn) ≥ 1,

where s(·) is the number of the distinct types follow-
ing this n-gram in the training corpus. We show be-
low that such lower bounds allow us to significantly
reduce the memory requirements for a BF language
model.

3.2.2 Monotonicity of n-gram event space
The error analysis in Section 2 focused on the

false positive rate of a BF; if we deploy a BF within
an SMT decoder, however, the actual error rate will
also depend on the a priori membership probability
of items presented to it. The error rate Err is,

Err = Pr(x /∈ Strain|Decoder)f.

This implies that, unlike a conventional lossless data
structure, the model’s accuracy depends on other
components in system and how it is queried.

Assuming that statistics are entered consistently
from the same corpus, we can take advantage of the
monotonicity of the n-gram event space to place up-
per bounds on the frequencies of events to be re-
trieved from the filter prior to querying it, thereby
reducing the a priori probability of a negative and
consequently the error rate.

Specifically, since the log-frequency BF scheme
will never underestimate an item’s frequency, we
can apply the following inequality recursively and
bound the frequency of an n-gram by that of its least
frequent subsequence,

c(w1, ..., wn) ≤ min {c(w1, ..., wn−1), c(w2, ..., wn)}.

We use this to reduce the error rate of an interpolated
BF language model described below.

3.3 Witten-Bell smoothed BF LM
As an example application of our framework, we
now describe a scheme for creating and querying
a log-frequency BF to estimate n-gram language
model probabilities using Witten-Bell smoothing
(Bell et al., 1990). Other smoothing schemes, no-
tably Kneser-Ney, could be described within this
framework using additional proxy relations for infix
and prefix counts.

In Witten-Bell smoothing, an n-gram’s probabil-
ity is discounted by a factor proportional to the num-
ber of times that the n − 1-gram preceding the cur-
rent word was observed preceding a novel type in
the training corpus. It is defined recursively as,

Pwb(wi|wi−1
i−n+1) = λwi−1

i−n+1
Pml(wi|wi−1

i−n+1)

+(1−λwi−1
i−n+1

)Pwb(wi|wi−1
i−n+2)

where λx is defined via,

1− λx =
c(x)

s(x) + c(x)
,

and Pml(·) is the maximum likelihood estimator cal-
culated from relative frequencies.

The statistics required to compute the Witten-Bell
estimator for the conditional probability of an n-
gram consist of the counts of all n-grams of length
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1 to n as well as the counts of the number of distinct
types following all n-grams of length 1 to n − 1.
In practice we use the c(w1, ..., wi) = 1 event as a
proxy for s(w1, ..., wi) = 1 and thereby need not
store singleton suffix counts in the filter.

Distinct suffix counts of 2 and above are stored
by subtracting this proxy count and converting to the
log quantisation scheme described above, i.e.,

qs(x) = 1 + blogb(s(x)− 1)c

In testing for a suffix count, we first query the item
c(w1, ..., wn) = 1 as a proxy for s(w1, ..., wn) =
1 and, if found, query the filter for incrementally
larger suffix counts, taking the reconstructed suffix
count of an n-gram with a non-zero n-gram count to
be the expected value, i.e.,

E[s(x)|qs(x) = j ∩ j > 0] = 1 +
(bj−1 + bj − 1)

2

Having created a BF containing these events, the
algorithm we use to compute the interpolated WB
estimate makes use of the inequalities described
above to reduce the a priori probability of querying
for a negative. In particular, we bound the count of
each numerator in the maximum likelihood term by
the count of the corresponding denominator and the
count of distinct suffixes of an n-gram by its respec-
tive token frequency.

Unlike more traditional LM formulations that
back-off from the highest-order to lower-order mod-
els, our algorithm works up from the lowest-order
model. Since the conditioning context increases in
specificity at each level, each statistic is bound from
above by its corresponding value at the previous less
specific level. The bounds are applied by passing
them as the parameter MAXQCOUNT to the fre-
quency test routine shown as Algorithm 2. We ana-
lyze the effect of applying such bounds on the per-
formance of the model within an SMT decoder in
the experiments below. Working upwards from the
lower-order models also allows us to truncate the
computation before the highest level if the denomi-
nator in the maximum likelihood term is found with
a zero count at any stage (no higher-order terms can
be non-zero given this).

4 Experiments

We conducted a range of experiments to explore
the error-space trade-off of using a BF-based model
as a replacement for a conventional n-gram model
within an SMT system and to assess the benefits of
specific features of our framework for deriving lan-
guage model probabilities from a BF.

4.1 Experimental set-up

All of our experiments use publically available re-
sources. Our main experiments use the French-
English section of the Europarl (EP) corpus for par-
allel data and language modelling (Koehn, 2003).
Decoding is carried-out using the Moses decoder
(Koehn and Hoang, 2007). We hold out 1,000 test
sentences and 500 development sentences from the
parallel text for evaluation purposes. The parame-
ters for the feature functions used in this log-linear
decoder are optimised using minimum error rate
(MER) training on our development set unless other-
wise stated. All evaluation is in terms of the BLEU
score on our test set (Papineni et al., 2002).

Our baseline language models were created us-
ing the SRILM toolkit (Stolcke, 2002). We built 3,
4 and 5-gram models from the Europarl corpus us-
ing interpolated Witten-Bell smoothing (WB); no n-
grams are dropped from these models or any of the
BF-LMs. The number of distinct n-gram types in
these baseline models as well as their sizes on disk
and as compressed by gzip are given in Table 1; the
gzip figures are given as an approximate (and opti-
mistic) lower bound on lossless representations of
these models.2

The BF-LM models used in these experiments
were all created from the same corpora following the
scheme outlined above for storing n-gram statistics.
Proxy relations were used to reduce the number of
items that must be stored in the BF; in addition, un-
less specified otherwise, we take advantage of the
bounds described above that hold between related
statistics to avoid presenting known negatives to the
filter. The base of the logarithm used in quantization
is specified on all figures.

The SRILM and BF-based models are both
queried via the same interface in the Moses decoder.

2Note, in particular, that gzip compressed files do not sup-
port direct random access as required by in language modelling.
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n Types Mem. Gzip’d BLEU
3 5.9M 174Mb 51Mb 28.54
4 14.1M 477Mb 129Mb 28.99
5 24.2M 924Mb 238Mb 29.07

Table 1: WB-smoothed SRILM baseline models.

We assign a small cache to the BF-LM models (be-
tween 1 and 2MBs depending on the order of the
model) to store recently retrieved statistics and de-
rived probabilities. Translation takes between 2 to 5
times longer using the BF-LMs as compared to the
corresponding SRILM models.

4.2 Machine translation experiments

Our first set of experiments examines the relation-
ship between memory allocated to the BF-LM and
translation performance for a 3-gram and a 5-gram
WB smoothed BF-LM. In these experiments we use
the log-linear weights of the baseline model to avoid
variation in translation performance due to differ-
ences in the solutions found by MER training: this
allows us to focus solely on the quality of each BF-
LM’s approximation of the baseline. These exper-
iments consider various settings of the base for the
logarithm used during quantisation (b in Eq. (1)).

We also analyse these results in terms of the re-
lationships between BLEU score and the underlying
error rate of the BF-LM and the number of bits as-
signed per n-gram in the baseline model.

MER optimised BLEU scores on the test set are
then given for a range of BF-LMs.

4.3 Mean squared error experiments

Our second set of experiments focuses on the accu-
racy with which the BF-LM can reproduce the base-
line model’s distribution. Unfortunately, perplex-
ity or related information-theoretic quantities are not
applicable in this case since the BF-LM is not guar-
anteed to produce a properly normalised distribu-
tion. Instead we evaluate the mean squared error
(MSE) between the log-probabilites assigned by the
baseline model and by BF-LMs to n-grams in the
English portion of our development set; we also con-
sider the relation between MSE and the BLEU score
from the experiments above.
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Figure 1: WB-smoothed 3-gram model (Europarl).

4.4 Analysis of BF-LM framework

Our third set of experiments evaluates the impact of
the use of upper bounds between related statistics on
translation performance. Here the standard model
that makes use of these bounds to reduce the a pri-
ori negative probability is compared to a model that
queries the filter in a memoryless fashion.3

We then present details of the memory savings ob-
tained by the use of proxy relations for the models
used here.

5 Results

5.1 Machine translation experiments

Figures 1 and 2 show the relationship between trans-
lation performance as measured by BLEU and the
memory assigned to the BF respectively for WB-
smoothed 3-gram and 5-gram BF-LMs. There is a
clear degradation in translation performance as the
memory assigned to the filter is reduced. Models
using a higher quantisation base approach their opti-
mal performance faster; this is because these more
coarse-grained quantisation schemes store fewer
items in the filter and therefore have lower underly-
ing false positive rates for a given amount of mem-
ory.

Figure 3 presents these results in terms of the re-
lationship between translation performance and the
false positive rate of the underlying BF. We can see
that for a given false positive rate, the more coarse-
grained quantisation schemes (e.g., base 3) perform

3In both cases we apply ‘sanity check’ bounds to ensure that
none of the ratios in the WB formula (Eq. 3) are greater than 1.
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Figure 2: WB-smoothed 5-gram model (Europarl).
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worse than the more fine-grained schemes.4

Figure 4 presents the relationship in terms of the
number of bits per n-gram in the baseline model.
This suggests that between 10 and 15 bits is suf-
ficient for the BF-LM to approximate the baseline
model. This is a reduction of a factor of between 16
and 24 on the plain model and of between 4 and 7
on gzip compressed model.

The results of a selection of BF-LM models with
decoder weights optimised using MER training are
given in Table 2; these show that the models perform
consistently close to the baseline models that they
approximate.

5.2 Mean squared error experiments

Figure 5 shows the relationship between memory as-
signed to the BF-LMs and the mean squared error

4Note that in this case the base 3 scheme will use approxi-
mately two-thirds the amount of memory required by the base
1.5 scheme.
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Figure 4: Bits per n-gram vs. BLEU.

n Memory Bits / n-gram base BLEU
3 10MB 14 bits 1.5 28.33
3 10MB 14 bits 2.0 28.47
4 20MB 12 bits 1.5 28.63
4 20MB 12 bits 2.0 28.63
5 40MB 14 bits 1.5 28.53
5 40MB 14 bits 2.0 28.72
5 50MB 17 bits 1.5 29.31
5 50MB 17 bits 2.0 28.67

Table 2: MERT optimised WB-smoothed BF-LMS.

(MSE) of log-probabilities that these models assign
to the development set compared to those assigned
by the baseline model. This shows clearly that the
more fine-grained quantisation scheme (e.g. base
1.1) can reach a lower MSE but also that the more
coarse-grained schemes (e.g., base 3) approach their
minimum error faster.

Figure 6 shows the relationship between MSE
between the BF-LM and the baseline model and
BLEU. The MSE appears to be a good predictor of
BLEU score across all quantisation schemes. This
suggests that it may be a useful tool for optimising
BF-LM parameters without the need to run the de-
coder assuming a target (lossless) LM can be built
and queried for a small test set on disk. An MSE of
below 0.05 appears necessary to achieve translation
performance matching the baseline model here.

5.3 Analysis of BF-LM framework

We refer to (Talbot and Osborne, 2007) for empiri-
cal results establishing the performance of the log-
frequency BF-LM: overestimation errors occur with
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a probability that decays exponentially in the size of
the overestimation error.

Figure 7 shows the effect of applying upper
bounds to reduce the a priori probability of pre-
senting a negative event to the filter in our in-
terpolation algorithm for computing WB-smoothed
probabilities. The application of upper bounds im-
proves translation performance particularly when
the amount of memory assigned to the filter is lim-
ited. Since both filters have the same underlying
false positive rate (they are identical), we can con-
clude that this improvement in performance is due
to a reduction in the number of negatives that are
presented to the filter and hence errors.

Table 3 shows the amount of memory saved by
the use of proxy items to avoid storing singleton
suffix counts for the Witten-Bell smoothing scheme.
The savings are given as ratios over the amount of
memory needed to store the statistics without proxy
items. These models have the same underlying false
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n-gram order Proxy space saving
3 0.885
4 0.783
5 0.708

Table 3: Space savings via proxy items .

positive rate (0.05) and quantisation base (2). Sim-
ilar savings may be anticipated when applying this
framework to infix and prefix counts for Kneser-Ney
smoothing.

6 Related Work
Previous work aimed at reducing the size of n-gram
language models has focused primarily on quanti-
sation schemes (Whitaker and Raj, 2001) and prun-
ing (Stolcke, 1998). The impact of the former seems
limited given that storage for the n-gram types them-
selves will generally be far greater than that needed
for the actual probabilities of the model. Pruning
on the other hand could be used in conjunction with
the framework proposed here. This holds also for
compression schemes based on clustering such as
(Goodman and Gao, 2000). Our approach, however,
avoids the significant computational costs involved
in the creation of such models.

Other schemes for dealing with large language
models include per-sentence filtering of the model
or its distribution over a cluster. The former requires
time-consuming adaptation of the model for each
sentence in the test set while the latter incurs sig-
nificant overheads for remote calls during decoding.
Our framework could, however, be used to comple-
ment either of these approaches.
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7 Conclusions and Future Work
We have proposed a framework for computing
smoothed language model probabilities efficiently
from a randomised representation of corpus statis-
tics provided by a Bloom filter. We have demon-
strated that models derived within this framework
can be used as direct replacements for equivalent
conventional language models with significant re-
ductions in memory requirements. Our empirical
analysis has also demonstrated that by taking advan-
tage of the one-sided error guarantees of the BF and
simple inequalities that hold between related n-gram
statistics we are able to further reduce the BF stor-
age requirements and the effective error rate of the
derived probabilities.

We are currently implementing Kneser-Ney
smoothing within the proposed framework. We hope
the present work will, together with Talbot and Os-
borne (2007), establish the Bloom filter as a practi-
cal alternative to conventional associative data struc-
tures used in computational linguistics. The frame-
work presented here shows that with some consider-
ation for its workings, the randomised nature of the
Bloom filter need not be a significant impediment to
is use in applications.
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Abstract

We present results that show that incorporat-
ing lexical and structural semantic informa-
tion is effective for word sense disambigua-
tion. We evaluated the method by using pre-
cise information from a large treebank and
an ontology automatically created from dic-
tionary sentences. Exploiting rich semantic
and structural information improves preci-
sion 2–3%. The most gains are seen with
verbs, with an improvement of 5.7% over a
model using only bag of words and n-gram
features.

1 Introduction

Recently, significant improvements have been made
in combining symbolic and statistical approaches
to various natural language processing tasks. In
parsing, for example, symbolic grammars are be-
ing combined with stochastic models (Riezler et al.,
2002; Oepen et al., 2002; Malouf and van Noord,
2004). Statistical techniques have also been shown
to be useful for word sense disambiguation (Steven-
son, 2003). However, to date, there have been
few combinations of sense information together with
symbolic grammars and statistical models. Klein
and Manning (2003) show that much of the gain in
statistical parsing using lexicalized models comes
from the use of a small set of function words.
Features based on general relations provide little
improvement, presumably because the data is too
sparse: in the Penn treebank normally used to train
and test statistical parsersstocksandskyrocketnever
appear together. They note that this should motivate
the use of similarity and/or class based approaches:

the superordinate conceptscapital (⊃ stocks) and
move upward(⊃ sky rocket) frequently appear to-
gether. However, there has been little success in this
area to date. For example, Xiong et al. (2005) use se-
mantic knowledge to parse Chinese, but gain only a
marginal improvement. Focusing on WSD, Steven-
son (2003) and others have shown that the use of
syntactic information (predicate-argument relations)
improve the quality of word sense disambiguation
(WSD). McCarthy and Carroll (2003) have shown
the effectiveness of the selectional preference infor-
mation for WSD. However, there is still little work
on combining WSD and parse selection.

We hypothesize that one of the reasons for the
lack of success is that there has been no resource
annotated with both syntactic (or structural seman-
tic information) and lexical semantic information.
For English, there is the SemCor corpus (Fellbaum,
1998) which is annotated with parse trees and Word-
Net senses, but it is fairly small, and does not ex-
plicitly include any structural semantic information.
Therefore, we decided to construct and use a tree-
bank with both syntactic information (e.g. HPSG
parses) and lexical semantic information (e.g. sense
tags): the Hinoki treebank (Bond et al., 2004). This
can be used to train word sense disambiguation and
parse ranking models using both syntactic and lexi-
cal semantic features. In this paper, we discuss only
word sense disambiguation. Parse ranking is dis-
cussed in Fujita et al. (2007).

2 The Hinoki Corpus

The Hinoki corpus consists of the Lexeed Seman-
tic Database of Japanese (Kasahara et al., 2004) and
corpora annotated with syntactic and semantic infor-
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mation.

2.1 Lexeed

Lexeed is a database built from on a dictionary,
which defines word senses used in the Hinoki cor-
pus and has around 49,000 dictionary definition sen-
tences and 46,000 example sentences which are syn-
tactically and semantically annotated. Lexeed con-
sists of all words with a familiarity greater than or
equal to five on a scale of one to seven. This gives
a fundamental vocabulary of 28,000 words, divided
into 46,347 different senses. Each sense has a defi-
nition sentence and example sentence written using
only these 28,000 familiar words (and some function
words). Many senses have more than one sentence
in the definition: there are 75,000 defining sentences
in all.

A (simplified) example of the entry forþU3 un-
tenshu“chauffeur” is given in Figure 1. Each word
contains the word itself, its part of speech (POS) and
lexical type(s) in the grammar, and the familiarity
score. Each sense then contains definition and ex-
ample sentences, links to other senses in the lexicon
(such as hypernym), and links to other resources,
such as the Goi-Taikei (Ikehara et al., 1997) and
WordNet (Fellbaum, 1998). Each content word in
the definition and example sentences is annotated
with sense tags from the same lexicon.

2.2 Lexical Semantics Annotation

The lexical semantic annotation uses the sense in-
ventory from Lexeed. All words in the fundamental
vocabulary are tagged with their sense. For example,
the wordd&� ookii “big” (in ookiku naru“grow
up”) is tagged as sense 5 in the example sentence
(Figure 1), with the meaning “elder, older”.

Each word was annotated by five annotators. We
use the majority choice in case of disagreements
(Tanaka et al., 2006). Inter-annotator agreements
among the five annotators range from 78.7% to
83.3%: the lowest agreement is for the Lexeed def-
inition sentences and the highest is for Kyoto cor-
pus (newspaper text). These agreements reflect the
difficulties in disambiguating word sense over each
corpus and can be considered as the upper bound of
precision for WSD.

Table 1 shows the distribution of word senses ac-
cording to the word familiarity in Lexeed.

Fam #Words
Poly-

semous #WS

#Mono-

semous(%)
6.5 - 368 182 4.0 186 (50.5)
6.0 - 4,445 1,902 3.4 2,543 (57.2)
5.5 - 9,814 3,502 2.7 6,312 (64.3)
5.0 - 11,430 3,457 2.5 7,973 (69.8)

Table 1: Word Senses in Lexeed

2.3 Ontology

The Hinoki corpus comes with an ontology semi-
automatically constructed from the parse results of
definitions in Lexeed (Nichols and Bond, 2005). The
ontology includes more than 80 thousand relation-
ships between word senses, e.g. synonym, hyper-
nym, abbreviation, etc. The hypernym relation forþU3 untenshu“chauffeur” is shown in Figure 1.
Hypernym or synonym relations exist for almost all
content words.

2.4 Thesaurus

As part of the ontology verification, all nominal and
most verbal word senses in Lexeed were linked to
semantic classes in the Japanese thesaurus, Nihongo
Goi-Taikei (Ikehara et al., 1997). These were then
hand verified. Goi-Taikei has about 400,000 words
including proper nouns, most nouns are classified
into about 2,700 semantic classes. These seman-
tic classes are arranged in a hierarchical structure
(11 levels). The Goi-Taikei Semantic Class forþU3 untenshu“chauffeur” is shown in Figure 1:
〈C292:driver〉 at level 9 which is subordinate to
〈C4:person〉.

2.5 Syntactic and Structural Semantics
Annotation

Syntactic annotation is done by selecting the best
parse (or parses) from the full analyses derived by
a broad-coverage precision grammar. The gram-
mar is an HPSG implementation (JACY: Siegel and
Bender, 2002), which provides a high level of de-
tail, marking not only dependency and constituent
structure but also detailed semantic relations. As the
grammar is based on a monostratal theory of gram-
mar (HPSG: Pollard and Sag, 1994) it is possible
to simultaneously annotate syntactic and semantic
structure without overburdening the annotator. Us-
ing a grammar enforces treebank consistency — all
sentences annotated are guaranteed to have well-
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Figure 1: Dictionary Entry forþU31 untenshu“chauffeur”

formed parses. The flip side to this is that any sen-
tences which the parser cannot parse remain unan-
notated, at least unless we were to fall back on full
manual mark-up of their analyses. The actual anno-
tation process uses the same tools as the Redwoods
treebank of English (Oepen et al., 2002).

There were 4 parses for the definition sentence
shown in Figure 1. The correct parse, shown as a
phrase structure tree, is shown in Figure 2. The two
sources of ambiguity are the conjunction and the rel-
ative clause. The parser also allows the conjunction
to join to\� denshaand0 hito. In Japanese, rel-
ative clauses can have gapped and non-gapped read-
ings. In the gapped reading (selected here),0 hito
is the subject ofþU unten “drive”. In the non-
gapped reading there is some underspecified relation
between the thing and the verb phrase. This is sim-
ilar to the difference in the two readings ofthe day
he knewin English: “the day that he knew about”
(gapped) vs “the day on which he knew (some-
thing)” (non-gapped). Such semantic ambiguity is
resolved by selecting the correct derivation tree that
includes the applied rules in building the tree.

The parse results can be automatically given by
the HPSG parser PET (Callmeier, 2000) with the
Japanese grammar JACY. The current parse ranking
model has an accuracy of 70%: the correct tree is
ranked first 70% of the time (for Lexeed definition
sentences) (Fujita et al., 2007).

The full parse is an HPSG sign, containing both
syntactic and semantic information. A view of the
semantic information is given in Figure 31.

1The specific meaning representation language used in

UTTERANCE

NP

VP N

PP V

NP

PP

N CONJ N CASE-P V V\\\��� ℄℄℄ ���¥¥¥��� kkk þþþUUU 222ddd 000
densha ya jidousha o unten suru hito
train or car ACC drive do personþU31 “chauffeur”: “a person who drives a train or car”

Figure 2: Syntactic View of the Definition ofþU31 untenshu“chauffeur”

The semantic view shows some ambiguity has
been resolved that is not visible in the purely syn-
tactic view.

The semantic view can be further simplified into a
dependency representation, further abstracting away
from quantification, as shown in Figure 4. One of
the advantages of the HPSG sign is that it contains
all this information, making it possible to extract the
particular view needed. In order to make linking to
other resources (such as the sense annotation) easier,
predicates are labeled with pointers back to their po-
sition in the original surface string. For example, the
predicatedensha n 1 links to the surface characters
between positions 0 and 3:\�.

JACY is Minimal Recursion Semantics (Copestake et al., 2005).
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Figure 3: Semantic View of the Definition ofþU31 untenshu“chauffeur”

_1:proposition_m<0:13>[MARG e2:unknown]
e2:unknown<0:13>[ARG x5:_hito_n]
x7:udef<0:3>[]
x7:densha_n_1<0:3>
x12:udef<4:7>[]
x12:_jidousha_n<4:7>
x13:_ya_p_conj<0:4>[L-INDEX x7:_densha_n_1, R-INDEX x12:_jidousha_n]
e23:_unten_s_2<8:10>[ARG1 x5:_hito_n, ARG2 x13:_ya_p_conj]
x5:udef<12:13>[]
_2:proposition_m<0:13>[MARG e23:_unten_s_2]

Figure 4: Dependency View of the Definition ofþU31 untenshu“chauffeur”

3 Task

We define the task in this paper as “allocating the
word sense tags for all content words included in
Lexeed as headwords, in each input sentence”. This
task is a kind of all-words task, however, a unique
point is that we focus on fundamental vocabulary
(basic words) in Lexeed and ignore other words. We
use Lexeed as the sense inventory. There are two
problems in resolving the task: how to build the
model and how to assign the word sense by using
the model for disambiguating the senses. We de-
scribe the word sense selection model we use in sec-
tion 4 and the method of word sense assignment in
section 5.

4 Word Sense Selection Model

All content words (i.e. basic words) in Lexeed are
classified into six groups by part-of-speech: noun,
verb, verbal noun, adjective, adverb, others. We
treat the first five groups as targets of disambiguat-
ing senses. We build five words sense models corre-
sponding to these groups. A model contains senses

for various words, however, features for a word are
discriminated from those for other words so that the
senses irrelevant to a target word are not selected.
For example, an n-gram feature following a target
word “has-a-tail” fordogis distinct from that forcat.

In the remainder of this section, we describe the
features used in the word sense disambiguation.
First we used simple n-gram collocations, then a bag
of words of all words occurring in the sentence. This
was then enhanced by using ontological information
and predicate argument relations.

4.1 Word Collocations

Word collocations (WORD-Col) are basic and effec-
tive cues for WSD. They can be modelled by n-
gram and bag of words features, which are easily
extracted from a corpus. We used all unigrams, bi-
grams and trigrams which precede and follow the
target words (N-gram) and all content words in the
sentences where the target words occur (BOW).
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# sample features
C1 〈COLWS:04〉
C2 〈COLWSSC:C33:other person〉
C3 〈COLWSHYP:0/1〉
C4 〈COLWSHYPSC:C5:person〉

C1 〈COLWS:\�1〉
C2 〈COLWSSC:C988:land vehicle〉
C3 〈COLWSHYP:�£1〉
C4 〈COLWSHYPSC:C988:land vehicle〉

C1 〈COLWS:�¥�1〉
C2 〈COLWSSC:C988:land vehicle〉
C3 〈COLWSHYP:�2〉
C4 〈COLWSHYPSC:C988:land vehicle〉

Table 2: Example semantic collocation features
(SEM-Col) extracted from the word sense tagged cor-
pus and the dictionary (Lexeed and GoiTaikei) and
the ontology which have the word senses and the se-
mantic classes linked to the semantic tags. The first
column numbers the feature template corresponding
to each example.

4.2 Semantic Features

We use the semantic information (sense tags and on-
tologies) in two ways. One is to enhance the collo-
cations and the other is to enhance dependency rela-
tions.

4.2.1 Semantic Collocations

Word surface features likeN-gram and BOW in-
evitably suffer from data sparseness, therefore, we
generalize them to more abstract words or concepts
and also consider words having the same mean-
ings. We used the ontology described in Sec-
tion 2.3 to get hypernyms and synonyms and the
Goi-Taikei thesaurus to abstract the words to the se-
mantic classes. The superordinate classes at level
3, 4 and 5 are also added in addition to the original
semantic class. For example,\� densha“train”
and�¥� jidousha “automobile” are both gener-
alized to the semantic class〈C988:land vehicle〉
(level 7). The superordinate classes are also used:
〈C706:inanimate〉 (level 3), 〈C760:artifact〉
(level 4) and〈C986:vehicle〉 (level 5).

4.2.2 Semantic Dependencies

The semantic dependency features are based on
a predicate and its arguments taken from the ele-
mentary dependencies. For example, consider the
semantic dependency representation fordensha ya

# sample features forþþþUUU222ddd1
D1 〈PRED:þU2d, ARG1:0〉
D1 〈PRED:þU2d, ARG2:\�〉
D1 〈PRED:þU2d, ARG2:�¥�〉
D2 〈PRED:þU2d, ARG1:04〉
D2 〈PRED:þU2d, ARG2:\�1〉
D2 〈PRED:þU2d, ARG2:�¥�1〉

D3 〈PRED:þU2d, ARG1SC:C33〉
D3 〈PRED:þU2d, ARG2SC:C988〉

D4 〈PRED:þU2d, ARG2SYN:¹�����1〉

D5 〈PRED:þU2d, ARG1HYP:0/1〉
D5 〈PRED:þU2d, ARG2HYP:�£1〉
D5 〈PRED:þU2d, ARG2HYP:�2〉

D6 〈PRED:þU2d, ARG1HYPSC:C5〉
D6 〈PRED:þU2d, ARG2HYPSC:C988〉

D11 〈PRED:þU2d, ARG1:0, ARG2:\�〉
D22 〈PRED:þU2d, ARG1:04, ARG2:\�1〉
D23 〈PRED:þU2d, ARG1:04, ARG2:C1460 〉

D24 〈PRED:þU2d, ARG1:04, ARG2SYN:¹�����1〉

D32 〈PRED:þU2d, ARG1:C5, ARG2:\�1〉
D33 〈PRED:þU2d, ARG1:C5, ARG2:C988〉

D55 〈PRED:þU2d, ARG1HYP:0/4, ARG2HYP:�£1〉
D56 〈PRED:þU2d, ARG1HYP:0/4, ARG2HYPSC:C988〉
D65 〈PRED:þU2d, ARG1HYPSC:C5 , ARG2HYP:�£1〉

D322 〈PRED:C2003, ARG1:04, ARG2:\�1〉

Table 3: Example semantic features extracted from
the dependency tree in Figure 4. The first column
numbers the feature template corresponding to each
example.

jidousha-wo unten suru hito“a person who drives a
train or car” given in Figure 4. The predicateun-
ten“drive”, has two arguments:ARG1 hito “person”
and ARG2 ya “or”. The coordinate conjunction is
expanded out into its children, givingARG2 densha
“train” and jidousha“automobile”.

From these, we produce several features, a sam-
ple of them are shown in Table 3. One has all argu-
ments and their labels (D11). We also produce var-
ious back offs, for example the predicate with only
one argument at a time (D1-D3). Each combination
of predicate and its related argument(s) becomes a
feature.

For the next class of features, we used the sense
information from the corpus combined with the se-
mantic classes in the dictionary to replace each pred-
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icate by its disambiguated sense, its hypernym, its
synonym (if any) and its semantic class. The seman-
tic classes for\�1 and�¥�1 are both〈988:land
vehicle〉, whileþU1 is 〈2003:motion〉 and04

is 〈4:human〉. We also expand�¥�1 into its syn-
onym¹�����1 mōtākā “motor car”.

The semantic class features provide a seman-
tic smoothing, as words are binned into the 2,700
classes. The hypernym/synonym features provide
even more smoothing. Both have the effect of mak-
ing more training data available for the disambigua-
tor.

4.3 Domain

Domain information is a simple and sometimes
strong cue for disambiguating the target words
(Gliozzo et al., 2005). For instance, the sense of
the word “record” is likey to be different in the mu-
sical context, which is recalled by domain-specific
words like “orchestra”, “ guitar”, than in the sport-
ing context. We use 12 domain categories like “cul-
ture/art”, “sport”, etc. which are similar to ones used
in directory search web sites. About 6,000 words
are automatically classified into one of 12 domain
categories by distributions in web sites (Hashimoto
and Kurohashi, 2007) and 10% of them are manually
checked. Polysemous words which belong to multi-
ple domains and neutral words are not classified into
any domain.

5 Search Algorithm

The conditional probability of the word sense for
each word is given by the word sense selection
model described in Section 4. In the initial state,
some of the semantic features, e.g. semantic col-
locations (SEM-Col) and word sense extensions for
semantic dependencies (SEM-Dep) are not available,
since no word senses for polysemous words have
been determined. It is not practical to count all com-
binations of word senses for target words, therefore,
we first try to decide the sense for that word which
is most plausible among all the ambiguous words,
then, disambiguate the next word by using the sense.

We use the beam search algorithm, which is sim-
ilar to that used for decoder in statistical machine
translation (Watanabe, 2004), for finding the plausi-
ble combination of word sense tags.

The algorithm is described as follows. For a pol-
ysemous word set in an input sentence{w1, . . . ,wn},
twik is the k-th word sense of wordwi , W is a set
having words to be disambiguated,T is a list of re-
solved word senses. A search nodeN is defined as
[W,T ] and a score of a nodeN, s(N) is defined as
the probability that the word sense setT occurs in
the context. The beam search can be done as fol-
lows (beam width isb):

1. Create an initial nodeN0 = [T0,W0] (T0 = {},
W0 = {}) and insert the node into an initial
queueQ0.

2. For each nodeN in the queueQ, do the follow-
ing steps.

• For eachwi (∈W), createW′
i by picking

out wi from W
• Create new listsT ′

1, . . . ,T
′

l by adding one
of word sense candidatestwi1,. . . ,twi l for wi

to T
• Create new nodes[W′

i ,T
′
0], . . . ,[W′

i ,T
′
l ] and

insert them into the queueQ′

3. Sort the nodes inQ′ by the scores(N)

4. If the top nodeW in the queueQ′ is empty,
adoptT as the combination of word senses and
terminate. Otherwise, pick out the topb nodes
from Q′ and insert them into new queueQ, then
go back to 2

6 Evaluation

We trained and tested on the Lexeed Dictionary Def-
inition (LXD-DEF) and Example sections (LXD-EX) of
the Hinoki corpus (Bond et al., 2007). These have
about 75,000 definition and 46,000 example sen-
tences respectively. Some 54,000 and 36,000 sen-
tences of them are treebanked, i.e., they have the
syntactic trees and structural semantic information.
We used these sentences with the complete informa-
tion and selected 1,000 sentences out of each sen-
tence class as test sets (LXD-DEFtest, LXD-EXtest), and
the remainder is combined and used as a training
set (LXD-ALL). We also tested 1,000 sentences from
the Kyoto Corpus of newspaper text (KYOTOtest).
These sentences have between 3.4 (LXD-EXtest) – 5.2
(KYOTOtest) polysemous words per sentence on av-
erage.
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We use amaximum entropy / minimum diver-
gence(MEMD) modeler to train the word sense se-
lection model. We use the open-sourceMaximun

Entropy Modeling Toolkit2 for training, determining
best-performing convergence thresholds and prior
sizes experimentally. The models for five differ-
ent POSs were trained with each training sets: the
base model is word collocation model (WORD-Col),
and the semantic models built by semantic colloca-
tion (SEM-Col), semantic dependency (SEM-Dep) or
domain withWORD-Col (+SEM-Col, +SEM-Dep and
+DOMAIN).

Figure 5: Learning Curve

7 Results and Discussion

Table 4 shows the precision as the results of the word
sense disambiguation on the combination ofLXD-

DEF and LXD-EX (LXD-ALL). The baseline method
selects the senses occurring most frequently in the
training corpus. Each row indicates the results us-
ing the baseline, word collocation (WORD-Col), the
combinations ofWORD-Col and one of the seman-
tic features (+SEM-Col, +SEM-Dep and +DOMAIN),
e.g,+SEM-Col gives the results usingWORD-Col and
SEM-Col, and all features (FULL).

There are significant improvements over the base-
line and the other results on all corpora. Basic word

2http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html

collocation features (WORD-Col) give a vast improve-
ment. Extending this by using the ontological in-
formation (+SEM-Col) gives a further improvement
over theWORD-Col. Adding the predicate-argument
relationships (+SEM-Dep) improves the results even
more.

Table 6 shows the statistics of the target corpora.
The best result ofLXD-DEFtest (80.7%) surpasses the
inter-annotator agreement (78.7%) in building the
Hinoki Sensebank. However, there is a wide gap
between the best results ofKYOTOtest (60.4%) and
the inter-annotator agreement (83.3%), this suggests
other information such as the semantic classes for
named entities (including proper nouns and multi-
word expressions (MWE)) and broader contexts are
required. However, a model built on dictionary sen-
tences lacks these features. Even, so there is some
improvement.

The domain features (+DOMAIN) give small con-
tribution to the precision, since only intra-sentence
context is counted in this experiment. Unfortunately
dictiory definition and example sentences do not re-
ally have a useful context. We expect broader con-
text should make the domain features more effective
for the newspaper text (e.g. as in Stevenson (2003)),

Table 5 shows comparison of results of different
POSs. The semantic features (+SEM-Col and+SEM-

Dep) are particularly effective for verb and also give
moderate improvements on the results of the other
POSs.

Figure 5 shows the precisions ofLXD-DEFtest in
changing the size of a training corpus, which is di-
vided into five partitions. The precision is saturated
in using four partitions (264,000 tokens).

These results of the dictionary sentences are close
to the best published results for the SENSEVAL-2
task (79.3% by Murata et al. (2003) using a com-
bination of simple Bayes learners). However, we
are using a different sense inventory (Lexeed not
Iwanami (Nishio et al., 1994)) and testing over a dif-
ferent corpus, so the results are not directly compa-
rable. In future work, we will test over SENSEVAL-
2 data so that we can compare directly.

None of the SENSEVAL-2 systems used onto-
logical information, despite the fact that the dic-
tionary definition sentences were made available,
and there are several algorithms describing how to
extract such information from MRDs (Tsurumaru
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Model Test Baseline WORD-Col +SEM-Col +SEM-Dep +DOMAIN FULL
LXD-ALL LXD-DEFtest 72.8 78.4 79.8 80.2 78.1 80.7

LXD-EXtest 70.4 75.6 78.7 77.9 76.0 78.8
KYOTOtest 55.6 58.5 60.0 58.8 59.8 60.4

Table 4: The Precision of WSD

POS Baseline WORD-Col +SEM-Col +SEM-Dep +DOMAIN FULL
Noun 65.5 68.7 69.6 69.4 68.9 69.8
Verb 60.3 66.9 71.0 70.6 67.7 72.6
VN 72.6 76.2 77.7 74.6 77.6 77.5
Adj 59.9 67.2 69.5 68.9 68.9 69.5
Adv 74.4 78.6 79.8 79.2 78.6 79.8

Table 5: The Precision of WSD (per Part-of-Speech)

et al., 1991; Wilkes et al., 1996; Nichols et al., 2005).
We hypothesize that this is partly due to the way the
task is presented: there was not enough time to ex-
tract and debug an ontology as well as build a dis-
ambiguation system, and there was no ontology dis-
tributed. The CRL system (Murata et al., 2003) used
a syntactic dependency parser as one source of fea-
tures (KNP: Kurohashi and Nagao (2003)), remov-
ing it decreased performance by around 0.6%.

8 Conclusions

We used the Hinoki corpus to test the importance of
lexical and structural information in word sense dis-
ambiguation. We found that basic n-gram features
and collocations provided a great deal of useful in-
formation, but that better results could be gained by
using ontological information and semantic depen-
dencies.
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Abstract

We consider the impact Active Learning
(AL) has on effective and efficient text cor-
pus annotation, and report on reduction rates
for annotation efforts ranging up until 72%.
We also address the issue whether a corpus
annotated by means of AL – using a particu-
lar classifier and a particular feature set – can
be re-used to train classifiers different from
the ones employed by AL, supplying alter-
native feature sets as well. We, finally, report
on our experience with the AL paradigm un-
der real-world conditions, i.e., the annota-
tion of large-scale document corpora for the
life sciences.

1 Introduction

The annotation of corpora has become a crucial pre-
requisite for NLP utilities which rely on (semi-) su-
pervised machine learning (ML) techniques. While
stability, by and large, has been reached for tagsets
up until the syntax layer, semantic annotations in
terms of (named) entities, semantic roles, proposi-
tions, events, etc. reveal a high degree of variability
due to the inherent domain-dependence of the under-
lying tagsets. This diversity fuels a continuous need
for creating semantic annotation data anew.

Accordingly, annotation activities will persist and
even increase in number as HLT is expanding on
various technical and scientific domains (e.g., the
life sciences) outside the classical general-language
newspaper genre. Since the provision of annota-
tions is a costly, labor-intensive and error-prone pro-
cess the amount of work and time this activity re-
quires should be minimized to the extent that corpus

data could still be used to effectively train ML-based
NLP components on them. The approach we ad-
vocate does exactly this and yields reduction gains
(compared with standard procedures) ranging be-
tween 48% to 72%, without seriously sacrificing an-
notation quality.

Various techniques to minimize the necessary
amount of annotated training material have al-
ready been investigated. In co-training (Blum and
Mitchell, 1998), e.g., from a small initial set of la-
beled data multiple learners mutually provide new
training material for each other by labeling unseen
examples. Pierce and Cardie (2001) have shown,
however, that for tasks which require large numbers
of labeled examples – such as most NLP tasks – co-
training might be inadequate because it tends to gen-
erate noisy data. Furthermore, a well compiled ini-
tial training set is a crucial prerequisite for success-
ful co-training. As another alternative for minimiz-
ing annotation work, active learning (AL) is based
on the idea to let the learner have control over the ex-
amples to be manually labeled so as to optimize the
prediction accuracy. Accordingly, AL aims at select-
ing those examples with high utility for the model.

AL (as well as semi-supervised methods) is typi-
cally considered as a learning protocol, i.e., to train
a particular classifier. In contrast, we here propose
to employ AL as a corpus annotation method. A
corpus built on these premises must, however, still
be reusable in a flexible way so that, e.g., train-
ing with modified or improved classifiers is feasible
and reasonable on AL-generated corpora. Baldridge
and Osborne (2004) have already argued that this is
a highly critical requirement because the examples
selected by AL are tuned to one particular classi-
fier. The second major contribution of this paper ad-

486



dresses this issue and provides empirical evidence
that corpora built with one type of classifier (based
on Maximum Entropy) can reasonably be reused by
another, methodologically related type of classifier
(based on Conditional Random Fields) without re-
quiring changes of the corpus data. We also show
that feature sets being used for training classifiers
can be enhanced without invalidating corpus annota-
tions generated on the basis of AL and, hence, with
a poorer feature set.

2 Related Work

There are mainly two methodological strands of
AL research,viz. optimization approaches which
aim at selecting those examples that optimize some
(algorithm-dependent) objective function, such as
prediction variance (Cohn et al., 1996), and heuris-
tic methods with uncertainty sampling (Lewis and
Catlett, 1994) and query-by-committee (QBC) (Se-
ung et al., 1992) just to name the most prominent
ones. AL has already been applied to several NLP
tasks, such as document classification (Schohn and
Cohn, 2000), POS tagging (Engelson and Dagan,
1996), chunking (Ngai and Yarowsky, 2000), statis-
tical parsing (Thompson et al., 1999; Hwa, 2000),
and information extraction (Lewis and Catlett, 1994;
Thompson et al., 1999).

In a more recent study, Shen et al. (2004) consider
AL for entity recognition based on Support Vector
Machines. Here, the informativeness of an exam-
ple is estimated by the distance to the hyperplane of
the currently learned SVM. It is assumed that an ex-
ample which lies close to the hyperplane has high
chances to have an effect on training. This approach
is essentially limited to the SVM learning scheme as
it solely relies on SVM-internal selection criteria.

Hachey et al. (2005) propose a committee-based
AL approach where the committee’s classifiers con-
stitute multiple views on the data by employing dif-
ferent feature subsets. The authors focus on (pos-
sible) negative side effects of AL on the annota-
tions. They argue that AL annotations are cogni-
tively more difficult to deal with for the annota-
tors (because of the increased complexity of the se-
lected sentences). Hence, lower annotation quality
and higher per-sentence annotation times might be a
concern.

There are controversial findings on the reusabil-
ity of data annotated by means of AL for the prob-
lem of parse tree selection. Whereas Hwa (2001) re-
ports positive results, Baldridge and Osborne (2004)
argue that AL based on uncertainty sampling may
face serious performance degradation when labeled
data is reused for training a classifier different from
the one employed during AL. For committee-based
AL, however, there is a lack of work on reusabil-
ity. Our experiments of committee-based AL for en-
tity recognition, however, reveal that for this task at
least, reusability can be guaranteed to a very large
extent.

3 AL for Corpus Annotation -
Requirements for Practical Use

AL frameworks for real-world corpus annotation
should meet the following requirements:

fast selection time cycles— AL-based corpus an-
notation is an interactive process in whichb
sentences are selected by the AL engine for hu-
man annotation. Once the annotated data is
supplied, the AL engine retrains its underly-
ing classifier(s) onall available annotations and
then re-classifies all unseen corpus items. After
that the most informative (i.e., deviant)b sen-
tences from the set of newly classified data are
selected for the next iteration round. In this ap-
proach the time needed to select the next exam-
ples (which is the idle time of the human an-
notators) has to be kept at an acceptable limit
of a few minutes only. There are various AL
strategies which – although they yield theoreti-
cally near-optimal sample selection – turn out
to be actually impractible for real-world use
because of excessively high computation times
(cf. Cohn et al. (1996)). Thus, AL-based an-
notation should be based on a computationally
tractable and task-wise feasible and acceptable
selection strategy (even if this might imply a
suboptimal reduction of annotation costs).

reusability — The examples AL selects for man-
ual annotation are dependent on the model be-
ing used, up to a certain extent (Baldridge and
Osborne, 2004). During annotation time, how-
ever, the best model might not be known and
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model tuning (especially the choice of features)
is typically performed once a training corpus
is available. Hence, from a practical point of
view, the resulting corpus should be reusable
with modified classifiers as well.

adaptive stopping criterion — An explicit and
adaptive stopping criterion which is sensitive
towards the already achieved level of quality of
the annotated corpus is clearly preferred over
stopping after ana priori fixed number of an-
notation iterations.

If these requirements, especially the first and the
second one, cannot be guaranteed for a specific an-
notation task one should refrain from using AL. The
efficiency of AL-driven annotation (in terms of the
time needed to compile high quality training mate-
rial) might be worse compared to the annotation of
randomly (or subjectively) selected examples.

4 Framework for AL-based Named Entity
Annotation

For named entity recognition (NER), each change
of the application domain requires a more or less
profound change of the types of semantic categories
(tags) being used for corpus annotation. Hence, one
may encounter a lack of training material for various
relevant (sub)domains. Once this data is available,
however, one might want to modify the features of
the final classifier with respect to the specific entity
types. Thus, a corpus annotated by means of AL has
to provide the flexibility to modify the features of
the final classifier.

To meet the requirements from above under the
constraints of a real-world annotation task, we
decided for QBC-based AL, aheuristic AL ap-
proach, which is computationally less complex and
resource-greedy thanobjective functionAL meth-
ods (the latter explicitly quantify the differences be-
tween the current and an ideal classifier in terms
of some objective function). Accordingly, we ruled
out uncertainty sampling, another heuristic AL ap-
proach, because it was shown before that QBC is
more efficient and robust (Freund et al., 1997).

QBC is based on the idea to select those examples
for manual annotation on which a committee of clas-
sifiers disagree most in their predictions (Engelson

and Dagan, 1996). A committee consists of a num-
ber ofk classifiers of the same type (same learning
algorithm, parameters, and features) but trained on
different subsets of the training data. QBC-based
AL is also iterative. In each AL round the com-
mittee’sk classifiers are trained on the already an-
notated dataC, then a pool of unannotated dataP

is predicted with each classifier resulting inn au-
tomatically labeled versions ofP . These are then
compared according to their labels. Those with the
highest variance are selected for manual annotation.

4.1 Selection Strategy

In each iteration, a batch ofb examples is selected
for manual annotation. The informativeness of an
example is estimated in terms of thedisagreement,
i.e., the uncertainty among the committee’s classi-
fiers on classifying a particular example. This is
measured by thevote entropy(Engelson and Dagan,
1996), i.e., the entropy of the distribution of classi-
fications assigned to an example by the classifiers.
Vote entropy is defined on the token levelt as:

Dtok(t) := −
1

log k

∑

li

V (li, t)

k
log

V (li, t)

k

where V (li,t)
k

is the ratio ofk classifiers where the
label li is assigned to a tokent. As (named) en-
tities often span more than a single text token we
consider complete sentences as a reasonable exam-
ple size unit1 for AL and calculate the disagreement
of a sentenceDsent as the mean vote entropy of
its single tokens. Since the vote entropy is mini-
mal when all classifiers agree in their vote, sentences
with high disagreement are preferred for manual an-
notation. With informed decisions of human anno-
tators made available, the potential for future dis-
agreement of the classifier committee on conflicting
instances should decrease. Thus, each AL iteration
selects theb sentences with the highest disagreement
to focus on the most controversial decision prob-
lems.

Besides informativeness, additional criteria can
be envisaged for the selection of examples, e.g.,di-

1Sentence-level examples are but one conceivable grain size
– lower grains (such as clauses or phrases) as well as higher
grains (e.g., paragraphs or abstracts) are equally possible, with
different implications for the AL process.
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feature class description
orthographical based on regular expressions (e.g.Has-

Dash, IsGreek, ...), token transforma-
tion rule: capital letters replaced by “A”,
lowercase letters by “a”, digits by “0”,
etc. (e.g.,IL2 → AA0, have→ aaaa)

lexical and
morphological

prefix and suffix of length 3, stemmed
version of each token

syntactic the token’s part-of-speech tag
contextual features of neighboring tokens

Table 1: Features used for AL

versityof a batch andrepresentativenessof the re-
spective example (to avoid outliers) (Shen et al.,
2004). We experimented with these more sophis-
ticated selection strategies but preliminary experi-
ments did not reveal any significant improvement of
the AL performance. Engelson and Dagan (1996)
confirm this observation that, in general, different
(and even more refined) selection methods still yield
similar results. Moreover, strategies incorporating
more selection criteria often require more parame-
ters to be set. However, proper parametrization is
hard to achieve in real-world applications. Using
disagreement exclusively for selection requires only
one parameter,viz. the batch sizeb, to be specified.

4.2 Classifier and Features

For our AL framework we decided to employ a Max-
imum Entropy (ME) classifier (Berger et al., 1996).
We employ a rich set of features (see Table 1) which
are general enough to be used in most (sub)domains
for entity recognition. We intentionally avoided us-
ing features such as semantic triggers or external
dictionary look-ups because they depend a lot on
the specific subdomain and entity types being used.
However, one might add them to fin- tune the final
classifier, if needed. ME classifiers outperform their
generative counterparts (e.g., Naı̈ve Bayesian clas-
sifiers) because they can easily handle overlapping,
probably dependent features which might be con-
tained in rich feature sets. We also favored an ME
classifier over an SVM one because the latter is com-
putationally much more complex on rich feature sets
and multiple classes and is thus not so well suited for
an interactive process like AL.

It has been shown thatConditional Random
Fields (CRF) (Lafferty et al., 2001) achieve higher
performance on many NLP tasks, such as NER, but

on the other hand they are computionally more com-
plex than an ME classifier making them also im-
practical for the interactive AL process. Thus, in
our committee we employ ME classifiers to meet re-
quirement 1 (fast selection time cycles). However,
in the end we want to use the annotated corpora to
train a CRF and will thus examine the reusability
of such an ME-annotated AL corpus for CRFs (cf.
Subsection 5.2).

4.3 Stopping Criterion

A question hardly addressed up until now is when to
actually terminate the AL process. Usually, it gets
stopped when the supervized learning performance
of the specific classifier is achieved. The problem
with such an approach is, however, that in prac-
tice one does not know the performance level which
could possibly be achieved on an unannotated cor-
pus.

An apparent way to monitor the progress of the
annotation process is to periodically (e.g., after each
AL iteration) train a classifier on the data annotated
so far and evaluate it against some randomly se-
lected gold standard. When the relative performance
growth of each AL iteration falls below a certain
threshold this might be a good reason to stop the an-
notation. Though this is probably the most reliable
way, it is impractical for many scenarios since as-
sembling and manually annotating a representative
gold standard may already be quite a laborious task.
Thus, a measure from which we canpredict the de-
velopment of the learning curve would be beneficial.

One way to achieve this goal is to monitor the rate
of disagreement among the different classifiers after
each iteration. This rate will descend as the classi-
fiers get more and more robust in their predictions
on unseen data. Thus, an average disagreement ap-
proaching zero can be interpreted as an indication
that additional annotations will not render any fur-
ther improvement. In our experiments, we will show
that this is a valid stopping criterion, indeed.

5 Experiments and Results

For our experiments, we specified the following
three parameters: the batch sizeb (i.e., the num-
ber of sentences to be selected for each AL itera-
tion), the size and composition of the initial train-
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ing set, and the number ofk classifiers in a com-
mittee. The smaller the batch size, the higher the
AL performance turns out to be. In the special case
of batch size ofb = 1 only that example with the
highest disagreement is selected. This is certainly
impractical since after each AL iteration a new com-
mittee of classifiers has to be trained causing unwar-
ranted annotation idle time. We foundb = 20 to
be a good compromise between the annotators’ idle
time and AL performance. The initial training set
also contains20 sentences which are randomly se-
lected though. Our committee consists ofk = 3
classifiers, which is a good trade-off between com-
putational complexity and diversity. Although the
AL iterations were performed on the sentence level,
we report on the number of annotated tokens. Since
sentences may considerably vary in their length the
number of tokens constitutes a better measure for an-
notation costs.

We ran our experiments on two common entity-
annotated corpora from two different domains (see
Table 2). From the general-language newspaper do-
main, we used the English data set of the CoNLL-
2003 shared task (Tjong Kim Sang and De Meul-
der, 2003). It consists of a collection of newswire
articles from the Reuters Corpus,2 which comes
annotated with three entity types:persons, loca-
tions, and organizations. From the sublanguage
biology domain we used the oncology part of the
PENNBIOIE corpus which consists of some 1150
PubMed abstracts. Originally, this corpus contains
gene, variation event, and malignancy entity annota-
tions. Manual annotation after each AL round was
simulated by moving the selected sentences from
the pool of unannotated sentencesP to the train-
ing corpusT . For our simulations, we built two
subcorpora by filtering out entity annotations: the
PENNBIOIE gene corpus (PBgene), including the
three gene entity subtypesgeneric, protein, andrna,
and the PENNBIOIE variation events corpus (PB-
var) corpus including the variation entity subtypes
type, event, location, state-altered, state-generic,
and state-original. We split all three corpora into
two subsets,viz. AL simulation data and gold stan-
dard data on which we evaluate3 a classifier in terms

2http://trec.nist.gov/
3We use a strict evaluation criterion which only counts exact

matches as true positives because annotations having incorrect

corpus data set sentences tokens
CONLL AL 14,040 203,617
3 entities Gold 3,453 46,435
PBGENE AL 10,050 249,490
3 entities Gold 1,114 27,563
PBVAR AL 10,050 249,490
6 entities Gold 1,114 27,563

Table 2: Corpora used in the Experiments

of f-score trained on the annotated corpus after each
AL iteration (learning curve). As far as the CoNLL
corpus is concerned, we have used CoNLL’s training
set for AL and CoNLL’s test set as gold standard. As
for PBgene and PBvar, we randomly split the cor-
pora into 90% for AL and 10% as gold standard.

In the following experiments we will refer to the
classifiers used in the AL committee asselectors,
and the classifier used for evaluation as thetester.

5.1 Efficiency of AL and the Applicability of
the Stopping Criterion

In a first series of experiments, we evaluated whether
AL-based annotations can significantly reduce the
human effort compared to the standard annotation
procedure where sentences are selected randomly
(or subjectively). We also show that disagreement
is an accurate stopping criterion. As described in
Section 4.2, we here employed a committee of ME
classifiers for AL; a CRF was used as tester for both
the AL and the random selection. Figures 1, 2, and 3
depict the learning curves for AL selection and ran-
dom selection (upper two curves) and the respective
disagreement curves (lower curve). The random se-
lection curves contained in these plots are averaged
over three random selection runs.

With AL, we get a maximum f-score of≈ 84.5%
on the CoNLL corpus after about 118,000 tokens. At
about the same number of tokens the disagreement
curve drops down to values of aroundDsent = 0.
Comparing AL and random selection, an f-score of
≈ 84% is reached after 86,000 and 165,000 tokens,
respectively, which means a reduction of annotation
costs of about 48%. On PBgene, the effect of AL is
comparable: a maximum value of 83.5% f-score is
reached first after about 124,000 tokens, a data point
where hardly any disagreement between the com-
mittee’s classifiers occurs. For, e.g., an f-score of

boundaries are insufficient for manual corpus annotation.
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Figure 1:CoNLL Corpus: Learning/Disagreement Curves

Figure 2:PBgene Corpus: Learning/Disagreement Curves

Figure 3:PBvar Corpus: Learning/Disagreement Curves

corpus selection F tokens reduction
CONLL random 84.0 165,000

AL 84.0 86,000 ≈ 48%
PBGENE random 83.0 101,000

AL 83.0 213,000 ≈ 53%
PBVAR random 80.0 56,000

AL 80.0 200,000 ≈ 72%

Table 3: Reduction of Annotation Costs Achieved
with AL-based Annotation

83%, the annotation effort can be reduced by about
53% using AL. On PBvar, an f-score of about 80%
is reached after≈ 56,000 tokens when using AL se-
lection, while 200,000 tokens are needed with ran-
dom selection. For this task, AL reduces the an-
notation effort by of 72%. Here, the disagreement
curve approaches values of zero after approximately
80,000 tokens. At about this point the learning curve
reaches its maximum of about 81% f-score. Ta-
ble 3 summarizes the reduction of annotation costs
achieved on all three corpora.

Comparing both PENNBIOIE simulations, obvi-
ously, the reduction of annotation costs through AL
is much higher for the variation type entities than for
the gene entities. We hypothesize this to be mainly
due to incomparable entity densities. Whereas the
gene entities are quite frequent (about1.3 per sen-
tence on average), the variation entities are rather
sparse (0.62 per sentence on average) making it an
ideal playground for AL-based annotation. Our ex-
periments also reveal that disagreement approaching
values of zero is a valid stopping criterion. This is,
under all circumstances, definitely the point when
AL-based annotationshould stop because then all
classifiers of the committee vote consistently. Any
further selection – even though AL selection is used
– is then, actually, arandomselection. If, due to
reasons whatsoever, further annotations are wanted,
a direct switch to random selection is advisable be-
cause this is computationally less expensive than
AL-based selection.

5.2 Reusability

To evaluate whether the proposed AL framework for
named entity annotation allows for flexible re-use
of the annotated data, we performed experiments
where we varied both the learning algorithms and
the features of the selectors.
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Figure 5: AlgorithmFflexibility on CoNLL

First, we analyzed the effect of different proba-
bilistic classifiers as selectors on the resulting learn-
ing curve of the CRF tester. Figures 4 and 5 show
the learning curves on our original ME committee,
a CRF committee, and also a committee of Naı̈ve
Bayes (NB) classifiers. It is not surprising that self-
reuse (CRF selectors and CRF tester) yields the best
results. Switching from CRF selectors to ME selec-
tors has almost no negative effect. Even with a com-
mittee of NB selectors (an ML approach which is
essentially less well suited for the NER task), AL-
based selection is still substantially more efficient
than random selection on both corpora. This shows
that our approach to use the less complex ME clas-
sifiers for the AL selection process has the positive
effect of fast selection cycle times at almost no costs.
This is especially interesting as the performance of
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Figure 6: Feature Flexibility on PBvar
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Figure 7: Feature Flexibility on ConLL

an ME classifier trained in supervized manner on
the complete corpus is significantly worse (several
percentage points of f-measure) than a CRF. That
means, even though an ME classifier is less well
suited as the final classifier, it works well as a se-
lector for CRFs.4

Second, we ran experiments on selectors with
only some features and our CRF tester with all fea-
tures (cf. Table 1). Feature subset 1 (sub1) contains
all but the syntactic features. In the second subset
(sub2), also morphological and lexical features are
missing. The third set (sub3) only contains ortho-
graphical features. We ran an AL simulation for

4We have also conducted experiments where we varied the
learning algorithms of the tester (we experimented with NB,
ME, MEMM, and CRFs) – with comparable results. In a real-
istic scenario, however, on would rather choose a CRF as final
tester over, e.g., a NB.
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each feature subset with a committee of CRF se-
lectors.5 Figures 6 and 7 show the various learning
curves. Here we see that a corpus that was produced
with AL on sub1can easily be re-used by a tester
with little more features. This is probably the most
realistic scenario: the core features are kept and
only a few specific features (e.g., POS, a dictionary
look-up, chunk information, etc.) are added. When
adding substantially more features to the tester than
were available during AL time, the respective learn-
ing curves drop down towards the learning curve for
random selection. But even with a selector which
has only orthographical features and a tester with
many more features – which is actually quite an ex-
treme example and a rather unrealistic scenario for
a real-world application – AL is more efficient than
random selection. However, the limits of reusability
are taking shape: on PBvar, the AL selection with
sub3converges with the random selection curve af-
ter about 100,000 tokens.

5.3 Findings with Real AL Annotation

We currently perform AL entity mention annotations
for an information extraction project in the biomedi-
cal subdomain of immunogenetics. For this purpose,
we retrieved about 200,000 abstracts (≈ 2,000,000
sentences) as our document pool of unlabeled exam-
ples from PUBMED. By means of random subsam-
pling, only about 40,000 sentences are considered in
each round of AL selection. To regularly monitor
classifier performance, we also perform gold stan-
dard (GS) annotations on 250 randomly chosen ab-
stracts (≈ 2,200 sentences). In all our annotations of
different entity types so far, we found AL learning
curves similar to the ones reported in our simula-
tion experiments, with classifier performance level-
ling off at around 75% - 85% f-score (depending on
the entity type).

Our annotations also reveal that AL is especially
beneficial when entity mentions are very sparse.
Figure 8 shows the cumulated entity density on AL
and gold standard annotations of cytokine receptors
(specialized proteins for which we annotated six dif-
ferent entity subtypes) – very sparse entity types
with less than one entity mention per PUBMED ab-
stract on the average. As can be seen, after 2,000

5Here, we employed CRF instead of ME selectors to isolate
the effect of feature re-usability.
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Annotations of Cytokine Receptors

sentences the entity density in our AL corpus is al-
most 15 times higher than in our GS corpus. Such a
dense corpus may be more appropriate for classifier
training than a sparse one yielded by random or se-
quential annotations, which may just contain lots of
negative training examples. We have observed com-
parable effects with other entity types, too, and thus
conclude that the sparser entity mentions of a spe-
cific type are in texts, the more beneficial AL-based
annotation is. We report on other aspects of AL for
real annotation projects in Tomanek et al. (2007).

6 Discussion and Conclusions

We have shown, for the annotation of (named) en-
tities, that AL is well-suited to speed up annotation
work under realistic conditions. In our simulations
we yielded gains (in the number of tokens) up to
72%. We collected evidence that an average dis-
agreement approaching zero may serve as an adap-
tive stopping criterion for AL-driven annotation and
that a corpus compiled by means of QBC-based AL
is to a large extent reusable by modified classifiers.

These findings stand in contrast to those supplied
by Baldridge and Osborne (2004) who focused on
parse selection. Their research indicates that AL on
selectors with different learning algorithms and fea-
ture sets then used by the tester can easily get worse
than random selection. They conclude that it might
not be be advisable to employ AL in environments
where the final classifier is not very stable.

Our evidence leads us to a re-assessment of AL-
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based annotations. First, we employed a committee-
based (QBC) while Baldridge and Osborne per-
formed uncertainty sampling AL. Committee-based
approaches calculate the uncertainty on an exam-
ple in a more implicit way, i.e., by the disagree-
ment among the committee’s classifiers. With uncer-
tainty sampling, however, the labeling uncertainty
of one classifier is considered directly. In future
work we will directly compare QBC and uncertainty
sampling with respect to data reusability. Second,
whereas Baldridge and Osborne employed AL on a
scoring or ranking problem we focused on classifica-
tion problems. Further research is needed to inves-
tigate whether the problem class (classification with
a fixed and moderate number of classes vs. ranking
large numbers of possible candidates) is responsible
for limited data reusability.

On the basis of our experiments we stipulate that
the proposed AL approach might be applicable with
comparable results to a wider range of corpus anno-
tation tasks, which otherwise would require substan-
tially larger amounts of annotation efforts.
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Abstract

We investigate methods to improve the re-
call in coreference resolution by also trying
to resolve those definite descriptions where
no earlier mention of the referent shares the
same lexical head (coreferent bridging). The
problem, which is notably harder than iden-
tifying coreference relations among men-
tions which have the same lexical head, has
been tackled with several rather different ap-
proaches, and we attempt to provide a mean-
ingful classification along with a quantita-
tive comparison. Based on the different mer-
its of the methods, we discuss possibilities to
improve them and show how they can be ef-
fectively combined.

1 Introduction

Coreference resolution, the task of grouping men-
tions in a text that refer to the same referent in the
real world, has been shown to be beneficial for a
number of higher-level tasks such as information ex-
traction (McCarthy and Lehnert, 1995), question an-
swering (Morton, 2000) and summarisation (Stein-
berger et al., 2005).

While the resolution of pronominal anaphora and
tracking of named entities is possible with good
accuracy, the resolution of definite NPs (having a
common noun as their head) is usually limited to
the cases that Vieira and Poesio (2000) call direct
coreference, where both coreferent mentions have
the same head. The other cases, called coreferent
bridging by Vieira and Poesio1, are notably harder
because the number of potential candidates is much

1Because bridging (in the sense of Clark, 1975, or Asher and

larger when it is no longer possible to rely on surface
similarity.

To overcome the limit of recall that is encoun-
tered when only relying on surface features, newer
systems for coreference resolutions (Daumé III and
Marcu, 2005; Ponzetto and Strube, 2006; Versley,
2006; Ng, 2007,inter alia) use lexical semantic in-
formation as an indication for semantic compati-
bility in the absence of head equality. Most cur-
rent systems integrate the identification of discourse-
new definites (i.e., cases like“the sun” or “the man
that Ben met yesterday”, which are definite, but
not anaphoric) with the antecedent selection proper,
which implies that the gain obtained for new features
is dependent on the feature’s usefulness both in find-
ing semantically related mentions and for the use in
detecting discourse-new definites.

One goal of this paper is to provide a better under-
standing of these information sources by comparing
proposed (and partly new) approaches for resolv-
ing coreferent bridging by separately considering
the task of antecedent selection (i.e., presupposing
that discourse-new markables have been identified
beforehand). Although state of the art methods for
modular discourse-new detection (Uryupina, 2003;
Poesio et al., 2005) do not achieve near-perfect accu-
racy for discourse-new detection, the results we give
for antecedent selection represent an upper bound
on recall and precision for the full coreference task,
and we think that this upper bound will be useful for

Lascarides, 1998) is a much broader concept, the term ‘corefer-
ent bridging’ is potentially confusing, as many cases are exam-
ples of perfectly well-behaved anaphoric definite noun phrases.
Because we want to emphasise the important difference to the
more easily resolved cases of same-head coreference, we will
stick with ‘coreferent bridging’ as the only term that has been
established for this in the literature.
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the design of features in both systems using a mod-
ular approach, such as (Poesio et al., 2005), where
the decision on discourse-newness is taken before-
hand, and those that integrate discourse-new classifi-
cation with the actual resolution of coreferent bridg-
ing cases. In contrast to earlier investigations (Mark-
ert and Nissim, 2005; Garera and Yarowsky, 2006),
we provide a more extensive overview on features
and also discuss properties that influence their com-
binability.

Several approaches have been proposed for the
treatment of coreferent bridging. Poesio et al. (1997)
use WordNet, looking for a synonymy or hypernymy
relation (additionally, for coordinate sisters in Word-
Net). The system of Cardie and Wagstaff (1999)
uses the node distance in WordNet (with an upper
limit of 4) as one component in the distance measure
that guides their clustering algorithm. Harabagiu
et al. (2001) use paths through Wordnet, using not
only synonym and is-a relations, but also parts, mor-
phological derivations, gloss texts and polysemy,
which are weighted with a measure based on the re-
lation types and number of path elements. Other ap-
proaches use large corpora to get an indication for
bridging relations: Poesio et al. (1998) use a general
word association metric based on common terms oc-
curing in a fixed-width window, Gasperin and Vieira
(2004) use syntactic contexts of words in a large cor-
pus to induce a semantic similarity measure (similar
to the one introduced by Lin, 1998), and then use
lists of then nouns that are (globally) most sim-
ilar to a given noun. Markert and Nissim (2005)
mine the World Wide Web for shallow patterns like
“Chinaand othercountries”, indicating an is-a rela-
tionship. Finally, Garera and Yarowsky (2006) pro-
pose an association-based approach using nouns that
occur in a 2-sentence window before a definite de-
scription that has no same-head antecedent.

1.1 Lexical vs. Referential Relations

One important property of these information sources
is the kind of lexical relations that they detect. The
lexical relations that we expect in coreferent bridg-
ing cases are:

• instance: The antecedent is an instance of the
concept denoted by the anaphor
Corsica . . . the island

• synonymy: The antecedent and the anaphor are
synonyms
the automobile . . . the car

• hyperonymy: The anaphor is a strict generali-
sation of the antecedent
the murderer . . . the man

• near-synonymy: The anaphor and antecedent
are semantically related but not synonyms in
the strict sense
the CD . . . the album

Of course, not all cases of coreferent bridging realise
such a lexical relation, as sometimes the anaphor
takes up information introduced elsewhere than in
the lexical noun phrase head (Peter was found dead
in his flat . . . the deceased), or the coreference rela-
tion is forced by the discourse structure, without the
items being lexically related.

As an illustrating example, in

(1) John walked towards [1 the house].

(2) a. [1 The building] was illuminated.
b. [1 The manor] was guarded by dogs.
c. [2 The door] was open.

Typical cases of coreference include cases like
1,2a (hypernym) or 1,2b (compatible but non-
synonymous term). The discourse in 1,2c is an
example of associative bridging between the NP
“the door” and its antecedent to“the house”; it
is inferred that the door must be part of the house
mentioned earlier (since doors are typically part of
a house), which isnot compatible with coreferent
bridging, but is also ranked highly by association
measures.

While hypernym relations (as found by hypernym
lookup in WordNet, or patterns indicating such rela-
tions in unannotated texts) are usually a strong in-
dicator of coreference, they can only cover some
of the cases, while the near-synonymous cases are
left undiscovered. Similarity and association mea-
sures can help for the cases of near-synonymy. How-
ever, while similarity measures (such as WordNet
distance or Lin’s similarity metric) only detect cases
of semantic similarity, association measures (such
as the ones used by Poesio et al., or by Garera
and Yarowsky) also find cases of associative bridg-
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Lin98 RFF TheY TheY:G2 PL03

Land (country/state/land)
Staat Staat Kemalismus Regierung Kontinent
state state Kemalism government continent
Stadt Stadt Bauernfamilie Präsident Region
city city agricultural family president region
Region Landesregierung Bankgesellschaft Dollar Stadt
region country government banking corporation dollar city
Bundesrepublik Bundesregierung Baht Albanien Staat
federal republic federal government Baht Albania state
Republik Gewerkschaft Gasag Hauptstadt Bundesland
republic trade union (a gas company) capital state

Medikament (medical drug)
Arzneimittel Pille RU Patient Arzneimittel
pharmaceutical pill (a drug∗) patient pharmaceutical
Pr̈aparat Droge Abtreibungspille Arzt Lebensmittel
preparation drug (non-medical) abortion pill doctor foodstuff
Pille Pr̈aparat Viagra Pille Präparat
pill preparation Viagra pill preparation
Hormon Pestizid Pharmakonzern Behandlung Behandlung
hormone pesticide pharmaceutical company treatment treatment
Lebensmittel Lebensmittel Präparat Abtreibungspille Arznei
foodstuff foodstuff preparation abortion pill drug

highest ranked words, with very rare words removed
∗: RU 486, an abortifacient drug
Lin98: Lin’s distributional similarity measure (Lin, 1998)
RFF: Geffet and Dagan’sRelative Feature Focusmeasure (Geffet and Dagan, 2004)
TheY: association measure introduced by Garera and Yarowsky (2006)
TheY:G2: similar method using a log-likelihood-based statistic (see Dunning 1993)

this statistic has a preference for higher-frequency terms
PL03: semantic space association measure proposed by Padó and Lapata (2003)

Table 1: Similarity and association measures: most similar items

ing like 1a,b; the result of this can be seen in ta-
ble (2): while the similarity measures (Lin98, RFF)
list substitutable terms (which behave like synonyms
in many contexts), the association measures (Garera
and Yarowsky’s TheY measure, Padó and Lapata’s
association measure) also find non-compatible asso-
ciations such ascountry–capitalor drug–treatment,
which is why they are commonly calledrelation-
free. For the purpose of coreference resolution, how-
ever we donotwant to resolve“the door” to the an-
tecedent“the house” as the two descriptions do not
corefer, and it may be useful to filter out non-similar
associations.

1.2 Information Sources

Different resources may be differently suited for
the recognition of the various relations. Gener-
ally, it would be expected that using a wordnet
is the best solution if we are interested in an isa-
like relation between two words. On the other

hand, wordnets usually have limited coverage both
in terms of lexical items and in terms of relations
encoded (as their construction is necessarily labor-
intensive), and – as Markert and Nissim remark
– they do not (and arguably should not) contain
context-dependent relations that do not hold gener-
ally but only in some rather specific context, for ex-
amplesteelbeing anaphorically described as acom-
modity in a financial text. Context-dependent rela-
tions, Markert and Nissim argue, can be found using
shallow patterns (for example,steel and other com-
modities), since a use in such a context would mean
that the idiosyncratic conceptual relation holds in
that context. Wordnets also have usually have poor
(or non-existant) coverage of named entities, which
are especially relevant for instance relations; this
kind of instance relations can often be found in large
text corpora. The high-precision patterns that Mark-
ert and Nissim use only occur infrequently, but the
approach using shallow patterns allows to perform
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the search of the World Wide Web, which somewhat
alleviates the sparse data problem.

While some near-synonyms can be found by look-
ing at the distance in a wordnet, they may be far
apart from each other because of ontological mod-
eling decisions, or lexical items not covered by the
wordnet. Similarity and association measures can
provide greater coverage for these near-synonym re-
lations.

The measures both of Lin (1998) and of Padó and
Lapata (2003, 2007) are distributional methods; for
each word, they create a distribution of the contexts
they occur in, and similarity between two words is
calculated as the similarity of these distributions.2

The difference in these two methods is the repre-
sentation of the contexts. While Lin uses contexts
that are expected to determine semantic preferences
(like being in the direct object position of one verb),
Pad́o and Lapata only use the co-occuring words,
weighted by syntax-based distance. For example, in

(3) Peter
subj→ likes

dobj← ice-cream.

Lin’s approach would yield↑subj :like for Peter
and↑dobj :like for ice-cream , while Pad́o and
Lapata’s approach would yield the contextslike
(with a weight of 1.0) andice-cream (with a
weight of 0.5) forPeter . As a consequence, Padó
and Lapata’s measure is more robust against data
sparseness but also finds related non-similar terms
(which are ultimately unwanted for coreference res-
olution). Pad́o and Lapata show their dependency-
based measure to perform better in a word sense
disambiguation task than the measure of Lund et al.
(1995), on which Poesio et al. (1998) based their ex-
periments and which is based on the surface distance
of words.

We also reimplemented the approach of Gar-
era and Yarowsky (2006), who extract potential
anaphor-antecedent pairs from unlabeled texts and
rank these potentially related pairs by the mutual in-
formation statistic. As an example, in a text like

(4) Peter likes ice-cream.
The boy devours tons of it.

2Both measures use a weighted Jaccard metric on mutual
information vectors to calculate the similarity. See Weeds and
Weir (2005) for an overview of other measures.

we would extract the pairs〈boy , (person) 〉 and
〈boy , ice-cream 〉, in the hope that the former
pair occurs comparatively more often and gets a
higher mutual information value.

2 Experiments on Antecedent Selection

In a setting similar to Markert and Nissim (2005),
we evaluate the precision (proportion of correct
cases in the resolved cases) and recall (correct cases
to all cases) for the resolution of discourse-old def-
inite noun phrases. Before trying to resolve coref-
erent bridging cases, we look for compatible an-
tecedent candidates with the same lexical head and
resolve to the nearest such candidate if there is one.

For our experiments, we used the first 125 articles
of the coreferentially annotated TüBa-D/Z corpus of
written newspaper text (Hinrichs et al., 2005), to-
talling 2239 sentences with 633 discourse-old defi-
nite descriptions, and the latest release of GermaNet
(Kunze and Lemnitzer, 2002), which is the German-
language part of EuroWordNet.

Unlike Markert and Nissim, we did not limit the
evaluation to discourse-old noun phrases where an
antecedent is in the 4 preceding sentences, but also
included cases where the antecedent is further away.
As a real coreference resolution system would have
to either resolve them correctly or leave them unre-
solved, we feel that this is less unrealistic and thus
preferable even when it gives less optimistic evalu-
ation results. Because overall precision is a mixture
of the precision of the same-head resolver and the
precision of the resolution for coreferent bridging,
which is lower than that for same-head cases, we
forcibly get less precision if we resolve more coref-
erent bridging cases. As it is always possible to im-
prove overall precision by resolving fewer cases of
coreferent bridging, we separately mention the pre-
cision for coreferent bridging cases alone (i.e., num-
ber of correct coreferent bridging cases by all re-
solved coreferent bridging cases), which we deem
more informative.

In our evaluation, we included hypernymy search
and a simple edge-based distance based on Ger-
maNet, as well as a baseline using semantic classes
(automatically determined by a combination of sim-
ple named entity classification and GermaNet sub-
sumption), as well as an evolved version of Markert
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Prec Recl Fβ=1 Prec.NSH

same-head 0.87 0.50 0.63 —
nearest(1) (only number check) 0.57 0.55 0.56 0.12
semantic class+gender check(1) 0.68 0.61 0.64 0.35
semantic class+gender check(2) 0.67 0.62 0.65 0.36
GermaNet, hypernymy lookup 0.83 0.58 0.68 0.67
GermaNet, node distance(1) 0.71 0.61 0.65 0.39
single pattern: “Y wieX” (1) 0.83 0.54 0.66 0.55
TheY(1) (only number checking) 0.66 0.59 0.62 0.29
TheY(2) (only number checking) 0.66 0.60 0.63 0.31
Lin(1) (only number checking) 0.66 0.60 0.63 0.30
Lin(2) (only number checking) 0.69 0.64 0.66 0.39
PL03(1) (only number checking) 0.68 0.63 0.65 0.38
PL03(2) (only number checking) 0.70 0.64 0.65 0.42
15-most-similar(1) 0.82 0.54 0.65 0.50
100-most-similar(2,3) 0.73 0.60 0.66 0.42

Prec.NSH: precision for coreferent bridging cases
(1): consider candidates in the 4 preceding sentences
(2): consider candidates in the 16 preceding sentences
(3): also try candidates such that the anaphor is

in the antecedent’s similarity list

Table 2: Baseline results

and Nissim’s approach, which is presented in (Ver-
sley, 2007). For the methods based on similarity
and association measures, we implemented a simple
ranking by the respective similarity or relatedness
value. Additionally, we included an approach due to
Gasperin and Vieira (2004), who tackle the problem
of similarity by using lists of most similar words to a
certain word, based on a similarity measure closely
related to Lin’s. They allow resolution if either (i)
the candidate is among the words most similar to the
anaphor, (ii) the anaphor is among the words most
similar to the candidate, (iii) the similarity lists of
anaphor and candidate share a common item. We
tried out several variations in the length of the simi-
lar words list (Gasperin and Vieira used 15, we also
tried lists with 25, 50 and 100 items). The third pos-
sibility that Gasperin and Vieira mention (a common
item in the similarity lists of both anaphor and an-
tecedent) resolves some correct cases, but leads to a
much larger number of false positives, which is why
we did not include it in our evaluation.

To induce the similarity and association measures
presented earlier, we used texts from the German
newspaperdie tageszeitung, comprising about 11M
sentences. For the extraction of anaphor-antecedent
candidates, we used a chunked version of the cor-
pus (Müller and Ule, 2002). The identification of

grammatical relations, was carried out on a subset
of all sentences (those with length≤ 30), with an
unlexicalised PCFG parser and subsequent extrac-
tion of dependency relations (Versley, 2005). For
the last approach, where dependency relations were
needed but labeling accuracy was not as important,
we used a deterministic shift-reduce parser that Foth
and Menzel (2006) used as input source in hybrid
dependency parsing.3

For all three approaches, we lemmatised the
words by using a combination of SMOR (Schmid
et al., 2004), a derivational finite-state morphology
for German, and lexical information derived from
the lexicon of a German dependency parser (Foth
and Menzel, 2006). We mitigated the problem of vo-
cabulary growth in the lexicon, due to German syn-
thetic compounds, by using a frequency-sensitive
unsupervised compound splitting technique, and
(for semantic similarity) normalised common person
and location names to ‘(person)’ and ‘(location)’, re-
spectively.

Same-head resolution (including a check for
modifier compatibility) allows to correctly resolve
49.8% of all cases, with a precision of 86.5%.
The most simple approach for coreferent bridging,
just resolving coreferent bridging cases to the near-
est possible antecedent (only checking for number
agreement), yields very poor precision (12% for the
coreferent bridging cases), and as a result, the re-
call gain is very limited. If we use semantic classes
(based on both GermaNet and a simple classification
for named entities) to constrain the candidates and
then use the nearest number- and gender-compatible
antecedent4, we get a much better precision (35%
for coreferent bridging cases), and a much better
recall of 61.1%. Hyponymy lookup in GermaNet,
without a limit on sentence distance, achieves a re-
call of 57.5% (with a precision of 67% for the re-
solved coreferent bridging cases), whereas using the
best single pattern (Y wieX, which corresponds to

3Arguably, it would have been more convenient to use a sin-
gle parser for all three approaches, but differing tradeoffs be-
tween speed on one hand and accuracy for relevant information
and/or fitness of representation on the other hand made the re-
spective parser or chunker a compelling choice.

4In German, grammatical gender is not as predictive as in
English as it does not reproduce ontological distinctions. For
persons, grammatical and natural gender almost always coin-
cide, and we check gender equality iff the anaphor is a person.
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the EnglishY s such asX), with a distance limit of
4 sentences5, on the Web only improves the recall
to 54.3% (with a lower precision of 55% for coref-
erent bridging cases). This is in contrast to the re-
sults of Markert and Nissim, who found that Web
pattern search performs better than wordnet lookup;
see (Versley, 2007) for a discussion. Ranking all
candidates that are within a distance of 4 hyper-
/hyponymy edges in GermaNet by their edge dis-
tance, we get a relatively good recall of 60.5%, but
the precision (for the coreferent bridging cases) is
only at 39%, which is quite poor in comparison.

The results for Garera and Yarowsky’s TheY al-
gorithm are quite disconcerting – recall and the pre-
cision on coreferent bridging cases are lower than
the respective baseline using (wordnet-based) se-
mantic class information or Padó and Lapata’s asso-
ciation measure. The technique based on Lin’s simi-
larity measure does outperform the baseline, but still
suffers from bad precision, along with Padó and La-
pata’s association measure. In other words, the simi-
larity and association measures seem to be too noisy
to be used directly for ranking antecedents. The ap-
proach of Gasperin and Vieira performs compara-
bly to the approach using Web-based pattern search
(although the precision is poorer than for the best-
performing pattern for German, “X wie Y ” – X
such asY , it is comparable to that of other patterns).

2.1 Improving Distributional Similarity?

While it would be näıve to think that the methods
purely based on statistical similarity measures could
reach the accuracy that can be achieved with a hand-
constructed lexicalised ontology, it would of course
be nice if we could improve the quality of the se-
mantic similarity measure used in ranking and the
most-similar-word lists.

Geffet and Dagan (2004) propose an approach
to improve the quality of the feature vectors used
in distributional similarity measures: instead of
weighting features using the mutual information
value between the word and the feature, they pro-
pose to use a measure they callRelative Feature Fo-
cus: the sum of the similarities to the (globally) most

5There is a degradation in precision for the pattern-based
approach, but not for the GermaNet-based approach, which is
why we do not use a distance limit for the GermaNet-based ap-
proach.

similar words that share this feature.
By replacing mutual information values with RFF

values in Lin’s association measure, Geffet and Da-
gan were able to significantly improve the propor-
tion of substitutable words in the list of the most sim-
ilar words. In our experiments, however, using the
RFF-based similarity measure did not improve the
similarity-list-based resolution or the simple rank-
ing, to the contrary, both recall and precision are less
than for the Weighted Jaccard measure that we used
originally.6

We attribute this to two factors: Firstly, Geffet
and Dagan’s evaluation emphasises the precision in
terms oftypes, whereas the use in resolving coref-
erent bridging does not punish unrelated rare words
being ranked high – since these are rare, the like-
lihood that they occur together, changing a reso-
lution decision, is quite low, whereas rare related
words that are ranked high can allow a correct res-
olution. Secondly, Geffet and Dagan focus on high-
frequency words, which makes sense in the context
of ontology learning, but the applicability for tasks
like coreference resolution (directly or in the ap-
proach of Gasperin and Vieira) also depends on a
sensible treatment of lower-frequency words.

Using the framework of Weeds et al. (2004), we
found that the bias of lower frequency words for
preferring high-frequency neighbours was higher for
RFF (0.58 against 0.35 for Lin’s measure). Weeds
and Weir (2005) discuss the influence of bias to-
wards high- or low-frequency items for different
tasks (correlation with WordNet-derived neighbour
sets and pseudoword disambiguation), and it would
not be surprising if the different high-frequency bias
were leading to different results.

2.2 Combining Information Sources

The information sources that we presented earlier
and the corpus-based methods based on similarity
or association measures draw from different kinds of
evidence and thus should be rather complementary.
To put it another way, it should be possible to get
the best from all methods, achieving the recall of the
high-recall methods (like using semantic class in-

6Simple ranking with RFF gives a precision of 33% for
coreferent bridging cases, against 39% for Lin’s original mea-
sure; for an approach based on similarity lists, we get 39%
against 44%.
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Prec Recl Fβ=1 Prec.NSH

sem. class+gender checking 0.68 0.61 0.64 0.35
GermaNet, hypernymy lookup 0.83 0.57 0.68 0.67
GermaNet≺ “Y wieX” 0.81 0.60 0.69 0.63
GermaNet≺ all patterns 0.81 0.61 0.70 0.64
TheY(2)+semclass+gender 0.76 0.60 0.67 0.47
TheY+sem+gend+Bnd 0.78 0.59 0.67 0.50
Lin(2)+semclass+gender 0.71 0.63 0.67 0.43
Lin+sem+gend+Bnd 0.80 0.58 0.67 0.53
PL03(2)+semclass+gender 0.72 0.64 0.68 0.45
PL03+sem+gend+Bnd 0.80 0.59 0.68 0.57
GermaNet≺ all patterns 0.81 0.62 0.70 0.64
≺ 25-most-similar(2,3) 0.79 0.65 0.72 0.62
≺ LinBnd 0.79 0.68 0.73 0.63
≺ Lin ≺ TheY+sem+gend 0.74 0.70 0.72 0.54

(2): consider candidates in the 16 preceding sentences
(3): also try candidates such that the anaphor is

in the antecedent’s similarity list

Table 3: Combination-based approaches

formation, or similarity and association measures),
with a precision closer to the most precise method
using GermaNet. In the case of web-based patterns,
Versley (2007) combines several pattern searches on
the web and uses the combined positive and nega-
tive evidence to compute a composite score – with a
suitably chosen cutoff, it outperforms all single pat-
terns both in terms of precision and recall. First re-
solving via hyponymy in GermaNet and then using
the pattern-combination approach outperforms the
semantic class-based baseline in terms of recall and
is reasonably close to the GermaNet-based approach
in terms of precision (i.e., much better than the ap-
proach based only on the semantic class).

As a first step to improve the precision of the
corpus-based approaches, we added filtering based
on automatically assigned semantic classes (per-
sons, organisations, events, other countable objects,

and everything else). Very surprisingly, Garera and
Yarowsky’s TheY approach, despite starting out at a
lower precision (31%, against 39% for Lin and 42%
for PL03), profits much more from the semantic fil-
ter and reaches the best precision (47%), whereas
Lin’s semantic similarity measure profits the least.

Since limiting the distance to the 4 previous sen-
tences had quite a devastating effect for the approach
based on Lin’s similarity measure (which achieves
39% precision when all the candidates are avail-
able and 30% precision if it choses the most se-
mantically similar out of the candidates that are in
the last 4 sentences), we also wanted to try and ap-
ply the distance-based filtering after finding seman-
tically related candidates.

The approach we tried was as follows: we rank all
candidates using the similarity function, and keep
only the 3 top-rated candidates. From these 3 top-
rated candidates, we keep only those within the last
4 sentences. Without filtering by semantic class, this
improves the precision to 41% (from 30% for lim-
iting the distance beforehand, or 39% without lim-
iting the distance). Adding filtering based on se-
mantic classes to this (only keeping those from the
3 top-rated candidates which have a compatible se-
mantic class and are within the last 4 sentences), we
get a much better precision of 53%, with a recall
that can still be seen as good (57.8%). In compari-
son with the similarity-list-based approach, we get a
much better precision than we would get for meth-
ods with comparable recall (the version with the 100
most similar items has 44% precision, the version
with 50 most similar items and matching both ways
has 46% precision).

Applying this distance-bounding method to Gar-
era and Yarowsky’s association measure still leads
to an improvement over the case with only seman-
tic and gender checking, but the improvement (from
47% to 50%) is not as large as with the semantic
similarity measure or Padó and Lapata’s association
measure (from 45% to 57%).

For the final system, we back off from the most
precise information sources to the less precise. Start-
ing with the combination of GermaNet and pattern-
based search on the World Wide Web, we begin
by adding the distance-bounded semantic similarity-
based resolver (LinBnd) and resolution based on
the list of 25 most similar words (following the
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approach of Gasperin and Vieira 2004). This re-
sults in visibly improved recall (from 62% to 68%),
while the precision for coreferent bridging cases
does not suffer much. Adding resolution based on
Lin’s semantic similarity measure and Garera and
Yarowsky’s TheY value leads to a further improve-
ment in recall to 69.7%, but also leads to a larger
loss in precision.

3 Conclusion

In this paper, we compared several approaches to re-
solve cases of coreferent bridging in open-domain
newspaper text. While none of the information
sources can match the precision of the hypernymy
information encoded in GermaNet, or that of using
a combination of high-precision patterns with the
World Wide Web as a very large corpus, it is possi-
ble to achieve a considerable improvement in terms
of recall without sacrificing too much precision by
combining these methods.

Very interestingly, the distributional methods
based on intra-sentence relations (Lin, 1998;
Pad́o and Lapata, 2003) outperformed Garera and
Yarowsky’s (2006) association measure when used
for ranking, which may due to sparse data problems
or simply too much noise for the latter. For the asso-
ciation measures, the fact that they are relation-free
also means that they can profit from added semantic
filtering.

The novel distance-bounded semantic similarity
method (where we use the most similar words in the
previous discourse together with a semantic class-
based filter and a distance limit) comes near the pre-
cision of using surface patterns, and offers better ac-
curacy than Gasperin and Vieira’s method of using
the globally most similar words.

By combining existing higher-precision informa-
tion sources such as hypernym search in GermaNet
and the Web-based approach presented in (Vers-
ley, 2007) together with similarity- and association-
based resolution, it is possible to get a large im-
provement in recall even compared to the combined
GermaNet+Web approach or an approach combin-
ing GermaNet with a semantically filtered version
of Garera and Yarowsky’s TheY approach.

In independent research, Goecke et al. (2006)
combined the original LSA-based method of Lund

et al. (1995) with wordnet relations and pattern
search on a fixed-size corpus.7 However, they eval-
uate only on a small subset of discourse-old definite
descriptions (those where a wordnet-compatible se-
mantic relation was identified and which were rea-
sonably close to their antecedent), and they did not
distinguish coreferent from associative bridging an-
tecedents. Although the different evaluation method
disallows a meaningful comparison, we think that
the more evolved information sources we use (Padó
and Lapata’s association measure instead of Lund
et al’s, combined pattern search on the World Wide
Web instead of search for patterns in a fixed-size
corpus), as well as the additional information based
on semantic similarity, lead to superior results when
evaluated in a comparable task.

3.1 Ongoing and Future Work

Both the distributional similarity statistics and the
association measure can profit from more training
data, something which is bound by availability of
similar text (Gasperin et al., 2004 point out that us-
ing texts from a different genre strongly limits the
usefulness of the learned semantic similarity mea-
sure), and by processing costs (which are more se-
rious for distributional similarity measures than for
non-grammar-related association measures, as the
former necessitate parsed input).

Based on existing results for named entity coref-
erence, a hypothetical coreference resolver combin-
ing our information sources with a perfect detec-
tor for discourse-new mentions would be able to
achieve a precision of 88% and a recall of 83% con-
sidering all full noun phrases (i.e., including names,
but not pronouns). This is both much higher than
state-of-the art results for the same data set (Versley,
2006, gets 62% precision and 70% recall), but such
accuracy may be very difficult to achieve in prac-
tice, as perfect (or even near-perfect) discourse-new
detection does not seem to achievable in the near fu-
ture. Preliminary experiments show that the inte-
gration of pattern-based information leads to an in-
crease in recall of 0.6% for the whole system (or
46% more coreferent bridging cases), but the inte-
gration of distributional similarity (loosely based on
the approach by Gasperin and Vieira) does not lead

7Thanks to Tonio Wandmacher for pointing this out to me at
GLDV’07.
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to a noticeable improvement over GermaNet alone;
in isolation, the distributional similarity information
did improve the recall, albeit less than information
from GermaNet did.

The fact that only a small fraction of the achiev-
able recall gain is currently attained seems to sug-
gest that better identification of discourse-old men-
tions could potentially lead to larger improvements.
It also seems that firstly, it makes more sense to com-
bine information sources that cover different rela-
tions (e.g. GermaNet for hypernymy and synonymy
and the pattern-based approach for instance rela-
tions) than those that yield independent evidence for
the same relation(s), as GermaNet and the Gasperin
and Vieira approach do for (near-)synonymy; and
secondly, that good precision is especially important
in the context of integrating antecedent selection and
discourse-new identification, which means that the
finer view that we get using antecedent selection ex-
periments (compared to direct use in a coreference
resolver) is indeed helpful.
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Abstract 

Most current word prediction systems make 
use of n-gram language models (LM) to es-
timate the probability of the following word 
in a phrase. In the past years there have 
been many attempts to enrich such lan-
guage models with further syntactic or se-
mantic information. We want to explore the 
predictive powers of Latent Semantic 
Analysis (LSA), a method that has been 
shown to provide reliable information on 
long-distance semantic dependencies be-
tween words in a context. We present and 
evaluate here several methods that integrate 
LSA-based information with a standard 
language model: a semantic cache, partial 
reranking, and different forms of interpola-
tion. We found that all methods show sig-
nificant improvements, compared to the 4-
gram baseline, and most of them to a sim-
ple cache model as well. 

1 Introduction: NLP for AAC systems 

Augmented and Alternative Communication 
(AAC) is a field of research which concerns natural 
language processing as well as human-machine 
interaction, and which aims at restoring the com-
municative abilities of disabled people with severe 
speech and motion impairments. These people can 
be for instance cerebrally and physically handi-
capped persons or they suffer from a locked-in 
syndrome due to a cerebral apoplexy. Whatever the 
disease or impairment considered, oral communica-
tion is impossible for these persons who have in 
addition serious difficulties to control physically 

their environment. In particular, they are not able to 
use standard input devices of a computer. Most of 
the time, they can only handle a single switch de-
vice. As a result, communicating with an AAC sys-
tem consists of typing messages by means of a vir-
tual table of symbols (words, letters or icons) 
where the user successively selects the desired 
items. 

Basically, an AAC system, such as FASTY 
(Trost et al. 2005) or SIBYLLE (Schadle et al, 2004), 
consists of four components. At first, one finds a 
physical input interface connected to the computer. 
This device is adapted to the motion capacities of 
the user. When the latter must be restricted to a 
single switch (eye glimpse or breath detector, for 
instance), the control of the environment is reduced 
to a mere Yes/No command.  

Secondly, a virtual keyboard is displayed on 
screen. It allows the user to select successively the 
symbols that compose the intended message. In 
SIBYLLE, key selection is achieved by pointing let-
ters through a linear scan procedure: a cursor suc-
cessively highlights each key of the keyboard.  

The last two components are a text editor (to 
write e-mails or other documents) and a speech 
synthesis module, which is used in case of spoken 
communication. The latest version of SIBYLLE 
works for French and German, and it is usable with 
any Windows™ application (text editor, web 
browser, mailer...), which means that the use of a 
specific editor is no longer necessary.  
The main weakness of AAC systems results from 
the slowness of message composition. On average, 
disabled people cannot type more than 1 to 5 words 
per minute; moreover, this task is very tiring. The 
use of NLP techniques to improve AAC systems is 
therefore of first importance. 
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Figure 1: User interface of the SIBYLLE AAC system  
 

 
Two complementary approaches are possible to 
speed up communication. The first one aims at 
minimizing the duration of each item selection. 
Considering a linear scan procedure, one could for 
instance dynamically reorganize the keyboard in 
order to present the most probable symbols at first. 
The second strategy tries to minimize the number 
of keystrokes to be made. Here, the system tries to 
predict the words which are likely to occur just af-
ter those already typed. The predicted word is then 
either directly displayed after the end of the in-
serted text (a method referred to as “word comple-
tion”, cf. Boissière and Dours, 1996), or a list of N-
best (typically 3 to 7) predictions is provided on the 
virtual keyboard. When one of these predictions 
corresponds to the intended word, it can be selected 
by the user. As can be seen in figure 1, the interface 
of the SIBYLLE system presents such a list of most 
probable words to the user. 

Several approaches can be used to carry out 
word prediction. Most of the commercial AAC sys-
tems make only use of a simple lexicon: in this ap-
proach, the context is not considered. 

On the other hand, stochastic language models 
can provide a list of word suggestions, depending 
on the n-1 (typically n = 3 or 4) last inserted words. 
It is obvious that such a model cannot take into ac-
count long-distance dependencies. There have been 

attempts to integrate part-of-speech information 
(Fazly and Hirst, 2003) or more complex syntactic 
models (Schadle et al, 2004) to achieve a better 
prediction. In this paper, we will nevertheless limit 
our study to a standard 4-gram model as a baseline 
to make our results comparable. Our main aim is 
here to investigate the use of long-distance seman-
tic dependencies to dynamically adapt the predic-
tion to the current semantic context of communica-
tion. Similar work has been done by Li and Hirst 
(2005) and Matiasek and Baroni (2003), who ex-
ploit Pointwise Mutual Information (PMI; Church 
and Hanks, 1989). Trnka et al. (2005) dynamically 
interpolate a high number of topic-oriented models 
in order to adapt their predictions to the current 
topic of the text or conversation. 

Classically, word predictors are evaluated by an 
objective metric called Keystroke Saving Rate 
(ksr): 

1001 ⋅
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with kp, ka being the number of keystrokes 

needed on the input device when typing a message 
with (kp) and without prediction (ka = number of 
characters in the text that has been entered, n = 
length of the prediction list, usually n = 5). As 
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Trost et al. (2005) and Trnka et al. (2005), we as-
sume that one additional keystroke is required for 
the selection of a word from the list and that a 
space is automatically inserted afterwards. Note 
also that words, which have already occurred in the 
list, will not reappear after the next character has 
been inserted.  

The perplexity measure, which is frequently 
used to assess statistical language models, proved 
to be less accurate in this context. We still present 
perplexities as well in order to provide comparative 
results. 

2 Language modeling and semantics 

2.1 Statistical Language Models 

For about 10 to 15 years statistical language model-
ing has had a remarkable success in various NLP 
domains, for instance in speech recognition, ma-
chine translation, Part-of-Speech tagging, but also 
in word prediction systems. N-gram based lan-
guage models (LM) estimate the probability of oc-
currence for a word, given a string of n-1 preceding 
words. However, computers have only recently 
become powerful enough to estimate probabilities 
on a reasonable  amount of training data. More-
over, the larger n gets, the more important the prob-
lem of combinatorial explosion for the probability 
estimation becomes. A reasonable trade-off be-
tween performance and number of estimated events 
seems therefore to be an n of 3 to 5, including so-
phisticated techniques in order to estimate the 
probability of unseen events (smoothing methods). 

Whereas n-gram-like language models are al-
ready performing rather well in many applications, 
their capacities are also very limited in that they 
cannot exploit any deeper linguistic structure. 
Long-distance syntactic relationships are neglected 
as well as semantic or thematic constraints. 

In the past 15 years many attempts have been 
made to enrich language models with more com-
plex syntactic and semantic models, with varying 
success (cf. (Rosenfeld, 1996), (Goodman, 2002) 
or in a word prediction task: (Fazly and Hirst, 
2003), (Schadle, 2004), (Li and Hirst, 2005)). We 
want to explore here an approach based on Latent 
Semantic Analysis (Deerwester et al, 1990). 

2.2 Latent Semantic Analysis 

Several works have suggested the use of Latent 
Semantic Analysis (LSA) in order to integrate se-

mantic similarity to a language model (cf. Belle-
garda, 1997; Coccaro and Jurafsky, 1998). LSA 
models semantic similarity based on co-occurrence 
distributions of words, and it has shown to be help-
ful in a variety of NLP tasks, but also in the domain 
of cognitive modeling (Landauer et al, 1997). 

LSA is able to relate coherent contexts to spe-
cific content words, and it is good at predicting the 
occurrence of a content word in the presence of 
other thematically related terms. However, since it 
does not take word order into account (“bag-of-
words” model) it is very poor at predicting their 
actual position within the sentence, and it is com-
pletely useless for the prediction of function words. 
Therefore, some attempts have been made to inte-
grate the information coming from an LSA-based 
model with standard language models of the n-
gram type.  

In the LSA model (Deerwester et al, 1990) a 
word wi is represented as a high-dimensional vec-
tor, derived by Singular Value Decomposition 
(SVD) from a term × document (or a term × term) 
co-occurrence matrix of a training corpus. In this 
framework, a context or history h (= w1, ... , wm) 
can be represented by the sum of the (already nor-
malized) vectors corresponding to the words it con-
tains (Landauer et al. 1997):  
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This vector reflects the meaning of the preceding 

(already typed) section, and it has the same dimen-
sionality as the term vectors. It can thus be com-
pared to the term vectors by well-known similarity 
measures (scalar product, cosine).  

2.3 Transforming LSA similarities into prob-
abilities 

We make the assumption that an utterance or a 
text to be entered is usually semantically cohesive. 
We then expect all word vectors to be close to the 
current context vector, whose corresponding words 
belong to the semantic field of the context. This 
forms the basis for a simple probabilistic model of 
LSA: After calculating the cosine similarity for 

each word vector 
i

w
r

 with the vector h
r

 of the cur-

rent context, we could use the normalized similari-
ties as probability values. This probability distribu-
tion however is usually rather flat (i.e. the dynamic 
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range is low). For this reason a contrasting (or tem-
perature) factor γ is normally applied (cf. Coccaro 
and Jurafsky, 1998), which raises the cosine to 
some power (γ is normally between 3 and 8). After 
normalization we obtain a probability distribution 
which can be used for prediction purposes. It is 
calculated as follows: 
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wi is a word in the vocabulary, h is the current con-

text (history) 
i

w
r

andh
r

are their corresponding vec-

tors in the LSA space; cosmin( h
r

) returns the lowest 

cosine value measured for h
r

). The denominator 
then normalizes each similarity value to ensure that 

∑ =
n

k kLSA
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Let us illustrate the capacities of this model by 
giving a short example from the French version of 
our own LSA predictor: 

 
Context: “Mon père était professeur en mathématiques 

et je pense que ” 
 (“My dad has been a professor in mathemat-

ics and I think that ”) 
 

Rank Word P 
1. professeur (‘professor’) 0.0117 
2. mathématiques (“mathematics”) 0.0109 
3. enseigné (participle of ‘taught’) 0.0083 
4. enseignait (‘taught’) 0.0053 
5. mathematicien (‘mathematician’) 0.0049 
6. père (‘father’) 0.0046 
7. mathématique (‘mathematics’) 0.0045 
8. grand-père (‘grand-father’) 0.0043 
9. sciences (‘sciences’) 0.0036 

10. enseignant (‘teacher’) 0.0032 

Example 1: Most probable words returned by the 
LSA model for the given context. 
 
As can be seen in example 1, all ten predicted 
words are semantically related to the context, they 
should therefore be given a high probability of oc-
currence. However, this example also shows the 
drawbacks of the LSA model: it totally neglects the 
presence of function words as well as the syntactic 
structure of the current phrase. We therefore need 
to find an appropriate way to integrate the informa-
tion coming from a standard n-gram model and the 
LSA approach. 

2.4 Density as a confidence measure 

Measuring relation quality in an LSA space, 
Wandmacher (2005) pointed out that the reliability 
of LSA relations varies strongly between terms. He 
also showed that the entropy of a term does not 
correlate with relation quality (i.e. number of se-
mantically related terms in an LSA-generated term 
cluster), but he found a medium correlation (Pear-
son coeff. = 0.56) between the number of semanti-
cally related terms and the average cosine similar-
ity of the m nearest neighbors (density). The closer 
the nearest neighbors of a term vector are, the more 
probable it is to find semantically related terms for 
the given word. In turn, terms having a high density 
are more likely to be semantically related to a given 
context (i.e. their specificity is higher). 

We define the density of a term wi as follows: 
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In the following we will use this measure (with 

m=100) as a confidence metric to estimate the reli-
ability of a word being predicted by the LSA com-
ponent, since it showed to give slightly better re-
sults in our experiments than the entropy measure.  

3 Integrating semantic information 

In the following we present several different meth-
ods to integrate semantic information as it is pro-
vided by an LSA model into a standard LM. 

3.1 Semantic cache model 

Cache (or recency promotion) models have shown 
to bring slight but constant gains in language mod-
eling (Kuhn and De Mori, 1990). The underlying 
idea is that words that have already occurred in a 
text are more likely to occur another time. There-
fore their probability is raised by a constant or ex-
ponentially decaying factor, depending on the posi-
tion of the element in the cache. The idea of a de-
caying cache function is that the probability of re-
occurrence depends on the cosine similarity of the 
word in the cache and the word to be predicted. 
The highest probability of reoccurrence is usually 
after 15 to 20 words. 
Similar to Clarkson and Robinson (1997), we im-
plemented an exponentially decaying cache of 
length l (usually between 100 and 1000), using the 
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following decay function for a word wi and its posi-
tion p in the cache. 
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σ = µ/3 if p < µ and  σ = l/3 if p ≥ µ. The func-

tion returns 0 if wi is not in the cache, and it is 1 if 
p = µ. A typical graph for (5) can be seen in figure 
(2). 

 

 
Figure 2: Decay function with µ=20 and l=300. 
 

We extend this model by calculating for each ele-
ment having occurred in the context its m nearest 
LSA neighbors ( ),( θwNN

occm

r
, using cosine simi-

larity), if their cosine lies above a threshold θ, and 
add them to the cache as well, right after the word 
that has occurred in the text (“Bring your friends”-
strategy). The size of the cache is adapted accord-
ingly (for µ, σ and l), depending on the number of 
neighbors added. This results in the following 
cache function: 
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with l = size of the cache. β is a constant  con-

trolling the influence of the component (usually β ≈ 
0.1/l); wi

occ is a word that has already recently oc-
curred in the context and is therefore added as a 
standard cache element, whereas wi is a nearest 
neighbor to wi

occ. fcos(w
i
occ, wi) returns the cosine 

similarity between i
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) ≤ θ have not been 

added to the cache).  Since cos(
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,
i
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)=1, terms 

having actually occurred before will be given full 
weight, whereas all wi being only nearest LSA 
neighbors to wi

occ will receive a weight correspond-

ing to their cosine similarity with wi
occ , which is 

less than 1 (but larger than θ). 
fd(wi,p) is the decay factor for the current posi-

tion p of wi in the cache, calculated as shown in 
equation (5).  

3.2 Partial reranking 

The underlying idea of partial reranking is to re-
gard only the best n candidates from the basic lan-
guage model for the semantic model in order to 
prevent the LSA model from making totally im-
plausible (i.e. improbable) predictions. Words be-
ing improbable for a given context will be disre-
garded as well as words that do not occur in the 
semantic model (e.g. function words), because LSA 
is not able to give correct estimates for this group 
of words (here the base probability remains un-
changed). 
For the best n candidates their semantic probability 
is calculated and each of these words is assigned an 
additional value, after a fraction of its base prob-
ability has been subtracted (jackpot strategy). 
For a given context h we calculate the ordered set 

BESTn(h) = <w1, … , wn>, so that P(w1|h) ≥ 
P(w2|h) ≥…≥P(wn|h) 

For each wi in BESTn(h) we then calculate its 
reranking probability as follows: 
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β is a weighting constant controlling the overall 
influence of the reranking process, cos(

i
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turns the cosine of the word’s vector and the cur-
rent context vector, D(wi) gives the confidence 
measure of wi and I is an indicator function being 
1, iff wi ∈BEST(h), and 0 otherwise.  

3.3 Standard interpolation 

Interpolation is the standard way to integrate in-
formation from heterogeneous resources. While for 
a linear combination we simply add the weighted 
probabilities of two (or more) models, geometric 
interpolation multiplies the probabilities, which are 
weighted by an exponential coefficient (0≤λ1≤1): 
 
Linear Interpolation (LI): 
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Geometric Interpolation (GI): 
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The main difference between the two methods is 
that the latter takes the agreement of two models 
into account. Only if each of the single models as-
signs a high probability to a given event will the 
combined probability be assigned a high value. If 
one of the models assigns a high probability and 
the other does not the resulting probability will be 
lower. 

3.4 Confidence-weighted interpolation 

Whereas in standard settings the coefficients are 
stable for all probabilities, some approaches use 
confidence-weighted coefficients that are adapted 
for each probability. In order to integrate n-gram 
and LSA probabilities, Coccaro and Jurafsky 
(1998) proposed an entropy-related confidence 
measure for the LSA component, based on the ob-
servation that words that occur in many different 
contexts (i.e. have a high entropy), cannot well be 
predicted by LSA. We use here a density-based 
measure (cf. section 2.2), because we found it more 
reliable than entropy in preliminary tests. For inter-
polation purposes we calculate the coefficient of 
the LSA component as follows: 
 

)(
ii

wDβλ ⋅= , iff D(wi) > 0; 0 otherwise (10) 

 
with β being a weighting constant to control the 
influence of the LSA predictor. For all experi-
ments, we set β to 0.4 (i.e. 0 ≤ λi ≤ 0.4), which 
proved to be optimal in pre-tests. 

4 Results 

We calculated our baseline n-gram model on a 44 
million word corpus from the French daily Le 
Monde (1998-1999). Using the SRI toolkit (Stol-
cke, 2002)1 we computed a 4-gram LM over a con-
trolled 141,000 word vocabulary, using modified 
Kneser-Ney discounting (Goodman, 2001), and we 
applied Stolcke pruning (Stolcke, 1998) to reduce 
the model to a manageable size (θ = 10-7). 
                                                 
1 SRI Toolkit: www.speech.sri.com. 

The LSA space was calculated on a 100 million 
word corpus from Le Monde (1996 – 2002). Using 
the Infomap toolkit2, we generated a term × term 
co-occurrence matrix for an 80,000 word vocabu-
lary (matrix size = 80,000 × 3,000), stopwords 
were excluded. After several pre-tests, we set the 
size of the co-occurrence window to ±100. The ma-
trix was then reduced by singular value decomposi-
tion to 150 columns, so that each word in the vo-
cabulary was represented by a vector of 150 di-
mensions, which was normalized to speed up simi-
larity calculations (the scalar product of two nor-
malized vectors equals the cosine of their angle).  

Our test corpus consisted of 8 sections from the 
French newspaper Humanité, (January 1999, from 
5,378 to 8,750 words each), summing up to 58,457 
words. We then calculated for each test set the key-
stroke saving rate based on a 5-word list (ksr5) and 
perplexity for the following settings3: 

1. 4-gram LM only (baseline) 

2. 4-gram + decaying cache (l = 400) 

3. 4-gram + LSA using linear interpolation 
with λLSA = 0.11 (LI). 

4. 4-gram + LSA using geometric interpola-
tion, with λLSA = 0.07 (GI). 

5. 4-gram + LSA using linear interpolation 
and (density-based) confidence weighting 
(CWLI). 

6. 4-gram + LSA using geometric interpola-
tion and (density-based) confidence 
weighting (CWGI). 

7. 4-gram + partial reranking (n = 1000, β = 
0.001) 

8. 4-gram + decaying semantic cache  
(l = 4000; m = 10; θ = 0.4, β = 0.0001)  

Figures 3 and 4 display the overall results in terms 
of ksr and perplexity.  

                                                 
2 Infomap Project: http://infomap-nlp.sourceforge.net/ 
3 All parameter settings presented here are based on results of 
extended empirical pre-tests. We used held-out development 
data sets that have randomly been chosen from the Humanité 
corpus.(8k to 10k words each). The parameters being pre-
sented here were optimal for our test sets. For reasons of sim-
plicity we did not use automatic optimization techniques such 
as the EM algorithm (cf. Jelinek, 1990). 
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Figure 3: Results (ksr5) for all methods tested. 

 
 

 
Figure 4: Results (perplexity) for all methods 
tested. 
 

Using the results of our 8 samples, we performed 
paired t tests for every method with the baseline as 
well as with the cache model. All gains for ksr 
turned out to be highly significant (sig. level < 
0.001), and apart from the results for CWLI, all 
perplexity reductions were significant as well (sig. 
level < 0.007), with respect to the cache results. We 
can therefore conclude that, with exception of 
CWLI, all methods tested have a beneficial effect, 
even when compared to a simple cache model. The 
highest gain in ksr (with respect to the baseline) 
was obtained for the confidence-weighted geo-
metric interpolation method (CWGI; +1.05%), the 
highest perplexity reduction was measured for GI 
as well as for CWGI (-9.3% for both). All other 
methods (apart from IWLI) gave rather similar re-
sults (+0.6 to +0.8% in ksr, and -6.8% to -7.7% in 
perplexity). 

We also calculated for all samples the correla-
tion between ksr and perplexity. We measured a 
Pearson coefficient of -0.683 (Sig. level < 0.0001).  

At first glance, these results may not seem over-
whelming, but we have to take into account that 
our ksr baseline of 57.9% is already rather high, 

and at such a level, additional gains become hard to 
achieve (cf. Lesher et al, 2002). 

The fact that CWLI performed worse than even 
simple LI was not expected, but it can be explained 
by an inherent property of linear interpolation: If 
one of the models to be interpolated overestimates 
the probability for a word, the other cannot com-
pensate for it (even if it gives correct estimates), 
and the resulting probability will be too high. In 
our case, this happens when a word receives a high 
confidence value; its probability will then be over-
estimated by the LSA component. 

5 Conclusion and further work 

Adapting a statistical language model with seman-
tic information, stemming from a distributional 
analysis like LSA, has shown to be a non-trivial 
problem. Considering the task of word prediction 
in an AAC system, we tested different methods to 
integrate an n-gram LM with LSA: A semantic 
cache model, a partial reranking approach, and 
some variants of interpolation. 

We evaluated the methods using two different 
measures, the keystroke saving rate (ksr) and per-
plexity, and we found significant gains for all 
methods incorporating LSA information, compared 
to the baseline. In terms of ksr the most successful 
method was confidence-weighted geometric inter-
polation (CWGI; +1.05% in ksr); for perplexity, 
the greatest reduction was obtained for standard as 
well as for confidence-weighted geometric interpo-
lation (-9.3% for both). Partial reranking and the 
semantic cache gave very similar results, despite 
their rather different underlying approach.  

We could not provide here a comparison with 
other models that make use of distributional infor-
mation, like the trigger approach by Rosenfeld 
(1996), Matiasek and Baroni (2003) or the model 
presented by Li and Hirst (2005), based on Point-
wise Mutual Information (PMI). A comparison of 
these similarities with LSA remains to be done.  

Finally, an AAC system has not only the func-
tion of simple text entering but also of providing 
cognitive support to its user, whose communicative 
abilities might be totally depending on it. There-
fore, she or he might feel a strong improvement of 
the system, if it can provide semantically plausible 
predictions, even though the actual gain in ksr 
might be modest or even slightly decreasing. For 
this reason we will perform an extended qualitative 
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analysis of the presented methods with persons 
who use our AAC system SIBYLLE.  This is one of 
the main aims of the recently started ESAC_IMC 
project. It is conducted at the Functional Reeduca-
tion and Rehabilitation Centre of Kerpape, Brit-
tany, where SIBYLLE is already used by 20 children 
suffering from traumatisms of the motor cortex. 
They appreciate the system not only for communi-
cation but also for language learning purposes. 

Moreover, we intend to make the word predictor 
of SIBYLLE publicly available (AFM Voltaire pro-
ject) in the not-too-distant future.  
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Abstract

We propose a domain specific model for
statistical machine translation. It is well-
known that domain specific language mod-
els perform well in automatic speech recog-
nition. We show that domain specific lan-
guage and translation models also benefit
statistical machine translation. However,
there are two problems with using domain
specific models. The first is the data sparse-
ness problem. We employ an adaptation
technique to overcome this problem. The
second issue is domain prediction. In or-
der to perform adaptation, the domain must
be provided, however in many cases, the
domain is not known or changes dynami-
cally. For these cases, not only the trans-
lation target sentence but also the domain
must be predicted. This paper focuses on
the domain prediction problem for statisti-
cal machine translation. In the proposed
method, a bilingual training corpus, is au-
tomatically clustered into sub-corpora. Each
sub-corpus is deemed to be a domain. The
domain of a source sentence is predicted by
using its similarity to the sub-corpora. The
predicted domain (sub-corpus) specific lan-
guage and translation models are then used
for the translation decoding. This approach
gave an improvement of 2.7 in BLEU (Pa-
pineni et al., 2002) score on the IWSLT05
Japanese to English evaluation corpus (im-
proving the score from 52.4 to 55.1). This is
a substantial gain and indicates the validity
of the proposed bilingual cluster based mod-
els.

1 Introduction

Statistical models, such as n-gram models, are
widely used in natural language processing, for ex-
ample in speech recognition and statistical machine
translation (SMT). The performance of a statistical
model has been shown to improve when domain spe-
cific models are used, since similarity of statistical
characteristics between model and target is higher.
For utilize of domain specific models, a training
data sparseness and target domain estimation prob-
lems must be resolved. In this paper, we try to es-
timate target domain sentence by sentence, consid-
ering cases where the domain changes dynamically.
After sentence by sentence domain estimation, do-
main specific models are used for translation using
the adaptation technique(Seymore et al., 1997).

In order to train a classifier to predict the domain,
we used an unsupervised clustering technique on an
unlabelled bilingual training corpus. We regarded
each cluster (sub-corpus) as a domain. Prior to trans-
lation, the domain of the source sentence is first pre-
dicted and this prediction is then used for model se-
lection. The most similar sub-corpus to the transla-
tion source sentence is used to represent its domain.
After the prediction is made, domain specific lan-
guage and translation models are used for the trans-
lation.

In Section 2 we present the formal basis for our
domain specific translation method. In Section 3 we
provide a general overview of the two sub-tasks of
domain specific translation: domain prediction, and
domain specific decoding. Section 4 presents the
domain prediction task in depth. Section 5 offers
a more detailed description of the details of domain
specific decoding. Section 6 gives details of the ex-
periments and presents the results. Finally, Section
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7 offers a summary and some concluding remarks.

2 Domain Specific Models in SMT

The purpose of statistical machine translation is to
find the most probable translation in the target lan-
guage e of a given source language sentence f . This
search process can be expressed formally by:

argmax
e

P (e|f) (1)

In this formula, the target word sequence (sentence)
e is determined only by the source language word
sequence f . However, e is heavily dependent on
not only on f but also on the domain D. When the
domain D is given, formula (1) can be rewritten as
the following formula with the introduction of a new
probabilistic variable D.

argmax
e

P (e|f,D) (2)

This formula can be re-expressed using Bayes’ Law.

argmax
e

P (e|D)P (f |e,D) (3)

Here, P (f |e,D) represents the domain D specific
translation model and P (e|D) represents the domain
D specific language model.

When the domain D is known, domain specific
models can be created and used in the translation de-
coding process. However, in many cases, domain D
is unknown or changes dynamically. In these cases,
both the translation target language sentence e and
the domain D must be dynamically predicted at the
same time. The following equation represents the
process of domain specific translation when the do-
main D is being dynamically predicted.

argmax
e,D

P (e,D|f)

= argmax
e,D

P (D|f)P (e|f,D) (4)

The major difference between this equation and for-
mula (3) is that the probabilistic variable D is the
prediction target in equation (4). In this equa-
tion, P (D|f) represents the domain prediction and
P (e|f,D) represents the domain specific transla-
tion.

3 Outline of the Proposed Method

Our method can be analysed into two processes: an
off-line process and an on-line process. The pro-
cesses are depicted in figure 1. In the off-line pro-
cess, bilingual sub-corpora are created by clustering
and these clusters represent domains. Domain spe-
cific models are then created from the data contained
in the sub-corpora in a batch process. In the on-line
process, the domain of the source sentence is first
predicted and following this the sentence is trans-
lated using models built on data from the appropriate
domain.

3.1 Off-line process

In this process, the training corpus is clustered to
sub-corpora, which are regarded as domains. In
SMT, a bilingual corpus is used to create the trans-
lation model, and typically, bilingual data together
with additional monolingual corpora are used to
create the language model. In our method, both
the bilingual and monolingual corpora are clustered.
After clustering, cluster dependent (domain specific)
language and translation models are created from the
data in the clusters.

1. A bilingual corpus which is comprised of the
training data for the translation model, or
equivalently the bilingual part of the training
data for the language model is clustered (see
Section 4.2).

2. Each sentence of the additional monolingual
corpora (if any) is assigned to a bilingual clus-
ter (see Section 4.3).

3. For each cluster, the domain specific (cluster
dependent) language models are created.

4. The domain specific translation model is cre-
ated using only the clusters formed from clus-
tering bilingual data.

3.2 On-line process

This process is comprised of domain prediction and
the domain specific translation components. The
following steps are taken for each source sentence.

1. Select the cluster to which the source sentence
belongs.
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2. Translate the source sentence using the appro-
priate domain specific language and translation
models.

4 Domain Prediction

This section details the domain prediction process.
To satisfy equation (4), both the domain D and
the translation target word sequence e, which max-
imizes both P (D|f) and P (e|f,D) must be cal-
culated at the same time. However, it is difficult
to make the calculations without an approximation.
Therefore, in the first step, we find the best candi-
dates for D given the input sentence f . In the next
step, P (e|f,D) is maximized over the candidates
for D using the following formula.

argmax
e

P (e|f, argmax
D

P (D|f)) (5)

Equation (5) is approximation of following equa-
tion in that can D is regarded as a hidden variable.

argmax
e

∑

D

P (D|f)P (e|D)P (f |e,D)) (6)

When the following assumptions are introduced to
equation (6), equation (5) is obtained as an approxi-
mation. For only one domain Di, P (Di|f) is nearly
equal to one. For other domains, P (D|f) are almost
zero. P (D|f) can be re-written as following equa-
tion.

P (D|f)

= P (D, f)/P (f)

= P (f,D)/P (D) × P (D)/P (f)

= P (f |D)P (D)/P (f) (7)

Therefore, we can confirm reasonability of this as-
sumption by calculating P (f |D)P (D) all domains
(P (f) is constant).

4.1 Domain Definition

When the domain is known in advance, it is usu-
ally expressible, for example it could be a topic
that matches a human-defined category like “sport”.
On the other hand, when the domain is delimited
in an unsupervised manner, it is used only as a
probabilistic variable and does not need to be ex-
pressed. Equation (4) illustrates that a good model
will provide high probabilities to P (D|f)P (e|f,D)

for bilingual sentence pairs (f, e). For the same
reason, a good domain definition will lead to a
higher probability for the term: P (D|f)P (e|f,D).
Therefore, we define the domain D as that which
maximizes P (D|f)P (e|D) (an approximation of
P (D|f)P (e|f,D)). This approximation ensures
that the domain definition is optimal for only the
language model rather than both the language and
translation models. P (D|f)P (e|D) can be re-
written as the following equation using Bayes’ Law.

P (D|f)P (e|D)

= P (e|D)P (f |D)P (D)/P (f) (8)

Here, P (f) is independent of domain D. Further-
more, we assume P (D) to be constant. The follow-
ing formula embodies the search for the optimal do-
main.

argmax
D

P (e|D)P (f |D) (9)

This formula ensures that the search for the domain
maximizes the domain specific probabilities of both
e and f simultaneously.

4.2 Clustering of the bilingual corpus

As mentioned above, we maximize the domain spe-
cific probabilities of e and f to ascertain the domain.
We define our domains as sub-corpora of the bilin-
gual corpus, and these sub-corpora are formed by
clustering bilingually by entropy reduction. For this
clustering, the following extension of monolingual
corpus clustering is employed (Carter 1994).

1. The total number of clusters (domains) is given
by the user.

2. Each bilingual sentence pair is randomly as-
signed to a cluster.

3. For each cluster, language models for e and f
are created using the bilingual sentence pairs
that belong to the cluster.

4. For each cluster, the entropy for e and f is cal-
culated by applying the language models from
the previous step to the sentences in the clus-
ter. The total entropy is defined as the total sum
of entropy (for both source and target) for each
cluster.
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Figure 1: Outline of the Proposed Method

5. Each bilingual sentence pair is re-assigned to a
cluster such that the assignment minimizes the
total entropy.

6. The process is repeated from step (3) until
the entropy reduction is smaller than a given
threshold.

4.3 Clustering the monolingual corpus

Any additional monolingual corpora used to train
the language model are also clustered. For this clus-
tering, the following process is used.

1. First, bilingual clusters are created using the
above process.

2. For each monolingual sentence its entropy is
calculated using all the bilingual cluster depen-
dent language models and also the general lan-
guage model (see Figure 1 for a description of
the general language model).

3. If the entropy of the general language model
is the lowest, this sentence is not used in the
cluster dependent language models.

4. Otherwise, the monolingual sentence is added

to the bilingual cluster that results in the lowest
entropy.

4.4 Domain prediction

In the process described in the previous section we
describe how clusters are created, and we define our
domains in terms of these clusters. In this step, do-
main D is predicted using the given source sentence
f . This prediction is equivalent to finding the D that
maximizes P (D|f). P (D|f) can be re-written as
P (f |D)P (D)/P (f) using Bayes’ law. Here, P (f)
is a constant, and if P (D) is assumed to be constant
(this approximation is also used in the clustering of
the bilingual corpus), maximizing the target is re-
duced to the maximization of P (f |D). To maximize
P (f |D) we simply select the cluster D, that gives
the highest likelihood of a given source sentence f .

5 Domain specific decoding

After domain prediction, domain specific decoding
to maximize P (e|f,D), is conducted. P (e|f,D)
can be re-written as the following equation using
Bayes’ law.

P (e|f,D)

= P (f |e,D)P (e,D)/P (f,D)
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= P (f |e,D)P (e|D)P (D)/P (f,D) (10)

Here, f is a given constant and D has already
been selected by the domain prediction process.
Therefore, maximizing P (f |e,D)P (e|D) is equiv-
alent to maximizing the above equation. In
P (f |e,D)P (e|D), P (f |e,D) is the domain specific
translation model and P (e|D) is the domain specific
language model. Equation (10) represents the whole
process of translation of f into e using domain D
specific models P (f |e,D) and P (e|D).

5.1 Differences from previous methods

5.1.1 Cluster language model

Hasan et al. (2005) proposed a cluster language
model for finding the domain D. This method has
three steps. In the first step, the translation target
language corpus is clustered using human-defined
regular expressions. In the second step, a regular
expression is created from the source sentence f . In
the last step, the cluster that corresponds to the ex-
tracted regular expression is selected, and the cluster
specific language model built from the data in this
cluster is used for the translation. The points of dif-
ference are:

• In the cluster language model, clusters are de-
fined by human-defined regular expressions.
On the other hand, with the proposed method,
clusters are automatically (without human
knowledge) defined and created by the entropy
reduction based method.

• In the cluster language model, only the trans-
lation target language corpus is clustered. In
the proposed method, both the translation
source and target language corpora are clus-
tered (bilingual clusters).

• In the cluster language model, only a domain
(cluster) specific language model is used. In
the proposed method, both a domain specific
language model and a domain specific transla-
tion model are used.

5.1.2 Sentence mixture language model

In equation (6), D is regarded as a hidden vari-
able. Furthermore, when P (D|f) is approximated
as P (D) = Dλ, and the general translation model

P (f |e) is used instead of the domain specific trans-
lation model P (f |e,D), this equation represents the
process of translation using sentence mixture lan-
guage models (Iyer et al., 1993) as follows:

argmax
e

∑

D

DλP (e|D)P (f |e) (11)

The points that differ from the proposed method are
as follows:

• In the sentence mixture model, the mixture
weight parameters Dλ are constant. On the
other hand, in the proposed method, weight pa-
rameters P (D|f) are estimated separately for
each sentence.

• In the sentence mixture model, the probabili-
ties of all cluster dependent language models
are summed. In the proposed model, only the
cluster that gives the highest probability is con-
sidered as approximation.

• In the proposed method, a domain specific
translation model is also used.

6 Experiments

6.1 Japanese to English translation

6.1.1 Experimental corpus

To evaluate the proposed model, we conducted
experiments based on a travel conversation task cor-
pus. The experimental corpus was the travel ar-
rangements task of the BTEC corpus (Takezawa et
al., 2002),(Kikui et al., 2003) and the language pair
was Japanese and English. The training, develop-
ment, and evaluation corpora are shown in Table
1. The development and evaluation corpora each
had sixteen reference translations for each sentence.
This training corpus was also used for the IWSLT06
Evaluation Campaign on Spoken Language Transla-
tion (Paul 2006) J-E open track, and the evaluation
corpus was used as the IWSLT05 evaluation set.

6.1.2 Experimental conditions

For bilingual corpus clustering, the sentence en-
tropy must be calculated. Unigram language models
were used for this calculation. The translation mod-
els were pharse-based (Zen et al., 2002) created us-
ing the GIZA++ toolkit (Och et al., 2003). The lan-
guage models for the domain prediction and transla-
tion decoding were word trigram with Good-Turing
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Table 1: Japanese to English experimental corpus

# of sentence Total words # of word entry
Japanese Training 40K 355K 12.5K
English Training 40K 315K 9.2K

Japanese Development 510 3,525 918
English Development 510×16 57,388 2,118
Japanese Evaluation 506 3,647 951

backoff (Katz 1987). Ten cluster specific source lan-
guage models and a general language model were
used for the domain prediction. If the general lan-
guage model provided the lowest perplexity for an
input sentence, the domain specific models were not
used for this sentence. The SRI language model-
ing toolkit (Stolcke) was used for the creation of all
language models. The PHARAOH phrase-based de-
coder (Koehn 2004) was used for the translation de-
coding.

For tuning of the decoder’s parameters, including
the language model weight, minimum error train-
ing (Och 2003) with respect to the BLEU score us-
ing was conducted using the development corpus.
These parameters were used for the baseline condi-
tions. During translation decoding, the domain spe-
cific language model was used as an additional fea-
ture in the log-linear combination according to the
PHARAOH decoder’s option. That is, the general
and domain specific language models are combined
by log-linear rather than linear interpolation. The
weight parameters for the general and domain spe-
cific language models were manually tuned using
the development corpus. The sum of these language
model weights was equal to the language model
weight in the baseline. For the translation model,
the general translation model (phrase table) and do-
main specific translation model were linearly com-
bined. The interpolation parameter was again man-
ually tuned using the development corpus.

6.1.3 Experimental results

In our bilingual clustering, the number of clus-
ters must be fixed in advance. Based on the results
of preliminary experiments to estimate model order,
ten clusters were used. If less than ten clusters were
used, domain specific characteristics cannot be rep-
resented. If more than ten clusters were used, data

sparseness problems are severe, especially in trans-
lation models. The amount of sentences in each
cluster is not so different, therefore the approxima-
tion that P (D) is reasonable. Two samples of bilin-
gual clusters are recorded in the appendix ”Sample
of Cluster”. The cluster A.1 includes many interrog-
ative sentences. The reason is that special words ”�����

(desu ka)” or ” � ��� (masu ka)” are used
at the end of Japanese sentence with no correspond-
ing word used in English. The cluster A.2 includes
numeric expressions in both English and Japanese.

Next, we confirm the reasonability of the assump-
tion used in equation(5). For this confirmation, we
calculate P (D|f) for all D for each f (P(D) is ap-
proximated as constant). For almost f , only one
domain Di has a vary large value compared with
other domains. Therefore, this approximation is
confirmed to be reasonable.

In this experiments, we compare three ways of de-
ploying our domain specific models to a baseline. In
the first method, only the domain specific language
model is used. The ratio of the weight parameter for
the general model to the domain specific model was
6:4 for all the domain specific language models. In
the second method, only the domain specific transla-
tion model was used. The ratio of the interpolation
parameter of the general model to the domain spe-
cific model was 3:7 for all the domain specific mod-
els. In the last method, both the domain specific lan-
guage and translation models (LM+TM) were used.
The weights and interpolation parameters were the
same as in the first and second methods. The experi-
mental results are shown in Table 2. Under all of the
conditions and for all of the evaluation measures, the
proposed domain specific models gave better perfor-
mance than the baseline. The highest performance
came from the system that used both the domain spe-
cific language and translation models, resulting in a
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2.7 point BLEU score gain over the baseline. It is a
very respectable improvement. Appendix ”Sample
of Different Translation Results” recodes samples of
different translation results with and without the do-
main specific language and translation models. In
many cases, better word order is obtained in with
the domain specific models.

6.2 Translation of ASR output

In this experiment, the source sentence used as in-
put to the machine translation system was the direct
textual output from an automatic speech recognition
(ASR) decoder that was a component of a speech-
to-speech translation system. The input to our sys-
tem therefore contained the kinds of recognition er-
rors and disfluencies typically found in ASR output.
This experiment serves to determine the robustness
of the domain prediction to real-world speech input.
The speech recognition process in this experiment
had a word accuracy of 88.4% and a sentence ac-
curacy of 67.2% . The results shown in Table 3
clearly demonstrate that the proposed method is able
to improve the translation performance, even when
speech recognition errors are present in the input
sentence.

6.3 Comparison with previous methods

In this section we compare the proposed method
to other comtemporary methods: the cluster lan-
guage model (CLM) and the sentence mixture model
(SMix). The experimental results for these meth-
ods were reported by RWTH Aachen University in
IWSLT06 (Mauser et al., 2006). We evaluated our
method using the same training and evaluation cor-
pora. These corpora were used as the training and
development corpora in the IWSLT06 Chinese to
English open track, the details are given in Table
4. The English side of the training corpus was the
same as that used in the earlier Japanese to English
experiments reported in this paper. Each sentence
in the evaluation corpus had seven reference trans-
lations. Our baseline performance was slightly dif-
ferent from that reported in the RWTH experiments
(21.9 BLEU socre for RWTH’s system and 21.7 for
our system). Therefore, their improved baseline is
shown for comparison. The results are shown in
Table 5. The improvements over the baseline of
our method in both BLEU and NIST (Doddington

2002) score were greater than those for both CLM
and SMix. In particular, our method showed im-
provent in both the BLEU and NIST scores, this is in
contrast to the CLM and SMix methods which both
degraded the translation performance in terms of the
NIST score.

Table 5: Comparison results with previous methods

BLEU NIST WER PER
RWTH 21.9 6.31 66.4 50.8

Our 21.7 6.79 70.9 51.2

CLM +0.6 -0.22 -2.7 -1.1
SMix +0.2 -0.06 -1.1 -0.9

Proposed +1.1 +0.17 -1.1 -0.5

6.4 Clustering of the monolingual corpus

Finally, we evaluated the proposed method when
an additional monolingual corpus was incorporated.
For this experiment, we used the Chinese and En-
glish bilingual corpora that were used in the NIST
MT06 evaluation (NIST 2006). The size of the bilin-
gual training corpus was 2.9M sentence pairs. For
the language model training, an additional monolin-
gual corpus of 1.5M English sentences was used.
NIST 2006 development (evaluation set for NIST
2005) is used for evaluation. In this experiment,
the test set language model perplexity of a model
built on only the monolingual corpus was consider-
ably lower than that of a model built from only the
target language sentences from the bilingual corpus.
Therefore, we would expect the use of this monolin-
gual corpus to be an important factor affecting the
quality of the translation system. These perplexi-
ties were 299.9 for the model built on only the bilin-
gual corpus, 200.1 for the model built on only the
monolingual corpus, and 192.5 for the model built
on a combination of the bilingual and monolingual
corpora. For the domain specific models, 50 clus-
ters were created from the bilingual and monolin-
gual corpora. In this experiment, only the domain
specific language model was used. The experimen-
tal results are shown in Table 6. The results in the
table show that the incorporation of the additional
monolingual data has a pronounced beneficial effect
on performance, the performance improved accord-
ing to all of the evaluation measures.
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Table 2: Japanese to English translation evaluation scores

BLEU NIST WER PER Meteor TER
Baseline 52.38 9.316 42.87 33.21 70.63 35.46

Domain Specific LM 53.66 9.349 41.73 32,27 71.39 34.17
Domain Specific TM 54.30 9.333 41.64 32.50 71.77 33.80

Domain Specific LM+TM 55.09 9.451 41.05 31.63 72.09 33.20

Table 3: Evaluation using ASR output

BLEU NIST WER PER Meteor TER
Baseline 48.17 8.892 47.05 36.86 67.40 39.36

Domain Specific LM 48.94 8.900 46.26 36.37 67.98 38.42
Domain Specific TM 49.11 8.842 45.78 36.55 68.01 37.88

Domain Specific LM+TM 50.12 9.001 45.26 35.80 68.05 37.22

7 Conclusion

We have proposed a technique that utilizes domain
specific models based on bilingual clustering for sta-
tistical machine translation. It is well-known that
domain specific modeling can result in better perfor-
mance. However, in many cases, the target domain
is not known or can change dynamically. In such
cases, domain determination and domain specific
translation must be performed simultaneously dur-
ing the translation process. In the proposed method,
a bilingual corpus was clustered using an entropy re-
duction based method. The resulting bilingual clus-
ters are regarded as domains. Domain specific lan-
guage and translation models are created from the
data within each bilingual cluster. When a source
sentence is to be translated, its domain is first pre-
dicted. The domain prediction method selects the
cluster that assigns the lowest language model per-
plexity to the given source sentence. Translation
then proceeds using a language model and transla-
tion model that are specific to the domain predicted
for the source sentence.

In our experiments we used a corpus from the
travel domain (the subset of the BTEC corpus that
was used in IWSLT06). Our experimental results
clearly demonstrate the effectiveness of our method.
In the Japanese to English translation experiments,
the use of our proposed method improved the BLEU
score by 2.7 points (from 52.4 to 55.1). We com-
pared our approach to two previous methods, the

cluster language model and sentence mixture model.
In our experiments the proposed method yielded
higher scores than either of the competitive meth-
ods in terms of both BLEU and NIST. Moreover, our
method may also be augmented when an additional
monolingual corpus is avaliable for building the lan-
guage model. Using this approach we were able to
further improve translation performance on the data
from the NIST MT06 evaluation task.

A Sample of Cluster

A.1 Cluster 1

• E: do you do alterations
J: ���������	� � � � (naoshi wa shi tei
masu ka)

• E: what’s the newest color in this season
J: 
�� 
���� � ��� � � � (kotoshi no
shinshoku wa dore desu ka)

• E: are there any baseball games today
J: 
����	� 
���� ��� � � � � (kyou
yakyu no shiai wa ari masu ka)

• E: where’s the nearest perfumery
J: !#"$�%
 &�'�(��)�+* � � � (moyori
no kousui ten wa doko desu ka)

• E: how much is the breakfast
J: ,	-.�/� 021 � � � (choshoku wa ikura
desu ka)
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Table 4: Training and evaluation corpora used for comparison with previous methods

# of sentence Total words Vocabulary size
English Training 40K 315K 9.2K
Chinese Training 40K 304K 18.7K

Chinese Evaluation 489 5,110 1.3K

Table 6: Experimental results with monolingual corpus

BLEU NIST WER PER Meteor TER
Baseline 24.39 7.918 86.51 61.65 53.36 68.21
Proposed 24.95 8.030 85.89 61.27 53.86 67.48

A.2 Cluster 2

• E: mr. aoki yes a single room for two nights
J: ��������� � �
	���
�����������
������� � ��	

(aoki san desu ne ee shingu-
rurumu de 2 haku desu ne)

• E: may i have the key to room two fifteen
J:
�����! �" 
$# %$&'� � (2 1 5 gou

shitsu no kagi o kudasai)

• E: i’d like extension twenty four please
J: (*) �,+.- %0/21 � � � � (naisen 24
o o begai shi masu)

• E: the flight number is se one o three to tokyo
on the second of april
J: 354�687:9 �<;=
 �?>�@BA0C0D5E�6 
F�GIH'JLK -�M�� � 
 K � � (furaitonanba
wa tokyo iki s e 1 0 3 bin 4 gatsu futsuka no bin
desu)

• E: delta airlines flight one one two boarding is
delayed
J: N ��OQPSRT�U�$� K �0VXW�Y?Z	� � �
� � (derutakouku 1 1 2 bin wa tojo ga okure
tei masu)

B Sample of Different Translation Results

1. Ref: your room is number two ten
Base: your room this is room two o one
LM: your room is this is room two one zero
TM: your room is room two o one
LM+TM: your room is this is room two one
zero

2. Ref: where is a spot where there are a lot of fish
Base: i’m spot where is the lot of fish
LM: where is the spot are a lot of fish
TM: i’m spot where is the lot of fish
LM+TM: where is the spot are a lot of fish

3. Ref: i don’t like the design
Base: design i don’t like it
LM: i don’t like it design
TM: i don’t like the design
LM+TM: i don’t like the design

4. Ref: where can i contact you
Base: where contact if i may
LM: where contact if i can
TM: where can i contact
LM+TM: where can i contact

5. Ref: where is a police station where japanese is
understood
Base: japanese where’s the police station
LM: japanese where’s the police station
TM: where’s the police station where someone
understands japanese
LM+TM: where’s the police station where
someone understands japanese
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Richard Zens and Saša Hasan and Hermann Ney

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6 – Computer Science Department

RWTH Aachen University, D-52056 Aachen, Germany
{zens,hasan,ney}@cs.rwth-aachen.de

Abstract

We address the problem of training the free
parameters of a statistical machine transla-
tion system. We show significant improve-
ments over a state-of-the-art minimum er-
ror rate training baseline on a large Chinese-
English translation task. We present novel
training criteria based on maximum likeli-
hood estimation and expected loss compu-
tation. Additionally, we compare the maxi-
mum a-posteriori decision rule and the min-
imum Bayes risk decision rule. We show
that, not only from a theoretical point of
view but also in terms of translation qual-
ity, the minimum Bayes risk decision rule is
preferable.

1 Introduction

Once we specified the Bayes decision rule for statis-
tical machine translation, we have to address three
problems (Ney, 2001):

• the search problem, i.e. how to find the best
translation candidate among all possible target
language sentences;

• the modeling problem, i.e. how to structure
the dependencies of source and target language
sentences;

• the training problem, i.e. how to estimate the
free parameters of the models from the training
data.

Here, the main focus is on the training problem. We
will compare a variety of training criteria for statisti-

cal machine translation. In particular, we are consid-
ering criteria for the log-linear parameters or model
scaling factors. We will introduce new training cri-
teria based on maximum likelihood estimation and
expected loss computation. We will show that some
achieve significantly better results than the standard
minimum error rate training of (Och, 2003).

Additionally, we will compare two decision rules,
the common maximum a-posteriori (MAP) deci-
sion rule and the minimum Bayes risk (MBR) de-
cision rule (Kumar and Byrne, 2004). We will show
that the minimum Bayes risk decision rule results
in better translation quality than the maximum a-
posteriori decision rule for several training criteria.

The remaining part of this paper is structured
as follows: first, we will describe related work in
Sec. 2. Then, we will briefly review the baseline
system, Bayes decision rule for statistical machine
translation and automatic evaluation metrics for ma-
chine translation in Sec. 3 and Sec. 4, respectively.
The novel training criteria are described in Sec. 5
and Sec. 6. Experimental results are reported in
Sec. 7 and conclusions are given in Sec. 8.

2 Related Work

The most common modeling approach in statistical
machine translation is to use a log-linear combina-
tion of several sub-models (Och and Ney, 2002). In
(Och and Ney, 2002), the log-linear weights were
tuned to maximize the mutual information criterion
(MMI). The current state-of-the-art is to optimize
these parameters with respect to the final evaluation
criterion; this is the so-called minimum error rate
training (Och, 2003).

Minimum Bayes risk decoding for machine trans-
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lation was introduced in (Kumar and Byrne, 2004).
It was shown that MBR outperforms MAP decoding
for different evaluation criteria. Further experiments
using MBR for Bleu were performed in (Venugopal
et al., 2005; Ehling et al., 2007). Here, we will
present additional evidence that MBR decoding is
preferable over MAP decoding.

Tillmann and Zhang (2006) describe a percep-
tron style algorithm for training millions of features.
Here, we focus on the comparison of different train-
ing criteria.

Shen et al. (2004) compared different algorithms
for tuning the log-linear weights in a reranking
framework and achieved results comparable to the
standard minimum error rate training.

An annealed minimum risk approach is presented
in (Smith and Eisner, 2006) which outperforms both
maximum likelihood and minimum error rate train-
ing. The parameters are estimated iteratively using
an annealing technique that minimizes the risk of an
expected-BLEU approximation, which is similar to
the one presented in this paper.

3 Baseline System

In statistical machine translation, we are given a
source language sentence fJ

1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language sen-
tence eI

1 = e1 . . . ei . . . eI . Statistical decision the-
ory tells us that among all possible target language
sentences, we should choose the sentence which
minimizes the expected loss, also called Bayes risk:

êÎ
1 = argmin

I,eI
1

{ ∑
I′,e′I′

1

Pr(e′I
′

1 |fJ
1 ) · L(eI

1, e
′I′

1 )

}

Here, L(eI
1, e

′I′

1 ) denotes the loss function under
consideration. It measures the loss (or errors) of a
candidate translation eI

1 assuming the correct trans-
lation is e′I

′

1 . In the following, we will call this de-
cision rule the MBR rule (Kumar and Byrne, 2004).
This decision rule is optimal in the sense that any
other decision rule will result (on average) in at least
as many errors as the MBR rule. Despite this, most
SMT systems do not use the MBR decision rule. The
most common approach is to use the maximum a-
posteriori (MAP) decision rule. Thus, we select the
hypothesis which maximizes the posterior probabil-
ity Pr(eI

1|fJ
1 ):

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1|fJ
1 )

}
This is equivalent to the MBR decision rule under

a 0-1 loss function:

L0−1(eI
1, e

′I′

1 ) =
{

0 if eI
1 = e′I

′

1

1 else

Hence, the MAP decision rule is optimal for the
sentence or string error rate. It is not necessarily
optimal for other evaluation metrics such as the Bleu
score. One reason for the popularity of the MAP
decision rule might be that, compared to the MBR
rule, its computation is simpler.

The posterior probability Pr(eI
1|fJ

1 ) is modeled
directly using a log-linear combination of several
models (Och and Ney, 2002):

pλM
1

(eI
1|fJ

1 ) =
exp

(∑M
m=1 λmhm(eI

1, f
J
1 )

)
∑

I′,e′I′
1

exp
(∑M

m=1 λmhm(e′I
′

1 , fJ
1 )

)
(1)

This approach is a generalization of the source-
channel approach (Brown et al., 1990). It has the
advantage that additional models h(·) can be easily
integrated into the overall system.

The denominator represents a normalization fac-
tor that depends only on the source sentence fJ

1 .
Therefore, we can omit it in case of the MAP de-
cision rule during the search process and obtain:

êÎ
1 = argmax

I,eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}

Note that the denominator affects the results of the
MBR decision rule and, thus, cannot be omitted in
that case.

We use a state-of-the-art phrase-based translation
system similar to (Koehn, 2004; Mauser et al., 2006)
including the following models: an n-gram lan-
guage model, a phrase translation model and a word-
based lexicon model. The latter two models are used
for both directions: p(f |e) and p(e|f). Additionally,
we use a word penalty, phrase penalty and a distor-
tion penalty.
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In the following, we will discuss the so-called
training problem (Ney, 2001): how do we train the
free parameters λM

1 of the model? The current
state-of-the-art is to use minimum error rate train-
ing (MERT) as described in (Och, 2003). The free
parameters are tuned to directly optimize the evalu-
ation criterion.

Except for the MERT, the training criteria that
we will consider are additive at the sentence-level.
Thus, the training problem for a development set
with S sentences can be formalized as:

λ̂M
1 = argmax

λM
1

S∑
s=1

F (λM
1 , (eI

1, f
J
1 )s) (2)

Here, F (·, ·) denotes the training criterion that we
would like to maximize and (eI

1, f
J
1 )s denotes a sen-

tence pair in the development set. The optimization
is done using the Downhill Simplex algorithm from
the Numerical Recipes book (Press et al., 2002).
This is a general purpose optimization procedure
with the advantage that it does not require the deriva-
tive information. Before we will describe the details
of the different training criteria in Sec. 5 and 6, we
will discuss evaluation metrics in the following sec-
tion.

4 Evaluation Metrics

The automatic evaluation of machine translation is
currently an active research area. There exists a
variety of different metrics, e.g., word error rate,
position-independent word error rate, BLEU score
(Papineni et al., 2002), NIST score (Doddington,
2002), METEOR (Banerjee and Lavie, 2005), GTM
(Turian et al., 2003). Each of them has advantages
and shortcomings.

A popular metric for evaluating machine trans-
lation quality is the Bleu score (Papineni et al.,
2002). It has certain shortcomings for compar-
ing different machine translation systems, especially
if comparing conceptually different systems, e.g.
phrase-based versus rule-based systems, as shown
in (Callison-Burch et al., 2006). On the other hand,
Callison-Burch concluded that the Bleu score is re-
liable for comparing variants of the same machine
translation system. As this is exactly what we will
need in our experiments and as Bleu is currently the
most popular metric, we have chosen it as our pri-
mary evaluation metric. Nevertheless, most of the

methods we will present can be easily adapted to
other automatic evaluation metrics.

In the following, we will briefly review the com-
putation of the Bleu score as some of the training
criteria are motivated by this. The Bleu score is a
combination of the geometric mean of n-gram pre-
cisions and a brevity penalty for too short translation
hypotheses. The Bleu score for a translation hypoth-
esis eI

1 and a reference translation êÎ
1 is computed as:

Bleu(eI
1, ê

Î
1) = BP(I, Î) ·

4∏
n=1

Precn(eI
1, ê

Î
1)

1/4

with

BP(I, Î) =
{

1 if I ≥ Î

exp (1 − I/Î) if I < Î

Precn(eI
1, ê

Î
1) =

∑
wn

1

min{C(wn
1 |eI

1), C(wn
1 |êÎ

1)}∑
wn

1

C(wn
1 |eI

1)
(3)

Here, C(wn
1 |eI

1) denotes the number of occur-
rences of an n-gram wn

1 in a sentence eI
1. The de-

nominators of the n-gram precisions evaluate to the
number of n-grams in the hypothesis, i.e. I −n + 1.

The n-gram counts for the Bleu score computa-
tion are usually collected over a whole document.
For our purposes, a sentence-level computation is
preferable. A problem with the sentence-level Bleu
score is that the score is zero if not at least one four-
gram matches. As we would like to avoid this prob-
lem, we use the smoothed sentence-level Bleu score
as suggested in (Lin and Och, 2004). Thus, we in-
crease the nominator and denominator of Precn(·, ·)
by one for n > 1. Note that we will use the
sentence-level Bleu score only during training. The
evaluation on the development and test sets will be
carried out using the standard Bleu score, i.e. at the
corpus level. As the MERT baseline does not require
the use of the sentence-level Bleu score, we use the
standard Bleu score for training the baseline system.

In the following, we will describe several crite-
ria for training the log-linear parameters λM

1 of our
model. For notational convenience, we assume that
there is just one reference translation. Nevertheless,
the methods can be easily adapted to the case of mul-
tiple references.
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5 Maximum Likelihood

5.1 Sentence-Level Computation

A popular approach for training parameters is max-
imum likelihood estimation (MLE). Here, the goal
is to maximize the joint likelihood of the parameters
and the training data. For log-linear models, this re-
sults in a nice optimization criterion which is con-
vex and has a single optimum. It is equivalent to the
maximum mutual information (MMI) criterion. We
obtain the following training criterion:

FML−S(λM
1 , (eI

1, f
J
1 )) = log pλM

1
(eI

1|fJ
1 )

A problem that we often face in practice is that
the correct translation might not be among the can-
didates that our MT system produces. Therefore,
(Och and Ney, 2002; Och, 2003) defined the trans-
lation candidate with the minimum word-error rate
as pseudo reference translation. This has some bias
towards minimizing the word-error rate. Here, we
will use the translation candidate with the maximum
Bleu score as pseudo reference to bias the system
towards the Bleu score. However, as pointed out in
(Och, 2003), there is no reason to believe that the re-
sulting parameters are optimal with respect to trans-
lation quality measured with the Bleu score.

The goal of this sentence-level criterion is to dis-
criminate the single correct translation against all the
other ”incorrect” translations. This is problematic
as, even for human experts, it is very hard to define
a single best translation of a sentence. Furthermore,
the alternative target language sentences are not all
equally bad translations. Some of them might be
very close to the correct translation or even equiva-
lent whereas other sentences may have a completely
different meaning. The sentence-level MLE crite-
rion does not distinguish these cases and is therefore
a rather harsh training criterion.

5.2 N -gram Level Computation

As an alternative to the sentence-level MLE, we
performed experiments with an n-gram level MLE.
Here, we limit the order of the n-grams and assume
conditional independence among the n-gram prob-
abilities. We define the log-likelihood (LLH) of a
target language sentence eI

1 given a source language
sentence fJ

1 as:

FML−N (λM
1 , (eI

1, f
J
1 )) =

N∑
n=1

∑
wn

1∈eI
1

log pλM
1

(wn
1 |fJ

1 )

Here, we use the n-gram posterior probability
pλM

1
(wn

1 |fJ
1 ) as defined in (Zens and Ney, 2006).

The n-gram posterior distribution is smoothed using
a uniform distribution over all possible n-grams.

pλM
1

(wn
1 |fJ

1 ) = α ·
NλM

1
(wn

1 , fJ
1 )∑

w′n
1

NλM
1

(w′n
1 , fJ

1 )

+ (1 − α) · 1
V n

Here, V denotes the vocabulary size of the tar-
get language; thus, V n is the number of possi-
ble n-grams in the target language. We define
NλM

1
(wn

1 , fJ
1 ) as in (Zens and Ney, 2006):

NλM
1

(wn
1 , fJ

1 ) =
∑
I,eI

1

I−n+1∑
i=1

pλM
1

(eI
1|fJ

1 )·δ(ei+n−1
i , wn

1 )

(4)
The sum over the target language sentences is lim-
ited to an N -best list, i.e. the N best translation
candidates according to the baseline model. In this
equation, we use the Kronecker function δ(·, ·), i.e.
the term δ(ei+n−1

i , wn
1 ) evaluates to one if and only

if the n-gram wn
1 occurs in the target sentence eI

1

starting at position i.
An advantage of the n-gram level computation

of the likelihood is that we do not have to define
pseudo-references as for the sentence-level MLE.
We can easily compute the likelihood for the human
reference translation. Furthermore, this criterion has
the desirable property that it takes partial correctness
into account, i.e. it is not as harsh as the sentence-
level criterion.

6 Expected Bleu Score

According to statistical decision theory, one should
maximize the expected gain (or equivalently mini-
mize the expected loss). For machine translation,
this means that we should optimize the expected
Bleu score, or any other preferred evaluation metric.
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6.1 Sentence-Level Computation
The expected Bleu score for a given source sentence
fJ
1 and a reference translation êÎ

1 is defined as:

E[Bleu|êÎ
1, f

J
1 ] =

∑
eI
1

Pr(eI
1|fJ

1 ) · Bleu(eI
1, ê

Î
1)

Here, Pr(eI
1|fJ

1 ) denotes the true probability dis-
tribution over the possible translations eI

1 of the
given source sentence fJ

1 . As this probability dis-
tribution is unknown, we approximate it using the
log-linear translation model pλM

1
(eI

1|fJ
1 ) from Eq. 1.

Furthermore, the computation of the expected Bleu
score involves a sum over all possible translations
eI
1. This sum is approximated using an N -best list,

i.e. the N best translation hypotheses of the MT sys-
tem. Thus, the training criterion for the sentence-
level expected Bleu computation is:

FEB−S(λM
1 , (êÎ

1, f
J
1 )) =

∑
eI
1

pλM
1

(eI
1|fJ

1 )·Bleu(eI
1, ê

Î
1)

An advantage of the sentence-level computation is
that it is straightforward to plug in alternative eval-
uation metrics instead of the Bleu score. Note that
the minimum error rate training (Och, 2003) uses
only the target sentence with the maximum posterior
probability whereas, here, the whole probability dis-
tribution is taken into account.

6.2 N -gram Level Computation
In this section, we describe a more fine grained com-
putation of the expected Bleu score by exploiting its
particular structure. Hence, this derivation is spe-
cific for the Bleu score but should be easily adapt-
able to other n-gram based metrics. We can rewrite
the expected Bleu score as:

E[Bleu|êÎ
1, f

J
1 ] = E[BP|Î , fJ

1 ]

·
4∏

n=1

E[Precn|êÎ
1, f

J
1 ]1/4

We assumed conditional independence between
the brevity penalty BP and the n-gram precisions
Precn. Note that although these independence as-
sumptions do not hold, the resulting parameters
might work well for translation. In fact, we will

show that this criterion is among the best perform-
ing ones in Sec. 7. This type of independence as-
sumption is typical within the naive Bayes classifier
framework. The resulting training criterion that we
will use in Eq. 2 is then:

FEB−N (λM
1 , (êÎ

1, f
J
1 )) = EλM

1
[BP|Î , fJ

1 ]

·
4∏

n=1

EλM
1

[Precn|êÎ
1, f

J
1 ]1/4

We still have to define the estimators for the ex-
pected brevity penalty as well as the expected n-
gram precision:

EλM
1

[BP|Î , fJ
1 ] =

∑
I

BP(I, Î) · pλM
1

(I|fJ
1 )

EλM
1

[Precn|êÎ
1, f

J
1 ] = (5)∑

wn
1

pλM
1

(wn
1 |fJ

1 )
∑
c

min{c, C(wn
1 |êÎ

1)} · pλM
1

(c|wn
1 , fJ

1 )∑
wn

1

pλM
1

(wn
1 |fJ

1 )
∑
c

c · pλM
1

(c|wn
1 , fJ

1 )

Here, we use the sentence length posterior proba-
bility pλM

1
(I|fJ

1 ) as defined in (Zens and Ney, 2006)
and the n-gram posterior probability pλM

1
(wn

1 |fJ
1 ) as

described in Sec. 5.2. Additionally, we predict the
number of occurrences c of an n-gram. This infor-
mation is necessary for the so-called clipping in the
Bleu score computation, i.e. the min operator in the
nominator of formulae Eq. 3 and Eq. 5. The denom-
inator of Eq. 5 is the expected number of n-grams in
the target sentence, whereas the nominator denotes
the expected number of correct n-grams.

To predict the number of occurrences within a
translation hypothesis, we use relative frequencies
smoothed with a Poisson distribution. The mean of
the Poisson distribution µ(wn

1 , fJ
1 , λM

1 ) is chosen to
be the mean of the unsmoothed distribution.

pλM
1

(c|wn
1 , fJ

1 ) = β ·
NλM

1
(c, wn

1 , fJ
1 )

NλM
1

(wn
1 , fJ

1 )

+ (1 − β) · µ(wn
1 , fJ

1 , λM
1 )c · e−c

c!
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Table 1: Chinese-English TC-Star task: corpus
statistics.

Chinese English
Train Sentence pairs 8.3 M

Running words 197 M 238 M
Vocabulary size 224 K 389 K

Dev Sentences 1 019 2 038
Running words 26 K 51 K

Eval 2006 Sentences 1 232 2 464
Running words 30 K 62 K

2007 Sentences 917 1 834
Running words 21 K 45 K

with

µ(wn
1 , fJ

1 , λM
1 ) =

∑
c

c ·
NλM

1
(c, wn

1 , fJ
1 )

NλM
1

(wn
1 , fJ

1 )

Note that in case the mean µ(wn
1 , fJ

1 , λM
1 ) is zero,

we do not need the distribution pλM
1

(c|wn
1 , fJ

1 ). The
smoothing parameters α and β are both set to 0.9.

7 Experimental Results

7.1 Task Description
We perform translation experiments on the Chinese-
English TC-Star task. This is a broadcast news
speech translation task used within the European
Union project TC-Star1. The bilingual training
data consists of virtually all publicly available LDC
Chinese-English corpora. The 6-gram language
model was trained on the English part of the bilin-
gual training data and additional monolingual En-
glish parts from the GigaWord corpus. We use the
modified Kneser-Ney discounting as implemented
in the SRILM toolkit (Stolcke, 2002).

Annual public evaluations are carried out for this
task within the TC-Star project. We will report re-
sults on manual transcriptions, i.e. the so-called ver-
batim condition, of the official evaluation test sets of
the years 2006 and 2007. There are two reference
translations available for the development and test
sets. The corpus statistics are shown in Table 1.

7.2 Translation Results
In Table 2, we present the translation results
for different training criteria for the development

1http://www.tc-star.org

set and the two blind test sets. The reported
case-sensitive Bleu scores are computed using
the mteval-v11b.pl2 tool using two reference
translations, i.e. BLEUr2n4c. Note that already the
baseline system (MERT-Bleu) would have achieved
the first rank in the official TC-Star evaluation 2006;
the best Bleu score in that evaluation was 16.1%.

The MBR hypotheses were generated using the
algorithm described in (Ehling et al., 2007) on a
10 000-best list.

On the development data, the MERT-Bleu
achieves the highest Bleu score. This seems reason-
able as it is the objective of this training criterion.

The maximum likelihood (MLE) criteria perform
somewhat worse under MAP decoding. Interest-
ingly, the MBR decoding can compensate this to
a large extent: all criteria achieve a Bleu score of
about 18.9% on the development set. The bene-
fits of MBR decoding become even more evident
on the two test sets. Here, the MAP results for the
sentence-level MLE criterion are rather poor com-
pared to the MERT-Bleu. Nevertheless, using MBR
decoding results in very similar Bleu scores for most
of the criteria on these two test sets. We can there-
fore support the claim of (Smith and Eisner, 2006)
that MBR tends to have better generalization capa-
bilities.

The n-gram level MLE criterion seems to perform
better than the sentence-level MLE criterion, espe-
cially on the test sets. The reasons might be that
there is no need for the use of pseudo references
as described in Sec. 5 and that partial correctness
is taken into account.

The best results are achieved using the expected
Bleu score criteria described in Sec. 6. Here, the sen-
tence level and n-gram level variants achieve more
or less the same results. The overall improvement
on the Eval’06 set is about 1.0% Bleu absolute for
MAP decoding and 0.9% for MBR decoding. On
the Eval’07 set, the improvements are even larger,
about 1.8% Bleu absolute for MAP and 1.1% Bleu
for MBR. All these improvements are statistically
significant at the 99% level using a pairwise signifi-
cance test3.

Given that currently the most popular approach is
to use MERT-Bleu MAP decoding, the overall im-

2http://www.nist.gov/speech/tests/mt/resources/scoring.htm
3The tool for computing the significance test was kindly pro-

vided by the National Research Council Canada.
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Table 2: Translation results: Bleu scores [%] for the Chinese-English TC-Star task for various training
criteria (MERT: minimum error rate training; MLE: maximum likelihood estimation; E[Bleu]: expected
Bleu score) and the maximum a-posteriori (MAP) as well as the minimum Bayes risk (MBR) decision rule.

Development Eval’06 Eval’07
Decision Rule MAP MBR MAP MBR MAP MBR

Training Criterion MERT-Bleu (baseline) 19.5 19.4 16.7 17.2 22.2 23.0
MLE sentence-level 17.8 18.9 14.8 17.1 18.9 22.7

n-gram level 18.6 18.8 17.0 17.8 22.8 23.5
E[Bleu] sentence-level 19.1 18.9 17.5 18.1 23.5 24.1

n-gram level 18.6 18.8 17.7 17.6 24.0 24.0

provement is about 1.4% absolute for the Eval’06
set and 1.9% absolute on the Eval’07 set.

Note that the MBR decision rule almost always
outperforms the MAP decision rule. In the rare cases
where the MAP decision rule yields better results,
the difference in terms of Bleu score are small and
not statistically significant.

We also investigated the effect of the maximum
n-gram order for the n-gram level maximum like-
lihood estimation (MLE). The results are shown in
Figure 1. We observe an increase of the Bleu score
with increasing maximum n-gram order for the de-
velopment corpus. On the evaluation sets, however,
the maximum is achieved if the maximum n-gram
order is limited to four. This seems intuitive as the
Bleu score uses n-grams up to length four. However,
one should be careful here: the differences are rather
small, so it might be just statistical noise.

Some translation examples from the Eval’07 test
set are shown in Table 3 for different training criteria
under the maximum a-posteriori decision rule.

8 Conclusions

We have presented a systematic comparison of sev-
eral criteria for training the log-linear parameters of
a statistical machine translation system. Addition-
ally, we have compared the maximum a-posteriori
with the minimum Bayes risk decision rule.

We can conclude that the expected Bleu score
is not only a theoretically sound training criterion,
but also achieves the best results in terms of Bleu
score. The improvement over a state-of-the-art
MERT baseline is 1.3% Bleu absolute for the MAP
decision rule and 1.1% Bleu absolute for the MBR
decision rule for the large Chinese-English TC-Star
speech translation task.

1 2 3 4 5 6 7 8 9
max. n-gram order

14

16

18

20

22

24

Bl
eu

 [%
]

Dev
Eval'06
Eval'07

Figure 1: Effect of the maximum n-gram order on
the Bleu score for the n-gram level maximum like-
lihood estimation under the maximum a-posteriori
decision rule.

We presented two methods for computing the ex-
pected Bleu score: a sentence-level and an n-gram
level approach. Both yield similar results. We think
that the n-gram level computation has certain ad-
vantages: The n-gram posterior probabilities could
be computed from a word graph which would result
in more reliable estimates. Whether this pays off
in terms of translation quality is left open for future
work.

Another interesting result of our experiments is
that the MBR decision rule seems to be less affected
by sub-optimal parameter settings.

Although it is well-known that the MBR decision
rule is more appropriate than the MAP decision rule,
the latter is more popular in the SMT community
(and many other areas of natural language process-
ing). Our results show that it can be beneficial to
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Table 3: Translation examples from the Eval’07 test set for different training criteria and the maximum a-
posteriori decision rule. (MERT: minimum error rate training, MLE-S: sentence-level maximum likelihood
estimation, E[Bleu]: sentence-level expected Bleu)

Criterion Translation
Reference 1 Saving Private Ryan ranks the third on the box office revenue list which is also a movie that is

possible to win an 1999 Oscar award
2 Saving Private Ryan ranked third in the box office income is likely to compete in the nineteen

ninety-nine Oscar Awards
MERT-Bleu Saving private Ryan in box office income is possible ranked third in 1999 Oscar a film
MLE-S Saving private Ryan box office revenue ranked third is possible in 1999 Oscar a film
E[Bleu]-S Saving private Ryan ranked third in the box office income is also likely to run for the 1999

Academy Awards a film
Reference 1 The following problem is whether people in countries like China and Japan and other countries

will choose Euros rather than US dollars in international business activities in the future
2 The next question is whether China or Japan or other countries will choose to use Euros instead

of US dollars when they conduct international business in the future
MERT-Bleu The next question is in China or Japan international business activities in the future they will not

use the Euro dollar
MLE-S The next question was either in China or Japan international business activities in the future they

will adopt the Euro instead of the dollar
E[Bleu]-S The next question was in China or Japan in the international business activities in the future they

will adopt the Euro instead of the US dollar
Reference 1 The Chairman of the European Commission Jacques Santer pointed out in this September that the

financial crisis that happened in Russia has not affected people’s confidence in adopting the Euro
2 European Commission President Jacques Santer pointed out in September this year that

Russia’s financial crisis did not shake people’s confidence for planning the use of the Euro
MERT-Bleu President of the European Commission Jacques Santer on September this year that the Russian

financial crisis has not shaken people ’s confidence in the introduction of the Euro
MLE-S President of the European Commission Jacques Santer September that the Russian financial crisis

has not affected people ’s confidence in the introduction of the Euro
E[Bleu]-S President of the European Commission Jacques Santer pointed out that Russia ’s financial crisis

last September has not shaken people ’s confidence in the introduction of the Euro
Reference 1 After many years of friction between Dutch and French speaking Belgians all of them now hope

to emphasize their European identities
2 After years of friction between Belgium’s Dutch-speaking and French-speaking people they now

all wish to emphasize their European identity
MERT-Bleu Belgium’s Dutch-speaking and French-speaking after many years of civil strife emphasized that

they now hope that Europeans
MLE-S Belgium’s Dutch-speaking and francophone after years of civil strife that they now hope that

Europeans
E[Bleu]-S Belgium’s Dutch-speaking and French-speaking after many years of civil strife it is now want

to emphasize their European identity
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use the MBR decision rule. On the other hand, the
computation of the MBR hypotheses is more time
consuming. Therefore, it would be desirable to have
a more efficient algorithm for computing the MBR
hypotheses.
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Abstract 

Reordering model is important for the sta-

tistical machine translation (SMT). Current 

phrase-based SMT technologies are good at 

capturing local reordering but not global 

reordering. This paper introduces syntactic 

knowledge to improve global reordering 

capability of SMT system. Syntactic know-

ledge such as boundary words, POS infor-

mation and dependencies is used to guide 

phrase reordering. Not only constraints in 

syntax tree are proposed to avoid the reor-

dering errors, but also the modification of 

syntax tree is made to strengthen the capa-

bility of capturing phrase reordering. Fur-

thermore, the combination of parse trees 

can compensate for the reordering errors 

caused by single parse tree. Finally, expe-

rimental results show that the performance 

of our system is superior to that of the 

state-of-the-art phrase-based SMT system. 

1 Introduction 

In the last decade, statistical machine translation 

(SMT) has been widely studied and achieved good 

translation results. Two kinds of SMT system have 

been developed, one is phrase-based SMT and the 

other is syntax-based SMT.  

In phrase-based SMT systems (Koehn et al., 

2003; Koehn, 2004), foreign sentences are firstly 

segmented into phrases which consists of adjacent 

words. Then source phrases are translated into tar-

get phrases respectively according to knowledge 

usually learned from bilingual parallel corpus. Fi-

nally the most likely target sentence based on a 

certain statistical model is inferred by combining 

and reordering the target phrases with the aid of 

search algorithm. On the other hand, syntax-based 

SMT systems (Liu et al., 2006; Yamada et al., 

2001) mainly depend on parse trees to complete 

the translation of source sentence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A reordering example 

 

As studied in previous SMT projects, language 

model, translation model and reordering model are 

the three major components in current SMT sys-

tems. Due to the difference between the source and 

target languages, the order of target phrases in the 

target sentence may differ from the order of source 

phrases in the source sentence.  To make the trans-

lation results be closer to the target language style, 

a mathematic model based on the statistic theory is 

constructed to reorder the target phrases. This sta-

tistic model is called as reordering model. As 

shown in Figure 1, the order of the translations of 

“欧元” and “的” is changed. The order of the 
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translation of “欧元/的” and “大幅/升值” is al-

tered as well. The former reordering case with the 

smaller distance is usually referred as local reor-

dering and the latter with the longer distance reor-

dering as global reordering. Phrase-based SMT 

system can effectively capture the local word reor-

dering information which is common enough to be 

observed in training data. But it is hard to model 

global phrase reordering. Although syntactic 

knowledge used in syntax-based SMT systems can 

help reorder phrases, the resulting model is usually 

much more complicated than a phrase-based sys-

tem. 

There have been considerable amount of efforts 

to improve the reordering model in SMT systems, 

ranging from the fundamental distance-based dis-

tortion model (Och and Ney, 2004; Koehn et al., 

2003), flat reordering model (Wu, 1996; Zens et al., 

2004; Kumar et al., 2005), to lexicalized reordering 

model (Tillmann, 2004; Kumar et al., 2005; Koehn 

et al., 2005), hierarchical phrase-based model 

(Chiang, 2005), and maximum entropy-based 

phrase reordering model (Xiong et al., 2006). Due 

to the absence of syntactic knowledge in these sys-

tems, the ability to capture global reordering know-

ledge is not powerful. Although syntax-based SMT 

systems (Yamada et al., 2001; Quirk et al., 2005; 

Liu et al., 2006) are good at modeling global reor-

dering, their performance is subject to parsing er-

rors to a large extent. 

In this paper, we propose a new method to im-

prove reordering model by introducing syntactic 

information. Syntactic knowledge such as boun-

dary of sub-trees, part-of-speech (POS) and depen-

dency relation is incorporated into the SMT system 

to strengthen the ability to handle global phrase 

reordering. Our method is different from previous 

syntax-based SMT systems in which the translation 

process was modeled based on specific syntactic 

structures, either phrase structures or dependency 

relations. In our system, syntactic knowledge is 

used just to decide where we should combine adja-

cent phrases and what their reordering probability 

is. For example, according to the syntactic infor-

mation in Figure 1, the phrase translation combina-

tion should take place between “大幅” and “升值” 

rather than between “的” and “大幅”. Moreover, 

the non-monotone phrase reordering should occur 

between “欧元/的” and “大幅/升值” rather than 

between “欧元/的” and “大幅”. We train a maxi-

mum entropy model, which is able to integrate rich 

syntactic knowledge, to estimate phrase reordering 

probabilities. To enhance the performance of 

phrase reordering model, some modification on the 

syntax trees are also made to relax the phrase reor-

dering constraints. Additionally, the combination 

of other kinds of syntax trees is introduced to over-

come the deficiency of single parse tree. The expe-

rimental results show that the performance of our 

system is superior to that of the state-of-art phrase-

based SMT system.  

The roadmap of this paper is: Section 2 gives the 

related work. Section 3 introduces our model.  Sec-

tion 4 explains the generalization of reordering 

knowledge. The procedures of training and decod-

ing are described in Section 5 and Section 6 re-

spectively. The experimental results are shown in 

Section 7. Section 8 concludes the paper. 

2 Related Work  

The Pharaoh system (Koehn et al., 2004) is well 

known as the typical phrase-based SMT system. Its 

reordering model is designed to penalize transla-

tion according to jump distance regardless of lin-

guistic knowledge. This method just works well for 

language pairs that trend to have similar word-

orders and it has nothing to do with global reorder-

ing. 

A straightforward reordering model used in (Wu, 

1996; Zens et al., 2004; Kumar et al., 2005) is to 

assign constant probabilities to monotone reorder-

ing and non-monotone reordering, which can be 

flexible depending on the different language pairs. 

This method is also adopted in our system for non-

peer phrase reordering. 

The lexicalized reordering model was studied in 

(Tillmann, 2004; Kumar et al., 2005; Koehn et al., 

2005). Their work made a step forward in integrat-

ing linguistic knowledge to capture reordering. But 

their methods have the serious data sparseness 

problem. 

Beyond standard phrase-based SMT system, a 

CKY style decoder was developed in (Xiong et al., 

2006). Their method investigated the reordering of 

any two adjacent phrases. The limited linguistic 

knowledge on the boundary words of phrases is 

used to construct the phrase reordering model.  The 

basic difference to our method is that no syntactic 

knowledge is introduced to guide the global phrase 

reordering in their system. Besides boundary 
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words, our phrase reordering model also integrates 

more significant syntactic knowledge such as POS 

information and dependencies from the  syntax tree, 

which can avoid some intractable phrase reorder-

ing errors. 

A hierarchical phrase-based model was pro-

posed by (Chiang, 2005). In his method, a syn-

chronous CFG is used to reorganize the phrases 

into hierarchical ones and grammar rules are auto-

matically learned from corpus. Different from his 

work, foreign syntactic knowledge is introduced 

into the synchronous grammar rules in our method 

to restrict the arbitrary phrase reordering.   

Syntax-based SMT systems (Yamada et al., 

2001; Quirk et al., 2005; Liu et al., 2006) totally 

depend on syntax structures to complete phrase 

translation. They can capture global reordering by 

simply swapping the children nodes of a parse tree. 

However, there are also reordering cases which do 

not agree with syntactic structures. Furthermore, 

their model is usually much more complex than a 

phrase-based system. Our method exactly attempts 

to integrate the advantages of phrase-based SMT 

system and syntax-based SMT system to improve 

the phrase reordering model. Phrase translation in 

our system is independent of syntactic structures. 

3 The Model 

In our work, we focus on building a better reorder-

ing model with the help of source parsing informa-

tion. Although we borrow some fundamental ele-

ments from a phrase-based SMT system such as 

the use of bilingual phrases as basic translation unit, 

we are more interested in introducing syntactic 

knowledge to strengthen the ability to handle glob-

al reordering phenomena in translation.  

3.1 Definitions 

Given a foreign sentence f and its syntactic parse 

tree T, each leaf in T corresponds to a single word 

in f and each sub-tree of T exactly covers a phrase 

fi in f which is called as linguistic phrase.  Except 

linguistic phrases, any other phrase is regarded as 

non-linguistic phrase. The height of phrase fi is 

defined as the distance between the root node of T 

and the root node of the maximum sub-tree which 

exactly covers fi. For example, in Figure 1 the 

phrase “大幅” has the maximum sub-tree rooting 

at ADJP and its height is 3. The height of phrase 

“的” is 4 since its maximum sub-tree roots at 

ADBP instead of AD. If two adjacent phrases have 

the same height, we regard them as peer phrases.  

In our model, we make use of bilingual phrases 

as well, which refer to source-target aligned phrase 

pairs extracted using the same criterion as most 

phrase-based systems (Och and Ney, 2004). 

3.2 Model 

Similar to the work in Chiang (2005), our transla-

tion model can be formulated as a weighted syn-

chronous context free grammar derivation process. 

Let D be a derivation that generates a bilingual 

sentence pair f, e, in which f is the given source 

sentence, the statistical model that is used to pre-

dict the translation probability p(e|f) is defined over 

Ds as follows: 

𝑝 𝑒 𝑓 ∝ 𝑝 𝐷 ∝ 𝑝𝑙𝑚  𝑒 𝜆𝑙𝑚

×   𝜙𝑖 𝑋 → 𝛾, 𝛼 𝜆𝑖

𝑋→𝛾,𝛼∈𝐷

 

𝑖

 

where plm(e) is the language model, i(X ,) 
is a feature function defined over the derivation 

rule X,, and i is its weight.  

Although theoretically it is ideal for translation 

reorder modeling by constructing a synchronous 

context free grammar based on bilingual linguistic 

parsing trees, it is generally a very difficult task in 

practice. In this work we propose to use a small 

synchronous grammar constructed on the basis of 

bilingual phrases to model translation reorder 

probability and constraints by referring to the 

source syntactic parse trees. In the grammar, the 

source / target words serve as terminals, and the 

bilingual phrases and combination of bilingual 

phrases are presented with non-terminals. There 

are two non-terminals in the grammar except the 

start symbol S: Y and Z. The general derivation 

rules are defined as follows: 

a) Derivations from non-terminal to non-

terminals are restricted to binary branching 

forms; 

b) Any non-terminals that derives a list of termin-

als, or any combination of two non-terminals, 

if the resulting source string won’t cause any 

cross-bracketing problems in the source parse 

tree (it exactly corresponds to a linguistic 

phrase in binary parse trees), are reduced to Y; 

c) Otherwise, they are reduced to Z. 

Table 1 shows a complete list of derivation rules 

in our synchronous context grammar. The first nine 

grammar rules are used to constrain phrase reor-
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dering during phrase combination. The last two 

rules are used to represent bilingual phrases. Rule 

(10) is the start grammar rule to generate the entire 

sentence translation.  

 

Rule Name Rule Content 

Rule (1) YY1Y2, Y1Y2 

Rule (2) YY1Y2, Y2Y1 

Rule (3) YZ1Z2, Z1Z2 

Rule (4) YY1Z2,Y1Z2 

Rule (5) YZ1Y2, Z1Y2 

Rule (6) ZY1Z2, Y1Z2 

Rule (7) ZZ1Y2, Z1Y2 

Rule (8) ZZ1Z2, Z1Z2 

Rule (9) ZY1Y2, Y1Y2 

Rule (10) SY1,Y1 

Rule (11) ZZ1, Z1 

Rule (12) YY1,Y1 

 

Table 1: Synchronous grammar rules 

 

Rule (1) and Rule (2) are only applied to two ad-

jacent peer phrases. Note that, according to the 

constraints of foreign syntactic structures, only 

Rule (2) among all rules in Table 1 can be applied 

to conduct non-monotone phrase reordering in our 

framework. This can avoid arbitrary phrase reor-

dering. For example, as shown in Figure 1, Rule (1) 

is applied to the monotone combination of phrases 

“欧元” and “的”, and Rule (2) is applied to the 

non-monotone combination of phrases “欧元/的” 

and “大幅 /升值”. However, the non-monotone 

combination of “的” and “大幅” is not allowed in 

our method since there is no proper rule for it.  

Non-linguistic phrases are involved in Rule 

(3)~(9). We do not allow these grammar rules for 

non-monotone combination of non-peer phrases, 

which really harm the translation results as proved 

in experimental results. Although these rules vi-

olate the syntactic constraints, they not only pro-

vide the option to leverage non-linguistic transla-

tion knowledge to avoid syntactic errors but also 

take advantage of phrase local reordering capabili-

ties. Rule (3) and Rule (8) are applied to the com-

bination of two adjacent non-linguistic phrases. 

Rule (4)~(7) deal with the situation where one is a 

linguistic phrase and the other is a non-linguistic 

phrase. Rule (9) is applied to the combination of 

two adjacent linguistic phrases but their combina-

tion result is not a linguistic phrase.  

Rule (11) and Rule (12) are applied to generate 

bilingual phrases learned from training corpus. 

Table 2 demonstrates an example how these 

rules are applied to translate the foreign sentence 

“欧元/的/大幅/升值” into the English sentence 

“the significant appreciation of the Euro”. 

 

Step Partial derivations Rule 

1 SY1, Y1   (10) 

2 Y2Y3, Y3Y2 (2) 

3 Y4Y5Y3, Y3Y5Y4 (2) 

4 欧元 Y5Y3, Y3Y5 the Euro (12) 

5 欧元 的 Y3, Y3 of the Euro (12) 

6 欧元 的 Y6Y7, Y6Y7 of the Euro (1) 

7 欧元 的 大幅 Y7, the significant 

Y7 of  the Euro 

(12) 

8 欧元 的 大幅 升值, the signifi-

cant appreciation of  the Euro 

(12) 

 

Table 2: Example of application for rules  

 

However, there are always other kinds of bilin-

gual phrases extracted directly from training cor-

pus, such as 欧元, the Euro and 的 大幅 升

值, ’s significant appreciation, which can produce 

different candidate sentence translations. Here, the 

phrase “的 大幅 升值” is a non-linguistic phrase. 

The above derivations can also be rewritten as 

SY1, Y1Y2Z3,Y2Z3 欧 元 Z3, the Euro 

Z3欧元的 大幅 升值, the Euro ’s significant 

appreciation, where Rule (10), (4), (12) and (11) 

are applied respectively. 

3.3 Features 

Similar to the default features in Pharaoh (Koehn, 

Och and Marcu 2003), we used following features 

to estimate the weight of our grammar rules. Note 
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that different rules may have different features in 

our model. 

 The lexical weights plex(|) and plex(|) esti-

mating how well the words in  translate the 

words in . This feature is only applicable to 

Rule (11) and Rule (12). 

 The phrase translation weights pphr(|) and 

pphr(|) estimating how well the terminal 

words of  translate the terminal words of , 
This feature is only applicable to Rule (11) and 

Rule (12). 

 A word penalty exp(||), where || denotes the 

count of terminal words of . This feature is 

only applicable to Rule (11) and Rule (12). 

 A penalty exp(1) for grammar rules analogous 

to Pharaoh’s penalty which allows the model to 

learn a preference for longer or shorter deriva-

tions. This feature is applicable to all rules in 

Table 1. 

 Score for applying the current rule. This feature 

is applicable to all rules in Table 1. We will ex-

plain the score estimation in detail in Section 

3.4. 

3.4 Scoring of Rules 

Based on the syntax constraints and involved non-

terminal types, we separate the grammar rules into 

three groups to estimate their application scores 

which are also treated as reordering probabilities.  

For Rule (1) and Rule (2), they strictly comply 

with the syntactic structures. Given two peer 

phrases, we have two choices to use one of them. 

Thus, we use maximum entropy (ME) model algo-

rithm to estimate their reordering probabilities sep-

arately, where the boundary words of foreign 

phrases and candidate target translation phrases, 

POS information and dependencies are integrated 

as features. As listed in Table 3, there are totally 

twelve categories of features used to train the ME 

model. In fact, the probability of Rule (1) is just 

equal to the supplementary probability of Rule (2), 

and vice versa. 

For Rule (3)~(9), according to the syntactic 

structures, their application is determined since 

there is only one choice to complete reordering, 

which is similar to the “glue rules” in Chiang 

(2005). Due to the appearance of non-linguistic 

phrases, non-monotone phrase reordering is not 

allowed in these rules. We just assign these rules a 

constant score trained using our implementation of 

Minimum Error Rate Training (Och, 2003b), 

which is 0.7 in our system. 

For Rule (10)~(12), they are also determined 

rules since there is no other optional rules compet-

ing with them. Constant score is simply assigned to 

them as well, which is 1.0 in our system. 

 

Fea. Description 

LS1 First word of first foreign phrase 

LS2 First word of second foreign phrase 

RS1 Last word of first foreign phrase 

RS2 Last word of second foreign phrase 

LT1 First word of first target phrase 

LT2 First word of second target phrase 

RT1 Last word of first target phrase 

RT2 Last word of second target phrase 

LPos 
POS of the node covering first foreign 

phrase 

RPos 
POS of the node covering second foreign 

phrase  

Cpos 
POS of the node covering the combina-

tion of foreign phrases 

DP 
Dependency between the nodes covering 

two single foreign phrases respectively 

 

Table 3: Feature categories used for ME model 

4 The Generalization of Reordering 

Knowledge 

4.1 Enriching Parse Trees 

The grammar rules proposed in Section 3 are only 

applied to binary syntax tree nodes. For n-ary syn-

tax trees (n>2), some modification is needed to 

generate more peer phrases. As shown in Figure 

2(a), the syntactic tree of Chinese sentence “广东

省 / 高新技术 / 产品 / 出口 ” (Guangdong/high-

tech/products/export), parsed by the Stanford Pars-

er (Klein, 2003), has a 3-ary sub-tree. Referring to 

its English translation result “export of high-tech 

products in Guangdong”, we understand there 

should be a non-monotone combination between 

the phrases “广东省” and “高新技术/产品”. How-

ever, “高新技术/产品” is not a linguistic phrase 
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though its component phrases “高新技术” and “产

品” are peer phrases. To avoid the conflict with the 

Rule (2), we just add some extra virtual nodes in 

the n-ary sub-trees to make sure that only binary 

sub-trees survive in the modified parse tree. Figure 

2(b) is the modification result of the syntactic tree 

from Figure 2(a), where two virtual nodes with the 

new distinguishable POS of M are added.  

In general, we add virtual nodes for each set of 

the continuous peer phrases and let them have the 

same height. Thus, for a n-ary sub-tree, there are 

 
 1
1 )(n

i in = (n1)
2
/2 virtual nodes being added 

where n>2. The phrases exactly covered by the 

virtual nodes are called as virtual peer phrases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of syntax tree modification 

4.2 Combination of Parse Trees 

It is well known that parse errors in syntactic trees 

always are inescapable even if the state-of-the-art 

parser is used.  Incorrect syntactic knowledge may 

harm the reordering probability estimation. To mi-

nimize the impact of parse error of a single tree, 

more parse trees are introduced. To support the 

combination of parse trees, the synchronous 

grammar rules are applied independently, but they 

will compete against each other with the effect of 

other models such as language model. 

In our system, we combine the parse trees gen-

erated respectively by Stanford parser (Klein, 2003) 

and a dependency parser developed by (Zhou, 

2000). Compared with the Stanford parser, the de-

pendency parser only conducts shallow syntactic 

analysis. It is powerful to identify the base NPs and 

base VPs and their dependencies. Additionally, 

dependency parser runs much faster. For example, 

it took about three minutes for the dependency 

parser to parse one thousand sentences with aver-

age length of 25 words, but the Stanford parser 

needs about one hour to complete the same work. 

More importantly, as shown in the experimental 

results, the dependency parser can achieve the 

comparable quality of final translation results with 

Stanford parser in our system.  

5 The Decoder 

We developed a CKY style decoder to complete 

the sentence translation. A two-dimension array 

CA is constructed to store all the local candidate 

phrase translation and each valid cell CAij in CA 

corresponds to a foreign phrase where i is the 

phrase start position and j is the phrase end posi-

tion. The cells in CA are filled in a bottom-up way. 

Firstly we fill in smaller cells with the translation 

in bilingual phrases learned from corpus. Then the 

candidate translation in the larger cell CAij is gen-

erated based on the content in smaller adjacent 

cells CAik and CAk+1j with the monotone combina-

tion and non-monotone combination, where ikj. 

To reduce the cost of system resources, the well 

known pruning methods, such as histogram prun-

ing, threshold pruning and recombination, are used 

to only keep the top N candidate translation in each 

cell.  

6 Training 

Similar to most state-of-the-art phrase-based SMT 

systems, we use the SRI toolkit (Stolcke, 2002) for 

language model training and Giza++ toolkit (Och 

and Ney, 2003) for word alignment. For reordering 

model training, two kinds of parse trees for each 

foreign sentence in the training corpus were ob-

tained through the Stanford parser (Klein, 2003) 

and a dependency parser (Zhou, 2000). After that, 

we picked all the foreign linguistic phrases of the 

same sentence according to syntactic structures. 

Based on the word alignment results, if the aligned 

target words of any two adjacent foreign linguistic 

phrases can also be formed into two valid adjacent 

phrase according to constraints proposed in the 

phrase extraction algorithm by Och (2003a), they 

will be extracted as a reordering training sample. 

Finally, the ME modeling toolkit developed by 

Zhang (2004) is used to train the reordering model 

over the extracted samples. 
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7 Experimental Results and Analysis 

We conducted our experiments on Chinese-to-

English translation task of NIST MT-05 on a 

3.0GHz system with 4G RAM memory. The bilin-

gual training data comes from the FBIS corpus. 

The Xinhua news in GIGAWORD corpus is used 

to train a four-gram language model. The devel-

opment set used in our system is the NIST MT-02 

evaluation test data.  

For phrase extraction, we limit the maximum 

length of foreign and English phrases to 3 and 5 

respectively. But there is no phrase length con-

straint for reordering sample extraction. About 

1.93M and 1.1M reordering samples are extracted 

from the FBIS corpus based on the Stanford parser 

and the dependency parser respectively. To reduce 

the search space in decoder, we set the histogram 

pruning threshold to 20 and relative pruning thre-

shold to 0.1.  

In the following experiments, we compared our 

system performance with that of the other state-of-

the-art systems. Additionally, the effect of some 

strategies on system performance is investigated as 

well. Case-sensitive BLEU-4 score is adopted to 

evaluate system performance.  

7.1 Comparing with Baseline SMT system 

Our baseline system is Pharaoh (Koehn, 2004). 

Xiong’s system (Xiong, et al., 2006) which used 

ME model to train the reordering model is also 

regarded as a competitor. To have a fair compari-

son, we used the same language model and transla-

tion model for these three systems. The experimen-

tal results are showed in Table 4. 

 

System Bleu Score 

Pharaoh 0.2487 

Xiong’s System 0.2616 

Our System 0.2737 

Table 4: Performance against baseline system 

 

These three systems are the same in that the fi-

nal sentence translation results are generated by the 

combination of local phrase translation. Thus, they 

are capable of local reordering but not global reor-

dering. The phrase reordering in Pharaoh depends 

only on distance distortion information which does 

not contain any linguistic knowledge. The experi-

mental result shows that the performance of both 

Xiong’s system and our system is better than that 

of Pharaoh. It proves that linguistic knowledge can 

help the global reordering probability estimation. 

Additionally, our system is superior to Xiong’s 

system in which only use phrase boundary words 

to guide global reordering. It indicates that syntac-

tic knowledge is more powerful to guide global 

reordering than boundary words. On the other hand, 

it proves the importance of syntactic knowledge 

constraints in avoiding the arbitrary phrase reorder-

ing.  

7.2 Syntactic Error Analysis 

Rule (3)~(9) in Section 3 not only play the role to 

compensate for syntactic errors, but also take the 

advantage of the capability of capturing local 

phrase reordering. However, the non-monotone 

combination for non-peer phrases is really harmful 

to system performance. To prove these ideas, we 

conducted experiments with different constrains.  

 

Constraints Bleu Score 

All rules in Table 1 used  0.2737 

Allowing the non-monotone 

combination of non-peer phrases 

0.2647 

Rule (3)~(9) are prohibited 0.2591 

Table 5:  About non-peer phrase combination 

 

From the experimental results shown in Table 5, 

just as claimed in other previous work, the combi-

nation between non-linguistic phrases is useful and 

cannot be abandoned. On the other hand, if we re-

lax the constraint of non-peer phrase combination 

(that is, allowing non-monotone combination for 

on-peer phrases), some more serious errors in non-

syntactic knowledge is introduced, thereby degrad-

ing performance from 0.2737 to 0.2647. 

7.3 Effect of Virtual Peer Phrases 

As discussed in Section 4, for n-ary nodes (n>2) in 

the original syntax trees, the relationship among n-

ary sub-trees is always not clearly captured. To 

give them the chance of free reordering, we add the 

virtual peer nodes to make sure that the combina-

tion of a set of peer phrases can still be a peer 

phrase. An experiment was done to compare with 

the case where the virtual peer nodes were not 

added to n-ary syntax trees. The Bleu score 
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dropped to 26.20 from 27.37, which shows the vir-

tual nodes have great effect on system performance. 

7.4 Effect of Mixed Syntax Trees 

In this section, we conducted three experiments to 

investigate the effect of constituency parse tree and 

dependency parse tree. Over the same platform, we 

tried to use only one of them to complete the trans-

lation task. The experimental results are shown in 

Table 6.  

Surprisingly, there is no significant difference in 

performance. The reason may be that both parsers 

produce approximately equivalent parse results. 

However, the combination of syntax trees outper-

forms merely only one syntax tree. This suggests 

that the N-best syntax parse trees may enhance the 

quality of reordering model. 

 

Situation Bleu Score 

Dependency parser only 0.2667 

Stanford parser only 0.2670 

Mixed parsing trees 0.2737 

 

Table 6: Different parsing tree 

8 Conclusion and Future Work 

In this paper, syntactic knowledge is introduced 

to capture global reordering of SMT system. This 

method can not only inherit the advantage of local 

reordering ability of standard phrase-based SMT 

system, but also capture the global reordering as 

the syntax-based SMT system. The experimental 

results showed the effectiveness of our method. 

In the future work, we plan to improve the reor-

dering model by introducing N-best syntax trees 

and exploiting richer syntactic knowledge. 
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Abstract

In this paper, we present a machine learn-
ing approach to the identification and reso-
lution of Chinese anaphoric zero pronouns.
We perform both identification and resolu-
tion automatically, with two sets of easily
computable features. Experimental results
show that our proposed learning approach
achieves anaphoric zero pronoun resolution
accuracy comparable to a previous state-of-
the-art, heuristic rule-based approach. To
our knowledge, our work is the first to per-
form both identification and resolution of
Chinese anaphoric zero pronouns using a
machine learning approach.

1 Introduction

Coreference resolution is the task of determining
whether two or more noun phrases refer to the same
entity in a text. It is an important task in discourse
analysis, and successful coreference resolution ben-
efits many natural language processing applications
such as information extraction, question answering,
etc.

In the literature, much of the work on corefer-
ence resolution is for English text (Soon et al., 2001;
Ng and Cardie, 2002b; Yang et al., 2003; McCal-
lum and Wellner, 2005). Publicly available cor-
pora for coreference resolution are mostly in En-
glish, e.g., the Message Understanding Conference
tasks (MUC6 and MUC7)1. Relatively less work has

1http://www-nlpir.nist.gov/related_
projects/muc/

been done on coreference resolution for Chinese.
Recently, the ACE Entity Detection and Tracking
(EDT) task2 included annotated Chinese corpora for
coreference resolution. Florian et al. (2004) and
Zhou et al. (2005) reported research on Chinese
coreference resolution.

A prominent phenomenon in Chinese coreference
resolution is the prevalence of zero pronouns. A zero
pronoun (ZP) is a gap in a sentence which refers
to an entity that supplies the necessary information
for interpreting the gap. An anaphoric zero pro-
noun (AZP) is a zero pronoun that corefers to one
or more overt noun phrases present in the preced-
ing text. Zero pronouns occur much more frequently
in Chinese compared to English, and pose a unique
challenge in coreference resolution for Chinese. For
example, Kim (2000) conducted a study to compare
the use of overt subjects in English, Chinese, and
other languages. He found that the use of overt sub-
jects in English is over 96%, while this percentage is
only 64% for Chinese, indicating that zero pronouns
(lack of overt subjects) are much more prevalent in
Chinese.

Chinese zero pronouns have been studied in lin-
guistics research (Li and Thompson, 1979; Li,
2004), but only a small body of prior work in com-
putational linguistics deals with Chinese zero pro-
noun identification and resolution (Yeh and Chen,
2004; Converse, 2006). To our knowledge, all pre-
vious research on zero pronoun identification and
resolution in Chinese uses hand-engineered rules or
heuristics, and our present work is the first to per-
form both identification and resolution of Chinese

2http://www.nist.gov/speech/tests/ace/
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anaphoric zero pronouns using a machine learning
approach.

The rest of this paper is organized as follows. In
Section 2, we give the task definition, and describe
the corpus used in our evaluation and the evaluation
metrics. We then give an overview of our approach
in Section 3. Anaphoric zero pronoun identification
and resolution are presented in Section 4 and 5, re-
spectively. We present the experimental results in
Section 6 and related work in Section 7, and con-
clude in Section 8.

2 Task Definition

2.1 Zero Pronouns

As mentioned in the introduction, a zero pronoun
(ZP) is a gap in a sentence which refers to an en-
tity that supplies the necessary information for in-
terpreting the gap. A coreferential zero pronoun is a
zero pronoun that corefers to one or more overt noun
phrases present in the same text.

Just like a coreferential noun phrase, a coreferen-
tial zero pronoun can also corefer to a noun phrase
in the preceding or following text, called anaphoric
or cataphoric, respectively. Most coreferential zero
pronouns in Chinese are anaphoric. In the corpus
used in our evaluation, 98% of the coreferential zero
pronouns have antecedents. Hence, for simplicity,
we only consider anaphoric zero pronouns (AZP)
in this work. That is, we only attempt to resolve a
coreferential zero pronoun to noun phrases preced-
ing it.

Here is an example of an anaphoric zero pronoun
from the Penn Chinese TreeBank (CTB) (Xue et al.,
2005) (sentence ID=300):
[¥) å� �¬ �ñ=

[China electronic products import and export
�4]1 �� �� Ç φ2

trade]1 continues increasing , φ2

3 � �ñ= {

represents total import and export ’s
�­ �� Þ� �

ratio continues increasing .
The anaphoric zero pronoun φ2 is coreferring to

noun phrase 1. The corresponding parse tree is
shown in Figure 1. In CTB, IP refers to a simple
clause that does not have complementizers. CP, on
the other hand, refers to a clause introduced by a

complementizer.
Resolving an anaphoric zero pronoun to its cor-

rect antecedent in Chinese is a difficult task. Al-
though gender and number information is available
for an overt pronoun and has proven to be useful
in pronoun resolution in prior research, a zero pro-
noun in Chinese, unlike an overt pronoun, provides
no such gender or number information. At the same
time, identifying zero pronouns in Chinese is also a
difficult task. There are only a few overt pronouns
in English, Chinese, and many other languages, and
state-of-the-art part-of-speech taggers can success-
fully recognize most of these overt pronouns. How-
ever, zero pronouns in Chinese, which are not ex-
plicitly marked in a text, are hard to be identified.
Furthermore, even if a gap is a zero pronoun, it may
not be coreferential. All these difficulties make the
identification and resolution of anaphoric zero pro-
nouns in Chinese a challenging task.

2.2 Corpus

We use an annotated third-person pronoun and zero
pronoun coreference corpus from Converse (2006)3.
The corpus contains 205 texts from CTB 3.0, with
annotations done directly on the parse trees. In
the corpus, coreferential zero pronouns, third-person
pronouns, and noun phrases are annotated as coref-
erence chains. If a noun phrase is not in any coref-
erence chain, it is not annotated. If a coreference
chain does not contain any third-person pronoun or
zero pronoun, the whole chain is not annotated.

A zero pronoun is not always coreferential with
some noun phrases. In the corpus, if a zero pronoun
is not coreferential with any overt noun phrases, it
is assigned one of the following six categories: dis-
course deictic (#DD), existential (#EXT), inferrable
(#INFR), ambiguity between possible referents in
the text (#AMB), arbitrary reference (#ARB), and
unknown (#UNK). For example, in the following
sentence, φ3 refers to an event in the preceding text,
with no corresponding antecedent noun phrase. So
no antecedent is annotated, and φ3 is labeled as
#DD.
&¬ ÍÖ cL �T

Hong Kong famous syndicate Cheung Kong

3The data set we obtained is a subset of the one used in Con-
verse (2006).
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Figure 1: The parse tree which corresponds to the anaphoric zero pronoun example in Section 2.1.

"� � º�- *� 4Qu

Holdings , Peregrine as strategic
=ýV . é� ê

investors already purchased LE
� ý� ;ø � ºI���

“ Shenye Holdings ” twenty percent
{ øY Ç φ3 ßI 'n ñ

’s share , φ3 fully reflects out
=ýV { fe �

investors ’s confidence .

Converse (2006) assumed that all correctly identi-
fied AZPs and the gold standard parse trees are given
as input to her system. She applied the Hobbs algo-
rithm (Hobbs, 1978) to resolve antecedents for the
given AZPs.

In our case, we are only interested in zero pro-
nouns with explicit noun phrase referents. If a coref-
erence chain does not contain AZPs, we discard the
chain. We also discard the 6 occurrences of zero
pronouns with split antecedents, i.e., a zero pronoun
with an antecedent that is split into two separate
noun phrases. A total of 383 AZPs remain in the
data set used in our experiments.

Among the 205 texts in the data set, texts 1–155
are reserved for training, while the remaining texts
(156–205) are used for blind test. The statistics of
the data set are shown in Table 1.

Training Test
Doc ID 1–155 156–205
# Docs 155 50

# Characters 96,338 15,710
# Words 55,348 9,183

# ZPs 665 87
# AZPs 343 40

Table 1: Statistics of training and test data sets.

2.3 Evaluation Metrics

As in previous work on pronoun resolution, we eval-
uate the accuracy in terms of recall, precision, and F-
measure. The overall recall and precision on the test
set are computed by micro-averaging over all test in-
stances. The overall F-measure is then computed.

For AZP identification, recall and precision are
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defined as:

RecallAZP =
# AZP Hit

# AZP in Key

PrecisionAZP =
# AZP Hit

# AZP in Response

An “AZP Hit” occurs when an AZP as reported in
the response (system output) has a counterpart in the
same position in the gold standard answer key.

For AZP resolution, recall and precision are de-
fined as:

RecallResol =
# Resol Hit

# AZP in Key

PrecisionResol =
# Resol Hit

# AZP in Response

A “Resol Hit” occurs when an AZP is correctly iden-
tified, and it is correctly resolved to a noun phrase
that is in the same coreference chain as provided in
the answer key.

3 Overview of Our Approach

In this section, we give an overview of our approach
for Chinese AZP identification and resolution.

Typically, the input raw texts need to be pro-
cessed by a Chinese word segmenter, a part-of-
speech (POS) tagger, and a parser sequentially. Al-
though our approach can apply directly to machine-
generated parse trees from raw text, in order to min-
imize errors introduced by preprocessing, and focus
mainly on Chinese zero pronoun resolution, we use
the gold standard word segmentation, POS tags, and
parse trees provided by CTB. However, we remove
all null categories and functional tags from the CTB
gold standard parse trees. Figure 1 shows a parse
tree after such removal.

A set of zero pronoun candidates and a set of noun
phrase candidates are then extracted. If W is the left-
most word in the word sequence that is spanned by
some VP node, the gap G that is immediately to the
left of W qualifies as a ZP candidate. For example,
in Figure 1, gaps immediately to the left of the two
occurrences of��, and��,3,Þ� are all ZP
candidates. All noun phrases4 that are either maxi-
mal NPs or modifier NPs qualify as NP candidates.

4A noun phrase can either be NP or QP in CTB. We simply
use NP hereafter.

For example, in Figure 1, NP1, NP2, NP3, NP5, and
NP6 are all NP candidates. With these ZP and NP
candidate extractions, the recalls of ZPs and NPs are
100% and 98.6%, respectively.

After the ZP and NP candidates are determined,
we perform AZP identification and resolution in a
sequential manner. We build two classifiers, the
AZP identification classifier and the AZP resolution
classifier. The AZP identification classifier deter-
mines the position of AZPs, while the AZP resolu-
tion classifier finds an antecedent noun phrase for
each AZP identified by the AZP identification clas-
sifier. Both classifiers are built using machine learn-
ing techniques. The features of both classifiers are
largely syntactic features based on parse trees and
are easily computed.

We perform 5-fold cross validation on the train-
ing data set to tune parameters and to pick the best
model. We then retrain the best model with all data
in the training data set, and apply it to the blind test
set. In the following sections, all accuracies reported
on the training data set are based on 5-fold cross val-
idation.

4 Anaphoric Zero Pronoun Identification

We use machine learning techniques to build the
AZP identification classifier. The features are de-
scribed in Table 2.

In the feature description, Z is the ZP candidate.
Let Wl and Wr be the words immediately to the left
and to the right of Z , respectively, P the parse tree
node that is the lowest common ancestor node of Wl

and Wr, Pl and Pr the child nodes of P that are an-
cestor nodes of Wl and Wr, respectively. If Z is the
first gap of the sentence, Wl, P , Pl, and Pr are all
NA. Furthermore, let V be the highest VP node in
the parse tree that is immediately to the right of Z ,
i.e., the leftmost word in the word sequence that is
spanned by V is Wr. If Z is not the first gap in the
sentence, define the ceiling node C to be P , other-
wise to be the root node of the parse tree. In the
example shown in Figure 1, for the ZP candidate φ2

(which is immediately to the left of 3), Wl, Wr,
P , Pl, Pr, V , and C are “Ç”, 3, IP1, IP2, IP3,
VP3, and IP1, respectively. Its feature values are also
shown in Table 2.

To train an AZP identification classifier, we gen-
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Feature Description φ2

First Gap If Z is the first gap in the sentence, T; else F. F
Pl Is NP If Z is the first gap in the sentence, NA; otherwise, if Pl is an NP node,

T; else F.
F

Pr Is VP If Z is the first gap in the sentence, NA; otherwise, if Pr is a VP node, T;
else F.

F

Pl Is NP & Pr Is VP If Z is the first gap in the sentence, NA; otherwise, if Pl is an NP node
and Pr is a VP node, T; else F.

F

P Is VP If Z is the first gap in the sentence, NA; otherwise, if P is a VP node, T;
else F.

F

IP-VP If in the path from Wr to C , there is a VP node such that its parent node
is an IP node, T; else F.

T

Has Ancestor NP If V has an NP node as ancestor, T; else F. T
Has Ancestor VP If V has a VP node as ancestor, T; else F. F
Has Ancestor CP If V has a CP node as ancestor, T; else F. T

Left Comma If Z is the first gap, NA; otherwise if Wl is a comma, T; else F. T
Subject Role If the grammatical role of Z is subject, S; else X. X

Clause If V is in a matrix clause, an independent clause, a subordinate clause, or
none of the above, the value is M, I, S, X, respectively.

I

Is In Headline If Z is in the headline of the text, T; else F. F

Table 2: Features for anaphoric zero pronoun identification. The feature values of φ2 are shown in the last
column.

erate training examples from the training data set.
All ZP candidates in the training data set generate
training examples. Whether a training example is
positive or negative depends on whether the ZP can-
didate is an AZP.

After generating all training examples, we train
an AZP identification classifier using the J48 deci-
sion tree learning algorithm in Weka5. During test-
ing, each ZP candidate is presented to the learned
classifier to determine whether it is an AZP. We con-
duct experiments to measure the performance of the
model learned. The results of 5-fold cross validation
on the training data set are shown in Table 3.

Model R P F
Heuristic 99.7 15.0 26.1

AZP Ident 19.8 51.1 28.6
AZP Ident (r = 8) 59.8 44.3 50.9

Table 3: Accuracies of AZP identification on the
training data set under 5-fold cross validation.

We use heuristic rules as a baseline for compar-
5http://www.cs.waikato.ac.nz/ml/weka/

ison. The rules used by the heuristic model are as
follows. For a node T in the parse tree, if

1. T is a VP node; and

2. T ’s parent node is not a VP node; and

3. T has no left sibling, or its left sibling is not an
NP node,

then the gap that is immediately to the left of the
word sequence spanned by T is an AZP. This simple
AZP identification heuristic achieves an F-measure
of 26.1%.

Imbalanced Training Data

From Table 3, one can see that the F-measure
of the machine-learned AZP identification model is
28.6%, which is only slightly higher than baseline
heuristic model. It has a relatively high precision,
but much lower recall. The problem lies in the
highly imbalanced number of positive and negative
training examples. Among all the 155 texts in the
training set, there are 343 positive and 10,098 neg-
ative training examples. The ratio r of the number
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of negative training examples to the number of pos-
itive training examples is 29.4. A classifier trained
on such highly imbalanced training examples tends
to predict more testing examples as negative exam-
ples. This explains why the precision is high, but the
recall is low.

To overcome this problem, we vary r by varying
the weight of the positive training examples, which
is equivalent to sampling more positive training ex-
amples. The values of r that we have tried are
1, 2, 3, . . . , 29. The larger the value of r, the higher
the precision, and the lower the recall. By tuning
r, we get a balance between precision and recall,
and hence an optimal F-measure. Figure 2 shows
the effect of tuning r on AZP identification. When
r = 8, the optimal F-measure is 50.9%, which is
much higher than the F-measure without tuning r.
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Figure 2: Effect of tuning r on AZP identification

Ng and Cardie (2002a) reported that the accura-
cies of their noun phrase anaphoricity determination
classifier were 86.1% and 84.0% for the MUC6 and
MUC7 data sets, respectively. Noun phrases provide
much fruitful information for anaphoricity identifi-
cation. However, useful information such as gen-
der, number, lexical string, etc, is not available in
the case of zero pronouns. This makes AZP identifi-
cation a much more difficult task, and hence it has a
relatively low accuracy.

5 Anaphoric Zero Pronoun Resolution

In anaphoric zero pronoun resolution, we also use
machine learning techniques to build a classifier.

The features are described in Table 4.
In the feature description, Z is the anaphoric zero

pronoun that is under consideration, and A is the po-
tential NP antecedent for Z . V is the same as in AZP
identification. The feature values of the pair NP1 and
φ2 (the gap immediately to the left of3) in Figure
1 are shown in Table 4.

To train the AZP resolution classifier, we generate
training examples in the following way. An AZP Z

and its immediately preceding coreferential NP an-
tecedent A in the gold standard coreference chain
form a positive training example. Between A and Z ,
there are other NP candidates. Each one of these NP
candidates, together with Z , form a negative training
example. This is similar to the approach adopted in
Soon et al. (2001). We also train the AZP resolution
classifier using the J48 decision tree learning algo-
rithm.

After building both AZP identification and resolu-
tion classifiers, we perform AZP identification and
resolution in a sequential manner. For a ZP candi-
date Z , the AZP identification classifier determines
whether Z is an AZP. If it is an AZP, all NP can-
didates that are to the left of Z in textual order are
considered as potential antecedents. These potential
antecedents are tested from right to left. We start
from the NP candidate A1 that is immediately to the
left of Z . A1 and Z form a pair. If the pair is classi-
fied as positive by the resolution classifier, A1 is the
antecedent for Z . If it is classified as negative, we
proceed to the NP candidate A2 that is immediately
to the left of A1, and test again. The process contin-
ues until we find an antecedent for Z , or there is no
more NP candidate to test.

This right-to-left search attempts to find the clos-
est correct antecedent for an AZP. We do not choose
the best-first search strategy proposed by Ng and
Cardie (2002b). This is because we generate train-
ing examples and build the resolution classifier by
pairing each zero pronoun with its closest preceding
antecedent. In addition, a zero pronoun is typically
not too far away from its antecedent. In our data set,
92.6% of the AZPs have antecedents that are at most
2 sentences apart. Our experiment shows that this
closest-first strategy performs better than the best-
first strategy for Chinese AZP resolution.

Table 5 shows the experimental results of 5-fold
cross validation on the training data set. For com-
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Feature Description NP1-φ2

Features between Z and A

Dist Sentence If Z and A are in the same sentence, 0; if they are one sentence
apart, 1; and so on.

0

Dist Segment If Z and A are in the same segment (where a segment is a se-
quence of words separated by punctuation marks including “Ç”,
“Ö”, “�”, “¼”, and “Ú”), 0; if they are one segment apart, 1; and
so on.

1

Sibling NP VP If Z and A are in different sentences, F; Otherwise, if both A and
Z are child nodes of the root node, and they are siblings (or at most
separated by one comma), T; else F.

F

Closest NP If A is the closest preceding NP candidate to Z , T; else F. T
Features on A

A Has Anc NP If A has an ancestor NP node, T; else F. F
A Has Anc NP In IP If A has an ancestor NP node which is a descendant of A’s lowest

ancestor IP node, T; else F.
F

A Has Anc VP If A has an ancestor VP node, T; else F. F
A Has Anc VP In IP If A has an ancestor VP node which is a descendant of A’s lowest

ancestor IP node, T; else F.
F

A Has Anc CP If A has an ancestor CP node, T; else F. F
A Grammatical Role If the grammatical role of A is subject, object, or others, the value is

S, O, or X, respectively.
S

A Clause If A is in a matrix clause, an independent clause, a subordinate
clause, or none of the above, the value is M, I, S, X, respectively.

M

A Is ADV If A is an adverbial NP, T; else F. F
A Is TMP If A is a temporal NP, T; else F. F

A Is Pronoun If A is a pronoun, T; else F. F
A Is NE If A is a named entity, T; else F. F

A In Headline If A is in the headline of the text, T; else F. F
Features on Z

Z Has Anc NP If V has an ancestor NP node, T; else F. T
Z Has Anc NP In IP If V has an ancestor NP node which is a descendant of V’s lowest

ancestor IP node, T; else F.
F

Z Has Anc VP If V has an ancestor VP node, T; else F. F
Z Has Anc VP In IP If V has an ancestor VP node which is a descendant of V’s lowest

ancestor IP node, T; else F.
F

Z Has Anc CP If V has an ancestor CP node, T; else F. T
Z Grammatical Role If the grammatical role of Z is subject, S; else X. X

Z Clause If V is in a matrix clause, an independent clause, a subordinate
clause, or none of the above, the value is M, I, S, X, respectively.

I

Z Is First ZP If Z is the first ZP candidate in the sentence, T; else F. F
Z Is Last ZP If Z is the last ZP candidate in the sentence, T; else F. F
Z In Headline If Z is in the headline of the text, T; else F. F

Table 4: Features for anaphoric zero pronoun resolution. The feature values of the pair NP1 and φ2 are
shown in the last column.
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parison, we show three baseline systems. In all three
baseline systems, we do not perform AZP identifica-
tion, but directly apply the AZP resolution classifier.
In the first baseline, we apply the AZP resolution
classifier on all ZP candidates. In the second base-
line, we apply the classifier only on ZPs annotated
in the gold standard, instead of all ZP candidates.
In the third baseline, we further restrict it to resolve
only AZPs. The F-measures of the three baselines
are 2.5%, 27.6%, and 40.6% respectively.

Model R P F
All ZP Candidates 40.5 1.3 2.5

Gold ZP 40.5 20.9 27.6
Gold AZP 40.5 40.6 40.6

AZP Ident (r=8 t=0.5) 23.6 17.5 20.1
AZP Ident (r=11 t=0.6) 22.4 20.3 21.3

Table 5: Accuracies of AZP resolution on the train-
ing data set under 5-fold cross validation.

Tuning of Parameters
Ng (2004) showed that an NP anaphoricity iden-
tification classifier with a cut-off threshold t =
0.5 pruned away many correct anaphoric NPs and
harmed the overall recall. By varying t, the overall
resolution F-measure was improved. We adopt the
same tuning strategy and accept a ZP candidate ZPi

as an AZP and proceed to find its antecedent only if
P (ZPi) ≥ t. The possible values for t that we have
tried are 0, 0.05, 0.1, . . . , 0.95.

In Section 4, we show that r = 8 yields the best
AZP identification F-measure. When we fix r = 8
and vary t, the overall F-measure for AZP resolution
is the best at t = 0.65, as shown in Figure 3. We then
try tuning r and t at the same time. An overall op-
timal F-measure of 21.3% is obtained when r = 11
and t = 0.6. We compare this tuned F-measure with
the F-measure of 20.1% at r = 8 and t = 0.5, ob-
tained without tuning t. Although the improvement
is modest, it is statistically significant (p < 0.05).

6 Experimental Results

In the previous section, we show that when r = 11
and t = 0.6, our sequential AZP identification and
resolution achieves the best F-measure under 5-fold
cross validation on the 155 training texts. In or-
der to utilize all available training data, we generate
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Figure 3: Effect of tuning t on AZP resolution

training examples for the AZP identification classi-
fier with r = 11, and generate training examples
for the AZP resolution classifier, on all 155 train-
ing texts. Both classifiers are trained again with the
newly generated training examples. We then apply
both classifiers with anaphoricity identification cut-
off threshold t = 0.6 to the blind test data. The
results are shown in Table 6.

R P F
27.5 24.4 25.9

Table 6: Accuracies of AZP resolution on blind test
data.

By utilizing all available information on the gold
standard parse trees, Converse (2006) finds an an-
tecedent for each AZP given that all AZPs are cor-
rectly input to her system. The accuracy of her rule-
based approach is 43.0%. For comparison, we de-
termine the antecedents for AZPs in the gold stan-
dard annotation, under 5-fold cross validation on all
205 texts in the corpus. The recall, precision, and F-
measure are 42.3%, 42.7%, and 42.5%, respectively.
This shows that our proposed machine learning ap-
proach for Chinese zero pronoun resolution is com-
parable to her state-of-the-art rule-based approach.

7 Related Work

Converse (2006) assumed that the gold standard
Chinese anaphoric zero pronouns and the gold stan-
dard parse trees of the texts in Penn Chinese Tree-
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Bank (CTB) were given as input to her system,
which performed resolution of the anaphoric zero
pronouns using the Hobbs algorithm (Hobbs, 1978).
Her system did not identify the anaphoric zero pro-
nouns automatically.

Yeh and Chen (2004) proposed an approach for
Chinese zero pronoun resolution based on the Cen-
tering Theory (Grosz et al., 1995). Their system
used a set of hand-engineered rules to perform zero
pronoun identification, and resolved zero pronouns
with a set of hand-engineered resolution rules.

In Iida et al. (2006), they proposed a ma-
chine learning approach to resolve zero pronouns in
Japanese using syntactic patterns. Their system also
did not perform zero pronoun identification, and as-
sumed that correctly identified zero pronouns were
given as input to their system.

The probabilistic model of Seki et al. (2002) both
identified and resolved Japanese zero pronouns, with
the help of a verb dictionary. Their model needed
large-scale corpora to estimate the probabilities and
to prevent data sparseness.

Ferrández and Peral (2000) proposed a hand-
engineered rule-based approach to identify and re-
solve zero pronouns that are in the subject grammat-
ical position in Spanish.

8 Conclusion

In this paper, we present a machine learning ap-
proach to the identification and resolution of Chi-
nese anaphoric zero pronouns. We perform both
identification and resolution automatically, with two
sets of easily computable features. Experimen-
tal results show that our proposed learning ap-
proach achieves anaphoric zero pronoun resolution
accuracy comparable to a previous state-of-the-art,
heuristic rule-based approach. To our knowledge,
our work is the first to perform both identification
and resolution of Chinese anaphoric zero pronouns
using a machine learning approach.

Obviously, there is much room for improvement.
In future, we plan to apply our model directly on
machine-generated parse trees. We also plan to clas-
sify non-coreferential zero pronouns into the six cat-
egories.
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Abstract

This paper explores a parsimonious ap-
proach to Data-Oriented Parsing. While al-
lowing, in principle, all possible subtrees
of trees in the treebank to be productive
elements, our approach aims at finding a
manageable subset of these trees that can
accurately describe empirical distributions
over phrase-structure trees. The proposed
algorithm leads to computationally much
more tracktable parsers, as well as linguis-
tically more informative grammars. The
parser is evaluated on the OVIS and WSJ
corpora, and shows improvements on effi-
ciency, parse accuracy and testset likelihood.

1 Data-Oriented Parsing
Data-Oriented Parsing (DOP) is a framework for
statistical parsing and language modeling originally
proposed by Scha (1990). Some of its innovations,
although radical at the time, are now widely ac-
cepted: the use of fragments from the trees in an
annotated corpus as the symbolic grammar (now
known as “treebank grammars”, Charniak, 1996)
and inclusion of all statistical dependencies between
nodes in the trees for disambiguation (the “all-
subtrees approach”, Collins & Duffy, 2002).

The best known instantiations of the DOP-
framework are due to Bod (1998; 2001; 2003),
using the Probabilistic Tree Substitution Grammar
(PTSG) formalism. Bod has advocated a maximal-
ist approach to DOP, inducing grammars that con-
tain all subtrees of all parse trees in the treebank,

and using them to parse unknown sentences where
all of these subtrees can potentially contribute to the
most probable parse. Although Bod’s empirical re-
sults have been excellent, his maximalism poses im-
portant computational challenges that, although not
necessarily unsolvable, threaten both the scalability
to larger treebanks and the cognitive plausibility of
the models.

In this paper I explore a different approach to
DOP, that I will call “Parsimonious Data-Oriented
Parsing” (P-DOP). This approach remains true to
Scha’s original program, by allowing, in principle,
all possible subtrees of trees in the treebank to be
the productive elements. But unlike Bod’s approach,
P-DOP aims at finding a succinct subset of such el-
ementary trees, chosen such that it can still accu-
rately describe observed distributions over phrase-
structure trees. I will demonstrate that P-DOP leads
to computationally more tracktable parsers, as well
as linguistically more informative grammars. More-
over, as P-DOP is formulated as an enrichment
of the treebank Probabilistic Context-free Grammar
(PCFG), it allows for much easier comparison to al-
ternative approaches to statistical parsing (Collins,
1997; Charniak, 1997; Johnson, 1998; Klein and
Manning, 2003; Petrov et al., 2006).

2 Independence Assumptions in PCFGs
Parsing with treebank PCFGs, in its simplest form,
involves the following steps: (1) a treebank is cre-
ated by extracting phrase-structure trees from an an-
notated corpus, and split in a train- and a testset;
(2) a PCFG is read off from all productions in the
trainset trees, with weights proportional to their fre-
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quency in the treebank (the “relative frequency esti-
mate”); (3) a standard PCFG parser is used to find
for each yield of the test-set trees the most probable
parse; (4) these parses are compared to the test-set
trees to count matching brackets, labels and trees.

PCFGs incorporate a strong statistical indepen-
dence assumption: that the expansion of a nonter-
minal node is only dependent on the node’s label.
All state-of-the-art wide-coverage parsers relax this
assumption in some way, for instance by (i) chang-
ing the parser in step (3), such that the application
of rules is conditioned on other steps in the deriva-
tion process (Collins, 1997; Charniak, 1997), or
by (ii) enriching the nonterminal labels in step (1)
with context-information (Johnson, 1998; Klein and
Manning, 2003), along with suitable backtransforms
in step (4). These two approaches often turn out to
be equivalent, although for some conditionings it is
not trivial to work out the equivalent enrichment and
vice versa, especially when combined with smooth-
ing. Interesting recent work has focused on the au-
tomatic induction of enrichments (Matzuzaki et al.,
2005; Prescher, 2005), leading to extremely accurate
parsers (Petrov et al., 2006).

DOP relaxes the independence assumption by
changing the class of probabilistic grammars in-
duced in step (2). In DOP1 (Bod, 1998), a PTSG
is induced, which consists, subject to some heuris-
tic constraints, of all subtrees1 of the treebank
trees with a weight proportional to their frequency.
PTSGs allow multiple derivations to yield the same
parse; in DOP1 the sum of their probabilities gives
the probability of the parse. The relation between
DOP and enrichment/conditioning models was clar-
ified by Joshua Goodman, who devised an efficient
PCFG transform of the DOP1 model (Goodman,
1996). The size of the PCFG resulting from this
transform is linear in the number of nonterminals to-
kens in the corpus. Goodman’s transform, in com-
bination with a range of heuristics, allowed Bod
(2003) to run the DOP model on the Penn Treebank
WSJ benchmark and obtain some of the best results
obtained with a generative model.

The computational challenges for DOP are far
from solved, however. The difference with style

1A subtree t
′ of a parse tree t is a tree such that every node

i
′ in t

′ equals a node i in t, and i
′ either has no daughters or the

same daughter nodes as i.

(ii) enrichment is that we derive many more rules
from every original tree than the number of CFG-
productions it contains. This is one reason why the
relative frequency estimator for DOP is inconsistent
(Johnson, 2002). But worse, perhaps, the size of the
grammar remains gigantic2 , making it difficult for
many in the field to replicate Bod’s results.

In this paper, we develop a parsimonious ap-
proach to DOP, that avoids many of the computa-
tional problems of the maximalist approach but tries
to maintain its excellent empirical performance. Our
approach starts, both conceptually and technically,
with an analysis of where the PCFG independence
assumption breaks down when modeling empirical
distributions. In section 2 we derive equations for
the expected frequency of arbitrary subtrees under a
distribution defined by a given PCFG, and use them
to measure how much observed subtree-frequencies
deviate from expectation. In section 4 we generalize
this analysis to PTSGs. In section 5 we discuss an al-
gorithm for estimating PTSGs from a treebank, that
is based on minimizing the differences between ex-
pected and observed subtree-frequencies. We then
proceed with discussing PTSGs induced from var-
ious treebanks, and in section 6 the use of these
PTSGs for parsing.

3 Deviations from a PCFG distribution
PCFGs can be viewed as PTSGs where the elemen-
tary trees are restricted to depth 1; we therefore start
by repeating the definition of PTSGs (Bod, 1998),
and use notation appropriate for PTSGs throughout.
An PTSG is a 5-tuple 〈Vn, Vt, S, T, w〉, where Vn is
the set of non-terminal symbols; Vt is the set of ter-
minal symbols; S ∈ Vn is the start symbol; T is a set
of elementary trees, such that for every τ ∈ T the
unique root node r(τ) ∈ Vn, the (possibly empty)
set of internal nodes i(τ) ⊂ Vn and the set of leaf
nodes l(τ) ⊂ Vn ∪ Vt; finally, w : T → [0, 1] is a
probability (weight) distribution over the elementary
trees, such that for any τ ∈ T ,

∑
τ ′∈R(τ) w(τ ′) = 1,

where R(τ) is the set of elementary trees with the
same root label as τ . It will prove useful to also
define the set of all possible trees θ over the defined

2Sections 2-21 of WSJ contain 1676821 productions. Of
these,106 are lexical productions, and 36151 top-productions,
leaving approx. 640000 internal productions which yield about
2.5 × 106 rules in Goodman’s transform.
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alphabets (with the same conditions on root, internal
and leaf nodes as for T ), and the set of all possible
complete parse trees Θ (with r(t) = S and all leaf
nodes l(t) ⊂ Vt). Obviously, T ⊂ θ and Θ ⊂ θ.

The substitution operation ◦ is defined if the left-
most nonterminal leaf in τ1 is identical to the root
of τ2. Performing substitution τ1 ◦ τ2 yields t3, if t3
is identical to τ1 with the leftmost nonterminal leaf
replaced by τ2. A derivation is a sequence of ele-
mentary trees, where the first tree τ ∈ T has root-
label S and every next tree combines through sub-
stitution with the result of the substitutions before
it. In this paper, we are only concerned with gram-
mars that define proper probability distributions over
trees, such that the probability of all derivations sum
up to 1 and no probability mass gets lost in deriva-
tions that never reach a terminal yield. That is, we
require (if t(d) is the tree derived by derivation d):

∑

d:t(d)∈Θ

P (d) = 1. (1)

For simplicity, but without loss of generality, we as-
sume there are no recursions on the start symbol.

In this section, we restrict ourselves to PCFG dis-
tributions, and thus to a T with only depth 1 trees.
The probability of a PCFG rule (conditioned on its
left-hand side) in the conventional notation, P (A 7→
αβ . . . γ|A), now corresponds to the probability of a
depth 1 tree (conditioned on its root nonterminal):

P




A

α β . . . γ
|A




Of course, the probability of a (complete) deriva-
tion is simply the product of the (conditional) prob-
abilities of the rules in the derivation. It is useful to
consider, for a given grammar G generating a cor-
pus of N trees, the expected frequency of visiting
nonterminal state X:

EF (X) =

{
N if X = S∑

τ EF (τ)C(X, l(τ)) otherwise
(2)

where C(X, l(τ)) gives the number of occurrences
of nonterminal X among the leaves of elementary
tree τ . Furthermore, the expected usage frequency
of τ is given by

EF (τ) = EF (r(τ))P (τ |r(τ))

= EF (r(τ))w(τ) (3)

Substituting eq (3) into (2) yields a system of
|Vn| linear equations, that can be straightforwardly
solved using standard methods.

We are interested in the empirical deviations from
the distribution defined by a given grammar (for in-
stance, the treebank PCFG), such that we can adjust
the grammar to better model the training data (whilst
avoiding overfitting). In line with the general DOP
approach, we would like to measure this deviation
for every possible subtree. Of course, the condi-
tional probability of an arbitrary subtree is simply
the product of the rule probabilities. The expected
frequency of a subtree is the expected frequency of
its root state, times the conditional probability:

EF (t) = EF (r(t))P (t|r(t)) (4)

Using these equations, we can measure for each
observed subtree in the corpus, the difference be-
tween observed frequency and expected frequency.
This will give high values for overrepresented and
frequent constructions in the corpus, such as sub-
trees corresponding to revenues rose CD % to $ CD
million from $ CD million last year, details weren’t
disclosed, NP-SUBJ declined to comment and con-
tracted and negated auxiliaries such as won’t, can’t
and don’t. The top-10 overrepresented subtrees in
the WSJ20-corpus are given in figure 1.
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Figure 1: Top-10 overrepresented subtrees (excluding subtrees
with punctuation) in sentences of length ≤ 20, including punc-
tuation, in sections 2-21 of the WSJ-corpus (transformed to
Chomsky Normal Form, whereby newly created nonterminals
are marked with an @). Measured are the deviations from
the expected frequencies according to the treebank PCFG (of
this selection), as in equation (4) but with EF (r(t)) replaced
by the empirical frequency o(r(t)). Observed frequencies are
(deviations between brackets): 461 (+408.2), 554 (+363.8),
556 (+361.7), 479 (+348.2), 332 (+314.3), 415 (+313.3), 460
(+305.1), 389 (+283.0), 426 (+277.2), 295 (+266.1).

Of course, there are also many subtrees that oc-
cur much less frequently than the grammar predicts,
such as for instance subtrees corresponding to in-
frequent or non-occurring variations of the frequent
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ones, e.g. revenues rose CD from $ CD million from
$ CD million. Underrepresented subtrees found in
the WSJ20 corpus, include (VP (VBZ ”IS”) NP)),
which occurs only once, even though it is predicted
152.7 times more often (in all other VP’s with “IS”,
the NP is labeled NP-PRD); and (PP (IN ”IN”) NP)),
which occurs 38 times but is expected 121.0 times
more often (IN NP-constructions are usually labeled
PP-LOC).

Given such statistics, how do we improve the
grammar such that it better models the data? PCFG
enrichment models (Klein and Manning, 2003;
Schmid, 2006) split (and merge) nonterminals;
in automatic enrichment methods (Prescher, 2005;
Petrov et al., 2006) these transformations are per-
formed so as to maximize data likelihood (under
some constraints). The treebank PCFG-distribution
thereby changes, such that the deviations from fig-
ure 1 mostly disappear. For instance, the overrepre-
sentation of “but” as the sentence-initial CC in the
second and third subtree of that figure, is dealt with
in (Schmid, 2006) by splitting the CC-category into
CC/BUT and CC/AND. However, also when a range
of such transformations is applied, some subtrees are
still greatly overrepresented. Figure 2 gives the top-
10 overrepresented subtrees of the same treebank,
enriched with Schmid’s enrichment program tmod.

In DOP, larger subtrees can be explicitly repre-
sented as units. This is the approach we take in
this paper, which involves switching from PCFGs
to PTSGs. However, we cannot simply add over-
represented trees to the treebank PCFG; as is clear
from figure 2, many of the overrepresented subtrees
are in fact spurious variations of the same construc-
tions (e.g. “$ CD million”, “a JJ NN”). To reach our
goal of finding the minimal set of subtrees that ac-
curately models the empirical distribution over trees,
we will thus need to consider a series of PTSGs, find
the subtrees that are still overrepresented and adapt
the grammar accordingly.

4 Deviations from an PTSG distribution
4.1 Expected Frequencies: An Example
Once we allow T to contain elementary trees of
depth larger than 1, the equations above become
more difficult. The reason is that now multiple
derivations may give rise to the same parse tree, and,
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Figure 2: Top-10 overrepresented subtrees (excluding subtrees
with punctuation) in the WSJ20 corpus, enriched with the tmod
program (Schmid, 2006). Empirical frequencies are as fol-
lows (deviations between brackets): 262 (+207.6), 235 (+158.4)
207 (+156.4), 228 (+153.5), 237 (+141.0), 190 (+134.2), 153
(+126.5), 166 (+117.8), 139 (+110.0), 111 (+103.8).

as a corrolary, a specific subtree can emerge in many
different ways. Consider an PTSG that consists of
all subtrees of the trees t1, t2 and t3 in figure 3, and
the expected frequency of the subtree t∗.
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x

t3 =S

A
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y

t
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C D

y

Figure 3: Three example treebank trees and the focal subtree

It is clear that t∗ might arise in many different
ways. For instance, it emerges in the derivation with
elementary trees τ1 ◦τ4 ◦τ5 from figure 4, but also in
derivations τ2 ◦ τ4 and τ3 ◦ τ5. Note that in none of
these derivations elementary tree t∗ itself was used.

τ1 =S
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x

B

C D

τ2 = S
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y

τ3 = S

A

x

B

C

y

D

τ4 = C

x

τ5 =D

y
τ6 =B

C D

Figure 4: Some elementary trees extracted from the trees in fig 3

4.2 Expected Frequency: Usage & Occurrence
Hence, when using PTSGs, we need to distinguish
between the expected usage frequency of an elemen-
tary tree (written as Eu(τ)), and the expected occur-
rence frequency (Eo(t)) of the corresponding sub-
tree. Moreover, not all nonterminal nodes in a de-
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rived tree are necessarily “visited” substitution sites.
The expected frequency of visiting a nonterminal
state X as substitution site depends on the usage fre-
quencies:

EF (X) =

{
N if X = S∑

τ Eu(τ)C(X, l(τ)) otherwise
(5)

Relating usage frequencies to weights is still sim-
ple (compare equation 3):

Eu(τ) = EF (r(τ))w(τ) (6)

And hence: w(τ) = Eu(τ)/
∑

τ ′:r(τ)=r(τ ′) Eu(τ ′).
The expected frequency of a complete tree is not

simply a product anymore, but the sum of the differ-
ent derivation probabilities (where der(t) gives the
set of derivations of t):

Eo(t) =
∑

d∈der(t)

∏

τ∈d

w(τ) if t ∈ Θ (7)

4.3 Expected Frequency of Arbitrary Subtrees
Most complex is the expected occurrence frequency
of an arbitrary subtree t. From the example above it
is clear that it is not necessary that the root of t is a
substitution site. Analogous to equation (4), we need
the expected frequency of arriving at some state σ in
the derivation process that is still consistent with ex-
panding to something that contains t, and multiply it
with the probability that this expansion indeed hap-
pens:

Eo(t) =
∑

σ

EF (σ)P (t|σ) (8)

To be able to define the states σ, we redefine the
set of derivations der(t) of a subtree t, such that the
derivations der(t∗) of our example tree from figure 3
are the following: d1 = B ◦ τ6 ◦ τ5, d2 = τ6 ◦ τ5,
d3 = B ◦ t∗ and d4 = t∗. Only if a derivation starts
with a single nonterminal is the root node consid-
ered a substitution site. The states σ correspond to
the first elements of each of these derivations, i.e.
〈B, τ6, B, t∗〉.

As was clear from the example in section 4.1,
we need to consider all supertrees of the trees in
the derivation of t for calculating the expected fre-
quency of a state and the probability of expanding
from that state to form t. It is useful to distin-
guish, as do Bod & Kaplan (Bod, 1998, ch. 10) two

types of supertree-subtree relations, depending on
whether nodes must be removed from the root down-
ward, or from the leaves (“frontier”) upward. “Root-
subtrees” of t are those subtrees headed by any of
t’s internal nodes and everything below. “Frontier-
subtrees” are those subtrees headed by t’s root-node,
pruned at any number (≥ 0) of internal nodes. Using
◦ to indicate left-most substitution, we can write:

• t1 is a root-subtree of t1, and t1 is a root-subtree
of t2, if ∃t3, such that t3 ◦ t1 = t2;

• t1 is a frontier-subtree of t1, and t1 is a frontier-
subtree of t2, if ∃t3 . . . tn, such that t1 ◦ t3 . . . ◦
tn = t2.

• t′ is the x-frontier-subtree of t, t′ = fsx(t), if
x is a set of nodes in t, such that if t is pruned
at each i ∈ x it equals t′.

We use the notation st(t) for the set of subtrees of
t, rs(t) for the set of root-subtrees of t and fs(t) for
the set of frontier-subtrees of t. Thus defined, the set
of all subtrees of t is the set of all frontier-subtrees
of all root-subtrees of t: st(t) = {t′|∃t′′(t′′ ∈
rs(t) ∧ t′ ∈ fs(t′′)). We further define the sets of
root-supertrees, frontier-supertrees, and supertrees
as follows: (i) f̂ sx(t) = {t′|t = fsx(t

′)}, (ii)
f̂ s(t) = {t′|t ∈ fs(t′)} (iii) ŝt(t) = {t′|t ∈ st(t′)}.

If there are only terminals in the yield of t, the ex-
pected frequency of a state σ is now simply the sum
of the expected usage frequencies of those elemen-
tary trees that have σ at their frontier (i.e. that σ is a
root-subtree of):

EF (σ) =
∑

τ ′:σ∈rs(τ ′)

Eu(τ ′) if l(t) ⊂ Vt (9)

If there are nonterminals in the yield of t, as in the
example, we need to also consider elementary trees
that have these nonterminals already expanded. To
see why, consider again the example of section 4.1
and check that also elementary tree τ3 contributes to
the expected frequency of t∗. If we take this into
account, and write nt(t) for the nonterminal nodes
in the yield of t, the final expression for the expected
frequency of state σ becomes:

EF (σ) =
∑

τ∈f̂s(σ)

∑

τ ′∈ ̂rsnt(t)(τ)

Eu(τ ′) (10)
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Finally, the probability of expanding a state σ
such that t emerges is again simplest if t has no non-
terminals as leaves. Remember that a state σ was the
first element of a derivation of t; the probability of
expanding to t is simply the product of the weights
of the remaining elementary trees in the derivation
(if states are unique for a derivation):

P (t|σ) =
∏

τ∈rest(d)

w(τ) if l(t) ⊂ Vt (11)

If there are nonterminals among the leaves of t,
however, we need again to sum over possible expan-
sions at those nonterminal leaves:

P (t|σ) =
∏

τ∈rest(d)

∑

τ ′∈ ̂fsx(t)(τ)

w
(
τ ′

)
(12)

Substituting equations (9) and (12) into equa-
tion (8) gives a general expression for the expected
occurrence frequency of an arbitary subtree t:

Eo(t) =
∑

d∈der(t)

( ∏

τ∈

rest(d)

∑

τ ′∈ ̂fsx(t)(τ)

w
(
τ ′

)

∑

τ∈

r̂s(first(d))

∑

τ ′∈ ̂fsx(t)(τ)

Eu(τ ′)

)
. (13)

5 Minimizing deviations: estimation
The equations just derived can be used to learn an
PTSG from a treebank, using an estimation proce-
dure we call “push-n-pull” (pnp). This procedure
was described in some detail elsewhere (Zuidema,
2006b); here I only sketch the basic idea. Given
an initial setting of the parameters (all depth 1 el-
ementary trees at their empirical frequency), the
method calculates the expected frequency of all
complete and incomplete trees. If a tree t’s ex-
pected frequency Eo(t) is higher than its observed
frequency o(t), the method subtracts the difference
from the tree’s score, and distributes (“pushes”) it
over the elementary trees involved in all its deriva-
tions (der(t)). If it is lower, it “pulls” the difference
from all its derivations.

The “score” of an elementary tree τ is the al-
gorithm’s estimate of the usage frequency u(τ).
The amounts of score that are pushed or pulled are

capped by the requirement that ∀τ u(τ) ≥ 0; more-
over, the learning rate parameter γ determines the
fraction of the expected-observed difference that is
actually pushed or pulled. Finally, the method in-
cludes a bias (B) for moving probability mass to
smaller elementary trees, to avoid overfitting (its ef-
fects become smaller as more data gets observed).

Because smaller elementary trees will be involved
in other derivations as well, the push and pull opera-
tions will shift probabilities between different parse
trees. Suppose a given complete tree is the only tree
with nonzero frequency of all trees that can be built
from the same components. This tree will continue
to “pull” until it has in fact reached its appropriate
frequency. Similarly, if a given tree does have zero
observed frequency, it will continue to leak score to
other derivations with the same components.
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Figure 5: Top-10 elementary trees of depth>1, excluding those
with punctuation, from running pnp on the enriched WSJ20.

The output of the push-n-pull algorithm is an
PTSG, with the same set of elementary trees as the
DOP models of Bod (1998; 2001). This set is very
large. However, unlike those existing DOP models,
the score distribution over these elementary trees is
extremely skewed: relatively few trees receive high
scores, and there is a very long tail of trees with low
scores. In Zuidema (2006b) we give a qualitative
analysis of the subtrees with the highest scores as in-
duced from the ATIS treebank, which include many
of its frequent constructions including show me NP,
I would like NP, flights from NP to NP. The top-10
larger elementary trees that result from running pnp
on a randomly selected trainset of about 8000 sen-
tences of the Dutch OVIS treebank (Veldhuijzen van
Zanten et al., 1999), can be glossed as: Yes, from NP
to NP, No thank you very much, I want to VP-INF,
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No thank you, I want PP to VP-INF, I want PP, I
want Prep NP-LOC Prep NP-LOC, Yes please, At
CD o’clock. In figure 5 we give the top-10 elemen-
tary trees resulting from the WSJ20-corpus.

Figure 6: Log-log curves of (i) subtree frequencies against rank
(for 106 subtrees from WSJ20), (ii) pnp-scores against rank,
and (iii) the same for the top-10000 depth>1-subtrees.

Figure 6 shows some characteristics of this last
grammar. Shown are log-log plots, such as com-
monly used to visualise the Zipf-distributions in nat-
ural language. The top curve plots log(frequency)
against log(rank) for each subtree of the trees in
the corpus, which shows the approximate Zipfian
behavior. The second curve from above plots the
log(score) against log(rank) for these same subtrees.
As can be observed, the score-distribution follows
the frequency distribution only for the most frequent
subtrees (all of depth 1), but then deviates from it
downwards. The bottom curve – an almost straight
line in this log-log space – gives the log(score) vs
log(rank) of subtrees with a depth>1.

Figure 7: Subtree frequencies against pnp-scores, including
subsets pnp1000 (dark/blue) and pnp10000 (light/green).

Figure 7 further illustrates the difference between
the score- and the frequency-distributions, by plot-

ting for each subtree, log-frequency (y-axis) against
log-score (x-axis). The subtrees clearly fall into two
categories: those where the scores correlate strongly
with frequency (the depth 1 subtrees) and the larger
subtrees that vary greatly in how strong scores corre-
late with frequency. Only larger subtrees that receive
relatively high scores should be used in parsing.

Weights are proportional to subtree-frequencies
in the DOP1 and related “maximalist” models.
The differences between the frequency and score-
distributions thus illustrate a very important differ-
ence between maximalist and parsimonious DOP.
The characteristics of the score distribution allow
P-DOP to throw away most of the subtrees without
significantly affecting the distribution over complete
parse trees that the grammar defines. This is the ap-
proach we take for evaluating parsing performance:
we take as our baseline the treebank PCFG, and then
add the n larger elementary trees with the highest
scores from our induced PTSG.

6 Parsing Results

For our parsing results we use BitPar, a fast
and freely available general PCFG parser (Schmid,
2004). In our first experiments we used the OVIS
corpus, with semantic tags and punctuation re-
moved, and all trees (train- and testset) binarized.
As a baseline experiment, we read off the treebank
PCFG as decribed in section 2. The recall, precision
and complete match results are in table 1, labeled tb-
pcfg. For comparison, we also show the results ob-
tained with two versions of the DOP model, DOP1
(Bod, 1998) and DOP* (Zollmann and Sima’an,
2005) on the same treebank.

We ran the pnp program as described above on
the trainset, with parameters B = 1.0, γ = 0.1 and
d = 4. This run yielded a single PTSG that was used
in 4 parsing runs. For these experiments, we added
increasingly many of the depth>1 elementary trees
from the PTSG, with minimum scores of 7.0, 1.0,
0.5, and 0.075. The added elementary trees were
first converted to PCFG rules, by labeling all inter-
nal nodes with a unique address label and reading
off the CFG-productions. Each rule received a score
equal to the score of the elementary tree it derived
from. A copy of each rule, with the label removed,
was also added with a negative score, BitPar auto-
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matically sums (and substracts) and normalizes the
frequency information provided with each rule. Bit-
Par was then run on the testset sentences, with the
option to output the n best parses with n = 10 by
default. These parses were then read in in a post-
processing program, which removes address labels,
sums probabilities of equivalent parses and outputs
the most probable parse for each sentence (this is the
same approximation of MPP, albeit with smaller n,
as used in most of Bod’s DOP results). The results of
these experiments are also in table 1, labeled pnpN ,
where N is the number of elementary trees added.

model # rules LR LP CM

tb-pcfg 3000 93.45 95.5 85.84
DOP1 1.4 × 106 (87.55)
DOP* (< 50000) (87.7)
pnp100 3000+100 93.63 95.65 86.55
pnp763 3000+763 93.5 95.52 86.75
pnp1517 3000+1517 93.78 95.83 87.36
pnp11411 3000+11411 94.26 96.4 87.77

Table 1: Results on the Dutch OVIS tree bank, with semantic
tags and punctuation removed. Reported are evalb scores on a
random testset of 1000 sentences (a second testset of 1000 sen-
tences is kept for later evaluations). The trainset for both the
treebank grammar and the pnp program consists of the remain-
ing 8049 trees. Coverage in all cases in 989 sentences out of
1000. Results in brackets are from Zollman & Sima’an, 2005,
using a different train-test set split.

As these experiments show, adding larger elemen-
tary trees from the induced PTSG, in order of their
assigned scores, monotonously increases the parse
accuracy of the treebank PCFG. Although the final
grammar is at least 5 times larger than the origi-
nal treebank PCFG, and the parser therefore slower,
the grammar is orders of magnitude smaller than the
corresponding maximalist DOP models and shows
comparable parse accuracy.

For a second set of parsing experiments, we used
the WSJ portion of the Penn Tree Bank (Marcus et
al., 1993) and Helmut Schmid’s enrichment program
tmod (Schmid, 2006). Schmid’s program enriches
nonterminal labels in the treebank, using features in-
spired by (Klein and Manning, 2003). After enrich-
ment, Schmid obtained excellent parsing scores with
the treebank PCFG. In table 2, as model tb-pcfg, we
give our baseline results. These are slightly lower
than Schmid’s, for two reasons: (i) our implemen-

tation ignores the upper/lower case distinction, and
(ii) we do not use Schmid’s word class automaton
for unknown words (the only smoothing used is the
built-in feature of the BitPar parser, which extracts
an open-class-tag file from the lexicon file). Because
our interest here is in the principles of enrichment
we have not attempted to adapt these techniques for
our implementation.

As before, we ran the pnp program on the train-
set, the enriched sections 2-21 of the WSJ. For
computational reasons, pnp is only run on trees
with a yield of length (including punctuation) ≤
20. This run, which took several days on a ma-
chine with 1.5Gb RAM, again produced a very large
PTSG, from which we extracted the 1000 and 10000
depth>1 elementary trees with the highest scores
for parsing experiments. Parsing and postprocess-
ing is performed as before, with the MPP approxi-
mated from the best n = 20 parses. Results from
these experiments are shown in table 2, as models
pnp1000 and pnp10000. With a small number of
added trees, we see a small drop in the parsing per-
formance, which we interpret as evidence that our
additions somewhat disturb the nicely tuned prob-
ability distribution of the treebank PCFG without
providing many advantages, because the most fre-
quent constructions have already been addressed in
the manual PCFG enrichment. However, with 10000
added subtrees we see an increase in parse accuracy,
providing evidence that pnp has learned potential
enrichments that go beyond the manual enrichment.

model LR LP F1 CM

tb-pcfg 83.27 83.53 83.40 26.58
pnp1000 83.20 83.47 83.33 26.70
pnp10000 83.56 83.99 83.77 26.93

Table 2: Results on the WSJ section of the Penn Tree Bank,
where nonterminals are enriched with features using Helmut
Schmid’s tmod program (Schmid, 2006). Reported are evalb
scores (ignoring punctuation) on 1699 sentences≤ 100, includ-
ing punctuation, from section 22. Sections 02-21 were the train
set for the treebank PCFG; only trees with a yield (including
punctuation) of length ≤ 20 were used for the pnp program.
Coverage in all cases is 1691 (excluding failed parses gives
F1 = 85.19 for the tb-pcfg-baseline, and 85.54 for pnp10000).

In figure 8(left) we plot the difference in parse
accuracy between the treebank PCFG and our best
model per testset sentence. To make the plot more
informative, the sentences are ordered by increasing
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difference. Hence, on the left are sentences where
the treebank PCFG scores better, and at the right
the sentence where pnp10000 scores best. As is
clear from this graph, for most sentences there is
no difference, but there are small and about equally
sized subsets of sentences for which one or the other
model scores better. We have briefly analysed these
sentences, but not found a clear pattern. In fig-
ure 8(right) we plot in a similar way the difference
in log-likelihood that the parsers assign to each sen-
tence. Here we see a clear pattern: only very few
sentences receive slightly higher likelihood under
the PCFG model. For a good portion of the sen-
tences, however, the pnp10000 model assigns them
somewhat and in some cases much higher likeli-
hood. The highest likelihood gains are due to a small
number of frequent multiword expressions, such as
“New York Stock Exchange Composite Trading”,
which P-DOP treats as a unit; all of the other gains
in likelihood are also due to the use of depth>1 ele-
mentary trees, including some non-contiguous con-
structions such as revenues rose CD % to $ CD mil-
lion from $ CD million.
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Figure 8: Per sentence difference in f-score (left) and log-
likelihood (right) of the sentences of WSJ section 22. The x-
axis gives the sentence-rank when sentences are ordered from
small to large on y-axis value.

7 Discussion and Conclusions
We set out to develop a parsimonious approach to
Data-Oriented Parsing, where all subtrees can poten-
tially become units in a probabilistic grammar but
only if the statistics require it. The grammars re-
sulting from our algorithm are orders of magnitude
smaller than those used in Bod’s maximalist DOP.
Although our parsing results are not yet at the level
of the best results obtained by Bod, our results in-
dicate that we are getting closer and that we already
induce linguistically more plausible grammars.

Could P-DOP eventually not only be more effi-
cient, but also more accurate than maximalist DOP

models? Bod has argued that the explanation for
DOP’s excellent results is that it takes into account
all possible dependencies between productions in
a tree, and not just those from an a-priori chosen
subset (e.g. lexical, head, parent features). Non-
head dependencies in non-contiguous natural lan-
guage constructions, like more ... than, as in more
freight than cargo, are typically excluded in the en-
richment/conditioning approaches discussed in sec-
tion 2. Bod wants to include any dependency a pri-
ori, and then “let the statistics decide”.

Although the inclusion of all dependencies must
somehow explain the performance difference be-
tween Bod’s best generative model and manually en-
riched PCFG models, this explanation is not entirely
satisfactory. Zuidema (2006a) shows that also the
estimator (Bod, 2003) uses is biased and inconsis-
tent, and will, even in the limit of infinite data, not
correctly identify many possible distributions over
trees. This is not just a theoretical problem. For
instance, in the Penn Tree Bank the construction
won’t VP is annotated as (VP (MD wo) (RB n’t) VP).
There is a strong dependency between the two mor-
phemes: wo doesn’t exist as an independent word,
and strongly predicts n’t. However, Bod’s estimator
will continue to reserve probability mass for other
combinations with the same POS-tags such as wo
not, even with an infinite data set only containing
will not and wo n’t. Because in parsing the strings
are given, this particular example will not harm the
parse accuracy results. The example might be di-
agnostic for other cases that do, however, and cer-
tainly will have impact when DOP is used as lan-
guage model. P-DOP, in contrast, does converge to
grammars that treat won’t as a single unit.

The exact relation of P-DOP to other DOP mod-
els, including S-DOP (Bod, 2003), Backoff-DOP
(Sima’an and Buratto, 2003), DOP* (Zollmann and
Sima’an, 2005) and ML-DOP (Bod, 2006; based on
Expectation Maximization) and not dissimilar au-
tomatic enrichment models such as (Petrov et al.,
2006), remains a topic for future work.
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Abstract

A lexical analogy is a pair of word-pairs
that share a similar semantic relation. Lex-
ical analogies occur frequently in text and
are useful in various natural language pro-
cessing tasks. In this study, we present a
system that generates lexical analogies au-
tomatically from text data. Our system dis-
covers semantically related pairs of words
by using dependency relations, and applies
novel machine learning algorithms to match
these word-pairs to form lexical analogies.
Empirical evaluation shows that our system
generates valid lexical analogies with a pre-
cision of 70%, and produces quality output
although not at the level of the best human-
generated lexical analogies.

1 Introduction

Analogy discovery and analogical reasoning are ac-
tive research areas in a multitude of disciplines, in-
cluding philosophy, psychology, cognitive science,
linguistics, and artificial intelligence. A type of anal-
ogy that is of particular interest in natural language
processing is lexical analogy. A lexical analogy is a
pair of word-pairs that share a similar semantic rela-
tion. For example, the word-pairs (dalmatian, dog)
and (trout, fish) form a lexical analogy because dal-
matian is a subspecies of dog just as trout is a sub-
species of fish, and the word-pairs (metal, electric-
ity) and (air, sound) form a lexical analogy because
in both cases the initial word serves as a conductor
for the second word. Lexical analogies occur fre-

quently in text and are useful in various natural lan-
guage processing tasks. For example, understanding
metaphoric language such as “the printer died” re-
quires the recognition of implicit lexical analogies,
in this case between (printer, malfunction) and (per-
son, death). Lexical analogies also have applica-
tions in word sense disambiguation, information ex-
traction, question-answering, and semantic relation
classification (see (Turney, 2006)).

In this study, we present a novel system for gen-
erating lexical analogies directly from a text cor-
pus without relying on dictionaries or other seman-
tic resources. Our system uses dependency relations
to characterize pairs of semantically related words,
then compares the similarity of their semantic rela-
tions using two machine learning algorithms. We
also present an empirical evaluation that shows our
system generates valid lexical analogies with a pre-
cision of 70%. Section 2 provides a list of defini-
tions, notations, and necessary background materi-
als. Section 3 describes the methods used in our
system. Section 4 presents our empirical evalua-
tion. Section 5 reviews selected related work. Fi-
nally, Section 6 concludes the paper with suggested
future work and a brief conclusion.

2 Definitions

A word-pair is a pair of entities, where each entity
is a single word or a multi-word named entity. The
underlying relations of a word-pair (w1, w2) are the
semantic relations1 between w1 and w2. For exam-

1Here ‘semantic relations’ include both classical relations
such as synonymy and meronymy, and non-classical relations
as defined by Morris and Hirst (2004).
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ple, the underlying relations of (poet, poem) include
produces, writes, enjoys, and understands. A lexical
analogy is a pair of word-pairs that share at least one
identical or similar underlying relation.

A key linguistic formalism we use is dependency
grammar (Tesnière, 1959). A dependency gram-
mar describes the syntactic structure of a sentence
in a manner similar to the familiar phrase-structure
grammar. However, unlike phrase-structure gram-
mars which associate each word of a sentence to
the syntactic phrase in which the word is contained,
a dependency grammar associates each word to its
syntactic superordinate as determined by a set of
rules. Each pair of depending words is called a
dependency. Within a dependency, the word being
depended on is called the governor, and the word
depending on the governor is called the dependent.
Each dependency is also labelled with the syntac-
tic relation between the governor and the dependent.
Dependency grammars require that each word of a
sentence have exactly one governor, except for one
word called the head word which has no governor at
all. A proposition p that is governor to exactly one
word w1 and dependent of exactly one word w2 is
often collapsed (Lin and Pantel, 2001); that is, the
two dependencies involving p are replaced by a sin-
gle dependency between w1 and w2 labelled p.

The dependency structure of a sentence can be
concisely represented by a dependency tree, in
which each word is a node, each dependent is a child
of its governor, and the head word is the root. A de-
pendency path is an undirected path through a de-
pendency tree, and a dependency pattern is a depen-
dency path with both ends replaced by slots (Lin and
Pantel, 2001). Figure 1 illustrates various depen-
dency structures of the sentence, rebels fired rockets
at a military convoy, after each word is lemmatized.

3 Methods

We consider lexical analogy generation as a se-
quence of two key problems: data extraction and
relation-matching. Data extraction involves the
identification and extraction of pairs of semantically
related words, as well as features that characterize
their relations. Relation-matching involves match-
ing word-pairs with similar features to form lexi-
cal analogies. We describe our methods for solving

these two problems in the following subsections.

3.1 Data Extraction
Extracting Word-Pairs

To identify semantically related words, we rely
on the assumption that highly syntactically related
words also tend to be semantically related — a hy-
pothesis that is supported by works such as Levin’s
(1993) study of English verbs. As such, the de-
pendency structure of a sentence can be used to ap-
proximate the semantic relatedness between its con-
stituent words. Our system uses a dependency parser
to parse the input text into a set of dependency trees,
then searches through these trees to extract depen-
dency paths satisfying the following constraints:

1. The path must be of the form noun-verb-noun.

2. One of the nouns must be the subject of the
clause to which it belongs.

Each of these paths is then turned into a word-pair
by taking its two nouns. The path constraints that we
use are suggested by the subject-verb-object (SVO)
pattern commonly used in various relation extraction
algorithms. However, our constraints allow signifi-
cantly more flexibility than the SVO pattern in two
important aspects. First, our constraints allow an
arbitrary relation between the verb and the second
noun, not just the object relation. Hence, word-pairs
can be formed from a clause’s subject and its loca-
tion, time, instrument, and other arguments, which
are clearly semantically related to the subject. Sec-
ondly, searching in the space of dependency trees in-
stead of raw text data means that we are able to find
semantically related words that are not necessarily
adjacent to each other in the sentence.

It is important to note that, although these con-
straints improve the precision of our system and tend
to identify effectively the most relevant word-pairs,
they are not strictly necessary. Our system would be
fully functional using alternative sets of constraints
tailored for specific applications, or even with no
constraints at all.

Using the sentence in Figure 1 as an example, our
system would extract the dependency paths “rebel
subj← fire

obj→ rocket” and “rebel
subj← fire at→ con-

voy”, and would thus generate the word-pairs (rebel,
rocket) and (rebel, convoy).
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Figure 1: Dependency structures of “rebels fired rockets at a military convoy” after lemmatization

Extracting Features
Recall that each word-pair originates from a de-

pendency path. The path, and in particular the mid-
dle verb, provides a connection between the two
words of the word-pair, and hence is a good in-
dication of their semantic relation. Therefore, for
each word-pair extracted, we also extract the depen-
dency pattern derived from the word-pair’s depen-
dency path as a feature for the word-pair. We further
justify this choice of feature by noting that the use
of dependency patterns have previously been shown
to be effective at characterizing lexico-syntactic re-
lations (Lin and Pantel, 2001; Snow et al., 2004).

Using Figure 1 as an example again, the depen-

dency patterns “
subj← fire

obj→ ” and “
subj←

fire at→ ” would be extracted as a feature of (rebel,
rocket) and (rebel, convoy), respectively.

Filtering
Word-pairs and features extracted using only de-

pendency relations tend to be crude in several as-
pects. First, they contain a significant amount of
noise, such as word-pairs that have no meaningful
underlying relations. Noise comes from grammati-
cal and spelling mistakes in the original input data,
imperfect parsing, as well as the fact that depen-
dency structure only approximates semantic related-
ness. Secondly, some of the extracted word-pairs
contain underlying relations that are too general or
too obscure for the purpose of lexical analogy gen-
eration. For example, consider the word-pair (com-
pany, right) from the sentence “the company exer-
cised the right to terminate his contract”. The two
words are clearly semantically related, however the
relation (have or entitled-to) is very general and it
is difficult to construct satisfying lexical analogies

from the word-pair. Lastly, some features are also

subject to the same problem. The feature “
subj←

say
obj→ ”, for example, has very little characteri-

zation power because almost any pair of words can
occur with this feature.

In order to retain only the most relevant word-
pairs and features, we employ a series of refining
filters. All of our filters rely on the occurrence
statistics of the word-pairs and features. Let W =
{wp1, wp2, ..., wpn} be the set of all word-pairs and
F = {f1, f2, ..., fm} the set of all features. Let Fwp

be the set of features of word-pair wp, and let Wf

be the set of word-pairs associated with feature f .
Let O(wp) be the total number of occurrences of
word-pair wp, O(f) be the total number of occur-
rences of feature f , and O(wp, f) be the number of
occurrences of word-pair wp with feature f . The
following filters are used:

1. Occurrence filter: Eliminate word-pair wp if
O(wp) is less than some constant Kf1 , and
eliminate feature f if O(f) is less than some
constant Kf2 . This filter is inspired by the sim-
ple observation that valid word-pairs and fea-
tures tend to occur repeatedly.

2. Generalization filter: Eliminate feature f if
|Wf | is greater than some constant Kf3 . This
filter ensures that features associated with too
many word-pairs are not kept. A feature that
occurs with many word-pairs tend to describe
overly general relations. An example of such

a feature is “
subj← say

obj→ ”, which in
our experiment occurred with several thousand
word-pairs while most features occurred with
less than a hundred.
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3. Data sufficiency filter: Eliminate word-pair wp
if |Fwp| is less than some constant Kf4 . This
filter ensures that all word-pairs have sufficient
features to be compared meaningfully.

4. Entropy filter: Eliminate word-pair wp if its
normalized entropy is greater than some con-
stant Kf5 . We compute a word-pair’s entropy
by considering it as a distribution over features,
in a manner that is analogous to the feature en-
tropy defined in (Turney, 2006). Specifically,
the normalized entropy of a word-pair wp is:

−
∑

f∈Fwp
p(f |wp) log (p(f |wp))

log |Fwp|

where p(f |wp) = O(wp,f)
O(wp) is the conditional

probability of f occurring in the context of wp.
The normalized entropy of a word-pair ranges
from zero to one, and is at its highest when the
distribution of the word-pair’s occurrences over
its features is the most random. The justifica-
tion behind this filter is that word-pairs with
strong underlying relations tend to have just a
few dominant features that characterize those
relations, whereas word-pairs that have many
non-dominant features tend to have overly gen-
eral underlying relations that can be character-
ized in many different ways.

3.2 Relation-Matching

Central to the problem of relation-matching is that of
a relational similarity function: a function that com-
putes the degree of similarity between two word-
pairs’ underlying relations. Given such a function,
relation-matching reduces to simply computing the
relational similarity between every pair of word-
pairs, and outputting the pairs scoring higher than
some threshold Kth as lexical analogies. Our sys-
tem incorporates two relational similarity functions,
as discussed in the following subsections.

Latent Relational Analysis

The baseline algorithm that we use to compute
relational similarity is a modified version of Latent
Relational Analysis (LRA) (Turney, 2006), that con-
sists of the following steps:

1. Construct an n-by-m matrix A such that the
ith row maps to word-pair wpi, the jth column
maps to feature fj , and Ai,j = O(wpi, fj).

2. Reduce the dimensionality of A to a con-
stant Ksvd using Singular Value Decomposi-
tion (SVD) (Golub and van Loan, 1996). SVD
produces a matrix Â of rank Ksvd that is the
best approximation of A among all matrices of
rank Ksvd. The use of SVD to compress the
feature space was pioneered in Latent Semantic
Analysis (Deerwester et al., 1990) and has be-
come a popular technique in feature-based sim-
ilarity computation. The compressed space is
believed to be a semantic space that minimizes
artificial surface differences.

3. The relational similarity between two word-
pairs is the cosine measure of their correspond-
ing row vectors in the reduced feature space.
Specifically, let Âi denote the ith row vector of
Â, then the relational similarity between word-
pairs wpi1 and wpi2 is:

Âi1 · Âi2∥∥∥Âi1

∥∥∥
2
+

∥∥∥Âi2

∥∥∥
2

The primary difference between our algorithm
and LRA is that LRA also includes each word’s
synonyms in the computation. Synonym inclusion
greatly increases the size of the problem space,
which leads to computational issues for our system
as it operates at a much larger scale than previous
work in relational similarity. Turney’s (2006) exten-
sive evaluation of LRA on SAT verbal analogy ques-
tions, for example, involves roughly ten thousand re-
lational similarity computations2. In contrast, our
system typically requires millions of relational sim-
ilarity computations because every pair of extracted
word-pairs needs to be compared. We call our algo-
rithm LRA-S (LRA Without Synonyms) to differen-
tiate it from the original LRA.

Similarity Graph Traversal
While LRA has been shown to perform well in

computing relational similarity, it suffers from two
2The study evaluated 374 SAT questions, each involving 30

pairwise comparisons, for a total of 11220 relational similarity
computations.

564



limitations. First, the use of SVD is difficult to inter-
pret from an analytical point of view as there is no
formal analysis demonstrating that the compressed
space really corresponds to a semantic space. Sec-
ondly, even LRA-S does not scale up well to large
data sets due to SVD being an expensive operation
— computing SVD is in general O(mn·min(m, n))
(Koyuturk et al., 2005), where m, n are the number
of matrix rows and columns, respectively.

To counter these limitations, we propose an alter-
native algorithm for computing relational similarity
— Similarity Graph Traversal (SGT). The intuition
behind SGT is as follows. Suppose we know that
wp1 and wp2 are relationally similar, and that wp2

and wp3 are relationally similar. Then, by transi-
tivity, wp1 and wp3 are also likely to be relation-
ally similar. In other words, the relational similar-
ity between two word-pairs can be reinforced by
other word-pairs through transitivity. The actual al-
gorithm involves the following steps:

1. Construct a similarity graph as follows. Each
word-pair corresponds to a node in the graph.
An edge exists from wp1 to wp2 if and only
if the cosine measure of the two word-pairs’
feature vectors is greater than or equal to some
threshold Ksgt, in which case, the cosine mea-
sure is assigned as the strength of the edge.

2. Define a similarity path of length k, or k-
path, from wp1 to wp2 to be a directed acyclic
path of length k from wp1 to wp2, and de-
fine the strength s(p) of a path p to be the
product of the strength of all of the path’s
edges. Denote the set of all k-paths from wp1

to wp2 as P(k,wp1, wp2), and denote the sum
of the strength of all paths in P(k, wp1, wp2)
as S(k, wp1, wp2).

3. The relational similarity between word-pairs
wpi1 and wpi2 is:

α1S(1, wp1, wp2) +
α2S(2, wp1, wp2) +

. . .

αKl
S(Kl, wp1, wp2)

where Kl is the maximum path length to con-
sider, and α1, . . ., αKl

are weights that are

learned using least-squares regression on a
small set of hand-labelled lexical analogies.

A natural concern for SGT is that relational simi-
larity is not always transitive, and hence some paths
may be invalid. For example, although (teacher,
student) is relationally similar to both (shepherd,
sheep) and (boss, employee), the latter two word-
pairs are not relationally similar. The reason that
this is not a problem for SGT is because truly simi-
lar word-pairs tend to be connected by many transi-
tive paths, while invalid paths tend to occur in iso-
lation. As such, while a single path may not be in-
dicative, a collection of many paths likely signifies
a true common relation. The weights in step 3 en-
sure that SGT assigns a high similarity score to two
word-pairs only if there are sufficiently many tran-
sitive paths (which are sufficiently strong) between
them.

Analogy Filters
As a final step in both LSA-R and SGT, we fil-

ter out lexical analogies of the form (w1,w2) and
(w1,w3), as such lexical analogies tend to express
the near-synonymy between w2 and w3 more than
they express the relational similarity between the
two word-pairs. We also keep only one permuta-
tion of each lexical analogy: (w1,w2) and (w3,w4),
(w3,w4) and (w1,w2), (w2,w1) and (w4,w3), and
(w4,w3) and (w2,w1) are different permutations of
the same lexical analogy.

4 Evaluation

Our evaluation consisted of two parts. First, we eval-
uated the performance of the system, using LRA-S
for relation-matching. Then, we evaluated the SGT
algorithm, in particular, how it compares to LRA-S.

4.1 System Evaluation

Experimental Setup
We implemented our system in Sun JDK 1.5. We

also used MXTerminator (Reynar and Ratnaparkhi,
1997) for sentence segmentation, MINIPAR (Lin,
1993) for lemmatization and dependency parsing,
and MATLAB3 for SVD computation. The exper-
iment was conducted on a 2.1 GHz processor, with

3http://www.mathworks.com
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the exception of SVD computation which was car-
ried out in MATLAB running on a single 2.4 GHz
processor within a 64-processor cluster. The input
corpus consisted of the following collections in the
Text Retrieval Conference Dataset4: AP Newswire
1988–1990, LA Times 1989–1990, and San Jose
Mercury 1991. In total, 1196 megabytes of text data
were used for the experiment. Table 1 summarizes
the running times of the experiment.

Process Time
Sentence Segmentation 20 min
Dependency Parsing 2232 min
Data Extraction 138 min
Relation-Matching 65 min

Table 1: Experiment Running Times

The parameter values selected for the experiment
are listed in Table 2. The filter parameters were se-
lected mostly through trial-and-error — various pa-
rameter values were tried and filtration results exam-
ined. We used a threshold value Kth = 0.80 to gener-
ate the lexical analogies, but the evaluation was per-
formed at ten different thresholds from 0.98 to 0.80
in 0.02 decrements.

Kf1 Kf2 Kf3 Kf4 Kf5 Ksvd

35 10 100 10 0.995 600

Table 2: Experiment Parameter Values

Evaluation Protocol
An objective evaluation of our system is difficult

for two reasons. First, lexical analogies are by defi-
nition subjective; what constitutes a ‘good’ lexical
analogy is debatable. Secondly, there is no gold
standard of lexical analogies to which we can com-
pare. For these reasons, we adopted a subjective
evaluation protocol that involved human judges rat-
ing the quality of the lexical analogies generated.
Such a manual evaluation protocol, however, meant
that it was impractical to evaluate the entire output
set (which was well in the thousands). Instead, we
evaluated random samples from the output and in-
terpolated the results.

4http://trec.nist.gov/

In total, 22 human judges participated in the eval-
uation. All judges were graduate or senior under-
graduate students in English, Sociology, or Psychol-
ogy, and all were highly competent English speak-
ers. Each judge was given a survey containing 105
lexical analogies, 100 of which were randomly sam-
pled from our output, and the remaining five were
sampled from a control set of ten human-generated
lexical analogies. All entries in the control set were
taken from the Verbal Analogy section of the Stan-
dard Aptitude Test5 and represented the best possi-
ble lexical analogies. The judges were instructed to
grade each lexical analogy with a score from zero to
10, with zero representing an invalid lexical analogy
(i.e., when the two word-pairs share no meaningful
underlying relation) and ten representing a perfect
lexical analogy. To minimize inter-judge subjectiv-
ity, all judges were given detailed instructions con-
taining the definition and examples of lexical analo-
gies. In all, 1000 samples out of the 8373 generated
were graded, each by at least two different judges.

We evaluated the output at ten threshold values,
from 0.98 to 0.80 in 0.02 decrements. For each
threshold, we collected all samples down to that
threshold and computed the following metrics:

1. Coverage: The number of lexical analogies
generated at the current threshold over the
number of lexical analogies generated at the
lowest threshold (8373).

2. Precision: The proportion of samples at the
current threshold that scored higher than three.
These are considered valid lexical analogies.
Note that this is significantly more conservative
than the survey scoring. We want to ensure very
poor lexical analogies were excluded, even if
they were ‘valid’ according to the judges.

3. Quality: The average score of all samples at the
current threshold, divided by ten to be in the
same scale as the other metrics.

4. Goodness: The proportion of samples at the
current threshold that scored within 10% of the
average score of the control set. These are con-
sidered human quality.

5http://www.collegeboard.com/
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Note that recall was not an evaluation metric be-
cause there does not exist a method to determine the
true number of lexical analogies in the input corpus.

Result
Table 3 summarizes the result of the control set,

and Figure 2:Left summarizes the result of the lex-
ical analogies our system generated. Table 4 lists
some good and some poor lexical analogies our sys-
tem generated, along with some of their shared fea-
tures.

Coverage Precision Quality Goodness
N/A 1.00 0.97 0.90

Table 3: Result of the Control Set

As Figure 2 shows, our system performed fairly
well, generating valid lexical analogies with a preci-
sion around 70%. The quality of the generated lex-
ical analogies was reasonable, although not at the
level of human-generation. On the other hand, a
small portion (19% at the highest threshold) of our
output was of very high quality, comparable to the
best human-generated lexical analogies.

Our result also showed that there was a correspon-
dence between the score our system assigned to each
generated lexical analogy and its quality. Precision,
quality, and goodness all declined steadily toward
lower thresholds: precision 0.70–0.66, quality 0.54–
0.49, and goodness 0.19–0.14.

Error Analysis
Despite our aggressive filtration of irrelevant

word-pairs and features, noise was still the most sig-
nificant problem in our output. Most low-scoring
samples contained at least one word-pair that did not
have a meaningful and clear underlying relation; for
examples, (guy, ball) and (issue, point). As men-
tioned, noise originated from mistakes in the input
data, errors in sentence segmentation and parsing,
as well as mismatches between dependencies and
semantic relatedness. An example of the latter in-
volved the frequent usage of the proposition “of ”
in various constructs. In the sentence “the com-
pany takes advantage of the new legislation”, for
example, the dependency structure associates com-
pany with advantage, whereas the semantic relation
clearly lies between company and legislation. All

three of our evaluation metrics (precision, quality,
and goodness) were negatively affected by noise.

Polysemic words, as well as words which were
heavily context-dependent, also posed a problem.
For example, one of the lexical analogies generated
in the experiment was (resolution, house) and (leg-
islation, senate). This lexical analogy only makes
sense if “house” is recognized as referring to the
House of Representatives, which is often abbrevi-
ated as “the House” in news articles. Polysemy also
negatively affected all three of our evaluation met-
rics, although to a lesser extent for precision.

Finally, our system had difficulties differentiat-
ing semantic relations of different granularity. The
underlying relations of (relation, country) and (tie,
united states), for example, are similar, yet they do
not form a good lexical analogy because the rela-
tions are at different levels of granularity (countries
in general in the former, and a particular country
in the latter). Undifferentiated granularity affected
quality and goodness, but it did not have a signifi-
cant effect on precision.

4.2 SGT Evaluation
To evaluate how SGT compares to LRA-S, we
repeated the experiment using SGT for relation-
matching. We set Kl (maximum path length) to 3,
and Ksgt (cosine threshold) to 0.2; these values were
again determined largely through trial-and-error. To
train SGT, we used 90 lexical analogies graded by
human judges from the previous experiment. In or-
der to facilitate a fair comparison to LRA-S, we se-
lected Kth values that allowed SGT to generate the
same number of lexical analogies as LRA-S did at
each threshold interval.

Running on the same 2.1 GHz processor, SGT
finished in just over eight minutes, which is almost
a magnitude faster than LRA-S’ 65 minutes. SGT
also used significantly less memory, as the similar-
ity graph was efficiently stored in an adjacency list.
The sets of lexical analogies generated by the two
algorithms were quite similar, overlapping approxi-
mately 50% at all threshold levels.

The significant overlap between SGT and LRA-S’
outputs allowed us to evaluate SGT using the sam-
ples collected from the previous surveys instead of
conducting a new round of human grading. Specifi-
cally, we identified previously graded samples that
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Figure 2: System Evaluation Results

Good Examples Shared Features

(vietnam, cambodia) and (iraq, kuwait)
subj← invade

obj→ ,
subj← pull out

of→
(building, office) and (museum, collection)

subj← house
obj→ ,

subj← consolidate
obj→

(stock market, rally) and (student, march)
subj← stage

obj→
(researcher, experiment) and (doctor, surgery)

subj← perform
obj→

(gainer, loser) and (decline, advance)
subj← outnumber

obj→
(book, shelf ) and (picture, wall) with← line

subj→ ,
subj← remain on→

(blast, car) and (sanction, economy)
subj← damage

obj→ ,
by← destroy

subj→
Poor Examples Shared Features

(president, change) and (bush, legislation)
subj← veto

obj→
(charge, death) and (lawsuit, federal court)

subj← file in→
(relation, country) and (tie, united states)

obj← severe
subj→

(judge, term) and (member, life)
subj← sentence to→

(issue, point) and (stock, cent)
subj← be down→ ,

subj← be
up→

Table 4: Examples of Good and Poor Lexical Analogies Generated

had also been generated by SGT, and used these
samples as the evaluation data points for SGT. At the
lowest threshold (where 8373 lexical analogies were
generated), we were able to reuse 533 samples out
of the original 1000 samples. Figure 2:Right sum-
marizes the performance of the system using SGT
for relation-matching.

As the figure shows, SGT performed very simi-
larly to LRA-S. Both SGT’s precision and quality
scores were slightly higher than LRA-S, but the dif-
ferences were very small and hence were likely due
to sample variation. The goodness scores between
the two algorithms were also comparable. In the
case of SGT, however, the score fluctuated instead

of monotonically decreased. We attribute the fluctu-
ation to the smaller sample size.

As the samples were drawn exclusively from the
portion of SGT’s output that overlapped with LRA-
S’ output, we needed to ensure that the samples were
not strongly biased and that the reported result was
not better than SGT’s actual performance. To val-
idate the result, we conducted an additional experi-
ment involving a single human judge. The judge was
given a survey with 50 lexical analogies, 25 of which
were sampled from the overlapping portion of SGT
and LRA-S’ outputs, and 25 from lexical analogies
generated only by SGT. Table 5 summarizes the re-
sult of this experiment. As the table demonstrates,
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the results from the two sets were comparable with
small differences. Moreover, the differences were
in favour of the SGT-only portion. Therefore, either
there was no sampling bias at all, or the sampling
bias negatively affected the result. As such, SGT’s
actual performance was at least as good as reported,
and may have been slightly higher.

Precision Quality Goodness
Overlap 0.76 0.56 0.28
SGT-Only 0.88 0.62 0.2

Table 5: Overlap vs. SGT-Only

We conclude that SGT is indeed a viable alter-
native to LRA-S. SGT generates lexical analogies
that are of the same quality as LRA-S, while be-
ing significantly faster and more scalable. On the
other hand, an obvious limitation of SGT is that it is
a supervised algorithm requiring manually labelled
training data. We claim this is not a severe limitation
because there are only a few variables to train (i.e.,
the weights), hence only a small set of training data
is required. Moreover, a supervised algorithm can
be advantageous in some situations; for example, it
is easier to tailor SGT to a particular input corpus.

5 Related Work

The study of analogy in the artificial intelligence
community has historically focused on computa-
tional models of analogy-making. French (2002)
and Hall (1989) provide two of the most complete
surveys of such models. Veale (2004; 2005) gen-
erates lexical analogies from WordNet (Fellbaum,
1998) and HowNet (Dong, 1988) by dynamically
creating new type hierarchies from the semantic
information stored in these lexicons. Unlike our
corpus-based generation system, Veale’s algorithms
are limited by the lexicons in which they oper-
ate, and generally are only able to generate near-
analogies such as (Christian, Bible) and (Muslim,
Koran). Turney’s (2006) Latent Relational Analy-
sis is a corpus-based algorithm that computes the re-
lational similarity between word-pairs with remark-
ably high accuracy. However, LRA is focused solely
on the relation-matching problem, and by itself is in-
sufficient for lexical analogy generation.

6 Conclusion and Future Work

We have presented a system that is, to the best of our
knowledge, the first system capable of generating
lexical analogies from unstructured text data. Em-
pirical evaluation shows that our system performed
fairly well, generating valid lexical analogies with
a precision of about 70%. The quality of the gen-
erated lexical analogies was reasonable, although
not at the level of human performance. As part
of the system, we have also developed a novel al-
gorithm for computing relational similarity that ri-
vals the performance of the current state-of-the-art
while being significantly faster and more scalable.
One of our immediate tasks is to complement depen-
dency patterns with additional features. In particu-
lar, we expect semantic features such as word defini-
tions from machine-readable dictionaries to improve
our system’s ability to differentiate between differ-
ent senses of polysemic words, as well as different
granularities of semantic relations. We also plan to
take advantage of our system’s flexibility and relax
the constraints on dependency paths so as to gen-
erate more-varied lexical analogies, e.g., analogies
involving verbs and adjectives.

A potential application of our system, and the
original inspiration for this research, would be to
use the system to automatically enrich ontologies
by spreading semantic relations between lexical ana-
logues. For example, if words w1 and w2 are related
by relation r, and (w1, w2) and (w3, w4) form a lex-
ical analogy, then it is likely that w3 and w4 are also
related by r. A dictionary of lexical analogies there-
fore would allow an ontology to grow from a small
set of seed relations. In this way, lexical analogies
become bridges through which semantic relations
flow in a sea of ontological concepts.
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Abstract

We present the idea of estimating seman-
tic distance in one, possibly resource-poor,
language using a knowledge source in an-
other, possibly resource-rich, language. We
do so by creating cross-lingual distributional
profiles of concepts, using a bilingual lexi-
con and a bootstrapping algorithm, but with-
out the use of any sense-annotated data or
word-aligned corpora. The cross-lingual
measures of semantic distance are evaluated
on two tasks: (1) estimating semantic dis-
tance between words and ranking the word
pairs according to semantic distance, and
(2) solving Reader’s Digest‘Word Power’
problems. In task (1), cross-lingual mea-
sures are superior to conventional monolin-
gual measures based on a wordnet. In task
(2), cross-lingual measures are able to solve
more problems correctly, and despite scores
being affected by many tied answers, their
overall performance is again better than the
best monolingual measures.

1 Introduction

Accurately estimating the semantic distance be-
tween concepts or between words in context has per-
vasive applications in computational linguistics, in-
cluding machine translation, information retrieval,
speech recognition, spelling correction, and text cat-
egorization (see Budanitsky and Hirst (2006) for dis-
cussion), and it is becoming clear that basing such
measures on a combination of corpus statistics with

a knowledge source, such as a dictionary, published
thesaurus, or WordNet, can result in higher accu-
racies (Mohammad and Hirst, 2006b). This is be-
cause such knowledge sources capture semantic in-
formation about concepts and, to some extent, world
knowledge. They also act as sense inventories for
the words in a language.

However, applying algorithms for semantic dis-
tance to most languages is hindered by the lack of
linguistic resources. In this paper, we propose a
new method that allows us to compute semantic dis-
tance in a possibly resource-poor language by seam-
lessly combining its text with a knowledge source
in a different, preferably resource-rich, language.
We demonstrate the approach by combining German
text with an English thesaurus to create English–
German distributional profiles of concepts, which in
turn will be used to measure the semantic distance
between German words.

Two classes of methods have been used in deter-
mining semantic distance.Semantic measures of
concept-distance, such as those of Jiang and Con-
rath (1997) and Resnik (1995), rely on the structure
of a knowledge source, such as WordNet, to deter-
mine the distance between two concepts defined in
it (see Budanitsky and Hirst (2006) for a survey).
Distributional measures of word-distance1, such
as cosine andα-skew divergence (Lee, 2001), deem

1Many distributional approaches represent the sets of con-
texts of the target words as points in multidimensional co-
occurrence space or as co-occurrence distributions. A measure,
such as cosine, that captures vector distance or a measure, such
asα-skew divergence, that captures distance between distribu-
tions is then used to measure distributional distance. We will
therefore refer to these measures as distributional measures.
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two words to be closer or less distant if they occur in
similar contexts (see Mohammad and Hirst (2005)
for a comprehensive survey).

Distributional measures rely simply on raw text
and possibly some shallow syntactic processing.
They do not require any other manually-created re-
source, and tend to have a higher coverage. How-
ever, by themselves they perform poorly when com-
pared to semantic measures (Mohammad and Hirst,
2006b) because when given a target word pair
we usually need the distance between their closest
senses, but distributional measures of word-distance
tend to conflate the distances between all possible
sense pairs. Latent semantic analysis (LSA) (Lan-
dauer et al., 1998) has also been used to measure dis-
tributional distance with encouraging results (Rapp,
2003). However, it too measures the distance be-
tween words and not senses. Further, the dimen-
sionality reduction inherent to LSA has the effect of
making the predominant sense more dominant while
de-emphasizing the other senses. Therefore, an
LSA-based approach will also conflate information
from the different senses, and even more emphasis
will be placed on the predominant senses. Given the
semantically close target nounsplay andactor, for
example, a distributional measure will give a score
that is some sort of a dominance-based average of
the distances between their senses. The nounplay
has the predominant sense of ‘children’s recreation’
(and not ‘drama’), so a distributional measure will
tend to give the target pair a large (and thus erro-
neous) distance score. Also, distributional word-
distance approaches need to create largeV ×V co-
occurrence and distance matrices, whereV is the
size of the vocabulary (usually at least 100,000).2

Mohammad and Hirst (2006b) proposed a way
of combining written text with a published the-
saurus to measure distance betweenconcepts(or
word senses) using distributional measures, thereby
eliminating sense-conflation and achieving results
better than the simple word-distance measures and
indeed also most of the WordNet-based semantic
measures. We called these measuresdistributional
measures of concept-distance. Concept-distance

2LSA is especially expensive as singular value decomposi-
tion, a key component for dimensionality reduction, requires
computationally intensive matrix operations; making it less
scalable to large amounts of text (Gorman and Curran, 2006).

measures can be used to measure distance between
a word pair by choosing the distance between their
closest senses. Thus, even though ‘children’s recre-
ation’ is the predominant sense ofplay, the ‘drama’
sense is much closer toactor and so their dis-
tance will be chosen. These distributional concept-
distance approaches need to create onlyV ×C co-
occurrence andC×C distance matrices, whereC is
the number of categories or senses (usually about
1000). It should also be noted that unlike the best
WordNet-based measures, distributional measures
(both word- and concept-distance ones) can be used
to estimate not just semantic similarity but also se-
mantic relatedness—useful in many tasks includ-
ing information retrieval. However, the high-quality
thesauri and (to a much greater extent) WordNet-like
resources that these methods require do not exist for
most of the 3000–6000 languages in existence today
and they are costly to create.

In this paper, we introducecross-lingual distri-
butional measures of concept-distance, or simply
cross-lingual measures, that determine the distance
between a word pair belonging to a resource-poor
language using a knowledge source in a resource-
rich language and a bilingual lexicon3. We will use
the cross-lingual measures to calculate distances be-
tween German words using an English thesaurus and
a German corpus. Although German is not resource-
poorper se, Gurevych (2005) has observed that the
German wordnet GermaNet (Kunze, 2004) (about
60,000 synsets) is less developed than the English
WordNet (Fellbaum, 1998) (about 117,000 synsets)
with respect to the coverage of lexical items and lex-
ical semantic relations represented therein. On the
other hand, substantial raw corpora are available for
the German language. Crucially for our evaluation,
the existence of GermaNet allows comparison of our
cross-lingual approach with monolingual ones.

2 Monolingual Distributional Measures

In order to set the context for cross-lingual concept-
distance measures (Section 3), we first summarize
monolingual distributional approaches, with a focus
on distributional concept-distance measures.

3For most languages that have been the subject of academic
study, there exists at least a bilingual lexicon mapping the core
vocabulary of that language to a major world language and a
corpus of at least a modest size.
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2.1 Word-distance

Words that occur in similar contexts tend to be se-
mantically close. In our experiments, we defined the
context of a target word, its co-occurring words, to
be±5 words on either side (but not crossing sen-
tence boundaries). The set of contexts of a target
word is usually represented by the strengths of as-
sociation of the target with its co-occurring words,
which we refer to as thedistributional profile (DP)
of the word. Here is a constructed example DP of
the wordstar:

DP of a word
star: space0.28,movie0.2, famous0.13,
light 0.09,rich 0.04, . . .

Simple counts are made of how often the target word
co-occurs with other words in text and how often
the words occur individually. A suitable statistic,
such as pointwise mutual information (PMI), is then
applied to these counts to determine the strengths
of association between the target and co-occurring
words. The distributional profiles of two target
words represent their contexts as points in multi-
dimensional word-space. A suitable distributional
measure (for example, cosine) gives the distance be-
tween the two points, and thereby an estimate of the
semantic distance between the target words.

2.2 Concept-distance

In Mohammad and Hirst (2006b), we show how dis-
tributional profiles ofconcepts(DPCs) can be used
to measure semantic distance. Below are the DPCs
or DPs of two senses of the wordstar (the senses
or concepts themselves are glossed by a set of near-
synonymous words, placed in parentheses):

DPs of concepts
‘celestial body’ (celestial body,
sun, . . .): space0.36,light 0.27,
constellation0.11, . . .
‘celebrity’ (celebrity, hero, . . .):
famous0.24,movie0.14,rich 0.14, . . .

Thus the profiles of two targetconceptsrepresent
their contexts as points in multi-dimensional word-
space. A suitable distributional measure (for exam-
ple, cosine) can then be used to give the distribu-
tional distance between the two concepts in the same
way that distributional word-distance is measured.

But to calculate the strength of association of
a concept with co-occurring words, in order to
create DPCs, we must determine the number of
times a word used in that sense co-occurs with
surrounding words. In Mohammad and Hirst
(2006a), we proposed a way to determine these
counts without the use of sense-annotated data.
Briefly, a word–category co-occurrence matrix
(WCCM) is created having English word types
wen as one dimension and English thesaurus cat-
egoriescen as another. We used theMacquarie
Thesaurus(Bernard, 1986) both as a very coarse-
grained sense inventory and a source of possibly
ambiguous English words that together unam-
biguously represent each category (concept). The
WCCM is populated with co-occurrence counts
from a large English corpus (we used theBritish
National Corpus (BNC)). A particular cell mi j ,
corresponding to wordwen

i and conceptcen
j , is

populated with the number of timeswen
i co-occurs

(in a window of±5 words) with any word that has
cen

j as one of its senses (i.e.,wen
i co-occurs with any

word listed under conceptcen
j in the thesaurus).

cen
1 cen

2 . . . cen
j . . .

wen
1 m11 m12 . . . m1 j . . .

wen
2 m21 m22 . . . m2 j . . .
...

...
...

. . .
...

...
wen

i mi1 mi2 . . . mi j . . .
...

...
... . . .

...
. ..

This matrix, created after a first pass of the cor-
pus, is thebase word–category co-occurrence ma-
trix (base WCCM) and it captures strong associa-
tions between a sense and co-occurring words.4 This
is similar to how Yarowsky (1992) identifies words
that are indicative of a particular sense of the target.

We know that words that occur close to a target
word tend to be good indicators of its intended sense.
Therefore, we make a second pass of the corpus, us-
ing the base WCCM to roughly disambiguate the
words in it. For each word, the strength of associ-
ation of each of the words in its context (±5 words)

4From the base WCCM we can determine the number of
times a wordw and conceptc co-occur, the number of times
w co-occurs with any concept, and the number of timesc co-
occurs with any word. A statistic such as PMI can then give the
strength of association betweenw andc.
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with each of its senses is summed. The sense that
has the highest cumulative association is chosen as
the intended sense. A newbootstrapped WCCM
is created such that each cellmi j , corresponding to
word wen

i and conceptcen
j , is populated with the

number of timeswen
i co-occurs with any wordused

in sense cen
j .

Mohammad and Hirst (2006a) used the DPCs cre-
ated from the bootstrapped WCCM to attain near-
upper-bound results in the task of determining word
sense dominance. Unlike the McCarthy et al. (2004)
dominance system, our approach can be applied
to much smaller target texts (a few hundred sen-
tences) without the need for a large similarly-sense-
distributed text5. In Mohammad and Hirst (2006a),
the DPC-based monolingual distributional measures
of concept-distancewere used to rank word pairs
by their semantic similarity and to correct real-
word spelling errors, attaining markedly better re-
sults than monolingual distributional measures of
word-distance. In the spelling correction task, the
distributional concept-distance measures performed
better than all WordNet-based measures as well, ex-
cept for the Jiang and Conrath (1997) measure.

3 Cross-lingual Distributional Measures

We now describe how distributional measures of
concept-distance can be used in a cross-lingual
framework to determine the distance between words
in (resource-poor) languageL1 by combining its text
with a thesaurus in (resource-rich) languageL2, us-
ing an L1–L2 bilingual lexicon. We will compare
this approach with the best monolingual approaches;
the smaller the loss in performance, the more ca-
pable the algorithm is of overcoming ambiguities
in word translation. An evaluation, therefore, re-
quires anL1 that in actuality has adequate knowl-
edge sources. Therefore we chose German to stand
in as the resource-poor languageL1 and English as
the resource-richL2; the monolingual evaluation in
German will use GermaNet. The remainder of the
paper describes our approach in terms of German
and English, but the algorithm itself is language in-
dependent.

5The McCarthy et al. (2004) system needs to first gener-
ate a distributional thesaurus from the target text (if it is large
enough—a few million words) or from another large text with a
distribution of senses similar to the target text.

3.1 Concept-distance

Given a German wordwde in context, we use a
German–English bilingual lexicon to determine its
different possible English translations. Each En-
glish translationwen may have one or more possi-
ble coarse senses, as listed in an English thesaurus.
These English thesaurus concepts (cen) will be re-
ferred to ascross-lingual candidate sensesof the
German wordwde.6 Figure 1 depicts examples.7

As in the monolingual distributional measures,
the distance between two concepts is calculated by
first determining their DPs. However, in the cross-
lingual approach, a concept is now glossed by near-
synonymous words in anEnglishthesaurus, whereas
its profile is made up of the strengths of associ-
ation with co-occurringGermanwords. Here are
constructed example cross-lingual DPs of the two
senses ofstar:

Cross-lingual DPs of concepts
‘celestial body’ (celestial body, sun,
. . .): Raum0.36,Licht 0.27,
Konstellation0.11, . . .
‘celebrity’ (celebrity, hero, . . .):
berühmt0.24,Film 0.14,reich 0.14, . . .

In order to calculate the strength of association, we
must first determine individual word and concept
counts, as well as their co-occurrence counts.

3.2 Cross-lingual word–category
co-occurrence matrix

We create a cross-lingual word–category co-
occurrence matrix with German word typeswde as
one dimension and English thesaurus conceptscen

6Some of the cross-lingual candidate senses ofwde might
not really be senses ofwde (e.g., ‘celebrity’, ‘river bank’, and
‘judiciary’ in Figure 1). However, as substantiated by experi-
ments in Section 4, our algorithm is able to handle the added
ambiguity.

7Vocabulary of German words needed to understand this dis-
cussion: Bank: 1. financial institution, 2. bench (furniture);
berühmt: famous; Film : movie (motion picture);Himmels-
körper: heavenly body;Konstellation: constellation;Licht:
light; Morgensonne: morning sun;Raum: space;reich: rich;
Sonne: sun;Star: star (celebrity);Stern: star (celestial body)
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}

star bank

river
bank

bench

furniture
judiciary

celestial body
celebrity

}

institution
financial }

Stern Bank wde

cen

wen

Figure 1: The cross-lingual candidate senses of Ger-
man wordsSternandBank.

as another.

cen
1 cen

2 . . . cen
j . . .

wde
1 m11 m12 . . . m1 j . . .

wde
2 m21 m22 . . . m2 j . . .
...

...
...

. . .
...

...
wde

i mi1 mi2 . . . mi j . . .
...

...
... . . .

...
. ..

The matrix is populated with co-occurrence counts
from a large German corpus; we used the newspaper
corpus,taz8 (Sep 1986 to May 1999; 240 million
words). A particular cellmi j , corresponding to word
wde

i and conceptcen
j , is populated with the number

of times the German wordwde
i co-occurs (in a win-

dow of±5 words) with any German word havingcen
j

as one of itscross-lingual candidate senses. For ex-
ample, theRaum–‘celestial body’ cell will have the
sum of the number of timesRaumco-occurs with
Himmelsk̈orper, Sonne, Morgensonne, Star, Stern,
and so on (see Figure 2). We used theMacquarie
Thesaurus(Bernard, 1986) (about 98,000 words)
for our experiments. The possible German trans-
lations of an English word were taken from the
German–English bilingual lexicon BEOLINGUS9

(about 265,000 entries).
This base word–category co-occurrence matrix

(base WCCM), created after a first pass of the cor-
pus captures strong associations between a category
(concept) and co-occurring words. For example,
even though we increment counts for bothRaum–
‘celestial body’ andRaum–‘celebrity’ for a particu-
lar instance whereRaumco-occurs withStar, Raum
will co-occur with a number of words such asHim-
melsk̈orper, Sonne,andMorgensonnethat each have
the sense ofcelestial bodyin common (see Figure
2), whereas all their other senses are likely different

8http://www.taz.de
9http://dict.tu-chemnitz.de

... }

... }

}

sun

Sonne Morgensonne Star

celestial body

celestial body

Stern

star wen

wde

cen

Himmelsk̈orper

Figure 2: Words having ‘celestial body’ as one of
their cross-lingual candidate senses.

and distributed across the set of concepts. There-
fore, the co-occurrence count ofRaumand ‘celestial
body’ will be relatively higher than that ofRaumand
‘celebrity’.

As in the monolingual case, a second pass of
the corpus is made to disambiguate the (German)
words in it. For each word, the strength of associ-
ation of each of the words in its context (±5 words)
with each of its cross-lingual candidate senses is
summed. The sense that has the highest cumula-
tive association with co-occurring words is chosen
as the intended sense. A new bootstrapped WCCM
is created by populating each cellmi j , correspond-
ing to wordwde

i and conceptcen
j , with the number of

times the German wordwde
i co-occurs with any Ger-

man wordused in cross-lingual sense cen
j . A statistic

such as PMI is then applied to these counts to deter-
mine the strengths of association between a target
concept and co-occurring words, giving the distri-
butional profile of the concept.

Following the ideas described above, Mohammad
et al. (2007) created Chinese–English DPCs from
Chinese text, a Chinese–English bilingual lexicon,
and an English thesaurus. They used these DPCs to
implement an unsupervised na¨ıve Bayes word sense
classifier that placed first among all unsupervised
systems taking part in the Multilingual Chinese–
English Lexical Sample Task (task #5) of SemEval-
07 (Jin et al., 2007).

4 Evaluation

We evaluated the newly proposed cross-lingual dis-
tributional measures of concept-distance on the tasks
of (1) measuring semantic distance between German
words and ranking German word pairs according to
semantic distance, and (2) solving German ‘Word
Power’ questions fromReader’s Digest. In order
to compare results with state-of-the-art monolingual
approaches we conducted experiments using Ger-
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(Cross-lingual) Distributional Measures (Monolingual) GermaNet Measures
Information Content–based Lesk-like

α-skew divergence (Lee, 2001) (ASD) Jiang and Conrath (1997) (JC) hypernym pseudo-gloss (HPG)
cosine (Sch¨utze and Pedersen, 1997) (Cos) Lin (1998b) (LinGN) radial pseudo-gloss (RPG)
Jensen-Shannon divergence (JSD) Resnik (1995) (Res)
Lin’s measure (1998a) (Lindist)

Table 1: Distance measures used in our experiments.

Dataset Year Language # pairs PoS Scores # subjects Correlation

Gur65 2005 German 65 N discrete{0,1,2,3,4} 24 .810
Gur350 2006 German 350 N, V, A discrete{0,1,2,3,4} 8 .690

Table 2: Comparison of datasets used for evaluating semantic distance in German.

maNet measures as well. The specific distributional
measures10 and GermaNet-based measures we used
are listed in Table 1. The GermaNet measures are
of two kinds: (1) information content measures,11

and (2) Lesk-like measures that rely onn-gram over-
laps in the glosses of the target senses, proposed by
Gurevych (2005)12.

The cross-lingual measures combined the German
newspaper corpustaz with the EnglishMacquarie
Thesaurususing the German–English bilingual lex-
icon BEOLINGUS. Multi-word expressions in the
thesaurus and the bilingual lexicon were ignored.
We used a context of±5 words on either side of the
target word for creating the base and bootstrapped
WCCMs. No syntactic pre-processing was done,
nor were the words stemmed, lemmatized, or part-
of-speech tagged.

4.1 Measuring distance in word pairs

4.1.1 Data

A direct approach to evaluate distance measures is
to compare them with human judgments. Gurevych

10JSD and ASD calculate the difference in distributions of
words that co-occur with the targets.Lindist (distributional
measure) andLinGN (GermaNet measure) follow from Lin’s
(1998b) information-theoretic definition of similarity.

11Information content measures rely on finding the lowest
common subsumer (lcs) of the target synsets in a hypernym hi-
erarchy and using corpus counts to determine how specific or
general this concept is. In general, the more specific the lcs is
and the smaller the difference of its specificity with that of the
target concepts, the closer the target concepts are.

12As GermaNet does not have glosses for synsets, Gurevych
(2005) proposed a way of creating a bag-of-words-type pseudo-
gloss for a synset by including the words in the synset and in
synsets close to it in the network.

(2005) and Zesch et al. (2007) asked native German
speakers to mark two different sets of German word
pairs with distance values. Set 1 (Gur65) consists
of a German translation of the English Rubenstein
and Goodenough (1965) dataset. It has 65 noun–
noun word pairs. Set 2 (Gur350) is a larger dataset
containing 350 word pairs made up of nouns, verbs,
and adjectives. The semantically close word pairs
in Gur65 are mostly synonyms or hypernyms (hy-
ponyms) of each other, whereas those in Gur350
have both classical and non-classical relations (Mor-
ris and Hirst, 2004) with each other. Details of these
semantic distance benchmarks13 are summarized
in Table 2. Inter-subject correlations are indicative
of the degree of ease in annotating the datasets.

4.1.2 Results and Discussion

Word-pair distances determined using different
distance measures are compared in two ways with
the two human-created benchmarks. The rank order-
ing of the pairs from closest to most distant is evalu-
ated with Spearman’s rank order correlationρ; the
distance judgments themselves are evaluated with
Pearson’s correlation coefficientr. The higher the
correlation, the more accurate the measure is. Spear-
man’s correlation ignores actual distance values af-
ter a list is ranked—only the ranks of the two sets
of word pairs are compared to determine correla-
tion. On the other hand, Pearson’s coefficient takes
into account actual distance values. So even if two
lists are ranked the same, but one has distances be-

13The datasets are publicly available at:
http://www.ukp.tu-darmstadt.de/data/semRelDatasets
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tween consecutively-ranked word-pairs more in line
with human-annotations of distance than the other,
then Pearson’s coefficient will capture this differ-
ence. However, this makes Pearson’s coefficient
sensitive to outlier data points, and so one must in-
terpret the Pearson correlations with caution.

Table 3 shows the results.14 Observe that on both
datasets and by both measures of correlation, cross-
lingual measures of concept-distance perform not
just as well as the best monolingual measures, but in
fact better. In general, the correlations are lower for
Gur350 as it contains cross-PoS word pairs and non-
classical relations, making it harder to judge even
by humans (as shown by the inter-annotator corre-
lations for the datasets in Table 2). Considering
Spearman’s rank correlation,α-skew divergence and
Jensen-Shannon divergence perform best on both
datasets. The correlations of cosine andLindist are
not far behind. Amongst the monolingual GermaNet
measures, radial pseudo-gloss performs best. Con-
sidering Pearson’s correlation,Lindist performs best
overall and radial pseudo-gloss does best amongst
the monolingual measures. Thus, we see that on
both datasets and as per both measures of correla-
tion, the cross-lingual measures perform not just as
well as the best monolingual measures, but indeed
slightly better.

4.2 Solving word choice problems from
Reader’s Digest

4.2.1 Data

Issues of the German edition ofReader’s Digest
include a word choice quiz called ‘Word Power’.
Each question has one target word and four alter-
native words or phrases; the objective is to pick the
alternative that is most closely related to the target.
The correct answer may be a near-synonym of the
target or it may be related to the target by some other
classical or non-classical relation (usually the for-
mer). For example:15

Duplikat (duplicate)
a. Einzelsẗuck (single copy) b.Doppelkinn(double chin)
c. Nachbildung(replica) d.Zweitschrift(copy)

Our approach to evaluating distance measures fol-
14In Table 3, all values are statistically significant at the 0.01

level (2-tailed), except for the one in italic (0.212), which is
significant at the 0.05 level (2-tailed).

15English translations are in parentheses.

lows that of Jarmasz and Szpakowicz (2003), who
evaluated semantic similarity measures through their
ability to solve synonym problems (80 TOEFL (Lan-
dauer and Dumais, 1997), 50 ESL (Turney, 2001),
and 300 (English)Reader’s DigestWord Power
questions). Turney (2006) used a similar approach
to evaluate the identification of semantic relations,
with 374 college-level multiple-choice word anal-
ogy questions.

The Reader’s Digest Word Power (RDWP)
benchmark for German consists of 1072 of these
word-choice problems collected from the January
2001 to December 2005 issues of the German-
language edition (Wallace and Wallace, 2005). We
discarded 44 problems that had more than one cor-
rect answer, and 20 problems that used a phrase in-
stead of a single term as the target. The remaining
1008 problems form our evaluation dataset, which is
significantly larger than any of the previous datasets
employed in a similar evaluation.

We evaluate the various cross-lingual and mono-
lingual distance measures by their ability to choose
the correct answer. The distance between the target
and each of the alternatives is computed by a mea-
sure, and the alternative that is closest is chosen. If
two or more alternatives are equally close to the tar-
get, then the alternatives are said to betied. If one
of the tied alternatives is the correct answer, then
the problem is counted as correctly solved, but the
corresponding score is reduced. We assign a score
of 0.5, 0.33, and 0.25 for 2, 3, and 4 tied alterna-
tives, respectively (in effect approximating the score
obtained by randomly guessing one of the tied al-
ternatives). If more than one alternative has a sense
in common with the target, then the thesaurus-based
cross-lingual measures will mark them each as the
closest sense. However, if one or more of these tied
alternatives is in the same semicolon group of the
thesaurus16 as the target, then only these are chosen
as the closest senses.

The German RDWP dataset contains many
phrases that cannot be found in the knowledge
sources (GermaNet orMacquarie Thesaurusvia
translation list). In these cases, we remove stop-

16Words in a thesaurus category are further partitioned into
different paragraphs and each paragraph into semicolon groups.
Words within a semicolon group are more closely related than
those in semicolon groups of the same paragraph or category.
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Gur65 Gur350
Measure ρ r ρ r

Monolingual
HPG 0.672 0.702 0.346 0.331
RPG 0.764 0.565 0.492 0.420
JC 0.665 0.748 0.417 0.410
LinGN 0.607 0.739 0.475 0.495
Res 0.623 0.722 0.454 0.466

Cross-lingual
ASD 0.794 0.597 0.520 0.413
Cos 0.778 0.569 0.500 0.212
JSD 0.793 0.633 0.522 0.422
Lindist 0.775 0.816 0.498 0.514

Table 3: Correlations of distance measures with hu-
man judgments.

words (prepositions, articles, etc.) and split the
phrase into component words. As German words
in a phrase can be highly inflected, we lemmatize
all components. For example, the target ‘imagin̈ar’
(imaginary) has ‘nur in der Vorstellung vorhanden’
(‘exists only in the imagination’) as one of its alter-
natives. The phrase is split into its component words
nur, Vorstellung,and vorhanden. We compute se-
mantic distance between the target and each phrasal
component and select the minimum value as the dis-
tance between target and potential answer.

4.2.2 Results and Discussion

Table 4 presents the results obtained on the Ger-
man RDWP benchmark for both monolingual and
cross-lingual measures. Only those questions for
which the measures have some distance information
are attempted; the column ‘Att.’ shows the number
of questions attempted by each measure, which is
the maximum score that the measure can hope to
get. Observe that the thesaurus-based cross-lingual
measures have a much larger coverage than the
GermaNet-based monolingual measures. The cross-
lingual measures have a much larger number of cor-
rect answers too (column ‘Cor.’), but this number is
bloated due to the large number of ties.17 ‘Score’
is the score each measure gets after it is penalized
for the ties. The cross-lingual measuresCos, JSD,
and Lindist obtain the highest scores. But ‘Score’
by itself does not present the complete picture ei-

17We see more ties when using the cross-lingual measures
because they rely on theMacquarie Thesaurus, a very coarse-
grained sense inventory (around 800 categories), whereas the
cross-lingual measures operate on the fine-grained GermaNet.

Reader’s Digest Word Power benchmark
Measure Att. Cor. Ties Score P R F
Monolingual

HPG 222 174 11 171.5 .77 .17 .28
RPG 266 188 15 184.7 .69 .18 .29
JC 357 157 1 156.0 .44 .16 .23
LinGN 298 153 1 152.5 .51 .15 .23
Res 299 154 33 148.3 .50 .15 .23

Cross-lingual
ASD 438 185 81 151.6 .35 .15 .21
Cos 438 276 90 223.1 .51 .22 .31
JSD 438 276 90 229.6 .52 .23 .32
Lindist 438 274 90 228.7 .52 .23 .32

Table 4: Performance of distance measures on word
choice problems. (Att.: Attempted, Cor.: Correct)

ther as, given the scoring scheme, a measure that at-
tempts more questions may get a higher score just
from random guessing. We therefore present pre-
cision, recall, andF-scores (P = Score/Att; R =
Score/1008; F = 2×P×R/(P+R)). Observe that
the cross-lingual measures have a higher coverage
(recall) than the monolingual measures but lower
precision. The F scores show that the best cross-
lingual measures do slightly better than the best
monolingual ones, despite the large number of ties.
The measures ofCos, JSD, andLindist remain the
best cross-lingual measures, whereas HPG and RPG
are the best monolingual ones.

5 Conclusion

We have proposed a new method to determine se-
mantic distance in a possibly resource-poor lan-
guage by combining its text with a knowledge
source in a different, preferably resource-rich, lan-
guage. Specifically, we combined German text with
an English thesaurus to create cross-lingual distri-
butional profiles of concepts—the strengths of as-
sociation between English thesaurus senses (con-
cepts) of German words and co-occurring German
words—using a German–English bilingual lexicon
and a bootstrapping algorithm designed to overcome
ambiguities of word-senses and translations. No-
tably, we do so without the use of sense-annotated
text or word-aligned parallel corpora. We did not
parse or chunk the text, nor did we stem, lemmatize,
or part-of-speech-tag the words.

We used the cross-lingual DPCs to estimate se-
mantic distance by developing new cross-lingual
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distributional measures of concept-distance. These
measures are like the distributional measures of
concept-distance (Mohammad and Hirst, 2006a,
2006b), except they can determine distance between
words in one language using a thesaurus in a differ-
ent language. We evaluated the cross-lingual mea-
sures against the best monolingual ones operating
on a WordNet-like resource, GermaNet, through an
extensive set of experiments on two different Ger-
man semantic distance benchmarks. In the process,
we compiled a large German benchmark ofReader’s
Digestword choice problems suitable for evaluating
semantic-relatedness measures. Most previous se-
mantic distance benchmarks are either much smaller
or cater primarily to semantic similarity measures.

Even with the added ambiguity of translating
words from one language to another, the cross-
lingual measures performed better than the best
monolingual measures on both the word-pair task
and theReader’s Digestword-choice task. Fur-
ther, in the word-choice task, the cross-lingual mea-
sures achieved a significantly higher coverage than
the monolingual measure. The richness of En-
glish resources seems to have a major impact, even
though German, with GermaNet, a well-established
resource, is in a better position than most other lan-
guages. This is indeed promising, because achieving
broad coverage for resource-poor languages remains
an important goal as we integrate state-of-the-art ap-
proaches in natural language processing into real-
life applications. These results show that our algo-
rithm can successfully combine German text with an
English thesaurus using a bilingual German–English
lexicon to obtain state-of-the-art results in measur-
ing semantic distance.

These results also support the broader and far-
reaching claim that natural language problems in
a resource-poor language can be solved using a
knowledge source in a resource-rich language (e.g.,
Cucerzan and Yarowsky’s (2002) cross-lingual PoS
tagger). Our future work will explore other tasks
such as information retrieval and text categoriza-
tion. Cross-lingual DPCs also have tremendous po-
tential in tasks inherently involving more than one
language, such as machine translation and multi-
language multi-document summarization. We be-
lieve that the future of natural language process-
ing lies not in standalone monolingual systems but

in those that are powered by automatically created
multilingual networks of information.
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Abstract
Many systems for tasks such as question answer-
ing, multi-document summarization, and infor-
mation retrieval need robust numerical measures
of lexical relatedness. Standard thesaurus-based
measures of word pair similarity are based on
only a single path between those words in the
thesaurus graph. By contrast, we propose a new
model of lexical semantic relatedness that incor-
porates information from every explicit or im-
plicit path connecting the two words in the en-
tire graph. Our model uses a random walk over
nodes and edges derived from WordNet links
and corpus statistics. We treat the graph as a
Markov chain and compute a word-specific sta-
tionary distribution via a generalized PageRank
algorithm. Semantic relatedness of a word pair is
scored by a novel divergence measure, ZKL, that
outperforms existing measures on certain classes
of distributions. In our experiments, the resulting
relatedness measure is the WordNet-based mea-
sure most highly correlated with human similar-
ity judgments by rank ordering at ρ = .90.

1 Introduction
Several kinds of Natural Language Processing systems
need measures of semantic relatedness for arbitrary word
pairs. For example, document summarization and ques-
tion answering systems often use similarity scores to
evaluate candidate sentence alignments, and information
retrieval systems use relatedness scores for query expan-
sion. Several popular algorithms calculate scores from
information contained in WordNet (Fellbaum, 1998), an
electronic dictionary where word senses are explicitly
connected by zero or more semantic relationships. The
central challenge of these algorithms is to compute rea-
sonable relatedness scores for arbitrary word pairs given
that few pairs are directly connected.

Most pairs in WordNet share no direct semantic
link, and for some the shortest connecting path can be

surprising—even pairs that seem intuitively related, such
“furnace” and “stove” share a lowest common ancestor
in the hypernymy taxonomy (is-a links) all the way up
at “artifact” (a man-made object). Several existing algo-
rithms compute relatedness only by traversing the hyper-
nymy taxonomy and find that “furnace” and “stove” are
relatively unrelated. However, WordNet provides other
types of semantic links in addition to hypernymy, such
as meronymy (part/whole relationships), antonymy, and
verb entailment, as well as implicit links defined by over-
lap in the text of definitional glosses. These links can
provide valuable relatedness information. If we assume
that relatedness is transitive across a wide variety of such
links, then it is natural to follow paths such as furnace–
crematory–gas oven–oven–kitchen appliance–stove and
find a higher degree of relatedness between “furnace”
and “stove.”

This paper presents the application of random walk
Markov chain theory to measuring lexical semantic re-
latedness. A graph of words and concepts is constructed
from WordNet. The random walk model posits the exis-
tence of a particle that roams this graph by stochastically
following local semantic relational links. The particle is
biased toward exploring the neighborhood around a target
word, and is allowed to roam until the proportion of time
it visits each node in the limit converges to a stationary
distribution. In this way we can compute distinct, word-
specific probability distributions over how often a particle
visits all other nodes in the graph when “starting” from a
specific word. We compute the relatedness of two words
as the similarity of their stationary distributions.

The random walk brings with it two distinct advan-
tages. First, it enables the similarity measure to have
a principled means of combination of multiple types of
edges from WordNet. Second, by traversing all links, the
walk aggregates local similarity statistics across the en-
tire graph. The similarity scores produced by our method
are, to our knowledge, the WordNet-based scores most
highly correlated with human judgments.

581



2 Related work

Budanitsky and Hirst (2006) provide a survey of many
WordNet-based measures of lexical similarity based on
paths in the hypernym taxonomy. As an example, one
of the best performing is the measure proposed by Jiang
and Conrath (1997) (similar to the one proposed by (Lin,
1991)), which finds the shortest path in the taxonomic hi-
erarchy between two candidate words before computing
similarity as a function of the information content of the
two words and their lowest common subsumer in the hi-
erarchy. We note the distinction between word similarity
and word relatedness. Similarity is a special case of relat-
edness in that related words such as “cat” and “fur” share
some semantic relationships (such as meronymy), but do
not express the same likeness of form as would similar
words such as “cat” and “lion.” The Jiang-Conrath mea-
sure and most other measures that primarily make use of
of hypernymy (is-a links) in the WordNet graph are better
categorized as measures of similarity than of relatedness.

Other measures have been proposed that utilize the text
in WordNet’s definitional glosses, such as Extended Lesk
(Banerjee and Pedersen, 2003) and later the Gloss Vec-
tors (Patwardhan and Pedersen, 2006) method. These ap-
proaches are primarily based on comparing the “bag of
words” of two synsets’ gloss text concatenated with the
text of neighboring words’ glosses in the taxonomy. As
a result, these gloss-based methods measure relatedness.
Our model captures some of this relatedness information
by including weighted links based on gloss text.

A variety of other measures of semantic relatedness
have been proposed, including distributional similarity
measures based on co-occurrence in a body of text—
see (Weeds and Weir, 2005) for a survey. Other mea-
sures make use of alternative structured information re-
sources than WordNet, such as Roget’s thesaurus (Jar-
masz and Szpakowicz, 2003). More recently, measures
incorporating information from Wikipedia (Gabrilovich
and Markovitch, 2007; Strube and Ponzetto, 2006) have
reported stronger results on some tasks than have been
achieved by existing measures based on shallower lexical
resources. The results of our algorithm are competitive
with some Wikipedia algorithms while using only Word-
Net 2.1 as the underlying lexical resource. The approach
presented here is generalizable to construction from any
underlying semantic resource.

PageRank is the most well-known example of a ran-
dom walk Markov chain—see (Berkhin, 2005) for a sur-
vey. It uses the local hyperlink structure of the web to
define a graph which it walks to aggregate popularity
information for different pages. Recent work has ap-
plied random walks to NLP tasks such as PP attachment
(Toutanova et al., 2004), word sense disambiguation (Mi-
halcea, 2005; Tarau et al., 2005), and query expansion

(Collins-Thompson and Callan, 2005). However, to our
knowledge, the literature in NLP has only considered us-
ing one stationary distribution per specially-constructed
graph as a probability estimator. In this paper, we in-
troduce a measure of semantic relatedness based on the
divergence of the distinct stationary distributions result-
ing from random walks centered at different positions in
the word graph. We believe we are the first to define such
a measure.

3 Random walks on WordNet

Our model is based on a random walk of a particle
through a simple directed graph G = (V,E) whose nodes
V and edges E are extracted from WordNet version 2.1.
Formally, we define the probability n

(t)
i of finding the

particle at node ni ∈ V at time t as the sum of all ways in
which the particle could have reached ni from any other
node at the previous time-step:

n
(t)
i =

∑
nj∈V

n
(t−1)
j P (ni | nj)

where P (ni | nj) is the conditional probability of mov-
ing to ni given that the particle is at nj . In partic-
ular, we construct the transition distribution such that
P (ni | nj) > 0 whenever WordNet specifies a local link
relationship of the form j → i. Note that this random
walk is a Markov chain because the transition probabili-
ties at time t are independent of the particle’s past trajec-
tory.

The subsections that follow present the construction of
the graph for our random walk from WordNet and the
mathematics of computing the stationary distribution for
a given word.

3.1 Graph Construction

WordNet is itself a graph over synsets. A synset is best
thought of as a concept evoked by one sense of one or
more words. For instance, different senses of the word
“bank” take part in different synsets (e.g. a river bank
versus a financial institution), and a single synset can
be represented by multiple synonymous words, such as
“middle” and “center.” WordNet explicitly marks seman-
tic relationships between synsets, but we are additionally
interested in representing relatedness between words. We
therefore extract the following types of nodes from Word-
Net:

Synset Each WordNet synset has a corresponding node.
For example, one node corresponds to the synset re-
ferred to by “dog#n#3,” the third sense of dog as
noun, whose meaning is “an informal term for a
man.” There are 117,597 Synset nodes.
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TokenPOS One node is allocated to every word cou-
pled with a part of speech, such as “dog#n” mean-
ing dog as a noun. These nodes link to all the
synsets they participate in, so that “dog#n” links
the Synset nodes for canine, hound, hot dog, etc.
Collocations—multi-word expressions such as “hot
dog”—that take part in a synsets are also represented
by these nodes. There are 156,588 TokenPOS nodes.

Token Every TokenPOS is connected to a Token node
corresponding to the word when no part of speech
information is present. For example, “dog” links to
“dog#n” and “dog#v” (meaning “to chase”). There
are 148,646 Token nodes.

Synset nodes are connected with edges correspond-
ing to many of the relationship types in Word-
Net. We use these WordNet relationships to form
edges: hypernym/hyponym, instance/instance of, all
holonym/meronym links, antonym, entails/entailed by,
adjective satellite, causes/caused by, participle, pertains
to, derives/derived from, attribute/has attribute, and top-
ical (but not regional or usage) domain links. By con-
struction, each edge created from a WordNet relationship
is guaranteed to have a corresponding edge in the oppo-
site direction.

Edges that connect a TokenPOS to the Synsets using it
are weighted based on a Bayesian estimate drawn from
the SemCor frequency counts included in WordNet but
with a non-uniform Dirichlet prior. Our edge weights are
the SemCor frequency counts for each target Synset, with
pseudo-counts of .1 for all Synsets, 1 for first sense of
each word, and .1 for the first word in each Synset. Intu-
itively, this causes the particle to have a higher probabil-
ity of moving to more common senses of a TokenPOS; for
example, the edges from “dog#n” to “dog#n#1” (canine)
and “dog#n#5” (hotdog) have un-normalized weights of
43.2 and 0.1, respectively. The edges connecting a To-
ken to the TokenPOS nodes in which it can occur are also
weighted by the sum of the weights of the outgoing To-
kenPOS→Synset links. Hence a walk starting at a com-
mon word like “cat” is far more likely to follow a link to
“cat#n” than to rarities like “cat#v” (to vomit). These
edges are uni-directional; no edges are created from a
Synset to a TokenPOS that can represent the Synset.

In order for our graph construction to incorporate
textual gloss-based information, we also create uni-
directional edges from Synset nodes to the TokenPOS
nodes for the words and collocations used in that synset’s
gloss definition. This requires part-of-speech tagging the
glosses, for which we use the Stanford maximum entropy
tagger (Toutanova et al., 2003). It is important to cor-
rectly weight these edges, because high-frequency stop-
words such as “by” and “he” do not convey much in-
formation and might serve only to smear the probability

mass across the whole graph. Gloss-based links to these
nodes should therefore be down-weighted or removed.
On the other hand, up-weighting extremely rare words
such as by tf-idf scoring might also be inappropriate
because such rare words would get extremely high scores,
which is an undesirable trait in similarity search. (Haveli-
wala et al., 2002) and others have shown that a “non-
monotonic document frequency” (NMDF) weighting can
be more effective in such a setting. Because the frequency
of words in the glosses is distributed by a power-law, we
weight each word by its distance from the mean word
count in log space. Formally, the weight wi for a word
appearing ri times is

wi = exp

(
− (log(ri)− µ)2

2σ2

)
where µ and σ are the mean and standard deviation of
the logs of all word counts. This is a smooth approxima-
tion to the high and low frequency stop lists used effec-
tively by other measures such as (Patwardhan and Ped-
ersen, 2006). We believe that because non-monotonic
frequency scaling has no parameters and is data-driven,
it could stand to be more widely adopted among gloss-
based lexical similarity measures.

We also add bi-directional edges between Synsets
whose word senses overlap with a common TokenPOS.
These edges have raw weights given by the number of
TokenPOS nodes shared by the Synsets. The intuition be-
hind adding these edges is that WordNet often divides the
meanings of words into fine-grained senses with similar
meanings, so there is likely to be some semantic relation-
ship between Synsets sharing a common TokenPOS.

The final graph has 422,831 nodes and 5,133,281
edges. This graph is very sparse; fewer than 1 in 10,000
node pairs are directly connected. When only the un-
weighted WordNet relationship edges are considered,
the largest degree of any node is “city#n#1” with 667
edges (mostly connecting to particular cities), followed
by “law#n#2” with 602 edges (mostly connecting to a
large number of domain terms such as “dissenting opin-
ion” and “freedom of speech”), and each node is on aver-
age connected to 1.7 other nodes. When the gloss-based
edges are considered separately, the highest degree nodes
are those with the longest definitions; the maximum out-
degree is 56 and the average out-degree is 6.2. For the
edges linking TokenPOS nodes to the Synsets in which
they participate, TokenPOS nodes with many senses are
the most connected; “break#v” with 59 outgoing edges
and “make#v” with 49 outgoing edges have the highest
out-degrees, with the average out-degree being 1.3.

3.2 Computing the stationary distribution
Each of the K edge types presented above can be repre-
sented as separate transition matrix Ek ∈ RN×N where
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N is the total number of nodes. For each matrix, col-
umn j contains contains a normalized outgoing proba-
bility distribution,1 so the weight in cell (i, j) contains
PK(ni | nj), the conditional probability of moving from
node nj to node ni in edge type K. For many of the edge
types, this is either 0 or 1, but for the weighted edges,
these are real valued. The full transition matrix M is then
the column normalized sum of all of the edge types:

M̂ =
∑

k

Ek

M =
(∥∥∥M̂

∥∥∥
∞

)−1

· M̂

M is a distillation of relevant relatedness information
about all nodes extracted from WordNet and is not tai-
lored for computing a stationary distribution for any spe-
cific word. In order to compute the stationary distribu-
tion vdog#n for a walk centered around the TokenPOS
“dog#n,” we first define an initial distribution v

(0)
dog#n that

places all the probability mass in the single vector entry
corresponding to “dog#n.” Then at every step of the walk,
we will return to v(0) with probability β. Intuitively, this
return probability captures the notion that nodes close to
“dog#n” should be given higher weight, and also guaran-
tees that the stationary distribution exists and is unique
(Bremaud, 1999). The stationary distribution v is com-
puted via an iterative update algorithm:

v(t) = βv(0) + (1− β)Mv(t−1)

Because the walk may return to the initial distribution
v(0) at any step with probability β, we found that v(t)

converges to its unique stationary distribution v(∞) in a
number of steps roughly proportional to β−1. We experi-
mented with a range of return probabilities and found that
our results were relatively insensitive to this parameter.
Our convergence criteria was

∥∥v(t−1) − v(t)
∥∥

1
< 10−10,

which, for our graph with a return probability of β = .1,
was met after about two dozen iterations. This computa-
tion takes under two seconds on a modern desktop ma-
chine.

Note that because M is sparse, each iteration of the
above computation is linear in the total number of non-
zero entries in P , i.e. linear in the total number of edges.
Introducing an edge type that is dense would dramatically
increase running time.

3.3 Model variants
For this paper, we consider three model variants that dif-
fer based on which subset of the edge types are included

1The frequency-count derived edges are normalized by the
largest column sum. This effectively preserves relative term fre-
quency information across the graph and causes some columns
to sum to less than one. We interpret this lost mass as a link to
“nowhere.”

in the transition matrix M .

MarkovLink This variant includes the explicit WordNet
relations such as hypernymy and the edges repre-
senting overlap between the TokenPOS nodes con-
tained in Synsets. A particle walking through this
graph reaches only Synset nodes and can step from
one Synset to another whenever WordNet specifies a
relationship between the Synsets or when the Synsets
share a common word. There is a single connected
component in this model variant. This model is
loosely analogous to a smoothed version of the path-
based WordNet measures surveyed in (Budanitsky
and Hirst, 2006) but differs in that it integrates mul-
tiple link types and aggregates relatedness informa-
tion across all paths in the graph.

MarkovGloss This variant includes only the weighted
uni-directional edges linking Synsets to the Token-
POS nodes contained in their gloss definitions, and
the edges from a TokenPOS node to the Synsets con-
taining it. The intuition behind this model variant is
that the particle can move as if it were recursively
looking up words in a dictionary, stepping from
Synsets to the Synsets used to define them. Because
WordNet’s gloss definitions are not sense-tagged,
the particle must make an intermediate step to a To-
kenPOS contained in the gloss definition and then
to a Synset representing a particular sense of that
TokenPOS. The availability of sense-tagged glosses
would eliminate the noise introduced by this inter-
mediate step. The particle can reach both Synsets
and TokenPOS nodes in this variant, but some parts
of the graph are not reachable from other parts. This
model incorporates much of the same information
as the gloss-based WordNet measures (Banerjee and
Pedersen, 2003; Patwardhan and Pedersen, 2006)
but differs in that it considers many more glosses
than just those in the immediate neighborhoods of
the candidate words.

MarkovJoined This variant is the natural combination
of the above two; we construct the graph containing
WordNet relation edges, Synset overlap edges, and
gloss-based Synset to TokenPOS edges.

Many of the characteristics of the model variants can
be understood in terms of how much probability mass
they assign to each node for a particular word-specific
stationary distribution. Table 1 shows the highest scoring
nodes in the word-specific stationary distributions cen-
tered around the Token node for “wizard,” as computed by
the MarkovLink and MarkovGloss variants. In both vari-
ants, the “wizard” Token’s only neighbors are the “wiz-
ard#n” and “wizard#a” TokenPOS nodes, and “wizard#n”
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MarkovLink MarkovGloss

Node Probability Node Probability

wizard 1.0E-1 wizard 1.3E-01

wizard#n 2.5E-3 wizard#n 2.9E-02

wizard#a 7.8E-5 wizard#a 9.1E-04

ace#n#3 4.2E-5 ace#n#3 1.1E-06

sorcerer#n#1 2.2E-6 sorcerer#n#1 5.8E-07

charming#a#2 2.2E-6 dazzlingly#r 2.4E-08

expert#n#1 1.1E-6 charming#a#2 1.6E-09

track star#n#1 1.1E-6 sorcery#n 2.6E-10

occultist#n#1 5.7E-7 magic#n 6.8E-12

Cagliostro#n#1 5.7E-7 magic#a 6.8E-12

star#v#2 5.5E-7 dazzlingly#r#1 4.3E-14

breeze_through#v#1 5.4E-7 dazzle#n 9.4E-16

magic#n#1 2.1E-8 beholder#n 9.4E-16

sorcery#n#1 2.1E-7 dazzle#v 9.4E-16

magician#n#1 1.9E-7 magic#n#1 5.1E-16

Table 1: Highest scoring nodes in the stationary distri-
butions for “wizard#n” as generated by the MarkovLink
model and the MarkovGloss model with return probabil-
ity 0.1.

has a higher probability mass because of its higher Sem-
Cor usage counts. Likewise, the only possible steps per-
mitted in either variant from “wizard#n” and “wizard#a”
are to the Synsets that can be expressed with those nodes:
“ace#n#3,” “sorcerer#n#1,” and “charming#a#1.” Again,
the amount of mass given to these nodes depends on the
strength of these edge weights, which is determined by
the SemCor usage counts.

The highest probability nodes in the table are common
because both model variants share the same initial links.
However, the orders of the remaining nodes in the station-
ary distributions are different. In the MarkovLink variant,
the random walk can only proceed to other Synsets using
WordNet relationship edges; “track star#n#1” and “ex-
pert#n#1” are first reached by following hyponym and
hypernym edges from “ace#n#1,” and “occultist#n#1”
and “Cagliostro#n#1” are first reached with hypernym
and instance edges from “sorcerer#n#1.” The node
“breeze through#v#1” is reached through a path follow-
ing derivational links with “ace#n” and “ace#v.”

The MarkovGloss variant in table 1 shows how infor-
mation can be extracted solely from the textual glosses.
Once the random walk reaches the first Synset nodes, it
can step to the TokenPOS nodes in their glosses; for ex-
ample, “ace#n#1” has the gloss “someone who is daz-
zlingly skilled in any field.” Links to TokenPOS nodes
that are very common in glosses are down-weighted with
NMDF weighting, so “someone#n” receives little mass
while “dazzlingly#r” receives more. From there, the
random walk can step to another Synset such as “daz-

MarkovLink model MarkovGloss model

Figure 1: Example stationary distributions plotted against
each other for similar (top) and dissimilar (bottom) word
pairs, using the MarkovLink (left) and MarkovGloss
(right) model variants.

zlingly#r#1,” and then on to other TokenPOS nodes used
in its definition: “in a manner or to a degree that dazzles
the beholder.”

Figure 1 demonstrates how two word-specific station-
ary distributions are more highly correlated if the words
are related. In both model variants, random walks for
related words are more likely to visit the same parts of
the graph, and so assign higher probability to the same
nodes. Figure 1 also shows that the MarkovGloss variant
produces distributions with a much wider range of proba-
bilities than the MarkovLink, which might be a source of
difficulty in integrating the two model variants.

Figure 2 shows the correlation between the stationary
distributions produced by the two model variants for the
same word. The log-log scale makes it possible to see the
entire range of probabilities on the same axes, and shows
that distributions produced by these two model variants
share many of the same highest-probability words.

A noteworthy property of the constructed graphs is that
word relatedness can be computed directly by compar-
ing walks that start at Token nodes. By contrast, existing
WordNet-based measures require independent similarity
judgments for all word senses relevant to a target word
pair (of which the maximum relatedness value is usu-
ally taken). Our algorithm lends itself to comparisons
between walks centered at a Synset node, or a Token-
POS node, or a Token node, or any mixed distribution
thereof. And because the Synset nodes are strongly con-
nected, the model also admits direct comparison across
parts of speech.
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Figure 2: Correlation of the stationary distributions for
“wizard#n,” produced by the MarkovLink variant (x-axis)
and the MarkovGloss variant (y-axis).

4 Similarity judgments

We have shown how to compute the word-specific sta-
tionary distribution from any starting distribution in the
graph. Now consider the task of deciding similarity be-
tween two words. Intuitively, if the random walk starting
at the first word’s node and the random walk starting at
the second word’s node tend to visit the same nodes, we
would like to consider them semantically related. For-
mally, we measure the divergence of their respective sta-
tionary distributions, p and q.

A wide literature exists on similarity measures between
probability distributions. One standard choice is to con-
sider p and q to be vectors and measure the cosine of
the angle between them, which is rank equivalent to Eu-
clidean distance.

simcos(p, q) =
∑

i piqi

‖p‖ ‖q‖

Because p and q are probability distributions, we would
also expect a strong contender from the information-
theoretic measures based on Kullback-Leibler diver-
gence, defined as:

DKL(p ‖ q) =
∑

i

pi log
pi

qi

Unfortunately, KL divergence is undefined if any qi is
zero because those terms in the sum will have infinite
weight. Several modifications to avoid this issue have
been proposed in the literature. One is Jensen-Shannon
divergence (Lin, 1991), a symmetric measure based on
KL-divergence defined as the average of the KL diver-
gences of each distribution to their average distribution.

Jensen-Shannon is well defined for all distributions be-
cause the average of pi and qi is non-zero whenever either
number is.

These measures and others are surveyed in (Lee,
2001), who finds that Jensen-Shannon is outperformed
by the Skew divergence measure introduced by Lee in
(1999). The skew divergence2 accounts for zeros in q by
mixing in a small amount of p.

sα(p, q) = D(p ‖ αq + (1− α)p)
=

∑
i pi log pi

αqi+(1−α)pi

Lee found that as α → 1, the performance of skew di-
vergence on natural language tasks improves. In partic-
ular, it outperforms most other models and even beats
pure KL divergence modified to avoid zeros with sophis-
ticated smoothing models. In exploring the performance
of divergence measures on our model’s stationary distri-
butions, we observed the same phenomenon. Note that
in the limit as α → 1, alpha skew is identically KL-
divergence.

4.1 Zero-KL Divergence

In this section we introduce a novel measure of distribu-
tional divergence based on a reinterpretation of the skew
divergence. Skew divergence avoids zeros in q by mixing
in some of p, but its performance on many natural lan-
guage tasks improves as it better approximates KL diver-
gence. We propose an alternative approximation to KL
divergence called Zero-KL divergence, or ZKL. When
qi is non-zero, we use exactly the term from KL diver-
gence. When qi = 0, we have a problem—in the limit as
α → 1, the corresponding term approaches infinity. We
let ZKL use the Skew divergence value for these terms:
pi log pi

αqi+(1−α)pi
. Because qi = 0 this simplifies to

pi log pi

(1−α)pi
= pi log 1

1−α .
Lee showed skew divergence’s best performance was

for α near to 1, so we formalize this intuition by choosing
α exponentially near to 1, i.e. we can choose our α as
1−2−γ for some γ ∈ R+. Zero terms in the sum can now
be written as pi log 1

2−γ = pi log 2γ = pi γ. Note here an
analogy to the case with qj > 0 and where pj is exactly
one order of magnitude greater than qj , i.e. pj = 2 · qj .
For such a term in the standard KL divergence, we would
get pj log

pj

qj
= pj log(2) = pj . Therefore, the α term

in skew divergence implicitly defines a parameter stating
how many orders of magnitude smaller than pj to count
qj if qj = 0.

We define the Zero-KL divergence with respect to

2In Lee’s (1999) original presentation, skew divergence is
defined not as sα(p, q) but rather as sα(q, p). We reverse the ar-
gument order for consistency with the other measures discussed
here.
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gamma:

ZKLγ(p, q) =
∑

i

pi

{
log pi

qi
qi 6= 0

γ qi = 0

Note that this is exactly KL-divergence when KL-
divergence is defined and, like skew divergence, approx-
imates KL divergence in the limit as γ →∞.

A similar analysis of the skew divergence terms for
when 0 < qi � pi (and in particular with qi less than pi

by more than a factor of 2−γ) shows that such a term in
the skew divergence sum is again approximated by γ pi.
ZKL does not have this property. Because ZKL is a better
approximation to KL divergence and because they have
the same behavior in the limit, we expect ZKL’s perfor-
mance to dominate that of skew divergence in many dis-
tributions. However, if there is a wide range in the ex-
ponent of noisy terms, the maximum possible penalty to
such terms ascribed by skew divergence may be benefi-
cial.

Figure 3 shows the relative performance of ZKL versus
Jensen-Shannon, skew divergence, cosine similarity, and
the Jaccard score (a measure from information retrieval)
for correlations with human judgment on the MarkovLink
model. ZKL consistently outperforms the other measures
on distributions resulting from this model, but ZKL is not
optimal on distributions generated by our other models.
The next section explores this topic in more detail.

5 Evaluation
Traditionally, there have been two primary types of eval-
uation for measures of semantic relatedness: one is cor-
relation to human judgment, the other is the relative per-
formance gains of a task-driven system when it uses the
measure. The evaluation here focuses on correlation with
human judgments of relatedness. For consistency with
previous literature, we use rank correlation (Spearman’s
ρ coefficient) rather than linear correlation when compar-
ing sets of relatedness judgments because the rank corre-
lation captures information about the relative ordering of
the scores. However, it is worth noting that many applica-
tions that make use of lexical relatedness scores (e.g. as
features to a machine learning algorithm) would better be
served by scores on a linear scale with human judgments.

Rubenstein and Goodenough (1965) solicited human
judgments of semantic similarity for 65 pairs of com-
mon nouns on a scale of zero to four. Miller and Charles
(1991) repeated their experiment on a subset of 29 noun
pairs (out of 30 total) and found that although indi-
viduals varied among their judgments, in aggregate the
scores were highly correlated with those found by Ruben-
stein and Goodenough (at ρ = .944 by our calculation).
Resnik (1999) replicated the Miller and Charles experi-
ment and reported that the average per-subject linear cor-

relation on the dataset was around r = 0.90, providing
a rough upper bound on any system’s linear correlation
performance with respect to the Miller and Charles data.
Figure 3 shows that the ZKL measure on the MarkovLink
model has linear correlation coefficient r = .903—at the
limit of human inter-annotator agreement.

Recently, a larger set of word relatedness judg-
ments was obtained by (Finkelstein et al., 2002) in the
WordSimilarity-353 (WS-353) collection. Despite the
collection’s name, the study instructed participants to
score word pairs for relatedness (on a scale of 0 to
10), which is in contrast to the similarity judgments re-
quested of the Miller and Charles (MC) and Rubenstein
and Goodenough (RG) participants. For this reason, the
WordSimilarity-353 data contains many pairs that are not
semantically similar but still receive high scores, such as
“computer-software” at 8.81. WS-353 contains pairs that
include non-nouns, such as “eat-drink,” one proper noun
not appearing in WordNet (“Maradona-football”), and
some pairs potentially subject to political bias. Again,
the aggregate human judgments correlate well with ear-
lier data sets where they overlap—the 30 judgments that
WordSimilarity-353 shares with the Miller and Charles
data have ρ = .939 and the 29 shared with Rubenstein
and Goodenough have ρ = .904 (by our calculations).

We generated similarity scores for word pairs in all
three data sets using the three variants of our walk
model (MarkovLink, MarkovGloss, MarkovJoined) and
with multiple distributional distance measures. We used
the WordNet::Similarity package (Pedersen et al., 2004)
to compute baseline scores for several existing measures,
noting that one word pair was not processed in WS-353
because one of the words was missing from WordNet.
The results are summarized in Table 2. These num-
bers differ slightly from previously reported scores due to
variations in the exact experimental setup, WordNet ver-
sion, and the method of breaking ties when computing
ρ (here we break ties using the product-moment formu-
lation of Spearman’s rank correlation coefficient). It is
worth noting that in their experiments, (Patwardhan and
Pedersen, 2006) report that the Vector method has rank
correlation coefficients of .91 and .90 for MC and RG,
respectively, which are also top performing values.

In our experiments, the MarkovLink model with ZKL
distance measure was the best performing model over-
all. MarkovGloss and MarkovJoined were also strong
contenders but with the cosine measure instead of ZKL.
One reason for this distinction is that the stationary dis-
tributions resulting from the MarkovLink model are non-
zero for all but the initial word nodes (i.e. non-zero
for all Synset nodes). Consequently, ZKL’s re-estimate
for the zero terms adds little information. By contrast,
the MarkovGloss and MarkovJoined models include links
that traverse from Synset nodes to TokenPOS nodes, re-
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Figure 3: Correlation with the Miller & Charles data sets by linear correlation (left) and rank correlation (right) for the
MarkovLink model. All data points were based on one set of stationary distributions over the graph; only the divergence
measure between those distributions is varied. Note that ZKLγ dominates both graphs but skew divergence does well
for increasing α (computed as 1− 2γ). Gamma is swept over the range 0 to 1, then 1 through 20, then 20 through 40
at equal resolutions.

Model MC Rank RG Rank WS-353 Rank

MarkovLink (ZKL) .904 .817 .552

MarkovGloss (cosine) .841 .762 .467

MarkovJoined (cosine) .841 .838 .547

Gloss Vectors .888 .789 .445

Extended Lesk .869 .829 .511

Jiang-Conrath .653 .584 .195

Lin .625 .599 .216

Table 2: Spearman’s ρ rank correlation coefficients with
human judgments using γ = 2.0 for ZKL. Note that fig-
ure 3 demonstrates ZKL’s insensitivity with regard to the
parameter setting for the MarkovLink model.

sulting in a final stationary distribution with more (and
more meaningful) zero/non-zero pairs. Hence the proper
setting of gamma (or alpha for skew divergence) is of
greater importance. ZKL’s performance improves with
tuning of gamma, but cosine similarity remained the more
robust measure for these distributions.

6 Conclusion

In this paper, we have introduced a new measure of
lexical relatedness based on the divergence of the sta-
tionary distributions computed from random walks over
graphs extracted WordNet. We have explored the struc-
tural properties of extracted semantic graphs and charac-
terized the distinctly different types of stationary distribu-
tions that result. We explored several distance measures
on these distributions, including ZKL, a novel variant of

KL-divergence. Our best relatedness measure is at the
limit of human inter-annotator agreement and is one of
the strongest measures of semantic relatedness that uses
only WordNet as its underlying lexical resource.

In future work, we hope to integrate other lexical re-
sources such as Wikipedia into the walk. Incorporat-
ing more types of links from more resources will un-
derline the importance of determining appropriate rela-
tive weights for all of the types of edges in the walk’s
matrix. Even for WordNet, we believe that certain link
types, such as antonyms, may be more or less appropriate
for certain tasks and should weighted accordingly. And
while our measure of lexical relatedness correlates well
with human judgments, we hope to show performance
gains in a real-word task from the use of our measure.
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Abstract

This paper proposes the use of Lexical-
ized Tree-Adjoining Grammar (LTAG) for-
malism as an important additional source
of features for the Semantic Role Labeling
(SRL) task. Using a set of one-vs-all Sup-
port Vector Machines (SVMs), we evalu-
ate these LTAG-based features. Our exper-
iments show that LTAG-based features can
improve SRL accuracy significantly. When
compared with the best known set of fea-
tures that are used in state of the art SRL sys-
tems we obtain an improvement in F-score
from 82.34% to 85.25%.

1 Introduction
Semantic Role Labeling (SRL) aims to identify and
label all the arguments for each predicate occurring
in a sentence. It involves identifying constituents in
the sentence that represent the predicate’s arguments
and assigning pre-specified semantic roles to them.

[A0seller Ports of Call Inc.] reached agreements to
[Vverb sell] [A1thing its remaining seven aircraft]
[A2buyer to buyers that weren’t disclosed] .

is an example of SRL annotation from the PropBank
corpus (Palmer et al., 2005), where the subscripted
information maps the semantic roles A0, A1, A2
to arguments for the predicate sell as defined in the
PropBank Frame Scheme. For SRL, high accuracy
has been achieved by:
(i) proposing new types of features (see Table 1 in
Section 3 for previously proposed features),
(ii) modeling the predicate frameset by capturing de-
pendencies between arguments (Gildea and Juraf-
sky, 2002; Pradhan et al., 2004; Toutanova et al.,
2005; Punyakanok et al., 2005a),

(iii) dealing with incorrect parser output by using
more than one parser (Pradhan et al., 2005b).
Our work in this paper falls into category (i). We
propose several novel features based on Lexicalized
Tree Adjoining Grammar (LTAG) derivation trees
in order to improve SRL performance. To show
the usefulness of these features, we provide an ex-
perimental study comparing LTAG-based features
with the standard set of features and kernel meth-
ods used in state-of-the-art SRL systems. The LTAG
formalism provides an extended domain of locality
in which to specify predicate-argument relationships
and also provides the notion of a derivation tree.
These two properties of LTAG make it well suited
to address the SRL task.

SRL feature extraction has relied on various syn-
tactic representations of input sentences, such as
syntactic chunks (Hacioglu et al., 2004) and full
syntactic parses (Gildea and Jurafsky, 2002). In
contrast with features from shallow parsing, previ-
ous work (Gildea and Palmer, 2002; Punyakanok et
al., 2005b) has shown the necessity of full syntactic
parsing for SRL. In order to generalize the path fea-
ture (see Table 1 in Section 3) which is probably the
most salient (while being the most data sparse) fea-
ture for SRL, previous work has extracted features
from other syntactic representations, such as CCG
derivations (Gildea and Hockenmaier, 2003) and de-
pendency trees (Hacioglu, 2004) or integrated fea-
tures from different parsers (Pradhan et al., 2005b).
To avoid explicit feature engineering on trees, (Mos-
chitti, 2004) used convolution kernels on selective
portions of syntactic trees. In this paper, we also
compare our work with tree kernel based methods.

Most SRL systems exploit syntactic trees as the
main source of features. We would like to take this
one step further and show that using LTAG deriva-
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Figure 1: A parse tree schematic, and two plausible
LTAG derivation trees for it: derivation tree γ1 uses
elementary trees α1 and β1 while γ2 uses α2 and α3.

tion trees as an additional source of features can im-
prove both argument identification and classification
accuracy in SRL.

2 Using LTAG-based Features in SRL
We assume some familiarity with Lexicalized Tree-
Adjoining Grammar (LTAG); (Joshi and Schabes,
1997) is a good introduction to this formalism. A
LTAG is defined to be a set of lexicalized elementary
trees (etree for short), of which there are two types,
initial trees and auxiliary trees. Typically etrees
can be composed through two operations into parse
trees, substitution and adjunction. We use sister ad-
junction which is commonly used in LTAG statisti-
cal parsers to deal with the relatively flat Penn Tree-
bank trees (Chiang, 2000). The tree produced by
composing the etrees is the derived/parse tree and
the tree that records the history of composition is the
derivation tree.

A reasonable way to define SRL features is to pro-
vide a strictly local dependency (i.e. within a sin-
gle etree) between predicate and argument. There
have been many different proposals on how to main-
tain syntactic locality (Xia, 1999; Chen and Vijay-
Shanker, 2000) and SRL locality (Chen and Ram-
bow, 2003; Shen and Joshi, 2005) when extract-
ing LTAG etrees from a Treebank. These proposed
methods are exemplified by the derivation tree γ1 in
Fig. 1. However, in most cases they can only provide
a local dependency between predicate and argument
for 87% of the argument constituents (Chen and
Rambow, 2003), which is too low to provide high

SRL accuracy. In LTAG-based statistical parsers,
high accuracy is obtained by using the Magerman-
Collins head-percolation rules in order to provide
the etrees (Chiang, 2000). This method is exem-
plified by the derivation tree γ2 in Fig. 1. Compar-
ing γ1 with γ2 in Fig. 1 and assuming that join is
the predicate and the NP is the potential argument,
the path feature as defined over the LTAG deriva-
tion tree γ2 is more useful for the SRL task as it dis-
tinguishes between main clause and non-finite em-
bedded clause predicates. This alternative derivation
tree also exploits the so-called extended domain of
locality (Joshi and Schabes, 1997) (the examples in
Section 2.1 show this clearly). In this paper, we cru-
cially rely on features defined on LTAG derivation
trees of the latter kind. We use polynomial kernels
to create combinations of features defined on LTAG
derivation trees.

2.1 LTAG-based Feature Extraction

In order to create training data for the LTAG-based
features, we convert the Penn Treebank phrase struc-
ture trees into LTAG derivations. First, we prune the
Treebank parse tree using certain constraints. Then
we decompose the pruned parse trees into a set of
LTAG elementary trees and obtain a derivation tree.
For each constituent in question, we extract features
from the LTAG derivation tree. We combine these
features with the standard features used for SRL
and train an SVM classifier on the combined LTAG
derivation plus SRL annotations from the PropBank
corpus.

For the test data, we report on results using the
gold-standard Treebank data, and in addition we also
report results on automatically parsed data using the
Charniak parser (Charniak, 2000) as provided by the
CoNLL 2005 shared task. We did this for three rea-
sons: (i) our results are directly comparable to those
who have used the Charniak parses distributed with
the CoNLL 2005 data-set; (ii) we avoid the possi-
bility of a better parser identifying a larger number
of argument constituents and thus leading to bet-
ter results, which is orthogonal to the discrimina-
tive power of our proposed LTAG-based features;
and (iii) the quality of LTAG derivation trees de-
pends indirectly on the quality of head dependen-
cies recovered by the parser and it is a well-known
folklore result (see Table 3 in (McDonald et al.,
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2005)) that applying the head-percolation heuristics
on parser output produces better dependencies when
compared to dependencies directly recovered by the
parser (whether the parser is an LTAG parser or a
lexicalized PCFG parser).

2.1.1 Pruning Parse Trees

Given a parse tree, the pruning component iden-
tifies the predicate in the tree and then only admits
those nodes that are sisters to the path from the pred-
icate to the root. It is commonly used in the SRL
community (cf. (Xue and Palmer, 2004)) and our ex-
periments show that 91% of the SRL targets can be
recovered despite this aggressive pruning. We make
two enhancements to the pruned Propbank tree: we
enrich the sister nodes with head information, a part-
of-speech tag and word pair: 〈t, w〉 and PP nodes are
expanded to include the NP complement of the PP
(including head information). The target SRL node
is still the PP. Figure 2 is a pruned parse tree for a
sentence from the PropBank.

2.1.2 Decompositions of Parse Trees

After pruning, the pruned tree is decom-
posed around the predicate using standard head-
percolation based heuristic rules1 to convert a Tree-
bank tree into an LTAG derivation tree. Figure 3
shows the resulting etrees after decomposition. Fig-
ure 4 is the derivation tree for the entire pruned tree.
Each node in this derivation tree represents an etree
in Figure 3. In our model we make an independence
assumption that each SRL is assigned to each con-
stituent independently, conditional only on the path
from the predicate etree to the argument etree in the
derivation tree. Different etree siblings in the LTAG
derivation tree do not influence each other in our cur-
rent models.

2.1.3 LTAG-based Features

We defined 5 LTAG feature categories: predicate
etree-related features (P for short), argument etree-
related features (A), subcategorization-related fea-
tures (S), topological relation-related features (R),
intermediate etree-related features (I). Since we
consider up to 6 intermediate etrees between the
predicate and the argument etree, we use I-1 to I-6
to represent these 6 intermediate trees respectively.

1using http://www.isi.edu/∼chiang/software/treep/treep.html
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Figure 2: The pruned tree for the sentence “Ports of
Call Inc. reached agreements to sell its remaining
seven aircraft to buyers that weren’t disclosed.”

VP

VB

sell

NP

NN

aircraft

PP

TO

to

S

VP

TO

to

e0: e1: e2: e3:

NP

NNS

agreements

S

VP

VBD

reached

NP

NNP

Inc.

e4: e5: e6:

Figure 3: Elementary trees after decomposition of
the pruned tree.

Category P: Predicate etree & its variants Pred-
icate etree is an etree with predicate, such as e0 in
Figure 3. This new feature complements the pred-
icate feature in the standard SRL feature set. One
variant is to remove the predicate lemma. Another
variant is a combination of predicate tree w/o predi-
cate lemma&POS and voice. In addition, this variant
combined with predicate lemma comprises another
new feature. In the example, these three variants are
(VP(VB)) and (VP) active and (VP) active sell re-
spectively.
Category A: Argument etree & its variants Anal-
ogous to the predicate etree, the argument etree is an
etree with the target constituent and its head. Similar
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e5(reached)

e6(Inc.) e4(agreements)

e3(to)

e0(sell)

e1(aircraft) e2(to)

Figure 4: LTAG derivation tree for Figure 2.

to predicate etree related features, argument etree,
argument etree with removal of head word, combi-
nation of argument etree w/o head POS&head word
and head Named Entity (NE) label (if any) are con-
sidered. For example, in Figure 3, these 3 features
for e6 are e6, (NP(NNP)) and (NP) LOC with head
word “Inc.” having NE label “LOC”.
Category S: Index of current argument etree in
subcat frame of predicate etree Sub-categorization
is a standard feature that denotes the immediate ex-
pansion of the predicate’s parent. For example, it
is V NP PP for predicate sell in the given sentence.
For argument etree e1 in Figure 3, the index feature
value is 1 since it is the very first element in the (or-
dered) subcat sequence.
Category R:
Relation type between argument etree & predi-
cate etree This feature is a combination of position
and modifying relation. Position is a binary valued
standard feature to describe if the argument is before
or after the predicate in a parse tree. For each argu-
ment etree and intermediate etree, we consider three
types of modifying relations they may have with the
predicate etree: modifying (value 1), modified (value
2) and neither (value 3). From Figure 4, we can see
e1 modifies e0 (predicate tree). So their modifying
relation type value is 1; Combining this value with
the position value, this feature for e1 is “1 after”.
Attachment point of argument etree This fea-
ture describes where the argument etree is sister-
adjoined/adjoined to the predicate etree, or the other
way around. For e1 in the example, VP in the predi-
cate tree is the attachment point.
Distance This feature is the number of intermediate
etrees between argument etree and predicate etree in
the derivation tree. In Figure 4, the distance from e4

to the predicate etree is 1 since only one intermediate
etree e3 is between them.
Category I:
Intermediate etree related features Intermediate
etrees are those etrees that are located between the
predicate etree and argument etrees. The set of fea-
tures we propose for each intermediate etree is quite
similar to those for argument etrees except we do
not consider the named-entity label for head words
in this case.
Relation type of intermediate etree & predicate
etree.
Attachment point of intermediate etree.
Distance between intermediate etree and predicate
etree.

Up to 6 intermediate etrees are considered and the
category I features are extracted for each of them (if
they exist).

Each etree represents a linguistically meaningful
fragment. The features of relation type, attachment
point as well as the distance characterize the topo-
logical relations among the relevant etrees. In par-
ticular, the attachment point and distance features
can explicitly capture important information hidden
in the standard path feature. The intermediate tree
related features can give richer contextual informa-
tion between predicate tree and argument trees. We
added the subcat index feature to be complemen-
tary to the sub-cat and syntactic frame features in
the standard feature set.

3 Standard Feature Set
Our standard feature set is a combination of features
proposed by (Gildea and Jurafsky, 2002), (Surdeanu
et al., 2003; Pradhan et al., 2004; Pradhan et al.,
2005b) and (Xue and Palmer, 2004). All features
listed in Table 1 are used for argument classifica-
tion in our baseline system; and features with aster-
isk are not used for argument identification2. We
compare this baseline SRL system with a system
that includes a combination of these features with
the LTAG-based features. Our baseline uses all fea-
tures that have been used in the state-of-the-art SRL
systems and as our experimental results show, these
standard features do indeed obtain state-of-the-art

2This is a standard idea in the SRL literature: removing fea-
tures more useful for classification, e.g. named entity features,
makes the classifier for identification more accurate.
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Table 1: Standard features adopted by a typical SRL
system. Features with asterisk ∗ are not used for ar-
gument identification.

Basic features from (Gildea and Jurafsky, 2002)

• predicate lemma and voice
• phrase type and head word
• path from phrase to predicate 1

• position: phrase relative to predicate: before or after

• sub-cat records the immediate structure that expands from
predicate’s parent

2

Additional features proposed by (Surdeanu et al. 2003;
Pradhan et al., 2004, 2005)
• predicate POS
• head word POS
• first/last word/POS
• POS of word immediately before/after phrase
• path length 1

• LCA(Lowest Common Ancestor) path from phrase to its
lowest common ancestor with predicate
• punctuation immediately before/after phrase∗
• path trigrams∗: up to 9 are considered

• head word named entity label such as “PER, ORG,
LOC”∗
• content word named entity label for PP parent node∗
Additional features proposed by (Xue and Palmer, 2004)

• predicate phrase type
• predicate head word
• voice position
• syntactic frame∗

1 In Fig. 2 NNS↑NP↓S↓VP↓VB is the path from the con-

stituent NNS(agreements) to the predicate VB(sell) and the

path length is 4.
2 This feature is different from the frame feature which usu-

ally refers to all the semantic participants for the particular

predicate.

accuracy on the SRL task. We will show that adding
LTAG-based features can improve the accuracy over
this very strong baseline.

4 Experiments

4.1 Experimental Settings

Training data (PropBank Sections 2-21) and test
data (PropBank Section 23) are taken from CoNLL-
2005 shared task3 All the necessary annotation in-
formation such as predicates, parse trees as well as
Named Entity labels is part of the data. The ar-

3http://www.lsi.upc.es/∼srlconll/.

gument set we consider is {A0, A1, A2, A3, A4,
AM} where AM is a generalized annotation of all
adjuncts such as AM-TMP, AM-LOC, etc., where
PropBank function tags like TMP or LOC in AM-
TMP, AM-LOC are ignored (a common setting for
SRL, see (Xue and Palmer, 2004; Moschitti, 2004)).
We chose these labels for our experiments because
they have sufficient training/test data for the per-
formance comparison and provide sufficient counts
for accurate significance testing. However, we also
provide the evaluation result on the test set for full
CoNLL-2005 task (all argument types).

We use SVM-light4 (Joachims, 1999) with a poly-
nomial kernel (degree=3) as our binary classifier for
argument classification. We applied a linear kernel
to argument identification because the training cost
of this phase is extremely computationally expen-
sive. We use 30% of the training samples to fine tune
the regularization parameter c and the loss-function
cost parameter j for both stages of argument identifi-
cation and classification. With parameter validation
experiments, we set c = 0.258 and j = 1 for the ar-
gument identification learner and c = 0.1 and j = 4
for the argument classification learner.

The classification performance is evaluated using
Precision/Recall/F-score (p/r/f) measures. We ex-
tracted all the gold labels of A0-A4 and AM with
the argument constituent index from the original test
data as the “gold output”. When we evaluate, we
contrast the output of our system with the gold out-
put and calculate the p/r/f for each argument type.

Our evaluation criteria which is based on predict-
ing the SRL for constituents in the parse tree is based
on the evaluation used in (Toutanova et al., 2005).
However, we also predict and evaluate those Prop-
Bank arguments which do not have a corresponding
constituent in the gold parse tree or the automatic
parse tree: the missing constituent case. We also
evaluate discontinuous PropBank arguments using
the notation used in the CoNLL-2005 data-set but
we do not predict them. This is contrast with some
previous studies where the problematic cases have
been usually discarded or the largest constituents in
the parse tree that almost capture the missing con-
stituent cases are picked as being the correct answer.
Note that, in addition to the constituent based evalu-

4http://svmlight.joachims.org/
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Gold Standard Charniak Parser
std std+ltag std std+ltag

p(%) 95.66 96.79 87.71 89.11
r(%) 94.36 94.59 84.86 85.51
f(%) 95.00 95.68 86.26 87.27∗

Table 2: Argument identification results on test data

ation, in Section 4.4 we also provide the evaluation
of our model on the CoNLL-2005 data-set.

Because the main focus of this work is to evaluate
the impact of the LTAG-based features, we did not
consider the frameset or a distribution over the en-
tire argument set or apply any inference/constraints
as a post-processing stage as most current SRL sys-
tems do. We focus our experiments on showing the
value added by introducing LTAG-based features to
the SRL task over and above what is currently used
in SRL research.

4.2 Argument Identification

Table 2 shows results on argument identification (a
binary classification of constituents into argument or
non-argument). To fully evaluate the influence of the
LTAG-based features, we report the identification re-
sults on both Gold Standard parses and on Charniak
parser output (Charniak, 2000)5.

As we can see, after combing the LTAG-based
features with the standard features, F-score in-
creased from 95.00% to 95.68% with Gold-standard
parses; and from 86.26% to 87.27% with the Char-
niak parses (a larger increase). We can see LTAG-
based features help in argument identification for
both cases. This result is better than (Xue and
Palmer, 2004), and better on gold parses com-
pared to (Toutanova et al., 2005; Punyakanok et al.,
2005b).

4.3 Argument Classification

Based on the identification results, argument clas-
sification will assign the semantic roles to the ar-
gument candidates. For each argument of A0-A4
and AM, a “one-vs-all” SVM classifier is trained on
both the standard feature set (std) and the augmented
feature set (std+ltag). Table 3 shows the classifi-
cation results on the Gold-standard parses with the

5We use the parses supplied with the CoNLL-2005 shared
task for reasons of comparison.

gold argument identification; Table 4 and 5 show the
classification results on the Charniak parser with the
gold argument identification and the automatic ar-
gument identification respectively. Scores for multi-
class SRL are calculated based on the total number
of correctly predicted labels, total number of gold
labels and the number of labels in our prediction for
this argument set.

class std(p/r/f)% std+ltag(p/r/f)%

A0 96.69 96.71 96.71 96.77
96.70 96.74

A1 93.82 93.30 97.30 94.87
93.56 96.07

A2 87.05 79.98 92.43 81.42
83.37 86.58

A3 94.44 68.79 97.69 73.41
79.60 83.33

A4
96.55 82.35 94.11 78.43

88.89 85.56

AM 98.41 96.61 98.67 97.88
97.50 98.27

multi- 95.35 93.62 97.15 94.70
class 94.48 95.91

Table 3: Argument classification results on Gold-
standard parses with gold argument boundaries

4.4 Discussion

From the results shown in the tables, we can see that
by adding the LTAG-based features, the overall per-
formance of the systems is improved both for argu-
ment identification and for argument classification.

Table 3 and 4 show that with the gold argu-
ment identification, the classification for each class
in {A0, A1, A2, A3, AM} consistently benefit from
LTAG-based features. Especially for A3, LTAG-
based features lead to more than 3 percent improve-
ment. But for A4 arguments, the performance drops
3 percent in both cases. As we noticed in Table
5, which presents the argument classification results
on Charniak parser output with the automatic ar-
gument identification, the prediction accuracy for
classes A0, A1, A3, A4 and AM is improved, but
drops a little for A2.

In addition, we also evaluated our feature set
on the full CoNLL 2005 shared task. The over-
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class std(p/r/f)% std+ltag(p/r/f)%

A0 96.04 92.92 96.07 92.92
94.46 94.47

A1 90.64 85.71 94.64 86.67
88.11 90.48

A2 84.46 75.72 89.26 75.22
79.85 81.64

A3 87.50 62.02 87.10 68.35
72.59 76.60

A4
90.00 79.12 90.54 73.62

84.21 81.21

AM 95.14 85.54 96.60 86.51
90.09 91.27

multi- 93.25 86.45 94.71 87.15
class 89.72 90.77

Table 4: Argument classification results on Charniak
parser output with gold argument boundaries

all performance using LTAG features increased from
74.41% to 75.31% in terms of F-score on the full ar-
gument set. Our accuracy is most closely compara-
ble to the 78.63% accuracy achieved on the full task
by (Pradhan et al., 2005a). However, (Pradhan et
al., 2005a) uses some additional information since it
deals with incorrect parser output by using multiple
parsers. The 79.44% accuracy obtained by the top
system in CoNLL 2005 (Punyakanok et al., 2005a)
is not directly comparable since their system used
the more accurate n-best parser output of (Charniak
and Johnson, 2005). In addition their system also
used global inference. Our focus in this paper was
to propose new LTAG features and to evaluate im-
pact of these features on the SRL task.

We also compared our proposed feature set
against predicate/argument features (PAF) proposed
by (Moschitti, 2004). We conducted an experiment
using SVM-light-TK-1.2 toolkit6. The PAF tree ker-
nel is combined with the standard feature vectors by
a linear operator. With settings of Table 5, its multi-
class performance (p/r/f)% is 83.09/80.18/81.61
with linear kernel and 85.36/81.79/83.53 with poly-
nomial kernel (degree=3) over std feature vectors.

6http://ai-nlp.info.uniroma2.it/moschitti/TK1.2-
software/Tree-Kernel.htm

class std(p/r/f)% std+ltag(p/r/f)%

A0 86.50 86.18 88.17 87.70
86.34 87.93∗

A1 78.73 83.82 88.78 85.22
81.19 86.97∗

A2 85.40 73.93 83.11 75.42
79.25 79.08

A3 85.71 60.76 85.71 68.35
71.11 76.06∗

A4 84.52 78.02 89.47 74.72
81.15 81.43

AM 80.47 82.11 83.87 81.54
81.29 82.69∗

multi- 81.79 82.90 86.04 84.47
class 82.34 85.25∗

Table 5: Argument classification results on Charniak
parser output with automatic argument boundaries

4.5 Significance Testing

To assess the statistical significance of the im-
provements in accuracy we did a two-tailed sig-
nificance test on the results of both Table 2 and
5 where Charniak’s parser outputs were used.
We chose SIGF7, which is an implementation
of a computer-intensive, stratified approximate-
randomization test (Yeh, 2000). The statistical dif-
ference is assessed on SRL identification, classifica-
tion for each class (A0-A4, AM) and the full SRL
task (overall performance). In Table 2 and 5, we la-
beled numbers under std+ltag that are statistically
significantly better from those under std with aster-
isk. The significance tests show that for identifica-
tion and full SRL task, the improvements are statis-
tically significant with p value of 0.013 and 0.0001
at a confidence level of 95%. The significance test
on each class shows that the improvement by adding
LTAG-based features is statistically significant for
class A0, A1, A3 and AM. Even though in Table 5
the performance of A2 appears to be worse it is not
significantly so, and A4 is not significantly better. In
comparison, the performance of PAF did not show
significantly better than std with p value of 0.593 at
the same confidence level of 95%.

7http://www.coli.uni-saarland.de/∼pado/sigf/index.html
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full full−P full−R full−S full−A full−I std
id 90.5 90.6 90.0 90.5 90.5 90.1 89.6
A0 84.5 84.3 84.6 84.5 84.3 83.5 84.2
A1 89.8 90.1 89.4 89.3 89.6 89.3 88.9
A2 84.2 84.2 84.0 83.7 83.6 83.6 84.9
A3 76.7 80.7 75.1 76.0 75.6 76.7 78.6
A4 80.0 83.3 80.0 79.6 80.0 80.0 79.2
AM 82.8 83.3 82.9 82.8 82.6 83.1 82.4

Table 6: Impact of each LTAG feature category (P, R, S, A, I defined in Section 2.1.3) on argument classi-
fication and identification on CoNLL-2005 development set (WSJ Section 24). full denotes the full feature
set, and we use −α to denote removal of a feature category of type α. For example, full−P is the feature set
obtained by removing all P category features. std denotes the standard feature set.

5 Analysis of the LTAG-based features

We analyzed the drop in performance when a partic-
ular type of LTAG feature category is removed from
the full set of LTAG features (we use the broad cat-
egories P, R, S, A, I as defined in Section 2.1.3).
Table 6 shows how much performance is lost (or
gained) when a particular type of LTAG feature is
dropped from the full set.

These experiments were done on the development
set from CoNLL-2005 shared task, using the pro-
vided Charniak parses. All the SVM models were
trained using a polynomial kernel with degree 3. It
is clear that the S, A, I category features help in most
cases and P category features hurt in most cases,
including argument identification. It is also worth
noting that the R and I category features help most
for identification. This vindicates the use of LTAG
derivations as a way to generalize long paths in the
parse tree between the predicate and argument. Al-
though it seems LTAG features have negative impact
on prediction of A3 arguments on this development
set, dropping the P category features can actually
improve performance over the standard feature set.
In contrast, for the prediction of A2 arguments, none
of the LTAG feature categories seem to help.

Note that since we use a polynomial kernel in the
full set, we cannot rule out the possibility that a fea-
ture that improves performance when dropped may
still be helpful when combined in a non-linear ker-
nel with features from other categories. However,
this analysis on the development set does indicate
that overall performance may be improved by drop-

ping the P feature category. We plan to examine this
effect in future work.

6 Related Work

There has been some previous work in SRL that uses
LTAG-based decomposition of the parse tree. (Chen
and Rambow, 2003) use LTAG-based decomposi-
tion of parse trees (as is typically done for statis-
tical LTAG parsing) for SRL. Instead of extracting
a typical “standard” path feature from the derived
tree, (Chen and Rambow, 2003) uses the path within
the elementary tree from the predicate to the con-
stituent argument. Under this frame, they only re-
cover semantic roles for those constituents that are
localized within a single etree for the predicate, ig-
noring cases that occur outside the etree. As stated
in their paper, “as a consequence, adjunct seman-
tic roles (ARGM’s) are basically absent from our
test corpus”; and around 13% complement seman-
tic roles cannot be found in etrees in the gold parses.
In contrast, we recover all SRLs by exploiting more
general paths in the LTAG derivation tree. A simi-
lar drawback can be found in (Gildea and Hocken-
maier, 2003) where a parse tree path was defined in
terms of Combinatory Categorial Grammar (CCG)
types using grammatical relations between predicate
and arguments. The two relations they defined can
only capture 77% arguments in Propbank and they
had to use a standard path feature as a replacement
when the defined relations cannot be found in CCG
derivation trees. In our framework, we use interme-
diate sub-structures from LTAG derivations to cap-
ture these relations instead of bypassing this issue.
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Compared to (Liu and Sarkar, 2006), we have
used a more sophisticated learning algorithm and a
richer set of syntactic LTAG-based features in this
task. In particular, in this paper we built a strong
baseline system using a standard set of features and
did a thorough comparison between this strong base-
line and our proposed system with LTAG-based fea-
tures. The experiments in (Liu and Sarkar, 2006)
were conducted on gold parses and it failed to show
any improvements after adding LTAG-based fea-
tures. Our experimental results show that LTAG-
based features can help improve the performance of
SRL systems. While (Liu and Sarkar, 2006) propose
some new features for SRL based on LTAG deriva-
tions, we propose several novel features and in ad-
dition they do not show that their features are useful
for SRL.

Our approach shares similar motivations with the
approach in (Shen and Joshi, 2005) which uses Prop-
Bank information to recover an LTAG treebank as if
it were hidden data underlying the Penn Treebank.
However their goal was to extract an LTAG grammar
using PropBank information from the Treebank, and
not the SRL task.

Features extracted from LTAG derivations are dif-
ferent and provide distinct information when com-
pared to predicate-argument features (PAF) or sub-
categorization features (SCF) used in (Moschitti,
2004) or even the later use of argument spanning
trees (AST) in the same framework. The adjunc-
tion operation of LTAG and the extended domain of
locality is not captured by those features as we have
explained in detail in Section 2.

7 Conclusion and Future Work
In this paper we show that LTAG-based features
improve on the best known set of features used in
current SRL prediction systems: the F-score for
argument identification increased from 86.26% to
87.27% and from 82.34% to 85.25% for the SRL
task. The analysis of the impact of each LTAG fea-
ture category shows that the intermediate etrees are
important for the improvement. In future work we
plan to explore the impact that different types of
LTAG derivation trees have on this SRL task, and ex-
plore the use of tree kernels defined over the LTAG
derivation tree. LTAG derivation tree kernels were
previously used for parse re-ranking by (Shen et al.,

2003). Our work also provides motivation to do SRL
and LTAG parsing simultaneously.
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Abstract

We propose a novel method for Japanese de-
pendency analysis, which is usually reduced
to the construction of a dependency tree. In
deterministic approaches to this task, depen-
dency trees are constructed by series of ac-
tions of attaching a bunsetsu chunk to one of
the nodes in the tree being constructed. Con-
ventional techniques select the node based
on whether the new bunsetsu chunk and each
node in the trees are in a parent-child rela-
tion or not. However, tree structures include
relations between two nodes other than the
parent-child relation. Therefore, we use
ancestor-descendant relations in addition to
parent-child relations, so that the added re-
dundancy helps errors be corrected. Ex-
perimental results show that the proposed
method achieves higher accuracy.

1 Introduction

Japanese dependency analysis has been recognized
as one of the basic techniques in Japanese process-
ing. A number of techniques have been proposed
for years. Japanese dependency is usually repre-
sented by the relation between phrasal units called
‘bunsetsu’ chunks, which are the smallest meaning-
ful sequences consisting of an independent word and
accompanying words (e.g., a noun and a particle).
Hereafter, a ‘chunk’ means a bunsetsu chunk in this
paper. The relation between two chunks has a di-

∗Akihiro Tamura belonged to Tokyo Institute of Technology
when this work was done.

Figure 1: Example of a dependency tree

rection from the modifier to the modifiee. All de-
pendencies in a sentence are represented by a de-
pendency tree, where a node indicates a chunk, and
nodeB is the parent of nodeA when chunkB is the
modifiee of chunkA. Figure 1 shows an example of
a dependency tree. The task of Japanese dependency
analysis is to find the modifiee for each chunk in a
sentence. The task is usually regarded as construc-
tion of a dependency tree.

In primitive approaches, the probabilities of de-
pendencies are given by manually constructed rules
and the modifiee of each chunk is determined. How-
ever, those rule-based approaches have problems in
coverage and consistency. Therefore, a number of
statistical techniques using machine learning algo-
rithms have recently been proposed. In most con-
ventional statistical techniques, the probabilities of
dependencies between two chunks are learned in the
learning phase, and then the modifiee of each chunk
is determined using the learned models in the anal-
ysis phase. In terms of dependency trees, the parent
node of each node is determined based on the likeli-
ness of parent-child relations between two nodes.

We here take notice of the characteristics of de-
pendencies which cannot be captured well only by
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the parent-child relation. Consider, for example,
Figure 1. In Figure 1, ID3(pizza-and) and ID
4(salad-accusative) are in a parallel structure. In the
structure, node4 is a child of node5(ate), but node
3 is not a child of5, although3 and4 are both foods
and should share a tendency of being subcategorized
by the verb “eat”. A number of conventional models
use the pair of3(pizza-and) and5(ate) as a nega-
tive instance because3 does not modify5. Conse-
quently, those models cannot learn and use the sub-
categorization preference of verbs well in the paral-
lel structures.

We focus on ancestor-descendant relations to
compensate for the weakness. Two nodes are in the
ancestor-descendant relation when one of the two
nodes is included in the path from the root node to
the other node. The upper node of the two nodes
is called an ‘ancestor node’ and the lower node a
‘descendant node’. When the ancestor-descendant
relation is used, both of the above two instances
for nodes3 and4 can be considered as positive in-
stances. Therefore, it is expected that the ancestor-
descendant relation helps the algorithm capture the
characteristics that cannot be captured well by the
parent-child relation.

We aim to improve the performance of Japanese
dependency analysis by taking the ancestor-
descendant relation into account. In exploiting
ancestor-descendant information, it came to us that
redundant information is effectively utilized in a
coding problem in communications (Mackay, 2003).
Therefore, we propose a method in which the prob-
lem of determining the modifiee of a chunk is re-
garded as a kind of a coding problem: dependency is
expressed as a sequence of values, each of which de-
notes whether a parent-child relation or an ancestor-
descendant relation holds between two chunks.

In Section 2, we present the related work. In Sec-
tion 3, we explain our method. In Section 4, we de-
scribe our experiments and their results, where we
show the effectiveness of the proposed method. In
Section 5, we discuss the results of the experiments.
Finally, we describe the summary of this paper and
the future work in Section 6.

2 Conventional Statistical Methods for
Japanese Dependency Analysis

First, we describe general formulation of the
probability model for dependency analysis. We
denote a sequence of chunks, “b1, b2, ..., bm”,
by B, and a sequence of dependency pat-
terns, “Dep(1), Dep(2), ..., Dep(m)”, by D, where
Dep(i) = j means thatbi modifiesbj . Given the se-
quenceB of chunks as an input, dependency analy-
sis is defined as the problem of finding the sequence
D of the dependency patterns that maximizes the
conditional probabilityP (D | B). A number of
the conventional methods assume that dependency
probabilities are independent of each other and ap-
proximateP (D | B) with

∏m−1
i=1 P (Dep(i) | B).

P (Dep(i) | B) is estimated using machine learn-
ing algorithms. For example, Haruno et al. (1999)
used Decision Trees, Sekine (2000) used Maximum
Entropy Models, Kudo and Matsumoto (2000) used
Support Vector Machines.

Another notable method is Cascaded Chunking
Model by Kudo and Matsumoto (2002). In their
model, a sentence is parsed by series of the fol-
lowing processes: whether or not the current chunk
modifies the following chunk is estimated, and if it
is so, the two chunks are merged together. Sassano
(2004) parsed a sentence efficiently using a stack.
The stack controls the modifier being analyzed.

These conventional methods determine the mod-
ifiee of each chunk based on the likeliness of de-
pendencies between two chunks (in terms of depen-
dency tree, the likeliness of parent-child relations
between two nodes). The difference between the
conventional methods and the proposed method is
that the proposed method determines the modifiees
based on the likeliness of ancestor-descendant re-
lations in addition to parent-child relations, while
the conventional methods tried to capture charac-
teristics that cannot be captured by parent-child re-
lations, by adding ad-hoc features such as features
of “the chunk modified by the candidate modifiee”
to features of the candidate modifiee and the mod-
ifier. However, these methods do not deal with
ancestor-descendant relations between two chunks
directly, while our method uses that information di-
rectly. In Section 5, we empirically show that our
method uses the ancestor-descendant relation more
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effectively than the conventional ones and explain
that our method is justifiable in terms of a coding
problem.

3 Proposed Method

The methods explained in this section construct a
dependency tree by series of actions of attaching
a node to one of the nodes in the trees being con-
structed. Hence, when the parent node of a certain
node is being determined, it is required that the par-
ent node should already be included in the tree being
constructed. To satisfy the requirement, we note the
characteristic of Japanese dependencies: dependen-
cies are directed from left to right. (i.e., the par-
ent node is closer to the end of a sentence than its
child node). Therefore, our methods analyze a sen-
tence backwards as in Sekine (2000) and Kudo and
Matsumoto (2000). Consider, for example, Figure
1. First, our methods determine the parent node of
ID 4(salad-accusative), and then that of ID3(pizza-
and) is determined. Next, the parent node of ID2(at
lunchtime), and finally, that of ID1(he-nominative)
is determined and dependencies in a sentence are
identified. Please note that our methods are applica-
ble only to dependency structures of languages that
have a consistent head-direction like Japanese.

We explain three methods that are different in
the information used in determining the modifiee of
each chunk. In Section 3.1, we explain PARENT
METHOD and ANCESTOR METHOD, which de-
termine the modifiee of each chunk based on the
likeliness of only one type of the relation. PARENT
METHOD uses the parent-child relation, which is
used in conventional Japanese dependency analy-
sis. ANCESTOR METHOD is novel in that it
uses the ancestor-descendant relation which has not
been used in the existing methods. In Section
3.2, we explain our method, PARENT-ANCESTOR
METHOD, which determines the modifiees based
on the likeliness of both ancestor-descendant and
parent-child relations.

When the modifiee is determined using the
ancestor-descendant relation, it is necessary to take
into account the relations with every node in the tree.
Consider, for example, the case that the modifiee
of ID 1(he-nominative) is determined in Figure 1.
When using the parent-child relation, the modifiee

can be determined based only on the relation be-
tween ID1 and5. On the other hand, when using the
ancestor-descendant relation, the modifiee cannot be
determined based only on the relation between ID
1 and 5. This is because if one of ID2, 3 and 4
is the modifiee of ID1, the relation between ID1
and 5 is ancestor-descendant. ID5 is determined
as the modifiee of ID1 only after the relations with
each node of ID2, 3 and 4 are recognized not to
be ancestor-descendant. An elegant way to use the
ancestor-descendant relation, which we propose in
this paper, is to represent a dependency as a code-
word where each bit indicates the relation with a
node in the tree, and determine the modifiee based
on the relations with every node in the tree (for de-
tails to the next section).

3.1 Methods with a single relation: PARENT
METHOD and ANCESTOR METHOD

Figure 2 shows the pseudo code of the algo-
rithm to construct a dependency tree using PAR-
ENT METHOD or ANCESTOR METHOD. As
mentioned above, the two methods analyze a sen-
tence backwards. We should note thatnode1 to
noden in the algorithm respectively correspond to
the last chunk to the first chunk of a sentence.
MODEL PARENT(nodei,nodej) indicates the pre-
diction whethernodej is the parent ofnodei or
not, which is the output of the learned model.
MODEL ANCESTOR(nodei,nodej) indicates the
prediction whethernodej is the ancestor ofnodei or
not.String output indicates the sequence of thei−
1 predictions stored in step 3. The codeword denoted
by string[k] is the binary sequence given to the ac-
tion thatnodei is attached tonodek. Parent[nodei]
indicates the node to whichnodei is attached, and
Dis indicates a distance function. Thus, our method
predicts the correct actions by measuring the dis-
tance between the codewordstring[k] and the pre-
dicted binary (later extended to real-valued) se-
quencesstring output. In other words, our method
selects the action that is the closest to the outputs of
the learned model.

Both models are learned from dependency trees
given as training data as shown in Figure 3. Each
relation is learned from ordered pairs of two nodes
in the trees. However, our algorithm in Figure 2
targets at dependencies directed from left to right.
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1:for i = 1, 2, ..., n do
2: for j = 1, 2, ..., i − 1 do
3: resultparent[j]=MODEL PARENT(nodei,nodej)
(in case of PARENT and PARENT-ANCESTOR METHOD)
3: resultancestor[j]=MODEL ANCESTOR(nodei,nodej)
(in case of ANCESTOR and PARENT-ANCESTOR METHOD)
4: end
5: Parent[nodei]=argmink Dis(string[k], string output)
6:end

Figure 2: Pseudo code of PARENT, ANCESTOR,
and PARENT-ANCESTOR METHODS

Figure 3: Example of training instances

Therefore, the instances with a right-to-left depen-
dency are excluded from the training data. For ex-
ample, the instance withnode4 being the candi-
date parent (or ancestor) ofnode1 is excluded in
Figure 3. MODELPARENT uses ordered pairs
of a parent node and a child node as positive in-
stances and the other ordered pairs as negative in-
stances. MODELANCESTOR uses ordered pairs
of an ancestor node and a descendant node as
positive instances and the other ordered pairs as
negative instances. From the above description
and Figure 3, the number of training instances
used in learning MODELPARENT is the same
as the number of training instances used in learn-
ing MODEL ANCESTOR. However, the number of
positive instances in learning MODELANCESTOR
is larger than in learning MODELPARENT be-
cause the set of parent-child relations is a subset of
ancestor-descendant relations.

As mentioned above, the two methods analyze a
sentence backwards. We should note thatnode1 to
noden in the algorithm respectively correspond to
the last chunk to the first chunk of a sentence.

Next, we illustrate the process of determining the
parent node of a certain nodenodem(with Figures 4
and 5). Hereafter,nodem is called atarget node.
The parent node is determined based on the like-
liness of a relation; the parent-child and ancestor-

descendant relation are used in PARENT METHOD
and ANCESTOR METHOD respectively.

Our methods regard a dependency between the
target node and its parent node as a set of relations
between the target node and each node in the tree.
Each relation corresponds to one bit, which becomes
1 if the relation holds,−1 otherwise. For example,
a sequence(−1,−1,−1, 1) represents that the par-
ent ofnode5 is node4 in PARENT METHOD (Fig-
ure 4), since the relation holds only between nodes
4 and 5.

First, the learned model judges whether the tar-
get node and each node in the current tree are in
a certain relation or not; PARENT METHOD uses
MODEL PARENT as the learned model and AN-
CESTOR METHOD uses MODELANCESTOR.
The sequence of them−1 predictions by the learned
model is stored instring output.

The codewordstring[k] is the binary (−1 or 1)
sequence that is to be output when the target node
is attached to thenodek. In Figures 4 and 5, the
set ofstring[k] (for node5) is in the dashed square.
For example,string[2] in ANCESTOR METHOD
(Figure 5) is(1, 1,−1,−1) since nodes 1 and 2 are
the ancestor ofnode5 if node5 is attached tonode2.

Next, among the set ofstring[k], the codeword
that is the closest to thestring output is selected.
The target node is then attached to the node cor-
responding to the selected codeword. In Figure 4,
the string[4],(−1,−1,−1, 1), is selected and then
node5 is attached tonode4.

Japanese dependencies have the non-crossing
constraint: dependencies do not cross one another.
To satisfy the constraint, we remove the nodes that
will break the non-crossing constraint from the can-
didates of a parent node in step 5 of the algorithm.

PARENT METHOD differs from conventional
methods such as Sekine (2000) or Kudo and Mat-
sumoto (2000), in the process of determining the
parent node. These conventional methods select the
node given byargmaxjP (nodej | nodei) as the
parent node ofnodei, setting the beam width to 1.
However, their processes are essentially the same as
the process in PARENT METHOD.
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Figure 4: Analysis example using PARENT
METHOD

Figure 5: Analysis example using ANCESTOR
METHOD

3.2 Proposed method: PARENT-ANCESTOR
METHOD

The proposed method determines the parent node of
a target node based on the likeliness of ancestor-
descendant relations in addition to parent-child
relations. The use of ancestor-descendant rela-
tions makes it possible to capture the character-
istics which cannot be captured by parent-child
relations alone. The pseudo code of the pro-
posed method, PARENT-ANCESTOR METHOD,
is shown in Figure 2. MODELPARENT and
MODEL ANCESTOR are learned as described in
Section 3.1. String output is the concatenation
of the predictions by both MODELPARENT and
MODEL ANCESTOR. In addition,string[k] is
provided based not only on parent-child relations but
also on ancestor-descendant relations. An analysis
example using PARENT-ANCESTOR METHOD is
shown in Figure 6.

Figure 6: Analysis example using PARENT-
ANCESTOR METHOD

4 Experiment

4.1 Experimental settings

We used Kyoto University text corpus (Version
2.0) (Kurohashi and Nagao, 1997) for training and
test data. The articles on January 1st through 8th
(7,958 sentences) were used as training data, and the
articles on January 9th (1,246 sentences) as test data.
The dataset is the same as in leading works (Sekine,
2000; Kudo and Matsumoto, 2000; Kudo and Mat-
sumoto, 2002; Sassano, 2004).

We used SVMs as the algorithm of learning and
analyzing the relations between nodes. We used the
third degree polynomial kernel function and set the
soft margin parameterC to 1, which is exactly the
same setting as in Kudo and Matsumoto (2002). We
can obtain the real-valued score in step 3 of the al-
gorithm, which is the output of the separating func-
tion. The score can be regarded as likeliness of the
two nodes being in the parent-child (or the ancestor-
descendant). Therefore, we used the sequence of
the outputs of SVMs asstring output, instead of
converting the scores into binary values indicating
whether a certain relation holds or not.

Two feature sets are used: static features and dy-
namic features. The static features used in the ex-
periments are shown in Table 1. The features are the
same as those used in Kudo and Matsumoto (2002).
In Table 1,HeadWord means the rightmost con-
tent word in the chunk whose part-of-speech is not
a functional category.FunctionalWord means the
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Table 1: Static features used in experiments

Head Word (surface-form, POS, POS-subcategory,
inflection-type, inflection-form),Functional Word (

Modifier / surface-form, POS, POS-subcategory, inflection-type,
Modifiee inflection-form), brackets, quotation-marks,

punctuation-marks, position in sentence (beginning, end)
Between two distance (1,2-5,6-), case-particles, brackets,
chunks quotation-marks, punctuation-parks

Figure 7: Dynamic features

rightmost functional word or the inflectional form of
the rightmost predicate if there is no functional word
in the chunk.

Next, we explain the dynamic features used in
the experiments. Three types of dynamic features
were used in Kudo and Matsumoto (2002): (A)
the chunks modifying the current candidate modi-
fiee, (B) the chunk modified by the current candidate
modifiee, and (C) the chunks modifying the current
candidate modifier. The type C is not available in the
proposed method because the proposed method an-
alyzes a sentence backwards unlike Kudo and Mat-
sumoto (2002). Therefore, we did not use the type
C. We used the type A’ and B’ which are recursive
expansion of type A and B as the dynamic features
(Figure 7). The form of functional words or inflec-
tion was used as a type A’ feature and POS and POS-
subcategory ofHeadWord as a type B’ feature.

4.2 Experimental results

In this section, we show the effectiveness of the pro-
posed method. First, we compare the three methods
described in Section 3: PARENT METHOD, AN-
CESTOR METHOD, and PARENT-ANCESTOR
METHOD. The results are shown in Table 2. Here,
dependency accuracyis the percentage of correct
dependencies (correct parent-child relations in trees
in test data), andsentence accuracyis the percent-
age of the sentences in which all the modifiees are
determined correctly (correctly constructed trees in
test data).

Table 2 shows that PARENT-ANCESTOR
METHOD is more accurate than the other two

Table 2: Result of dependency analysis using meth-
ods described in Section 3

Method
Dependency Sentence

Accuracy Accuracy
PARENT 88.95% 44.87%

ANCESTOR 87.64% 43.74%
PARENT-ANCESTOR 89.54% 47.38%

Table 3: Comparison to conventional methods
Feature Method

Dependency Sentence
Accuracy Accuracy

Only Proposed method 88.88% 46.33%
static Kudo and Matsumoto (2002) 88.71% 45.19%

Static + Proposed method 89.43% 47.94%
Dynamic A,B Kudo and Matsumoto (2002) 89.19% 46.64%

Original

Proposed method 89.54% 47.38%
Sekine (2000) 87.20% 40.76%

Kudo and Matsumoto (2000) 89.09% 46.17%
Kudo and Matsumoto (2002) 89.29% 47.53%

Sassano (2004) 89.56% 48.35%
w/o Rich

Sassano (2004)
89.19% 47.05%

w/o Conj 89.41% 47.86%

methods. In other words, the accuracy of depen-
dency analysis improves by utilizing the redundant
information. The improvement is statistically sig-
nificant in the sign-test with 1% significance-level.

Next, we compare the proposed method with
conventional methods. We compare the proposed
method particularly with Kudo and Matsumoto
(2002) with the same feature set. The reasons are
that Cascaded Chunking Model proposed in Kudo
and Matsumoto (2002) is used in a popular Japanese
dependency analyzer, CaboCha1, and the compari-
son can highlight the effectiveness of our approach
because we can experiment under the same condi-
tions (e.g., dataset, feature set, learning algorithm).
A summary of the comparison is shown in Table 3.

Table 3 shows that the proposed method
outperforms conventional methods except Sas-
sano (2004)2, while Sassano (2004) used richer fea-
tures which are not used in the proposed method,
such as features for conjunctive structures based on
Kurohashi and Nagao (1994), features concerning
the leftmost content word in the candidate modi-
fiee. The comparison of the proposed method with
Sassano (2004)’s method without the features of

1http://chasen.org/˜taku/software/
cabocha/

2We have not tested the improvement statistically because
we do not have access to the conventional methods.
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Table 4: Accuracy of dependency analysis on paral-
lel structures

Parallel structures
Other than

parallel structures
PARENT 74.18% 91.21%

ANCESTOR 73.24% 90.01%
PARENT-ANCESTOR 76.29% 91.63%

conjunctive structures (w/o Conj) and without the
richer features derived from the words in chunks
(w/o Rich) suggests that the proposed method is bet-
ter than or comparable to Sassano (2004)’s method.

5 Discussion

5.1 Performance on parallel structures

As mentioned in Section 1, the ancestor-descendant
relation is supposed to help to capture parallel struc-
tures. In this section, we discuss the performance of
dependency analysis on parallel structures. Parallel
structures such as those of nouns (e.g., Tom and Ken
eat hamburgers.) and those of verbs (e.g., Tom eats
hamburgers and drinks water.), are marked in Kyoto
University text corpus. We investigate the accuracy
of dependency analysis on parallel structures using
the information.

Table 4 shows that the accuracy on parallel struc-
tures improves by adding the ancestor-descendant
relation. The improvement is statistically significant
in the sign-test with 1% significance-level. Table 4
also shows that error reduction rate on parallel struc-
tures by adding the ancestor-descendant relation is
8.3% and the rate on the others is 4.7%. These show
that the ancestor-descendant relation work well es-
pecially for parallel structures.

In Table 4, the accuracy on parallel structures
using PARENT METHOD is slightly better than
that using ANCESTOR METHOD, while the dif-
ference is not statistically significant in the sign-
test. It shows that the parent-child relation is also
necessary for capturing the characteristics of paral-
lel structures. Consider the following two instances
in Figure 1 as an example: the ordered pair of ID
3(pizza-and) and ID5(ate), and the ordered pair of
ID 4(salad-accusative) and ID5. In ANCESTOR
METHOD, both instances are positive instances. On
the other hand, only the ordered pair of ID4 and
ID 5 is a positive instance in PARENT METHOD.

Table 5: Comparison between usages of the
ancestor-descendant relation

Dependency Sentence
Accuracy Accuracy

Feature 88.57% 44.71%
Model 88.88% 46.33%

Hence, PARENT METHOD can learn appropriate
case-particles in a modifier of a verb. For exam-
ple, the particle which means “and” does not mod-
ify verbs. However, it is difficult for ANCESTOR
METHOD to learn the characteristic. Therefore,
both parent-child and ancestor-descendant relations
are necessary for capturing parallel structures.

5.2 Discussion on usages of the
ancestor-descendant relation

In the proposed method, MODELANCESTOR,
which judges whether the relation between two
nodes is ancestor-descendant or not, is prepared,
and the information on the ancestor-descendant re-
lation is directly utilized. On the other hand,
conventional methods add the features regarding
the ancestor or descendant chunk to capture the
ancestor-descendant relation. In this section, we
empirically show that the proposed method utilizes
the information on the ancestor-descendant rela-
tion more effectively than conventional methods.
The results in the previous sections could not show
the effectiveness because MODELPARENT and
MODEL ANCESTOR in the proposed method use
the features regarding the ancestor-descendant rela-
tion.

Table 5 shows the result of dependency analy-
sis using two types of usages of the information
on the ancestor-descendant relation. “Feature” indi-
cates the conventional usage and “Model” indicates
our usage. Please note that MODELPARENT and
MODEL ANCESTOR used in “Model” do not use
the features regarding the ancestor-descendant rela-
tion. Table 5 shows that our usage is more effec-
tive than the conventional usage. This is because
our usage takes advantage of redundancy in terms
of a coding problem as described in the next sec-
tion. Moreover, the learned features through the pro-
posed method would include more information than
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ad-hoc features that were manually added.

5.3 Proposed method in terms of a coding
problem

In a coding problem, redundancy is effectively uti-
lized so that information can be transmitted more
properly (Mackay, 2003). This idea is the same as
the main point of the proposed method. In this sec-
tion, we discuss the proposed method in terms of a
coding problem.

In a coding problem, when encoding information,
the redundant bits are attached so that the added re-
dundancy helps errors be corrected. Moreover, the
following fact is known (Mackay, 2003):

the error-correcting ability is higher when the dis-
tances between the codewords are longer. (1)

For example, consider the following three types
of encodings: (A) two events are encoded respec-
tively into the codewords−1 and 1 (the simplest
encoding), (B) into the codewords(−1,−1, 1) and
(1, 1, 1) (hamming distance:2), and (C) into the
codewords(−1,−1,−1) and (1, 1, 1) (hamming
distance:3). Please note that the hamming distance is
defined as the number of bits that differ between two
codewords. In (A), the correct information is not
transmitted if a one-bit error occurs. In (B), if an er-
ror occurs in the third bit, the error can be corrected
by assuming that the original codeword is closest
to the received codeword. In (C), any one-bit error
can be corrected. Thus, (B) has the higher error-
correcting ability than (A), and (C) has the higher
error-correcting ability than (B).

We explain the problem of determining the par-
ent node of a target node in the proposed method in
terms of the coding theory. A sequence of numbers
corresponds to a codeword. It is assumed that the
codeword which expresses the correct parent node
of the target node is transmitted. The codeword is
transmitted through the learned model through chan-
nels to the receiver. The receiver infers the parent
node from the received sequence (string output) in
consideration of the codewords that can be transmit-
ted (string[k]). Therefore, error-correcting ability,
the ability of correcting the errors in predictions in
step 3, is dependent on the distances between the
codewords (string[k]).

The codewords in PARENT-ANCESTOR
METHOD are the concatenation of the bits based on
both parent-child relations and ancestor-descendant
relations. Consequently, the distances between
codewords in PARENT-ANCESTOR METHOD are
longer than those in PARENT METHOD or AN-
CESTOR METHOD. From (1), the error-correcting
ability is expected to be higher. In terms of a coding
problem, the proposed method exploits the essence
of (1), and utilizes ancestor-descendant relations
effectively.

We assume that every bit added as redundancy is
correctly transmitted for the above-mentioned dis-
cussion. However, some of these added bits may be
transmitted wrongly in the proposed method. In that
case, the added redundancy may not help errors be
corrected than cause an error. In the experiments of
dependency analysis, the advantage prevails against
the disadvantage because accuracy of each bit of the
codeword is 94.5%, which is high value.

Discussion on applicability of existing codes

A number of approaches use Error Correcting
Output Coding (ECOC) (Dietterich and Bakiri,
1995; Ghani, 2000) for solving multiclass classifica-
tion problems as a coding problem. The approaches
assign a uniquen-bit codeword to each class, and
thenn classifiers are trained to predict each bit. The
predicted class is the one whose codeword is clos-
est to the codeword produced by the classifiers. The
codewords in these approaches are designed to be
well-separated from one another and have sufficient
error-correcting ability (e.g., BCH code).

However, these existing codewords are not ap-
plicable to the proposed method. In the proposed
method, we have two models respectively derived
from the parent-child and ancestor-descendant rela-
tion, which can be interpreted in terms of both lin-
guistic aspects and tree structures. If we use ECOC,
however, pairs of nodes are divided into positive and
negative instances arbitrarily. Since this division
lacks linguistic or structural meaning, training in-
stances will lose consistency and any proper model
will not be obtained. Moreover, we have to prepare
different models for each stage in tree construction,
because the length of the codewords vary according
to the number of nodes in the current tree.
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Table 6: Result of dependency analysis using vari-
ous distance functions

Distance
Method

Dependency Sentence
Function Accuracy Accuracy

Hamming

PARENT(n) 85.05% 35.35%
PARENT(f) 85.48% 39.87%

ANCESTOR(n) 87.54% 43.42%
ANCESTOR(f) 86.97% 43.18%

Proposed method(n) 88.36% 43.74%
Proposed method(f) 88.45% 44.79%

PARENT 88.95% 44.87%
Cosine / ANCESTOR 87.64% 43.74%

Euclidean Proposed method 89.54% 47.38%

Manhattan

PARENT(n) 88.74% 44.63%
PARENT(f) 88.90% 44.79%
ANCESTOR 87.64% 43.74%

Proposed method 89.24% 46.89%

5.4 Influence of distance functions

In this section, we compare the performance of de-
pendency analysis with various distance functions:
hamming distance, euclidean distance, cosine dis-
tance, and manhattan distance. These distance func-
tions between sequencesX=“x1 x2 ... xn” and
Y =“y1 y2 ... yn” are defined as follows:

• Ham(X, Y ) =
∑n

i=1(1 − δ(xi, yi)),

• Euc(X,Y ) =
√∑n

i=1(xi − yi)2,

• Cos(X, Y ) = 1 −
∑n

i=1
xi·yi√∑n

i=1
x2

i

√∑n

i=1
y2

i

,

• Man(X, Y ) =
∑n

i=1 | xi − yi |.

In the hamming distance,string output is con-
verted to a binary sequence with their elements be-
ing of −1 or 1. The cosine distance is equivalent to
the Euclidean distance under the condition that the
absolute value of every component ofstring[k] is
1.

The results of dependency analysis using these
distance functions are shown in Table 6. In Table
6, ‘(n)’ means that the nearest chunk in a sentence
is selected as the modifiee in order to break a tie,
which happens when the number of sequences satis-
fying the condition in step 5 is two or more, while
‘(f)’ means that the furthest chunk is selected. If the
results in case of (n) and (f) are the same, (n) and (f)
are omitted and only one result is shown.

Table 6 shows that the proposed method out-
performs PARENT METHOD and ANCESTOR

METHOD in any distance functions. It means that
the effectiveness of the proposed method does not
depend on distance functions. The result using the
hamming distance is much worse than using the
other distance functions. It means that using the
scores output by SVMs as the likeliness of a certain
relation improves the accuracy. The results of (n)
and (f) in the hamming distance are different. It is
because the hamming distances are always positive
integers and ties are more likely to happen. Table
6 also shows that the result of the cosine or the eu-
clidean distance is better than that of the manhattan
distance.

6 Conclusions

We proposed a novel method for Japanese depen-
dency analysis, which determines the modifiee of
each chunk based on the likeliness not only of
the parent-child relation but also of the ancestor-
descendant relation in a dependency tree. The
ancestor-descendant relation makes it possible to
capture the parallel structures in more depth. In
terms of a coding theory, the proposed method
boosts error-correcting ability by adding the redun-
dant bits based on ancestor-descendant relations and
increasing the distance between two codewords. Ex-
perimental results showed the effectiveness of the
proposed method. In addition, the results showed
that the proposed method outperforms conventional
methods.

Future work includes the following. In this pa-
per, we use the features proposed in Kudo and Mat-
sumoto (2002). By extracting new features that are
more suitable for the ancestor-descendant relation,
we can further improve our method. The features
used by Sassano (2004) are promising as well. We
are also planning to apply the proposed method to
other tasks which need to construct tree structures.
For example, (zero-) anaphora resolution is consid-
ered as a good candidate task for application.
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Abstract

We propose a sequence-alignment based
method for detecting and disambiguating co-
ordinate conjunctions. In this method, av-
eraged perceptron learning is used to adapt
the substitution matrix to the training data
drawn from the target language and domain.
To reduce the cost of training data con-
struction, our method accepts training exam-
ples in which complete word-by-word align-
ment labels are missing, but instead only
the boundaries of coordinated conjuncts are
marked. We report promising empirical re-
sults in detecting and disambiguating coor-
dinated noun phrases in the GENIA corpus,
despite a relatively small number of train-
ing examples and minimal features are em-
ployed.

1 Introduction

Coordination, along with prepositional phrase at-
tachment, is a major source of syntactic ambiguity
in natural language. Although only a small number
of previous studies in natural language processing
have dealt with coordinations, this does not mean
disambiguating coordinations is easy and negligible;
it still remains one of the difficulties for state-of-the-
art parsers. in Charniak and Johnson’s recent work
(Charniak and Johnson, 2005), for instance, two of
the features incorporated in their parse reranker are
aimed specifically at resolving coordination ambi-
guities.

Previous work on coordinations includes (Agar-
wal and Boggess, 1992; Chantree et al., 2005; Kuro-

∗Equal contribution.

hashi and Nagao, 1994; Nakov and Hearst, 2005;
Okumura and Muraki, 1994; Resnik, 1999). Ear-
lier studies (Agarwal and Boggess, 1992; Okumura
and Muraki, 1994) attempted to find heuristic rules
to disambiguate coordinations. More recent re-
search are concerned with capturing structural sim-
ilarity between conjuncts using thesauri and cor-
pora (Chantree et al., 2005), or web-based statistics
(Nakov and Hearst, 2005).

We identify three problems associated with the
previous work.

1. Most of these studies evaluate the proposed
heuristics against restricted forms of conjunc-
tions. In some cases, they only deal with co-
ordinations with exactly two conjuncts, leaving
the generality of these heuristics unclear.

2. Most of these studies assume that the bound-
aries of coordinations are known in advance,
which, in our opinion, is impractical.

3. The proposed heuristics and statistics capture
many different aspects of coordination. How-
ever, it is not clear how they interact and how
they can be combined.

To address these problems, we propose a new
framework for detecting and disambiguating coor-
dinate conjunctions. Being a discriminative learning
model, it can incorporate a large number of overlap-
ping features encoding various heuristics for coordi-
nation disambiguation. It thus provides a test bed for
examining combined use of the proposed heuristics
as well as new ones. As the weight on each feature
is automatically tuned on the training data, assessing
these weights allows us to evaluate the relative merit
of individual features.
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Figure 1: An alignment between ’writer’ and ’vint-
ner,’ represented as a path in an edit graph

Our learning model is also designed to admit ex-
amples in which only the boundaries of coordinated
conjuncts are marked, to reduce the cost of training
data annotation.

The state space of our model resembles that of
Kurohashi and Nagao’s Japanese coordination de-
tection method (Kurohashi and Nagao, 1994). How-
ever, they considered only the decoding of coordi-
nated phrases and did not address automatic param-
eter tuning.

2 Coordination disambiguation as
sequence alignment

It is widely acknowledged that coordinate conjunc-
tions often consist of two or more conjuncts having
similar syntactic constructs. Our coordination detec-
tion model also follows this observation. To detect
such similar constructs, we use the sequence align-
ment technique (Gusfield, 1997).

2.1 Sequence alignment

Sequence alignment is defined in terms of transfor-
mation of one sequence (string) into another through
an alignment, or a series of edit operations. Each of
the edit operations has an associated cost, and the
cost of an alignment is defined as the total cost of
edit operations involved in the alignment. The min-
imum cost alignment can be computed by dynamic
programming in a state space called an edit graph,
such as illustrated in Figure 1. In this graph, a com-
plete path starting from the upper-left initial vertex
and arriving at the lower-right terminal vertex con-
stitutes a global alignment. Likewise, a partial path
corresponds to a local alignment.

Sequence alignment can also be formulated with
the scores of edit operations instead of their costs. In
this case, the sequence alignment problem is that of
finding a series of edit operations with the maximum

score.

2.2 Edit graph for coordinate conjunctions

A fundamental difference between biological local
sequence alignment and coordination detection is
that the former deals with finding local homologies
between two (or more) distinct sequences, whereas
coordination detection is concerned with local simi-
larities within a single sentence.

The maximal local alignment between two iden-
tical sequences is a trivial (global) alignment of
identity transformation (the diagonal path in an edit
graph). Coordination detection thus reduces to find-
ing off-diagonal partial paths with the highest sim-
ilarity score. Such paths never cross the diagonal,
and we can limit our search space to the upper trian-
gular part of the edit graph, as illustrated in Figure 2.

3 Automatic parameter tuning

Given a suitable substitution matrix, i.e., function
from edit operations to scores, it is straightforward
to find optimal alignments, or coordinate conjunc-
tions in our task, by running the Viterbi algorithm in
an edit graph.

In computational biology, there exist established
substitution matrices (e.g., PAM and BLOSUM)
built on a generative model of mutations and their
associated probabilities.

Such convenient substitution matrices do not ex-
ist for coordination detection. Moreover, optimal
score functions are likely to vary from one domain
(or language) to another. Instead of designing a
specific function for a single domain, we propose a
general discriminative learning model in which the
score function is a linear function of the features as-
signed to vertices and edges in the state space, and
the weight of the features are automatically tuned for
given gold standard data (training examples) drawn
from the application domain. Designing heuristic
rules for coordination detection, such as those pro-
posed in previous studies, translates to the design of
suitable features in our model.

Our learning method is an extension of Collins’s
perceptron-based method for sequence labeling
(Collins, 2002). However, a few incompatibilities
exists between Collins’ sequence labeling method
and edit graphs used for sequence alignment.
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Figure 2: An edit graph for coordinate detection

1. Collins’s method, like the linear-chain condi-
tional random fields (CRFs) (Lafferty et al.,
2001; Sha and Pereira, 2003), seeks for a com-
plete path from the initial vertex to the terminal
using the Viterbi algorithm. In an edit graph, on
the other hand, coordinations are represented
by partial paths. And we somehow need to
complement the partial path to make a com-
plete path.

2. A substitution matrix, which defines the score
of edit operations, can be represented as a func-
tion of features defined on edges. But to deal
with complex coordinations, a more expressive
score function is sometimes desirable, so that
scores can be computed not only on the basis of
a single edit operation, but also on consecutive
edit operations. Edit graphs are not designed to
accommodate features for such a higher-order
interaction of edit operations.

To reconcile these incompatibilities, we derive
a more finer-grained model from the original edit
graph. In presenting the description of our model be-
low, we reserve the terminology ‘vertex’ and ‘edge’
for the original edit graph, and use ‘node’ and ‘arc’
for our new model, to avoid confusion.

3.1 State space for learning coordinate
conjunctions

The new model is also based on the edit graph. In
this model, we create a node for each triple (v, p,e),

(a) (b) (c) (d) (e)

Figure 3: Five node types created for a vertex in an
edit graph: (a) Inside Delete, (b) Inside Insert, (c) In-
side Substitute, (d) Outside Delete, and (e) Outside
Insert.

(a) (b)

Figure 4: Series of edit operations with an equiv-
alent net effect. (a) (Insert,Delete), and (b)
(Delete, Insert). (b) is prohibited in our model.

where v is a vertex in the original edit graph, e ∈
{Delete, Insert,Substitute} is an admissible1 edit op-
eration at v, and p ∈ {Inside,Outside} is a polarity
denoting whether or not the edit operation e is in-
volved in an alignment.

For a node (v, p,e), we call the pair (p,e) its type.
All five possible node types for a single vertex of an
edit graph are shown in Figure 3. We disallow type
(Outside,Substitute), as it is difficult to attribute an
intuitive meaning to substitution when two words
are not aligned (i.e., Outside).

Arcs between nodes are built according to the
transitions allowed in the original edit graph. To be
precise, an arc between node (v1, p1,e1) and node
(v2, p2,e2) is created if and only if the following
three conditions are met. (i) Edit operations e1 and
e2 are admissible at v1 and v2, respectively; (ii) the
sink of the edge for e1 at v1 is v2; and (iii) it is not
the case with p1 = p2 and (e1,e2) = (Delete, Insert).

Condition (iii) is introduced so as to disallow tran-
sition (Delete, Insert) depicted in Figure 4(b). In
contrast, the sequence (Insert,Delete) (Figure 4(a))
is allowed. The net effects of these edit operation
sequences are identical, in that they both skip one
word each from the two sequences to be aligned. As
a result, there is no use in discriminating between
these two, and one of them, namely (Delete, Insert),
is prohibited.

1For a vertex v at the border of an edit graph, some edit op-
erations are not applicable (e.g., Insert and Substitute at vertices
on the right border in Figure 2); we say such operations are in-
admissible at v. Otherwise, an edit operation is admissible.
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Figure 5: A coordination with four conjuncts repre-
sented as (a) chainable, and (b) non-chainable partial
paths. We take (a) as the canonical representation.

3.2 Learning task

By the restriction of condition (iii) introduced above
and the omission of (Outside, Substitute) from the
node types, we can uniquely determine the com-
plete path (from the initial node to the terminal node)
that conjoins all the local alignments by Outside
nodes (which corresponds to edges in the original
edit graph). In Figure 2, the augmented Outside
edges in this unique path are plotted as dotted lines
for illustration.

Thus we obtain a complete path which is compat-
ible with Collins’s perceptron-based sequence learn-
ing method. The objective of the learning algo-
rithms, which we will describe in Section 4, is to
optimize the weight of features so that running the
Viterbi algorithm will yield the same path as the gold
standard.

Because a node in our state space corresponds to
an edge in the original edit graph (see Figure 3), an
arc in our state space is actually a pair of consec-
utive edges (or equivalently, edit operations) in the
original graph. Hence our model is more expressive
than the original edit graph in that the score function
can have a term (feature) defined on a pair of edit
operations instead of one.

3.3 More complex coordinations

Even if a coordination comprises three or more con-
juncts, our model can handle them, as it can be rep-
resented as a set of pairwise local alignments that
are chainable (Gusfield, 1997, Section 13.3). If pair-
wise local alignments are chainable, a unique com-
plete path that conjoins all these alignments can be
determined, allowing the same treatment as the case
with two conjuncts.

For instance, a coordination with four conjuncts

(A, B, C and D) can be decomposed into a set of pair-
wise alignments {(A,B),(B,C),(C,D)} as depicted
in Figure 5(a). This set of alignments are chain-
able and thus constitute the canonical encoding for
this coordination; any other pairwise decomposition
for these four conjuncts, like {(A,B),(B,C),(A,D)}
(Figure 5(b)), is not chainable.

Our model can handle multiple non-nested coor-
dinations in a single sentence as well, as they can
also be decomposed into chainable pairwise align-
ments. It cannot encode nested coordinations like
(A, B, and (C and D)), however.

4 Algorithms

4.1 Reducing the cost of training data
construction

Our learning method is supervised, meaning that it
requires training data annotated with correct labels.
Since a label in our problem is local alignments
(or paths in an edit graph) representing coordina-
tions, the training sentences have to be annotated
with word-by-word alignments.

There are two reasons relaxing this requirement
is desirable. First, it is expensive to construct such
data. Second, there are coordinate conjunctions
in which word-by-word correspondence is unclear
even for humans. In Figure 2, for example, a word-
by-word alignment of ‘standard’ with ‘dense’ is de-
picted, but it might be more natural to regard a word
‘standard’ as being aligned with two words ‘dose
dense’ combined together.

Even if word-by-word alignment is uncertain, the
boundaries of conjuncts are often obvious, and it is
also much easier for human annotators to mark only
the beginning and end of each conjunct. Thus we
would like to allow for training examples in which
only alignment boundaries are specified, instead of
a full word-by-word alignment.

For these examples, conjunct boundaries corre-
sponds to a rectangular region rather than a sin-
gle path in an edit graph. The shaded box in Fig-
ure 2 illustrates the rectangular region determined by
the boundaries of an alignment between the phrases
“182% for the dose dense arm” and “99% for the
standard arm.” There are many possible alignment
paths in this box, among which we do not know
which one is correct (or even likely). To deal with
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input: Set of examples S = {(xi,Yi)}
Iteration cutoff T

output: Averaged weight vector w̄
1: w̄← 0; w← 0
2: for t ← 1 . . . T do
3: Δw← 0
4: for each (xi,Yi) ∈ S do
5: y← argmaxy∈Yi w · f (xi,y)
6: y′ ← argmaxy∈A(xi) w · f (xi,y)
7: Δ f ← f (xi,y)− f (xi,y′)
8: Δw← Δw+Δ f
9: end for

10: if Δw = 0 then
11: return w̄
12: end if
13: w← w+Δw
14: w̄← [(t−1)w̄+w]/t
15: end for
16: return w̄

Figure 6: Path-based algorithm

this difficulty, we propose two simple heuristics we
call the (i) path-based and (ii) box-based methods.
As mentioned earlier, both of these methods are
based on Collins’s averaged-perceptron algorithm
for sequence labeling (Collins, 2002).

4.2 Path-based method

Our first method, which we call the “path-based”
algorithm, is shown in Figure 6. We denote by A(x)
all possible alignments (paths) over x. The algorithm
receives T , the maximum number of iterations, and
a set of examples S = {(xi,Yi)} as input, where xi is a
sentence (a sequence of words with their attributes,
e.g., part-of-speech, lemma, prefixes, and suffixes)
and Yi ⊂ A(xi) is the set of admissible alignments
(paths) for xi. When a sentence is fully annotated
with a word-by-word alignment y, Yi = {y} is a sin-
gleton set. In general boundary-only examples we
described in Section 4.1, Yi holds all possible align-
ments compatible with the marked range, or equiv-
alently, paths that pass through the upper-left and
lower-right corners of a rectangular region. Note
that it is not necessary to explicitly enumerate all the
member paths of Yi; the set notation here is only for
the sake of presentation.

The external function f (x,y) returns a vector
(called the global feature vector in (Sha and Pereira,
2003)) of the number of feature occurrences along
the alignment path y. In the beginning (line 5 in the
figure) of the inner loop, the target path (alignment)

input: Set of examples S = {(xi,Yi)}
Iteration cutoff T

output: Averaged weight vector w̄
1: w̄← 0; w← 0
2: for each (xi,Yi) ∈ S do
3: gi← (1/|Yi|)∑y∈Yi

f (xi,y)
4: end for
5: for t ← 1 . . . T do
6: Δw← 0
7: for each (xi,Yi) ∈ S do
8: y′ ← argmaxy∈A(xi) w · f (xi,y)
9: Convert y′ into its box representation Y ′

10: g′ ← (1/|Y ′i |)∑y∈Y ′i f (xi,y)
11: Δ f ← gi−g′
12: Δw← Δw+Δ f
13: end for
14: if Δw = 0 then
15: return w̄
16: end if
17: w← w+Δw
18: w̄← [(t−1)w̄+w]/t
19: end for
20: return w̄

Figure 7: Box-based algorithm

is recomputed with the current weight vector w. The
argmax in lines 5 and 6 can be computed efficiently
(O(n2), where n is the number of words in x) by run-
ning a pass of the Viterbi algorithm in the edit graph
for x. The weight vector w varies between iterations,
and so does the most likely alignment with respect
to w. Hence the recomputation in line 5 is needed.

4.3 Box-based method

Our next method, called “box-based,” is designed
on the following heuristic. Given a rectangle region
representing a local alignment (hence all nodes in
the region are of polarity Inside) in an edit graph,
we distribute feature weights in proportion to the
probability of a node (or an arc) being passed by a
path from the initial (upper left) node to the termi-
nal (lower right) node of the rectangle. We assume
paths are uniformly distributed.

Figure 8 displays an 8× 8 sub-grid of an edit
graph. The figure under each vertex shows the num-
ber of paths passing through the vertex. Vertices
near the upper-left and the lower-right corner have
a large frequency, and the frequency drops exponen-
tially towards the top right corner and the bottom
left corner, hence placing a strong bias on the paths
near diagonals. This distribution fits our preference
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Figure 8: Number of paths passing through the ver-
tices of an 8×8 grid.

towards alignments with a larger number of substi-
tutions.

The pseudo-code for the box-based algorithm is
shown in Figure 7. For each example xi and its pos-
sible target labels (alignments) Yi, this algorithm first
(line 3) computes and stores in the vector gi the aver-
age number of feature occurrences in all possible tar-
get paths in Yi. This quantity can be computed sim-
ply by summing over all nodes and edges feature oc-
currences multiplied by the pre-computed frequency
of each nodes and arcs at which these features occur.
analogously to the forward-backward algorithm. In
each iteration, the algorithm scans every example
(lines 7–13), computing the Viterbi path y′ (line 8)
according to the current weight vector w. Line 9
then converts y′ to its box representation Y ′, by se-
quentially collapsing consecutive Inside nodes in y′

as a box. For instance, let y′ be the local alignment
depicted as the bold line in Figure 2. The box Y ′

computed in line 9 for this y′ is the shaded area in the
figure. In parallel to the initialization step in line 3,
we store in g′ the average feature occurrences in Y ′

and update the current weight vector w by the differ-
ence between the target gi and g′. These steps can
be interpreted as a Viterbi approximation for com-
puting the optimal set Y ′ of alignments directly.

5 Related work

5.1 Discriminative learning of edit distance

In our model, the state space of sequence alignment,
or edit graph, is two-dimensional (which is actu-
ally three-dimensional if the dimension for labels is
taken into account). This is contrastive to the one
dimensional models used by Collins’s perceptron-
based sequence method (Collins, 2002) which our
algorithms are based upon, and by the linear-chain
CRFs.

McCallum et al. (McCallum et al., 2005) pro-
posed a CRF tailored to learning string edit distance
for the identity uncertainty problem. The state space
in their work is two dimensional just like our model,
but it is composed of two decoupled subspaces, each
corresponding to ‘match’ and ‘mismatch,’ thus shar-
ing only the initial state. It is not possible to make
a transition from a state in the ‘match’ state space to
the ‘mismatch’ space (and vice versa). As we can
see from the decoupled state space, this method is
based on global alignment rather than local align-
ment; it is not clear whether their method can iden-
tify local homologies in sequences. Our method uses
a single state space in which both ‘match (inside)’
and ‘mismatch (outside)’ nodes co-exist and transi-
tion between them is permitted.

5.2 Inverse sequence alignment in
computational biology

In computational biology, the estimation of a sub-
stitution matrix from data is called the inverse se-
quence alignment problem. Until recently, there
have been a relatively small number of papers in
this field despite a large body of literature in se-
quence alignment. Theoretical studies in the inverse
sequence alignment include (Pachter and Sturmfels,
2004; Sun et al., 2004). Recently, CRFs have been
applied for optimizing the substitution matrix in the
context of global protein sequence alignment (Do et
al., 2006).

6 Empirical evaluation

6.1 Dataset and Task

We used the GENIA Treebank beta corpus (Kim et
al., 2003)2 for evaluation of our methods. The cor-

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
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pus consists of 500 parsed abstracts in Medline with
a total of 4529 sentences.

Although the Penn Treebank Wall Street Journal
(WSJ) is the de facto standard corpus for evaluating
chunking and parsing performance, it lacks adequate
structural information on coordinate conjunctions,
and therefore does not serve our purpose. Many
coordinations in the Penn Treebank are given a flat
bracketing like (A, B, and C D), and thus we cannot
tell which of ((A, B, and C) D) and ((A), (B), and
(C D)) gives a correct alignment. The GENIA cor-
pus, in contrast, distinguishes ((A, B, and C) D) and
((A), (B), and (C D)) explicitly, by providing more
detailed bracketing. In addition, the corpus contains
an explicit tag “COOD” for marking coordinations.

To avoid nested coordinations, which admittedly
require techniques other than the one proposed in
this paper, we selected from the GENIA corpus sen-
tences in which the conjunction “and” occurs just
once. After this operation, the number of sentences
reduced to 1668, from which we further removed 32
that are not associated with the ‘COOD’ tag, and
3 more whose annotated tree structures contained
obvious errors. Of the remaining 1633 sentences,
1061 were coordinated noun phrases annotated with
NP-COOD tags, 226 coordinated verb phrases (VP-
COOD), 142 coordinated adjective phrases (ADJP-
COOD), and so on. Because the number of VP-
COOD, ADJP-COOD, and other types of coordi-
nated phrases are too small to make a meaningful
benchmark, we focus on coordinated noun phrases
in this experiment.

The task hence amounts to identifying coordi-
nated NPs and their constituent conjuncts in the
1633 sentences, all of which contain a coordination
marker “and” but only 1061 of which are actually
coordinated NPs.

6.2 Baselines

We used several publicly available full parsers
as baselines: (i) the Bikel parser (Bikel,
2005) version 0.9.9c with configuration file
bikel.properties (denoted as Bikel/Bikel),
(ii) the Bikel parser in the Collins parser emula-
tion mode (using collins.properties file)
(Bikel/Collins), and (iii) Charniak and Johnson’s
reranking parser (Charniak-Johnson) (Charniak and
Johnson, 2005). We trained Bikel’s parser and its

Collins emulator with the GENIA corpus, WSJ, and
the combination of the two. Charniak and Johnson’s
parser was used as distributed at Charniak’s home
page (and is WSJ trained).

Another baseline we used is chunkers based
on linear-chain CRFs and the standard BIO la-
bels. We trained two types of CRF-based chun-
kers by using different BIO sequences, one for
the conjunct bracketing and the other for coor-
dination bracketing. The chunkers were imple-
mented with T. Kudo’s CRF++ package version
0.45. We varied its regularization parameters C
among C ∈ {0.01,0.1,1,10,100,1000}, and the best
results among these are reported below.

6.3 Features

Let x = (x1, . . . ,xn) be a sentence, with its member
xk a vector of attributes for the kth word. The at-
tributes include word surface, part-of-speech (POS),
and suffixes, among others.

Table 1 summarizes (i) the features assigned to a
node whose corresponding edge in the original edit
graph for x is emanating from row i and column j,
and (ii) the features assigned to the arcs (consisting
of two edges in the original edit graph) whose joint
(the vertex between the two edges) is a vertex at row
i and column j.

We also tested the path-based and box-based
methods, and the CRF chunkers both with and with-
out the word and suffix features.

Although this is not a requirement of our model or
algorithms, every feature we use in this experiment
is binary; if the condition associated with a feature
is satisfied, the feature takes a value of 1; otherwise,
it is 0. A condition typically asks whether or not
specific attributes match those at a current node, arc,
or their neighbors.

We used the POS tags from the GENIA corpus
as the POS attribute. The morphological features
include 3- and 4-gram suffixes and indicators of
whether a word includes capital letters, hyphens, and
digits.

For the baseline CRF-based chunkers, we assign
the word, POS (from GENIA), and the morphologi-
cal features to nodes, and the POS features to edges.
The feature set is identical to those used for our pro-
posed methods, except for features defined on row-
column combination (i.e., those defined over both i
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Table 1: Features for the proposed methods
Substitute (diagonal) nodes
(∗,Substitute,∗)

Indicators of the word, POS, and morphological attributes of xi, x j , (xi−1,xi),
(xi,xi+1), (x j−1,x j), (x j,x j+1), and (xi, x j), respectively combined with the
type of the node.
For each of the word, POS, and morphological attributes, an indicator of
whether the respective attribute is identical in xi and x j , combined with the
type of the node.

Delete (vertical) nodes
(∗,Delete,∗)

Indicators of the word, POS, and morphological attributes of xi, x j , x j−1,
(xi−1,xi), (xi,xi+1), and (x j−1,x j), combined with the type of the node.

Insert (horizontal) nodes
(∗, Insert,∗)

Indicators of the word, POS, and morphological attributes of xi, xi−1, x j,
(xi−1,xi), (x j−1,x j), and (x j, x j+1), combined with the type of the node.

Any arcs
(∗,∗,∗)→ (∗,∗,∗)

Indicators of the POS attribute of xi, xi−1, x j, x j−1, (xi−2,xi−1), (xi−1,xi),
(xi,xi+1), (x j−2,x j−1), (x j−1,x j), (x j,x j+1), (xi−1,x j−1), (xi−1,x j), (xi, x j−1)
and (xi,x j), combined with the type pair of the arc.

Arcs between nodes of different polarity
(∗, Inside,∗)→ (∗,Outside,∗) and
(∗,Outside,∗)→ (∗, Inside,∗)

Indicator of the distance j− i between two words xi and x j, combined with the
type pair of the arc.

and j in Table 1. The latter cannot be incorporated
as a local features in chunkers based on linear chain.

For the Bikel (and its Collins emulation) parsers
which accepts POS tags output by external taggers
upon testing, we gave them the POS tags from the
GENIA corpus, for fair comparison with the pro-
posed methods and CRF-based chunkers.

6.4 Evaluation criteria

We employed two evaluation criteria: (i) correctness
of the conjuncts output by the algorithm, and (ii) cor-
rectness of the range of coordinations as a whole.

For the correctness of conjuncts, we further use
two evaluation criteria. The first evaluation method
(“pairwise evaluation”) is based on the decomposi-
tion of coordinations into the canonical set of pair-
wise alignments, as described in Section 3.3. After
the set of pairwise alignments is obtained, each pair-
wise alignment is transformed into a box surrounded
by their boundaries. Using these boxes, we evaluate
precision, recall and F rates through the following
definition. The precision measures how many of the
boxes output by the algorithm exactly match those
in the gold standard, and the recall rate is the per-
centage of boxes found by the algorithm. The F rate
is the harmonic mean of the precision and the recall.

The second evaluation method (“chunk-based
evaluation”) for conjuncts is based on whether the
algorithm correctly outputs the beginning and end of
each conjunct, in the same manner as the chunking
tasks. Here, we adopt the evaluation criteria for the

CoNLL 99 NP bracketing task3; the precision equals
how many of the NP conjuncts output by the algo-
rithm are correct, and the recall is the percentage of
NP conjuncts found by the algorithm.

Of these two evaluation methods for conjuncts, it
is harder to obtain a higher pairwise evaluation score
than the chunk-based evaluation. To be counted as a
true positive in the pairwise evaluation, two consec-
utive chunks must be output correctly by the algo-
rithm.

For the correctness of the coordination range, we
check if both the start of the first coordinated con-
junct and the end of the last conjunct in the gold
match those output by the algorithm The reason we
evaluate coordination range is to compare our pro-
posed method with the full parsers trained on WSJ
(but applied to GENIA). Although WSJ and GE-
NIA differ in the way conjuncts are annotated, they
are mostly identical on how the range of coordina-
tions are annotated, and hence comparison is feasi-
ble in terms of coordination range. For the baseline
parsers, we regard the bracketing directly surround-
ing the coordination marker “and” as their output.

In (Clegg and Shepherd, 2007), an F score of 75.5
is reported for the Bikel parser on coordination de-
tection. Their evaluation is based on dependencies,
which is different from our evaluation criteria which
are all based on boundaries. Generally speaking, our
evaluation criterion seems stricter, as exemplified in
Figures 7 and 8 of Clegg and Shepherd’s paper; in
these figures, our evaluation criterion would result

3http://www.cnts.ua.ac.be/conll99/npb/
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Table 2: Performance on conjunct bracketing. P: precision (%), R: recall (%), F: F rate.

Pairwise evaluation Chunk-based evaluation
Method P R F P R F
Path-based method 61.4 56.2 58.7 70.9 66.9 68.9
Path-based method without word and suffix features 61.7 58.8 60.2 71.2 69.7 70.5
Box-based method 60.6 58.3 59.4 70.5 69.1 69.8
Box-based method without word and suffix features 59.5 58.3 58.9 69.7 69.5 69.6
Linear-chain CRF chunker (conjunct bracketing) 62.6 51.4 56.4 71.0 66.1 68.5
Bikel/Collins, trained with GENIA 50.0 48.6 49.3 65.0 64.2 64.6
Bikel/Bikel, trained with GENIA 50.1 47.8 49.0 63.9 61.3 62.6

Table 3: Performance on coordination bracketing. P: precision (%), R: recall (%), F: F rate.

Method P R F
Path-based method 58.2 55.3 56.7
Path-based method without words and suffix features 57.7 56.6 57.2
Box-based method 55.6 54.4 55.0
Box-based method without words and suffix features 54.8 54.6 54.7
Linear-chain CRF chunker, trained with conjunct bracketing 43.9 46.7 45.3
Linear-chain CRF chunker, trained with coordination bracketing 58.4 51.0 54.5
Bikel/Collins, trained with GENIA 44.0 45.4 44.7
Bikel/Collins, trained with WSJ 42.3 43.2 42.7
Bikel/Collins, trained with GENIA+WSJ 43.3 45.1 44.1
Bikel/Bikel, trained with GENIA 44.8 45.4 45.1
Bikel/Bikel, trained with WSJ 40.7 41.5 41.1
Bikel/Bikel, trained with GENIA+WSJ 43.9 45.8 44.9
Charniak-Johnson reranking parser 48.3 45.2 46.7

in zero true positive, whereas their evaluation counts
the dependency arc from ‘genes’ to ‘human’ as one
true positive.

6.5 Results

The results of conjunct and coordination bracketing
are shown in Tables 2 and 3, respectively. These
are the results of a five-fold cross validation. We
ran the proposed methods until convergence or the
cutoff iteration of T = 10000, whichever comes first.

The path-based method (without words and suf-
fixes) and box-based method (with full features)
each achieved 2.0 and 1.3 point improvements over
the CRF chunker in terms of the F score in conjunct
identification (chunk-based evaluation), 3.8 and 3.0
point improvement in terms of pairwise evaluation,
and 2.7 and 0.5 points in coordinate identification,
respectively. Our methods also showed a perfor-
mance considerably higher than the baseline parsers.

The performance of the path-based method was
better when the word and suffix features were re-
moved, while the box-based method and CRF chun-
kers performed better with these features.

7 Conclusions

We have proposed a new coordination learning and
disambiguation method that can incorporate many
different features, and automatically optimize their
weights on training data.

In the experiment of Section 6, the proposed
method obtained a performance superior to a linear-
chain chunker and to the state-of-art full parsers.

We used only syntactic and morphological fea-
tures, and did not use external similarity measures
like thesauri and corpora, although they are reported
to be effective for disambiguating coordinations. We
note that it is easy to incorporate such external sim-
ilarity measures as a feature in our model, thanks to
its two-dimensional state space. The similarity of
two words derived from an external knowledge base
can be assigned to a Substitute node at a correspond-
ing location in the state space in a straightforward
manner. This is a topic we are currently working on.

We are also planning to reimplement our algo-
rithms using CRFs instead of the averaged percep-
tron algorithm.
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Abstract

In this paper, we describe a new algorithm
for recovering WH-trace empty nodes. Our
approach combines a set of hand-written
patterns together with a probabilistic model.
Because the patterns heavily utilize regu-
lar expressions, the pertinent tree structures
are covered using a limited number of pat-
terns. The probabilistic model is essen-
tially a probabilistic context-free grammar
(PCFG) approach with the patterns acting as
the terminals in production rules. We eval-
uate the algorithm’s performance on gold
trees and parser output using three differ-
ent metrics. Our method compares favorably
with state-of-the-art algorithms that recover
WH-traces.

1 Introduction

In this paper, we describe a new algorithm for re-
covering WH-trace empty nodes in gold parse trees
in the Penn Treebank and, more importantly, in
automatically generated parses. This problem has
only been investigated by a handful of researchers
and yet it is important for a variety of applications,
e.g., mapping parse trees to logical representations
and structured representations for language mod-
eling. For example, SuperARV language models
(LMs) (Wang and Harper, 2002; Wang et al., 2003),
which tightly integrate lexical features and syntactic
constraints, have been found to significantly reduce
word error in English speech recognition tasks. In
order to generate SuperARV LM training, a state-of-
the-art parser is used to parse training material and
then a rule-based transformer converts the parses to

the SuperARV representation. The transformer is
quite accurate when operating on treebank parses;
however, trees produced by the parser lack one im-
portant type of information – gaps, particularly WH-
traces, which are important for more accurate ex-
traction of the SuperARVs.

Approaches applied to the problem of empty
node recovery fall into three categories. Dienes
and Dubey (2003) recover empty nodes as a pre-
processing step and pass strings with gaps to their
parser. Their performance was comparable to
(Johnson, 2002); however, they did not evaluate
the impact of the gaps on parser performance.
Collins (1999) directly incorporated wh-traces into
his Model 3 parser, but he did not evaluate gap in-
sertion accuracy directly. Most of the research be-
longs to the third category, i.e., post-processing of
parser output. Johnson (2002) used corpus-induced
patterns to insert gaps into both gold standard trees
and parser output. Campbell (2004) developed a
set of linguistically motivated hand-written rules for
gap insertion. Machine learning methods were em-
ployed by (Higgins, 2003; Levy and Manning, 2004;
Gabbard et al., 2006).

In this paper, we develop a probabilistic model
that uses a set of patterns and tree matching to guide
the insertion of WH-traces. We only insert traces of
non-null WH-phrases, as they are most relevant for
our goals. Our effort differs from the previous ap-
proaches in that we have developed an algorithm for
the insertion of gaps that combines a small set of ex-
pressive patterns with a probabilistic grammar-based
model.
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2 The Model

We have developed a set of tree-matching patterns
that are applied to propagate a gap down a path in
a parse tree. Pattern examples appear in Figure 1.
Each pattern is designed to match a subtree (a root
and one or more levels below that root) and used to
guide the propagation of the trace into one or more
nodes at the terminal level of the pattern (indicated
using directed edges). Since tree-matching patterns
are applied in a top-down fashion, multiple patterns
can match the same subtree and allow alternative
ways to propagate a gap. Hence, we have developed
a probabilistic model to select among the alterna-
tive paths. We have created 24 patterns for WHNP
traces, 16 for WHADVP, 18 for WHPP, and 11 for
WHADJP.

Figure 1: Examples of tree-matching patterns

Before describing our model, we first introduce
some notation.
• TNij is a tree dominating the string of words be-

tween positionsi andj with N being the label of
the root. We assume there are no unary chains like
N−X− ...−Y −N (which could be collapsed to
a single nodeN ) in the tree, so thatTNij uniquely
describes the subtree.

• A gap locationgab,Ncd is represented as a tuple
(gaptype, ancstr(a, b,N), c, d), wheregaptype
is the type of the gap, (e.g.,whnp for a WHNP
trace),ancstr(a, b,N) is the gap’s nearest ances-
tor, with a andb being its span andN being its
label, andc andd indicating where the gap can
be inserted. Note that a gap’s location is specified
precisely whenc = d. If the gap is yet to be in-
serted into its final location but will be inserted
somewhere insideancstr(a, b,N), then we set
c = a andd = b.

• ancstr(a, b,N) in the tuple forgab,Nxy is the tree
TNab .

• p(gab,Nxy |gaptype, TNij ) is the probability that a
gap ofgaptype is located betweenx andy, with a

andb being the span of its ancestor, andi ≤ a ≤
x ≤ y ≤ b ≤ j.

Given this notation, our model is tasked to identify
the best location for the gap in a parse tree among
the alternatives, i.e.,

argmax
x,a,b,N

Pr(gab,Nxx |T, gaptype)

wheregab,Nxx represents a gap location in a tree, and
T = TNij is the subtree of the parse tree whose
root node is the nearest ancestor node dominating
the WH-phrase, excluding the WH-node itself, and
gaptype is the type of the gap. In order to simplify
the notation, we will omit the root labelsN in TNij
andgab,Nxy , implying that they match where appropri-
ate.

To guide this model, we utilize tree-matching pat-
terns (see Figure 1), which are formally defined as
functions:

ptrn : T × G → Γ ∪ {none}

whereT is the space of parse trees,G is the space
of gap types, andΓ is the space of gapsgabcd ,
andnone is a special value representing failure to
match1. The application of a pattern is defined as:
app(ptrn, τ, gaptype) = ptrn(τ, gaptype), where
τ ∈ T andgaptype ∈ G. We define application of
patterns as follows:

app(ptrn, Tij , gaptype) → gabxy : i ≤ a ≤ x < y ≤ b ≤ j
app(ptrn, Tij , gaptype) → gabxx : i ≤ a ≤ x ≤ b ≤ j
app(ptrn, Tij , gaptype) → none

Because patterns are uniquely associated with spe-
cific gap types, we will omitgaptype to simplify the
notation. Application is a function defined for every
pair (ptrn, Tij) with fixedgaptype. Patterns are ap-
plied to the root ofTij , not to an arbitrary subtree.

Consider an example of pattern application shown
in Figure 2. The tree contains a relative clause such
that the WHNP-phrasethat was moved from some
location inside the subtree of its sister nodeS.

2
viewers

3
will

4
tune

5
in

6
to

7
see

8

1Modeling conjunction requires an alternative definition for
patterns:ptrn : T × G → Powerset(Γ) ∪ {none}. For the
sake of simplicity, we ignore conjunctions in the following dis-
cussion, except for in the few places where it matters, since this
has little impact on the development of our model.
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Figure 2: A pattern application example

Now suppose there is a patternP1 that matches
the tree T28 indicating that the gap is some-
where in its subtreeT38 (will tune in to see), i.e.,
app(P1, T28) → g38

38. The process of applying pat-
terns continues until the patternP4 proposes an ex-
act location for the gap:app(P4, T78) = g78

88.

Figure 3: Another pattern application example

Suppose that, in addition to the pattern applica-
tions shown in Figure 2, there is one more, namely:
app(P5, T48) → g48

66. The sequence of patterns
P1, P2, P5 proposes an alternative grammatically
plausible location for the gap, as shown in Figure
3. Notice that the combination of the two sequences
produces a tree of patterns, as shown in Figure 4,
and this pattern tree covers much of the structure of
theT28 subtree.

2.1 Tree Classes

The number of unique subtrees that contain WH-
phrases is essentially infinite; hence, modeling them
directly is infeasible. However, trees with varying
details, e.g., optional adverbials, often can be char-

P1

P2

P3
C

D
P4,$

E

A

B

F

P5,$

Figure 4: Pattern tree

acterized by the same tree of patterns. Hence, we
can represent the space of trees by utilizing a rela-
tively small set of classes of trees that are determined
by their tree of pattern applications.

Let Π be the set of all patterns. We define the set
of patterns matching treeTij as follows:

M(Tij) = {P | P ∈ Π ∧ app(P, Tij) 6= none}

To enable recursive application:

app(ptrn, gabxy) =
{
app(ptrn, Tab) if x < y
none if x = y

A Pattern ChainPC is a sequence of pairs
of patterns and sets of pattern sets, terminated by
$, i.e., ( p1

M1
, p2

M2
, ... pnMn

,$), where∀i pi ∈ Mi ⊂
Π. Mi = M(Tab), where Tab is the result of
consequent application of the firsti − 1 patterns:
app(pi−1, app(pi−2, ..., app(p1, Tαβ))) = gabxy, and
whereTαβ is the subtree we started with, (T28 in the
example above). We definethe application of a pat-
tern chainPC = ( p1

M1
, p2

M2
, ... pnMn

,$) to a treeTij
as:

app(PC, Tij) = app(pn, ...app(p2, app(p1, Tij)))

It is important to also define a function to map
a tree to the set of pattern chains applicable to a
particular tree. The pseudocode for this function
called FindPCs appears in Figure 52. When ap-
plied toTij , this function returns the set of all pat-
tern chains, applications of which would result in
concrete gap locations. The algorithm is guaranteed
to terminate as long as trees are of finite depth and
each pattern moves the gap location down at least
one level in the tree at each iteration. Using this
function, we defineTree Class(TC) of a treeTij
asTC(Tij) = FindPCs(Tij).

2list ◦ element means “appendelement to list”.
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function FindPCs’(Tij , PC, allPCs) {
Mij ← {P | P ∈ Π ∧ app(P, Tij) 6= none}
forall P ∈Mij

gabxy ← app(P, Tij)

PC ← PC ◦ P
Mij

if x = y then// gabxy is a concrete location

allPCs← allPCs ∪ {PC ◦ $}
else

allPCs← FindPCs’(Tab, PC, allPCs)

returnallPCs }
function FindPCs(Tij) { return FindPCs’(Tij , [ ], ∅) }

Figure 5: Pseudocode for FindPCs

In the case of a conjunction, the function Find-
PCs is slightly more complex. Recall that in this
caseapp(P, Tij) produces a set of gaps ornone. The
pseudocode for this case appears in Figure 6.

2.2 A Gap Automaton

The set of pattern chains constructed by the function
FindPCs can be represented as apattern treewith
patterns being the edges. For example, the pattern
tree in Figure 4 corresponds to the tree displayed in
Figures 2 and 3.

This pattern tree captures the history of gap prop-
agations beginning atA. Assuming at that point only
patternP1 is applicable, subtreeB is produced. IfP2

yields subtreeC, and at that point patternsP3 and
P5 can be applied, this yields subtreeD and exact
locationF (which is expressed by the termination
symbol $), respectively. Finally, patternP4 matches
subtreeD and proposes exact gap locationE. It is
important to note that this pattern tree can be thought
of as an automaton, withA,B,C,D,E,andF be-
ing the states and the pattern applications being the
transitions.

Now, let us assign meaning of the states
A,B,C,andD to be the set of matching patterns,
i.e.,A = {P1}, B = {P2}, C = {P3, P5}, D = {P4}, and
E = F = ∅. Given this representation, the pattern
chains for the insertion of the gaps in our example
would be as follows:

({P1}) P1→ ({P2}) P2→ ({P3, P5}) P3→ ({P4}) P4,$−→ (∅)

({P1}) P1→ ({P2}) P2→ ({P3, P5}) P5,$−→ (∅)

With this representation, we can create a regular
grammar using patterns as the terminals and their

function CrossProd(PC1, PC2) {
prod← ∅
forall pci ∈ PC1

forall pcj ∈ PC2 : prod← prod∪{pci◦pcj}
returnprod }

function FindPCs(Tij) {
Mij ← {P | P ∈ Π ∧ app(P, Tij) 6= none}
newPCs← ∅
forall P ∈Mij

PCs← {[ ]}
forall gabxy ∈ app(P, Tij)

if x = y then

forall pc ∈ PCs : pc← pc ◦ $

else

PCs← CrossProd(PCs,FindPCs(Tab))

forall pc ∈ PCs : pc← P
Mij
◦ pc

newPCs← newPCs ∪ PCs
returnnewPCs }
The set app(P, Tij) must be ordered, so that

branches of conjunction are concatenated in a well de-
fined order.

Figure 6: Pseudocode for FindPCs in the case of
conjunction

powerset as the non-terminals (adding a few more
details like the start symbol) and production rules
such as{P2} → P2 {P3, P5}. However, for our exam-
ple the chain of patterns appliedP1, P2, P3, P4, $ could
generate a pattern tree that is incompatible with the
original tree. For example:

({P1}) P1→ ({P2}) P2→ ({P3, P5}) P3→ ({P3, P4}) P4,$−→ (∅)

which might correspond to something like“that
viewers will tune in to expect to see.”Note that this
pattern chain belongs to a differenttree class, which
incidentally would have inserted the gap at a differ-
ent location (VP see gap).

To overcome this problem we add additional con-
straints to the grammar to ensure that all parses the
grammar generates belong to the same tree class.
One way to do this is to include the start state of
a transition as an element of the terminal, e.g.,P2

{P2} ,
P3

{P3,P5} . That is, we extend the terminals to include
the left-hand side of the productions they are emitted
from, e.g.,

{P2} → P2

{P2} {P3, P5}
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{P3, P5} → P3

{P3, P5} {P4}

and the sequence of terminals becomes:
P1
{P1}

P2
{P2}

P3
{P3,P5}

P4
{P4} $.

Note that the grammar is unambiguous. For such
a grammar, the question “what is the probability of a
parse tree given a string and grammar” doesn’t make
sense; however, the question “what is the probability
of a string given the grammar” is still valid, and this
is essentially what we require to develop a genera-
tive model for gap insertion.

2.3 The Pattern Grammar

Let us define the pattern grammar more rigorously.
Let Π be the set of patterns, and̃Π ⊂ Π be the set
of terminal patterns3. Let pset(P ) be the set of all
subsets of patterns which include the patternP , i.e.,
pset(P ) = {ν ∪ {P} | ν ∈ powerset(Π)}
• Let T = { P

pset(P ) | P ∈ Π}⋃{$} be the set of

terminals, where $ is a special symbol4.

• Let N = {S}⋃
powerset(Π) be the set of non-

terminals withS being the start symbol.

• Let P be the set of productions, defined as the
union of the following sets:
1. {S → ν | ν ∈ powerset(Π)}.
2. {ν → P

ν µ | P ∈ Π−Π̃ , ν ∈ pset(P ) andµ ∈
powerset(Π)}. These are nonterminal transi-
tions, note that they emit only non-terminal pat-
terns.

3. {ν → P
ν $ | P ∈ Π̃ andν ∈ pset(P )}. These

are the terminal transitions, they emit a termi-
nal pattern and the symbol $.

4. {ν → P
ν µ1 . . . µn | P ∈ Π − Π̃ , ν ∈

pset(P ) and ∀i∈[1..n] µi ∈ powerset(Π)}.
This rule models conjunction withn branches.

2.4 Our Gap Model

Given the grammar defined in the previous subsec-
tion, we will define a probabilistic model for gap in-
sertion. Recall that our goal is to find:

argmax
x,a,b

Pr(gabxx|T )

Just like the probability of a sentence is obtained by
summing up the probabilities of its parses, the prob-
ability of the gap being atgabxx is the sum of proba-
bilities of all pattern chains that yieldgabxx.

3Patterns that generate exact position for a gap.
4Symbol $ helps to separate branches in strings with con-

junction.

Pr(gabxx|T ) =
∑

pci∈Υ

Pr(pci|T )

whereΥ = {pc | app(pc, T ) = gabxx}. Note that
pci ∈ TC(T ) by definition.

For our model, we use two approximations. First,
we collapse a treeT into its Tree ClassTC(T ), ef-
fectively ignoring details irrelevant to gap insertion:

Pr(pci|T ) ≈ Pr(pci|TC(T ))

Figure 7: A pattern tree with the pattern chain
ABDGM marked using bold lines

Consider the pattern tree shown in Figure 7. The
probability of the pattern chainABDGM given the
pattern tree can be computed as:

Pr(ABDGM |TC(T )) =
Pr(ABDGM,TC(T ))

Pr(TC(T ))

=
NR(ABDGM,TC(T ))

NR(TC(T ))

where NR(TC(T )) is the number of occurrences
of the tree classTC(T ) in the training corpus and
NR(ABDGM,TC(T )) is the number cases when
the pattern chainABDGM leads to a correct gap in
trees corresponding to the tree classTC(T ). For
many tree classes, NR(TC(T )) may be a small
number or even zero, thus this direct approach can-
not be applied to the estimation ofPr(pci|TC(T )).
Further approximation is required to tackle the spar-
sity issue.

In the following discussion,XY will denote
an edge (pattern) between verticesX and Y in
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the pattern tree shown in Figure 7. Note that
Pr(ABDGM |TC(T )) can be represented as:

Pr(AB|TC(T ), A)× Pr(BD|TC(T ), AB)×
×Pr(DG|TC(T ), ABD)× Pr(GM |TC(T ), ABDG)

We make an independence assumption, specifi-
cally, thatPr(BD|TC(T ), AB) depends only on
statesB, D, and the edge between them, not on
the whole pattern tree or the edges aboveB, i.e.,
Pr(BD|TC(T ), AB) ≈ Pr(BD,D|B). Note that
this probability is equivalent to the probability of a

productionPr(B BD→ D) of a PCFG.
Recall that the meaning assigned to a state

in pattern grammar in Section 2.2 is the set of
patterns matching at that state. Thus, accord-
ing to that semantics, only the edges displayed
bold in Figure 8 are involved in computation of

Pr(B BD→ D). Written in the style we used for
our grammar, the production is{BD,BE,BF} →

BD
{BD,BE,BF}{DG,DH}.

Figure 8: The context considered for estimation of
the probability of transition fromB toD

Pattern trees are fairly shallow (partly because
many patterns cover several layers in a parse tree
as can be seen in Figures 1 and 2); therefore, the
context associated with a production covers a good
part of a pattern tree. Another important observa-
tion is that the local configuration of a node, which
is described by the set of matching patterns, is the
most relevant to the decision of where the gap is to
be propagated5. This is the reason why the states are
represented this way.

Formally, the second approximation we make is

5We have evaluated a model that only uses
Pr(BD|{BD,BE,BF}) for the probability of taking
BD and found it performs only slightly worse than the model
presented here.

as follows:

Pr(pci|TC(T )) ≈ Pr(pci|G)

whereG is a PCFG model based on the grammar
described above.

Pr(pci|G) =
∏

prodj∈P(pci)

Pr(prodj |G)

whereP(pci) is the parse of the pattern chainpci
which is a string of terminals ofG. Combining the
formulae:

Pr(gabxx|T ) ≈
∑

pci∈Υ

Pr(pci|G)

Finally, sincePr(TC(T )|G) is a constant forT ,

argmax
x,a,b

Pr(gabxx|T ) ≈ argmax
x,a,b

∑

pci∈Υ

Pr(pci|G)

To handle conjunction, we must express the fact
that pattern chains yield sets of gaps. Thus, the goal
becomes:

argmax
(x1,a1,b1),...,(xn,an,bn)

Pr({ga1b1
x1x1

, . . . , ganbnxnxn}|T )

Pr({ga1b1
x1x1

, . . . , ganbnxnxn}|T ) =
∑

pci∈Υ

Pr(pci|T )

where Υ = {pc | app(pc, T ) =
{ga1b1
x1x1

, . . . , ganbnxnxn}}. The remaining equations
are unaffected.

2.5 Smoothing

Even for the relatively small number of patterns,
the number of non-terminals in the grammar can
potentially be large (2|Π|). This does not happen
in practice since most patterns are mutually exclu-
sive. Nonetheless, productions, unseen in the train-
ing data, do occur and their probabilities have to be
estimated. Rewriting the probability of a transition
Pr(A → a

A
B) asP(A, a,B), we use the following in-

terpolation:

P̃(A, a,B) = λ1P(A, a,B) + λ2P(A, a)

+λ3P(A,B) + λ4P(a,B) + λ5P(a)

We estimate the parameters on the held out data
(section 24 of WSJ) using a hill-climbing algorithm.
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3 Evaluation

3.1 Setup

We compare our algorithm under a variety of condi-
tions to the work of (Johnson, 2002) and (Gabbard
et al., 2006). We selected these two approaches be-
cause of their availability6. In addition, (Gabbard et
al., 2006) provides state-of-the-art results. Since we
only model the insertion of WH-traces, all metrics
include co-indexation with the correct WH phrases
identified by their type and word span.

We evaluate on three metrics. The first metric,
which was introduced by Johnson (2002), has been
widely reported by researchers investigating gap in-
sertion. A gap is scored as correct only when it has
the correct type and string position. The metric has
the shortcoming that it does not require correct at-
tachment into the tree.

The second metric, which was developed by
Campbell (2004), scores a gap as correct only when
it has the correct gap type and its mother node has
the correct nonterminal label and word span. As
Campbell points out, this metric does not restrict the
position of the gap among its siblings, which in most
cases is desirable; however, in some cases (e.g., dou-
ble object constructions), it does not correctly detect
errors in object order. This metric is also adversely
affected by incorrect attachments of optional con-
stituents, such as PPs, due to the span requirement.

To overcome the latter issue with Campbell’s met-
ric, we propose to use a third metric that evaluates
gaps with respect to correctness of their lexical head,
type of the mother node, and the type of the co-
indexed wh-phrase. This metric differs from that
used by Levy and Manning (2004) in that it counts
only the dependencies involving gaps, and so it rep-
resents performance of the gap insertion algorithm
more directly.

We evaluate gap insertion on gold trees from sec-
tion 23 of the Wall Street Journal Penn Treebank
(WSJ) and parse trees automatically produced using
the Charniak (2000) and Bikel (2004) parsers. These
parsers were trained using sections 00 through 22 of
the WSJ with section 24 as the development set.

Because our algorithm inserts only traces of non-
empty WH phrases, to fairly compare to Johnson’s
and Gabbard’s performance on WH-traces alone, we

6Johnson’s source code is publicly available, and Ryan Gab-
bard kindly provided us with output trees produced by his sys-
tem.

remove the other gap types from both the gold trees
and the output of their algorithms. Note that Gab-
bard et al.’s algorithm requires the use of function
tags, which are produced using a modified version
of the Bikel parser (Gabbard et al., 2006) and a sep-
arate software tool (Blaheta, 2003) for the Charniak
parser output.

For our algorithm, we do not utilize function tags,
but we automatically replace the tags of auxiliary
verbs in tensed constructions withAUX prior to in-
serting gaps using tree surgeon (Levy and Andrew,
2006). We found that Johnson’s algorithm more
accurately inserts gaps when operating on auxified
trees, and so we evaluate his algorithm using these
modified trees.

In order to assess robustness of our algorithm, we
evaluate it on a corpus of a different genre – Broad-
cast News Penn Treebank (BN), and compare the re-
sult with Johnson’s and Gabbard’s algorithms. The
BN corpus uses a modified version of annotation
guidelines, with some of the modifications affecting
gap placement.

Treebank 2 guidelines (WSJ style):
(SBAR (WHNP-2 (WP whom))

(S (NP-SBJ (PRP they))
(VP (VBD called)

(S (NP-SBJ (-NONE- *T*-2))
(NP-PRD (NNS exploiters))))))

Treebank 2a guidelines (BN style):
(SBAR-NOM (WHNP-1 (WP what))

(S (NP-SBJ (PRP they))
(VP (VBP call)

(NP-2 (-NONE- *T*-1))
(S-CLR (NP-SBJ (-NONE- *PRO*-2))

(NP-PRD (DT an) (NN epidemic))))))

Since our algorithms were trained on WSJ, we ap-
ply tree transformations to the BN corpus to convert
these trees to WSJ style. We also auxify the trees as
described previously.

3.2 Results

Table 1 presents gap insertion F measure for John-
son’s (2002) (denoted J), Gabbard’s (2006) (denoted
G), and our (denoted Pres) algorithms on section 23
gold trees, as well as on parses generated by the
Charniak and Bikel parsers. In addition to WHNP
and WHADVP results that are reported in the liter-
ature, we also present results for WHPP gaps even
though there is a small number of them in section
23 (i.e., 22 gaps total). Since there are only 3 non-
empty WHADJP phrases in section 23, we omit
them in our evaluation.
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Gold Trees Charniak Parser Bikel Parser
Metric J G Pres J G Pres J G Pres

WHNP Johnson 94.8 90.7 97.9 89.8 86.3 91.5 90.2 86.8 92.6
Campbell 94.8 97.0 99.1 81.9 83.8 83.5 80.7 81.5 82.2
Head dep 94.8 97.0 99.1 88.8 90.6 91.0 89.1 91.4 92.3

WHADVP Johnson 75.5 91.4 96.5 61.4 78.0 80.0 61.0 77.9 77.2
Campbell 74.5 89.1 95.0 61.4 71.7 78.4 60.0 71.5 74.8
Head dep 75.5 89.8 95.8 64.4 78.0 84.7 63.0 77.1 80.3

WHPP Johnson 58.1 N/R 72.7 35.7 N/R 55.0 42.9 N/R 53.7
Campbell 51.6 N/R 86.4 28.6 N/R 60.0 35.7 N/R 63.4
Head dep 51.6 N/R 86.4 35.7 N/R 70.0 35.7 N/R 73.2

Table 1: F1 performance on section 23 of WSJ (N/R indicates not reported)

Compared to Johnson’s and Gabbard’s algorithm,
our algorithm significantly reduces the error on
gold trees (table 1). Operating on automatically
parsed trees, our system compares favorably on
all WH traces, using all metrics, except for two
instances: Gabbard’s algorithm has better perfor-
mance on WHNP, using Cambpell’s metric and trees
generated by the Charniak parser by 0.3% and on
WHADVP, using Johnson’s metric and trees pro-
duces by the Bikel parser by 0.7%. However, we
believe that the dependency metric is more appropri-
ate for evaluation on automatically parsed trees be-
cause it enforces the most important aspects of tree
structure for evaluating gap insertion. The relatively
poor performance of Johnson’s and our algorithms
on WHPP gaps compared that on WHADVP gaps
is probably due, at least in part, to the significantly
smaller number of WHPP gaps in the training corpus
and the relatively wider range of possible attachment
sites for the prepositional phrases.

Table 2 displays how well the algorithms trained
on WSJ perform on BN. A large number of the er-
rors are due toFRAGs which are far more com-
mon in the speech corpus than in WSJ. WHPP and
WHADJP, although more rare than the other types,
are presented for reference.

3.3 Error Analysis

It is clear from the contrast between the results based
on gold standard trees and the automatically pro-
duced parses in Table 1 that parse error is a major
source of error. Parse error impacts all of the met-
rics, but the patterns of errors are different. For WH-
NPs, Campbell’s metric is lower than the other two
across all three algorithms, suggesting that this met-
ric is adversely affected by factors that do not im-
pact the other metrics (most likely the span of the
gap’s mother node). For WHADVPs, the metrics

show a similar degradation due to parse error across
the board. We are reluctant to draw conclusions for
the metrics on WHPPs; however, it should be noted
that the position of the PP should be less critical for
evaluating these gaps than their correct attachment,
suggesting that the head dependency metric would
more accurately reflect the performance of the sys-
tem for these gaps.

Campbell’s metric has an interesting property: in
parse trees, we can compute the upper bound on re-
call by simply checking whether the correct WH-
phrase and gap’s mother node exist in the parse tree.
We present recall results and upper bounds in Table
3. Clearly the algorithms are performing close to the
upper bound for WHNPs when we take into account
the impact of parse errors on this metric. Clearly
there is room for improvement for the WHPPs.

Metric J G Pres
WHNP Johnson 88.0 90.3 92.0

Campbell 88.2 94.0 95.3
Head dep 88.3 94.0 95.3

WHADVP Johnson 76.4 92.0 94.3
Campbell 76.3 88.2 92.4
Head dep 76.3 88.5 92.5

WHPP Johnson 56.6 N/R 75.7
Campbell 60.4 N/R 91.9
Head dep 60.4 N/R 91.9

WHADJP Johnson N/R N/R 89.8
Campbell N/R N/R 85.7
Head dep N/R N/R 85.7

Table 2: F1 performance on gold trees of BN

In addition to parser errors, which naturally have
the most profound impact on the performance, we
found the following sources of errors to have impact
on our results:

• Annotation errors and inconsistency in PTB,
which impact not only the training of our system,
but also its evaluation.
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Charniak Parser J G Pres UB
WHNP 81.9 82.8 83.5 84.0
WHADVP 61.4 71.7 78.4 81.1
WHPP 28.6 N/R 60.0 86.4
Bikel Parser J G Pres UB
WHNP 77.0 80.5 81.5 82.0
WHADVP 47.2 70.1 74.8 78.0
WHPP 22.7 N/R 59.1 81.8

Table 3: Recall on trees produced by the Charniak
and Bikel parsers and their upper bounds (UB)

1. There are some POS labeling errors that con-
fuse our patterns, e.g.,
(SBAR (WHNP-3 (IN that))

(S (NP-SBJ (NNP Canada))
(VP (NNS exports)

(NP (-NONE- *T*-3))
(PP ...))))

2. Some WHADVPs have gaps attached in the
wrong places or do not have gaps at all, e.g.,
(SBAR (WHADVP (WRB when))

(S (NP (PRP he))
(VP (VBD arrived)

(PP (IN at)
(NP ...))

(ADVP (NP (CD two)
(NNS days))

(JJ later)))))

3. PTB annotation guidelines leave it to annota-
tors to decide whether the gap should be at-
tached at the conjunction level or inside its
branches (Bies et al., 1995) leading to incon-
sistency in attachment decisions for adverbial
gaps.

• Lack of coverage: Even though the patterns we
use are very expressive, due to their small number
some rare cases are left uncovered.

• Model errors: Sometimes despite one of the appli-
cable pattern chains proposes the correct gap, the
probabilistic model chooses otherwise. We be-
lieve that a lexicalized model can eliminate most
of these errors.

4 Conclusions and Future Work

The main contribution of this paper is the de-
velopment of a generative probabilistic model for
gap insertion that operates on subtree structures.
Our model achieves state-of-the-art performance,
demonstrating results very close to the upper bound
on WHNP using Campbell’s metric. Performance
for WHADVPs and especially WHPPs, however,
has room for improvement.

We believe that lexicalizing the model by adding
information about lexical heads of the gaps may re-
solve some of the errors. For example:

(SBAR (WHADVP-3 (WRB when))
(S (NP (NNP Congress))

(VP (VBD wanted)
(S (VP (TO to)

(VP (VB know) ...)))
(ADVP (-NONE- *T*-3)))))

(SBAR (WHADVP-1 (WRB when))
(S (NP (PRP it))

(VP (AUX is)
(VP (VBN expected)

(S (VP (TO to)
(VP (VB deliver) ...

(ADVP (-NONE- *T*-1)))))))))

These sentences have very similar structure, with
two potential places to insert gaps (ignoring re-
ordering with siblings). The current model inserts
the gaps as follows:when Congress (VP wanted (S
to know) gap)and when it is (VP expected (S to
deliver) gap), making an error in the second case
(partly due to the bias towards shorter pattern chains,
typical for a PCFG). However,deliver is more likely
to take a temporal modifier thanknow.

In future work, we will investigate methods for
adding lexical information to our model in order to
improve the performance on WHADVPs and WH-
PPs. In addition, we will investigate methods for
automatically inferring patterns from a treebank cor-
pus to support fast porting of our approach to other
languages with treebanks.
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Abstract

Recent studies focussed on the question
whether less-configurational languages like
German are harder to parse than English,
or whether the lower parsing scores are an
artefact of treebank encoding schemes and
data structures, as claimed by Kübler et al.
(2006). This claim is based on the as-
sumption that PARSEVAL metrics fully re-
flect parse quality across treebank encoding
schemes. In this paper we present new ex-
periments to test this claim. We use the
PARSEVAL metric, the Leaf-Ancestor met-
ric as well as a dependency-based evalua-
tion, and present novel approaches measur-
ing the effect of controlled error insertion
on treebank trees and parser output. We
also provide extensive past-parsing cross-
treebank conversion. The results of the ex-
periments show that, contrary to Kübler et
al. (2006), the question whether or not Ger-
man is harder to parse than English remains
undecided.

1 Introduction

A long-standing and unresolved issue in the pars-
ing literature is whether parsing less-configurational
languages is harder than e.g. parsing English. Ger-
man is a case in point. Results from Dubey and
Keller (2003) suggest that state-of-the-art parsing
scores for German are generally lower than those ob-
tained for English, while recent results from Kübler
et al. (2006) raise the possibility that this might

be an artefact of particular encoding schemes and
data structures of treebanks, which serve as training
resources for probabilistic parsers. Kübler (2005)
and Maier (2006) show that treebank annotation
schemes have considerable influence on parsing re-
sults. A comparison of unlexicalised PCFG pars-
ing (Kübler, 2005) trained and evaluated on the Ger-
man NEGRA (Skut et al., 1997) and the TüBa-
D/Z (Telljohann et al., 2004) treebanks using LoPar
(Schmid, 2000) shows a difference in parsing results
of about 16%, using the PARSEVAL metric (Black
et al., 1991). Kübler et al. (2006) conclude that,
contrary to what had been assumed, German is not
actually harder to parse than English, but that the
NEGRA annotation scheme does not support opti-
mal PCFG parsing performance.

Despite being the standard metric for measuring
PCFG parser performance, PARSEVAL has been
criticised for not representing ’real’ parser quality
(Carroll et al., 1998; Brisco et al., 2002; Sampson
and Babarbczy, 2003). PARSEVAL checks label and
wordspan identity in parser output compared to the
original treebank trees. It neither weights results,
differentiating between linguistically more or less
severe errors, nor does it give credit to constituents
where the syntactic categories have been recognised
correctly but the phrase boundary is slightly wrong.

With this in mind, we question the assumption
that the PARSEVAL results for NEGRA and TüBa-
D/Z reflect a real difference in quality between the
parser output for parsers trained on the two different
treebanks. As a consequence we also question the
conclusion that PARSEVAL results for German in
the same range as the parsing results for the English
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Penn-II Treebank prove that German is not harder
to parse than the more configurational English. To
investigate this issue we present experiments on the
German TIGER treebank (Dipper et al., 2001) and
the TüBa-D/Z treebank. TIGER is based on and ex-
tends the NEGRA data and annotation scheme. Our
error insertion and past-parsing treebank-encoding
experiments experiments show that the differences
in parsing results for the two treebanks are not
caused by a higher number of errors in the output
of the parser trained on the TIGER treebank, but are
due to the bias of the PARSEVAL metric towards an-
notation schemes (such as that of TüBa-D/Z) with a
higher ratio of non-terminal/terminal nodes. The ex-
periments also show that compared to PARSEVAL
the Leaf-Ancestor metric is somewhat less suscep-
tible to non-terminal/terminal ratios and that con-
trary to the PARSEVAL results, dependency-based
evaluations score TIGER trained parsers higher than
TüBa-D/Z trained parsers.

This paper is structured as follows: Section 2
gives an overview of the main features of the two
treebanks. Section 3 describes our first experiment,
where we systematically insert controlled errors into
the original treebank trees and compare the influence
of these modifications on the evaluation results in
the PARSEVAL metric and the Leaf-Ancestor met-
ric against the original, unmodified trees for both
treebanks. In Section 4 we present the second ex-
periment, where we extract an unlexicalised PCFG
from each of the treebanks. Then we convert the out-
put of the PCFG parser trained on the TüBa-D/Z into
a TIGER-style format and evaluate the converted
trees. In Section 5 we present a dependency-based
evaluation and compare the results to the results of
the two other measures. The last section concludes.

2 The TIGER Treebank and the TüBa-D/Z

The two German treebanks used in our experiments
are the TIGER Treebank (Release 2) and the Tüba-
D/Z (Release 2). The TüBa-D/Z consists of approx-
imately 22 000 sentences, while the TIGER Tree-
bank is much larger with more than 50 000 sen-
tences. Both treebanks contain German newspaper
text and are annotated with phrase structure and de-
pendency (functional) information. Both treebanks
use the Stuttgart Tübingen POS Tag Set (Schiller

et al., 95). TIGER uses 49 different grammatical
function labels, while the TüBa-D/Z utilises only
36 function labels. For the encoding of phrasal
node categories the TüBa-D/Z uses 30 different cat-
egories, the TIGER Treebank uses a set of 27 cate-
gory labels.

Other major differences between the two tree-
banks are: in the Tiger Treebank long distance de-
pendencies are expressed through crossing branches
(Figure 1), while in the TüBa-D/Z the same phe-
nomenon is expressed with the help of grammati-
cal function labels (Figure 2), where the node label
V-MOD encodes the information that the PP mod-
ifies the verb. The annotation in the Tiger Tree-
bank is rather flat and allows no unary branching,
whereas the nodes in the TüBa-D/Z do contain unary
branches and a more hierarchical structure, resulting
in a much deeper tree structure than the trees in the
Tiger Treebank. This results in an average higher
number of nodes per sentence for the TüBa-D/Z. Ta-
ble 1 shows the differences in the ratio of nodes for
the Tiger treebank and the TüBa-D/Z.

phrasal phrasal words
nodes/sent nodes/word /sent

TIGER 8.29 0.47 17.60
TüBa-D/Z 20.69 1.20 17.27

Table 1: Average number of phrasal nodes/words in
TIGER and TüBa-D/Z

Figures 1 and 2 also illustrate the different annota-
tion of PPs in both annotation schemes. In the Tiger
treebank the internal structure of the PP is flat and
the adjective and noun inside the PP are directly at-
tached to the PP, while the TüBa-D/Z is more hier-
archical and inserts an additional NP node.

Another major difference is the annotation of
topological fields in the style of Drach (1937) and
Höhle (1986) in the TüBa-D/Z. The model captures
German word order, which accepts three possible
sentence configurations (verb first, verb second and
verb last), by providing fields like the initial field
(VF), the middle field (MF) and the final field (NF).
The fields are positioned relative to the verb, which
can fill in the left (LK) or the right sentence bracket
(VC). The ordering of topological fields is deter-
mined by syntactic constraints.
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Auch mit staatlichen Aufträgen sieht es schlecht aus.
“It also looks bad for public contracts.”

Figure 1: TIGER treebank tree

In Wales sieht es besser aus.
“Things seem better in Wales.”

Figure 2: TüBa-D/Z treebank tree

2.1 Differences between TIGER and NEGRA

To date, most PCFG parsing for German has
been done using the NEGRA corpus as a train-
ing resource. The flat annotation scheme of the
TIGER treebank is based on the NEGRA anno-
tation scheme, but it also employs some impor-
tant extensions, which include the annotation of
verb-subcategorisation, appositions and parenthe-
ses, coordinations and the encoding of proper nouns
(Brants et al., 2002).

3 Treebank Preprocessing: Converting
TIGER Graphs into CFG Trees

The sentences in the TIGER treebank are repre-
sented as graphs with LDDs expressed through
crossing branches. Before being able to insert er-
rors or extract a PCFG we had to resolve these cross-

ing branches in the TIGER treebank. This was done
by attaching the non-head child nodes higher up in
the tree, following Kübler (2006). For the graph
in Figure 1 this would mean that the modifying PP
“Auch mit staatlichen Aufträgen” (also for public
contracts) was attached directly to the S node, while
the head of the adjectival phrase (AP) remained in
it’s original position. As a side effect this leads to the
creation of some unary nodes in the TIGER trees.
We also inserted a virtual root node and removed
all functional labels from the TIGER and TüBa-D/Z
trees.

4 Experiment I

Experiment I is designed to assess the impact
of identical errors on the two treebank encoding
schemes and the PARSEVAL1 and Leaf-Ancestor
evaluation metrics.

4.1 Experimental Setup

The TIGER treebank and the TüBa-D/Z both con-
tain newspaper text, but from different German
newspapers. To support a meaningful comparison
we have to compare similar sentences from both
treebanks. In order to control for similarity we se-
lected all sentences of length 10 ≤ n ≤ 40 from
both treebanks. For all sentences with equal length
we computed the average number of prepositions,
determiners, nouns (and related POS such as proper
names and personal pronouns), interrogative pro-
nouns, finite verbs, infinite verbs, past participles
and imperative verb forms. For each sentence length
we selected all sentences from both treebanks which
showed an average for each of the POS listed above
which did not deviate more than 0.8 from the av-
erage for all sentences for this particular sentence
length. From this set we randomly selected 1024
sentences for each of the treebanks. This results in
two test sets, comparable in word length, syntactic
structure and complexity. Table 2 shows the ratio of
phrasal versus terminal nodes in the test sets.

We then inserted different types of controlled er-
rors automatically into the original treebank trees in
our test sets and evaluated the modified trees against

1In all our experiments we use the evalb metric (Sekine
and Collins, 1997), the most commonly used implementation
of the PARSEVAL metric.
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phrasal phrasal nodes words
nodes/sent nodes/word /sent

TIGER 6.97 0.48 14.49
TüBa-D/Z 19.18 1.30 14.75

Table 2: Average number of phrasal nodes/words in
the TIGER and TüBa-D/Z test set

the original treebank trees, in order to assess the im-
pact of similar (controlled for type and number) er-
rors on the two encoding schemes.

4.2 Error Insertion
The errors fall into three types: attachment, span and
labeling (Table 3). We carried out the same number
of error insertions in both test sets.

Error description
ATTACH I Attach PPs inside an NP one level

higher up in the tree
ATTACH II Change verb attachment to noun

attachment for PPs on sentence level,
inside a VP or in the MF (middle field)

LABEL I Change labels of PPs to NP
LABEL II Change labels of VPs to PP
SPAN I Include adverb to the left of a PP

into the PP
SPAN II Include NN to the left of a PP

into the PP
SPAN III Combination of SPANI and SPANII

Table 3: Description of inserted error types

4.3 Results for Error Insertion for the Original
Treebank Trees

Table 4 shows the impact of the error insertion into
the original treebank trees on PARSEVAL results,
evaluated against the gold trees. PARSEVAL results
in all experiments report labelled precision and re-
call. The first error (PP attachment I, 85 insertions
in each test set) leads to a decrease in f-score of 1.16
for the TIGER test set, while for the TüBa-D/Z test
set the same error only caused a decrease of 0.43.
The effect remains the same for all error types and
is most pronounced for the category label errors, be-
cause the frequency of the labels resulted in a large
number of substitutions. The last row lists the total
weighted average for all error types, weighted with
respect to their frequency of occurrence in the test
sets.

Table 4 clearly shows that the PARSEVAL
measure punishes the TIGER treebank annotation

TIGER TüBa # errors
PP attachment I 98.84 99.57 85
PP attachment II 98.75 99.55 89
Label I 80.02 92.73 1427
Label II 93.00 97.45 500
SPAN I 99.01 99.64 71
SPAN II 97.47 99.08 181
SPAN III 96.51 98.73 252
total weighted ave. 87.09 95.30

Table 4: f-score for PARSEVAL results for error in-
sertion in the original treebank trees

scheme to a greater extent, while the same num-
ber and type of errors in the TüBa-D/Z annotation
scheme does not have an equally strong effect on
PARSEVAL results for similar sentences.

4.4 Discussion: PARSEVAL and LA
Experiment I shows that the gap between the PAR-
SEVAL results for the two annotation schemes does
not reflect a difference in quality between the trees.
Both test sets contain the same number of sentences
with the same sentence length and are equivalent in
complexity and structure. They contain the same
number and type of errors. This suggests that the
difference between the results for the TIGER and
the TüBa-D/Z test set are due to the higher ratio of
non-terminal/terminal nodes in the TüBa-D/Z trees
(Table 1).

In order to obtain an alternative view on the
quality of our annotation schemes we used the
leaf-ancestor (LA) metric (Sampson and Babarbczy,
2003), a parser evaluation metric which measures
the similarity of the path from each terminal node
in the parse tree to the root node. The path con-
sists of the sequence of node labels between the ter-
minal node and the root node, and the similarity of
two paths is calculated by using the Levenshtein dis-
tance (Levenshtein, 1966). Table 5 shows the results
for the leaf-ancestor evaluation metric for our error
insertion test sets. Here the weighted average re-
sults for the two test sets are much closer to each
other (94.98 vs. 97.18 as against 87.09 vs. 95.30).
Only the label errors, due to the large numbers, show
a significant difference between the two annotation
schemes. Tables 4 and 5 show that compared to
PARSEVAL the LA metric is somewhat less sensi-
tive to the nonterminal/terminal ratio.

Figure 3 illustrates the different behaviour of the
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TIGER TüBa # errors
PP attachment I 99.62 99.70 85
PP attachment II 99.66 99.78 89
Label I 92.45 95.24 1427
Label II 96.05 99.28 500
SPAN I 99.82 99.84 71
SPAN II 99.51 99.77 181
SPAN III 99.34 99.62 252
total weighted ave. 94.98 97.18

Table 5: LA results for error insertion in the original
treebank trees

two evaluation metrics with respect to an example
sentence.

Sentence 9:
Die Stadtverwaltung von Venedig hat erstmals streunende
Katzen gezählt.
“For the first time the city council of Venice has counted stray-
ing cats.”

(TOP
(S

(NP
(ART Die [the] )
(NN Stadtverwaltung [city counsil] )
(PP

(APPR von [of] )
(NE Venedig [Venice] )

)
)
(VAFIN hat [has] )
(VP

(ADV erstmals [for the first time] )
(NP

(ADJA streunende [straying] )
(NN Katzen [cats] )

)
(VVPP gezählt [counted] )

)
)
($. .)

)

Figure 3: Sentence 9 from the TIGER Test Set

Table 6 shows that all error types inserted into
Sentence 9 in our test set result in the same eval-
uation score for the PARSEVAL metric, while the
LA metric provides a more discriminative treatment
of PP attachment errors, label errors and span errors
for the same sentence (Table 6). However, the dif-
ferences in the LA results are only indirectly caused
by the different error types. They actually reflect
the number of terminal nodes affected by the error
insertion. For Label I and II the LA results vary
considerably, because the substitution of the PP for

an NP (Label I) in Figure 3 affects two terminal
nodes only (PP von [of] Venedig [Venice]), while
the change of the VP into a PP (Label II) alters
the paths of four terminal nodes (VP erstmals [for
the first time] streunende [straying] Katzen [cats]
gezählt [counted]) and therefore has a much greater
impact on the overall result for the sentence.

ERROR PARSEVAL LA
PP attachment I 83.33 96.30
Label I 83.33 96.00
Label II 83.33 91.00
SPAN II 83.33 96.40

Table 6: Evaluation results for Sentence 9

The TüBa-D/Z benefits from its overall higher ra-
tio of nodes per sentence, resulting in a higher ratio
of non-terminal/terminal nodes per phrase and the
effect, that the inserted label error affects a smaller
number of terminal nodes than in the TIGER test set
for LA testing.

5 Experiment II

Kübler (2005) and Maier (2006) assess the impact of
the different treebank annotation schemes on PCFG
parsing by conducting a number of modifications
converting the TüBa-D/Z into a format more sim-
ilar to the NEGRA (and hence TIGER) treebank.
After each modification they extract a PCFG from
the modified treebank and measure the effect of the
changes on parsing results. They show that with
each modification transforming the TüBa-D/Z into
a more NEGRA-like format the parsing results also
become more similar to the results of the NEGRA
treebank, i.e. the results get worse. Maier takes this
as evidence that the TüBa-D/Z is more adequate for
PCFG parsing. This assumption is based on the be-
lief that PARSEVAL results fully reflect parse qual-
ity across different treebank encoding schemes. This
is not always true, as shown in Experiment I.

In our second experiment we crucially change the
order of events in the Kübler (2005), Maier (2006)
and Kübler et al. (2006) experiments: We first ex-
tract an unlexicalised PCFG from each of the orig-
inal treebanks. We then transform the output of
the parser trained on the TüBa-D/Z into a format
more similar to the TIGER Treebank. In contrast to
Kübler (2005) and Maier (2006), who converted the

634



treebank before extracting the grammars in order to
measure the impact of single features like topologi-
cal fields or unary nodes on PCFG parsing, we con-
vert the trees in the parser output of a parser trained
on the original unconverted treebank resources. This
allows us to preserve the basic syntactic structure
and also the errors present in the output trees re-
sulting from a potential bias in the original tree-
bank training resources. The results for the original
parser output evaluated against the unmodified gold
trees should not be crucially different from the re-
sults for the modified parser output evaluated against
the modified gold trees.

5.1 Experimental Setup

For Experiment II we trained BitPar (Schmid, 2004),
a parser for highly ambiguous PCFG grammars, on
the two treebanks. The TüBa-D/Z training data con-
sists of the 21067 treebank trees not included in the
TüBa-D/Z test set. Because of the different size of
the two treebanks we selected 21067 sentences from
the TIGER treebank, starting from sentence 10000
(and excluding the sentences in the TIGER test set).

Before extracting the grammars we resolved the
crossing branches in the TIGER treebank as de-
scribed in Section 3. After this preprocessing step
we extracted an unlexicalised PCFG from each of
our training sets. Our TIGER grammar has a total of
21163 rule types, while the grammar extracted from
the TüBa-D/Z treebank consists of 5021 rules only.
We parsed the TIGER and TüBa-D/Z test set with
the extracted grammars, using the gold POS tags for
parser input. We then automatically converted the
TüBa-D/Z output to a TIGER-like format and com-
pare the evaluation results for the unmodified trees
against the gold trees with the results for the con-
verted parser output against the converted gold trees.

5.2 Converting the TüBa-D/Z Trees

The automatic conversion of the TüBa-D/Z-style
trees includes the removal of topological fields and
unary nodes as well as the deletion of NPs inside
of PPs, because the NP child nodes are directly at-
tached to the PP in the TIGER annotation scheme.
As a last step in the conversion process we adapted
the TüBa-D/Z node labels to the TIGER categories.

5.2.1 The Conversion Process: An Example
We demonstrate the conversion process using an

example sentence from the TüBa-D/Z test set (Fig-
ure 4). The converted tree is given in Figure 5:
topological fields, here VF (initial field), MF (mid-
dle field) and LK (left sentence bracket), as well as
unary nodes have been removed. The category la-
bels have been changed to TIGER-style annotation.

Erziehungsurlaub nehmen bisher nur zwei Prozent der Männer.
“Until now only two percent of the men take parental leave.”

Figure 4: Original TüBa-D/Z-style gold tree

Figure 5: Converted TIGER-style gold tree

Figure 6 shows the unmodified parser output from
the TüBa-D/Z trained grammar for the same string.
The parser incorrectly included all adverbs inside an
NP governed by the PP, while in the gold tree (Figure
4) both adverbs are attached to the PP. The modified
parser output is shown in Figure 7.

5.3 Results for Converted Parser Output
We applied the conversion method described above
to the original trees and the parser output for the sen-
tences in the TIGER and the TüBa-D/Z test sets. Ta-
ble 7 shows PARSEVAL and LA results for the mod-
ified trees, evaluating the converted parser output
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Figure 6: Parser output (TüBa-D/Z grammar)

Figure 7: Converted parser output (TüBa-D/Z)

for each treebank against the converted gold trees
of the same treebank. Due to the resolved crossing
branches in the TIGER treebank we also have some
unary nodes in the TIGER test set. Their removal
surprisingly improves both PARSEVAL and LA re-
sults. For the TüBa-D/Z all conversions lead to a
decrease in precision and recall for the PARSEVAL
metric. Converting the trees parsed by the TüBa-
D/Z grammar to a TIGER-like format produces an f-
score which is slightly lower than that for the TIGER
trees. The same is true for the LA metric, but not to
the same extent as for PARSEVAL. The LA met-
ric also gives slightly better results for the original
TIGER trees compared to the result for the unmodi-
fied TüBa-D/Z trees.

The constant decrease in PARSEVAL results for
the modified trees is consistent with the results in
Kübler et al. (2005), but our conclusions are slightly
different. Our experiment shows that the TüBa-
D/Z annotation scheme does not generally produce
higher quality parser output, but that the PARSE-
VAL results are highly sensitive to the ratio of non-
terminal/terminal nodes. However, the parser output
for the grammar trained on the TüBa-D/Z yields a

EVALB LA
prec. recall f-sco. avg.

TIGER 83.54 83.65 83.59 94.69
no Unary 84.33 84.48 84.41 94.83
TüBa-D/Z 92.59 89.79 91.17 94.23
TüBa-D/Z→ TIGER
no Top 92.38 88.76 90.53 93.93
no Unary 89.96 85.67 87.76 93.59
no Top + no U. 88.44 82.24 85.23 92.91
no Top + no U. 87.15 79.52 83.16 92.47
+ no NP in PP

Table 7: The impact of the conversion process on
PARSEVAL and LA

higher precision in the PARSEVAL metric against
the TüBa-D/Z gold trees than the parser output of
the TIGER grammar against the TIGER gold trees.
For PARSEVAL recall, the TIGER grammar gives
better results.

6 Experiment III

In Experiment I and II we showed that the tree-
based PARSEVAL metric is not a reliable measure
for comparing the impact of different treebank an-
notation schemes on the quality of parser output and
that the issue, whether German is harder to parse
than English, remains undecided. In Experiment III
we report a dependency-based evaluation and com-
pare the results to the results of the other metrics.

6.1 Dependency-Based (DB) Evaluation
The dependency-based evaluation used in the exper-
iments follows the method of Lin (1998) and Kübler
and Telljohann (2002), converting the original tree-
bank trees and the parser output into dependency re-
lations of the form WORD POS HEAD. Functional
labels have been omitted for parsing, therefore the
dependencies do not comprise functional informa-
tion. Figure 8 shows the original TIGER Treebank
representation for the CFG tree in Figure 3. Square
boxes denote grammatical functions. Figure 9 shows
the dependency relations for the same tree, indicated
by labelled arrows. Converted into a WORD POS
HEAD triple format the dependency tree looks as
follows (Table 8).

Following Lin (1998), our DB evaluation algo-
rithm computes precision and recall:

• Precision: the percentage of dependency re-
lationships in the parser output that are also
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Figure 8: TIGER treebank representation for Figure 3

SB

NKPGNK NK OA

MO

OC

the  city counsil   of   Venice  has  for the    straying   cats  counted
                                      first time

Die    Stadtverwaltung    von    Venedig    hat     erstmals       streunende    Katzen    gezählt    

“For the first time the city counsil of Venice has counted straying cats.”

Figure 9: Dependency relations for Figure 8

found in the gold triples

• Recall: the percentage of dependency relation-
ships in the gold triples that are also found in
the parser output triples.

WORD POS HEAD
Die [the] ART Stadtverwaltung
Stadtverwaltung NN hat

[city counsil]
von [of] APPR Stadtverwaltung
Venedig [Venice] NE von
hat [has] VAFIN -
erstmals ADV gezählt
[for the first time]
streunende [straying] ADJA Katzen
Katzen [cats] NN gezählt
gezählt [counted] VVPP hat

Table 8: Dependency triples for Figure 9

We assessed the quality of the automatic conver-
sion methodology by converting the 1024 original
trees from each of our test sets into dependency rela-
tions, using the functional labels in the original trees
to determine the dependencies. Topological fields

in the TüBa-D/Z test set have been removed before
extracting the dependency relationships.

We then removed all functional information from
the trees and converted the stripped trees into depen-
dencies, using heuristics to find the head. We eval-
uated the dependencies for the stripped gold trees
against the dependencies for the original gold trees
including functional labels and obtained an f-score
of 99.64% for TIGER and 99.13% for the TüBa-D/Z
dependencies. This shows that the conversion is re-
liable and not unduly biased to either the TIGER or
TüBa-D/Z annotation schemes.

6.2 Experimental Setup

For Experiment III we used the same PCFG gram-
mars and test sets as in Experiment II. Before ex-
tracting the dependency relationships we removed
the topological fields in the TüBa-D/Z parser output.
As shown in Section 6.1, this does not penalise the
dependency-based evaluation results for the TüBa-
D/Z. In contrast to Experiment II we used raw text
as parser input instead of the gold POS tags, allow-
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ing a comparison with the gold tag results in Table 7.

6.3 Results
Table 9 shows the evaluation results for the three
different evaluation metrics. For the DB evalua-
tion the parser trained on the TIGER training set
achieves about 7% higher results for precision and
recall than the parser trained on the TüBa-D/Z. This
result is clearly in contrast to the PARSEVAL scores,
which show higher results for precision and recall
for the TüBa-D/Z. But contrary to the PARSEVAL
results on gold POS tags as parser input (Table 7),
the gap between the results for TIGER and TüBa-
D/Z is not as wide as before. PARSEVAL gives
a labelled bracketing f-score of 81.12% (TIGER)
and 85.47% (TüBa-D/Z) on raw text as parser in-
put, while the results on gold POS tags are more dis-
tinctive with an f-score of 83.59% for TIGER and
91.17% for TüBa-D/Z. The LA results again give
better scores to the TIGER parser output, this time
the difference is more pronounced than for Experi-
ment II (Table 7).

Dependencies PARSEVAL LA
Prec Rec Prec Rec Avg

TIGER 85.71 85.72 81.21 81.04 93.88
TüBa 76.64 76.63 87.24 83.77 92.58

Table 9: Parsing results for three evaluation metrics

The considerable difference between the results
for the metrics raises the question which of the met-
rics is the most adequate for judging parser output
quality across treebank encoding schemes.

7 Conclusions

In this paper we presented novel experiments assess-
ing the validity of parsing results measured along
different dimensions: the tree-based PARSEVAL
metric, the string-based Leaf-Ancestor metric and
a dependency-based evaluation. By inserting con-
trolled errors into gold treebank trees and measuring
the effects on parser evaluation results we gave new
evidence for the downsides of PARSEVAL which,
despite severe criticism, is still the standard mea-
sure for parser evaluation. We showed that PAR-
SEVAL cannot be used to compare the output of
PCFG parsers trained on different treebank anno-
tation schemes, because the results correlate with

the ratio of non-terminal/terminal nodes. Compar-
ing two different annotation schemes, PARSEVAL
consistently favours the one with the higher node ra-
tio.

We examined the influence of treebank annotation
schemes on unlexicalised PCFG parsing, and re-
jected the claim that the German TüBa-D/Z treebank
is more appropriate for PCFG parsing than the Ger-
man TIGER treebank and showed that converting
the TüBa-D/Z trained parser output to a TIGER-like
format leads to PARSEVAL results slightly worse
than the ones for the TIGER treebank trained parser.
Additional evidence comes from a dependency-
based evaluation, showing that, for the output of the
parser trained on the TIGER treebank, the mapping
from the CFG trees to dependency relations yields
better results than for the grammar trained on the
TüBa-D/Z annotation scheme, even though PARSE-
VAL scores suggest that the TIGER-based parser
output trees are substantial worse than TüBa-D/Z-
based parser output trees.

We have shown that different treebank annotation
schemes have a strong impact on parsing results for
similar input data with similar (simulated) parser er-
rors. Therefore the question whether a particular
language is harder to parse than another language
or not, can not be answered by comparing parsing
results for parsers trained on treebanks with differ-
ent annotation schemes. Comparing PARSEVAL-
based parsing results for a parser trained on the
TüBa-D/Z or TIGER to results achieved by a parser
trained on the English Penn-II treebank (Marcus
et al., 1994) does not provide conclusive evidence
about the parsability of a particular language, be-
cause the results show a bias introduced by the
combined effect of annotation scheme and evalua-
tion metric. This means that the question whether
German is harder to parse than English, is still
undecided. A possible way forward is perhaps a
dependency-based evaluation of TIGER/TüBa-D/Z
with Penn-II trained grammars for ’similar’ test and
training sets and cross-treebank and -language con-
trolled error insertion experiments. Even this is not
entirely straightforward as it is not completely clear
what constitutes ’similar’ test/training sets across
languages. We will attempt to pursue this in further
research.
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D/Z). Seminar für Sprachwissenschaft, Universität
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Abstract

In this paper, we study the problem of auto-
matically segmenting written text into para-
graphs. This is inherently a sequence label-
ing problem, however, previous approaches
ignore this dependency. We propose a novel
approach for automatic paragraph segmen-
tation, namely training Semi-Markov mod-
els discriminatively using a Max-Margin
method. This method allows us to model
the sequential nature of the problem and to
incorporate features of a whole paragraph,
such as paragraph coherence which cannot
be used in previous models. Experimental
evaluation on four text corpora shows im-
provement over the previous state-of-the art
method on this task.

1 Introduction

In this paper, we study automatic paragraph segmen-
tation (APS). This task is closely related to some
well known problems such as text segmentation, dis-
course parsing, topic shift detection and is relevant
for various important applications in speech-to-text
and text-to-text tasks.

In speech-to-text applications, the output of a
speech recognition system, such as the output of sys-
tems creating memos and documents for the Parlia-
ment House, is usually raw text without any punc-
tuation or paragraph breaks. Clearly, such text
requires paragraph segmentations. In text-to-text
processing, such as summarization, the output text
does not necessarily retain the correct paragraph

structure and may require post-processing. There
is psycholinguistic evidence as cited by Sporleder
& Lapata (2004) showing that insertion of para-
graph breaks could improve the readability. More-
over, it has been shown that different languages may
have cross-linguistic variations in paragraph bound-
ary placement (Zhu, 1999), which indicates that ma-
chine translation can also benefit from APS. APS
can also recover the paragraph breaks that are often
lost in the OCR applications.

There has been growing interest within the NLP
community for APS in recent years. Previous meth-
ods such as Sporleder & Lapata (2004); Genzel
(2005); Filippova & Strube (2006) treat the problem
as a binary classification task, where each sentence
is labeled as the beginning of a paragraph or not.
They focus on the use of features, such as surface
features, language modeling features and syntactic
features. The effectiveness of features is investi-
gated across languages and/or domains. However,
these approaches ignore the inherent sequential na-
ture of APS. Clearly, consecutive sentences within
the same paragraph depend on each other. More-
over, paragraphs should exhibit certain properties
such as coherence, which should be explored within
an APS system. One cannot incorporate such prop-
erties/features when APS is treated as a binary clas-
sification problem. To overcome this limitation, we
cast APS as a sequence prediction problem, where
the performance can be significantly improved by
optimizing the choice of labeling over whole se-
quences of sentences, rather than individual sen-
tences.

Sequence prediction is one of the most promi-

640



Figure 1: Top: sequence (horizontal line) with seg-
ment boundaries (vertical lines). This corresponds
to a model where we estimate each segment bound-
ary independently of all other boundaries. Middle:
simple semi-Markov structure. The position of the
segment boundaries only depends on the position of
its neighbors, as denoted by the (red) dash arcs. Bot-
tom: a more sophisticated semi-Markov structure,
where each boundary depends on the position of two
of its neighbors. This may occur, e.g., when the de-
cision of where to place a boundary depends on the
content of two adjacent segments. The longer range
interaction is represented by the additional (blue)
arcs.

nent examples of structured prediction. This prob-
lem is generally formalized such that there exists
one variable for each observation in the sequence
and the variables form a Markov chain (HMM). Seg-
mentation of a sequence has been studied as a class
of sequence prediction problems with common ap-
plications such as protein secondary structure pre-
diction, Named Entity Recognition and segmenta-
tion of FAQ’s. The exceptions to this approach
are Sarawagi & Cohen (2004); Raetsch & Sonnen-
burg (2006), which show that Semi-Markov mod-
els (SMMs) (Janssen & Limnois, 1999), which are
a variation of Markov models, are a natural formu-
lation for sequence segmentation. The advantage of
these models, depicted in Figure 1, is their ability
to encode features that capture properties of a seg-
ment as a whole, which is not possible in an HMM
model. In particular, these features can encode simi-
larities between two sequence segments of arbitrary
lengths, which can be very useful in tasks such as
APS.

In this paper, we present a Semi-Markov model

for APS and propose a max-margin training on these
methods. This training method is a generalization of
the Max-Margin methods for HMMs (Altun et al.,
2003b) to SMMs. It follows the recent literature
on discriminative learning of structured prediction
(Lafferty et al., 2001; Collins, 2002; Altun et al.,
2003a; Taskar et al., 2003). Our method inherits the
advantages of discriminative techniques, namely the
ability to encode arbitrary (overlapping) features and
not making implausible conditional independence
assumptions. It also has advantages of SMM mod-
els, namely the ability to encode features at seg-
ment level. We present a linear time inference al-
gorithm for SMMs and outline the learning method.
Experimental evaluation on datasets used previously
on this task (Sporleder & Lapata, 2004) shows im-
provement over the state-of-the art methods on APS.

2 Modeling Sequence Segmentation

In sequence segmentation, our goal is to solve the es-
timation problem of finding a segmentation y ∈ Y ,
given an observation sequence x ∈ X . For exam-
ple, in APS x can be a book which is a sequence
of sentences. In a Semi-Markov model, there ex-
ists one variable for each subsequence of observa-
tions (i. e. multiple observations) and these variables
form a Markov chain. This is opposed to an HMM
where there exists one variable for each observation.
More formally, in SMMs, y ∈ Y is a sequence of
segment labelings si = (bi, li) where bi is a non-
negative integer denoting the beginning of the ith

segment which ends at position bi+1 − 1 and whose
label is given by li (Sarawagi & Cohen, 2004). Since
in APS the label of the segments is irrelevant, we
represent each segment simply by the beginning po-
sition y := {bi}L−1

i=0 with the convention that b0 = 0
and bL = N where N is the number of observations
in x. Here, L denotes the number of segments in y.
So the first segment is [0, b1), and the last segment
is [bL−1, N), where [a, b) denotes all the sentences
from a to b inclusive a but exclusive b.

We cast this estimation problem as finding a dis-
criminant function F (x, y) such that for an obser-
vation sequence x we assign the segmentation that
receives the best score with respect to F ,

y∗(x) := argmax
y∈Y

F (x, y). (1)
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As in many learning methods, we consider functions
that are linear in some feature representation Φ,

F (x, y;w) = 〈w,Φ(x, y)〉. (2)

Here, Φ(x, y) is a feature map defined over the joint
input/output space as detailed in Section 2.3.

2.1 Max-Margin Training

We now present a maximum margin training for
predicting structured output variables, of which se-
quence segmentation is an instance. One of the ad-
vantages of this method is its ability to incorporate
the cost function that the classifier is evaluated with.
Let ∆(y, ȳ) be the cost of predicting ȳ instead of y.
For instance, ∆ is usually the 0-1 loss for binary and
multiclass classification. However, in segmentation,
this may be a more sophisticated function such as
the symmetric difference of y and ȳ as discussed in
Section 2.2. Then, one can argue that optimizing a
loss function that incorporates this cost can lead to
better generalization properties. One can find a the-
oretical analysis of this approach in Tsochantaridis
et al. (2004).

We follow the general framework of Tsochan-
taridis et al. (2004) and look for a hyperplane that
separates the correct labeling yi of each observa-
tion sequence xi in our training set from all the in-
correct labelings Y −yi with some margin that de-
pends on ∆ additively 1. In order to allow some
outliers, we use slack variables ξi and maximize the
minimum margin, F (xi, yi)−maxy∈Y −yi F (xi, y),
across training instances i. Equivalently,

min
w,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (3a)

∀i, y 〈w,Φ(xi, yi)− Φ(xi, y)〉 ≥ ∆(yi, y)− ξi.
(3b)

To solve this optimization problem efficiently, one

1There is an alternative formulation that is multiplicative in
∆. We prefer (3) due to computational efficiency reasons.

can investigate its dual given by

min
α

1
2

∑
i,j,y,y′

αiyαjy′
〈
Φ(xi, y),Φ(xj , y

′)
〉

(4)

−
∑
i,y

∆(yi, y)αiy

∀i, y
∑

y

αiy ≤ C, αiy ≥ 0.

Here, there exists one parameter αiy for each train-
ing instance xi and its possible labeling y ∈
Y . Solving this optimization problem presents a
formidable challenge since Y generally scales expo-
nentially with the number of variables within each
variable y. This essentially makes it impossible
to find an optimal solution via enumeration. In-
stead, one may use a column generation algorithm
(Tsochantaridis et al., 2005) to find an approximate
solution in polynomial time. The key idea is to find
the most violated constraints (3b) for the current set
of parameters and satisfy them up to some precision.
In order to do this, one needs to find

argmax
y∈Y

∆(yi, y) + 〈w,Φ(xi, y)〉 , (5)

which can usually be done via dynamic program-
ming. As we shall see, this is an extension of the
Viterbi algorithm for Semi Markov models.

Note that one can express the optimization
and estimation problem in terms of kernels
k((x, y), (x′, y′)) := 〈Φ(x, y),Φ(x′, y′)〉. We refer
the reader to Tsochantaridis et al. (2005) for details.

To adapt the above framework to the segmenta-
tion setting, we need to address three issues: a) we
need to specify a loss function ∆ for segmentation,
b) we need a suitable feature map Φ as defined in
Section 2.3, and c) we need to find an algorithm
to solve (5) efficiently. The max-margin training of
SMMs was also presented in Raetsch & Sonnenburg
(2006)

2.2 Cost Function

To measure the discrepancy between y and some al-
ternative sequence segmentation y′, we simply count
the number of segment boundaries that have a) been
missed and b) been wrongly added. Note that this
definition allows for errors exceeding 100% - for
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Algorithm 1 Max-Margin Training Algorithm
Input: data xi, labels yi, sample size m, tolerance
ε
Initialize Si = ∅ for all i, and w = 0.
repeat

for i = 1 to m do
w =

∑
i

∑
y∈Si

αiyΦ(xi, y)
y∗ = argmaxy∈Y 〈w,Φ(xi, y)〉+ ∆(yi, y)
ξ = max(0,maxy∈Si 〈w,Φ(xi, y)〉 +
∆(yi, y))
if 〈w,Φ(xi, y

∗)〉+ ∆(yi, y) > ξ + ε then
Increase constraint set Si ← Si ∪ y∗

Optimize (4) wrt αiy,∀y ∈ Si.
end if

end for
until S has not changed in this iteration

instance, if we were to place considerably more
boundaries than can actually be found in a sequence.

The number of errors is given by the symmetric
difference between y and y′, when segmentations
are viewed as sets. This can be written as

∆(y, y′) = |y|+ |y′| − 2|y ∩ y′|

= |y|+
l′∑

i=1

[
1− 2

{
b′i ∈ y

}]
. (6)

Here | · | denotes the cardinality of the set. Eq. (6)
plays a vital role in solving (5), since it allows us to
decompose the loss in y′ into a constant and func-
tions depending on the segment boundaries b′i only.
Note that in the case where we want to segment and
label, we simply would need to check that the posi-
tions are accurate and that the labels of the segments
match.

2.3 Feature Representation

SMMs can extract three kinds of features from the
input/output pairs: a) node features, i. e. features that
encode interactions between attributes of the obser-
vation sequence and the (label of a) segment (rather
than the label of each observation as in HMM), b)
features that encode interactions between neighbor-
ing labels along the sequence and c) edge features,
i. e. features that encode properties of segments. The
first two types of features are commonly used in

other sequence models, such as HMMs and Con-
ditional Random Fields (CRFs). The third feature
type is specific to Semi-Markov models. In particu-
lar, these features can encode properties of a whole
segment or similarities between two sequence seg-
ments of arbitrary lengths. The cost of this express-
ibility is simply a constant factor of the complexity
of Markov models, if the maximum length of a seg-
ment is bounded. This type of features are particu-
larly useful in the face of sparse data.

As in HMMs, we assume stationarity in our model
and sum over the features of each segment to get
Φ(x, y). Then, Φ corresponding to models of the
middle structure given in Figure 1 is given by

Φ(x, ȳ) := (Φ0,

l̄−1∑
i=1

Φ1(n̄i, x),
l̄∑

i=1

Φ2(b̄i−1, b̄i, x)).

We let Φ0 = l̄ − 1, the number of segments. The
node features Φ1 capture the dependency of the cur-
rent segment boundary to the observations, whereas
the edge features Φ2 represent the dependency of the
current segment to the observations. To model the
bottom structure in Figure 1, one can design features
that represent the dependency of the current segment
to its adjacent segments as well as the observations,
Φ3(x, bi−2, bi−1, bi). The specific choices of the fea-
ture map Φ are presented in Section 3.

2.4 Column Generation on SMMs
Tractability of Algorithm 1 depends on the existence
of an efficient algorithm that finds the most violated
constraint (3b) via (5). Both the cost function of Sec-
tion 2.2 and the feature representation of Section 2.3
are defined over a short sequence of segment bound-
aries. Therefore, using the Markovian property, one
can perform the above maximization step efficiently
via a dynamic programming algorithm. This is a
simple extension of the Viterbi algorithm. The infer-
ence given by (1) can be performed using the same
algorithm, setting ∆ to a constant function.

We first state the dynamic programming recursion
for F + ∆ in its generality. We then give the pseu-
docode for Φ3 = ∅.

Denote by T (t−, t+;x) the largest value of
∆(y, p)+F (x, p) for any partial segmentation p that
starts at position 0 and which ends with the segment
[t−, t+). Moreover, let M be a upper bound on the
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Algorithm 2 Column Generation
Input: sequence x, segmentation y, max-length
of a segment M
Output: score s, segment boundaries y′

Initialize vectors T ∈ Rm and R ∈ Ym to 0
for i = 1 to l do

Ri = argmax
max(0,i−M)≤j<i

Tj + g(j, i)

Ti = TRi + g(Ri, i)
end for
s = Tm + |y|
y′ = {m}
repeat

i = y′first

y′ ← {Ri, y
′}

until i = 0

length of a segment. The recursive step of the dy-
namic program is given by

T (t−, t+;x) = max
max(0,t−−M)≤k<t−

T (k, t−;x)

+ g(k, t−, t+)

where we defined the increment g(k, t−, t+) as

〈Φ0(x),Φ1(x, t+),Φ2(x, t−, t+),Φ3(x, k, t−, t+), w〉
+ 1− 2 {(t−, t+) ∈ y}

where by convention T (i, i′) = −∞ if i < 0 for
all labels. Since T needs to be computed for all val-
ues of t+ − M ≤ t− < t+, we need to compute
O(|x|M) many values, each of which requires an
optimization over M possible values. That is, stor-
age requirements are O(|x|M), whereas the com-
putation scales with O(|x|M2). If we have a good
bound on the maximal sequence length, this can be
dealt with efficiently. Finally, the recursion is set up
by T (0, 0, x) = |y|.

See Algorithm 2 for pseudocode, when Φ3 = ∅.
The segmentation corresponding to (5) is found by
constructing the path traversed by the argument of
the max operation generating T .

3 Features

We now specify the features described in Section 2.3
for APS. Note that the second type of features do
not exist for APS since we ignore the labelings of
segments.

3.1 Node Features Φ1

Node features Φ1(bj , x) represent the information of
the current segment boundary and some attributes of
the observations around it (which we define as the
current, preceding and successive sentences). These
are sentence level features, which we adapt from
Genzel (2005) and Sporleder & Lapata (2004) 2. For
the bj th sentence, x(bj), we use the following fea-
tures

• Length of x(bj).

• Relative Position of x(bj).

• Final punctuation of x(bj).

• Number of capitalized words in x(bj).

• Word Overlap of x(bj) with the next one

Wover(x(bj), x(bj + 1)) =
2 | x(bj) ∩ x(bj + 1) |
| x(bj) | + | x(bj + 1) |

.

• First word of x(bj).

• Bag Of Words (BOW) features: Let the bag of
words of a set of sentences S be

B(S) = (c0, c1, ..., ci, ..., cN−1),

where N is the size of the dictionary and ci is
the frequency of word i in S.

– BOW of x(bj), B({x(bj)})
– BOW of x(bj) and the previous sentence

B({x(bj − 1), x(bj)})
– BOW of x(bj) and the succeeding sen-

tence B({x(bj), x(bj + 1)})
– The inner product of the two items above

• Cosine Similarity of x(bj) and the previous
sentence

CS(x(bj − 1), x(bj))

=
〈B(x(bj − 1)), B(x(bj))〉

| B(x(bj − 1)) | × | B(x(bj)) |
2Due to space limitations, we omit the motivations for these

features and refer the reader to the literature cited above.
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• Shannon’s Entropy of x(bj) computed by us-
ing a language model as described in Genzel &
Charniak (2003).

• Quotes(Qp, Qc, Qi). Qp and Qc are the number
of pairs of quotes in the previous(Nump) and
current sentence (Numc), Qp = 0.5 × Nump

and Qc = 0.5×Numc.

3.1.1 Edge Features Φ2

Below is the set of features Φ2(bj , bj+1, x) encod-
ing information about the current segment. These
features represent the power of the Semi-Markov
models. Note that Φ3 features also belong to edge
features category. In this paper, we did not use Φ3

feature due to computational issues.

• Length of The Paragraph: This feature ex-
presses the assumption that one would want to
have a balance across the lengths of the para-
graphs assigned to a text. Very long and very
short paragraphs should be uncommon.

• Cosine Similarity of the current paragraph and
neighboring sentences: Ideally, one would like
to measure the similarity of two consecutive
paragraphs and search for a segmentation that
assigns low similarity scores (in order to fa-
cilitate changes in the content). This can be
encoded using Φ3(x, bj−1, bj , bj+1) features.
When such features are computationally expen-
sive, one can measure the similarity of the cur-
rent paragraph with the preceding sentence as

CS(P, x(bj − 1))

=
〈BOW (P ), BOW (x(bj − 1))〉

| BOW (P ) | × | BOW (x(bj − 1)) |

where P is the set of sentences in the current
paragraph, [bj , bj+1). A similar feature is used
for CS(P, x(bj+1)).

• Shannon’s Entropy of the Paragraph: The mo-
tivation for including features encoding the en-
tropy of the sentences is the observation that the
entropy of paragraph initial sentences is lower
than the others (Genzel & Charniak, 2003).
The motivation for including features encod-
ing the entropy of the paragraphs, on the other
hand, is that the entropy rate should remain

more or less constant across paragraphs, es-
pecially for long texts like books. We ignore
the sentence boundaries and use the same tech-
nique that we use to compute the entropy of a
sentence.

3.2 Feature Rescaling
Most of the features described above are binary.
There are also some features such as the entropy
whose value could be very large. We rescale all the
non-binary valued features so that they do not over-
ride the effect of the binary features. The scaling is
performed as follows:

unew =
u−min(u)

max(u)−min(u)

where unew is the new feature and u is the old fea-
ture. min(u) is the minimum of u, and max(u)
is the maximum of u. An exception to this is the
rescaling of BOW features which is given by

B(x(bj))new = B(x(bj))/〈B(x(bj)), B(x(bj))〉

〈., .〉 denotes the inner product.

4 Experiments

We collected four sets of data for our experiments.
The first corpus, which we call SB, consists of man-
ually annotated text from the book The Adventures
of Bruce-Partington Plans by Arthur Conan-Doyle.
The second corpus, which we call SA, again con-
sists of manually annotated text but from 10 differ-
ent books by Conan-Doyle. Our third corpus con-
sists of German (GER) and English (ENG) texts.
The German data consisting of 12 German novels
was used by Sporleder & Lapata (2006). This data
uses automatically assigned paragraph boundaries,
with the labeling error expected to be around 10%.
The English data contains 12 well known English
books from Project Gutenberg (http://www.
gutenberg.org/wiki/Main Page). For this
dataset the paragraph boundaries were marked man-
ually.

All corpora were approximately split into train-
ing (72%), development (21%), and test set (7%)
(see Table 1). The table also reports the accuracy of
the baseline classifier, denoted as BASE, which ei-
ther labels all sentences as paragraph boundaries or
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Table 1: Number of sentences and % accuracy of the
baseline classifier (BASE) on various datasets used
in our experiments.

TOTAL TRAIN DEV TEST BASE

SB 59,870 43,678 12,174 3,839 53.70
SA 69,369 50,680 14,204 4,485 58.62
ENG 123,261 88,808 25,864 8,589 63.41
GER 370,990 340,416 98,610 31,964 62.10

non-boundaries, choosing whichever scheme yields
a better accuracy.

We evaluate our system using accuracy, precision,
recall, and the F1-score given by (2× Precision×
Recall)/(Precision+Recall) and compare our re-
sults to Sporleder & Lapata (2006) who used Boos-
Texter (Schapire & Singer, 2000) as a learning al-
gorithm. To the best of our knowledge, BoosTexter
(henceforth called BT) is the leading method pub-
lished for this task so far. In order to evaluate the im-
portance of the edge features and the resultant large-
margin constraint, we also compare against a stan-
dard binary Support Vector Machine (SVM) which
uses node features alone to predict whether each
sentence is the beginning of a paragraph or not. For
a fair comparison, all classifiers used the linear ker-
nel and the same set of node features.

We perform model selection for all three algo-
rithms by choosing the parameter values that achieve
the best F1-score on the development set. For
both the SVM as well as our algorithm, SMM, we
tune the parameter C (see (3a)) which measures the
trade-off between training error and margin. For BT,
we tune the number of Boosting iterations, denoted
by N .

4.1 Results

In our first experiment, we compare the perfor-
mance of our algorithm, SMM, on the English and
German corpus to a standard SVM and BoosTex-
ter. We report these result in Table 2. Our algo-
rithm achieves the best F1-score on the ENG cor-
pus. SMM performs very competitively on the GER
corpus, achieving accuracies close to those of BT.

We observed a large discrepancy between the per-
formance of our algorithm on the development and

Table 2: Test results on ENG and GER data after
model selection.

DATASET ALGO. ACC. REC. PREC. F1

ENG SMM 75.61 46.67 77.78 58.33
SVM 58.54 26.67 40.00 32.00
BT 65.85 33.33 55.56 41.67

GER SMM 70.56 46.81 65.67 54.66
SVM 39.92 100.00 38.68 55.79
BT 72.58 54.26 67.11 60.00

the test datasets. The situation is similar for both
SVM and BT. For instance, BT when trained on
the ENG corpora, achieves an optimal F1-score of
18.67% after N = 100 iterations. For the same N
value, the test performance is 41.67%. We conjec-
ture that this discrepancy is because the books that
we use for training and test are written by differ-
ent authors. While there is some generic informa-
tion about when to insert a paragraph break, it is
often subjective and part of the authors style. To
test this hypothesis, we performed experiments on
the SA and SB corpus, and present results in Table
3. Indeed, the F1-scores obtained on the develop-
ment and test corpus closely match for text drawn
from the same book (whilst exhibiting better over-
all performance), differs slightly for text drawn from
different books by the same author, and has a large
deviation for the GER and ENG corpus.

Table 3: Comparison on various ENG datasets.

DATASET ACC. REC. PREC. F1-SCORE

SB (DEV) 92.81 86.44 92.73 89.47
SB (TEST) 96.30 96.00 96.00 96.00
SA (DEV) 82.24 61.11 82.38 70.17
SA (TEST) 81.03 79.17 76.00 77.55
ENG (DEV) 69.84 18.46 78.63 29.90
ENG (TEST) 75.61 46.67 77.78 58.33

There is one extra degree of freedom that we can
optimize in our model, namely the offset, i. e. the
weight assigned to the constant feature Φ0. After
fixing all the parameters as described above, we vary
the value of the offset parameter and pick the value
that gives the F1-score on the development data. We
choose to use F1-score, since it is the error measure
that we care about. Although this extra optimization
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leads to better F1-score in German (69.35% as op-
posed to 54.66% where there is no extra tuning of
the offset), it results in a decrease of the F1-score in
English (52.28% as opposed to 58.33%). These re-
sults are reported in Table 4. We found that the dif-
ference of the F1-score of tuning and not tuning the
threshold on the development set was not a good in-
dicator on the usefulness of this extra parameter. We
are now investigating other properties, such as vari-
ance on the development data, to see if the tuning of
the threshold can be used for better APS systems.

Figure 2: Precision-recall curves

Figure 2 plots the precision-recall curve obtained
on various datasets. As can be seen the performance
of our algorithm on the SB dataset is close to opti-
mum, whilst it degrades slightly on the SA dataset,
and substantially on the ENG and GER datasets.
This further confirms our hypothesis that our algo-
rithm excels in capturing stylistic elements from a
single author, but suffers slightly when trained to
identify generic stylistic elements. We note that this
is not a weakness of our approach alone. In fact, all
the other learning algorithms also suffer from this
shortcoming.

Table 4: Performance on ENG test set tuning the
offset for best F1-score on ENG development set.

DATASET ACC. REC. PREC. F1-SCORE

ENG 75.61 46.67 77.78 58.33
ENG +Φ0 39.02 93.33 36.84 52.28
GER 70.56 46.81 65.67 54.66
GER + Φ0 75.40 73.40 65.71 69.35

5 Conclusion

We presented a competitive algorithm for paragraph
segmentation which uses the ideas from large mar-
gin classifiers and graphical models to extend the
semi-Markov formalism to the large margin case.
We obtain an efficient dynamic programming for-
mulation for segmentation which works in linear
time in the length of the sequence. Experimental
evaluation shows that our algorithm is competitive
when compared to the state-of-the-art methods.

As future work, we plan on implementing Φ3 fea-
tures in order to perform an accuracy/time analy-
sis. By defining appropriate features, we can use
our method immediately for text and discourse seg-
mentation. It would be interesting to compare this
method to Latent Semantic Analysis approaches for
text segmentation as studied for example in Bestgen
(2006) and the references thereof.
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Abstract

This paper presents a method for catego-
rizing named entities in Wikipedia. In
Wikipedia, an anchor text is glossed in a
linked HTML text. We formalize named en-
tity categorization as a task of categorizing
anchor texts with linked HTML texts which
glosses a named entity. Using this repre-
sentation, we introduce a graph structure in
which anchor texts are regarded as nodes.
In order to incorporate HTML structure on
the graph, three types of cliques are defined
based on the HTML tree structure. We pro-
pose a method with Conditional Random
Fields (CRFs) to categorize the nodes on
the graph. Since the defined graph may in-
clude cycles, the exact inference of CRFs is
computationally expensive. We introduce an
approximate inference method using Tree-
based Reparameterization (TRP) to reduce
computational cost. In experiments, our pro-
posed model obtained significant improve-
ments compare to baseline models that use
Support Vector Machines.

1 Introduction

Named and Numeric Entities (NEs) refer to proper
nouns (e.g. PERSON, LOCATION and ORGANI-
ZATION), time expressions, date expressions and so
on. Since a large number of NEs exist in the world,
unknown expressions appear frequently in texts, and
they become hindrance to real-world text analysis.
To cope with the problem, one effective ways to add
a large number of NEs to gazetteers.

In recent years, NE extraction has been performed
with machine learning based methods. However,
such methods cannot cover all of NEs in texts.
Therefore, it is necessary to extract NEs from ex-
isting resources and use them to identify more NEs.
There are many useful resources on the Web. We fo-
cus on Wikipedia1 as the resource for acquiring NEs.
Wikipedia is a free multilingual online encyclope-
dia and a rapidly growing resource. In Wikipedia,
a large number of NEs are described in titles of ar-
ticles with useful information such as HTML tree
structures and categories. Each article links to other
related articles. According to these characteristics,
they could be an appropriate resource for extracting
NEs.

Since a specific entity or concept is glossed in a
Wikipedia article, we can regard the NE extraction
problem as a document classification problem of the
Wikipedia article. In traditional approaches for doc-
ument classification, in many cases, documents are
classified independently. However, the Wikipedia
articles are hypertexts and they have a rich structure
that is useful for categorization. For example, hyper-
linked mentions (we call them anchor texts) which
are enumerated in a list tend to refer to the articles
that describe other NEs belonging to the same class.
It is expected that improved NE categorization is ac-
complished by capturing such dependencies.

We structure anchor texts and dependencies be-
tween them into a graph, and train graph-based
CRFs to obtain probabilistic models to estimate cat-
egories for NEs in Wikipedia.

So far, several statistical models that can cap-
1http://wikipedia.org/
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ture dependencies between examples have been pro-
posed. There are two types of classification meth-
ods that can capture dependencies: iterative classi-
fication methods (Neville and Jensen, 2000; Lu and
Getoor, 2003b) and collective classification methods
(Getoor et al., 2001; Taskar et al., 2002). In this
paper, we use Conditional Random Fields (CRFs)
(Lafferty et al., 2001) for NE categorization in
Wikipedia.

The rest of the paper is structured as follows. Sec-
tion 2 describes the general framework of CRFs.
Section 3 describes a graph-based CRFs for NE cat-
egorization in Wikipedia. In section 4, we show
the experimental results. Section 5 describes related
work. We conclude in section 6.

2 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are undirected graphical models that give a
conditional probability distribution p(y|x) in a form
of exponential model.

CRFs are formalized as follows. Let G = {V,E}
be an undirected graph over random variables y and
x, where V is a set of vertices, and E is a set
of edges in the graph G. When a set of cliques
C = {{yc,xc}} are given, CRFs define the con-
ditional probability of a state assignment given an
observation set.

p(y|x) =
1

Z(x)

∏
c∈C

Φ(xc,yc) (1)

where Φ(xc,yc) is a potential function defined
over cliques, and Z(x) =

∑
y

∏
c∈C Φ(xc,yc) is

the partition function.
The potentials are factorized according to the set

of features {fk}.

Φ(xc,yc) = exp

(∑
k

λkfk(xc,yc)

)
(2)

where F = {f1, ..., fK} are feature functions on
the cliques, Λ = {λ1, ..., λK ∈ R} are the model
parameters. The parameters Λ are estimated itera-
tive scaling or quasi-Newton method from labeled
data.

The original paper (Lafferty et al., 2001) fo-
cused on linear-chain CRFs, and applied them to

part-of-speech tagging problem. McCallum et al.
(2003), Sutton et al (2004) proposed Dynamic Con-
ditional Random Fields (DCRFs), the generaliza-
tion of linear-chain CRFs, that have complex graph
structure (include cycles). Since DCRFs model
structure contains cycles, it is necessary to use ap-
proximate inference methods to calculate marginal
probability. Tree-based Reparameterization (TRP)
(Wainwright et al., 2003), a schedule for loopy be-
lief propagation, is used for approximate inference
in these papers.

3 Graph-based CRFs for NE
Categorization in Wikipedia

In this section we describe how to apply CRFs for
NE categorization in Wikipedia.

Each Wikipedia article describes a specific entity
or concept by a heading word, a definition, and one
or more categories. One possible approach is to clas-
sify each NE described in an article into an appropri-
ate category by exploiting the definition of the arti-
cle. This process can be done one by one without
considering the relationship with other articles.

On the other hand, articles in Wikipedia are
semi-structured texts. Especially lists (<UL> or
<OL>) and tables (<TABLE>) have an important
characteristics, that is, occurrence of elements in
them have some sort of dependencies. Structural
characteristics, such as lists (<UL> or <OL>) or
tables (<TABLE>), are useful becase their ele-
ments have some sort of dependencies.

Figure 2 shows an example of an HTML segment
and the corresponding tree structure. The first an-
chor texts in each list tag (<LI>) tend to be in the
same NE category. Such characteristics are useful
feature for the categorization task. In this paper we
focus on lists which appear frequently in Wikipedia.

Furthermore, there are anchor texts in articles.
Anchor texts are glossed entity or concept described
with links to other pages. With this in mind, our NE
categorization problem can be regarded as NE cat-
egory labeling problem for anchor texts in articles.
Exploiting dependencies of anchor texts that are in-
duced by the HTML structure is expected to improve
categorization performance.

We use CRFs for categorization in which anchor
texts correspond to random variables V in G and de-
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Figure 1: The definitions of sibling, cousin and relative cliques, where ES , EC , ER correspond to sets which
consist of anchor text pairs that have sibling, cousin and relative relations respectively.

pendencies between anchor texts are treated as edges
E in G. In the next section, we describe the concrete
way to construct graphs.

3.1 Constructing a graph from an HTML tree

An HTML document is an ordered tree. We de-
fine a graph G = (V G , EG) on an HTML tree
T HTML = (V T , ET ): the vertices V G are anchor
texts in the HTML text; the edges E are limited to
cliques of Sibling, Cousin, and Relative, which we
will describe later in the section. These cliques are
intended to encode a NE label dependency between
anchor texts where the two NEs tend to be in the
same or related class, or one NE affects the other
NE label.

Let us consider dependent anchor text pairs in
Figure 2. First, “Dillard & Clark” and “country
rock” have a sibling relation over the tree structure,
and appearing the same element of the list. The latter
element in this relation tends to be an attribute or a
concept of the other element in the relation. Second,
“Dillard & Clark” and “Carpenters” have a cousin
relation over the tree structure, and they tend to have
a common attribute such as “Artist”. The elements in
this relation tend to belong to the same class. Third,
“Carpenters” and “Karen Carpenter” have a relation
in which “Karen Carpenter” is a sibling’s grandchild
in relation to “Carpenters” over the tree structure.
The latter elements in this relation tends to be a con-
stituent part of the other element in the relation. We
can say that the model can capture dependencies by
dealing with anchor texts that depend on each other
as cliques. Based on the observations as above, we
treat a pair of anchor texts as cliques which satisfy
the condtions in Figure 1.

<UL>

<LI>

<A>

<LI> <LI>

<A>

<A>

<UL><A>

Dillard & 
Clark

country 
rock

Carpenters

Karen 
Carpenter

Sibling Cousin

Relative

�Dillard & Clark ……

…country rock…

�Carpenters

�Karen Carpenter

Figure 2: Correspondence between tree structure
and defined cliques.

Now, we define the three sorts of edges given an
HTML tree. Consider an HTML tree T HTML =
(V T , ET ), where V T and ET are nodes and edges
over the tree. Let d(vTi , vTj ) be the number of edges
between vTi and vTj where vTi , vTj ∈ V T , pa(vTi , k)
be k-th generation ancestor of vTi , ch(vTi , k) be
vTi ’s k-th child, ca(vTi , vTj ) be a common ances-
tor of vTi , vTj ∈ V T . Precise definitions of cliques,
namely Sibling, Cousin, and Relative, are given in
Figure 1. A set of cliques used in our graph-based
CRFs are edges defined in Figure 1 and vertices, i.e.
C = ES ∪ EC ∪ ER ∪ V . Note that they are re-
stricted to pairs of the nearest vertices to keep the
graph simple.

3.2 Model

We introduce potential functions for cliques to de-
fine conditional probability distribution over CRFs.
Conditional distribution over label set y given ob-
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servation set x is defined as:

p(y|x) =
1

Z(x)

⎛
⎝ ∏

(vi,vj)∈ES∪EC∪ER

ΦSCR(yi, yj)

⎞
⎠

⎛
⎝∏

vi∈V

ΦV (yi,x)

⎞
⎠ (3)

where ΦSCR(yi, yj) is the potential over sibling,
cousin and relative edges, ΦV (yi,x) is the potential
over the nodes, and Z(x) is the partition function.
The potentials ΦSCR(yi, yj) and ΦV (yi,x) factor-
ize according to the features fk and weights λk as:

ΦSCR (yi, yj) = exp

(∑
k

λkfk(yi, yj)

)
(4)

ΦV (yi,x) = exp

(∑
k′

λk′fk′(yi,x)

)
(5)

fk(yi, yj) captures co-occurrences between labels,
where k ∈ {(yi, yj)|Y × Y} corresponds to the par-
ticular element of the Cartesian product of the label
set Y . fk′(yi,x) captures co-occurrences between
label yi ∈ Y and observation features, where k′ cor-
responds to the particular element of the label set
and observed features.

The weights of a CRF, Λ = {λk, . . . , λk′ , . . .}
are estimated to maximize the conditional log-
likelihood of the graph in a training dataset
D = {〈x(1), y(1)〉, 〈x(2), y(2)〉, . . . , 〈x(N), y(N)〉}
The log-likelihood function can be defined as fol-
lows:

Lλ =
N∑

d=1

[
∑

(vi,vj)∈E
(d)
S ∪E

(d)
C ∪E

(d)
R

∑
k

λkfk(yi, yj)

+
∑

vi∈V (d)

∑
k′

λk′fk′(yi,x
(d))− logZ(x(d))]

−
∑

k

λ2
k

2σ2
−
∑
k′

λ2
k′

2σ2
(6)

where the last two terms are due to the Gaussian
prior (Chen and Rosenfeld, 1999) used to reduce
overfitting. Quasi-Newton methods, such as L-
BFGS (Liu and Nocedal, 1989) can be used for max-
imizing the function.

3.3 Tree-based Reparameterization

Since the proposed model may include loops, it is
necessary to introduce an approximation to calculate
mariginal probabilities. For this, we use Tree-based
Reparameterization (TRP) (Wainwright et al., 2003)
for approximate inference. TRP enumerates a set of
spanning trees from the graph. Then, inference is
performed by applying an exact inference algorithm
such as Belief Propagation to each of the spanning
trees, and updates of marginal probabilities are con-
tinued until they converge.

4 Experiments

4.1 Dataset

Our dataset is a random selection of 2300 articles
from the Japanese version of Wikipedia as of Octo-
ber 2005. All anchor texts appearing under HTML
<LI> tags are hand-annotated with NE class la-
bel. We use the Extended Named Entity Hierar-
chy (Sekine et al., 2002) as the NE class labeling
guideline, but reduce the number of classes to 13
from the original 200+ by ignoring fine-grained cat-
egories and nearby categories in order to avoid data
sparseness. We eliminate examples that consist of
less than two nodes in the SCR model. There are
16136 anchor texts with 14285 NEs. The number
of Sibling, Cousin and Relative edges in the dataset
are |ES | = 4925, |EC | = 13134 and |ER| = 746
respectively.

4.2 Experimental settings

The aims of experiments are the two-fold. Firstly,
we investigate the effect of each cliques. The sev-
eral graphs are composed with the three sorts of
edges. We also compare the graph-based models
with a node-wise method – just MaxEnt method not
using any edge dependency. Secondly, we com-
pare the proposed method by CRFs with a baseline
method by Support Vector Machines (SVMs) (Vap-
nik, 1998).

The experimental settings of CRFs and SVMs are
as follows.

CRFs In order to investigate which type of clique
boosts classification performance, we perform ex-
periments on several CRFs models that are con-
structed from combinations of defined cliques. Re-
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SCR SC SR CR
# of loopy examples 318 (36%) 324 (32%) 101 (1%) 42 (2%)
# of linear chain or tree examples 555 (64%) 631 (62%) 2883 (27%) 1464 (54%)
# of one node examples 0 (0%) 60 (6%) 7800 (72%) 1176 (44%)
# of total examples 873 1015 10784 2682
average # of nodes per example 18.5 15.8 1.5 6.0

S C R I
# of loopy examples 0 (0%) 0 (0%) 0 (0%) 0 (0%)
# of linear chain or tree examples 2913 (26%) 1631 (54%) 237 (2%) 0 (0%)
# of one node examples 8298 (74%) 1380 (46%) 15153 (98%) 16136 (100%)
# of total examples 11211 3011 15390 16136
average # of nodes per example 1.4 5.4 1.05 1

Table 1: The dataset details constructed from each model.

sulting models of CRFs evaluated on this experi-
ments are SCR, SC, SR, CR, S, C, R and I (indepen-
dent). Figure 3 shows representative graphs of the
eight models. When the graph are disconnected by
reducing the edges, the classification is performed
on each connected subgraph. We call it an example.
We name the examples according the graph struc-
ture: ”loopy examples” are subgraphs including at
least one cycle; ”linear chain or tree examples” are
subgraphs including not a cycle but at least an edge;
”one node examples” are subgraphs without edges.
Table 1 shows the distribution of the examples of
each model. Since SCR, SC, SR and CR model have
loopy examples, TRP approximate inference is nec-
essary. To perform training and testing with CRFs,
we use GRMM (Sutton, 2006) with TRP. We set the
Gaussian Prior variances for weights as σ2 = 10 in
all models.
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Figure 3: An example of graphs constructed by
combination of defined cliques. S, C, R in the
model names mean that corresponding model has
Sibling, Cousin, Relative cliques respectively. In
each model, classification is performed on each con-
nected subgraph.

SVMs We introduce two models by SVMs (model
I and model P). In model I, each anchor text is clas-
sified independently. In model P, we ordered the
anchor texts in a linear-chain sequence. Then, we
perform a history-based classification along the se-
quence, in which j − 1-th classification result is
used in j-th classification. We use TinySVM with
a linear-kernel. One-versus-rest method is used for
multi-class classification. To perform training and
testing with SVMs, we use TinySVM 2 with a linear-
kernel, and one-versus-rest is used for multi-class
classification. We used the cost of constraint vio-
lation C = 1.

Features for CRFs and SVMs The features used
in the classification with CRFs and SVMs are shown
in Table 2. Japanese morphological analyzer MeCab
3 is used to obtain morphemes.

4.3 Evaluation

We evaluate the models by 5 fold cross-validation.
Since the number of examples are different in each
model, the datasets are divided taking the examples
– namely, connected subgraphs – in SCR model.
The size of divided five sub-data are roughly equal.
We evaluate per-class and total extraction perfor-
mance by F1-value.

4.4 Results and discussion

Table 3 shows the classification accuracy of each
model. The second column “N” stands for the num-
ber of nodes in the gold data. The second last row
“ALL” stands for the F1-value of all NE classes.

2http://www.chasen.org/˜taku/software/
TinySVM/

3http://mecab.sourceforge.net/
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types feature SVMs CRFs
observation definition (bag-of-words)

√ √
(V )

features heading of articles
√ √

(V )
heading of articles (morphemes)

√ √
(V )

categories articles
√ √

(V )
categories articles (morphemes)

√ √
(V )

anchor texts
√ √

(V )
anchor texts (morphemes)

√ √
(V )

parent tags of anchor texts
√ √

(V )
text included in the last header of anchor texts

√ √
(V )

text included in the last header of anchor texts(morphemes)
√ √

(V )
label features between-label feature

√
(S, C, R)

previous label
√

Table 2: Features used in experiments. ”
√

” means that the corresponding features are used in classification.
The V , S, C and R in CRFs column corresponds to the node, sibling edges, cousin edges and relative edges
respectively.

CRFs SVMs
NE CLASS N C CR I R S SC SCR SR I P
PERSON 3315 .7419 .7429 .7453 .7458 .7507 .7533 .7981 .7515 .7383 .7386
TIMEX/NUMEX 2749 .9936 .9944 .9940 .9936 .9938 .9931 .9933 .9940 .9933 .9935
FACILITY 2449 .8546 .8541 .8540 .8516 .8500 .8530 .8495 .8495 .8504 .8560
PRODUCT 1664 .7414 .7540 .7164 .7208 .7130 .7371 .7418 .7187 .7154 .7135
LOCATION 1480 .7265 .7239 .6989 .7048 .6974 .7210 .7232 .7033 .7022 .7132
NATURAL OBJECTS 1132 .3333 .3422 .3476 .3513 .3547 .3294 .3304 .3316 .3670 .3326
ORGANIZATION 991 .7122 .7160 .7100 .7073 .7122 .6961 .5580 .7109 .7141 .7180
VOCATION 303 .9088 .9050 .9075 .9059 .9150 .9122 .9100 .9186 .9091 .9069
EVENT 121 .2740 .2345 .2533 .2667 .2800 .2740 .2759 .2667 .3418 .3500
TITLE 42 .1702 .0889 .2800 .2800 .3462 .2083 .1277 .3462 .2593 .2642
NAME OTHER 24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0690 .0000
UNIT 15 .2353 .1250 .2353 .2353 .2353 .1250 .1250 .2353 .3333 .3158
ALL 14285 .7846 .7862 .7806 .7814 .7817 .7856 .7854 .7823 .7790 .7798
ALL (no articles) 3898 .5476 .5495 .5249 .5274 .5272 .5484 .5465 .5224 .5278 .5386

Table 3: Comparison of F1-values of CRFs and SVMs.
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The last row “ALL (no article)” stands for the F1-
value of all NE classes which have no gloss texts in
Wikipedia.

Relational vs. Independent Among the models
constructed by combination of defined cliques, the
best F1-value is achieved by CR model, followed by
SC, SCR, C, SR, S, R and I. We performed McNe-
mar paired test on labeling disagreements between
CR model of CRFs and I model of CRFs. The
difference was significant (p < 0.01). These re-
sults show that considering dependencies work pos-
itively in obtaining better accuracy than classify-
ing independently. The Cousin cliques provide the
highest accuracy improvement among the three de-
fined cliques. The reason may be that the Cousin
cliques appear frequently in comparison with the
other cliques, and also possess strong dependencies
among anchor texts. As for PERSON, better accu-
racy is achieved in SC and SCR models. In fact,
the PERSON-PERSON pairs frequently appear in
Sibling cliques (435 out of 4925) and in Cousin
cliques (2557 out of 13125) in the dataset. Also, as
for PRODUCT and LOCATION, better accuracy is
achieved in the models that contain Cousin cliques
(C, CR, SC and SCR model). 1072 PRODUCT-
PRODUCT pairs and 738 LOCATION-LOCATION
pairs appear in Cousin cliques. “All (no article)”
row in Table 3 shows the F1-value of nodes which
have no gloss texts. The F1-value difference be-
tween CR and I model of CRF in “ALL (no article)”
row is larger than the difference in “All” row. The
fact means that the dependency information helps to
extract NEs without gloss texts in Wikipedia. We
attempted a different parameter tying in which the
SCR potential functions are tied with a particular ob-
servation feature. This parameter tying is introduced
by Ghamrawi and McCallum (2005). However, we
did not get any improved accuracy.

CRFs vs. SVMs The best model of CRFs (CR
model) outperforms the best model of SVMs (P
model). We performed McNemar paired test on la-
beling disagreements between CR model of CRFs
and P model of SVMs. The difference was signifi-
cant (p < 0.01). In the classes having larger num-
ber of examples, models of CRFs achieve better F1-
values than models of SVMs. However, in several
classes having smaller number of examples such as
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Figure 4: Precision-Recall curve obtained by vary-
ing the threshold τ of marginal probability from 1.0
to 0.0.

EVENT and UNIT, models of SVMs achieve signif-
icantly better F1-values than models of CRFs.

Filtering NE Candidates using Marginal Prob-
ability The precision-recall curve obtained by
thresholding the marginal probability of the MAP
estimation in the CR models is shown in Figure 4.
The curve reaches a peak at 0.57 in recall, and the
precision value at that point is 0.97. This preci-
sion and recall values mean that 57% of all NEs can
be classified with approximately 97% accuracy on a
particular thresholding of marginal probability. This
results suggest that the extracted NE candidates can
be filtered with fewer cost by exploiting the marginal
probability.

Training Time The total training times of all
CRFs and SVMs models are shown in Table 4. The
training time tends to increase in case models have
complicated graph structure. For instance, model
SCR has complex graph structure compare to model
I, therefore the SCR’s training time is three times
longer than model I. Training the models by SVMs
are faster than training the models by CRFs. The dif-
ference comes from the implementation issues: C++
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CRFs SVMs
C CR I R S SC SCR SR I P

Training Time (minutes) 207 255 97 90 138 305 316 157 28 29

Table 4: Training Time (minutes)

vs. Java, differences of feature extraction modules,
and so on. So, the comparing these two is not the
important issue in this experiment.

5 Related Work

Wikipedia has become a popular resource for NLP.
Bunescu and Pasca used Wikipedia for detecting and
disambiguating NEs in open domain texts (2006).
Strube and Ponzetto explored the use of Wikipedia
for measuring Semantic Relatedness between two
concepts (2006), and for Coreference Resolution
(2006).

Several CRFs have been explored for informa-
tion extraction from the web. Tang et al. pro-
posed Tree-structured Conditional Random Fields
(TCRFs) (2006) that capture hierarchical structure
of web documents. Zhu et al. proposed Hierar-
chical Conditional Random Fields (HCRFs) (2006)
for product information extraction from Web docu-
ments. TCRFs and HCRFs are similar to our ap-
proach described in section 4 in that the model struc-
ture is induced by page structure. However, the
model structures of these models are different from
our model.

There are statistical models that capture depen-
dencies between examples. There are two types of
classification approaches: iterative (Lu and Getoor,
2003b; Lu and Getoor, 2003a) or collective (Getoor
et al., 2001; Taskar et al., 2002). Lu et al. (2003a;
2003b) proposed link-based classification method
based on logistic regression. This model iterates lo-
cal classification until label assignments converge.
The results vary from the ordering strategy of lo-
cal classification. In contrast to iterative classifica-
tion methods, collective classification methods di-
rectly estimate most likely assignments. Getoor
et al. proposed Probabilistic Relational Models
(PRMs) (2001) which are built upon Bayesian Net-
works. Since Bayesian Networks are directed graph-
ical models, PRMs cannot model directly the cases
where instantiated graph contains cycles. Taskar et
al. proposed Relational Markov Networks (RMNs)

(2002). RMNs are the special case of Conditional
Markov Networks (or Conditional Random Fields)
in which graph structure and parameter tying are de-
termined by SQL-like form.

As for the marginal probability to use as a confi-
dence measure shown in Figure 4, Peng et al. (2004)
has applied linear-chain CRFs to Chinese word seg-
mentation. It is calculated by constrained forward-
backward algorithm (Culotta and McCallum, 2004),
and confident segments are added to the dictionary
in order to improve segmentation accuracy.

6 Conclusion

In this paper, we proposed a method for categorizing
NEs in Wikipedia. We defined three types of cliques
that are constitute dependent anchor texts in con-
struct CRFs graph structure, and introduced poten-
tial functions for them to reflect classification. The
experimental results show that the effectiveness of
capturing dependencies, and proposed CRFs model
can achieve significant improvements compare to
baseline methods with SVMs. The results also show
that the dependency information from the HTML
tree helps to categorize entities without gloss texts
in Wikipedia. The marginal probability of MAP as-
signments can be used as confidence measure of the
entity categorization. We can control the precision
by filtering the confidence measure as PR curve in
Figure 4. The measure can be also used as a con-
fidence estimator in active learning in CRFs (Kim
et al., 2006), where examples with the most uncer-
tainty are selected for presentation to human anno-
tators.

In future research, we plan to explore NE catego-
rization with more fine-grained label set. For NLP
applications such as QA, NE dictionary with fine-
grained label sets will be a useful resource. How-
ever, generally, classification with statistical meth-
ods becomes difficult in case that the label set is
large, because of the insufficient positive examples.
It is an issue to be resolved in the future.
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Abstract

We introduce a technique for identifying the
most salient participants in a discussion. Our
method, MavenRank is based on lexical cen-
trality: a random walk is performed on a
graph in which each node is a participant in
the discussion and an edge links two partici-
pants who use similar rhetoric. As a test, we
used MavenRank to identify the most influ-
ential members of the US Senate using data
from the US Congressional Record and used
committee ranking to evaluate the output.
Our results show that MavenRank scores are
largely driven by committee status in most
topics, but can capture speaker centrality in
topics where speeches are used to indicate
ideological position instead of influence leg-
islation.

1 Introduction

In a conversation or debate between a group of
people, we can think of two remarks as interact-
ing if they are both comments on the same topic.
For example, if one speaker says “taxes should
be lowered to help business,” while another argues
“taxes should be raised to support our schools,” the
speeches are interacting with each other by describ-
ing the same issue. In a debate with many people
arguing about many different things, we could imag-
ine a large network of speeches interacting with each
other in the same way. If we associate each speech
in the network with its speaker, we can try to iden-
tify the most important people in the debate based
on how central their speeches are in the network.

To describe this type of centrality, we borrow a
term from The Tipping Point (Gladwell, 2002), in
which Gladwell describes a certain type of person-
ality in a social network called a maven. A maven
is a trusted expert in a specific field who influences
other people by passing information and advice. In
this paper, our goal is to identify authoritative speak-
ers who control the spread of ideas within a topic. To
do this, we introduce MavenRank, which measures
the centrality of speeches as nodes in the type of net-
work described in the previous paragraph.

Significant research has been done in the area
of identifying central nodes in a network. Vari-
ous methods exist for measuring centrality, includ-
ing degree centrality, closeness, betweenness (Free-
man, 1977; Newman, 2003), and eigenvector cen-
trality. Eigenvector centrality in particular has
been successfully applied to many different types
of networks, including hyperlinked web pages (Brin
and Page, 1998; Kleinberg, 1998), lexical net-
works (Erkan and Radev, 2004; Mihalcea and Ta-
rau, 2004; Kurland and Lee, 2005; Kurland and
Lee, 2006), and semantic networks (Mihalcea et al.,
2004). The authors of (Lin and Kan, 2007) extended
these methods to include timestamped graphs where
nodes are added over time and applied it to multi-
document summarization. In (Tong and Faloutsos,
2006), the authors use random walks on a graph as
a method for finding a subgraph that best connects
some or all of a set of query nodes. In our paper,
we introduce a new application of eigenvector cen-
trality for identifying the central speakers in the type
of debate or conversation network described above.
Our method is based on the one described in (Erkan
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and Radev, 2004) and (Mihalcea and Tarau, 2004),
but modified to rank speakers instead of documents
or sentences.

In our paper, we apply our method to analyze the
US Congressional Record, which is a verbatim tran-
script of speeches given in the United States House
of Representatives and Senate. The Record is a
dense corpus of speeches made by a large number
of people over a long period of time. Using the tran-
scripts of political speeches adds an extra layer of
meaning onto the measure of speaker centrality. The
centrality of speakers in Congress can be thought of
as a measure of relative importance or influence in
the US legislative process. We can also use speaker
centrality to analyze committee membership: are the
central speakers on a given issue ranking members
of a related committee? Is there a type of impor-
tance captured through speaker centrality that isn’t
obvious in the natural committee rankings?

There has been growing interest in using tech-
niques from natural language processing in the area
of political science. In (Porter et al., 2005) the
authors performed a network analysis of members
and committees of the US House of Representatives.
They found connections between certain commit-
tees and political positions that suggest that com-
mittee membership is not determined at random.
In (Thomas et al., 2006), the authors use the tran-
scripts of debates from the US Congress to auto-
matically classify speeches as supporting or oppos-
ing a given topic by taking advantage of the vot-
ing records of the speakers. In (Wang et al., 2005),
the authors use a generative model to simultane-
ously discover groups of voters and topics using
the voting records and the text from bills of the
US Senate and the United Nations. The authors
of (Quinn et al., 2006) introduce a multinomial mix-
ture model to perform unsupervised clustering of
Congressional speech documents into topically re-
lated categories. We rely on the output of this model
to cluster the speeches from the Record in order to
compare speaker rankings within a topic to related
committees.

We take advantage of the natural measures of
prestige in Senate committees and use them as a
standard for comparison with MavenRank. Our hy-
pothesis is that MavenRank centrality will capture
the importance of speakers based on the natural

committee rankings and seniority. We can test this
claim by clustering speeches into topics and then
mapping the topics to related committees. If the hy-
pothesis is correct, then the speaker centrality should
be correlated with the natural committee rankings.

There have been other attempts to link floor par-
ticipation with topics in political science. In (Hall,
1996), the author found that serving on a commit-
tee can positively predict participation in Congress,
but that seniority was not a good predictor. His
measure only looked at six bills in three commit-
tees, so his method is by far not as comprehensive
as the one that we present here. Our approach with
MavenRank differs from previous work by provid-
ing a large scale analysis of speaker centrality and
bringing natural language processing techniques to
the realm of political science.

2 Data

2.1 The US Congressional Speech Corpus

The text used in the experiments is from the United
States Congressional Speech corpus (Monroe et
al., 2006), which is an XML formatted version of
the electronic United States Congressional Record
from the Library of Congress1. The Congressional
Record is a verbatim transcript of the speeches made
in the US House of Representatives and Senate be-
ginning with the 101st Congress in 1998 and in-
cludes tens of thousands of speeches per year. In
our experiments we focused on the records from the
105th and 106th Senates. The basic unit of the US
Congressional Speech corpus is a record, which cor-
responds to a single subsection of the print version
of the Congressional Record and may contain zero
or more speakers. Each paragraph of text within
a record is tagged as either speech or non-speech
and each paragraph of speech text is tagged with the
unique id of the speaker. Figure 1 shows an example
record file for the sixth record on July 14th, 1997 in
the 105th Senate.

In our experiments we use a smaller unit of anal-
ysis called a speech document by taking all of the
text of a speaker within a single record. The cap-
italization and punctuation is then removed from
the text as in (Monroe et al., 2006) and then the

1http://thomas.loc.gov
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text stemmed using Porter’s Snowball II stemmer2.
Figure 1 shows an example speech document for
speaker 15703 (Herb Kohl of Wisconsin) that has
been generated from the record in Figure 1.

In addition to speech documents, we also use
speaker documents. A speaker document is the
concatenation of all of a speaker’s speech docu-
ments within a single session and topic (so a sin-
gle speaker may have multiple speaker documents
across topics). For example within the 105th Senate
in topic 1 (“Judicial Nominations”), Senator Kohl
has four speech documents, so the speaker document
attributed to him within this session and topic would
be the text of these four documents treated as a sin-
gle unit. The order of the concatenation does not
matter since we will look at it as a vector of weighted
term frequencies (see Section 3.2).

2.2 Topic Clusters
We used the direct output of the 42-topic model of
the 105th-108th Senates from (Quinn et al., 2006)
to further divide the speech documents into topic
clusters. In their paper, they use a model where the
probabilities of a document belonging to a certain
topic varies smoothly over time and the words within
a given document have exactly the same probabil-
ity of being drawn from a particular topic. These
two properties make the model different than stan-
dard mixture models (McLachlan and Peel, 2000)
and the latent Dirichlet allocation model of (Blei et
al., 2003). The model of (Quinn et al., 2006) is most
closely related to the model of (Blei and Lafferty,
2006), who present a generalization of the model
used by (Quinn et al., 2006). Table 1 lists the 42
topics and their related committees.

The output from the topic model is a D × 42 ma-
trix Z where D is the number of speech documents
and the element zdk represents the probability of the
dth speech document being generated by topic k.
We clustered the speech documents by assigning a
speech document d to the kth cluster where

k = arg max
j

zdj .

If the maximum value is not unique, we arbitrarily
assign d to the lowest numbered cluster where zdj is

2http://snowball.tartarus.org/
algorithms/english/stemmer.html

a maximum. A typical topic cluster contains several
hundred speech documents, while some of the larger
topic clusters contain several thousand.

2.3 Committee Membership Information
The committee membership information that we
used in the experiments is from Stewart and
Woon’s committee assignment codebook (Stewart
and Woon, 2005). This provided us with a roster
for each committee and rank and seniority informa-
tion for each member. In our experiments we use
the rank within party and committee seniority mem-
ber attributes to test the output of our pipeline. The
rank within party attribute orders the members of a
committee based on the Resolution that appointed
the members with the highest ranking members hav-
ing the lowest number. The chair and ranking mem-
bers always receive a rank of 1 within their party. A
committee member’s committee seniority attribute
corresponds to the number of years that the member
has served on the given committee.

2.4 Mapping Topics to Committees
In order to test our hypothesis that lexical centrality
is correlated with the natural committee rankings,
we needed a map from topics to related commit-
tees. We based our mapping on Senate Rule XXV,3

which defines the committees, and the descriptions
on committee home pages. Table 1 shows the map,
where a topic’s related committees are listed in ital-
ics below the topic name. Because we are matching
short topic names to the complex descriptions given
by Rule XXV, the topic-committee map is not one
to one or even particularly well defined: some top-
ics are mapped to multiple committees, some top-
ics are not mapped to any committees, and two dif-
ferent topics may be mapped to the same commit-
tee. This is not a major problem because even if a
one to one map between topics and committees ex-
isted, speakers from outside a topic’s related com-
mittee are free to participate in the topic simply by
giving a speech. Therefore there is no way to rank
all speakers in a topic using committee information.
To test our hypotheses, we focused our attention on
topics that have at least one related committee. In
Section 4.3 we describe how the MavenRank scores

3http://rules.senate.gov/senaterules/
rule25.php
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<?xml version="1.0" standalone="no"?>
<!DOCTYPE RECORD SYSTEM "record.dtd">
<RECORD>

<HEADER>
<CHAMBER>Senate</CHAMBER>
<TITLE>NOMINATION OF JOEL KLEIN TO BE ASSISTANT ATTORNEY
GENERAL IN CHARGE OF THE ANTITRUST DIVISION </TITLE>
<DATE>19970714</DATE>

</HEADER>
<BODY>

<GRAF>
<PAGEREF></PAGEREF>
<SPEAKER>NULL</SPEAKER>
<NONSPEECH>NOMINATION OF JOEL KLEIN TO BE ASSISTANT
ATTORNEY GENERAL IN CHARGE OF THE ANTITRUST DIVISION
(Senate - July 14, 1997)</NONSPEECH>

</GRAF>
<GRAF>

<PAGEREF>S7413</PAGEREF>
<SPEAKER>15703</SPEAKER>
<SPEECH> Mr. President, as the ranking Democrat on the
Antitrust Subcommittee, let me tell you why I support Mr.
Klein’s nomination, why he is a good choice for the job,
and why we ought to confirm him today.
</SPEECH>

</GRAF>
. . .
<GRAF>

<PAGEREF>S7414</PAGEREF>
<SPEAKER>UNK1</SPEAKER>
<SPEECH> Without objection, it is so ordered. </SPEECH>

</GRAF>
</BODY>

</RECORD>

mr presid a the rank democrat on the antitrust subcommitte
let me tell you why i support mr klein nomin why he i a
good choic for the job and why we ought to confirm him
todai
first joel klein i an accomplish lawyer with a distinguish
career he graduat from columbia univers and harvard law
school and clerk for the u court of appeal here in
washington then for justic powel just a importantli he i
the presid choic to head the antitrust divis and i believ
that ani presid democrat or republican i entitl to a strong
presumpt in favor of hi execut branch nomine second joel
klein i a pragmatist not an idealogu hi answer at hi confirm
hear suggest that he i not antibusi a some would claim the
antitrust divis wa in the late 1970 nor anticonsum a some
argu the divis wa dure the 1980 instead he will plot a middl
cours i believ that promot free market fair competit and
consum welfar
the third reason we should confirm joel klein i becaus no on
deserv to linger in thi type of legisl limbo here in congress
we need the input of a confirm head of the antitrust divis
to give u the administr view on a varieti of import polici
matter defens consolid electr deregul and telecommun merger
among other we need someon who can speak with author for the
divis without a cloud hang over hi head
more than that without a confirm leader moral at the
antitrust divis i suffer and given the pace at which the
presid ha nomin and the senat ha confirm appointe if we fail
to approv mr klein it will be at least a year befor we confirm
a replac mayb longer and mayb never so we need to act now we
can’t afford to let the antitrust divis continu to drift
final mr presid i have great respect for the senat from south
carolina a well a the senat from nebraska and north dakota
thei have been forc advoc for consum on telecommun matter and
. . .

Figure 1: A sample of the text from record 105.sen.19970714.006.xml and the speech document for Senator
Herb Kohl of Wisconsin (id 15703) generated from it. The “. . . ” represents omitted text.

1 Judicial Nominations 15 Health 2 (Economics - Seniors) 27 Procedural 1 (Housekeeping 1)
Judiciary Health, Education, Labor, and Pensions 28 Procedural 2 (Housekeeping 2)

2 Law & Crime 1 (Violence / Drugs) Veterans’ Affairs 29 Campaign Finance
Judiciary Agriculture, Nutrition, and Forestry Rules and Administration

3 Banking / Finance Aging (Special Committee) 30 Law & Crime 2 (Federal)
Banking, Housing, and Urban Affairs Finance Judiciary

4 Armed Forces 1 (Manpower) 16 Gordon Smith re Hate Crime 31 Child Protection
Armed Services 17 Debt / Deficit / Social Security Health, Education, Labor, and Pensions

5 Armed Forces 2 (Infrastructure) Appropriations Agriculture, Nutrition, and Forestry
Armed Services Budget 32 Labor 1 (Workers, esp. Retirement)

6 Symbolic (Tribute - Living) Finance Health, Education, Labor, and Pensions
7 Symbolic (Congratulations - Sports) Aging (Special Committee) Aging (Special Committee)
8 Energy 18 Supreme Court / Constitutional Small Business and Entrepreneurship

Energy and Natural Resources Judiciary 33 Environment 2 (Regulation)
9 Defense (Use of Force) 19 Commercial Infrastructure Environment and Public Works

Armed Services Commerce, Science, and Transportation Agriculture, Nutrition, and Forestry
Homeland Security and Governmental Affairs 20 Symbolic (Remembrance - Military) Energy and Natural Resources
Intelligence (Select Committee) 21 International Affairs (Diplomacy) 34 Procedural 3 (Legislation 1)

10 Jesse Helms re Debt Foreign Relations 35 Procedural 4 (Legislation 2)
11 Environment 1 (Public Lands) 22 Abortion 36 Procedural 5 (Housekeeping 3)

Energy and Natural Resources Judiciary 37 Procedural 6 (Housekeeping 4)
Agriculture, Nutrition, and Forestry Health, Education, Labor, and Pensions 38 Taxes

12 Health 1 (Medical) 23 Symbolic (Tribute - Constituent) Finance
Health, Education, Labor, and Pensions 24 Agriculture 39 Symbolic (Remembrance - Nonmilitary)

13 International Affairs (Arms Control) Agriculture, Nutrition, and Forestry 40 Labor 2 (Employment)
Foreign Relations 25 Intelligence Health, Education, Labor, and Pensions

14 Social Welfare Intelligence (Select Committee) Small Business and Entrepreneurship
Agriculture, Nutrition, and Forestry Homeland Security and Governmental Affairs 41 Foreign Trade
Banking, Housing, and Urban Affairs 26 Health 3 (Economics - General) Finance
Health, Education, Labor, and Pensions Health, Education, Labor, and Pensions Banking, Housing, and Urban Affairs
Finance Finance 42 Education

Health, Education, Labor, and Pensions

Table 1: The numbers and names of the 42 topics from (Quinn et al., 2006) with our mappings to related
committees (listed below the topic name, if available).

661



of speakers who are not members of related commit-
tees were taken into account when we measured the
rank correlations.

3 MavenRank and Lexical Similarity

The following sections describe MavenRank, a mea-
sure of speaker centrality, and tf-idf cosine similar-
ity, which is used to measure the lexical similarity of
speeches.

3.1 MavenRank

MavenRank is a graph-based method for finding
speaker centrality. It is similar to the methods
in (Erkan and Radev, 2004; Mihalcea and Tarau,
2004; Kurland and Lee, 2005), which can be used
for ranking sentences in extractive summaries and
documents in an information retrieval system. Given
a collection of speeches s1, . . . , sN and a measure
of lexical similarity between pairs sim(si, sj) ≥ 0,
a similarity graph can be constructed. The nodes
of the graph represent the speeches and a weighted
similarity edge is placed between pairs that exceed
a similarity threshold smin. MavenRank is based on
the premise that important speakers will have cen-
tral speeches in the graph, and that central speeches
should be similar to other central speeches. A recur-
sive explanation of this concept is that the score of
a speech should be proportional to the scores of its
similar neighbors.

Given a speech s in the graph, we can express the
recursive definition of its score p(s) as

p(s) =
∑

t∈adj[s]

p(t)
wdeg(t)

(1)

where adj[s] is the set of all speeches adjacent to
s and wdeg(t) =

∑
u∈adj[t] sim(t, u), the weighted

degree of t. Equation (1) captures the idea that the
MavenRank score of a speech is distributed to its
neighbors. We can rewrite this using matrix notation
as

p = pB (2)

where p = (p(s1), p(s2), . . . , p(sN )) and the ma-
trix B is the row normalized similarity matrix of the
graph

B(i, j) =
S(i, j)∑
k S(i, k)

(3)

where S(i, j) = sim(si, sj). Equation (2) shows
that the vector of MavenRank scores p is the left
eigenvector of B with eigenvalue 1.

We can prove that the eigenvector p exists by us-
ing a techinque from (Page et al., 1999). We can
treat the matrix B as a Markov chain describing
the transition probabilities of a random walk on the
speech similarity graph. The vector p then repre-
sents the stationary distribution of the random walk.
It is possible that some parts of the graph are dis-
connected or that the walk gets trapped in a com-
ponent. These problems are solved by reserving
a small escape probability at each node that repre-
sents a chance of jumping to any node in the graph,
making the Markov chain irreducible and aperiodic,
which guarantees the existence of the eigenvector.
Assuming a uniform escape probability for each
node on the graph, we can rewrite Equation (2) as

p = p[dU + (1− d)B] (4)

where U is a square matrix with U(i, j) = 1/N
for all i and j, N is the number of nodes, and
d is the escape probability chosen in the interval
[0.1, 0.2] (Brin and Page, 1998). Equation (4) is
known as PageRank (Page et al., 1999) and is used
for determining prestige on the web in the Google
search engine.

3.2 Lexical Similarity
In our experiments, we used tf-idf cosine similarity
to measure lexical similarity between speech docu-
ments. We represent each speech document as a vec-
tor of term frequencies (or tf), which are weighted
according to the relative importance of the given
term in the cluster. The terms are weighted by their
inverse document frequency or idf. The idf of a term
w is given by (Sparck-Jones, 1972)

idf(w) = log
(

N

nw

)
(5)

where N is the number of documents in the corpus
and nw is the number of documents in the corpus
containing the term w. It follows that very common
words like “of” or “the” have a very low idf, while
the idf values of rare words are higher. In our experi-
ments, we calculated the idf values for each topic us-
ing all speech documents across sessions within the
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Figure 2: MavenRank percentiles for three speakers
over four topics.

given topic. We calculated topic-specific idf values
because some words may be relatively unimportant
in one topic, but important in another. For example,
in topic 22 (“Abortion”), the idf of the term “abort”
is near 0.20, while in topic 38 (“Taxes”), its idf is
near 7.18.

The tf-idf cosine similarity measure
tf-idf-cosine(u, v) is defined as

P
w∈u,v tfu(w) tfv(w) idf(w)2√P

w∈u(tfu(w) idf(w))2
√P

w∈v(tfv(w) idf(w))2
, (6)

which is the cosine of the angle between the tf-idf
vectors.

There are other alternatives to tf-idf cosine sim-
ilarity. Some other possible similarity measures
are document edit distance, the language models
from (Kurland and Lee, 2005), or generation proba-
bilities from (Erkan, 2006). For simplicity, we only
used tf-idf similarities in our experiments, but any of
these measures could be used in this case.

4 Experiments and Results

4.1 Data
We used the topic clusters from the 105th Senate
as training data to adjust the parameter smin and
observe trends in the data. We did not run experi-
ments to test the effect of different values of smin on
MavenRank scores, but our chosen value of 0.25 has
shown to give acceptable results in similar experi-
ments (Erkan and Radev, 2004). We used the topic
clusters from the 106th Senate as test data. For the
speech document networks, there was an average of

351 nodes (speech documents) and 2142 edges per
topic. For the speaker document networks, there was
an average of 63 nodes (speakers) and 545 edges per
topic.

4.2 Experimental Setup
We set up a pipeline using a Perl implementation
of tf-idf cosine similarity and MavenRank. We ran
MavenRank on the topic clusters and ranked the
speakers based on the output. We used two different
types granularities of the graphs as input: one where
the nodes are speech documents and another where
the nodes are speaker documents (see Section 2.1).
For the speech document graph, a speaker’s score is
determined by the sum of the MavenRank scores of
the speeches given by that speaker.

4.3 Evaluation Methods
To evaluate our output, we estimate independent
ordinary least squares linear regression models of
MavenRank centrality for topics with at least one re-
lated committee (there are 29 total):

MavenRankik = β0k + βskSeniorityik +
+βrkRankingMemberjk + εik (7)

where i indexes Senators, k indexes topics,
Seniorityik is the number of years Senator i has
served on the relevant committee for topic k (value
zero for those not on a relevant committee) and
RankingMemberjk has the value of one only for
the Chair and ranking minority member of a rele-
vant committee. We are interested primarily in the
overall significance of the estimated model (indicat-
ing committee effects) and, secondarily, in the spe-
cific source of any committee effect in seniority or
committee rank.

4.4 Results
Table 2 summarizes the results. “Maven” status on
most topics does appear to be driven by committee
status, as expected. There are particularly strong ef-
fects of seniority and rank in topics tied to the Judi-
ciary, Foreign Relations, and Armed Services com-
mittees, as well as legislation-rich areas of domestic
policy. Perhaps of greater interest are the topics that
do not have committee effects. These are of three
distinct types. The first are highly politicized top-
ics for which speeches are intended not to influence
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Topic p(F )a p(βs > 0)b p(βr > 0)c Topic p(F ) p(βs > 0) p(βr > 0)

Seniority and Ranking Status Both Significant Seniority and Ranking Status Jointly Significant
2 Law & Crime 1 [Violent] < .001 0.016 < .001 26 Health 3 [Economics] 0.001 0.106 0.064

18 Constitutional < .001 0.003 < .001 32 Labor 1 [Workers] 0.007 0.156 0.181
33 Environment 2 [Regulation] 0.007 0.063 0.056

Seniority Significant 3 Banking / Finance 0.042 0.141 0.579
12 Health 1 [Medical] < .001 < .001 0.567
42 Education < .001 < .001 0.337 No Significant Effects of Committee Status
41 Trade < .001 < .001 0.087 11 Environment 1 [Public Lands] 0.104 0.102 0.565
21 Int’l Affairs [Nonmilitary] < .001 0.007 0.338 22 Abortion 0.419 0.609 0.252
9 Defense [Use of Force] 0.002 0.001 0.926 5 Armed Forces 2 [Infrastructure] 0.479 0.267 0.919

19 Commercial Infrastructure 0.007 0.032 0.332 24 Agriculture 0.496 0.643 0.425
40 Labor 2 [Employment] 0.029 0.010 0.114 17 Debt / Social Security 0.502 0.905 0.295
38 Taxes 0.037 0.033 0.895 15 Health 2 [Seniors] 0.706 0.502 0.922

25 Intelligence 0.735 0.489 0.834
Ranking Status Significant 29 Campaign Finance 0.814 0.748 0.560
30 Crime 2 [Federal] < .001 0.334 < .001 31 Child Protection 0.856 0.580 0.718
8 Energy < .001 0.145 < .001
1 Judicial Nominations < .001 0.668 < .001

14 Social Welfare < .001 0.072 0.005
13 Int’l Affairs [Arms] < .001 0.759 0.001
4 Armed Forces 1 [Manpower] 0.007 0.180 0.049

aF-test for joint significance of committee variables.
bT-test for significance of committee seniority.
cT-test for significance of chair or ranking member status.

Table 2: Significance tests for ordinary least squares (OLS) linear regressions of MavenRank scores (Speech-
documents graph) on committee seniority (in years) and ranking status (chair or ranking member), 106th
Senate, topic-by-topic. Results for the speaker-documents graph are similar.

legislation as much as indicate an ideological or par-
tisan position, so the mavens are not on particular
committees (abortion, children, seniors, the econ-
omy). The second are “distributive politics” topics
where many Senators speak to defend state or re-
gional interests, so debate is broadly distributed and
there are no clear mavens (agriculture, military base
closures, public lands). Third are topics where there
are not enough speeches for clear results, because
most debate occurred after 1999-2000 (post-9/11
intelligence reform, McCain-Feingold campaign fi-
nance reform).

Alternative models, using measures of centrality
based on the centroid were also examined. Dis-
tance to centroid provides broadly similar results as
MavenRank, with several marginal significance re-
sults reversed in each direction. Cosine similarity
with centroid, on the other hand, appears to have no
relationship with committee structure.

Figure 2 shows the MavenRank percentiles (us-
ing the speech document network) for Senators Rick
Santorum, Barbara Boxer, and Edward Kennedy
across a few topics in the 106th Senate. These
sample scores conform to the expected rankings for
these speakers. In this session, Santorum was the

sponsor of a bill to ban partial birth abortions and
was a spokesman for Social Security reform, which
support his high ranking in abortion and work-
ers/retirement. Boxer acted as the lead opposition
to Santorum’s abortion bill and is known for her
support of child abuse laws. Kennedy was ranking
member of the Health, Education, Labor, and Pen-
sions committee and the Judiciary committee (which
was involved with the abortion bill).

4.5 MavenRank in Other Contexts
MavenRank is a general method for finding central
speakers in a discussion and can be applied to areas
outside of political science. One potential applica-
tion would be analyzing blog posts to find “Maven”
bloggers by treating blogs as speakers and posts as
speeches. Similarly, MavenRank could be used to
find central participants in a newsgroup, a forum, or
a collection of email conversations.

5 Conclusion

We have presented a technique for identifying lexi-
cally central speakers using a graph based method
called MavenRank. To test our method for find-
ing central speakers, we analyzed the Congressional
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Record by creating a map from the clusters of
speeches to Senate committees and comparing the
natural ranking committee members to the output of
MavenRank. We found evidence of a possible rela-
tionship between the lexical centrality and commit-
tee rank of a speaker by ranking the speeches us-
ing MavenRank and computing the rank correlation
with the natural ordering of speakers. Some spe-
cific committees disagreed with our hypothesis that
MavenRank and committee position are correlated,
which we propose is because of the non-legislative
aspects of those specific committees. The results
of our experiment suggest that MavenRank can in-
deed be used to find central speakers in a corpus of
speeches.

We are currently working on applying our meth-
ods to the US House of Representatives and other
records of parliamentary speech from the United
Kingdom and Australia. We have also developed a
dynamic version of MavenRank that takes time into
account when finding lexical centrality and plan on
using it with the various parliamentary records. We
are interested in dynamic MavenRank to go further
with the idea of tracking how ideas get propagated
through a network of debates, including congres-
sional records, blogs, and newsgroups.
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Abstract

One may need to build a statistical parser for a new language,
using only a very small labeled treebank together with raw
text. We argue that bootstrapping a parser is most promising
when the model uses a rich set of redundant features, as in re-
cent models for scoring dependency parses (McDonald et al.,
2005). Drawing on Abney’s (2004) analysis of the Yarowsky
algorithm, we perform bootstrapping by entropy regulariza-
tion: we maximize a linear combination of conditional likeli-
hood on labeled data and confidence (negative Rényi entropy)
on unlabeled data. In initial experiments, this surpassed EM
for training a simple feature-poor generative model, and also
improved the performance of a feature-rich, conditionally esti-
mated model where EM could not easily have been applied. For
our models and training sets, more peaked measures of con-
fidence, measured by Rényi entropy, outperformed smoother
ones. We discuss how our feature set could be extended with
cross-lingual or cross-domain features, to incorporate knowl-
edge from parallel or comparable corpora during bootstrapping.

1 Motivation

In this paper, we address the problem of bootstrap-
ping new statistical parsers for new languages, gen-
res, or domains.

Why is this problem important? Many applica-
tions of multilingual NLP require parsing in order
to extract information, opinions, and answers from
text, and to produce improved translations. Yet
an adequate labeled training corpus—a large tree-
bank of manually constructed parse trees of typi-
cal sentences—is rarely available and would be pro-
hibitively expensive to develop.

We show how it is possible to train instead from
a small hand-labeled treebank in the target domain,
together with a large unannotated collection of in-
domain sentences. Additional resources such as
parsers for other domains or languages can be in-
tegrated naturally.

Dependency parsing is important as a key com-
ponent in leading systems for information extrac-

tion (Weischedel, 2004)1 and question answering
(Peng et al., 2005). These systems rely on edges
or paths in dependency parse trees to define their ex-
traction patterns and classification features. Parsing
is also key to the latest advances in machine transla-
tion, which translate syntactic phrases (Galley et al.,
2006; Marcu et al., 2006; Cowan et al., 2006).

2 Our Approach

Our approach rests on three observations:

• Recent “feature-based” parsing models are an
excellent fit for bootstrapping, because the
parse is often overdetermined by many redun-
dant features.

• The feature-based framework is flexible
enough to incorporate other sources of guid-
ance during training or testing—such as the
knowledge contained in a parser for another
language or domain.

• Maximizing a combination of likelihood on la-
beled data and confidence on unlabeled data is
a principled approach to bootstrapping.

2.1 Feature-Based Parsing
McDonald et al. (2005) introduced a simple, flexi-
ble framework for scoring dependency parses. Each
directed edge e in the dependency tree is described
with a high-dimensional feature vector f(e). The
edge’s score is the dot product f(e) · θ, where θ is a
learned weight vector. The overall score of a depen-
dency tree is the sum of the scores of all edges in the
tree.

1Ralph Weischedel (p.c.) reports that this system’s perfor-
mance degrades considerably when only phrase chunking is
available rather than full parsing.
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Given an n-word input sentence, the parser begins
by scoring each of the O(n2) possible edges, and
then seeks the highest-scoring legal dependency tree
formed by any n− 1 of these edges, using an O(n3)
dynamic programming algorithm (Eisner, 1996) for
projective trees. For non-projective parsing, O(n3),
or with some trickery O(n2), greedy algorithms ex-
ist (Chu and Liu, 1965; Edmonds, 1967; Gabow et
al., 1986).

The feature function f may pay attention to many
properties of the directed edge e. Of course, features
may consider the parent and child words connected
by e, and their parts of speech.2 But some features
used by McDonald et al. (2005) also consider the
parts of speech of words adjacent to the parent and
child, or between the parent and child, as well as the
number of words between the parent and child. In
general, these features are not available in a genera-
tive model such as a PCFG.

Although feature-based models are often trained
purely discriminatively, we will see in §2.6 how to
train them to model conditional probabilities.

2.2 Feature-Based Parsing and Bootstrapping

The above parsing model is robust, thanks to its
many features. On the Penn Treebank WSJ sections
02–21, for example, McDonald’s parser extracts 5.5
million feature types from supervised edges alone,
with about 120 feature tokens firing per edge. The
highest-scoring parse tree represents a consensus
among all features on all prospective edges. Even if
a prospective edge has some discouraging features
(i.e., with negative or zero weights), it may still have
a relatively high score thanks to its other features.
Furthermore, even if the edge has a low total score,
it may still appear in the consensus parse if the al-
ternatives are even worse or are incompatible with
other high-scoring edges.

Put another way, the parser is not able to include
high-scoring features or edges independently of one
another. Selecting a good feature means accepting
all other features on that edge. It also means reject-
ing various other edges, because of the global con-
straints that a legal parse tree must give each word
only one parent and must be free of cycles and, in

2Note that since we are not trying to predict parts of speech,
we treat the output of one or more automatic taggers as yet more
inputs to edge feature functions.

the projective case, crossings.
Our observation is that this situation is ideal for

so-called “bootstrapping,” “co-training,” or “min-
imally supervised” learning methods (Yarowsky,
1995; Blum and Mitchell, 1998; Yarowsky and Wi-
centowski, 2000). Such methods should thrive when
the right answer is overdetermined owing to redun-
dant features and/or global constraints.

Concretely, suppose we start by training a super-
vised parser on only 100 examples, using some reg-
ularization method to prevent overfitting to this set.
While many features might truly be relevant to the
task, only a few appear often enough in this small
training set to acquire significantly positive or nega-
tive weights.

Even this lightly trained parser may be quite sure
of itself on some test sentences in a large unanno-
tated corpus, when one parse scores far higher than
all others. More generally, the parser may be sure
about part of a sentence: it may be certain that a par-
ticular edge is present (or absent), because that edge
tends to be present (or absent) in all high-scoring
parses.

Retraining the feature weights θ on these high-
confidence edges can learn about additional features
that are correlated with an edge’s success or failure.
For example, it may now learn strong weights for
lexically specific features that were never observed
in the supervised training set. The retrained parser
may now be able to confidently parse even more of
the unannotated examples; so we can iterate the pro-
cess.

Our hope is that the model identifies new good
and bad edges at each step, and does so correctly.
The more features and global constraints the model
has,

• the more power it will have to discriminate
among edges even when θ is insufficiently
trained. (Some feature weights may be too
weak (i.e., too close to zero) because the initial
labeled set is small.)

• the more robust it will be against errors even
when θ is incorrectly trained. (Some feature
weights may be too strong or have the wrong
sign, because of overfitting or mistaken parses
during bootstrapping.)
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In the former case, strong features lend their strength
to weak ones. In the latter case, a conflict among
strong features weakens the ones that depart from
the consensus, or discounts the example sentence if
there is no consensus.

Previous work on parser bootstrapping has not
been able to exploit this redundancy among features,
because it has used PCFG-like models with far fewer
features (Steedman et al., 2003).

2.3 Adaptation and Projection via Features

The previous section assumed that we had a small
supervised treebank in the target language and do-
main (plus a large unsupervised corpus). We now
consider other, more dubious, knowledge sources
that might supplement or replace this small tree-
bank. In each case, we can use these knowledge
sources to derive features that may—or may not—
prove trustworthy during bootstrapping.

Parses from a different domain. One might have
a treebank for a different domain or genre of the tar-
get language.

One could simply include these trees in the ini-
tial supervised training, and hope that bootstrapping
corrects any learned weights that are inappropriate
to the target domain, as discussed above. In fact,
McClosky et al. (2006) found a similar technique to
be effective—though only in a model with a large
feature space (“PCFG + reranking”), as we would
predict.

However, another approach is to train a separate
out-of-domain parser, and use this to generate addi-
tional features on the supervised and unsupervised
in-domain data (Blitzer et al., 2006). Bootstrapping
now teaches us where to trust the out-of-domain
parser. If our basic model has 100 features, we could
add features 101 through 200, where for example
f123(e) = f23 · log P̃r(e) and P̃r(e) is the poste-
rior edge probability according to the out-of-domain
parser. Learning that this feature has a high weight
means learning to trust the out-of-domain parser’s
decision on edges where in-domain feature 23 fires.
Even more sensibly, we could add features such as
f201(e) =

∑10
i=1 f̃i(e) · θ̃i, where f̃ and θ̃ are the fea-

ture and weight vectors for the out-of-domain parser.
Learning that this feature has a high weight means
learning to trust the out-of-domain parser’s feature

weights for a particular class of features (those num-
bered 1 through 10). This addresses the intuition that
some linguistic phenomena remain stable across do-
mains.

Parses of translations. Suppose we have transla-
tions into English of some of our supervised or unsu-
pervised sentences. Good probabilistic dependency
parsers already exist for English, so we run one over
the English translation. We can now derive many
additional features on candidate edges on the tar-
get sentence. For example, dependency edges in the
target language of the form c

poss−→ p (this denotes
a child-to-parent dependency with label possessor)
might often correspond to dependency paths in the

English translation of the form p′
prep←− of

pobj←− c′. To
discover whether this is so, we define a feature i by

fi(c
poss−→ p) def= log

∑
c′,p′

(Pr(c aligns with c′)
·Pr(p aligns with p′)

·Pr(p′
prep←− of

pobj←− c′))

(1)

where c′, p′ range over word tokens in the English
translation, “of” is a literal English word, and the
probabilities are posteriors provided by a probabilis-
tic aligner and a probabilistic English parser. Note
that this is a single feature (not a feature family pa-
rameterized by c, p). It scores any candidate edge on
whether it is a

poss−→ edge that seems to align to an

English
prep←− of

pobj←− path.
This method is inspired by Hwa et al. (2005),

who bootstrapped parsers for Spanish and Chinese
by projecting dependencies from English transla-
tions and training a new parser on the resulting noisy
treebank. They used only 1-best translations, 1-best
alignments, dependency paths of length 1, and no
labeled data in Spanish or Chinese.

Hwa et al. (2005) used a manually written post-
processor to correct some of the many incorrect pro-
jections. By contrast, our framework uses the pro-
jected dependencies only as one source of features.
They may be overridden by other features in particu-
lar cases, and will be given a high weight only if they
tend to agree with other features during bootstrap-
ping. A similar soft projection of dependencies was
used in supervised machine translation by Smith and
Eisner (2006), who used a source sentence’s depen-
dency paths to bias the generation of its translation.
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Note that these bilingual features will only fire
on those supervised or unsupervised sentences for
which we have an English translation. In particu-
lar, they will usually be unavailable on the test set.
However, we hope that they will seed and facilitate
the bootstrapping process, by helping us confidently
parse some unsupervised sentences that we would
not be able to confidently parse without an English
translation.

Parses of comparable English sentences. World
knowledge can be useful in parsing. Suppose
you see a French sentence that contains mangeons
and pommes, and you know that manger=eat and
pomme=apple. You might reasonably guess that
pommes is the direct object of mangeons, because
you know that apple is a plausible direct object for
eat. We can discover this last bit of world knowl-
edge from comparable English text. Translation dic-
tionaries can themselves be induced from compara-
ble corpora (Schafer and Yarowsky, 2002; Schafer,
2006; Klementiev and Roth, 2006), or extracted
from bitext or digitized versions of human-readable
dictionaries if these are available.

The above inference pattern can be captured by
features similar to those in equation (1). For exam-
ple, one can define a feature j by

fi(c
poss−→ p) def= log Pr (p′

prep←− of
pobj←− c′

| p′ translates p, c′ translates c)
(2)

where each event in the event space is a pair (c′, p′)
of same-sentence tokens in comparable English text,
all pairs being equally likely. Thus, to estimate
Pr(· | ·), the denominator counts same-sentence
token pairs (c′, p′) in the comparable English cor-
pus that translate into the types (c, p), and the nu-
merator counts such pairs that are also related by

a
prep←− of

pobj←− path. Since the lexical transla-
tions and dependency paths are typically not labeled
in the English corpus, a given pair must be counted
fractionally according to its posterior probability of
satisfying these conditions, given models of contex-
tual translation and English parsing.3

3Similarly, Jansche (2005) imputes “missing” trees by using
comparable corpora.

2.4 Bootstrapping as Optimization

Section 2.2 assumed a relatively conventional kind
of bootstrapping, where each iteration retrains the
model on the examples where it is currently most
confident. This kind of “confidence thresholding”
has been popular in previous bootstrapping work (as
cited in §2.2). It attempts to maintain high accu-
racy while gradually expanding coverage. The as-
sumption is that throughout the training procedure,
the parser’s confidence is a trustworthy guide to its
correctness. Different bootstrapping procedures use
different learners, smoothing methods, confidence
measures, and procedures for “forgetting” the label-
ings from previous iterations.

In his analysis of Yarowsky (1995), Abney (2004)
formulates several variants of bootstrapping. These
are shown to increase either the likelihood of the
training data, or a lower bound on that likelihood. In
particular, Abney defines a function K that is an up-
per bound on the negative log-likelihood, and shows
his bootstrapping algorithms locally minimize K.

We now present a generalization of Abney’s K
function and relate it to another semi-supervised
learning technique, entropy regularization (Brand,
1999; Grandvalet and Bengio, 2005; Jiao et al.,
2006). Our experiments will tune the feature weight
vector, θ, to minimize our function. We will do so
simply by applying a generic function minimization
method (stochastic gradient descent), rather than by
crafting a new Yarowsky-style or Abney-style itera-
tive procedure for our specific function.

Suppose we have examples xi and correspond-
ing possible labelings yi,k. We are trying to learn
a parametric model pθ(yi,k | xi). If p̃(yi,k | xi) is
a “labeling distribution” that reflects our uncertainty
about the true labels, then our expected negative log-
likelihood of the model is

K
def= −

∑
i

∑
k

p̃(yi,k | xi) log pθ(yi,k | xi)

=
∑

i

∑
k

p̃(yi,k|xi) log
p̃(yi,k|xi)

pθ(yi,k|xi)p̃(yi,k|xi)

=
∑

i

D(p̃i‖pθ,i) + H(p̃i) (3)

where p̃i(·)
def= p̃(· | xi) and pθ,i(·)

def= pθ(· | xi).
Note that K is a function not only of θ but also
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of the labeling distribution p̃; a learner might be al-
lowed to manipulate either in order to decrease K.

The summands of K in equation (3) can be di-
vided into two cases, according to whether xi is la-
beled or not. For the labeled examples {xi : i ∈ L},
the labeling distribution p̃i is a point distribution that
assigns all probability to the true, known label y∗i .
Then H(p̃i) = 0. The total contribution of these ex-
amples to K simplifies to

∑
i∈L− log pθ(y∗i | xi),

i.e., just the negative log-likelihood on the labeled
data.

But what is the labeling distribution for the unla-
beled examples {xi : i 6∈ L}? Abney simply uses
a uniform distribution over labels (e.g., parses), to
reflect that the label is unknown. If his bootstrap-
ping algorithm “labels” xi, then i moves into L and
H(p̃i) is thereby reduced from maximal to 0. As a
result, a method that labels the most confident ex-
amples may reduce K, and Abney shows that his
method does so.

Our approach is different: we will take the label-
ing distribution p̃i to be our actual current belief
pθ,i, and manipulate it through changing θ rather
than L. L remains the original set of supervised ex-
amples. The total contribution of the unsupervised
examples to K then simplifies to

∑
i6∈L H(pθ,i).

We have no reason to believe that these two con-
tributions (supervised and unsupervised) should be
weighted equally. We thus introduce a multiplier γ
to form the actual objective function that we mini-
mize with respect to θ:4

−
∑
i∈L

log pθ,i(y∗i ) + γ
N∑

i6∈L

H(pθ,i) (4)

One may regard γ as a Lagrange multiplier that is
used to constrain the classifier’s uncertainty H to
be low, as presented in the work on entropy regular-
ization (Brand, 1999; Grandvalet and Bengio, 2005;
Jiao et al., 2006).

Conventional bootstrapping retrains on the most
confident unsupervised examples, making them

4This function is not necessarily convex in θ, because of the
addition of the entropy term (Jiao et al., 2006). One might try an
annealing strategy: start γ at zero (where the function is convex)
and gradually increase it, hoping to “ride” the global maximum.
Although we could increase γ until the entropy term dominates
the minimizations and we approach a completely deterministic
classifier, it is preferable to use some labeled heldout data to
evaluate a stopping criterion.

more confident. Gradient descent on equation (4)
essentially does the same, since unsupervised exam-
ples contribute to (4) only through H , and the shape
of the H function means that it is most rapidly de-
creased by making the most confident unsupervised
examples more confident.

Besides favoring models that are self-confident on
the unlabeled data, the objective function (4) also ex-
plicitly asks the model to continue to get the correct
answers on the initial supervised corpus. 1/γ con-
trols the strength of this request. One could obtain
a similar effect in conventional bootstrapping by up-
weighting the initial labeled corpus when retraining.

2.5 Online Learning
Minimizing equation (4) for parsing is more com-
putationally intensive than in many other applica-
tions of bootstrapping, such as word sense disam-
biguation or document classification. With millions
of features, our objective could take many iterations
to converge to a local optimum, if we were only to
update our parameter vector θ after each iteration
through a large unsupervised corpus.

For many machine learning problems over large
datasets, online learning methods such as stochas-
tic gradient descent (SGD) have been empirically
observed to converge in fewer iterations (Bottou,
2003). In SGD, instead of taking an optimiza-
tion step in the direction of the gradient calculated
over all unsupervised training examples, we parse
each example, calculate the gradient of the objective
function evaluated on that example alone, and then
take a small step downhill. The update rule is thus

θ(t+1) ← θ(t) − η · ∇F (t)(θ(t)) (5)

where θ(t) is the parameter vector at time t, F (t)(θ)
is the objective function specialized to the time-t ex-
ample, and η > 0 is a learning rate that we choose.
We check for convergence after each pass through
the example set.

2.6 Algorithms and Complexity
To evaluate equation (4), we need a conditional
model of trees given a sentence xi. We define one
by exponentiating and normalizing the tree scores:
pθ,i(yi,k)

def= exp(
∑

e∈yi,k
f(e) · θ)/Zi.

With exponentially many parses of xi, does our
objective function (4) now have prohibitive com-
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putational complexity? The complexity is actually
similar to that of the inside algorithm for parsing.
In fact, the first term of (4) for projective parsing
is found by running the O(n3) inside algorithm on
supervised data,5 and its gradient is found by the
corresponding O(n3) outside algorithm. For non-
projective parsing, the analogy to the inside algo-
rithm is the O(n3) “matrix-tree algorithm,” which is
dominated asymptotically by a matrix determinant
(Smith and Smith, 2007; Koo et al., 2007; McDon-
ald and Satta, 2007). The gradient of a determinant
may be computed by matrix inversion, so evaluating
the gradient again has the same O(n3) complexity
as evaluating the function.

The second term of (4) is the Shannon entropy
of the posterior distribution over parses. Computing
this for projective parsing takes O(n3) time, using a
dynamic programming algorithm that is closely re-
lated to the inside algorithm (Hwa, 2000).6 For non-
projective parsing, unfortunately, the runtime rises
to O(n4), since it requires determinants of n distinct
matrices (each incorporating a log factor in a dif-
ferent column; we omit the details). The gradient
evaluation in both cases is again about as expensive
as the function evaluation.

A convenient speedup is to replace Shannon en-
tropy with Rényi entropy. The family of Rényi en-
tropy measures is parameterized by α:

Rα(p) =
1

1− α
log

(∑
y

p(y)α

)
(6)

In our setting, where p = pθ,i, the events y are the
possible parses yi,k of xi. Observe that under our
definition of p,

∑
y p(y)α = {

∑
y exp[

∑
e∈y f(e) ·

(αθ)]}/Zα
i . We already have Zi from running the

inside algorithm, and we can find the numerator by
running the inside algorithm again with θ scaled
by α. Thus with Rényi entropy, all computations
and their gradients are O(n3)—even in the non-
projective case.

Rényi entropy is also a theoretically attractive
generalization. It can be shown that limα→1 Rα(p)

5The numerator of pθ,i(y
∗
i ) (see definition above) is trivial

since y∗i is a single known parse. But the denominator Zi is a
normalizing constant that sums over all parses; it is found by a
dependency-parsing variant of the inside algorithm, following
(Eisner, 1996).

6See also (Mann and McCallum, 2007) for similar results on
conditional random fields.

is in fact the Shannon entropy H(p) and that
limα→∞Rα(p) = − log maxy p(y), i.e. the nega-
tive log probability of the modal or “Viterbi” label
(Arndt, 2001; Karakos et al., 2007). The α = 2
case, widely used as a measure of purity in decision
tree learning, is often called the “Gini index.” Fi-
nally, when α = 0, we get the log of the number
of labels, which equals the H(uniform distribution)
that Abney used in equation (3).

3 Evaluation

For this paper, we performed some initial bootstrap-
ping experiments on small corpora, using the fea-
tures from (McDonald et al., 2005). After discussing
experimental setup (§3.1), we look at the correlation
of confidence with accuracy and with oracle likeli-
hood, and at the fine-grained behaviour of models’
dependency edge posteriors (§3.2). We then com-
pare our confidence-maximizing bootstrapping to
EM, which has been widely used in semi-supervised
learning (§3.4). Section 3.3 presents overall boot-
strapping accuracy.

3.1 Experimental Design

We bootstrapped non-projective parsers for lan-
guages assembled for the CoNLL dependency pars-
ing competitions (Buchholz and Marsi, 2006). We
selected German, Spanish, and Czech (Brants et
al., 2002; Civit Torruella and Martı́ Antonı́n, 2002;
Böhmová et al., 2003). After removing sentences
more than 60 words long, we randomly divided each
corpus into small seed sets of 100 and 1000 trees;
development and test sets of 200 trees each; and an
unlabeled training set from the rest.

These treebanks contain strict dependency trees,
in the sense that their only nodes are the words and
a distinguished root node. In the Czech dataset,
more than one word can attach to the root; also, the
trees in German, Spanish, and Czech may be non-
projective. We use the MSTParser implementa-
tion described in McDonald et al. (2005) for fea-
ture extraction. Since our seed sets are so small, we
extracted features from all edges in both the seed
and the unlabeled parts of our training data, not just
the edges annotated as correct. Since this produced
many more features, we pruned our features to those
with at least 10 occurrences over all edges.
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Correlation of
100-tree model 1000-tree model

Rényi α Acc. Xent. Acc. Xent.
(uniform, Abney) 0 -0.254 0.980 -0.180 0.937

.5 -0.256 0.981 -0.203 0.955
(Shannon) 1 -0.260 0.983 -0.220 0.964
(Gini) 2 -0.266 0.985 -0.250 0.977

5 -0.291 0.992 -0.304 0.990
7 -0.301 0.993 -0.341 0.991

(Viterbi) ∞ -0.317 0.995 -0.326 0.992
Xent. -0.391 1.000 -0.410 1.000

Table 1: Correlation, on development sentences, of Rényi en-
tropy with model accuracy and with cross-entropy (“Xent.”).
Since these are measures of uncertainty, we see a negative cor-
relation. As α increases, we place more confidence in high-
probability parses and correlate better with accuracy.

We used stochastic gradient descent first to min-
imize equation (4) on the labeled seed sets. Then
we continued to optimize over the labeled and unla-
beled data together. We tested for convergence using
accuracy on development data.

3.2 Empirically Evaluating Entropy
Bootstrapping assumes that where the parser is con-
fident, it tends to be correct. Standard bootstrapping
methods retrain directly on confident links; simi-
larly, our approach tries to make the parser even
more confident on those links.

Is this assumption really true empirically? Yes:
not only does confidence on unlabeled data correlate
with cross-entropy, but both confidence and cross-
entropy correlate well with accuracy. As we will
see, some confidence measures correlate better than
others. In particular, measures that are more peaked
around the one-best prediction of the parser, as in
Viterbi re-estimation, perform well.

If we train a non-projective German parser on
small seed sets of 100 and 1000 trees, only, how well
does its own confidence predict its performance?
For 200 points—labeled development sentences—
we measured the linear correlation of various Rényi
entropies (6), normalized by sentence length, with
tree accuracy (Table 1). We also measured how these
normalized Rényi entropies correlate with the pos-
terior log-probability the model assigns to the true
parse (the cross-entropy).

Since Rényi entropy is a measure of uncertainty,
we see a negative correlation with accuracy. This
correlation strengthens as we raise α to ∞, so we
might expect Viterbi re-estimation, or a differen-

Figure 1: Posterior probability of correct and incorrect edges
in German test data under various models. We show the distri-
bution of posterior probabilities for correct edges, known from
an oracle, in black and incorrect edges in gray. In the upper
row, learning on an initial supervised set raises the posterior
probability of correct edges while dragging along some incor-
rect edges. In the lower row, we see that adding unlabeled data
with R2 entropy continues the pattern of the supervised learner.
R∞ (Viterbi) training induces a second mode in correct pos-
terior probabilities near 1 although it does shift more incorrect
edges closer to 1.

Figure 2: Precision-recall curves for selecting edges according
to their posterior probabilities: better bootstrapping puts more
area under the curve.

tiable objective function with a very high α, to per-
form best on held-out data. Note also that the cross-
entropy, which looks at the true labels on the held-
out data, does not itself correlate very much bet-
ter with accuracy than the best unsupervised confi-
dence measures. Finally, we see that Rényi entropies
with higher α are more stable: when calculated for a
model trained on more data, they improve their cor-
relation with accuracy.

From tree confidence, we now turn to edge confi-
dence: what is the posterior probability that a model
assigns to each of the n2 edges in the dependency
graph? Figure 1 shows smoothed histograms of true
edges (black) and false edges (gray) in held-out data,
according to the posterior probabilities we assign to
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them. Since there are many more false edges, the
figures are cropped to zoom in on the distribution of
true edges. As we start training on the labeled seed
set, the posterior probabilities of true edges move to-
wards one; many false edges also get greater mass,
but not to the same extent. As we add unlabeled
data, we can see the different learning strategies of
different confidence measures. R2 gradually moves
a few true and many fewer false edges towards 1,
while R∞ (Viterbi) learning is so confident as to in-
duce a bimodal distribution in the posteriors of true
edges. Figure 2 visualizes the same data as four
precision-recall curves, which show how noisy the
highest-confidence edges are, across a range of con-
fidence thresholds. Although the very high precision
end stays stable after 10 iterations on the seed set,
the addition of unlabeled data puts more area under
the curve. Again, R∞ dominates R2.

3.3 Bootstrapping Results

We performed bootstrapping experiments on the full
CoNLL sets for Czech, German, and Spanish us-
ing the non-projective model from McDonald et al.
(2005). Performance confirms the results of our
analysis above (Table 2). Adding unlabeled data im-
proves performance over that of the seed set, with
the exception of the Czech data with R2 bootstrap-
ping. As we saw in §3.2, bootstrapping with R∞
dominates bootstrapping with R2 confidence. For
comparison, we also show the results obtained by
supervised training on the combined seed and unla-
beled sets. Recall that we did not use the tree anno-
tations to perform feature selection; models trained
with only supported features ought to perform better.

Although we see statistically significant improve-
ments (at the .05 level on a paired permutation test),
the quality of the parsers is still quite poor, in con-
trast to other applications of bootstrapping which
“rival supervised methods” (Yarowsky, 1995). Al-
most certainly, the CoNLL datasets, comprising at
most some tens of thousands of sentences per lan-
guage, are too small to afford qualitative improve-
ments. Also, at these relatively small training sizes,
our preliminary attempts to leverage comparable En-
glish corpora did not improve performance.

What features were learned, and how dependent
is performance on the seed set? We analyzed the
performance of German bootstrapping on a develop-

% accuracy
Seed trees α = 0 2 ∞

Czech 100 56.1 54.8 58.3
1000 68.1 68.2 68.2

71468 77.9 – –
German 100 60.9 62.4 65.3

1000 74.6 74.5 75.0
37745 86.0 – –

Spanish 100 63.6 64.1 64.4
2786 76.6 – –

Table 2: Dependency accuracy of the McDonald model on 200
test sentences. When α = 0, training only occurs on the super-
vised seed data. As α increases, we train based on confidence
in our model’s analysis of the unlabeled data. Boldface results
are the best in their rows in a permutation test at the .05 level.

ment set (Table 3). Using the parameters at the last
iteration of supervised training on the seed set as a
baseline, we tried updating to their bootstrapped val-
ues the weights of only those features that occurred
in the seed set. This achieved nearly the same ac-
curacy as updating all the features. As one would
expect, using only the non-seed features’ weights
performs abysmally. This might be the case sim-
ply because the seed set is likely to contain fre-
quently occurring features. If, however, we use only
the features occurring in an alternate training set of
the same size (100 sentences), we get much worse
performance. These results indicate that our boot-
strapped parser is still heavily dependent on the fea-
tures that happened to fire in the seed set; we have
not “forgotten” our initial conditions. Similar exper-
iments show that unlexicalized features contribute
the most to bootstrapping performance. Since in
our log-linear models features have been trained to
work together, we must not put too much weight on
these ablation results. These experiments do, how-
ever, suggest that bootstrapping improved our results
by refining the values of known, non-lexicalized fea-
tures.

3.4 Comparison with EM

Perhaps the most popular statistical method for
learning from incomplete data is the EM algorithm
(Dempster et al., 1977). Since we cannot try EM on
McDonald’s conditional model, we ran some pilot
experiments using the generative dependency model
with valence (DMV) of Klein and Manning (2004).
As in their experiments, and unlike the other exper-
iments in the current paper, we restricted ourselves
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Updated M feat. acc. Updated M feat. acc.
all 15.5 64.3 none 0 60.9
seed 1.4 64.1 non-seed 14.1 44.7
non-lexical 3.5 64.4 lexical 12.0 59.9
non-bilex. 12.6 64.4 bilexical 2.9 61.0

Table 3: Using all features, dependency accuracy on German
development data rose to 64.3% on bootstrapping. We show the
contribution of different feature splits to the performance of this
final model. For example, although this model was trained by
updating all 15.5M feature weights, it performs as well if we
then keep only the 1.4M features that appeared at least once in
the seed set, zeroing out the weights of the others. We do as well
as the full feature set if we keep only the 3.5M non-lexicalized
features.

% accuracy
train Bulg. German Spanish

supervised ML 74.2 80.0 71.3
CL 77.5 79.3 75.0

semi- EM 58.6 58.8 68.4
supervised Conf. 80.0 80.5 76.7

Table 4: Dependency accuracy of the DMV model (Klein and
Manning, 2004). Maximizing confidence using R1 (Shannon)
entropy improved performance over its own conditional like-
lihood (CL) baseline and over maximum likelihood (ML). EM
degraded its ML baseline. Since these models were only trained
and tested on sentences of 10 words or fewer, accuracy is much
higher than the full results in Table 2.

to sentences of ten words or fewer and to part-of-
speech sequences alone, without any lexical infor-
mation. Since the DMV models projective trees, we
ran experiments on three CoNLL corpora that had
augmented their primary non-projective parses with
alternate projective annotations: Bulgarian (Simov
et al., 2005), German, and Spanish.

We performed supervised maximum likelihood
and conditional likelihood estimation on a seed set
of 100 sentences for each language. These models
respectively initialized EM and confidence training
on unlabeled data. We see (Table 4) that EM de-
grades the performance of its ML baseline. Meri-
aldo (1994) saw a similar degradation over small
(and large) seed sets in HMM POS tagging. We
tried fixing and not fixing the feature expectations on
the seed set during EM and show the former, better
numbers. Confidence maximization improved over
both its own conditional likelihood initializer and
also over ML. We selected optimal smoothing pa-
rameters for all models and optimal α (equation (6))
and γ (equation (4)) for the confidence model on la-
beled held-out data.

4 Future Work

We hypothesize that qualitatively better bootstrap-
ping results will require much larger unlabeled data
sets. In scaling up bootstrapping to larger unla-
beled training sets, we must carefully weight trade-
offs between expanding coverage and introducing
noise from out-of-domain data. We could also bet-
ter exploit the data we have with richer models of
syntax. In supervised dependency parsing, second-
order edge features provide improvements (McDon-
ald and Pereira, 2006; Riedel and Clarke, 2006);
moreover, the feature-based approach is not limited
to dependency parsing. Similar techniques could
score parses in other formalisms, such as CFG or
TAG. In this case, f extracts features from each
of the derivation tree’s rewrite rules (CFG) or ele-
mentary trees (TAG). In lexicalized formalisms, f
will still be able to score lexical dependencies that
are implicitly represented in the parse. Finally, we
want to investigate whether larger training sets will
provide traction for sparser cross-lingual and cross-
domain features.

5 Conclusions

Feature-rich dependency models promise to help
bootstrapping by providing many redundant features
for the learner, and they can also cleanly incorporate
cross-domain and cross-language information.

We explored bootstrapping feature-rich non-
projective dependency parsers for Czech, German,
and Spanish. Our bootstrapping method maximizes
a linear combination of likelihood and confidence.
In initial experiments on small datasets, this sur-
passed EM for training a simple feature-poor gener-
ative model, and also improved the performance of
a feature-rich, conditionally estimated model where
EM could not easily have been applied. For our
models and training sets, more peaked measures
of confidence, measured by Rényi entropy, outper-
formed smoother ones.
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Abstract

We consider the problem of learning to
parse sentences to lambda-calculus repre-
sentations of their underlying semantics and
present an algorithm that learns a weighted
combinatory categorial grammar (CCG). A
key idea is to introduce non-standard CCG
combinators that relax certain parts of the
grammar—for example allowing flexible
word order, or insertion of lexical items—
with learned costs. We also present a new,
online algorithm for inducing a weighted
CCG. Results for the approach on ATIS
data show 86% F-measure in recovering
fully correct semantic analyses and 95.9%
F-measure by a partial-match criterion, a
more than 5% improvement over the 90.3%
partial-match figure reported by He and
Young (2006).

1 Introduction

Recent work (Mooney, 2007; He and Young, 2006;
Zettlemoyer and Collins, 2005) has developed learn-
ing algorithms for the problem of mapping sentences
to underlying semantic representations. In one such
approach (Zettlemoyer and Collins, 2005) (ZC05),
the input to the learning algorithm is a training set
consisting of sentences paired with lambda-calculus
expressions. For instance, the training data might
contain the following example:

Sentence: list flights to boston
Logical Form: λx.flight(x) ∧ to(x, boston)

In this case the lambda-calculus expression denotes
the set of all flights that land in Boston. In ZC05
it is assumed that training examples do not include
additional information, for example parse trees or

a) on may four atlanta to denver delta flight 257
λx.month(x, may) ∧ day number(x, fourth)∧

from(x, atlanta) ∧ to(x, denver)∧
airline(x, delta air lines) ∧ flight(x)∧
flight number(x, 257)

b) show me information on american airlines from fort worth
texas to philadelphia
λx.airline(x, american airlines)∧

from(x, fort worth) ∧ to(x, philadelphia)

c) okay that one’s great too now we’re going to go on april
twenty second dallas to washington the latest nighttime
departure one way
argmax(λx.flight(x) ∧ from(x, dallas)∧

to(x, washington) ∧ month(x, april)∧
day number(x, 22) ∧ during(x, night)∧
one way(x), λy.depart time(y))

Figure 1: Three sentences from the ATIS domain.

other derivations. The output from the learning algo-
rithm is a combinatory categorial grammar (CCG),
together with parameters that define a log-linear dis-
tribution over parses under the grammar. Experi-
ments show that the approach gives high accuracy on
two database-query problems, introduced by Zelle
and Mooney (1996) and Tang and Mooney (2000).

The use of a detailed grammatical formalism such
as CCG has the advantage that it allows a system to
handle quite complex semantic effects, such as co-
ordination or scoping phenomena. In particular, it
allows us to leverage the considerable body of work
on semantics within these formalisms, for example
see Carpenter (1997). However, a grammar based
on a formalism such as CCG can be somewhat rigid,
and this can cause problems when a system is faced
with spontaneous, unedited natural language input,
as is commonly seen in natural language interface
applications. For example, consider the sentences
shown in figure 1, which were taken from the ATIS
travel-planning domain (Dahl et al., 1994). These
sentences exhibit characteristics which present sig-
nificant challenges to the approach of ZC05. For ex-
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ample, the sentences have quite flexible word order,
and include telegraphic language where some words
are effectively omitted.

In this paper we describe a learning algorithm that
retains the advantages of using a detailed grammar,
but is highly effective in dealing with phenomena
seen in spontaneous natural language, as exempli-
fied by the ATIS domain. A key idea is to extend
the approach of ZC05 by allowing additional non-
standard CCG combinators. These combinators re-
lax certain parts of the grammar—for example al-
lowing flexible word order, or insertion of lexical
items—with learned costs for the new operations.
This approach has the advantage that it can be seam-
lessly integrated into CCG learning algorithms such
as the algorithm described in ZC05.

A second contribution of the work is a new, on-
line algorithm for CCG learning. The approach in-
volves perceptron training of a model with hidden
variables. In this sense it is related to the algorithm
of Liang et al. (2006). However it has the addi-
tional twist of also performing grammar induction
(lexical learning) in an online manner. In our exper-
iments, we show that the new algorithm is consid-
erably more efficient than the ZC05 algorithm; this
is important when training on large training sets, for
example the ATIS data used in this paper.

Results for the approach on ATIS data show 86%
F-measure accuracy in recovering fully correct se-
mantic analyses, and 95.9% F-measure by a partial-
match criterion described by He and Young (2006).
The latter figure contrasts with a figure of 90.3% for
the approach reported by He and Young (2006).1

Results on the Geo880 domain also show an im-
provement in accuracy, with 88.9% F-measure for
the new approach, compared to 87.0% F-measure
for the method in ZC05.

2 Background

2.1 Semantics

Training examples in our approach consist of sen-
tences paired with lambda-calculus expressions. We
use a version of the lambda calculus that is closely
related to the one presented by Carpenter (1997).
There are three basic types: t, the type of truth val-

1He and Young (2006) do not give results for recovering
fully correct parses.

ues; e, the type for entities; and r, the type for real
numbers. Functional types are defined by specify-
ing their input and output types, for example 〈e, t〉
is the type of a function from entities to truth val-
ues. In general, declarative sentences have a logical
form of type t. Question sentences generally have
functional types.2 Each expression is constructed
from constants, logical connectors, quantifiers and
lambda functions.

2.2 Combinatory Categorial Grammars

Combinatory categorial grammar (CCG) is a syn-
tactic theory that models a wide range of linguistic
phenomena (Steedman, 1996; Steedman, 2000).
The core of a CCG grammar is a lexicon Λ. For
example, consider the lexicon

flights := N : λx.flight(x)
to := (N\N)/NP : λy.λf.λx.f(x) ∧ to(x, y)
boston := NP : boston

Each entry in the lexicon is a pair consisting of a
word and an associated category. The category con-
tains both syntactic and semantic information. For
example, the first entry states that the word flights
can have the category N : λx.flight(x). This cat-
egory consists of a syntactic type N , together with
the semantics λx.flight(x). In general, the seman-
tic entries for words in the lexicon can consist of any
lambda-calculus expression. Syntactic types can ei-
ther be simple types such as N , NP , or S, or can be
more complex types that make use of slash notation,
for example (N\N)/NP .

CCG makes use of a set of combinators which
are used to combine categories to form larger pieces
of syntactic and semantic structure. The simplest
such rules are the functional application rules:

A/B : f B : g ⇒ A : f(g) (>)
B : g A\B : f ⇒ A : f(g) (<)

The first rule states that a category with syntactic
type A/B can be combined with a category to the
right of syntactic type B to create a new category
of type A. It also states that the new semantics
will be formed by applying the function f to
the expression g. The second rule handles argu-
ments to the left. Using these rules, we can parse the

2For example, many question sentences have semantics of
type 〈e, t〉, as in λx.flight(x) ∧ to(x, boston).
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following phrase to create a new category of type N :

flights to boston

N (N\N)/NP NP
λx.flight(x) λy.λf.λx.f(x) ∧ to(x, y) boston

>
(N\N)

λf.λx.f(x) ∧ to(x, boston)
<

N
λx.flight(x) ∧ to(x, boston)

The top-most parse operations pair each word with a
corresponding category from the lexicon. The later
steps are labeled −> (for each instance of forward
application) or −< (for backward application).

A second set of combinators in CCG grammars
are the rules of functional composition:

A/B : f B/C : g ⇒ A/C : λx.f(g(x)) (> B)
B\C : g A\B : f ⇒ A\C : λx.f(g(x)) (< B)

These rules allow for an unrestricted notion of con-
stituency that is useful for modeling coordination
and other linguistic phenomena. As we will see, they
also turn out to be useful when modeling construc-
tions with relaxed word order, as seen frequently in
domains such as ATIS.

In addition to the application and composition
rules, we will also make use of type raising and co-
ordination combinators. A full description of these
combinators goes beyond the scope of this paper.
Steedman (1996; 2000) presents a detailed descrip-
tion of CCG.

2.3 Log-Linear CCGs
We can generalize CCGs to weighted, or probabilis-
tic, models as follows. Our models are similar to
several other approaches (Ratnaparkhi et al., 1994;
Johnson et al., 1999; Lafferty et al., 2001; Collins,
2004; Taskar et al., 2004). We will write x to de-
note a sentence, and y to denote a CCG parse for a
sentence. We use GEN(x; Λ) to refer to all possi-
ble CCG parses for x under some CCG lexicon Λ.
We will define f(x, y) ∈ Rd to be a d-dimensional
feature–vector that represents a parse tree y paired
with an input sentence x. In principle, f could in-
clude features that are sensitive to arbitrary sub-
structures within the pair (x, y). We will define
w ∈ Rd to be a parameter vector. The optimal parse
for a sentence x under parameters w and lexicon Λ
is then defined as

y∗(x) = arg max
y∈GEN(x;Λ)

w · f(x, y) .

Assuming sufficiently local features3 in f , search for
y∗ can be achieved using dynamic-programming-
style algorithms, typically with some form of beam
search.4 Training a model of this form involves
learning the parameters w and potentially also the
lexicon Λ. This paper focuses on a method for learn-
ing a (w,Λ) pair from a training set of sentences
paired with lambda-calculus expressions.

2.4 Zettlemoyer and Collins 2005

We now give a description of the approach of Zettle-
moyer and Collins (2005). This method will form
the basis for our approach, and will be one of the
baseline models for the experimental comparisons.

The input to the ZC05 algorithm is a set of train-
ing examples (xi, zi) for i = 1 . . . n. Each xi is
a sentence, and each zi is a corresponding lambda-
expression. The output from the algorithm is a pair
(w,Λ) specifying a set of parameter values, and a
CCG lexicon. Note that for a given training example
(xi, zi), there may be many possible parses y which
lead to the correct semantics zi.5 For this reason
the training problem is a hidden-variable problem,
where the training examples contain only partial in-
formation, and the CCG lexicon and parse deriva-
tions must be learned without direct supervision.

A central part of the ZC05 approach is a function
GENLEX(x, z) which maps a sentence x together
with semantics z to a set of potential lexical entries.
The function GENLEX is defined through a set of
rules—see figure 2—that consider the expression z,
and generate a set of categories that may help in
building the target semantics z. An exhaustive set
of lexical entries is then generated by taking all cat-
egories generated by the GENLEX rules, and pair-
ing them with all possible sub-strings of the sentence
x. Note that our lexicon can contain multi-word en-
tries, where a multi-word string such as New York
can be paired with a CCG category. The final out-

3For example, features which count the number of lexical
entries of a particular type, or features that count the number of
applications of a particular CCG combinator.

4In our experiments we use a parsing algorithm that is simi-
lar to a CKY-style parser with dynamic programming. Dynamic
programming is used but each entry in the chart maintains a full
semantic expression, preventing a polynomial-time algorithm;
beam search is used to make the approach tractable.

5This problem is compounded by the fact that the lexicon
is unknown, so that many of the possible hidden derivations
involve completely spurious lexical entries.
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Rules Example categories produced from the logical form
Input Trigger Output Category arg max(λx.flight(x) ∧ from(x, boston), λx.cost(x))

constant c NP : c NP : boston
arity one predicate p N : λx.p(x) N : λx.flight(x)
arity one predicate p S\NP : λx.p(x) S\NP : λx.flight(x)

arity two predicate p2 (S\NP )/NP : λx.λy.p2(y, x) (S\NP )/NP : λx.λy.from(y, x)
arity two predicate p2 (S\NP )/NP : λx.λy.p2(x, y) (S\NP )/NP : λx.λy.from(x, y)
arity one predicate p1 N/N : λg.λx.p1(x) ∧ g(x) N/N : λg.λx.flight(x) ∧ g(x)

literal with arity two predicate p2
and constant second argument c

N/N : λg.λx.p2(x, c) ∧ g(x) N/N : λg.λx.from(x, boston) ∧ g(x)

arity two predicate p2 (N\N)/NP : λy.λg.λx.p2(x, y) ∧ g(x) (N\N)/NP : λy.λg.λx.from(x, y) ∧ g(x)
an arg max / min with second
argument arity one function f

NP/N : λg. arg max / min(g, λx.f(x)) NP/N : λg. arg max(g, λx.cost(x))

arity one function f S/NP : λx.f(x) S/NP : λx.cost(x)
arity one function f (N\N)/NP : λy.λf.λx.g(x) ∧ f(x) >/< y (N\N)/NP : λy.λf.λx.g(x) ∧ cost(x) > y

no trigger S/NP : λx.x, S/N : λf.λx.f(x) S/NP : λx.x, S/N : λf.λx.f(x)

Figure 2: Rules used in GENLEX. Each row represents a rule. The first column lists the triggers that identify some sub-structure
within a logical form. The second column lists the category that is created. The third column lists categories that are created when
the rule is applied to the logical form at the top of this column. We use the 10 rules described in ZC05 and add two new rules,
listed in the last two rows above. This first new rule is instantiated for greater than (>) and less than (<) comparisions. The second
new rule has no trigger; it is always applied. It generates categories that are used to learn lexical entries for semantically vacuous
sentence prefixes such as the phrase show me information on in the example in figure 1(b).

put from GENLEX(x, z) is a large set of potential
lexical entries, with the vast majority of those en-
tries being spurious. The algorithm in ZC05 embeds
GENLEX within an overall learning approach that
simultaneously selects a small subset of all entries
generated by GENLEX and estimates parameter val-
ues w. Zettlemoyer and Collins (2005) present more
complete details. In section 4.2 we describe a new,
online algorithm that uses GENLEX.

3 Parsing Extensions: Combinators

This section describes a set of CCG combinators
which we add to the conventional CCG combinators
described in section 2.2. These additional combi-
nators are natural extensions of the forward appli-
cation, forward composition, and type-raising rules
seen in CCG. We first describe a set of combina-
tors that allow the parser to significantly relax con-
straints on word order. We then describe a set of
type-raising rules which allow the parser to cope
with telegraphic input (in particular, missing func-
tion words). In both cases these additional rules
lead to significantly more parses for any sentence
x given a lexicon Λ. Many of these parses will be
suspect from a linguistic perspective; broadening the
set of CCG combinators in this way might be con-
sidered a dangerous move. However, the learning
algorithm in our approach can learn weights for the
new rules, effectively allowing the model to learn to
use them only in appropriate contexts; in the exper-
iments we show that the rules are highly effective
additions when used within a weighted CCG.

3.1 Application and Composition Rules

The first new combinators we consider are the
relaxed functional application rules:

A\B : f B : g ⇒ A : f(g) (&)
B : g A/B : f ⇒ A : f(g) (.)

These are variants of the original application
rules, where the slash direction on the principal cat-
egories (A/B or A\B) is reversed.6 These rules al-
low simple reversing of regular word order, for ex-
ample

flights one way

N N/N
λx.flight(x) λf.λx.f(x) ∧ one way(x)

.
N

λx.flight(x) ∧ one way(x)

Note that we can recover the correct analysis for this
fragment, with the same lexical entries as those used
for the conventional word order, one-way flights.

A second set of new combinators are the relaxed
functional composition rules:

A\B : f B/C : g ⇒ A/C : λx.f(g(x)) (& B)
B\C : g A/B : f ⇒ A\C : λx.f(g(x)) (. B)

These rules are variantions of the standard func-
tional composition rules, where the slashes of the
principal categories are reversed.

6Rules of this type are non-standard in the sense that they
violate Steedman’s Principle of Consistency (2000); this princi-
ple states that rules must be consistent with the slash direction
of the principal category. Steedman (2000) only considers rules
that do not violate this principle—for example, crossed compo-
sition rules, which we consider later, and which Steedman also
considers, do not violate this principle.
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An important point is that that these new compo-
sition and application rules can deal with quite flex-
ible word orders. For example, take the fragment to
washington the latest flight. In this case the parse is

to washington the latest flight

N\N NP/N N
λf.λx.f(x)∧ λf. arg max(f, λx.flight(x)

to(x, washington) λy.depart time(y))
.B

NP\N
λf. arg max(λx.f(x)∧

to(x, washington), λy.depart time(y))
&

NP
arg max(λx.flight(x) ∧ to(x, washington),

λy.depart time(y))

Note that in this case the substring the latest has cat-
egory NP/N , and this prevents a naive parse where
the latest first combines with flight, and to washing-
ton then combines with the latest flight. The func-
tional composition rules effectively allow the latest
to take scope over flight and to washington, in spite
of the fact that the latest appears between the two
other sub-strings. Examples like this are quite fre-
quent in domains such as ATIS.

We add features in the model which track the oc-
currences of each of these four new combinators.
Specifically, we have four new features in the def-
inition of f; each feature tracks the number of times
one of the combinators is used in a CCG parse. The
model learns parameter values for each of these fea-
tures, allowing it to learn to penalise these rules to
the correct extent.

3.2 Additional Rules of Type-Raising
We now describe new CCG operations designed to
deal with cases where words are in some sense miss-
ing in the input. For example, in the string flights
Boston to New York, one style of analysis would
assume that the preposition from had been deleted
from the position before Boston.

The first set of rules is generated from the follow-
ing role-hypothesising type shifting rules template:

NP : c ⇒ N\N : λf.λx.f(x) ∧ p(x, c) (TR)

This rule can be applied to any NP with semantics
c, and any arity-two function p such that the second
argument of p has the same type as c. By “any” arity-
two function, we mean any of the arity-two func-
tions seen in training data. We define features within
the feature-vector f that are sensitive to the number
of times these rules are applied in a parse; a separate
feature is defined for each value of p.

In practice, in our experiments most rules of this
form have p as the semantics of some preposition,
for example from or to. A typical example of a use
of this rule would be the following:

flights boston to new york

N NP N\N
λx.flight(x) bos λf.λx.f(x)

∧to(x, new york)
TR

N\N
λf.λx.f(x) ∧ from(x, bos)

<
N

λf.λx.flight(x) ∧ from(x, bos)
<

N
λx.flight(x) ∧ to(x, new york) ∧ from(x, bos)

The second rule we consider is the null-head type
shifting rule:

N\N : f ⇒ N : f(λx.true) (TN)

This rule allows parses of fragments such as Amer-
ican Airlines from New York, where there is again a
word that is in some sense missing (it is straightfor-
ward to derive a parse for American Airlines flights
from New York). The analysis would be as follows:

American Airlines from New York
N/N N\N

λf.λx.f(x) ∧ airline(x, aa) λf.λx.f(x) ∧ from(x, new york)
TN

N
λx.from(x, new york)

>
N

λx.airline(x, aa) ∧ from(x, new york)

The new rule effectively allows the preposi-
tional phrase from New York to type-shift to
an entry with syntactic type N and semantics
λx.from(x, new york), representing the set of all
things from New York.7

We introduce a single additional feature which
counts the number of times this rule is used.

3.3 Crossed Composition Rules

Finally, we include crossed functional composition
rules:

A/B : f B\C : g ⇒ A\C : λx.f(g(x)) (>B×)
B/C : g A\B : f ⇒ A/C : λx.f(g(x)) (<B×)

These rules are standard CCG operators but they
were not used by the parser described in ZC05.
When used in unrestricted contexts, they can sig-
nificantly relax word order. Again, we address this

7Note that we do not analyze this prepositional phrase as
having the semantics λx.flight(x) ∧ from(x, new york)—
although in principle this is possible—as the flight(x) predi-
cate is not necessarily implied by this utterance.
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dallas to washington the latest on friday

NP (N\N)/NP NP NP/N (N\N)/NP NP
dallas λy.λf.λx.f(x) washington λf. arg max(f, λy.λf.λx.f(x) friday

∧to(x, y) λy.depart time(y)) ∧day(x, y)
TR > >

N\N N\N N\N
λf.λx.f(x) ∧ from(x, dallas) λf.λx.f(x) ∧ to(x, washington) λf.λx.f(x) ∧ day(x, friday)

<B TN

N\N N
λf.λx.f(x) ∧ from(x, dallas) ∧ to(x, washington) λx.day(x, friday)

.B

NP\N
λf. arg max(λx.f(x) ∧ from(x, dallas) ∧ to(x, washington), λy.depart time(y))

&
NP

arg max(λx.day(x, friday) ∧ from(x, dallas) ∧ to(x, washington), λy.depart time(y))

Figure 3: A parse with the flexible parser.

problem by introducing features that count the num-
ber of times they are used in a parse.8

3.4 An Example
As a final point, to see how these rules can interact
in practice, see figure 3. This example demonstrates
the use of the relaxed application and composition
rules, as well as the new type-raising rules.

4 Learning

This section describes an approach to learning in our
model. We first define the features used and then de-
scribe a new online learning algorithm for the task.

4.1 Features in the Model
Section 2.3 described the use of a function f(x, y)
which maps a sentence x together with a CCG parse
y to a feature vector. As described in section 3,
we introduce features for the new CCG combina-
tors. In addition, we follow ZC05 in defining fea-
tures which track the number of times each lexical
item in Λ is used. For example, we would have one
feature tracking the number of times the lexical entry
flights := N : λx.flights(x) is used in a parse,
and similar features for all other members of Λ.

Finally, we introduce new features which directly
consider the semantics of a parse. For each predicate
f seen in training data, we introduce a feature that
counts the number of times f is conjoined with itself
at some level in the logical form. For example, the
expression λx.flight(x) ∧ from(x, new york) ∧
from(x, boston) would trigger the new feature for

8In general, applications of the crossed composition rules
can be lexically governed, as described in work on Multi-Modal
CCG (Baldridge, 2002). In the future we would like to incorpo-
rate more fine-grained lexical distinctions of this type.

the from predicate signaling that the logical-form
describes flights with more than one origin city. We
introduce similar features which track disjunction as
opposed to conjunction.

4.2 An Online Learning Algorithm

Figure 4 shows a learning algorithm that takes a
training set of (xi, zi) pairs as input, and returns
a weighted CCG (i.e., a pair (w,Λ)) as its output.
The algorithm is online, in that it visits each ex-
ample in turn, and updates both w and Λ if neces-
sary. In Step 1 on each example, the input xi is
parsed. If it is parsed correctly, the algorithm im-
mediately moves to the next example. In Step 2,
the algorithm temporarily introduces all lexical en-
tries seen in GENLEX(xi, zi), and finds the highest
scoring parse that leads to the correct semantics zi.
A small subset of GENLEX(xi, zi)—namely, only
those lexical entries that are contained in the highest
scoring parse—are added to Λ. In Step 3, a simple
perceptron update (Collins, 2002) is performed. The
hypothesis is parsed again with the new lexicon, and
an update to the parameters w is made if the result-
ing parse does not have the correct logical form.

This algorithm differs from the approach in ZC05
in a couple of important respects. First, the ZC05 al-
gorithm performed learning of the lexicon Λ at each
iteration in a batch method, requiring a pass over the
entire training set. The new algorithm is fully online,
learning both Λ and w in an example-by-example
fashion. This has important consequences for the
efficiency of the algorithm. Second, the parameter
estimation method in ZC05 was based on stochastic
gradient descent on a log-likelihood objective func-
tion. The new algorithm makes use of perceptron
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Inputs: Training examples {(xi, zi) : i = 1 . . . n} where
each xi is a sentence, each zi is a logical form. An initial
lexicon Λ0. Number of training iterations, T .

Definitions: GENLEX(x, z) takes as input a sentence x and
a logical form z and returns a set of lexical items as de-
scribed in section 2.4. GEN(x; Λ) is the set of all parses
for x with lexicon Λ. GEN(x, z; Λ) is the set of all parses
for x with lexicon Λ, which have logical form z. The
function f(x, y) represents the features described in sec-
tion 4.1. The function L(y) maps a parse tree y to its
associated logical form.

Initialization: Set parameters w to initial values described in
section 6.2. Set Λ = Λ0.

Algorithm:
• For t = 1 . . . T, i = 1 . . . n :

Step 1: (Check correctness)

• Let y∗ = arg maxy∈GEN(xi;Λ) w · f(xi, y) .
• If L(y∗) = zi, go to the next example.

Step 2: (Lexical generation)

• Set λ = Λ ∪ GENLEX(xi, zi) .
• Let y∗ = arg maxy∈GEN(xi,zi;λ) w · f(xi, y) .
• Define λi to be the set of lexical entries in y∗.
• Set lexicon to Λ = Λ ∪ λi .

Step 3: (Update parameters)

• Let y′ = arg maxy∈GEN(xi;Λ) w · f(xi, y) .

• If L(y′) 6= zi :

• Set w = w + f(xi, y
∗)− f(xi, y

′) .

Output: Lexicon Λ together with parameters w.

Figure 4: An online learning algorithm.

updates, which are simpler and cheaper to compute.
As in ZC05, the algorithm assumes an initial lex-

icon Λ0 that contains two types of entries. First, we
compile entries such as Boston := NP : boston
for entities such as cities, times and month-names
that occur in the domain or underlying database. In
practice it is easy to compile a list of these atomic
entities. Second, the lexicon has entries for some
function words such as wh-words, and determiners.9

5 Related Work

There has been a significant amount of previ-
ous work on learning to map sentences to under-
lying semantic representations. A wide variety

9Our assumption is that these entries are likely to be domain
independent, so it is simple enough to compile a list that can
be reused in new domains. Another approach, which we may
consider in the future, would be to annotate a small subset of
the training examples with full CCG derivations, from which
these frequently occurring entries could be learned.

of techniques have been considered including ap-
proaches based on machine translation techniques
(Papineni et al., 1997; Ramaswamy and Kleindienst,
2000; Wong and Mooney, 2006), parsing techniques
(Miller et al., 1996; Ge and Mooney, 2006), tech-
niques that use inductive logic programming (Zelle
and Mooney, 1996; Thompson and Mooney, 2002;
Tang and Mooney, 2000; Kate et al., 2005), and
ideas from string kernels and support vector ma-
chines (Kate and Mooney, 2006; Nguyen et al.,
2006). In our experiments we compare to He and
Young (2006) on the ATIS domain and Zettlemoyer
and Collins (2005) on the Geo880 domain, be-
cause these systems currently achieve the best per-
formance on these problems.

The approach of Zettlemoyer and Collins (2005)
was presented in section 2.4. He and Young (2005)
describe an algorithm that learns a probabilistic
push-down automaton that models hierarchical de-
pendencies but can still be trained on a data set that
does not have full treebank-style annotations. This
approach has been integrated with a speech recog-
nizer and shown to be robust to recognition errors
(He and Young, 2006).

There is also related work in the CCG litera-
ture. Clark and Curran (2003) present a method for
learning the parameters of a log-linear CCG pars-
ing model from fully annotated normal–form parse
trees. Watkinson and Manandhar (1999) present an
unsupervised approach for learning CCG lexicons
that does not represent the semantics of the train-
ing sentences. Bos et al. (2004) present an al-
gorithm that learns CCG lexicons with semantics
but requires fully–specified CCG derivations in the
training data. Bozsahin (1998) presents work on us-
ing CCG to model languages with free word order.

In addition, there is related work that focuses on
modeling child language learning. Siskind (1996)
presents an algorithm that learns word-to-meaning
mappings from sentences that are paired with a set
of possible meaning representations. Villavicencio
(2001) describes an approach that learns a categorial
grammar with syntactic and semantic information.
Both of these approaches use sentences from child-
directed speech, which differ significantly from the
natural language interface queries we consider.

Finally, there is work on manually developing
parsing techniques to improve robustness (Carbonell
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and Hayes, 1983; Seneff, 1992). In contrast, our ap-
proach is integrated into a learning framework.

6 Experiments

The main focus of our experiments is on the ATIS
travel planning domain. For development, we used
4978 sentences, split into a training set of 4500 ex-
amples, and a development set of 478 examples. For
test, we used the ATIS NOV93 test set which con-
tains 448 examples. To create the annotations, we
created a script that maps the original SQL annota-
tions provided with the data to lambda-calculus ex-
pressions.

He and Young (2006) previously reported results
on the ATIS domain, using a learning approach
which also takes sentences paired with semantic an-
notations as input. In their case, the semantic struc-
tures resemble context-free parses with semantic (as
opposed to syntactic) non-terminal labels. In our ex-
periments we have used the same split into train-
ing and test data as He and Young (2006), ensur-
ing that our results are directly comparable. He and
Young (2006) report partial match figures for their
parser, based on precision and recall in recovering
attribute-value pairs. (For example, the sentence
flights to Boston would have a single attribute-value
entry, namely destination = Boston.) It is sim-
ple for us to map from lambda-calculus expressions
to attribute-value entries of this form; for example,
the expression to(x,Boston) would be mapped to
destination = Boston. He and Young (2006) gave
us their data and annotations, so we can directly
compare results on the partial-match criterion. We
also report accuracy for exact matches of lambda-
calculus expressions, which is a stricter criterion.

In addition, we report results for the method on
the Geo880 domain. This allows us to compare
directly to the previous work of Zettlemoyer and
Collins (2005), using the same split of the data into
training and test sets of sizes 600 and 280 respec-
tively. We use cross-validation of the training set, as
opposed to a separate development set, for optimiza-
tion of parameters.

6.1 Improving Recall

The simplest approach to the task is to train the
parser and directly apply it to test sentences. In our

experiments we will see that this produces results
which have high precision, but somewhat lower re-
call, due to some test sentences failing to parse (usu-
ally due to words in the test set which were never
observed in training data). A simple strategy to alle-
viate this problem is as follows. If the sentence fails
to parse, we parse the sentence again, this time al-
lowing parse moves which can delete words at some
cost. The cost of this deletion operation is optimized
on development data. This approach can signifi-
cantly improve F-measure on the partial-match cri-
terion in particular. We report results both with and
without this second pass strategy.

6.2 Parameters in the Approach

The algorithm in figure 4 has a number of param-
eters, the set {T, α, β, γ}, which we now describe.
The values of these parameters were chosen to op-
timize the performance on development data. T is
the number of passes over the training set, and was
set to be 4. Each lexical entry in the initial lexicon
Λ0 has an associated feature which counts the num-
ber of times this entry is seen in a parse. The initial
parameter value in w for all features of this form
was chosen to be some value α. Each of the new
CCG rules—the application, composition, crossed-
composition, and type-raising rules described in sec-
tion 3—has an associated parameter. We set all of
these parameters to the same initial value β. Finally,
when new lexical entries are added to Λ (in step 2
of the algorithm), their initial weight is set to some
value γ. In practice, optimization on development
data led to a positive value for α, and negative val-
ues for β and γ.

6.3 Results

Table 1 shows accuracy for the method by the exact-
match criterion on the ATIS test set. The two pass
strategy actually hurts F-measure in this case, al-
though it does improve recall of the method.

Table 2 shows results under the partial-match cri-
terion. The results for our approach are higher
than those reported by He and Young (2006) even
without the second, high-recall, strategy. With the
two-pass strategy our method has more than halved
the F-measure error rate, giving improvements from
90.3% F-measure to 95.9% F-measure.

Table 3 shows results on the Geo880 domain. The
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Precision Recall F1
Single-Pass Parsing 90.61 81.92 86.05
Two-Pass Parsing 85.75 84.6 85.16

Table 1: Exact-match accuracy on the ATIS test set.

Precision Recall F1
Single-Pass Parsing 96.76 86.89 91.56
Two-Pass Parsing 95.11 96.71 95.9

He and Young (2006) – – 90.3

Table 2: Partial-credit accuracy on the ATIS test set.

new method gives improvements in performance
both with and without the two pass strategy, showing
that the new CCG combinators, and the new learn-
ing algorithm, give some improvement on even this
domain. The improved performance comes from a
slight drop in precision which is offset by a large in-
crease in recall.

Table 4 shows ablation studies on the ATIS data,
where we have selectively removed various aspects
of the approach, to measure their impact on perfor-
mance. It can be seen that accuracy is seriously de-
graded if the new CCG rules are removed, or if the
features associated with these rules (which allow the
model to penalize these rules) are removed.

Finally, we report results concerning the effi-
ciency of the new online algorithm as compared to
the ZC05 algorithm. We compared running times
for the new algorithm, and the ZC05 algorithm, on
the geography domain, with both methods making
4 passes over the training data. The new algorithm
took less than 4 hours, compared to over 12 hours
for the ZC05 algorithm. The main explanation for
this improved performance is that on many training
examples,10 in step 1 of the new algorithm a cor-
rect parse is found, and the algorithm immediately
moves on to the next example. Thus GENLEX is
not required, and in particular parsing the example
with the large set of entries generated by GENLEX
is not required.

7 Discussion

We presented a new, online algorithm for learn-
ing a combinatory categorial grammar (CCG), to-
gether with parameters that define a log-linear pars-
ing model. We showed that the use of non-standard
CCG combinators is highly effective for parsing sen-

10Measurements on the Geo880 domain showed that in the 4
iterations, 83.3% of all parses were successful at step 1.

Precision Recall F1
Single-Pass Parsing 95.49 83.2 88.93
Two-Pass Parsing 91.63 86.07 88.76

ZC05 96.25 79.29 86.95

Table 3: Exact-match accuracy on the Geo880 test set.

Precision Recall F1
Full Online Method 87.26 74.44 80.35

Without control features 70.33 42.45 52.95
Without relaxed word order 82.81 63.98 72.19

Without word insertion 77.31 56.94 65.58

Table 4: Exact-match accuracy on the ATIS development set
for the full algorithm and restricted versions of it. The sec-
ond row reports results of the approach without the features
described in section 3 that control the use of the new combi-
nators. The third row presents results without the combinators
from section 3.1 that relax word order. The fourth row reports
experiments without the type-raising combinators presented in
section 3.2.

tences with the types of phenomena seen in sponta-
neous, unedited natural language. The resulting sys-
tem achieved significant accuracy improvements in
both the ATIS and Geo880 domains.
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Abstract

We present a nonparametric Bayesian model
of tree structures based on the hierarchical
Dirichlet process (HDP). Our HDP-PCFG
model allows the complexity of the grammar
to grow as more training data is available.
In addition to presenting a fully Bayesian
model for the PCFG, we also develop an ef-
ficient variational inference procedure. On
synthetic data, we recover the correct gram-
mar without having to specify its complex-
ity in advance. We also show that our tech-
niques can be applied to full-scale parsing
applications by demonstrating its effective-
ness in learning state-split grammars.

1 Introduction

Probabilistic context-free grammars (PCFGs) have
been a core modeling technique for many as-
pects of linguistic structure, particularly syntac-
tic phrase structure in treebank parsing (Charniak,
1996; Collins, 1999). An important question when
learning PCFGs is how many grammar symbols
to allocate to the learning algorithm based on the
amount of available data.

The question of “how many clusters (symbols)?”
has been tackled in the Bayesian nonparametrics
literature via Dirichlet process (DP) mixture mod-
els (Antoniak, 1974). DP mixture models have since
been extended to hierarchical Dirichlet processes
(HDPs) and HDP-HMMs (Teh et al., 2006; Beal et
al., 2002) and applied to many different types of
clustering/induction problems in NLP (Johnson et
al., 2006; Goldwater et al., 2006).

In this paper, we present the hierarchical Dirich-
let process PCFG (HDP-PCFG). a nonparametric

Bayesian model of syntactic tree structures based
on Dirichlet processes. Specifically, an HDP-PCFG
is defined to have an infinite number of symbols;
the Dirichlet process (DP) prior penalizes the use
of more symbols than are supported by the training
data. Note that “nonparametric” does not mean “no
parameters”; rather, it means that the effective num-
ber of parameters can grow adaptively as the amount
of data increases, which is a desirable property of a
learning algorithm.

As models increase in complexity, so does the un-
certainty over parameter estimates. In this regime,
point estimates are unreliable since they do not take
into account the fact that there are different amounts
of uncertainty in the various components of the pa-
rameters. The HDP-PCFG is a Bayesian model
which naturally handles this uncertainty. We present
an efficient variational inference algorithm for the
HDP-PCFG based on a structured mean-field ap-
proximation of the true posterior over parameters.
The algorithm is similar in form to EM and thus in-
herits its simplicity, modularity, and efficiency. Un-
like EM, however, the algorithm is able to take the
uncertainty of parameters into account and thus in-
corporate the DP prior.

Finally, we develop an extension of the HDP-
PCFG for grammar refinement (HDP-PCFG-GR).
Since treebanks generally consist of coarsely-
labeled context-free tree structures, the maximum-
likelihood treebank grammar is typically a poor
model as it makes overly strong independence as-
sumptions. As a result, many generative approaches
to parsing construct refinements of the treebank
grammar which are more suitable for the model-
ing task. Lexical methods split each pre-terminal
symbol into many subsymbols, one for each word,
and then focus on smoothing sparse lexical statis-
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tics (Collins, 1999; Charniak, 2000). Unlexicalized
methods refine the grammar in a more conservative
fashion, splitting each non-terminal or pre-terminal
symbol into a much smaller number of subsymbols
(Klein and Manning, 2003; Matsuzaki et al., 2005;
Petrov et al., 2006). We apply our HDP-PCFG-GR
model to automatically learn the number of subsym-
bols for each symbol.

2 Models based on Dirichlet processes

At the heart of the HDP-PCFG is the Dirichlet pro-
cess (DP) mixture model (Antoniak, 1974), which is
the nonparametric Bayesian counterpart to the clas-
sical finite mixture model. In order to build up an
understanding of the HDP-PCFG, we first review
the Bayesian treatment of the finite mixture model
(Section 2.1). We then consider the DP mixture
model (Section 2.2) and use it as a building block
for developing nonparametric structured versions of
the HMM (Section 2.3) and PCFG (Section 2.4).
Our presentation highlights the similarities between
these models so that each step along this progression
reflects only the key differences.

2.1 Bayesian finite mixture model
We begin by describing the Bayesian finite mixture
model to establish basic notation that will carry over
the more complex models we consider later.

Bayesian finite mixture model

β ∼ Dirichlet(α, . . . , α) [draw component probabilities]
For each component z ∈ {1, . . . , K}:
−φz ∼ G0 [draw component parameters]

For each data point i ∈ {1, . . . , n}:
−zi ∼ Multinomial(β) [choose component]
−xi ∼ F (·; φzi) [generate data point]

The model has K components whose prior dis-
tribution is specified by β = (β1, . . . , βK). The
Dirichlet hyperparameter α controls how uniform
this distribution is: as α increases, it becomes in-
creasingly likely that the components have equal
probability. For each mixture component z ∈
{1, . . . ,K}, the parameters of the component φz are
drawn from some prior G0. Given the model param-
eters (β,φ), the data points are generated i.i.d. by
first choosing a component and then generating from
a data model F parameterized by that component.

In document clustering, for example, each data
point xi is a document represented by its term-
frequency vector. Each component (cluster) z
has multinomial parameters φz which specifies a
distribution F (·;φz) over words. It is custom-
ary to use a conjugate Dirichlet prior G0 =
Dirichlet(α′, . . . , α′) over the multinomial parame-
ters, which can be interpreted as adding α′−1 pseu-
docounts for each word.

2.2 DP mixture model
We now consider the extension of the Bayesian finite
mixture model to a nonparametric Bayesian mixture
model based on the Dirichlet process. We focus
on the stick-breaking representation (Sethuraman,
1994) of the Dirichlet process instead of the stochas-
tic process definition (Ferguson, 1973) or the Chi-
nese restaurant process (Pitman, 2002). The stick-
breaking representation captures the DP prior most
explicitly and allows us to extend the finite mixture
model with minimal changes. Later, it will enable us
to readily define structured models in a form similar
to their classical versions. Furthermore, an efficient
variational inference algorithm can be developed in
this representation (Section 2.6).

The key difference between the Bayesian finite
mixture model and the DP mixture model is that
the latter has a countably infinite number of mixture
components while the former has a predefined K.
Note that if we have an infinite number of mixture
components, it no longer makes sense to consider
a symmetric prior over the component probabilities;
the prior over component probabilities must decay in
some way. The stick-breaking distribution achieves
this as follows. We write β ∼ GEM(α) to mean
that β = (β1, β2, . . . ) is distributed according to the
stick-breaking distribution. Here, the concentration
parameter α controls the number of effective com-
ponents. To draw β ∼ GEM(α), we first generate
a countably infinite collection of stick-breaking pro-
portions u1, u2, . . . , where each uz ∼ Beta(1, α).
The stick-breaking weights β are then defined in
terms of the stick proportions:

βz = uz

∏
z′<z

(1− uz′). (1)

The procedure for generating β can be viewed as
iteratively breaking off remaining portions of a unit-
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0 1β1 β2 β3 ...

Figure 1: A sample β ∼ GEM(1).

length stick (Figure 1). The component probabilities
{βz} will decay exponentially in expectation, but
there is always some probability of getting a smaller
component before a larger one. The parameter α de-
termines the decay of these probabilities: a larger α
implies a slower decay and thus more components.

Given the component probabilities, the rest of the
DP mixture model is identical to the finite mixture
model:

DP mixture model

β ∼ GEM(α) [draw component probabilities]
For each component z ∈ {1, 2, . . . }:
−φz ∼ G0 [draw component parameters]

For each data point i ∈ {1, . . . , n}:
−zi ∼ Multinomial(β) [choose component]
−xi ∼ F (·; φzi) [generate data point xn]

2.3 HDP-HMM

The next stop on the way to the HDP-PCFG is the
HDP hidden Markov model (HDP-HMM) (Beal et
al., 2002; Teh et al., 2006). An HMM consists of a
set of hidden states, where each state can be thought
of as a mixture component. The parameters of the
mixture component are the emission and transition
parameters. The main aspect that distinguishes it
from a flat finite mixture model is that the transi-
tion parameters themselves must specify a distribu-
tion over next states. Hence, we have not just one
top-level mixture model over states, but also a col-
lection of mixture models, one for each state.

In developing a nonparametric version of the
HMM in which the number of states is infinite, we
need to ensure that the transition mixture models
of each state share a common inventory of possible
next states. We can achieve this by tying these mix-
ture models together using the hierarchical Dirichlet
process (HDP) (Teh et al., 2006). The stick-breaking
representation of an HDP is defined as follows: first,
the top-level stick-breaking weights β are drawn ac-
cording to the stick-breaking prior as before. Then,

a new set of stick-breaking weights β′ are generated
according based on β:

β′ ∼ DP(α′,β), (2)

where the distribution of DP can be characterized
in terms of the following finite partition property:
for all partitions of the positive integers into sets
A1, . . . , Am,

(β′(A1), . . . ,β′(Am)) (3)

∼ Dirichlet
(
α′β(A1), . . . , α′β(Am)

)
,

where β(A) =
∑

k∈A βk.1 The resulting β′ is an-
other distribution over the positive integers whose
similarity to β is controlled by a concentration pa-
rameter α′.

HDP-HMM

β ∼ GEM(α) [draw top-level state weights]
For each state z ∈ {1, 2, . . . }:
−φE

z ∼ Dirichlet(γ) [draw emission parameters]
−φT

z ∼ DP(α′, β) [draw transition parameters]

For each time step i ∈ {1, . . . , n}:
−xi ∼ F (·; φE

zi
) [emit current observation]

−zi+1 ∼ Multinomial(φT
zi

) [choose next state]

Each state z is associated with emission param-
eters φE

z . In addition, each z is also associated
with transition parameters φT

z , which specify a dis-
tribution over next states. These transition parame-
ters are drawn from a DP centered on the top-level
stick-breaking weights β according to Equations (2)
and (3). Assume that z1 is always fixed to a special
START state, so we do not need to generate it.

2.4 HDP-PCFG
We now present the HDP-PCFG, which is the focus
of this paper. For simplicity, we consider Chomsky
normal form (CNF) grammars, which has two types
of rules: emissions and binary productions. We con-
sider each grammar symbol as a mixture component
whose parameters are the rule probabilities for that
symbol. In general, we do not know the appropriate
number of grammar symbols, so our strategy is to
let the number of grammar symbols be infinite and
place a DP prior over grammar symbols.

1Note that this property is a specific instance of the general
stochastic process definition of Dirichlet processes.
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HDP-PCFG

β ∼ GEM(α) [draw top-level symbol weights]
For each grammar symbol z ∈ {1, 2, . . . }:
−φT

z ∼ Dirichlet(αT ) [draw rule type parameters]
−φE

z ∼ Dirichlet(αE) [draw emission parameters]
−φB

z ∼ DP(αB , ββT ) [draw binary production parameters]

For each node i in the parse tree:
−ti ∼ Multinomial(φT

zi
) [choose rule type]

−If ti = EMISSION:
−−xi ∼ Multinomial(φE

zi
) [emit terminal symbol]

−If ti = BINARY-PRODUCTION:
−−(zL(i), zR(i)) ∼ Multinomial(φB

zi
) [generate children symbols]

β

φB
z

φT
z

φE
z

z ∞

z1

z2

x2

z3

x3

T

Parameters Trees

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types φT

z , (2) an emission distribu-
tion φE

z over terminal symbols, and (3) a binary pro-
duction distribution φB

z over pairs of children gram-
mar symbols. Figure 2 describes the model in detail.

Figure 3 shows the generation of the binary pro-
duction distributions φB

z . We draw φB
z from a DP

centered on ββT , which is the product distribution
over pairs of symbols. The result is a doubly-infinite
matrix where most of the probability mass is con-

state

right child state

left child state

right child state

left child state

β ∼ GEM(α)

ββT

φB
z ∼ DP(ββT )

Figure 3: The generation of binary production prob-
abilities given the top-level symbol probabilities β.
First, β is drawn from the stick-breaking prior, as
in any DP-based model (a). Next, the outer-product
ββT is formed, resulting in a doubly-infinite matrix
matrix (b). We use this as the base distribution for
generating the binary production distribution from a
DP centered on ββT (c).

centrated in the upper left, just like the top-level dis-
tribution ββT .

Note that we have replaced the general
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G0 and F (φE
zi

) pair with Dirichlet(αE) and
Multinomial(φE

zi
) to specialize to natural language,

but there is no difficulty in working with parse
trees with arbitrary non-multinomial observations
or more sophisticated word models.

In many natural language applications, there is
a hard distinction between pre-terminal symbols
(those that only emit a word) and non-terminal sym-
bols (those that only rewrite as two non-terminal or
pre-terminal symbols). This can be accomplished
by letting αT = (0, 0), which forces a draw φT

z to
assign probability 1 to one rule type.

An alternative definition of an HDP-PCFG would
be as follows: for each symbol z, draw a distribution
over left child symbols lz ∼ DP(β) and an inde-
pendent distribution over right child symbols rz ∼
DP(β). Then define the binary production distribu-
tion as their cross-product φB

z = lzr
T
z . This also

yields a distribution over symbol pairs and hence de-
fines a different type of nonparametric PCFG. This
model is simpler and does not require any additional
machinery beyond the HDP-HMM. However, the
modeling assumptions imposed by this alternative
are unappealing as they assume the left child and
right child are independent given the parent, which
is certainly not the case in natural language.

2.5 HDP-PCFG for grammar refinement
An important motivation for the HDP-PCFG is that
of refining an existing treebank grammar to alle-
viate unrealistic independence assumptions and to
improve parsing accuracy. In this scenario, the set
of symbols is known, but we do not know how
many subsymbols to allocate per symbol. We in-
troduce the HDP-PCFG for grammar refinement
(HDP-PCFG-GR), an extension of the HDP-PCFG,
for this task.

The essential difference is that now we have a
collection of HDP-PCFG models for each symbol
s ∈ S, each one operating at the subsymbol level.
While these HDP-PCFGs are independent in the
prior, they are coupled through their interactions in
the parse trees. For completeness, we have also in-
cluded unary productions, which are essentially the
PCFG counterpart of transitions in HMMs. Finally,
since each node i in the parse tree involves a symbol-
subsymbol pair (si, zi), each subsymbol needs to
specify a distribution over both child symbols and

subsymbols. The former can be handled through
a finite Dirichlet distribution since all symbols are
known and observed, but the latter must be handled
with the Dirichlet process machinery, since the num-
ber of subsymbols is unknown.

HDP-PCFG for grammar refinement (HDP-PCFG-GR)

For each symbol s ∈ S:
−βs ∼ GEM(α) [draw subsymbol weights]
−For each subsymbol z ∈ {1, 2, . . . }:
−−φT

sz ∼ Dirichlet(αT ) [draw rule type parameters]
−−φE

sz ∼ Dirichlet(αE(s)) [draw emission parameters]
−−φu

sz ∼ Dirichlet(αu) [unary symbol productions]
−−φb

sz ∼ Dirichlet(αb) [binary symbol productions]
−−For each child symbol s′ ∈ S:
−−−φU

szs′ ∼ DP(αU , βs′) [unary subsymbol prod.]
−−For each pair of children symbols (s′, s′′) ∈ S × S:
−−−φB

szs′s′′ ∼ DP(αB , βs′βT
s′′) [binary subsymbol]

For each node i in the parse tree:
−ti ∼ Multinomial(φT

sizi
) [choose rule type]

−If ti = EMISSION:
−−xi ∼ Multinomial(φE

sizi
) [emit terminal symbol]

−If ti = UNARY-PRODUCTION:
−−sL(i) ∼ Multinomial(φu

sizi
) [generate child symbol]

−−zL(i) ∼ Multinomial(φU
sizisL(i)

) [child subsymbol]
−If ti = BINARY-PRODUCTION:
−−(sL(i), sR(i)) ∼ Mult(φsizi) [children symbols]
−−(zL(i), zR(i)) ∼ Mult(φB

sizisL(i)sR(i)
) [subsymbols]

2.6 Variational inference
We present an inference algorithm for the HDP-
PCFG model described in Section 2.4, which can
also be adapted to the HDP-PCFG-GR model with
a bit more bookkeeping. Most previous inference
algorithms for DP-based models involve sampling
(Escobar and West, 1995; Teh et al., 2006). How-
ever, we chose to use variational inference (Blei
and Jordan, 2005), which provides a fast determin-
istic alternative to sampling, hence avoiding issues
of diagnosing convergence and aggregating samples.
Furthermore, our variational inference algorithm es-
tablishes a strong link with past work on PCFG re-
finement and induction, which has traditionally em-
ployed the EM algorithm.

In EM, the E-step involves a dynamic program
that exploits the Markov structure of the parse tree,
and the M-step involves computing ratios based on
expected counts extracted from the E-step. Our vari-
ational algorithm resembles the EM algorithm in
form, but the ratios in the M-step are replaced with
weights that reflect the uncertainty in parameter es-
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φB
z

φT
z

φE
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z2 z3
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Parameters Trees

Figure 4: We approximate the true posterior p over
parameters θ and latent parse trees z using a struc-
tured mean-field distribution q, in which the distri-
bution over parameters are completely factorized but
the distribution over parse trees is unconstrained.

timates. Because of this procedural similarity, our
method is able to exploit the desirable properties of
EM such as simplicity, modularity, and efficiency.

2.7 Structured mean-field approximation
We denote parameters of the HDP-PCFG as θ =
(β,φ), where β denotes the top-level symbol prob-
abilities and φ denotes the rule probabilities. The
hidden variables of the model are the training parse
trees z. We denote the observed sentences as x.

The goal of Bayesian inference is to compute the
posterior distribution p(θ, z | x). The central idea
behind variational inference is to approximate this
intractable posterior with a tractable approximation.
In particular, we want to find the best distribution q∗

as defined by

q∗
def= argmin

q∈Q
KL(q(θ, z)||p(θ, z | x)), (4)

where Q is a tractable subset of distributions. We
use a structured mean-field approximation, meaning
that we only consider distributions that factorize as
follows (Figure 4):

Q def=
{

q(z)q(β)
K∏

z=1

q(φT
z )q(φE

z )q(φB
z )

}
. (5)

We further restrict q(φT
z ), q(φE

z ), q(φB
z ) to be

Dirichlet distributions, but allow q(z) to be any
multinomial distribution. We constrain q(β) to be a

degenerate distribution truncated at K; i.e., βz = 0
for z > K. While the posterior grammar does have
an infinite number of symbols, the exponential de-
cay of the DP prior ensures that most of the proba-
bility mass is contained in the first few symbols (Ish-
waran and James, 2001).2 While our variational ap-
proximation q is truncated, the actual PCFG model
is not. As K increases, our approximation improves.

2.8 Coordinate-wise ascent
The optimization problem defined by Equation (4)
is intractable and nonconvex, but we can use a sim-
ple coordinate-ascent algorithm that iteratively op-
timizes each factor of q in turn while holding the
others fixed. The algorithm turns out to be similar in
form to EM for an ordinary PCFG: optimizing q(z)
is the analogue of the E-step, and optimizing q(φ)
is the analogue of the M-step; however, optimizing
q(β) has no analogue in EM. We summarize each
of these updates below (see (Liang et al., 2007) for
complete derivations).

Parse trees q(z): The distribution over parse trees
q(z) can be summarized by the expected suffi-
cient statistics (rule counts), which we denote as
C(z → zl zr) for binary productions and C(z →
x) for emissions. We can compute these expected
counts using dynamic programming as in the E-step
of EM.

While the classical E-step uses the current rule
probabilities φ, our mean-field approximation in-
volves an entire distribution q(φ). Fortunately, we
can still handle this case by replacing each rule prob-
ability with a weight that summarizes the uncer-
tainty over the rule probability as represented by q.
We define this weight in the sequel.

It is a common perception that Bayesian inference
is slow because one needs to compute integrals. Our
mean-field inference algorithm is a counterexample:
because we can represent uncertainty over rule prob-
abilities with single numbers, much of the existing
PCFG machinery based on EM can be modularly
imported into the Bayesian framework.

Rule probabilities q(φ): For an ordinary PCFG,
the M-step simply involves taking ratios of expected

2In particular, the variational distance between the stick-
breaking distribution and the truncated version decreases expo-
nentially as the truncation level K increases.
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counts:

φB
z (zl, zr) =

C(z → zl zr)
C(z → ∗∗)

. (6)

For the variational HDP-PCFG, the optimal q(φ) is
given by the standard posterior update for Dirichlet
distributions:3

q(φB
z ) = Dirichlet(φB

z ;αBββT + ~C(z)), (7)

where ~C(z) is the matrix of counts of rules with left-
hand side z. These distributions can then be summa-
rized with multinomial weights which are the only
necessary quantities for updating q(z) in the next it-
eration:

WB
z (zl, zr)

def= exp Eq[log φB
z (zl, zr)] (8)

=
eΨ(C(z→zl zr)+αBβzl

βzr )

eΨ(C(z→∗∗)+αB)
, (9)

where Ψ(·) is the digamma function. The emission
parameters can be defined similarly. Inspection of
Equations (6) and (9) reveals that the only difference
between the maximum likelihood and the mean-field
update is that the latter applies the exp(Ψ(·)) func-
tion to the counts (Figure 5).

When the truncation K is large, αBβzl
βzr is near

0 for most right-hand sides (zl, zr), so exp(Ψ(·)) has
the effect of downweighting counts. Since this sub-
traction affects large counts more than small counts,
there is a rich-get-richer effect: rules that have al-
ready have large counts will be preferred.

Specifically, consider a set of rules with the same
left-hand side. The weights for all these rules only
differ in the numerator (Equation (9)), so applying
exp(Ψ(·)) creates a local preference for right-hand
sides with larger counts. Also note that the rule
weights are not normalized; they always sum to at
most one and are equal to one exactly when q(φ) is
degenerate. This lack of normalization gives an ex-
tra degree of freedom not present in maximum like-
lihood estimation: it creates a global preference for
left-hand sides that have larger total counts.

Top-level symbol probabilities q(β): Recall that
we restrict q(β) = δβ∗(β), so optimizing β is
equivalent to finding a single best β∗. Unlike q(φ)

3Because we have truncated the top-level symbol weights,
the DP prior on φB

z reduces to a finite Dirichlet distribution.

 0
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exp(Ψ(x))
x

Figure 5: The exp(Ψ(·)) function, which is used in
computing the multinomial weights for mean-field
inference. It has the effect of reducing a larger frac-
tion of small counts than large counts.

and q(z), there is no closed form expression for
the optimal β∗, and the objective function (Equa-
tion (4)) is not convex in β∗. Nonetheless, we can
apply a standard gradient projection method (Bert-
sekas, 1999) to improve β∗ to a local maxima.

The part of the objective function in Equation (4)
that depends on β∗ is as follows:

L(β∗) = log GEM(β∗;α)+ (10)
K∑

z=1

Eq[log Dirichlet(φB
z ;αBβ∗β∗T )]

See Liang et al. (2007) for the derivation of the gra-
dient. In practice, this optimization has very little ef-
fect on performance. We suspect that this is because
the objective function is dominated by p(x | z) and
p(z | φ), while the contribution of p(φ | β) is mi-
nor.

3 Experiments

We now present an empirical evaluation of the HDP-
PCFG(-GR) model and variational inference tech-
niques. We first give an illustrative example of the
ability of the HDP-PCFG to recover a known gram-
mar and then present the results of experiments on
large-scale treebank parsing.

3.1 Recovering a synthetic grammar
In this section, we show that the HDP-PCFG-GR
can recover a simple grammar while a standard
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S → X1X1 | X2X2 | X3X3 | X4X4

X1 → a1 | b1 | c1 | d1

X2 → a2 | b2 | c2 | d2

X3 → a3 | b3 | c3 | d3

X4 → a4 | b4 | c4 | d4

S

Xi Xi

{ai,bi, ci,di} {ai,bi, ci,di}

(a) (b)

Figure 6: (a) A synthetic grammar with a uniform
distribution over rules. (b) The grammar generates
trees of the form shown on the right.

PCFG fails to do so because it has no built-in con-
trol over grammar complexity. From the grammar in
Figure 6, we generated 2000 trees. The two terminal
symbols always have the same subscript, but we col-
lapsed Xi to X in the training data. We trained the
HDP-PCFG-GR, with truncation K = 20, for both
S and X for 100 iterations. We set all hyperparame-
ters to 1.

Figure 7 shows that the HDP-PCFG-GR recovers
the original grammar, which contains only 4 sub-
symbols, leaving the other 16 subsymbols unused.
The standard PCFG allocates all the subsymbols to
fit the exact co-occurrence statistics of left and right
terminals.

Recall that a rule weight, as defined in Equa-
tion (9), is analogous to a rule probability for stan-
dard PCFGs. We say a rule is effective if its weight
is at least 10−6 and its left hand-side has posterior
is also at least 10−6. In general, rules with weight
smaller than 10−6 can be safely pruned without af-
fect parsing accuracy. The standard PCFG uses all
20 subsymbols of both S and X to explain the data,
resulting in 8320 effective rules; in contrast, the
HDP-PCFG uses only 4 subsymbols for X and 1 for
S, resulting in only 68 effective rules. If the thresh-
old is relaxed from 10−6 to 10−3, then only 20 rules
are effective, which corresponds exactly to the true
grammar.

3.2 Parsing the Penn Treebank
In this section, we show that our variational HDP-
PCFG can scale up to real-world data sets. We ran
experiments on the Wall Street Journal (WSJ) por-
tion of the Penn Treebank. We trained on sections
2–21, used section 24 for tuning hyperparameters,
and tested on section 22.

We binarize the trees in the treebank as follows:
for each non-terminal node with symbol X , we in-
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standard PCFG HDP-PCFG

Figure 7: The posteriors over the subsymbols of the
standard PCFG is roughly uniform, whereas the pos-
teriors of the HDP-PCFG is concentrated on four
subsymbols, which is the true number of symbols
in the grammar.

troduce a right-branching cascade of new nodes with
symbol X . The end result is that each node has at
most two children. To cope with unknown words,
we replace any word appearing fewer than 5 times
in the training set with one of 50 unknown word to-
kens derived from 10 word-form features.

Our goal is to learn a refined grammar, where each
symbol in the training set is split into K subsym-
bols. We compare an ordinary PCFG estimated with
maximum likelihood (Matsuzaki et al., 2005) and
the HDP-PCFG estimated using the variational in-
ference algorithm described in Section 2.6.

To parse new sentences with a grammar, we com-
pute the posterior distribution over rules at each span
and extract the tree with the maximum expected cor-
rect number of rules (Petrov and Klein, 2007).

3.2.1 Hyperparameters
There are six hyperparameters in the HDP-PCFG-

GR model, which we set in the following manner:
α = 1, αT = 1 (uniform distribution over unar-
ies versus binaries), αE = 1 (uniform distribution
over terminal words), αu(s) = αb(s) = 1

N(s) , where
N(s) is the number of different unary (binary) right-
hand sides of rules with left-hand side s in the tree-
bank grammar. The two most important hyperpa-
rameters are αU and αB , which govern the sparsity
of the right-hand side for unary and binary rules.
We set αU = αB although more performance could
probably be gained by tuning these individually. It
turns out that there is not a single αB that works for
all truncation levels, as shown in Table 1.

If the top-level distribution β is uniform, the value
of αB corresponding to a uniform prior over pairs of
children subsymbols is K2. Interestingly, the opti-
mal αB appears to be superlinear but subquadratic
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truncation K 2 4 8 12 16 20
best αB 16 12 20 28 48 80

uniform αB 4 16 64 144 256 400

Table 1: For each truncation level, we report the αB

that yielded the highest F1 score on the development
set.

K PCFG PCFG (smoothed) HDP-PCFG
F1 Size F1 Size F1 Size

1 60.47 2558 60.36 2597 60.5 2557
2 69.53 3788 69.38 4614 71.08 4264
4 75.98 3141 77.11 12436 77.17 9710
8 74.32 4262 79.26 120598 79.15 50629

12 70.99 7297 78.8 160403 78.94 86386
16 66.99 19616 79.2 261444 78.24 131377
20 64.44 27593 79.27 369699 77.81 202767

Table 2: Shows development F1 and grammar sizes
(the number of effective rules) as we increase the
truncation K.

in K. We used these values of αB in the following
experiments.

3.2.2 Results

The regime in which Bayesian inference is most
important is when training data is scarce relative to
the complexity of the model. We train on just sec-
tion 2 of the Penn Treebank. Table 2 shows how
the HDP-PCFG-GR can produce compact grammars
that guard against overfitting. Without smoothing,
ordinary PCFGs trained using EM improve as K in-
creases but start to overfit around K = 4. Simple
add-1.01 smoothing prevents overfitting but at the
cost of a sharp increase in grammar sizes. The HDP-
PCFG obtains comparable performance with a much
smaller number of rules.

We also trained on sections 2–21 to demon-
strate that our methods can scale up and achieve
broadly comparable results to existing state-of-the-
art parsers. When using a truncation level of K =
16, the standard PCFG with smoothing obtains an
F1 score of 88.36 using 706157 effective rules while
the HDP-PCFG-GR obtains an F1 score of 87.08 us-
ing 428375 effective rules. We expect to see greater
benefits from the HDP-PCFG with a larger trunca-
tion level.

4 Related work

The question of how to select the appropriate gram-
mar complexity has been studied in earlier work.
It is well known that more complex models nec-
essarily have higher likelihood and thus a penalty
must be imposed for more complex grammars. Ex-
amples of such penalized likelihood procedures in-
clude Stolcke and Omohundro (1994), which used
an asymptotic Bayesian model selection criterion
and Petrov et al. (2006), which used a split-merge
algorithm which procedurally determines when to
switch between grammars of various complexities.
These techniques are model selection techniques
that use heuristics to choose among competing sta-
tistical models; in contrast, the HDP-PCFG relies on
the Bayesian formalism to provide implicit control
over model complexity within the framework of a
single probabilistic model.

Johnson et al. (2006) also explored nonparamet-
ric grammars, but they do not give an inference al-
gorithm for recursive grammars, e.g., grammars in-
cluding rules of the form A → BC and B → DA.
Recursion is a crucial aspect of PCFGs and our
inference algorithm does handle it. Finkel et al.
(2007) independently developed another nonpara-
metric model of grammars. Though their model is
also based on hierarchical Dirichlet processes and is
similar to ours, they present a different inference al-
gorithm which is based on sampling. Kurihara and
Sato (2004) and Kurihara and Sato (2006) applied
variational inference to PCFGs. Their algorithm is
similar to ours, but they did not consider nonpara-
metric models.

5 Conclusion

We have presented the HDP-PCFG, a nonparametric
Bayesian model for PCFGs, along with an efficient
variational inference algorithm. While our primary
contribution is the elucidation of the model and algo-
rithm, we have also explored some important empir-
ical properties of the HDP-PCFG and also demon-
strated the potential of variational HDP-PCFGs on a
full-scale parsing task.
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Abstract

We explore the use of Wikipedia as external
knowledge to improve named entity recog-
nition (NER). Our method retrieves the cor-
responding Wikipedia entry for each can-
didate word sequence and extracts a cate-
gory label from the first sentence of the en-
try, which can be thought of as a definition
part. These category labels are used as fea-
tures in a CRF-based NE tagger. We demon-
strate using the CoNLL 2003 dataset that the
Wikipedia category labels extracted by such
a simple method actually improve the accu-
racy of NER.

1 Introduction

It has been known that Gazetteers, or entity dic-
tionaries, are important for improving the perfor-
mance of named entity recognition. However, build-
ing and maintaining high-quality gazetteers is very
time consuming. Many methods have been proposed
for solving this problem by automatically extracting
gazetteers from large amounts of texts (Riloff and
Jones, 1999; Thelen and Riloff, 2002; Etzioni et al.,
2005; Shinzato et al., 2006; Talukdar et al., 2006;
Nadeau et al., 2006). However, these methods re-
quire complicated induction of patterns or statistical
methods to extract high-quality gazetteers.

We have recently seen a rapid and successful
growth of Wikipedia (http://www.wikipedia.org),
which is an open, collaborative encyclopedia on
the Web. Wikipedia has now more than 1,700,000
articles on the English version (March 2007) and
the number is still increasing. Since Wikipedia
aims to be an encyclopedia, most articles are about
named entities and they are more structured than raw

texts. Although it cannot be used as gazetteers di-
rectly since it is not intended as a machine readable
resource, extracting knowledge such as gazetteers
from Wikipedia will be much easier than from raw
texts or from usual Web texts because of its struc-
ture. It is also important that Wikipedia is up-
dated every day and therefore new named entities are
added constantly. We think that extracting knowl-
edge from Wikipedia for natural language process-
ing is one of the promising ways towards enabling
large-scale, real-life applications. In fact, many
studies that try to exploit Wikipedia as a knowl-
edge source have recently emerged (Bunescu and
Paşca, 2006; Toral and Muñoz, 2006; Ruiz-Casado
et al., 2006; Ponzetto and Strube, 2006; Strube and
Ponzetto, 2006; Zesch et al., 2007).

As a first step towards such approach, we demon-
strate in this paper that category labels extracted
from the first sentence of a Wikipedia article, which
can be thought of as the definition of the entity de-
scribed in the article, are really useful to improve the
accuracy of NER. For example, “Franz Fischler” has
the article with the first sentence, “Franz Fischler
(born September 23, 1946) is an Austrian politi-
cian.” We extract “politician” from this sentence
as the category label for “Franz Fischler”. We use
such category labels as well as matching informa-
tion as features of a CRF-based NE tagger. In our
experiments using the CoNLL 2003 NER dataset
(Tjong et al., 2003), we demonstrate that we can
improve performance by using the Wikipedia fea-
tures by 1.58 points in F-measure from the baseline,
and by 1.21 points from the model that only uses
the gazetteers provided in the CoNLL 2003 dataset.
Our final model incorporating all features achieved
88.02 in F-measure, which means a 3.03 point im-
provement over the baseline, which does not use any
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gazetteer-type feature.

The studies most relevant to ours are Bunescu and
Paşca (2006) and Toral and Muñoz (2006).

Bunescu and Paşca (2006) presented a method of
disambiguating ambiguous entities exploiting inter-
nal links in Wikipedia as training examples. The
difference however is that our method tries to use
Wikipedia features for NER, not for disambiguation
which assumes that entity regions are already found.
They also did not focus on the first sentence of an
article. Also, our method does not disambiguate
ambiguous entities, since accurate disambiguation
is difficult and possibly introduces noise. There are
two popular ways for presenting ambiguous entities
in Wikipedia. The first is to redirect users to a dis-
ambiguation page, and the second is to redirect users
to one of the articles. We only focused on the second
case and did not utilize disambiguation pages in this
study. This method is simple but works well because
the article presented in the second case represents in
many cases the major meaning of the ambiguous en-
tities and therefore that meaning frequently appears
in a corpus.

Toral and Muñoz (2006) tried to extract gazetteers
from Wikipedia by focusing on the first sentences.
However, their way of using the first sentence is
slightly different. We focus on the first noun phrase
after be in the first sentence, while they used all the
nouns in the sentence. By using these nouns and
WordNet, they tried to map Wikipedia entities to ab-
stract categories (e.g., LOC, PER ORG, MISC) used
in usual NER datasets. We on the other hand use the
obtained category labels directly as features, since
we think the mapping performed automatically by
a CRF model is more precise than the mapping by
heuristic methods. Finally, they did not demonstrate
the usefulness of the extracted gazetteers in actual
NER systems.

The rest of the paper is organized as follows. We
first explain the structure of Wikipedia in Section
2. Next, we introduce our method of extracting and
using category labels in Section 3. We then show
the experimental results on the CoNLL 2003 NER
dataset in Section 4. Finally, we discuss the pos-
sibility of further improvement and future work in
Section 5.

2 Wikipedia

2.1 Basic structure

An article in Wikipedia is identified by a unique
name, which can be obtained by concatenating the
words in the article title with underscore “ ”. For ex-
ample, the unique name for the article, “David Beck-
ham”, is David Beckham. We call these unique
names “entity names” in this paper.

Wikipedia articles have many useful structures for
knowledge extraction such as headings, lists, inter-
nal links, categories, and tables. These are marked
up by using the Wikipedia syntax in source files,
which authors edit. See the Wikipedia entry iden-
tified by How to edit a page for the details of the
markup language.

We describe two important structures, redirec-
tions and disabiguation pages, in the following sec-
tions.

2.2 Redirection

Some entity names in Wikipedia do not have a sub-
stantive article and are only redirected to an arti-
cle with another entity name. This mechanism is
called “redirection”. Redirections are marked up
as “#REDIRECT [[A B C]]” in source files, where
“[[...]]” is a syntax for a link to another article in
Wikipedia (internal links). If the source file has such
a description, users are automatically redirected to
the article specified by the entity name in the brackes
(A B C for the above example). Redirections are
used for several purposes regarding ambiguity. For
example, they are used for spelling resolution such
as from “Apples” to “Apple” and abbreviation res-
olution such as from “MIT” to “Massachusetts In-
stitute of Technology”. They are also used in the
context of more difficult disambiguations described
in the next section.

2.3 Disambiguation pages

Some authors make a “disambiguation” page for an
ambiguous entity name.1 A disambiguation page
typically enumerates possible articles for that name.
For example, the page for “Beckham” enumerates
“David Beckham (English footballer)”, “Victoria

1We mean by “ambiguous” the case where a name can
be used to refer to several difference entities (i.e., articles in
Wikipedia).
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Beckham (English celebrity and wife of David)”,
“Brice Beckham (American actor)”, and so on.
Most, but not all, disambiguation pages have a name
like Beckham (disambiguation) and are some-
times used with redirection. For example, Beck-
ham is redirected to Beckham (disambiguation)
in the above example. However, it is also possible
that Beckham redirects to one of the articles (e.g,
David Beckham). As we mentioned, we did not
utilize the disambiguation pages and relied on the
above case in this study.

2.4 Data

Snapshots of the entire contents of Wikipedia are
provided in XML format for each language version.
We used the English version at the point of Febru-
ary 2007, which includes 4,030,604 pages.2 We im-
ported the data into a text search engine3 and used it
for the research.

3 Method

In this section, we describe our method of extracting
category labels from Wikipedia and how to use those
labels in a CRF-based NER model.

3.1 Generating search candidates

Our purpose here is to find the corresponding en-
tity in Wikipedia for each word sequence in a sen-
tence. For example, given the sentence, “Rare Jimi
Hendrix song draft sells for almost $17,000”, we
would like to know that “Jimi Hendrix” is described
in Wikipedia and extract the category label, “mu-
sician”, from the article. However, considering all
possible word sequences is costly. We thus restricted
the candidates to be searched to the word sequences
of no more than eight words that start with a word
containing at least one capitalized letter.4

3.2 Finding category labels

We converted a candidate word sequence to a
Wikipedia entity name by concatenating the words
with underscore. For example, a word sequence

2The number of article pages is 2,954,255 including redirec-
tion pages

3We used HyperEstraier available at
http://hyperestraier.sourceforge.net/index.html

4Words such as “It” and “He” are not considered as capital-
ized words here (we made a small list of stop words).

“Jimi Hendrix” is converted to Jimi Hendrix. Next,
we retrieved the article corresponding to the entity
name.5 If the page for the entity name is a redirec-
tion page, we followed redirection until we find a
non-redirection page.

Although there is no strict formatting rule in
Wikipedia, the convention is to start an article with
a short sentence defining the entity the article de-
scribes. For example, the article for Jimi Hendrix
starts with the sentence, “Jimi Hendrix (November
27, 1942, Seattle, Washington - September 18, 1970,
London, England) was an American guitarist, singer
and songwriter.” Most of the time, the head noun of
the noun phrase just after be is a good category la-
bel. We thus tried to extract such head nouns from
the articles.

First, we eliminated unnecessary markup such
as italics, bold face, and internal links from the
article. We also converted the markup for inter-
nal links like [[Jimi Hendrix|Hendrix]] to
Hendrix, since the part after |, if it exists, rep-
resents the form to be displayed in the page. We
also eliminated template markup, which is enclosed
by {{ and }}, because template markup sometimes
comes at the beginning of the article and makes
the extraction of the first sentence impossible.6 We
then divided the article into lines according to the
new line code, \n, <br> HTML tags, and a very
simple sentence segmentation rule for period (.).
Next, we removed lines that match regular expres-
sion /ˆ\s*:/ to eliminate the lines such as:

This article is about the tree and its fruit.
For the consumer electronics corporation,
see Apple Inc.

These sentences are not the content of the article but
often placed at the beginning of an article. Fortu-
nately, they are usually marked up using :, which is
for indentation.

After the preprocessing described above, we ex-
tracted the first line in the remaining lines as the first
sentence from which we extract a category label.

5There are pages for other than usual articles in the
Wikipedia data. They are distinguished by a namespace at-
tribute. To retrieve articles, we only searched in namespace 0,
which is for usual articles.

6Templates are used for example to generate profile tables
for persons.
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We then performed POS tagging and phrase chunk-
ing. TagChunk (Daumé III and Marcu, 2005)7 was
used as a POS/chunk tagger. Next, we extracted the
first noun phrase after the first “is”, “was”, “are”, or
“were” in the sentence. Basically, we extracted the
last word in the noun phrase as the category label.
However, we used the second noun phrase when the
first noun phrase ended with “one”, “kind”, “sort”,
or “type”, or it ended with “name” followed by “of”.
These rules were for treating examples like:

Jazz is [a kind]NP [of]PP [music]NP characterized
by swung and blue notes.

In these cases, we would like to extract the head
noun of the noun phrase after “of” (e.g., “music”
in instead of “kind” for the above example). How-
ever, we would like to extract “name” itself when the
sentence was like “Ichiro is a Japanese given name”.

We did not utilize Wikipedia’s “Category” sec-
tions in this study, since a Wikipedia article can have
more than one category, and many of them are not
clean hypernyms of the entity as far as we observed.
We will need to select an appropriate category from
the listed categories in order to utilize the Category
section. We left this task for future research.

3.3 Using category labels as features
If we could find the category label for the candidate
word sequence, we annotated it using IOB2 tags in
the same way as we represent named entities. In
IOB2 tagging, we use “B-X”, “I-X”, and “O” tags,
where “B”, “I”, and “O” means the beginning of an
entity, the inside of an entity, and the outside of en-
tities respectively. Suffix X represents the category
of an entity.8 In this case, we used the extracted cat-
egory label as the suffix. For example, if we found
that “Jimi Hendrix” was in Wikipedia and extracted
“guitarist” as the category label, we annotated the
sentence, “Rare Jimi Hendrix song draft sells for al-
most $17,000”, as:

RareO JimiB-guitarist HendrixI-guitarist songO draftO
forO almostO $17,000O .O
Note that we adopted the leftmost longest match if
there were several possible matchings. These IOB2
tags were used in the same way as other features

7http://www.cs.utah.edu/˜hal/TagChunk/
8We use bare “B”, “I”, and “O” tags if we want to represent

only the matching information.

in our NE tagger using Conditional Random Fields
(CRFs) (Lafferty et al., 2001). For example, we used
a feature such as “the Wikipedia tag is B-guitarist
and the NE tag is B-PER”.

4 Experiments

In this section, we demonstrate the usefulness of the
extracted category labels for NER.

4.1 Data and setting

We used the English dataset of the CoNLL 2003
shared task (Tjong et al., 2003). It is a corpus of
English newspaper articles, where four entity cate-
gories, PER, LOC, ORG, and MISC are annotated.
It consists of training, development, and testing sets
(14,987, 3,466, and 3,684 sentences, respectively).
We concatenated the sentences in the same docu-
ment according to the document boundary markers
provided in the dataset.9 This generated 964 doc-
uments for the training set, 216 documents for the
development set, and 231 documents for the test-
ing set. Although automatically assigned POS and
chunk tags are also provided in the dataset, we used
TagChunk (Daumé III and Marcu, 2005)10 to assign
POS and chunk tags, since we observed that accu-
racy could be improved, presumably due to the qual-
ity of the tags.11

We used the features summarized in Table 1 as the
baseline feature set. These are similar to those used
in other studies on NER. We omitted features whose
surface part described in Table 1 occurred less than
twice in the training corpus.

Gazetteer files for the four categories, PER
(37,831 entries), LOC (10,069 entries), ORG (3,439
entries), and MISC (3,045 entries), are also provided
in the dataset. We compiled these files into one
gazetteer, where each entry has its entity category,
and used it in the same way as the Wikipedia feature
described in Section 3.3. We will compare features
using this gazetteer with those using Wikipedia in
the following experiments.

9We used sentence concatenation because we found it im-
proves the accuracy in another study (Kazama and Torisawa,
2007).

10http://www.cs.utah.edu/˜hal/TagChunk/
11This is not because TagChunk overfits the CoNLL 2003

dataset (TagChunk is trained on the Penn Treebank (Wall Street
Journal), while the CoNLL 2003 data are taken from the Reuters
corpus).
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Table 1: Baseline features. The value of a node fea-
ture is determined from the current label, y0, and a
surface feature determined only from x. The value
of an edge feature is determined by the previous la-
bel, y−1, the current label, y0, and a surface feature.
Used surface features are the word (w), the down-
cased word (wl), the POS tag (pos), the chunk tag
(chk), the prefix of the word of length n (pn), the
suffix (sn), the word form features: 2d - cp (these
are based on (Bikel et al., 1999))

Node features:
{””, x−2, x−1, x0, x+1, x+2} × y0

x = w, wl, pos, chk, p1, p2, p3, p4, s1, s2, s3, s4, 2d,
4d, d&a, d&-, d&/, d&,, d&., n, ic, ac, l, cp
Edge features:
{””, x−2, x−1, x0, x+1, x+2} × y−1 × y0

x = w, wl, pos, chk, p1, p2, p3, p4, s1, s2, s3, s4, 2d,
4d, d&a, d&-, d&/, d&,, d&., n, ic, ac, l, cp
Bigram node features:
{x−2x−1, x−1x0, x0x+1} × y0

x = wl, pos, chk
Bigram edge features:
{x−2x−1, x−1x0, x0x+1} × y−1 × y0

x = wl, pos, chk

We used CRF++ (ver. 0.44)12 as the basis of our
implementation of CRFs. We implemented scaling,
which is similar to that for HMMs (see for instance
(Rabiner, 1989)), in the forward-backward phase of
CRF training to deal with long sequences due to
sentence concatenation.13 We used Gaussian reg-
ularization to avoid overfitting. The parameter of
the Gaussian, σ2, was tuned using the development
set.14 We stopped training when the relative change
in the log-likelihood became less than a pre-defined
threshold, 0.0001, for at least three iterations.

4.2 Category label finding

Table 2 summarizes the statistics of category label
finding for the training set. Table 3 lists examples
of the extracted categories. As can be seen, we
could extract more than 1,200 distinct category la-
bels. These category labels seem to be useful, al-

12http://chasen.org/˜taku/software/CRF++
13We also replaced the optimization module in the original

package with that used in the Amis maximum entropy estima-
tor (http://www-tsujii.is.s.u-tokyo.ac.jp/amis) since we encoun-
tered problems with the provided module in some cases. Al-
though this Amis module implements BLMVM (Benson and
Moré, 2001), which supports the bounding of weights, we did
not use this feature in this study (i.e., we just used it as the re-
placement for the L-BFGS optimizer in CRF++).

14We tested 15 points: {0.01, 0.02, 0.04, . . . , 163.84, 327.68}.

Table 2: Statistics of category label finding.
search candidates (including duplication) 256,418
candidates having Wikipedia article 39,258
(articles found by redirection) 9,587
first sentence found 38,949
category label extracted 23,885
(skipped “one”) 544
(skipped “kind”) 14
(skipped “sort”) 1
(skipped “type”) 41
(skipped “name of”) 463
distinct category labels 1,248

Table 3: Examples of category labels (top 20).
category frequency # distinct entities
country 2598 152
city 1436 284
name 1270 281
player 578 250
day 564 131
month 554 15
club 537 167
surname 515 185
capital 454 79
state 416 60
term 369 78
form 344 40
town 287 97
cricketer 276 97
adjective 260 6
golfer 229 88
world 221 24
team 220 52
organization 214 38
second 212 1

though there is no guarantee that the extracted cate-
gory label is correct for each candidate.

4.3 Feature comparison
We compared the following features in this experi-
ment.

Gazetteer Match (gaz m) This feature represents
the matching with a gazetteer entry by using
“B”, “I”, and “O” tags. That is, this is the
gazetteer version of wp m below.

Gazetteer Category Label (gaz c) This feature
represents the matching with a gazetteer entry
and its category by using “B-X”, “I-X”, and
“O” tags, where X is one of “PER”, “LOC”,
“ORG”, and “MISC”. That is, this is the
gazetteer version of wp c below.

Wikipedia Match (wp m) This feature represents
the matching with a Wikipedia entity by using
“B”, “I”, and “O” tags.
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Table 4: Statistics of gazetteer and Wikipedia fea-
tures. Rows “NEs (%)” show the number of matches
that also matched the regions of the named entities in
the training data, and the percentage of such named
entities (there were 23,499 named entities in total in
the training data).

Gazetteer Match (gaz m)
matches 12,397
NEs (%) 6,415 (27.30%)

Wikipedia Match (wp m)
matches 27,779
NEs (%) 16,600 (70.64%)

Wikipedia Category Label (wp c)
matches 18,617
NEs (%) 11,645 (49.56%)
common with gazetteer match 5,664

Wikipedia Category Label (wp c) This feature
represents the matching with a Wikipedia
entity and its category in the way described
Section in 3.3. Note that this feature only
fires when the category label is successfully
extracted from the Wikipedia article.

For these gaz m, gaz c, wp m, and wp c, we gener-
ate the node features, the edge features, the bigram
node features, and the bigram edge features, as de-
scribed in Table 1.

Table 4 shows how many matches (the leftmost
longest matches that were actually output) were
found for gaz m, wp m, and wp c. We omit-
ted the numbers for gaz c, since they are same
as gaz m. We can see that Wikipedia had more
matches than the gazetteer, and covers more named
entities (more than 70% of the NEs in the training
corpus). The overlap between the gazetteer matches
and the Wikipedia matches was moderate as the last
row indicates (5,664 out of 18,617 matches). This
indicates that Wikipedia has many entities that are
not listed in the gazetteer.

We then compared the baseline model (baseline),
which uses the feature set in Table 1, with the fol-
lowing models to see the effect of the gazetteer fea-
tures and the Wikipedia features.

(A): + gaz m This uses gaz m in addition to the
features in baseline.

(B): + gaz m, gaz c This uses gaz m and gaz c in
addition to the features in baseline.

(C): + wp m This uses wp m in addition to the fea-
tures in baseline.

(D): + wp m, wp c This uses wp m and wp c in
addition to the features in baseline.

(E): + gaz m, gaz c, wp m, wp c This uses
gaz m, gaz c, wp m, and wp c in addition to
the features in baseline.

(F): + gaz m, gaz c, wp m, wp c (word comb.)
This model uses the combination of words
(wl) and gaz m, gaz c, wp m, or wp c,
in addition to the features of model (E).
More specifically, these features are the node
feature, wl0 × x0 × y0, the edge feature,
wl0 × x0 × y−1 × y0, the bigram node feature,
wl−1 × wl0 × x−1 × x0 × y0, and the bigram
edge feature, wl−1×wl0×x−1×x0×y−1×y0,
where x is one of gaz m, gaz c, wp m, and
wp c. We tested this model because we thought
these combination features could alleviate the
problem by incorrectly extracted categories
in some cases, if there is a characteristic
correlation between words and incorrectly
extracted categories.

Table 5 shows the performance of these mod-
els. The results for (A) and (C) indicate that the
matching information alone does not improve ac-
curacy. This is because entity regions can be iden-
tified fairly correctly if models are trained using a
sufficient amount of training data. The category la-
bels, on the other hand, are actually important for
improvement as the results for (B) and (D) indicate.
The gazetteer model, (B), improved F-measure by
1.47 points from the baseline. The Wikipedia model,
(D), improved F-measure by 1.58 points from the
baseline. The effect of the gazetteer feature, gaz c,
and the Wikipedia features, wp c, did not differ
much. However, it is notable that the Wikipedia fea-
ture, which is obtained by our very simple method,
achieved such an improvement easily.

The results for model (E) show that we can im-
prove accuracy further, by using the gazetteer fea-
tures and the Wikipedia features together. Model (E)
achieved 87.67 in F-measure, which is better than
those of (B) and (D). This result coincides with the
fact that the overlap between the gazetteer feature
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Table 5: Effect of gazetteer and Wikipedia features.

dev eval
model (best σ2) category P R F P R F

baseline (20.48)

PER 90.29 92.89 91.57 87.19 91.34 89.22
LOC 93.32 92.81 93.07 88.14 88.25 88.20
ORG 85.36 83.07 84.20 82.25 78.93 80.55
MISC 92.21 84.71 88.30 79.58 75.50 77.49
ALL 90.42 89.38 89.90 85.17 84.81 84.99

(A): + gaz m (81.92)

PER 90.60 92.56 91.57 87.90 90.72 89.29
LOC 92.84 93.20 93.02 88.26 88.37 88.32
ORG 85.54 82.92 84.21 82.37 79.05 80.68
MISC 92.15 85.25 88.56 78.73 75.93 77.30
ALL 90.41 89.45 89.92 85.33 84.76 85.04

(B): + gaz m, gaz c (163.84)

PER 92.45 94.41 93.42 90.78 91.96 91.37
LOC 94.43 94.07 94.25 89.98 89.33 89.65
ORG 86.68 85.38 86.03 82.43 81.34 81.88
MISC 92.47 85.25 88.71 79.50 76.78 78.12
ALL 91.77 90.84 91.31 86.74 86.17 86.46

(C): + wp m (163.84)

PER 90.84 92.56 91.69 87.77 90.11 88.92
LOC 92.63 93.03 92.83 87.23 88.07 87.65
ORG 86.19 83.74 84.95 81.77 79.65 80.70
MISC 91.69 84.92 88.18 79.04 75.21 77.08
ALL 90.49 89.53 90.01 84.85 84.58 84.71

(D): + wp m, wp c (163.84)

PER 91.57 94.41 92.97 90.13 92.02 91.06
LOC 94.78 93.96 94.37 89.41 89.63 89.52
ORG 87.36 85.01 86.17 82.70 82.00 82.35
MISC 91.87 84.60 88.09 81.34 76.35 78.77
ALL 91.68 90.63 91.15 86.71 86.42 86.57

(E): + gaz m, gaz c, wp m,
wp c (40.96)

PER 93.32 95.49 94.39 92.28 93.14 92.71
LOC 94.91 94.39 94.65 90.69 90.47 90.58
ORG 88.27 86.95 87.60 83.08 83.68 83.38
MISC 93.14 85.36 89.08 81.33 76.92 79.06
ALL 92.65 91.65 92.15 87.79 87.55 87.67

(F): + gaz m, gaz c, wp m,
wp c (word comb.) (5.12)

PER 93.38 95.66 94.50 92.52 93.26 92.89
LOC 94.88 94.77 94.83 91.25 90.71 90.98
ORG 88.67 86.95 87.80 83.61 84.17 83.89
MISC 93.56 85.03 89.09 81.63 77.21 79.36
ALL 92.82 91.77 92.29 88.21 87.84 88.02
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Figure 1: Relation between the training size and the
accuracy.

and the Wikipedia feature was not so large. If we
consider model (B) a practical baseline, we can say
that the Wikipedia features improved the accuracy in
F-measure by 1.21 points.

We can also see that the effect of the gazetteer
features and the Wikipedia features were consistent
irrespective of categories (i.e., PER, LOC, ORG, or
MISC) and performance measures (i.e., precision,
recall, or F-measure). This indicates that gazetteer-
type features are reliable as features for NER.

The final model, (F), achieved 88.02 in F-
measure. This is greater than that of the baseline by
3.03 points, showing the usefulness of the gazetteer
type features.

4.4 Effect of training size

We observed in the previous experiment that the
matching information alone was not useful. How-
ever, the situation may change if the size of the train-
ing data becomes small. We thus observed the effect
of the training size for the Wikipedia features wp m
and wp c (we used σ2 = 10.24). Figure 1 shows
the result. As can be seen, the matching information
had a slight positive effect when the size of training
data was small. For example, it improved F-measure
by 0.8 points from the baseline at 200 documents.
However, the superiority of category labels over the
matching information did not change. The effect of
category labels became greater as the training size
became smaller. Its effect compared with the match-
ing information alone was 3.01 points at 200 docu-
ments, while 1.91 points at 964 documents (i.e., the
whole training data).

Table 6: Breakdown of improvements and errors.
(B) → (E) num. ḡ ∧ w̄ ḡ ∧ w g ∧ w̄ g ∧ w

inc → inc 442 219 123 32 68
inc → cor 102 28 56 3 15
cor → inc 56 28 13 7 8
cor → cor 5,342 1,320 1,662 723 1,637

4.5 Improvement and error analysis

We analyze the improvements and the errors caused
by using the Wikipedia features in this section.

We compared the output of (B) and (E) for the de-
velopment set. There were 5,942 named entities in
the development set. We assessed how the labeling
for these entities changed between (B) and (E). Note
that the labeling for 199 sentences out of total 3,466
sentences was changed. Table 6 shows the break-
down of the improvements and the errors. “inc” in
the table means that the model could not label the
entity correctly, i.e., the model could not find the en-
tity region at all, or it assigned an incorrect category
to the entity. “cor” means that the model could label
the entity correctly. The column, “inc → cor”, for
example, has the numbers for the entities that were
labeled incorrectly by (B) but labeled correctly by
(E). We can see from the column, “num”, that the
number of improvements by (E) exceeded the num-
ber of errors introduced by (E) (102 vs. 56). Table
6 also shows how the gazetteer feature, gaz c, and
the Wikipedia feature, wp c, fired in each case. We
mean that the gazetteer feature fired by using “g”,
and that the Wikipedia feature fired by using “w”.
“ḡ” and “w̄” mean that the feature did not fire. As
is the case for other machine learning methods, it
is difficult to find a clear reason for each improve-
ment or error. However, we can see that the number
of ḡ ∧ w exceeded those of other cases in the case
of “inc → cor”, meaning that the Wikipedia feature
contributed the most.

Finally, we show an example of case inc →
cor in Figure 2. We can see that “Gazzetta dello
Sport” in the sentence was correctly labeled as an
entity of “ORG” category by model (E), because the
Wikipedia feature identified it as a newspaper en-
tity.15

15Note that the category label, “character”, for “Atalanta” in
the sentence was not correct in this context, which is an example
where disambiguation is required. The final recognition was
correct in this case presumably because of the information from
gaz c feature.
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Sentence No. 584

UEFA came down heavily on Belgian club Standard Liege on Friday for " disgraceful behaviour " in an Intertoto final match against Karlsruhe of Germany .
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Sentence No. 591

ATHLETICS - HARRISON , EDWARDS TO MEET IN SARAJEVO .
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Sentence No. 596

Edwards was quoted as saying : " What type of character do we show by going to the IAAF Grand Prix Final in Milan where there is a lot of money to make but refusing to make the trip to Sarajevo as a humanitarian gesture ? "
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Sentence No. 604

SOCCER - MILAN 'S LENTINI MOVES TO ATALANTA .
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Sentence No. 607

The Gazzetta dello Sport said the deal would cost Atalanta around $ 600,000 .
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Sentence No. 610

The move to
Bergamo-
based

Atalanta reunites Lentini , who fell out with
ex-
Milan

coach Fabio Capello last season , with his former coach at Torino , Emiliano Mondonico .
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Sentence No. 653

Did not bat : Dharmasena , Vaas , Muralitharan .
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Figure 2: An example of improvement caused by Wikipedia feature.

5 Discussion and Future Work

We have empirically shown that even category la-
bels extracted from Wikipedia by a simple method
such as ours really improves the accuracy of a
NER model. The results indicate that structures
in Wikipedia are suited for knowledge extraction.
However, the results also indicate that there is room
for improvement, considering that the effects of
gaz c and wp c were similar, while the matching
rate was greater for wp c. An issue, which we
should treat, is the disambiguation of ambiguous
entities. Our method worked well although it was
very simple, presumably because of the following
reason. (1) If a retrieved page is a disambiguation
page, we cannot extract a category label and critical
noise is not introduced. (2) If a retrieved page is not
a disambiguation page, it will be the page describ-
ing the major meaning determined by the agreement
of many authors. The extracted categories are use-
ful for improving accuracy because the major mean-
ing will be used frequently in the corpus. How-
ever, it is clear that disambiguation techniques are
required to achieve further improvements. In ad-
dition, if Wikipedia grows at the current rate, it is
possible that almost all entities become ambiguous
and a retrieved page is a disambiguation page most
of the time. We will need a method for finding the
most suitable article from the articles listed in a dis-
ambiguation page.

An interesting point in our results is that
Wikipedia category labels improved accuracy, al-
though they were much more specific (more than
1,200 categories) than the four categories of the
CoNLL 2003 dataset. The correlation between a
Wikipedia category label and a category label of
NER (e.g., “musician” to “PER”) was probably
learned by a CRF tagger. However, the merit of
using such specific Wikipedia labels will be much

greater when we aim at developing NER systems for
more fine-grained NE categories such as proposed
in Sekine et al. (2002) or Shinzato et al. (2006).
We thus would like to investigate the effect of the
Wikipedia feature for NER with such fine-grained
categories as well. Disambiguation techniques will
be important again in that case. Although the impact
of ambiguity will be small as long as the target cat-
egories are abstract and an incorrectly extracted cat-
egory is in the same abstract category as the correct
one (e.g., extracting “footballer” instead of “crick-
eter”), such mis-categorization is critical if it is nec-
essary to distinguish footballers from cricketers.

6 Conclusion

We tried to exploit Wikipedia as external knowledge
to improve NER. We extracted a category label from
the first sentence of a Wikipedia article and used it
as a feature of a CRF-based NE tagger. The experi-
ments using the CoNLL 2003 NER dataset demon-
strated that category labels extracted by such a sim-
ple method really improved accuracy. However, dis-
ambiguation techniques will become more impor-
tant as Wikipedia grows or if we aim at more fine-
grained NER. We thus would like to incorporate a
disambiguation technique into our method in future
work. Exploiting Wikipedia structures such as dis-
ambiguation pages and link structures will be the
key in that case as well.
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A. Toral and R. Muñoz. 2006. A proposal to automat-
ically build and maintain gazetteers for named entity
recognition by using Wikipedia. In EACL 2006.

T. Zesch, I. Gurevych, and M. Möhlhäuser. 2007. Ana-
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Abstract 

This paper presents a large-scale system for the 
recognition and semantic disambiguation of 
named entities based on information extracted 
from a large encyclopedic collection and Web 
search results. It describes in detail the disam-
biguation paradigm employed and the information 
extraction process from Wikipedia. Through a 
process of maximizing the agreement between the 
contextual information extracted from Wikipedia 
and the context of a document, as well as the 
agreement among the category tags associated 
with the candidate entities, the implemented sys-
tem shows high disambiguation accuracy on both 
news stories and Wikipedia articles. 

1 Introduction and Related Work 

The ability to identify the named entities (such as 
people and locations) has been established as an 
important task in several areas, including topic de-
tection and tracking, machine translation, and in-
formation retrieval. Its goal is the identification of 
mentions of entities in text (also referred to as sur-
face forms henceforth), and their labeling with one 
of several entity type labels. Note that an entity 
(such as George W. Bush, the current president of 
the U.S.) can be referred to by multiple surface 
forms (e.g., “George Bush” and “Bush”) and a sur-
face form (e.g., “Bush”) can refer to multiple enti-
ties (e.g., two U.S. presidents, the football player 
Reggie Bush, and the rock band called Bush). 

When it was introduced, in the 6th Message Un-
derstanding Conference (Grishman and Sundheim, 
1996), the named entity recognition task comprised 
three entity identification and labeling subtasks: 
ENAMEX (proper names and acronyms designat-
ing persons, locations, and organizations), TIMEX 
(absolute temporal terms) and NUMEX (numeric 
expressions, monetary expressions, and percent-
ages).  Since 1995, other similar named entity rec-
ognition tasks have been defined, among which 

CoNLL (e.g., Tjong Kim Sang and De Meulder, 
2003) and ACE (Doddington et al., 2004). In addi-
tion to structural disambiguation (e.g., does “ the 
Alliance for Democracy in Mali”  mention one, 
two, or three entities?) and entity labeling (e.g., 
does “Washington went ahead”  mention a person, 
a place, or an organization?), MUC and ACE also 
included a within document coreference task, of 
grouping all the mentions of an entity in a docu-
ment together (Hirschman and Chinchor, 1997). 

When breaking the document boundary and scal-
ing entity tracking to a large document collection 
or the Web, resolving semantic ambiguity becomes 
of central importance, as many surface forms turn 
out to be ambiguous. For example, the surface 
form “Texas”  is used to refer to more than twenty 
different named entities in Wikipedia. In the con-
text “ former Texas quarterback James Street” , 
Texas refers to the University of Texas at Austin; 
in the context “ in 2000, Texas released a greatest 
hits album”, Texas refers to the British pop band; 
in the context “Texas borders Oklahoma on the 
north” , it refers to the U.S. state; while in the con-
text “ the characters in Texas include both real and 
fictional explorers” , the same surface form refers 
to the novel written by James A. Michener. 

Bagga and Baldwin (1998) tackled the problem 
of cross-document coreference by comparing, for 
any pair of entities in two documents, the word 
vectors built from all the sentences containing 
mentions of the targeted entities. Ravin and Kazi 
(1999) further refined the method of solving co-
reference through measuring context similarity and 
integrated it into Nominator (Wacholder et al., 
1997), which was one of the first successful sys-
tems for named entity recognition and co-reference 
resolution. However, both studies targeted the clus-
tering of all mentions of an entity across a given 
document collection rather than the mapping of 
these mentions to a given reference list of entities. 

A body of work that did employ reference entity 
lists targeted the resolution of geographic names in 

708



text. Woodruff and Plaunt (1994) used a list of 80k 
geographic entities and achieved a disambiguation 
precision of 75%. Kanada (1999) employed a list 
of 96k entities and reported 96% precision for geo-
graphic name disambiguation in Japanese text. 
Smith and Crane (2002) used the Cruchley’s and 
the Getty thesauri, in conjunction with heuristics 
inspired from the Nominator work, and obtained 
between 74% and 93% precision at recall levels of 
89-99% on five different history text corpora. 
Overell and Rüger (2006) also employed the Getty 
thesaurus as reference and used Wikipedia to develop 
a co-occurrence model and to test their system. 

In many respects, the problem of resolving am-
biguous surface forms based on a reference list of 
entities is similar to the lexical sample task in word 
sense disambiguation (WSD). This task, which has 
supported large-scale evaluations – SENSEVAL 1-3 
(Kilgarriff and Rosenzweig, 2000; Edmonds and 
Cotton, 2001; Mihalcea et al., 2004) – aims to as-
sign dictionary meanings to all the instances of a 
predetermined set of polysemous words in a corpus 
(for example, choose whether the word “church” 
refers to a building or an institution in a given con-
text). However, these evaluations did not include 
proper noun disambiguation and omitted named 
entity meanings from the targeted semantic labels 
and the development and test contexts (e.g., 
“Church and Gale showed that the frequency [..]” ).  

The problem of resolving ambiguous names also 
arises naturally in Web search. For queries such as 
“Jim Clark”  or “Michael Jordan” , search engines 
return blended sets of results referring to many 
different people. Mann and Yarowsky (2003) ad-
dressed the task of clustering the Web search re-
sults for a set of ambiguous personal names by 
employing a rich feature space of biographic facts 
obtained via bootstrapped extraction patterns. They 
reported 88% precision and 73% recall in a three-way 
classification (most common, secondary, and other uses). 

Raghavan et al. (2004) explored the use of entity 
language models for tasks such as clustering enti-
ties by profession and classifying politicians as 
liberal or conservative. To build the models, they 
recognized the named entities in the TREC-8 cor-
pus and computed the probability distributions 
over words occurring within a certain distance of 
any instance labeled as Person of the canonical 
surface form of 162 famous people. 

Our aim has been to build a named entity recog-
nition and disambiguation system that employs a 
comprehensive list of entities and a vast amount of 

world knowledge. Thus, we turned our attention to 
the Wikipedia collection, the largest organized 
knowledge repository on the Web (Remy, 2002). 

Wikipedia was successfully employed previously 
by Strube and Ponzetto (2006) and Gabrilovich and 
Markovitch (2007) to devise methods for computing 
semantic relatedness of documents, WikiRelate! 
and Explicit Semantic Analysis (ESA), respec-
tively. For any pair of words, WikiRelate! attempts 
to find a pair of articles with titles that contain 
those words and then computes their relatedness 
from the word-based similarity of the articles and 
the distance between the articles’  categories in the 
Wikipedia category tree. ESA works by first build-
ing an inverted index from words to all Wikipedia 
articles that contain them. Then, it estimates a re-
latedness score for any two documents by using the 
inverted index to build a vector over Wikipedia 
articles for each document and by computing the 
cosine similarity between the two vectors. 

The most similar work to date was published by 
Bunescu and Pa�ca (2006). They employed several 
of the disambiguation resources discussed in this 
paper (Wikipedia entity pages, redirection pages, 
categories, and hyperlinks) and built a context-
article cosine similarity model and an SVM based 
on a taxonomy kernel. They evaluated their models 
for person name disambiguation over 110, 540, 
and 2,847 categories, reporting accuracies between 
55.4% and 84.8% on (55-word context, entity) 
pairs extracted from Wikipedia, depending on the 
model and the development/test data employed. 

The system discussed in this paper performs both 
named entity identification and disambiguation. 
The entity identification and in-document corefer-
ence components resemble the Nominator system 
(Wacholder et al., 1997). However, while Nomina-
tor made heavy use of heuristics and lexical clues 
to solve the structural ambiguity of entity men-
tions, we employ statistics extracted from Wikipe-
dia and Web search results. The disambiguation 
component, which constitutes the main focus of the 
paper, employs a vast amount of contextual and 
category information automatically extracted from 
Wikipedia over a space of 1.4 million distinct enti-
ties/concepts, making extensive use of the highly 
interlinked structure of this collection. We aug-
ment the Wikipedia category information with in-
formation automatically extracted from Wikipedia 
list pages and use it in conjunction with the context 
information in a vectorial model that employs a 
novel disambiguation method. 
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2 The Disambiguation Paradigm 

We present in this section an overview of the pro-
posed disambiguation model and the world knowl-
edge data employed in the instantiation of the 
model discussed in this paper. The formal model is 
discussed in detailed in Section 5. 

The world knowledge used includes the known 
entities (most articles in Wikipedia are associated 
to an entity/concept), their entity class when avail-
able (Person, Location, Organization, and Miscel-
laneous), their known surface forms (terms that are 
used to mention the entities in text), contextual 
evidence (words or other entities that describe or 
co-occur with an entity), and category tags (which 
describe topics to which an entity belongs to). 

For example, Figure 1 shows nine of the over 70 
different entities that are referred to as “Columbia” 
in Wikipedia and some of the category and contex-
tual information associated with one of these enti-
ties, the Space Shuttle Columbia. 

The disambiguation process uses the data associ-
ated with the known surface forms identified in a 
document and all their possible entity disambigua-
tions to maximize the agreement between the con-
text data stored for the candidate entities and the 
contextual information in the document, and also, 
the agreement among the category tags of the can-
didate entities. For example, a document that con-
tains the surface forms “Columbia”  and 
“Discovery”  is likely to refer to the Space Shuttle 
Columbia and the Space Shuttle Discovery because 
these candidate entities share the category tags 
LIST_astronomical_topics, CAT_Manned_space-
craft, CAT_Space_Shuttles (the extraction of such 
tags is presented in Section 3.2), while other entity 
disambiguations, such as Columbia Pictures and 
Space Shuttle Discovery, do not share any com-
mon category tags. The agreement maximization 
process is discussed in depth in Section 5. 

This process is based on the assumption that 
typically, all instances of a surface form in a 
document have the same meaning. Nonetheless, 
there are a non-negligible number of cases in 
which the one sense per discourse assumption 
(Gale et al., 1992) does not hold. To address this 
problem, we employ an iterative approach, of 
shrinking the context size used to disambiguate 
surface forms for which there is no dominating 
entity disambiguation at document level, perform-
ing the disambiguation at the paragraph level and 
then at the sentence level if necessary. 

 
Figure 1. The model of storing the information ex-
tracted from Wikipedia into two databases. 

3 Information Extraction from Wikipedia 

We discuss now the extraction of entities and the 
three main types of disambiguation clues (entity 
surface forms, category tags, and contexts) used by 
the implemented system. While this information 
extraction was performed on the English version of 
the Wikipedia collection, versions in other lan-
guages or other collections, such as Encarta or 
WebMD, could be targeted in a similar manner. 

When processing the Wikipedia collection, we 
distinguish among four types of articles: entity 
pages, redirecting pages, disambiguation pages, 
and list pages. The characteristics of these articles 
and the processing applied to each type to extract 
the three sets of clues employed by the disam-
biguation model are discussed in the next three 
subsections. 

3.1 Surface Form to Entity Mappings 

There are four sources that we use to extract entity 
surface forms: the titles of entity pages, the titles of 
redirecting pages, the disambiguation pages, and 
the references to entity pages in other Wikipedia 
articles. An entity page is an article that contains 
information focused on one single entity, such as a 
person, a place, or a work of art. For example, 
Wikipedia contains a page titled “Texas (TV se-
ries)” , which offers information about the soap 
opera that aired on NBC from 1980 until 1982. A 
redirecting page typically contains only a refer-
ence to an entity page. For example, the article  
titled “Another World in Texas”  contains a redirec-
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tion to the article titled “Texas (TV series)” . From 
these two articles, we extract the entity Texas (TV 
series) and its surface forms Texas (TV series), 
Texas and Another World in Texas. As shown in 
this example, we store not only the exact article 
titles but also the corresponding forms from which 
we eliminate appositives (either within parentheses 
or following a comma). 

We also extract surface form to entity mappings 
from Wikipedia disambiguation pages, which are 
specially marked articles having as title a surface 
form, typically followed by the word “disambigua-
tion”  (e.g., “Texas (disambiguation)”), and con-
taining a list of references to pages for entities that 
are typically mentioned using that surface form. 

Additionally, we extract all the surface forms 
used at least in two articles to refer to a Wikipedia 
entity page. Illustratively, the article for Pam Long 
contains the following Wikitext, which uses the 
surface form “Texas”  to refer to Texas (TV series): 
After graduation, she went to [[New York City]] and 
played Ashley Linden on [[Texas (TV series)|Texas]] 
from [[1981]] to [[1982]]. 

In Wikitext, the references to other Wikipedia ar-
ticles are within pairs of double square brackets. If 
a reference contains a vertical bar then the text at 
the left of the bar is the name of the referred article 
(e.g. “Texas (TV Series)”), while the text at the 
right of the bar (e.g., “Texas”) is the surface form 
that is displayed (also referred to as the anchor text 
of the link). Otherwise, the surface form shown in 
the text is identical to the title of the Wikipedia 
article referred (e.g., “New York City” ). 

Using these four sources, we extracted more than 
1.4 million entities, with an average of 2.4 surface 
forms per entity. We obtained 377k entities with 
one surface form, 166k entities with two surface 
forms, and 79k entities with three surface forms. 
At the other extreme, we extracted one entity with 
no less than 99 surface forms. 

3.2 Category Information 

All articles that are titled “List of […]”  or “Table 
of […]”  are treated separately as list pages. They 
were built by Wikipedia contributors to group enti-
ties of the same type together (e.g., “List of an-
thropologists” , “List of animated television series” , 
etc.) and are used by our system to extract category 
tags for the entities listed in these articles. The tags 
are named after the title of the Wikipedia list page. 
For example, from the article “List of band name 

etymologies” , the system extracts the category tag 
LIST_band_name_etymologies and labels all the 
entities referenced in the list, including Texas 
(band), with this tag. This process resulted in the 
extraction of more than 1 million (entity, tag) pairs. 
After a post-processing phase that discards tempo-
ral tags, as well as several types of non-useful tags 
such as “people by name” and “places by name”, 
we obtained a filtered list of 540 thousand pairs. 

We also exploit the fact that Wikipedia enables 
contributors to assign categories to each article, 
which are defined as “major topics that are likely 
to be useful to someone reading the article” . Be-
cause any Wikipedia contributor can add a cate-
gory to any article and the work of filtering out 
bogus assignments is tedious, these categories 
seem to be noisier than the lists, but they can still 
provide a tremendous amount of information. We 
extracted the categories of each entity page and 
assigned them as tags to the corresponding entity. 
Again, we employed some basic filtering to discard 
meta-categories (e.g., “Articles with unsourced 
statements”) and categories not useful for the proc-
ess of disambiguation through tag agreement (e.g., 
“Living people” , “1929 births”). This extraction 
process resulted in 2.65 million (entity, tag) pairs 
over a space of 139,029 category tags. 

We also attempted to extract category tags based 
on lexicosyntactic patterns, more specifically from 
enumerations of entities. For example, the para-
graph titled “Music of Scotland”  (shown below in 
Wikitext) in the Wikipedia article on Scotland con-
tains an enumeration of entities, which can be la-
beled ENUM_Scotland_PAR_Music_of_Scotland: 
Modern Scottish [[pop music]] has produced many 
international bands including the [[Bay City Rollers]], 
[[Primal Scream]], [[Simple Minds]], [[The Proclaim-
ers]], [[Deacon Blue]], [[Texas (band)|Texas]], [[Franz 
Ferdinand]], [[Belle and Sebastian]], and [[Travis 
(band)|Travis]], as well as individual artists such as 
[[Gerry Rafferty]], [[Lulu]], [[Annie Lennox]] and [[Lloyd 
Cole]], and world-famous Gaelic groups such as 
[[Runrig]] and [[Capercaillie (band)|Capercaillie]]. 

Lexicosyntactic patterns have been employed 
successfully in the past (e.g., Hearst, 1992; Roark 
and Charniak, 1998; Cederberg and Widdows, 
2003), and this type of tag extraction is still a 
promising direction for the future. However, the 
brute force approach we tried – of indiscriminately 
tagging the entities of enumerations of four or 
more entities –  was found to introduce a large 
amount of noise into the system in our develop-
ment experiments. 
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3.3 Contexts 

To extract contextual clues for an entity, we use 
the information present in that entity’s page and in 
the other articles that explicitly refer to that entity. 

First, the appositives in the titles of entity pages, 
which are eliminated to derive entity surface forms 
(as discussed in Section 3.1) are saved as contex-
tual clues. For example, “TV series”  becomes a 
context for the entity Texas (TV series). 

We then extract all the entity references in the 
entity page. For example, from the article on Texas 
(band), for which a snippet in Wikitext is shown 
below, we extract as contexts the references pop 
music, Glasgow, Scotland, and so on: 
'''Texas''' is a [[pop music]] band from [[Glasgow]], 
[[Scotland]], [[United Kingdom]]. They were founded 
by [[Johnny McElhone]] in [[1986 in music|1986]] and 
had their performing debut in [[March]] [[1988]] at […] 

Reciprocally, we also extract from the same ar-
ticle that the entity Texas (band) is a good context 
for pop music, Glasgow, Scotland, etc. 

The number of contexts extracted in this manner 
is overwhelming and had to be reduced to a man-
ageable size. In our development experiments, we 
explored various ways of reducing the context in-
formation, for example, by extracting only entities 
with a certain number of mentions in an article, or 
by discarding mentions with low TF*IDF scores 
(Salton, 1989). In the end, we chose a strategy in 
which we employ as contexts for an entity two 
category of references: those mentioned in the first 
paragraph of the targeted entity page, and those for 
which the corresponding pages refer back to the 
targeted entity. For example, Pam Long and Texas 
(TV series) are extracted as relevant contexts for 
each other because their corresponding Wikipedia 
articles reference one another – a relevant snippet 
from the Pam Long article is cited in Section 3.1 
and a snippet from the article for Texas (TV se-
ries) that references Pam Long is shown below:  
In 1982 [[Gail Kobe]] became executive producer and 
[[Pam Long]] became headwriter. 

In this manner, we extracted approximately 38 
million (entity, context) pairs. 

4 Document Analysis 

In this section, we describe concisely the main text 
processing and entity identification components of 
the implemented system. We will then focus on the 
novel entity disambiguation component, which we 
propose and evaluate in this paper, in Section 5. 

 
Figure 2. An overview of the processes employed by 
the proposed system. 

Figure 2 outlines the processes and the resources 
that are employed by the implemented system in 
the analysis of text documents. First, the system 
splits a document into sentences and truecases the 
beginning of each sentence, hypothesizing whether 
the first word is part of an entity or it is capitalized 
because of orthographic conventions. It also identi-
fies titles and hypothesizes the correct case for all 
words in the titles. This is done based on statistics 
extracted from a one-billion-word corpus, with 
back-off to Web statistics. 

In a second stage, a hybrid named-entity recog-
nizer based on capitalization rules, Web statistics, 
and statistics extracted from the CoNLL 2003 
shared task data (Tjong Kim Sang and De 
Meulder, 2003) identifies the  boundaries of  the 
entity  mentions in the text and assigns each set of 
mentions sharing the same surface form a probabil-
ity distribution over four labels: Person, Location, 
Organization, and Miscellaneous.1 The named en-
tity recognition component resolves the structural 
ambiguity with regard to conjunctions (e.g., “Bar-
nes and Noble” , “Lewis and Clark” ), possessives 
(e.g., “Alice's Adventures in Wonderland” , “Brit-
ain's Tony Blair” ), and prepositional attachment 
(e.g., “Whitney Museum of American Art” , 
“Whitney Museum in New York” ) by using the 
surface form information extracted from Wikipe-
dia, when available, with back-off to co-occurrence 
counts on the Web, in a similar way to Lapata and 
Keller (2004). Recursively, for each ambiguous 
term T0 of the form T1 Particle T2, where Particle 
is one of a possessive pronoun, a coordinative con-
junction, and a preposition, optionally followed by 
a determiner, and the terms T1 and T2 are se-

                                                           
1 While the named entity labels are used only to solve in-
document coreferences by the current system, as described 
further in this section, preliminary experiments of probabilisti-
cally labeling the Wikipedia pages show that the these labels 
could also be used successfully in the disambiguation process. 
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quences of capitalized words and particles, we 
send to a search engine the query “″T1″ ″T2″”, 
which forces the engine to return only documents 
in which the whole terms T1 and T2 appear. We 
then count the number of times the snippets of the 
top N = 200 search results returned contain the term 
T0 and compare it with an empirically obtained 
threshold to hypothesize whether T0 is the mention 
of one entity or encompasses the mentions of two 
entities, T1 and T2. 

As Wacholder et al. (1997) noted, it is fairly 
common for one of the mentions of an entity in a 
document to be a long, typical surface form of that 
entity (e.g., “George W. Bush”), while the other 
mentions are shorter surface forms (e.g., “Bush”). 
Therefore, before attempting to solve the semantic 
ambiguity, the system hypothesizes in-document 
coreferences and maps short surface forms to 
longer surface forms with the same dominant label 
(for example, “Brown”/PERSON can be mapped to 
“Michael Brown”/PERSON). Acronyms are also re-
solved in a similar manner when possible. 

In the third stage, the contextual and category in-
formation extracted from Wikipedia is used to dis-
ambiguate the entities in the text. This stage is 
discussed formally in Section 5 and evaluated in 
Section 6. Note that the performance of the disam-
biguation component is meaningful only when 
most named entity mentions are accurately identi-
fied in text. Thus, we first measured the perform-
ance of the named entity recognition component on 
the CoNLL 2003 test set and obtained a competi-
tive F-measure of 0.835 (82.2% precision  and 
84.8% recall). 

Finally, the implemented system creates hyper-
links to the appropriate pages in Wikipedia. Figure 

3 shows the output of the implemented system on a 
sample news story, in which the identified and dis-
ambiguated surface forms are hyperlinked to 
Wikipedia articles. 

5 The Disambiguation Component 

The disambiguation process employs a vector 
space model, in which a vectorial representation of 
the processed document is compared with the vec-
torial representations of the Wikipedia entities. 

Once the named entity surface forms were identi-
fied and the in-document coreferences hypothe-
sized, the system retrieves all possible entity 
disambiguations of each surface form. Their 
Wikipedia contexts that occur in the document and 
their category tags are aggregated into a document 
vector, which is subsequently compared with the 
Wikipedia entity vector (of categories and con-
texts) of each possible entity disambiguation. We 
then choose the assignment of entities to surface 
forms that maximizes the similarity between the 
document vector and the entity vectors, as we ex-
plain further. 

Formally, let � = {c1,…,cM} be the set of known 
contexts from Wikipedia and � = {t1,…,tN} the set 
of known category tags. An entity e can then be 
represented as a vector δe∈{0,1}M+N, with two 
components, δe|�∈{0,1}M and δe|�∈{0,1}N, corre-
sponding to the context and category information, 
respectively: 

1, if ci is a context for entity e 
 δe

i =    { 0, otherwise 
1, if tj is a category tag for e 

 δe
M+j ={ 0, otherwise. 

  Figure 3. Screenshot of the implemented system showing an example of analyzed text. The superimposed tooltips  
  show how several of the surface forms were disambiguated based on the context and category agreement method. 
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Let ε(s) denote the set of entities that are known 
to have a surface form s. For example, recalling 
Figure 1, Colombia (the country) and Columbia 
University are entities that are known to have the 
surface form “Columbia”. Let D be the analyzed 
document and S(D) = {s1,…,sn} the set of surface 
forms identified in D. We build its context vector  
d = {d1,…,dM}∈�

M, where di is the number of oc-
currences of context ci in D. To account for all 
possible disambiguations of the surface forms in D, 
we also build an extended vector ∈d �

M+N so that 
dd C =|  and � �
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Our goal is to find the assignment of entities to 
surface forms si� ei, i∈1..n, that maximizes the 
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where >⋅⋅< ,  denotes the scalar product of vectors. 
Note that the quality of an assignment of an entity 
to a surface form depends on all the other assign-
ments made, which makes this a difficult optimiza-
tion problem. An arguably more robust strategy to 
account for category agreement, which also proves 
to be computationally efficient, is to maximize the 
agreement between the categories of the assigned 
entity to each surface form and all possible disam-
biguations of the other surface forms in D. We will 
show that this is equivalent to computing: 
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Indeed, using the definition of d and partitioning 
the context and category components, we can re-
write the sum in equation (2) as 
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2 We use the notation d to emphasize that this vector contains 
information that was not present in the original document D. 

Note now that the maximization of the sum in (2) 
is equivalent to the maximization of each of its 
terms, which means that the computation reduces 
to nid Tee

se
ii

ii

..1,,maxarg
)(

∈>−<
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δδ
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., or  equivalently,  
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  (3) 

Our disambiguation process therefore employs two 
steps: first, it builds the extended document vector 
and second, it maximizes the scalar products in 
equation (3). In practice, it is not necessary to build 
the document vector over all contexts �, but only 
over the contexts of the possible entity disam-
biguations of the surface forms in the document. 

Also note that we are not normalizing the scalar 
products by the norms of the vectors (which would 
lead to the computation of cosine similarity). In 
this manner, we implicitly account for the fre-
quency with which a surface form is used to men-
tion various entities and for the importance of these 
entities (important entities have longer Wikipedia 
articles, are mentioned more frequently in other 
articles, and also tend to have more category tags).  

While rarely, one surface form can be used to 
mention two or more different entities in a docu-
ment (e.g., “Supreme Court” may refer to the fed-
eral institution in one paragraph and to a state’s 
judicial institution in another paragraph). To ac-
count for such cases, the described disambiguation 
process is performed iteratively for the instances of 
the surface forms with multiple disambiguations 
with similarity scores higher than an empirically 
determined threshold, by shrinking the context 
used for the disambiguation of each instance from 
document level to paragraph level, and if neces-
sary, to sentence level. 

6 Evaluation 

We used as development data for building the de-
scribed system the Wikipedia collection as of April 
2, 2006 and a set of 100 news stories on a diverse 
range of topics. For the final evaluation, we per-
formed data extraction from the September 11, 
2006 version of the Wikipedia collection. 

We evaluated the system in two ways: on a set of 
Wikipedia articles, by comparing the system out-
put with the references created by human contribu-
tors, and on a set of news stories, by doing a post-
hoc evaluation of the system output. The evalua-
tion data can be downloaded from http://research. 
microsoft.com/users/silviu/WebAssistant/TestData. 
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In both settings, we computed a disambiguation 
baseline in the following manner: for each surface 
form, if there was an entity page or redirect page 
whose title matches exactly the surface form then 
we chose the corresponding entity as the baseline 
disambiguation; otherwise, we chose the entity 
most frequently mentioned in Wikipedia using that 
surface form. 

6.1 Wikipedia Articles 

We selected at random 350 Wikipedia entity pages 
and we discarded their content during the informa-
tion extraction phase. We then performed an auto-
matic evaluation, in which we compared the 
hyperlinks created by our system with the links 
created by the Wikipedia contributors. In an at-
tempt to discard most of the non-named entities, 
we only kept for evaluation the surface forms that 
started with an uppercase letter. The test articles 
contained 5,812 such surface forms. 551 of them 
referenced non-existing articles (for example, the 
filmography section of a director contained linked 
mentions of all his movies although many of them 
did not have an associated Wikipedia page). Also, 
130 of the surface forms were not used in other 
Wikipedia articles and therefore both the baseline 
and the proposed system could not hypothesize a 
disambiguation for them. The accuracy on the re-
maining 5,131 surface forms was 86.2% for the 
baseline system and 88.3% for the proposed sys-
tem. A McNemar test showed that the difference is 
not significant, the main cause being that the ma-
jority of the test surface forms were unambiguous. 
When restricting the test set only to the 1,668 am-
biguous surface forms, the difference in accuracy 
between the two systems is significant at p = 0.01. 
An error analysis showed that the Wikipedia set 
used as gold standard contained relatively many 
surface forms with erroneous or out-of-date links, 
many of them being correctly disambiguated by 
the proposed system (thus, counted as errors). For 
example, the test page “The Gods (band)” links to 
Paul Newton, the painter, and Uriah Heep, which is 
a disambiguation page, probably because the origi-
nal pages changed over time, while the proposed 
system correctly hypothesizes links to Paul New-
ton (musician) and Uriah Heep (band). 

6.2 News Stories 

We downloaded the top two stories in the ten 
MSNBC news categories (Business, U.S. Politics, 

Entertainment, Health, Sports, Tech & Science, 
Travel, TV News, U.S. News, and World News) as 
of January 2, 2007 and we used them as input to 
our system. We then performed a post-hoc evalua-
tion of the disambiguations hypothesized for the 
surface forms correctly identified by the system 
(i.e. if the boundaries of a surface form were not 
identified correctly then we disregarded it). 

We defined a disambiguation to be correct if it 
represented the best possible Wikipedia article that 
would satisfy a user’s need for information and 
incorrect otherwise. For example, the article Viking 
program is judged as correct for “Viking Landers”, 
for which there is no separate article in the Wi-
kipedia collection. Linking a surface form to a 
wrong Wikipedia article was counted as an error 
regardless whether or not an appropriate Wikipedia 
article existed. When the system could not disam-
biguate a surface form (e.g. “N’ Sync”, “’Bama”, 
and “Harris County Jail”), we performed a search 
in Wikipedia for the appropriate entity. If an article 
for that entity existed (e.g., ’N Sync and Alabama) 
then we counted that instance as an error. Other-
wise, we counted it separately as non-recallable 
(e.g. there is no Wikipedia article for the Harris 
County Jail entity and the article for Harris County, 
Texas does not discuss the jail system). 

 The test set contained 756 surface forms, of 
which 127 were non-recallable. The proposed sys-
tem obtained an accuracy of 91.4%, versus a 
51.7% baseline (significant at p = 0.01). An analy-
sis of these data showed not only that the most 
common surface forms used in news are highly 
ambiguous but also that a large number of Wikipe-
dia pages with titles that are popular surface forms 
in news discuss subjects different from those with 
common news usage (e.g., the page titled “China” 
discusses the Chinese civilization and is not the 
correct assignment for the People's Republic of 
China entity; similarly, the default page for 
“Blackberry” talks about the fruit rather than the 
wireless company with the same name). 

7 Conclusions and Potential Impact 

We presented a large scale named entity disam-
biguation system that employs a huge amount of 
information automatically extracted from Wikipe-
dia over a space of more than 1.4 million entities. 
In tests on both real news data and Wikipedia text, 
the system obtained accuracies exceeding 91% and 
88%. Because the entity recognition and disam-
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biguation processes employed use very little lan-
guage-dependent resources additional to Wikipe-
dia, the system can be easily adapted to languages 
other than English. 

The system described in this paper has been fully 
implemented as a Web browser (Figure 3), which 
can analyze any Web page or client text document. 
The application on a large scale of such an entity 
extraction and disambiguation system could result 
in a move from the current space of words to a 
space of concepts, which enables several paradigm 
shifts and opens new research directions, which we 
are currently investigating, from entity-based in-
dexing and searching of document collections to 
personalized views of the Web through entity-
based user bookmarks. 
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Abstract

We present an information extraction system
that decouples the tasks of finding relevant
regions of text and applying extraction pat-
terns. We create a self-trained relevant sen-
tence classifier to identify relevant regions,
and use asemantic affinitymeasure to au-
tomatically learn domain-relevant extraction
patterns. We then distinguishprimary pat-
terns fromsecondarypatterns and apply the
patterns selectively in the relevant regions.
The resulting IE system achieves good per-
formance on the MUC-4 terrorism corpus
and ProMed disease outbreak stories. This
approach requires only a few seed extraction
patterns and a collection of relevant and ir-
relevant documents for training.

1 Introduction

Many information extraction (IE) systems rely on
rules or patterns to extract words and phrases based
on their surrounding context (e.g., (Soderland et al.,
1995; Riloff, 1996; Califf and Mooney, 1999; Yan-
garber et al., 2000)). For example, a pattern like
“ <subject> was assassinated”can reliably identify
a victim of a murder event. Classification-based IE
systems (e.g., (Freitag, 1998; Freitag and McCal-
lum, 2000; Chieu et al., 2003)) also generally de-
cide whether to extract words based on properties of
the words themselves as well as properties associ-
ated with their surrounding context.

In this research, we propose an alternative ap-
proach to IE that decouples the tasks of finding a rel-
evant region of text and finding a desired extraction.

In a typical pattern-based IE system, the extraction
patterns perform two tasks: (a) they recognize that
a relevant incident has occurred, and (b) they iden-
tify and extract some information about that event.
In contrast, our approach first identifies relevant re-
gions of a document that describes relevant events,
and then applies extraction patterns only in these rel-
evant regions.

This decoupled approach to IE has several po-
tential advantages. First, even seemingly good pat-
terns can produce false hits due to metaphor and id-
iomatic expressions. However, by restricting their
use to relevant regions of text, we could avoid such
false positives. For example,“John Kerry attacked
George Bush”is a metaphorical description of a ver-
bal tirade, but could be easily mistaken for a physi-
cal attack. Second, IE systems are prone to errors of
omission when relevant information is not explicitly
linked to an event. For instance, a phrase like“the
gun was found...”does not directly state that the the
gun was used in a terrorist attack. But if the gun is
mentioned in a region that clearly describes a terror-
ist attack, then it can be reasonably inferred to have
been used in the attack. Third, if the IE patterns are
restricted to areas of text that are known to be rel-
evant, then it may suffice to use relatively general
patterns, which may be easier to learn or acquire.

Our approach begins with a relevant sentence
classifier that is trained using only a few seed pat-
terns and a set of relevant and irrelevant documents
(but no sentence-level annotations) for the domain of
interest. The classifier is then responsible for identi-
fying sentences that are relevant to the IE task. Next,
we learn “semantically appropriate” extraction pat-
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terns by evaluating candidate patterns using ase-
mantic affinitymetric. We then separate the pat-
terns intoprimary andsecondarypatterns, and ap-
ply them selectively to sentences based on the rel-
evance judgments produced by the classifier. We
evaluate our IE system on two data sets: the MUC-
4 IE terrorism corpus and ProMed disease outbreak
articles. Our results show that this approach works
well, often outperforming the AutoSlog-TS IE sys-
tem which benefits from human review.

2 Motivation and Related Work

Our research focuses on event-oriented information
extraction (IE), where the goal of the IE system
is to extract facts associated with domain-specific
events from unstructured text. Many different ap-
proaches to information extraction have been devel-
oped, but generally speaking they fall into two cate-
gories: classifier-based approaches and rule/pattern-
based approaches.

Classifier-based IE systems use machine learning
techniques to train a classifier that sequentially pro-
cesses a document looking for words to be extracted.
Examples of classifier-based IE systems are SRV
(Freitag, 1998), HMM approaches (Freitag and Mc-
Callum, 2000), ALICE (Chieu et al., 2003), and Re-
lational Markov Networks (Bunescu and Mooney,
2004). The classifier typically decides whether a
word should be extracted by considering features as-
sociated with that word as well as features of the
words around it.

Another common approach to information ex-
traction uses a set of explicit patterns or rules
to find relevant information. Some older sys-
tems relied on hand-crafted patterns, while more
recent systems learn them automatically or semi-
automatically. Examples of rule/pattern-based ap-
proaches to information extraction are FASTUS
(Hobbs et al., 1997), PALKA (Kim and Moldovan,
1993), LIEP (Huffman, 1996), CRYSTAL (Soder-
land et al., 1995), AutoSlog/AutoSlog-TS (Riloff,
1993; Riloff, 1996), RAPIER (Califf and Mooney,
1999), WHISK (Soderland, 1999), ExDisco (Yan-
garber et al., 2000), SNOWBALL (Agichtein and
Gravano, 2000), (LP)2 (Ciravegna, 2001), subtree
patterns (Sudo et al., 2003), predicate-argument
rules (Yakushiji et al., 2006) and KnowItAll

(Popescu et al., 2004).
One commonality behind all of these approaches

is that they simultaneously decide whether a context
is relevant and whether a word or phrase is a desir-
able extraction. Classifier-based systems rely on fea-
tures that consider both the word and its surround-
ing context, and rule/pattern-based systems typi-
cally use patterns or rules that match both the words
around a candidate extraction and (sometimes) prop-
erties of the candidate extraction itself.

There is a simplicity and elegance to having a sin-
gle model that handles both of these problems at the
same time, but we hypothesized that there may be
benefits to decoupling these tasks. We investigate an
alternative approach that involves two passes over a
document. In the first pass, we apply arelevant re-
gion identifierto identify regions of the text that ap-
pear to be especially relevant to the domain of inter-
est. In the second pass, we apply extraction patterns
inside the relevant regions. We hypothesize three
possible benefits of this decoupled approach.

First, if a system is certain that a region is rele-
vant, then it can be more aggressive about searching
for extractions. For example, consider the domain
of terrorist event reports, where a goal is to identify
the weapons that were used. Existing systems gen-
erally require rules/patterns to recognize a context
in which a weapon is explicitly linked to an event
or its consequences (e.g.,“attack with <np>” , or
“ <np> caused damage”). However, weapons are
not always directly linked to an event in text, but
they may be inferred through context. For instance,
an article may mention that a weapon was “found”
or “used” without explicitly stating that it was in-
volved in a terrorist event. However, if we know in
advance that we are in a relevant context, then we
can reliably infer that the weapon was, most likely,
used in the event.

Second, some patterns may seem to be relevant
locally, but they can be deemed irrelevant when the
global context is considered. For example, consider
these sentences from the MUC-4 terrorism corpus:

D’Aubuisson unleashed harsh attacks on
Duarte ...
Other brave minds that advocated reform
had been killed before in that struggle.

Locally, patterns such as“ <subject> unleashed

718



attacks” and “ <subject> had been killed”seem
likely to identify the perpetrators and victims of a
physical attack. But when read in the full context
of these sentences, it becomes clear that they are not
related to a specific physical attack.

Third, decoupling these tasks may simplify the
learning process. Identifying relevant regions
amounts to a text classification task, albeit the goal is
to identify not just relevant documents, but relevant
sub-regions of documents. Within a relevant region
the patterns may not need to be as discriminating.
So a more general learning approach may suffice.

In this paper, we describe an IE system that con-
sists of two decoupled modules for relevant sentence
identification and extraction pattern learning. In
Section 3, we describe the self-trained sentence clas-
sifier, which requires only a few seed patterns and
relevant and irrelevant documents for training. Sec-
tion 4 describes the extraction pattern learning mod-
ule, which identifies semantically appropriate pat-
terns for the IE system using asemantic affinitymea-
sure. Section 5 explains how we distinguish Primary
patterns from Secondary patterns. Section 6 presents
experimental results on two domains. Finally, Sec-
tion 7 lists our conclusions and future work.

3 A Self-Trained Relevant Sentence
Classifier

Our hypothesis is that if a system can reliably iden-
tify relevant regions of text, then extracting informa-
tion only from these relevant regions can improve IE
performance. There are many possible definitions
for relevant region(e.g., Salton et al. (1993), Callan
(1994)), and exploring the range of possibilities is
an interesting avenue for future work. For our ini-
tial investigations of this idea, we begin by simply
defining a sentence as our region size. This has the
advantage of being an easy boundary line to draw
(i.e., it is relatively easy to identify sentence bound-
aries) and it is a small region size yet includes more
context than most current IE systems do1.

Our goal is to create a classifier that can determine
whether a sentence contains information that should
be extracted. Furthermore, we wanted to create a
classifier that does not depend on manually anno-

1Most IE systems only consider a context window consisting
of a few words or phrases on either side of a potential extraction.

tated sentence data so that our system can be eas-
ily ported across domains. Therefore, we devised a
method to self-train a classifier using a training set
of relevant and irrelevant documents for the domain,
and a few seed patterns as input. However, this re-
sults in an asymmetry in the training set. By defini-
tion, if a document is irrelevant to the IE task, then
it cannot contain any relevant information. Con-
sequently,all sentences in an irrelevant document
must be irrelevant, so these sentences form our ini-
tial irrelevant sentences pool. In contrast, if a doc-
ument is relevant to the IE task, then there must be
at least one sentence that contains relevant informa-
tion. However, most documents contain a mix of
both relevant and irrelevant sentences. Therefore,
the sentences from the relevant documents form our
unlabeled sentences pool.

Figure 1 shows the self-training procedure, which
begins with a handful ofseed patternsto initiate the
learning process. The seed patterns should be able
to reliably identify some information that is relevant
to the IE task. For instance, to build an IE system for
terrorist incident reports, we used seed patterns such
as“ <subject> was kidnapped”and“assassination
of <np>” . The patterns serve as a simple pattern-
based classifier to automatically identify some rel-
evant sentences. Initeration 0 of the self-training
loop (shown as dotted lines in Figure 1), the pattern-
based classifier is applied to the unlabeled sentences
to automatically label some of them as relevant.

Next, an SVM (Vapnik, 1995) classifier2 is
trained using these relevant sentences and an equal
number of irrelevant sentences randomly drawn
from the irrelevant sentences pool. We artificially
created a balanced training set because the set of ir-
relevant sentences is initially much larger than the
set of relevant sentences, and we want the classi-
fier to learn how to identify new relevant sentences.
The feature set consists of all unigrams that appear
in the training set. The SVM is trained using a lin-
ear kernel with the default parameter settings. In a
self-training loop, the classifier is then applied to the
unlabeled sentences, and all sentences that it classi-
fies as relevant are added to the relevant sentences
pool. The classifier is then retrained with all of the

2We used the freely available SVMlight (Joachims, 1998)
implementation: http://svmlight.joachims.org
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Figure 1: The Training Process to Create a Relevant Sentence Classifier

relevant sentences and an equal number of irrelevant
sentences, and the process repeats. We ran this self-
training procedure for three iterations and then used
the resulting classifier as ourrelevant sentence clas-
sifier in the IE experiments described in Section 6.3.

4 Learning Semantic Affinity-based
Extraction Patterns

One motivation for creating a relevant region classi-
fier is to reduce the responsibilities of the extraction
patterns. Once we know that we are in a domain-
relevant area of text, patterns that simply identify
words and phrases belonging to a relevant seman-
tic class may be sufficient. In this section, we de-
scribe a method to automatically identify semanti-
cally appropriate extraction patterns for use with the
sentence classifier.

In previous work (Patwardhan and Riloff, 2006),
we introduced a metric calledsemantic affinity
which was used to automatically assign event roles
to extraction patterns. Semantic affinity measures
the tendency of a pattern to extract noun phrases
that belong to a specific set of semantic categories.
To use this metric for information extraction, a
mapping must be defined between semantic cate-
gories and the event roles that are relevant to the
IE task. For example, one role in the terrorism do-
main isphysical target, which refers to physical ob-
jects that are the target of an attack. Most phys-
ical targets fall into one of two general semantic
categories:BUILDING or VEHICLE. Consequently,
we define the mapping “Target→ BUILDING , VE-
HICLE”. Similarly, we might define the mapping
“Victim → HUMAN , ANIMAL , PLANT” to charac-
terize possible victims of disease outbreaks. Each
semantic category must be mapped to a single event
role. This is a limitation of our approach for do-
mains where multiple roles can be filled by the same
class of fillers. However, sometimes a general se-

mantic class can be partitioned into subclasses that
are associated with different roles. For example, in
the terrorism domain, both perpetrators and victims
belong to the general semantic classHUMAN . But
we used the subclassesTERRORIST-HUMAN , which
represents likely perpetrator words (e.g., “terrorist”,
“guerrilla”, and “gunman”) andCIVILIAN -HUMAN ,
which represents ordinary people (e.g., “photogra-
pher”,“rancher”, and “tourist”), in order to generate
different semantic affinity estimates for the perpetra-
tor and victim roles.

To determine the semantic category of a noun, we
use the Sundance parser (Riloff and Phillips, 2004),
which contains a dictionary of words that have se-
mantic category labels. Alternatively, a resource
such as WordNet (Fellbaum, 1998) could be used
to obtain this information. All semantic categories
that cannot be mapped to a relevant event role are
mapped to a special Other role.

To estimate the semantic affinity of a patternp

for an event rolerk, the system computes f(p, rk),
which is the number of patternp’s extractions that
have a head noun belonging to a semantic category
mapped tork. These frequency counts are obtained
by applying each pattern to the training corpus and
collecting its extractions. Thesemantic affinityof a
patternp with respect to an event rolerk is formally
defined as:

sem aff(p, rk) =
f(p, rk)

∑|R|
i=1

f(p, ri)
log2 f(p, rk) (1)

whereR is the set of event roles{r1, r2, . . . , r|R|}.
Semantic affinity is essentially the probability that
a phrase extracted by patternp will be a semanti-
cally appropriate filler for rolerk, weighted by the
log of the frequency.3 Note that it is possible for a

3This formula is very similar to pattern ranking metrics used
by previous IE systems (Riloff, 1996; Yangarber et al., 2000),
although not for semantics.
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pattern to have a semantic affinity for multiple event
roles. For instance, a terrorism pattern like“attack
on <np>” may have a semantic affinity for both
Targets and Victims.

To generate extraction patterns for an IE task, we
first apply the AutoSlog (Riloff, 1993) extraction
pattern generator to the training corpus exhaustively,
so that it literally generates a pattern to extract every
noun phrase in the corpus. Then for each event role,
we rank the patterns based on their semantic affinity
for that role.

Figure 2 shows the 10 patterns with the highest se-
mantic affinity scores for 4 event roles. In the terror-
ism domain, we show patterns that extractweapons
andperpetrator organizations(PerpOrg). In the dis-
ease outbreaks domain, we show patterns that ex-
tractdiseasesandvictims. The patterns rely on shal-
low parsing, syntactic role assignment (e.g., subject
(subject) and direct object (dobj) identification), and
active/passive voice recognition, but they are shown
here in a simplified form for readability. The por-
tion in brackets (between< and>) is extracted, and
the other words must match the surrounding con-
text. In some cases, all of the matched words are
extracted (e.g., “<# birds>”). Most of the highest-
ranked victim patterns recognize noun phrases that
refer to people or animals because they are common
in the disease outbreak stories and these patterns do
not extract information that is associated with any
competing event roles.

5 Distinguishing Primary and Secondary
Patterns

So far, our goal has been to find relevant areas
of text, and then apply semantically appropriate
patterns in those regions. Our expectation was
that fairly general, semantically appropriate patterns
could be effective if their range is restricted to re-
gions that are known to be relevant. If our relevant
sentence classifier was perfect, then performing IE
only on relevant regions would be ideal. However,
identifying relevant regions is a difficult problem in
its own right, and our relevant sentence classifier is
far from perfect.

Consequently, one limitation of our proposed ap-
proach is that no IE would be performed in sentences
that are not deemed to be relevant by the classifier,

Top Terrorism Patterns
Weapon PerpOrg

<subject> exploded <subject> claimed
planted<dobj> panama from<np>
fired<dobj> <np> claimed responsibility
<subject> was planted command of<np>
explosion of<np> wing of <np>
<subject> was detonated kidnapped by<np>
<subject> was set off guerillas of<np>
set off<dobj> <subject> operating
hurled<dobj> kingpins of<np>
<subject> was placed attacks by<np>

Top Disease Outbreak Patterns
Disease Victim

cases of<np> <# people>
spread of<np> <# cases>
outbreak of<np> <# birds>
<#th outbreak> <# animals>
<# outbreaks> <subject> died
case of<np> <# crows>
contracted<dobj> <subject> know
outbreaks of<np> <# pigs>
<# viruses> <# cattle>
spread of<np> <# sheep>

Figure 2: Top-Ranked Extraction Patterns

and this could negatively affect recall. We addressed
this issue by allowing reliable patterns to be applied
to all sentences in the text, irrespective of the output
of the sentence classifier. For example, the pattern
“ <subject> was assassinated”is a clear indicator
of a murder event, and does not need to be restricted
by the sentence classifier4. We will refer to such
reliable patterns asPrimary Patterns. In contrast,
patterns that are not necessarily reliable and need to
be restricted to relevant regions will be calledSec-
ondary Patterns.

To automatically distinguish Primary Patterns
from Secondary Patterns, we compute the condi-
tional probability of a patternp being relevant,
Pr(relevant | p), based on the relevant and irrele-
vant documents in our training set. We then define
an upper conditional probability thresholdθu to sep-
arate Primary patterns from Secondary Patterns. If
a pattern has a high correlation with relevant docu-
ments, then our assumption is that it is generally a
reliable pattern that is not likely to occur in irrele-
vant contexts.

On the flip side, we can also use this condi-
tional probability to weed out patterns that rarely

4In other words, if such a pattern matches a sentence that is
classified as irrelevant, then the classifier is probably incorrect.
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appear in relevant documents. Such patterns (e.g.,
“ <subject> held”, “ <subject> saw”, etc.) could
potentially have a high semantic affinity for one of
the semantic categories, but they are not likely to be
useful if they mainly occur in irrelevant documents.
As a result, we also define a lower conditional proba-
bility thresholdθl that identifies irrelevant extraction
patterns.

The two thresholdsθu andθl are used with seman-
tic affinity to identify the most appropriate Primary
and Secondary patterns for the task. This is done by
first removing from our extraction pattern collection
all patterns with probability less thanθl. For each
event role, we then sort the remaining patterns based
on their semantic affinity score for that role and se-
lect the topN patterns. Next, we use theθu prob-
ability threshold to separate theseN patterns into
two subsets. Patterns with a probability aboveθu

are considered to be Primary patterns for that role,
and those below become the Secondary patterns.

6 Experiments and Results

6.1 Data Sets

We evaluated the performance of our IE system on
two data sets: the MUC-4 terrorism corpus (Sund-
heim, 1992), and a ProMed disease outbreaks cor-
pus. The MUC-4 IE task is to extract information
about Latin American terrorist events. We focused
our analysis on five MUC-4 string roles:perpetrator
individuals, perpetrator organizations, physical tar-
gets, victims, andweapons. The disease outbreaks
corpus consists of electronic reports about disease
outbreak events. For this domain we focused on two
string roles:diseasesandvictims5.

The MUC-4 data set consists of 1700 documents,
divided into 1300 development (DEV) texts, and
four test sets of 100 texts each (TST1, TST2, TST3,
and TST4). We used 1300 texts (DEV) as our train-
ing set, 200 texts (TST1+TST2) for tuning, and 200
texts (TST3+TST4) as a test set. All 1700 docu-
ments have answer key templates. For the training
set, we used the answer keys to separate the doc-
uments into relevant and irrelevant subsets. Any
document containing at least one relevant event was
considered relevant.

5The “victims” can be people, animals, or plants that are
affected by a disease.

For the disease outbreak domain the data set
was collected from ProMed-mail6, an open-source,
global electronic reporting system for outbreaks
of infectious diseases. We collected thousands of
ProMed reports and created answer key templates
for 245 randomly selected articles. We used 125 as
a tuning set, and 120 as the test set. We used 2000
different documents as the relevant documents for
training. Most of the ProMed articles contain email
headers, footers, citations, and other snippets of non-
narrative text, so we wrote a “zoner” program7 to
automatically strip off some of this extraneous in-
formation.

To obtain irrelevant documents, we collected
4000 biomedical abstracts from PubMed8, a free
archive of biomedical literature. We collected twice
as many irrelevant documents because the PubMed
articles are roughly half the size of the ProMed arti-
cles, on average. To ensure that the PubMed articles
were truly irrelevant (i.e. did not contain any disease
outbreak reports) we used specific queries to exclude
disease outbreak abstracts.

The complete IE task involves the creation of
answer key templates, one template per incident9.
Template generation is a complex process, requir-
ing coreference resolution and discourse analysis to
determine how many incidents were reported and
which facts belong with each incident. Our work fo-
cuses on extraction pattern learning and not template
generation, so we evaluated our systems directly on
the extractions themselves, before template genera-
tion would take place. This approach directly mea-
sures how accurately the patterns find relevant infor-
mation, without confounding factors from the tem-
plate generation process. For example, if a coref-
erence resolver incorrectly decides that two extrac-
tions are coreferent and merges them, then only one
extraction would be scored. We used ahead noun
scoring scheme, where an extraction is considered
to be correct if its head noun matches the head noun
in the answer key10. Also, pronouns were discarded
from both the system responses and the answer keys
since no coreference resolution is done. Duplicate

6http://www.promedmail.org
7The termzonerwas introduced by Yangarber et al. (2002).
8http://www.pubmedcentral.nih.gov
9Many of the stories have multiple incidents per article.

10For example, “armed men” will match “5 armed men”.
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extractions (e.g., the same string extracted by differ-
ent patterns) were conflated before being scored, so
they count as just one hit or one miss.

6.2 Relevant Sentence Classifier Results

First, we evaluated the performance of the relevant
sentence classifier described in Section 3. We auto-
matically generated seed patterns from the training
texts. AutoSlog (Riloff, 1993) was used to gener-
ate all extraction patterns that appear in the train-
ing documents, and only those patterns with fre-
quency> 50 were kept. These were then ranked
by Pr(relevant | p), and the top 20 patterns were
chosen as seeds. In the disease outbreak domain, 54
patterns had a frequency> 50 and probability of 1.0.
We wanted to use the same number of seeds in both
domains for consistency, so we manually reviewed
them and used the 20 most domain-specific patterns
as seeds.

Due to the greater stylistic differences between
the relevant and irrelevant documents in the disease
outbreak domain (since they were gathered from dif-
ferent sources), we decided to make the classifier for
that domain more conservative in classifying docu-
ments as relevant. To do this we used the prediction
scores output by the SVM as a measure of confi-
dence in the classification. These scores are essen-
tially the distance of the test examples from the sup-
port vectors of the SVM. For the disease outbreaks
domain we used a cutoff of 1.0 and in the terrorism
domain we used the default of 0.

Since we do not have sentence annotated data,
there is no direct way to evaluate the classifiers.
However, we did an indirect evaluation by using the
answer keys from the tuning set. If a sentence in
a tuning document contained a string that occurred
in the corresponding answer key template, then we
considered that sentence to be relevant. Otherwise,
the sentence was deemed irrelevant. This evaluation
is not perfect for two reasons: (1) answer key strings
do not always appear in relevant sentences.11, and
(2) some arguably relevant sentences may not con-
tain an answer key string (e.g., they may contain a
pronoun that refers to the answer, but the pronoun it-
self is not the desired extraction). However, judging

11This happens due to coreference, e.g., when multiple oc-
currences of an answer appear in a document, some of them
may occur in relevant sentences while others do not.

Irrelevant Relevant
Acc Rec Pr F Rec Pr F

Terrorism
Iter #1 .84 .93 .89 .91 .41 .55 .47
Iter #2 .84 .90 .91 .90 .54 .51 .53
Iter #3 .82 .85 .92 .89 .63 .46 .53

Disease Outbreaks
Iter #1 .75 .96 .76 .85 .21 .66 .32
Iter #2 .71 .76 .82 .79 .58 .48 .53
Iter #3 .63 .60 .85 .70 .72 .41 .52

Table 1: Relevant Sentence Classifier Evaluation

the relevance of sentences without relying on answer
keys is also tricky, so we decided that this approach
was probably good enough to get a reasonable as-
sessment of the classifier. Using this criterion, 17%
of the sentences in the terrorism articles are relevant,
and 28% of the sentences in the disease outbreaks
articles are relevant.

Table 1 shows the accuracy, recall, precision, and
F scores of the SVM classifiers after each self-
training iteration. The classifiers generated after the
third iteration were used in our IE experiments. The
final accuracy is 82% in the terrorism domain, and
63% for the disease outbreaks domain. The preci-
sion on irrelevant sentences is high in both domains,
but the precision on relevant sentences is relatively
weak. Despite this, we will show in Section 6.3 that
the classifier is effective for the IE task. The rea-
son why the classifier improves IE performance is
because it favorably alters the proportion of relevant
sentences that are passed along to the IE system. For
example, an analysis of the tuning set shows that re-
moving the sentences deemed to be irrelevant by the
classifier increases the proportion of relevant sen-
tences from 17% to 46% in the terrorism domain,
and from 28% to 41% in the disease outbreaks do-
main.

We will also see in Section 6.3 that IE recall only
drops a little when the sentence classifier is used,
despite the fact that its recall on relevant sentences
is only 63% in terrorism and 72% for disease out-
breaks. One possible explanation is that the an-
swer keys often contain multiple acceptable answer
strings (e.g., “John Kennedy” and “JFK” might both
be acceptable answers). On average, the answer
keys contain approximately 1.64 acceptable strings
per answer in the terrorism domain, and 1.77 accept-
able strings per answer in the disease outbreaks do-
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Terrorism
Patterns App Rec Pr F Rec Pr F

PerpInd PerpOrg
ASlogTS All .49 .35 .41 .33 .49 .40
ASlogTS Rel .41 .50 .45 .27 .58 .37

Target Victim
ASlogTS All .64 .42 .51 .52 .48 .50
ASlogTS Rel .57 .49 .53 .48 .54 .51

Weapon
ASlogTS All .45 .39 .42
ASlogTS Rel .40 .51 .45

Disease Outbreaks
Disease Victim

ASlogTS All .51 .27 .36 .48 .35 .41
ASlogTS Rel .46 .31 .37 .44 .38 .41

Table 2: AutoSlog-TS Results

main. Thus, even if the sentence classifier discards
some relevant sentences, an equally acceptable an-
swer may be found in a different sentence.

6.3 Information Extraction Results

We first conducted two experiments with an exist-
ing IE pattern learner, AutoSlog-TS (Riloff, 1996)
to give us a baseline against which to compare our
results. The “All” rows in Table 2 show these results,
where “All” means that the IE patterns were applied
to all of the sentences in the test set. AutoSlog-TS12

produced F scores between 40-51% on the MUC-4
test set, and 36-41% on the ProMed test set. The
terrorism scores are competitive with the MUC-4
scores reported by Chieu et al. (2003), although they
are not directly comparable because those scores are
based on template generation. Since we created the
ProMed test set ourselves, we are the first to report
results on it13.

Next, we evaluated the performance of AutoSlog-
TS’ extraction patterns when they are applied only in
the sentences deemed to be relevant by our relevant
sentence classifier. The purpose of this experiment
was to determine whether the relevant sentence clas-
sifier can be beneficial when used with IE patterns
known to be of good quality. The “Rel” rows in Ta-

12AutoSlog-TS was trained on a much larger data set of 4,958
ProMed and 10,191 PubMed documents for the disease out-
breaks domain. AutoSlog-TS requires a human review of the
top-ranked patterns, which resulted in 396 patterns for the ter-
rorism domain and 125 patterns for the disease outbreaks do-
main.

13Some previous work has been done with ProMed articles
(Grishman et al., 2002a; Grishman et al., 2002b), but we are not
aware of any IE evaluations on them.

Disease Victim
Patterns App Rec Pr F Rec Pr F
ASlogTS All .51 .27 .36 .48 .35 .41
SA-50 All .51 .25 .34 .47 .41 .44
SA-50 Rel .49 .31 .38 .44 .43 .43
SA-50 Sel .50 .29 .36 .46 .41 .44
SA-100 All .57 .22 .32 .52 .33 .40
SA-100 Rel .55 .28 .37 .49 .36 .41
SA-100 Sel .56 .26 .35 .51 .34 .41
SA-150 All .66 .20 .31 .55 .27 .37
SA-150 Rel .61 .26 .36 .51 .31 .38
SA-150 Sel .63 .24 .35 .53 .29 .37
SA-200 All .68 .19 .30 .56 .26 .36
SA-200 Rel .63 .25 .35 .52 .30 .38
SA-200 Sel .65 .23 .34 .54 .28 .37

Table 3: ProMed Disease Outbreak Results

ble 2 show the scores for this experiment. Precision
increased substantially on all 7 roles, although with
some recall loss. This shows that a sentence classi-
fier that has a high precision on irrelevant sentences
but only a moderate precision on relevant sentences
can be useful for information extraction.

Tables 3 and 4 show the results of our IE system,
which uses the topN Semantic Affinity (SA) pat-
terns and the relevant sentence classifier. We also
show the AutoSlog-TS results again in the top row
for comparison. The best F score for each role is
shown in boldface. We used a lower probability
thresholdθl of 0.5 to filter out irrelevant patterns.
We then ranked the remaining patterns based on se-
mantic affinity, and evaluated the performance of the
top 50, 100, 150, and 200 patterns. TheAppcolumn
indicates how the patterns were applied: forAll they
were applied in all sentences in the test set, forRel
they were applied only in the relevant sentences (as
judged by our sentence classifier). For theSelcon-
dition, the Primary patterns were applied in all sen-
tences but the Secondary patterns were applied only
in relevant sentences. To separate Primary and Sec-
ondary patterns we used an upper probability thresh-
old θu of 0.8.

Looking at the rows with theAll condition, we
see that the semantic affinity patterns achieve good
recall (e.g., the top 200 patterns have a recall over
50% for most roles), but precision is often quite low.
This is not surprising because high semantic affin-
ity patterns do not necessarily have to be relevant to
the domain, so long as they recognize semantically
appropriate things.
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PerpInd PerpOrg Target Victim Weapon
Patterns App Rec Pr F Rec Pr F Rec Pr F Rec Pr F Rec Pr F
ASlogTS All .49 .35 .41 .33 .49 .40 .64 .42 .51 .52 .48 .50 .45 .39 .42
SA-50 All .24 .29 .26 .20 .42 .27 .42 .43 .42 .41 .43 .42 .53 .46 .50
SA-50 Rel .19 .32 .24 .18 .60 .28 .38 .48 .42 .37 .52 .43 .41 .56 .48
SA-50 Sel .20 .33 .25 .20 .54 .29 .42 .50 .45 .38 .52 .44 .43 .53 .48
SA-100 All .40 .30 .34 .30 .43 .35 .56 .38 .45 .45 .37 .41 .55 .43 .48
SA-100 Rel .36 .39 .38 .25 .59 .35 .52 .45 .48 .40 .47 .44 .45 .51 .48
SA-100 Sel .38 .40 .39 .27 .55 .36 .56 .46 .50 .41 .47 .44 .47 .49 .48
SA-150 All .50 .27 .35 .34 .39 .37 .62 .30 .40 .50 .33 .40 .55 .39 .45
SA-150 Rel .46 .39 .42 .28 .58 .38 .56 .37 .45 .44 .45 .45 .45 .50 .47
SA-150 Sel .48 .39 .43 .31 .55 .40 .60 .37 .46 .46 .44 .45 .47 .47 .47
SA-200 All .73 .08 .15 .42 .43 .42 .64 .29 .40 .54 .32 .40 .64 .17 .27
SA-200 Rel .67 .15 .24 .34 .61 .43 .58 .36 .45 .47 .43 .45 .52 .29 .37
SA-200 Sel .71 .12 .21 .36 .58 .45 .61 .35 .45 .48 .43 .45 .53 .22 .31

Table 4: MUC-4 Terrorism Results

Next, we can compare eachAll row with theRel
row immediately below it. We observe that in every
case precision improves, often dramatically. This
demonstrates that our sentence classifier is having
the desired effect. However, observe that the preci-
sion gain comes with some loss in recall points.

Clearly, this drop in recall is due to the answers
embedded inside relevant sentences incorrectly clas-
sified as irrelevant. To counter this, we apply the Pri-
mary patterns to all the sentences. Thus, if we com-
pare eachRelrow with theSelrow immediately be-
low it, we see the effect of loosening the reins on the
Primary patterns (the Secondary patterns are still re-
stricted to the relevant sentences). In most cases, the
recall improves with a relatively small drop in preci-
sion, or no drop at all. In the terrorism domain, the
highest F score for four of the five roles occurs under
theSelcondition. In the disease outbreaks domain,
the best F score for diseases occurs in theRel con-
dition, while the best score for victims is achieved
under both theAll and theSelconditions.

Finally, we note that the best F scores produced
by our information extraction system are higher than
those produced by AutoSlog-TS for all of the roles
except Targets and Victims, and our best perfor-
mance on Targets is only slightly lower. These re-
sults are particularly noteworthy because AutoSlog-
TS requires a human to manually review the patterns
and assign event roles to them. In contrast, our ap-
proach is fully automated.

These results validate our hypothesis that decou-
pling the processes of finding relevant regions and
applying semantically appropriate patterns can cre-

ate an effective IE system.

7 Conclusions

In this work, we described an information extraction
system based on a relevant sentence classifier and
extraction patterns learned using asemantic affin-
ity metric. The sentence classifier was self-trained
using only relevant and irrelevant documents plus a
handful of seed extraction patterns. We showed that
separating the task of relevant region identification
from that of pattern extraction can be effective for in-
formation extraction. In addition, we observed that
the use of a relevant sentence classifier is beneficial
for an IE system.

There are several avenues that need to be explored
for future work. First, it would be interesting to see
if the use of richer features can improve classifier
performance, and if that in turn improves the perfor-
mance of the IE system. We would also like to ex-
periment with different region sizes and study their
effect on information extraction. Finally, other tech-
niques for learning semantically appropriate extrac-
tion patterns could be investigated.
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Abstract 

This paper proposes a tree kernel with context-
sensitive structured parse tree information for re-
lation extraction. It resolves two critical problems 
in previous tree kernels for relation extraction in 
two ways. First, it automatically determines a dy-
namic context-sensitive tree span for relation ex-
traction by extending the widely-used Shortest 
Path-enclosed Tree (SPT) to include necessary 
context information outside SPT. Second, it pro-
poses a context-sensitive convolution tree kernel, 
which enumerates both context-free and context-
sensitive sub-trees by considering their  ancestor 
node paths as their contexts. Moreover, this paper 
evaluates the complementary nature between our 
tree kernel and a state-of-the-art linear kernel. 
Evaluation on the ACE RDC corpora shows that 
our dynamic context-sensitive tree span is much 
more suitable for relation extraction than SPT and 
our tree kernel outperforms the state-of-the-art 
Collins and Duffy’s convolution tree kernel. It 
also shows that our tree kernel achieves much bet-
ter performance than the state-of-the-art linear 
kernels . Finally, it shows that feature-based and 
tree kernel-based methods much complement each 
other and the composite kernel can well integrate 
both flat and structured features.  

1 Introduction 

Relation extraction is to find various predefined se-
mantic relations between pairs of entities in text. The 
research in relation extraction has been promoted by 
the Message Understanding Conferences (MUCs) 
(MUC, 1987-1998) and the NIST Automatic Content 
Extraction (ACE) program (ACE, 2002-2005). Ac-
cording to the ACE Program, an entity is an object or 
a set of objects in the world and a relation is an ex-
plicitly or implicitly stated relationship among enti-
ties. For example, the sentence “Bill Gates is the 

chairman and chief software architect of Microsoft 
Corporation.” conveys the ACE-style relation 
“EMPLOYMENT.exec” between the entities “Bill 
Gates” (person name) and “Microsoft Corporation” 
(organization name). Extraction of semantic relations 
between entities can be very useful in many applica-
tions such as question answering, e.g. to answer the 
query “Who is the president of the United States?”, 
and information  retrieval, e.g. to expand the query 
“George W. Bush” with “the president of the United 
States” via his relationship with “the United States”. 

Many researches have been done in relation extrac-
tion. Among them, feature-based methods (Kamb-
hatla 2004; Zhou et al., 2005) achieve certain success 
by employing a large amount of diverse linguistic 
features, varying from lexical knowledge, entity-
related information to syntactic parse trees, depend-
ency trees and semantic information. However, it is 
difficult for them to effectively capture structured 
parse tree information (Zhou et al 2005), which is 
critical for further performance improvement in rela-
tion extraction.  

As an alternative to feature-based methods, tree 
kernel-based methods provide an elegant solution to 
explore implicitly structured features by directly 
computing the similarity between two trees. Although 
earlier researches (Zelenko et al 2003; Culotta and 
Sorensen 2004; Bunescu and Mooney 2005a) only 
achieve success on simple tasks and fail on complex 
tasks, such as the ACE RDC task, tree kernel-based 
methods achieve much progress recently. As the 
state-of-the-art, Zhang et al (2006) applied the convo-
lution tree kernel (Collins and Duffy 2001) and 
achieved comparable performance with a state-of-the-
art linear kernel (Zhou et al 2005) on the 5 relation  
types in the ACE RDC 2003 corpus.  

However, there are two problems in Collins and 
Duffy’s convolution tree kernel for relation extraction.  
The first is that the sub-trees enumerated in the tree 
kernel computation are context-free. That is, each 
sub-tree enumerated in the tree kernel computation 
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does not consider the context information outside the 
sub-tree. The second is to decide a proper tree span in 
relation extraction. Zhang et al (2006) explored five 
tree spans in relation extraction and it was  a bit sur-
prising to find that the Shortest Path-enclosed Tree 
(SPT, i.e. the sub-tree enclosed by the shortest path 
linking two involved entities in the parse tree) per-
formed best. This is contrast to our intuition. For ex-
ample, “got married” is critical to determine the 
relationship between “John” and “Mary” in the sen-
tence “John and Mary got married… ” as shown in 
Figure 1(e). It is obvious that the information con-
tained in SPT (“John and Marry”) is not enough to 
determine their relationship. 

This paper proposes a context-sensitive convolu-
tion tree kernel for relation extraction to resolve the 
above two problems. It first automatically determines 
a dynamic context-sensitive tree span for relation ex-
traction by extending the Shortest Path-enclosed Tree 
(SPT) to include necessary context information out-
side SPT. Then it proposes a context-sensitive convo-
lution tree kernel, whic h not only enumerates context-
free sub-trees but also context-sensitive sub-trees by 
considering their ancestor node paths as their contexts. 
Moreover, this paper evaluates the complementary 
nature of different linear kernels and tree kernels via a 
composite kernel.  

The layout of this paper is as follows. In Section 2, 
we review related work in more details. Then, the 
dynamic context-sensitive tree span and the context-
sensitive convolution tree kernel are proposed in Sec-
tion 3 while Section 4 shows the experimental results. 
Finally, we conclude our work in Sec tion 5.  

2 Related Work 

The relation extraction task was first introduced as 
part of the Template Element task in MUC6 and then 
formulated as the Template Relation task in MUC7. 
Since then, many methods, such as feature-based 
(Kambhatla 2004; Zhou et al 2005, 2006), tree ker-
nel-based (Zelenko et al 2003; Culotta and Sorensen 
2004; Bunescu and Mooney 2005a; Zhang et al 2006) 
and composite kernel-based (Zhao and Gris hman 
2005; Zhang et al 2006), have been proposed in lit-
erature. 

For the feature-based methods, Kambhatla (2004) 
employed Maximum Entropy models to combine di-
verse lexical, syntactic and semantic features in rela-
tion extraction, and achieved the F-measure of 52.8 
on the 24 relation subtypes in the ACE RDC 2003 
corpus. Zhou et al (2005) further systematically ex-
plored diverse features through a linear kernel and 
Support Vector Machines, and achieved the F-

measures of 68.0 and 55.5 on the 5 relation types and 
the 24 relation subtypes in the ACE RDC 2003 cor-
pus respectively. One problem with the feature-based 
methods is that they need extensive feature engineer-
ing. Another problem is that, although they can ex-
plore some structured information in the parse tree 
(e.g. Kambhatla (2004) used the non-terminal path 
connecting the given two entities in a parse tree while 
Zhou et al. (2005) introduced additional chunking 
features to enhance the performance), it is found dif-
ficult to well preserve structured information in the 
parse trees using the feature-based methods. Zhou et 
al (2006) further improved the performance by ex-
ploring the commonality among related classes in a 
class hierarchy using hierarchical learning strategy. 

As an alternative to the feature-based methods, the 
kernel-based methods (Haussler, 1999) have been 
proposed to implicitly explore various features in a 
high dimensional space by employing a kernel to cal-
culate the similarity between two objects directly. In 
particular, the kernel-based methods could be very 
effective at reducing the burden of feature engineer-
ing for structured objects in NLP researches, e.g. the 
tree structure in relation extraction.   

Zelenko et al. (2003) proposed a kernel between 
two parse trees, which recursively matches nodes 
from roots to leaves in a top-down manner. For each 
pair of matched nodes, a subsequence kernel on their 
child nodes is invoked. They achieved quite success 
on two simple relation extraction tasks. Culotta and 
Sorensen (2004) extended this work to estimate simi-
larity between augmented dependency trees and 
achieved the F-measure of 45.8 on the 5 relation 
types in the ACE RDC 2003 corpus. One problem 
with the above two tree kernels is that matched nodes 
must be at the same height and have the same path to 
the root node. Bunescu and Mooney (2005a) pro-
posed a shortest path dependency tree kernel, which 
just sums up the number of common word classes 
at each position in the two paths, and achieved the 
F-measure of 52.5 on the 5 relation types in the ACE 
RDC 2003 corpus. They argued that the information 
to model a relationship between two entities can be 
typically captured by the shortest path between them 
in the dependency graph. While the shortest path 
may not be able to well preserve structured de-
pendency tree information, another problem with 
their kernel is that the two paths should have same 
length. This makes it suffer from the similar behavior 
with that of Culotta and Sorensen (2004): high preci-
sion but very low recall.  

As the state-of-the-art tree kernel-based method, 
Zhang et al (2006) explored various structured feature 
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spaces and used the convolution tree kernel over 
parse trees (Collins and Duffy 2001) to model syntac-
tic structured information for relation extraction. 
They achieved the F-measures of 61.9 and 63.6 on the 
5 relation types of the ACE RDC 2003 corpus and the 
7 relation types of the ACE RDC 2004 corpus respec-
tively without entity-related information while the F-
measure on the 5 relation types in the ACE RDC 
2003 corpus reached 68.7 when entity-related infor-
mation was included in the parse tree. One problem 
with Collins and Duffy’s convolution tree kernel is 
that the sub-trees involved in the tree kernel computa-
tion are context-free, that is, they do not consider the 
information outside the sub-trees. This is different 
from the tree kernel in Culota and Sorensen (2004), 
where the sub-trees involved in the tree kernel com-
putation are context-sensitive (that is, with the path 
from the tree root node to the sub-tree root node in 
consideration). Zhang et al (2006) also showed that 
the widely-used Shortest Path-enclosed Tree (SPT) 
performed best. One problem with SPT is that it fails 
to capture the contextual information outside the 
shortest path, which is important for relation extrac-
tion in many cases. Our random selection of 100 pos i-
tive training instances from the ACE RDC 2003 
training corpus shows that ~25% of the cases need 
contextual information outside the shortest path. 
Among other kernels, Bunescu and Mooney (2005b) 
proposed a subsequence kernel and applied it in pro-
tein interaction and ACE relation extraction tasks. 

In order to integrate the advantages of feature-
based and tree kernel-based methods, some research-
ers have turned to composite kernel-based methods. 
Zhao and Grishman (2005) defined several feature-
based composite kernels to integrate diverse features 
for relation extraction and achieved the F-measure of 
70.4 on the 7 relation types of the ACE RDC 2004 
corpus. Zhang et al (2006) proposed two composite 
kernels to integrate a linear kernel and Collins and 
Duffy’s convolution tree kernel. It achieved the F-
measure of 70.9/57.2 on the 5 relation types/24 rela-
tion subtypes in the ACE RDC 2003 corpus and the 
F-measure of 72.1/63.6 on the 7 relation types/23 
relation subtypes in the ACE RDC 2004 corpus. 

The above discussion suggests that structured in-
formation in the parse tree may not be fully utilized in 
the previous works, regardless of feature-based, tree 
kernel-based or composite kernel-based methods. 
Compared with the previous works, this paper pro-
poses a dynamic context-sensitive tree span trying to 
cover necessary structured information and a context-
sensitive convolution tree kernel considering both 
context-free and context-sensitive sub-trees. Further-

more, a composite kernel is applied to combine our 
tree kernel and a state-of-the-art linear kernel for in-
tegrating both flat and structured features in relation 
extraction as well as validating their complementary 
nature. 

3 Context Sensitive Convolution Tree 
Kernel for Relation Extraction 

In this section, we first propose an algorithm to dy-
namically determine a proper context-sensitive tree 
span and then a context-sensitive convolution tree 
kernel for relation extraction.  

3.1 Dynamic Context-Sensitive Tree Span in 
Relation Extraction 

A relation instance between two entities is encaps u-
lated by a parse tree. Thus, it is critical to understand 
which portion of a parse tree is important in the tree 
kernel calculation. Zhang et al (2006) systematically 
explored seven different tree spans, including the 
Shortest Path-enclosed Tree (SPT) and a Context-
Sensitive Path-enclosed Tree1 (CSPT), and found that 
SPT per formed best. That is, SPT even outperforms 
CSPT. This is contrary to our intuition. For example, 
“got married” is critical to determine the relationship 
between “John” and “Mary” in the sentence “John 
and Mary got married… ” as shown in Figure 1(e), 
and the information contained in SPT (“John and 
Mary”) is not enough to determine their relationship. 
Obviously, context-sensitive tree spans should have 
the potential for better performance. One problem 
with the context-sensitive tree span explored in Zhang 
et al (2006) is that it only considers the availability of 
entities’ siblings and fails to consider following two 
factors: 
1) Whether is the information contained in SPT 

enough to determine the relationship between 
two entities? It depends. In the embedded cases, 
SPT is enough. For example, “John’s wife” is 
enough to determine the relationship between 
“John” and “John’s wife” in the sentence “John’s 
wife got a good job… ” as shown in Figure 1(a) . 
However, SPT is not enough in the coordinated 
cases, e.g. to determine the relationship between 
“John” and “Mary” in the sentence “John and 
Mary got married… ” as shown in Figure 1(e). 

                                                                 
1 CSPT means SPT extending with the 1st left sibling of 

the node of entity 1 and the 1st right sibling of the node 
of entity 2.  In the case of no available  sibling, it moves 
to the parent of current node and repeat the same proc-
ess until a sibling is available or the root is reached. 
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2) How can we extend SPT to include necessary 
context information if there is no enough infor-
mation in SPT for relation extraction?  

To answer the above two questions, we randomly 
chose 100 positive instances from the ACE RDC 
2003 training data and studied their necessary tree 
spans. It was observed that we can classify them into 
5 categories: 1) embedded (37 instances), where one 
entity is embedded in another entity, e.g. “John” and 
“John’s wife” as shown in Figure 1(a); 2) PP-linked 
(21 instances), where one entity is linked to another 
entity via PP attachment, e.g. “CEO” and “Microsoft” 
in the sentence “CEO of Microsoft announced … ” as 
shown in Figure 1(b); 3) semi-structured (15 in-
stances), where the sentence consists of a sequence of 
noun phrases (including the two given entities), e.g. 
“Jane” and “ABC news” in the sentence “Jane, ABC 
news, California.” as shown in Figure 1(c); 4) de-
scriptive (7 instances), e.g. the citizenship between 
“his mother” and “Lebanese” in the sentence “his 
mother Lebanese landed at …” as shown in Figure 
1(d); 5) predicate-linked and others (19 instances, 
including coordinated cases), where the predicate 
information is necessary to determine the relationship 
between two entities, e.g.  “John” and “Mary” in the 

sentence “John and Mary got married…” as shown in 
Figure 1(e); 

Based on the above observations, we implement an 
algorithm to determine the necessary tree span for the 
relation extract task. The idea behind the algorithm is 
that the necessary tree span for a relation should be 
determined dynamically according to its tree span 
category and context. Given a parsed tree and two 
entities in consideration, it first determin es the tree 
span category and then extends the tree span accord-
ingly. By default, we adopt the Shortest Path-
enclosed Tree (SPT) as our tree span. We only ex-
pand the tree span when the tree span belongs to the 
“predicate-linked” category. This is based on our ob-
servation that the tree spans belonging to the “predi-
cate-linked” category vary much syntactically and 
majority (~70%) of them need information outside 
SPT while it is quite safe (>90%) to use SPT as the 
tree span for the remaining categories. In our algo-
rithm, the expansion is done by first moving up until 
a predicate-headed phrase is found and then moving 
down along the predicated-headed path to the predi-
cate terminal node. Figure 1(e) shows an example for 
the “predicate-linked” category where the lines with 
arrows indicate the expansion path.  

 

   

 
e) predicate-linked: SPT and the dynamic context-sensitive tree span  

Figure 1: Different tree span categories with SPT (dotted circle) and an ex-
ample of the dynamic context-sensitive tree span (solid circle) 

  

 

Figure 2: Examples of context-
free and context-sensitive sub-
trees related with Figure 1(b). 
Note: the bold node is the root 
for a sub-tree. 

A problem with our algorithm is how to deter-
mine whether an entity pair belongs to the “predi-
cate-linked” category. In this paper, a simple 
method is applied by regarding the “predicate-
linked” category as the default category. That is, 

those entity pairs, which do not belong to the four 
well defined and easily detected categories (i.e. 
embedded, PP-liked, semi-structured and descrip-
tive), are classified into the “predicate-linked” cate-
gory. 
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Since “predicate -linked” instances only occupy 
~20% of cases, this explains why SPT performs 
better than the Context-Sensitive Path-enclosed 
Tree (CSPT) as described in Zhang et al (2006): 
consistently adopting CSPT may introduce too 
much noise/unnecessary information in the tree 
kernel. 

3.2 Context-Sensitive Convolution Tree Kernel 

Given any tree span, e.g. the dynamic context-
sensitive tree span in the last subsection, we now 
study how to measure the similarity between two 
trees, using a convolution tree kernel.A convolution 
kernel (Haussler D., 1999) aims to capture structured 
information in terms of substructures . As a special-
ized convolution kernel, Collins and Duffy’s convolu-
tion tree kernel ),( 21 TTKC  (‘C’ for convolution) 
counts the number of common sub-trees (sub-
structures) as the syntactic structure similarity be-
tween two parse trees T1 and T2 (Collins and Duffy 
2001): 

∑
∈∈

∆=
2211 ,

2121 ),(),(
NnNn

C nnTTK    (1) 

where Nj is the set of nodes in tree Tj , and 
1 2( , )n n∆  

evaluates the common sub-trees rooted at n1 and n2 2 
and is computed recursively as follows:  
1) If the context-free productions (Context-Free 

Grammar(CFG) rules) at 1n  and 2n  are different, 

1 2( , ) 0n n∆ = ; Otherwise go to 2. 

2) If both 1n  and 2n  are POS tags, 
1 2( , ) 1n n λ∆ = × ; 

Otherwise go to 3. 
3)  Calculate 1 2( , )n n∆ recursively as: 

∏
=

∆+=∆
)(#

1
2121

1

)),(),,((1(),(
nch

k

knchknchnn λ  (2) 

where )(# nch is the number of children of node n , 

),( knch  is the k th child of node n  andλ (0< λ <1) is 
the decay factor in order to make the kernel value less 
variable with respect to different sub-tree sizes.  

This convolution tree kernel has been successfully 
applied by Zhang et al (2006) in relation extraction. 
However, there is one problem with this tree kernel: 
the sub-trees involved in the tree kernel computation 
are context-free (That is, they do not consider the 
information outside the sub-trees). This is contrast to 

                                                                 
2 That is, each node n encodes the identity of a sub-

tree rooted at n and, if there are two nodes in the 
tree with the same label, the summation will go over 
both of them. 

the tree kernel proposed in Culota and Sorensen 
(2004) which is context-sensitive, that is, it considers 
the path from the tree root node to the sub-tree root 
node. In order to integrate the advantages of both tree 
kernels and resolve the problem in Collins and 
Duffy’s convolution tree kernel, this paper proposes a 
context-sensitive convolution tree kernel. It works by 
taking ancestral information (i.e. the root node path) 
of sub-trees into consideration: 

∑ ∑
= ∈∈

∆=
m

i NnNn

ii
C

iiii

nnTTK
1 ]2[]2[],1[]1[

11

1111

])2[],1[(])2[],1[(  (3) 

Where 

• ][1 jN i is the set of root node paths with length i 
in tree T[j] while the maximal length of a root 
node path is defined by m.  

• ])[...(][ 211 jnnnjn i
i = is a root node path with 

length i in tree T[j] , which takes into account the 

i-1 ancestral nodes in2 [j] of 1n [j] in T[j]. Here, 

][1 jn k+  is the parent of ][ jn k and ][1 jn  is the 
root node of a context-free sub-tree in T[j]. For 
better differentiation, the label of each ancestral 
node in in1 [j] is augmented with the POS tag of 
its head word.  

• ])2[],1[( 11
ii nn∆  measures the common context-

sensitive sub-trees rooted at root node paths 

]1[1
in  and ]2[1

in 3. In our tree kernel, a sub-tree 
becomes context-sensitive with its dependence on 
the root node path instead of the root node itself. 
Figure 2 shows a few examples of context-
sensitive sub-trees with comparison to context-
free sub-trees. 

Similar to Collins and Duffy (2001),   our tree ker-
nel computes ])2[],1[( 11

ii nn∆ recursively as follows:  
1) If the context-sensitive productions (Context-

Sensitive Grammar (CSG) rules with root node 
paths as their left hand sides) rooted at ]1[1

in  and 

]2[1
in  are different, return ])2[],1[( 11

ii nn∆ =0; 
Otherwise go to Step 2. 

2) If both ]1[1n  and ]2[1n  are POS tags, 

λ=∆ ])2[],1[( 11
ii nn ; Otherwise go to Step 3. 

                                                                 
3 That is, each root node path in1  encodes the identity 

of a context-sensitive sub-tree rooted at in1  and, if 
there are two root node paths in the tree with the 
same label sequence, the summation will go over 
both of them.  
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3) Calculate ])2[],1[( 11
ii nn∆  recursively as: 
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where ])],[( 1 kjnch i  is the k th context-sensitive 
child of the context-sensitive sub-tree rooted at 

][1 jn i  with ])[(# 1 jnch i the number of the con-

text-sensitive children. Here, λ (0< λ <1) is the 
decay factor in order to make the kernel value 
less variable with respect to different sizes of the 
context-sensitive sub-trees. 

It is worth comparing our tree kernel with previous 
tree kernels. Obviously, our tree kernel is an exten-
sion of Collins and Duffy’s convolution tree kernel, 
which is a special case of our tree kernel (if m=1 in 
Equation (3)). Our tree kernel not only counts the 
occurrence of each context-free sub-tree, which does 
not consider its ancestors, but also counts the occur-
rence of each context-sensitive sub-tree, which con-
siders its ancestors. As a result, our tree kernel is not 
limited by the constraints in previous tree kernels (as 
discussed in Section 2), such as Collins and Duffy 
(2001), Zhang et al (2006), Culotta and Sorensen 
(2004) and Bunescu and Mooney (2005a). Finally, 
let’s study the computational issue with our tree ker-
nel. Although our tree kernel takes the context-
sensitive sub-trees into consideration, it only slightly 
increases the computational burden, compared with 
Collins and Duffy’s convolution tree kernel. This is 
due to that 0])2[],1[( 11 =∆ nn  holds for the major-
ity of context-free sub-tree pairs (Collins and Duffy 
2001) and that computation for context-sensitive sub-
tree pairs is necessary only when 

0])2[],1[( 11 ≠∆ nn  and the context-sensitive sub-
tree pairs have the same root node path(i.e. 

]2[]1[ 11
ii nn =  in Equation (3)). 

4 Experimentation 

This paper uses the ACE RDC 2003 and 2004 cor-
pora provided by LDC in all our experiments. 

4.1 Experimental Setting  

The ACE RDC corpora are gathered from various 
newspapers, newswire and broadcasts. In the 2003 
corpus , the training set consists of 674 documents and 
9683 positive relation instances w hile the test set con-
sists of 97 documents and 1386 positive relation in-
stances. The 2003 corpus defines 5 entity types, 5 

major relation types and 24 relation subtypes. All the 
reported performances in this paper on the ACE RDC 
2003 corpus are evaluated on the test data. The 2004 
corpus  contains 451 documents and 5702 positive 
relation instances. It redefines 7 entity types, 7 major 
relation types and 23 relation subtypes. For compari-
son, we use the same setting as Zhang et al (2006) by 
applying a 5-fold cross-validation on a subset of the 
2004 data, containing 348 documents and 4400 rela-
tion instances. That is, all the reported performances 
in this paper on the ACE RDC 2004 corpus are evalu-
ated using 5-fold cross validation on the entire corpus . 

Both corpora are parsed using Charniak’s parser 
(Charniak, 2001) with the boundaries of all the entity 
mentions kept 4 . We iterate over all pairs of entity 
mentions occurring in the same sentence to generate 
potential relation instances5. In our experimentation, 
SVM (SVMLight, Joachims(1998)) is selected as our 
classifier. For efficiency, we apply the one vs. others 
strategy, which builds K classifiers so as to separate 
one class from all others. The training parameters are 
chosen using cross-validation on the ACE RDC 2003 
training data.  In particular, λ  in our tree kernel is 
fine-tuned to 0.5. This suggests that about 50% dis-
count is done as our tree kernel moves down one 

level in computing ])2[],1[( 11
ii nn∆ .  

4.2 Experimental Results  

First, we systematically evaluate the context-sensitive 
convolution tree kernel and the dynamic context-
sensitive tree span proposed in this paper. 

Then, we evaluate the complementary nature be-
tween our tree kernel and a state-of-the-art linear ker-
nel via a composite kernel. Generally different 
feature-based methods and tree kernel-based methods 
have their own merits. It is usually easy to build a 
system using a feature-based method and achieve the 
state-of-the-art performance, while tree kernel-based 
methods  hold the potential for further performance 
improvement. Therefore, it is always a good idea to 
integrate them via a composite kernel.  

                                                                 
4 This can be done by first representing all entity men-

tions with their head words and then restoring all the 
entity mentions after parsing. Moreover, please note 
that the final performance of relation extraction may 
change much with different range of parsing errors. 
We will study this issue in the near future. 

5 In this paper, we only measure the performance of rela-
tion extraction on “true” mentions with “true” chain-
ing of co-reference (i.e. as annotated by LDC 
annotators ). Moreover, we only model explicit relations and 
explicitly model the argument order of the two mentions in-
volved. 
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Finally, we compare our system with the state-of-
the-art systems in the literature.  

Context-Sensitive Convolution Tree Kernel 

In this paper, the m parameter of our context-sensitive 
convolution tree kernel as shown in Equation (3) 
indicates the maximal length of root node paths and is 
optimized to 3 using 5-fold cross validation on the 
ACE RDC 2003 training data. Table 1 compares the 
impact of different m in context-sensitive convolution 
tree kernels using the Shortest Path-enclosed Tree 
(SPT) (as described in Zhang et al (2006)) on the 
major relation types of the ACE RDC 2003 and 2004 
corpora, in details. It also shows that our tree kernel 
achieves best performance on the test data using SPT 
with m = 3, which outperforms the one with m = 1 by 
~2.3 in F-measure. This suggests the parent and 
grandparent nodes of a sub-tree  contains much 
information for relation extraction while considering 
more ancestral nodes may not help. This may be due 
to that, although our experimentation on the 
training data indicates that  more than 80% (on 
average) of subtrees has a root node path longer 
than 3 (since most of the subtrees are deep from the 
root node and more than 90% of the parsed trees in 
the training data are deeper than 6 levels), 
including a root node path longer than 3 may be 
vulnerable to the full parsing errors and have 
negative impact. Table 1 also evaluates the impact of 
entity-related information in our tree kernel by 
attaching entity type information (e.g. “PER” in the 
entity node 1 of Figure 1(b)) into both entity nodes. 
It shows that such information can significantly 
improve the performance by ~6.0 in F-measure. In all 
the following experiments, we will apply our tree 
kernel with m=3 and entity-related information by 
default. 

Table 2 compares the dynamic context-sensitive 
tree span with SPT using our tree kernel. It shows that 
the dynamic tree span can futher improve the 
performance by ~1.2 in F-measure6. This suggests the 
usefulness of extending the tree span beyond SPT for 
the “predicate-linked” tree span category. In the 
future work, we will further explore expanding the 
dynamic tree span beyond SPT for the remaining tree 
span categories. 

  
  
  

                                                                 
6 Significance test shows that the dynamic tree span per-

forms s tatistically significantly better than SPT with p-
values smaller than 0.05. 

m P(%) R(%) F 
1 72.3(72.7)  56.6(53.8) 63.5(61.8)  
2 74.9(75.2)  57.9(54.7) 65.3(63.5)  
3 75.7(76.1)  58.3(55.1) 65.9(64.0)  
4 76.0(75.9)  58.3(55.3) 66.0(63.9)  

a) without entity-related information 
m P(%) R(%) F 
1 77.2(76.9)  63.5(60.8) 69.7(67.9)  
2 79.1(78.6)  65.0(62.2) 71.3(69.4)  
3 79.6(79.4)  65.6(62.5) 71.9(69.9)  
4 79.4(79.1)  65.6(62.3) 71.8(69.7)  

b) with entity-related information 
Table 1: Evaluation of context-sensitive convolution 
tree kernels using SPT on the major relation types of 
the ACE RDC 2003 (inside the parentheses) and 2004 
(outside the parentheses) corpora. 

Tree Span P(%) R(%) F 
Shortest Path-  
enclosed Tree 

79.6 
(79.4) 

65.6 
(62.5) 

71.9 
(69.9) 

Dynamic Context- 
Sensitive Tee 

81.1 
(80.1) 

66.7 
(63.8) 

73.2 
(71.0) 

Table 2: Comparison of dynamic context-sensitive 
tree span with SPT using our context-sensitive 
convolution tree kernel on the major relation types of 
the ACE RDC 2003 (inside the parentheses) and 2004 
(outside the parentheses) corpora. 18% of positive 
instances in the ACE RDC 2003 test data belong to 
the predicate-linked category. 

  

Composite Kernel 

In this paper, a composite kernel via polynomial in-
terpolation, as described Zhang et al (2006), is ap-
plied to integrate the proposed context-sensitive 
convolution tree kernel with a state-of-the-art linear 
kernel (Zhou et al 2005) 7: 

),()1(),(),(1 ••⋅−+••⋅=•• C
P
L KKK αα  (5) 

Here, ),( ••LK  and ),( ••CK  indicates the normal-
ized linear kernel and context-sensitive convolution 

tree kernel respectively while  ( , )pK • •  is the poly-
nomial expansion of ( , )K • •  with degree d=2, i.e. 

2( , ) ( ( , ) 1)pK K• • • •= +  and α  is the coefficient (α  is 
set to 0.3 using cross-validation). 
                                                                 
7 Here, we use the same set of flat features (i.e. word, 

entity type, mention level, overlap, base phrase chunk-
ing, dependency tree, parse tree and semantic informa-
tion) as Zhou et al (2005). 
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Table 3 evaluates the performance of the 
composite kernel. It shows that the composite kernel 
much further improves the performance beyond that 
of either the state-of-the-art linear kernel or our tree 
kernel and achieves the F-measures of 74.1 and 75.8 
on the major relation types of the ACE RDC 2003 
and 2004 corpora respectively. This suggests that our 
tree kernel and the state-of-the-art linear kernel are 
quite complementary, and that our composite kernel 
can effectively integrate both flat and structured 
features. 

System P(%) R(%) F 

Linear Kernel 
78.2 

(77.2) 
63.4 

(60.7) 
70.1 

(68.0) 
Context-Sensitive Con-
volution Tree Kernel 

81.1 
(80.1) 

66.7 
(63.8) 

73.2 
(71.0) 

Composite Kernel 82.2 
(80.8) 

70.2 
(68.4) 

75.8 
(74.1) 

Table 3: Performance of the compos ite kernel via 
polynomial interpolation on the major relation types 
of the ACE RDC 2003 (inside the parentheses) and 
2004 (outside the parentheses) corpora 
  

Comparison with Other Systems  

ACE RDC 2003 P(%) R(%) F 
Ours:  
composite kernel 

80.8 
(65.2) 

68.4 
(54.9) 

74.1 
(59.6) 

Zhang et al (2006):  
composite kernel 

77.3 
(64.9) 

65.6 
(51.2) 

70.9 
(57.2) 

Ours: context-sensitive  
convolution tree kernel 

80.1 
(63.4) 

63.8 
(51.9) 

71.0 
(57.1) 

Zhang et al (2006):  
convolution tree kernel 

76.1 
(62.4) 

62.6 
(48.5) 

68.7 
(54.6) 

Bunescu et al (2005):  
shortest path  
dependency kernel 

65.5 
(-) 

43.8 
(-) 

52.5 
(-) 

Culotta et al (2004):  
dependency kernel 

67.1 
(-) 

35.0 
(-) 

45.8 
(-) 

Zhou et al. (2005):  
feature-based 

77.2 
(63.1) 

60.7 
(49.5) 

68.0 
(55.5) 

Kambhatla (2004):  
feature-based 

- 
(63.5) 

- 
(45.2) 

- 
(52.8) 

Table 4: Comparison of difference systems on the 
ACE RDC 2003 corpus over both 5 types (outside the 
parentheses) and 24 subtypes (inside the parentheses) 

  

  

  

ACE RDC 2004 P(%) R(%) F 
Ours:  
composite kernel 

82.2 
(70.3) 

70.2 
(62.2) 

75.8 
(66.0) 

Zhang et al (2006):  
composite kernel 

76.1 
(68.6) 

68.4 
(59.3) 

72.1 
(63.6) 

Zhao et al (2005):8  
composite kernel 

69.2 
(-) 

70.5 
(-) 

70.4 
(-) 

Ours: context-sensitive  
convolution tree kernel 

81.1 
(68.8) 

66.7 
(60.3) 

73.2 
(64.3) 

Zhang et al (2006):  
convolution tree kernel 

72.5 
(-) 

56.7 
(-) 

63.6 
(-) 

Table 5: Comparison of difference systems on the 
ACE RDC 2004 corpus over both 7 types (outside the 
parentheses) and 23 subtypes (inside the parentheses) 
  
Finally, Tables 4 and 5 compare our system with 
other state-of-the-art systems9 on the ACE RDC 2003 
and 2004 corpora, respectively. They show that our 
tree kernel-based system outperforms previous tree 
kernel-based systems. This is largely due to the con-
text-sensitive nature of our tree kernel which resolves 
the limitations of the previous tree kernels. They also 
show that our tree kernel-based system outperforms 
the state-of-the-art feature-based system. This proves 
the great potential inherent in the parse tree structure 
for relation extraction and our tree kernel takes a big 
stride towards the right direction. Finally, they also 
show that our composite kernel-based system outper-
forms other composite kernel-based systems. 

5 Conclusion 

Structured parse tree information holds great potential 
for relation extraction. This paper proposes a context-
sensitive convolution tree kernel to resolve two criti-
cal problems in previous tree kernels for relation ex-
traction by first automatically determining a dynamic 
context-sensitive tree span and then applying a con-
text-sensitive convolution tree kernel. Moreover, this 
paper evaluates the complementary nature between 
our tree kernel and a state-of-the-art linear kernel. 
Evaluation on the ACE RDC corpora shows that our 
dynamic context-sensitive tree span is much more 
suitable for relation extraction than the widely -used 
Shortest Path-enclosed Tree and our tree kernel out-
performs the state-of-the-art Collins and Duffy’s con-
volution tree kernel. It also shows that feature-based 
                                                                 
8 There might be some typing errors for the performance 

reported in Zhao and Grishman(2005) since P, R and F 
do not match. 

9 All the state-of-the-art systems apply the entity-related 
information. It is not supervising: our experiments 
show that using the entity-related information gives a 
large performance improvement.  

735



and tree kernel-based methods well complement each 
other and the composite kernel can effectively inte-
grate both flat and structured features.  

To our knowledge, this is the first research to dem-
onstrate that, without extensive feature engineer ing, 
an individual tree kernel can achieve much better per-
formance than the state-of-the-art linear kernel in re-
lation extraction. This shows the great potential of 
structured parse tree information for relation extrac-
tion and our tree kernel takes a big stride towards the 
right direction.  

For the future work, we will focus on improving 
the context-sensitive convolution tree kernel by ex-
ploring more useful context information. Moreover, 
we will explore more entity-related information in the 
parse tree. Our preliminary work of including the en-
tity type information significantly improves the per-
formance. Finally, we will study how to resolve the 
data imbalance and sparseness issues from the learn-
ing algorithm viewpoint.  
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Abstract

Syntactic reordering approaches are an ef-
fective method for handling word-order dif-
ferences between source and target lan-
guages in statistical machine translation
(SMT) systems. This paper introduces a re-
ordering approach for translation from Chi-
nese to English. We describe a set of syntac-
tic reordering rules that exploit systematic
differences between Chinese and English
word order. The resulting system is used
as a preprocessor for both training and test
sentences, transforming Chinese sentences
to be much closer to English in terms of their
word order. We evaluated the reordering
approach within the MOSES phrase-based
SMT system (Koehn et al., 2007). The
reordering approach improved the BLEU
score for the MOSES system from 28.52 to
30.86 on the NIST 2006 evaluation data. We
also conducted a series of experiments to an-
alyze the accuracy and impact of different
types of reordering rules.

1 Introduction

Syntactic reordering approaches are an effective
method for handling systematic differences in word
order between source and target languages within
the context of statistical machine translation (SMT)
systems (Xia and McCord, 2004; Collins et al.,
2005). In reordering approaches, sentences in the
source language are first parsed, for example using a
Treebank-trained parser. A series of transformations

is then applied to the resulting parse tree, with the
goal of transforming the source language sentence
into a word order that is closer to that of the target
language. The reordering process is used to prepro-
cess both the training and test data used within an
existing SMT system. Reordering approaches have
given significant improvements in performance for
translation from French to English (Xia and Mc-
Cord, 2004) and from German to English (Collins
et al., 2005).

This paper describes a syntactic reordering ap-
proach for translation from Chinese to English. Fig-
ure 1 gives an example illustrating some of the dif-
ferences in word order between the two languages.
The example shows a Chinese sentence whose literal
translation in English is:

this is French delegation at Winter
Olympics on achieve DEC best accom-
plishment

and where a natural translation would be

this is the best accomplishment that the
French delegation achieved at the Winter
Olympics

As exemplified by this sentence, Chinese differs
from English in several important respects: for ex-
ample, relative clauses appearbeforethe noun being
modified; prepositional phrases often appearbefore
the head they modify; and so on. It can be seen that
some significant reordering of the input is required
to produce a good English translation. For this ex-
ample, application of reordering rules leads to a new
Chinese string whose word-by-word English para-
phrase is:
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Before syntactic reordering After syntactic reordering

IP NP PN ù(this)
VP VC(is)

NP CP IP NP NR {I(French)
NN �Lì(delegation)

VP PP P 3(at)
LCP NP NN ÁG

(Winter)
NR 
$¬

(Olympics)
LC þ(on)

VP-A VV ��(achieve)
DEC �(DEC)

ADJP JJ ��(best)
NPB NN ¤1(accomplishment)

IP NP PN ù(this)
VP VC(is)

NP ADJP JJ ��(best)
NPB NN ¤1(accomplishment)
CP DEC �(DEC)

IP NP NR {I(French)
NN �Lì(delegation)

VP VP-A VV ��(achieve)
PP P 3(at)

LCP LC þ(on)
NP NN ÁG

(Winter)
NR 
$¬

(Olympics)

Figure 1: Original (left) and reordered (right) parse treesfor the Chinese sentence “ù´{I�Lì3ÁG
$¬þ�����¤1,” which translates into “This is the best accomplishment that the French
delegation achieved at the Winter Olympics” in English.

this is best accomplishment DEC French
delegation achieve at on Winter Olympics

This reordering is relatively easy to express using
syntactic transformations—for example, it is simple
to move the entire relative clause “French delega-
tion at Winter Olympics on achieve DEC” to a posi-
tion that is after the noun phrase it modifies, namely
“best accomplishment.” Phrase-based systems are
quite limited in their ability to perform transforma-
tions of this type. More recently developed hier-
archical systems (e.g., (Yamada and Knight, 2001;
Chiang, 2005; Marcu et al., 2006)) may be better
equipped to deal with reordering of this type; how-
ever, in this example they would effectively have to
first identify the span of the relative clause, and then
move it into the correct position, without any explicit
representation of the source language syntax.

In this paper, we describe a set of syntactic re-
ordering rules that exploit systematic differences be-
tween Chinese and English word order. The result-
ing system is used as a preprocessor for both training
and test sentences, transforming Chinese sentences
to be much closer to English. We report results for
the method on the NIST 2006 evaluation data, us-
ing the MOSES phrase-based SMT system (Koehn
et al., 2007). The reordering rules give an improve-
ment in accuracy from 28.52 to 30.86 BLEU score.
A concern for methods that make use of Chinese

parsers is that these parsers are typically of relatively
low accuracy, particularly given that Chinese re-
quires a word-segmentation step that is not required
in languages such as English. Our results show that
Chinese parses are useful in SMT in spite of this
problem. We report results showing the precision
of the reordering rules—essentially testing how of-
ten the Chinese sentences are correctly reordered—
to give more insight into this issue. We also report
experiments which assess the impact of each type of
reordering rule on translation accuracy.

2 Related Work

A number of researchers (Brown et al., 1992; Berger
et al., 1996; Niessen and Ney, 2004; Xia and Mc-
Cord, 2004; Collins et al., 2005) have described ap-
proaches that preprocess the source language input
in SMT systems. We are not, however, aware of
work on this topic for translation from Chinese to
English. Brown et al. (1992) describe an analysis
component for French which moves phrases around
(in addition to other transformations) so the source
and target sentences are closer to each other in word
order. Berger et al. (1996) describe an approach for
French that reorders phrases of the formNOUN1 de
NOUN2. Xia and McCord (2004) describe an ap-
proach for French, where reordering rules that oper-
ate on context-free rule productions are acquired au-
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tomatically. Niessen and Ney (2004) describe an ap-
proach for translation from German to English that
combines verbs with associated particles, and also
reorders questions. Collins et al. (2005) also de-
scribe an approach for German, concentrating on re-
ordering German clauses, which have quite different
word order from clauses in English. Our approach
is most similar to that of Collins et al. (2005).

Most SMT systems employ some mechanism that
allows reordering of the source language during
translation (i.e., non-monotonic decoding). The
MOSES phrase-based system that we use has a rel-
atively simple reordering model which has a fixed
penalty for reordering moves in the decoder. More
sophisticated models include reordering parame-
ters that are sensitive to lexical information (Till-
mann, 2004; Kumar and Byrne, 2005; Koehn et
al., 2005). The model of Chiang (2005) employs
a synchronous context-free grammar to allow hi-
erarchical approaches to reordering. The syntax-
based models of Yamada and Knight (2001) and
Marcu et al. (2006) build a full parse tree in the tar-
get language, again effectively allowing hierarchi-
cal reordering based on synchronous grammars. It
is worth noting that none of these approaches to re-
ordering make use of explicit syntactic information
in the source language—for example, none of the
methods make use of an existing source-language
parser (the systems of Yamada and Knight (2001)
and Marcu et al. (2006) make use of a parser in the
target language, i.e., English).

Finally, note that a number of statistical MT
systems make use of source language syntax in
transducer-style approaches; see (Lin, 2004; Ding
and Palmer, 2005; Quirk et al., 2005; Liu et al.,
2006; Huang et al., 2006). In contrast to the prepro-
cessing approach, they attempt to incorporate syntax
directly into the decoding stage.

3 Chinese Syntactic Reordering Rules

We used the Penn Chinese Treebank guidelines (Xue
et al., 2005) in searching for a suitable set of reorder-
ing rules. We examined all phrase types in the Tree-
bank; potentially phrases of any type could be can-
didates for reordering rules. Table 1 provides a list
of Treebank phrase tags for easy reference. We ruled
out several phrase types as not requiring reordering

ADJP adjective phrase
ADVP adverbial phrase headed byAD (adverb)
CLP classifier phrase
CP clause headed byC (complementizer)
DNP phrase formed by “XP+DEG”
DP determiner phrase
DVP phrase formed by “XP+DEV”
FRAG fragment
IP simple clause headed byI (INFL)
LCP phrase formed by “XP+LC”
LST list marker
NP noun phrase
PP preposition phrase
PRN parenthetical
QP quantifier phrase
UCP unidentical coordination phrase
VP verb phrase

Table 1: Penn Chinese Treebank phrase tags.

rules. For example, ChineseADJPs, ADVPs, DPs,
QPs, andPPs all have similar internal word order-
ing to their English counterparts. Also similar are a
group of special structures such asLST, FRAG, and
PRN.

We identified three categories that we considered
to be the most prominent candidates for reorder-
ing. These phrases includeVPs (verb phrases),NPs
(noun phrases), andLCPs (localizer phrases, which
frequently map to prepositional phrases in English).
In the following, we discuss each of the three main
categories in more detail.

3.1 Verb Phrases

In Chinese, verb phrase modifiers typically occur in
pre-verbal position.VP modifiers can beADVPs,
temporal and spatialNPs, QP, PPs, CPs, IPs,
DVPs, andLCPs. TheADVPs are simple adverbs,
which can occur both preverbal and postverbal in an
English verb phrase, so we do not attempt to move
them. Similarly, theCP, IP, and DVP modifiers
are typically adverbial phrases, which do not have a
fixed position in English verb phrases. In the follow-
ing, we only consider cases involvingPPs, LCPs,
temporal and spatialNPs, andQPs.

PPs and LCPs Figure 2 shows an example verb
phrase with aPP modifier, which translates literally
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VP PP P 3(at)
NP-A NPB NN ÀÜ(Eastern)

NN é�(Division)
VP-A VV ¶�(rank)

QP OD 1�(10th)

Figure 2: ExampleVPwith PPmodifier. The phrase
translates into “ranks 10th in the Eastern Division.”

VP NP NPB NT �U(same day)
NT þÌ(morning)

VP-A VV uL(issue)
NP-A NPB NN (²(statement)

Figure 3: ExampleVP with temporalNP modifier.
The phrase translates into “issued a statement that
morning.”

into “at Eastern Division rank 10th.” Recognizing
thatPPs in English verb phrases almost always oc-
cur after the verb, we use a simpleVP(PP:VP) re-
ordering rule which states that aPP in a parentVP
needs to be repositioned after the siblingVP. LCPs
are similar toPPs and typically map to prepositional
phrases in English. Thus they are handled similarly
to PPs, i.e., LCPs in a parentVP are repositioned
after the siblingVP.

NPs Figure 3 gives an example of a verb phrase
with a temporalNP modifier, which literally trans-
lates into “same day morning issue statement.” In
English, temporal phrases such as these almost al-
ways occur after the head verb. Conveniently, the
Chinese Treebank uses the part of speech (POS) tag
NT for temporal nouns. Thus, we use a rule which
states that a preverbalNP will be repositioned af-
ter the siblingVP if there is at least oneNT in the
NP subtree. A similar rule might apply to locative
NPS; however, there is no special POS tag in the
Treebank marking locations,1 so we do not have a
syntax-based reordering rule to handle locativeNPs.

QPs QP modifiers in verb phrases often corre-
spond to time-related concepts such as duration and
frequency. Figure 4 shows an example verb phrase
with a QP modifier, literally translating into “many
time injured.” Since temporal phrases almost always
occur after the verb in English verb phrases, we han-

1One can argue thatNR (proper nouns) in that context are
likely to be places. However, there also exist many exceptions,
and so we decided not to exploit theNR tag.

VP QP CD õ(many)
CLP M g(time)

VP-A VV Éú(injured)

Figure 4: ExampleVPwith QPmodifier. The phrase
translates into “injured many times.”

NP-A DNP PP P é(to)
NP-A NPB NR 9nÙ�(Zimbabwe)

DEG �(DEG)
NPB NN ²L(financial)

NN �Ï(aid)

Figure 5: An example ChineseNP with aDNP mod-
ifier headed by aPP. The phrase translates into “the
financial aid to Zimbabwe” in English.

dle such cases by a simple rule which states that the
QP in a parentVP will be repositioned after the sib-
ling VP.

3.2 Noun Phrases

Noun phrases in Chinese can take several types of
modifiers: for example, phrases of typeQP, DP,
ADJP, NP, DNP, andCP. The placement ofQP, DP,
andADJP modifiers is somewhat similar to English
in that these phrases typically occur before the noun
they modify. The case ofNP modifiers inNPs is
very limited in the Chinese Treebank, since most
noun-noun sequences form compounds in a single
NP. Hence we only developed reordering rules to
handleDNP and clausal (CP) modifiers.

DNPs DNPs are formed by “XP+DEG,” whereXP
can be a phrase of the typeADJP, QP, PP, LCP, or
NP. When theXP is anADJP or aQP, no reordering
is needed because the word order is the same as that
of English.

When theXP is aPP or anLCP, theDNP essen-
tially corresponds to a prepositional phrase in En-
glish, which almost always appears after the noun
being modified. Figure 5 shows an example where
the XP in the DNP is a PP. The reordering rule to
handle these two cases states that, if a parentNP has
a child DNP which in turn has a childPP or LCP,
then theDNP is repositioned after the last siblingNP.

Figure 6 shows an example noun phrase for which
theXP in theDNP isNP. On the surface, the Chinese
“NP1 DEG NP2” sequence is analogous to the En-
glish possessive structure of “NP1’s NP2” and does
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NP-A DNP NP DP DT T(this)
CLP M �(measure word)
NPB NN Eâ(technique)

DEG �(DEG)
NPB NN Ýº(mastery)

Figure 6: An example ChineseNP phrase with a
DNP modifier headed by aNP. The phrase translates
into “the mastery of this technique” in English.

not require reordering, for example, “�(Sue)�(’s)*l(friend)” in Chinese and “Sue’s friend” in En-
glish. However, the Chinese possessive structure
“NP1 DEG NP2” can express more sophisticated re-
lationships which are inappropriate for the “NP1’s
NP2” expression. For example, the phrase in Fig-
ure 6 can only be translated into “the mastery of
this technique,” but not “this technique’s mastery.”
We decide to reorderDNPs of the “NP+DEG” for-
mat, because they often can only map to the “NP2 of
NP1” expression in English. Additionally, the “NP2

of NP1” expression is more general and can replace
“NP1’s NP2” in many cases. One exception is when
the NP is a pronoun (PN), e.g., “�(he) �(’s) ¶i(name),” in which case theDNP acts simply like a
possessive pronoun. Our reordering rule thus states
that, if a parentNP has a childDNPwhich in turn has
a childNP that is not aPN, then theDNP is reposi-
tioned after the last siblingNP.

CPs Relative clauses correspond to theCP cate-
gory in the Treebank. Figure 7 shows an example
noun phrase with two nestedCP modifiers. As illus-
trated in the figure, relative clauses in Chinese also
occur before the noun they modify, which makes
the word order of this sentence quite different from
that of the English translation. Such distortions in
the word reordering will be quite difficult for the
word or phrase-based alignment model to capture.
However, with the application of a reordering rule
to reposition the childCP after its siblingNP un-
der a parentNP, and thePP VP reordering rule for
VP introduced previously, the sentence can be easily
transformed into “French delegation participate 8th

handicap people Winter Olympics hold at US Salt
Lake City,” a sentence whose word order is much
closer to that of English.
CP is typically formed by “IP+DEC”, in which

DEC’s only function is to mark theIP as a relative

NP CP IP VP VV ë\ (participate)
NP CP IP VP PP P 3 (at)

NP NR {I(US)
NR í�¢

(Salt Lake City)
VP VV Þ1 (hold)

DEC � (DEC)
QP OD 1l (8th)

CLP M 3 (measure word)
NPB NN í;<

(handicap people)
NR Á
¬

(Winter Olympics)
DEC � (DEC)

NPB NR {I (French)
NPB NN �Lè (delegation)

Figure 7: An example with two nestedCP modi-
fiers. The phrase translates into “the French delega-
tion participating in the 8th Special Winter Olympics
held in Salt Lake City US.”

LCP IP NP-A NPB NN ¯�(accident)
VP VV u)(happen)

LC �(after)

Figure 8: An example Chinese localizer phrase. The
phrase translates into “after the accident happened”
in English.

clause, similar to the function of “that” in English.
We use a rule to bringDEC to the front ofIP under
CP, to make it more aligned with the “that + clause”
structure of English.

3.3 Localizers

Figure 8 shows an example phrase of the typeLCP.
Localizers (taggedLC in the Treebank) in Chi-
nese can be thought of as a post-phrasal preposi-
tion which is often used with temporal and locative
phrases or clauses to mark directional information.
They function similarly to prepositions and conjunc-
tions in English such as “before,” “on,” “when,” etc.
Constituents of typeLCP have a similar function
to prepositional phrases. Sometimes they are com-
bined with a pre-phrasal generic preposition “3”
(roughly corresponding to “at” in English) to form
aPP explicitly. An example is shown in Figure 9.

We developed a simple reordering rule which
moves anLC node to immediately before its left sib-
ling under a parentLCP node. This will result in a
word order that is more similar to that of the English
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PP P 3(at)
LCP IP NP-A NPB NN ¯�(accident)

VP VV u)(happen)
LC �(after)

Figure 9: An example ChinesePP encompassing an
LCP. The phrase translates into “after the accident
happened” in English.

prepositional phrase: the example in Figure 8 has
the paraphrase “after accident happen” after the re-
ordering rule is applied. In the case where anLCP is
embedded in a parentPP phrase, theLC reordering
rule will essentially merge the post-phrasal localizer
with the pre-phrasal preposition. For example, the
phrase in Figure 9 becomes “at after accident hap-
pen” after reordering. The phrase-based SMT sys-
tem will have little problem in learning that “at af-
ter” translates into “after” in English.

4 Evaluation

Our baseline is a phrase-based MT system trained
using the MOSES toolkit (Koehn et al., 2007).
The training data consists of nearly 637K pairs of
sentences from various parallel news corpora dis-
tributed by the Linguistic Data Consortium (LDC).2

For tuning and testing, we use the official NIST
MT evaluation data for Chinese from 2002 to 2006,
which have four human generated English reference
translations for each Chinese input. The evaluation
data from 2002 to 2005 were split into two sets of
roughly equal sizes: a tuning set of 2347 sentences
is used for optimizing various parameters using min-
imum error training (also using the MOSES toolkit),
and a development set of 2320 sentences is used for
various analysis experiments. We report results on
the NIST 2006 evaluation data.

A series of processing steps are needed before the
reordering rules can be applied, which include seg-
mentation, part-of-speech tagging, and parsing. We
trained a Chinese Treebank-style tokenizer and part-
of-speech tagger, both using a tagging model based
on a perceptron learning algorithm (Collins, 2002).
We used the Chinese parser described by Sun and
Jurafsky (2004), which was adapted from the parser

2We used 8 corpora for training, including LDC2002E18,
LDC2003E07, LDC2003E14, LDC2005E83, LDC2005T06,
LDC2006E26, LDC2006E8, and LDC2006G05.

Dev Nist06

Baseline 31.57 28.52
Reorder 32.86 30.86
Gain +1.29 +2.34

Table 2: BLEU score of the baseline and reordered
systems.

presented in Collins (1997). We then applied the re-
ordering rules described in the previous section to
the parse tree of each input. The reordered sen-
tence is then re-tokenized to be consistent with the
baseline system, which uses a different tokenization
scheme that is more friendly to the MT system.3

We use BLEU scores as the performance measure
in our evaluation (Papineni et al., 2002). Table 2
gives results for the baseline and reordered systems
on both the development and test sets. As shown in
the table, the reordering method is able to improve
the BLEU scores by 1.29 points on the development
set, and by 2.34 on the NIST 2006 set.

4.1 Frequency and Accuracy of Reordering
Rules

We collected statistics to evaluate how often and ac-
curately the reordering rules are applied in the data.
The accuracy is measured in terms of the percent-
age of rule applications that correctly reorder sen-
tences. The vast majority of reordering errors are
due to parsing mistakes.

Table 3 summarizes the count of each rule in
the training data, ignoring rules occurring less than
500 times in the training data, and the number
of sentences each rule impacts. The most fre-
quent three rules areNP(CP:NP), VP(PP:VP),
andDNP(NP):NP, which account for over 76% of
all the reordering instances and jointly affect 74%
of all the training sentences. This shows the preva-
lence of systematic word order differences between
Chinese and English. Only 122,076 (or 19.2%) sen-
tences remain unchanged after the reordering rules
are applied.

Each of the processing steps in producing the Chi-
nese parse tree is prone to error and could lead to
mistakes in the reordering of the Chinese sentence.

3The tokenizer used by the MT system favors smaller word
units, and backs off to a character by character scheme for un-
known words.
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Type Rule Name Counts # Sent.

VP VP(PP:VP) 331,827 258,214
VP(NT:VP) 23,353 22,926
VP(LCP:VP) 8,674 8,661
VP(QP:VP) 7,834 7,777

NP NP(CP:NP) 345,165 262,588
DNP(NP):NP 280,367 218,865
DNP(PP):NP 38,225 36,295
DNP(LCP):NP 15,801 15,253

LC LCP(NP:LC) 146,784 12,8333
LCP(IP:LC) 36,923 35,749
LCP(QP:LC) 14,893 14,287

Total 1,249,846 636,686

Table 3: Statistics of various reordering rules in the
training data.

To assess the accuracy of reordering rules, we con-
ducted human evaluations on a set of 200 sentences
randomly selected from the development set. Within
this set, there were in total 155 sentences containing
at least one reordering rule, with 339 rules in total.
A bilingual speaker was presented with the Chinese
parse tree, the sentence before and after the reorder-
ing, and the particular reordering rules applied to the
sentence. The bilingual rater determined the correct-
ness of each rule by first identifying the scope of the
rule and comparing the string before and after re-
ordering, referencing the corresponding parse struc-
ture if necessary. Table 4 summarizes the accuracy
(precision) for each type of rule. Notice that our hu-
man evaluation of the reordering rules does not take
into account missed reordering.

Overall, there are a lot of reordering errors caused
by incorrect parses. On a sentence level, only 57
out of the 155 reordered sentences (36.8%) are error
free. Nevertheless, syntactic reordering seems to be
helpful in improving the translation quality, despite
noise introduced into the data due to the errors.

4.2 Impact of Individual Reordering Rules

In order to assess the relative effectiveness of the
reordering rules, we conducted an experiment in
which we trained and tested systems using data
that were reordered using different subsets of the
reordering rules. Table 5 summarizes the BLEU
scores of the reordered system for each rule type.

Count Accuracy

VP rules 108 65.7%
NP rules 209 54.6%
LC rules 76 77.6%
All rules 393 62.1%

Table 4: Accuracy of reordering rules on a set of 200
sentences randomly selected from the development
set.

BLEU Gain

Baseline 31.57 -
VP rules 32.71 +1.14
NP rules 32.23 +0.66
LC rules 31.59 +0.02
All rules 32.86 +1.29

Table 5: Comparison of translation performance
with different types of reordering rules.Gain is the
change in BLEU score when compared to the base-
line system. All results are on the development set.

As shown in the table, theVP rules are more effec-
tive than theNP rules, even though theNP rules are
more frequent than theVP rules in the data. This
is perhaps because the reordering ofVP modifiers
achieves a slightly higher accuracy than that of the
NP modifiers. We are a bit surprised by the lack
of performance gains with theLC rules only. More
analysis is needed to explain this behavior.

4.3 Better Alignment?

There could be two reasons why the syntactic
reordering approach improves over the baseline
phrase-based SMT system. One obvious benefit is
that the word order of the transformed source sen-
tence is much closer to that of the target sentence,
which reduces the reliance on the distortion model
to perform reordering during decoding. Another po-
tential benefit is that the alignment between the two
sides will be of higher quality because of fewer “dis-
tortions” between the source and the target, so that
the resulting phrase table of the reordered system
would be better. However, a counter argument is that
the reordering is very error prone, so that the added
noise in the reordered data would actually hurt the
alignments and hence the phrase table.

Lacking a good way to measure the quality of
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Original Dev Reordered Dev

Baseline 31.57 32.19
Reorder 30.67 32.86

Table 6: Comparison of BLEU scores in matched
and mismatched conditions. The baseline and re-
ordered systems were first tuned on mismatched data
before being tested on mismatched data.

the phrase table directly, we conducted an experi-
ment in which we tested the baseline and reordered
systems with both the original and reordered devel-
opment data. The idea is to compare the two sys-
tems given the same type of input: if the reordered
system learned a better phrase table, then it might
outperform the baseline system on un-reordered in-
puts despite the mismatch; on the other hand, if the
baseline system learned a better phrase table, then it
might outperform the reordered system on reordered
inputs despite the mismatch. However, the results in
Table 6 did not settle our question: the reordered
system performed worse than the baseline on unre-
ordered data, while the baseline system performed
worse than the reordered system on reordered data,
both of which can be explained by the mismatched
conditions between training and testing. Perhaps
more interesting is the performance gap of the base-
line system on the reordered data vs. on the original
data: it achieved 0.62 BLEU score gain despite the
mismatch in training and testing conditions.

5 Discussion and Future Work

In this paper, we described a set of syntactic reorder-
ing rules that exploit systematic differences between
Chinese and English word order to transform Chi-
nese sentences to be much closer to English in terms
of their word order. We evaluated the reordering ap-
proach within the MOSES phrase-based SMT sys-
tem (Koehn et al., 2007). The reordering approach
improved the BLEU score for the MOSES system
from 28.52 to 30.86 on the NIST 2006 evaluation
data. Our manual evaluation of the reordering accu-
racy indicated that the reordering approach is help-
ful at improving the translation quality despite rel-
atively frequent reordering errors. The reordering
approach even achieved a 0.62 gain in BLEU score
when only the test data are reordered.

An important category we examined but did not
reorder was clauses of typeIP, which generally
corresponds to declarative sentences in Chinese.
Sentences of this form have quite similar top-level
constituent ordering to English: both follow SVO
(subject-verb-object) order. There are several spe-
cial cases in which English and Chinese differ, the
most notable being the topicalization of objects or
temporal and locative noun phrases (which function
as adverbial phrases). We did not try to restore them
to the canonical order for several reasons. First, top-
icalization of temporal and locative phrases happens
in English as well. For example, “In Israel yesterday,
an explosion killed one person and injured twelve”
is a perfectly acceptable English sentence. Second,
the parser’s performance on special constructions is
likely to be poor, resulting in frequent reordering er-
rors. Third, special constructions that do not occur
often in the data are less likely to have a significant
impact on the translation performance. Thus our
strategy has been to find reordering rules for syntac-
tic categories that are common in the data and sys-
tematically different between the two languages.

In our experiments, the phrase-based MT sys-
tem uses an un-lexicalized reordering model, which
might make the effects of the syntactic reordering
method more pronounced. However, in an early ex-
periment4 submitted to the official NIST 2006 MT
evaluation, the reordered system also improved the
BLEU score substantially (by 1.34 on NIST 2006
data) over a phrase-based MT system with lexical-
ized reordering models (Koehn et al., 2005). The
same set of reordering rules in the experimental set-
ting in the current paper achieve a 1.82 BLEU im-
provement on the same data set, which is compara-
ble to the 1.34 gain for the lexicalized system.

We plan to output reordered lattices in the future,
so that the approach would be more robust to errors
made during parsing/reordering.
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Abstract

We show that phrase structures in Penn Tree-
bank style parses are not optimal for syntax-
based machine translation. We exploit a se-
ries of binarization methods to restructure
the Penn Treebank style trees such that syn-
tactified phrases smaller than Penn Treebank
constituents can be acquired and exploited in
translation. We find that by employing the
EM algorithm for determining the binariza-
tion of a parse tree among a set of alternative
binarizations gives us the best translation re-
sult.

1 Introduction

Syntax-based translation models (Eisner, 2003; Gal-
ley et al., 2006; Marcu et al., 2006) are usually built
directly from Penn Treebank (PTB) (Marcus et al.,
1993) style parse trees by composing treebank gram-
mar rules. As a result, often no substructures corre-
sponding to partial PTB constituents are extracted to
form translation rules.

Syntax translation models acquired by composing
treebank grammar rules assume that long rewrites
are not decomposable into smaller steps. This ef-
fectively restricts the generalization power of the in-
duced model. For example, suppose we have an
xRs (Knight and Graehl, 2004) rule R1 in Figure 1
that translates the Chinese phrase RUSSIA MINISTER

VIKTOR-CHERNOMYRDIN into an English NPB tree
fragment yielding an English phrase. Also suppose
that we want to translate a Chinese phrase

VIKTOR-CHERNOMYRDIN AND HIS COLLEAGUE

into English. What we desire is that if we have
another rule R2 as shown in Figure 1, we could

somehow compose it with R1 to obtain the desir-
able translation. We unfortunately cannot do this
because R1 and R2 are not further decomposable
and their substructures cannot be re-used. The re-
quirement that all translation rules have exactly one
root node does not enable us to use the translation of
VIKTOR-CHERNOMYRDIN in any other contexts than
those seen in the training corpus.

A solution to overcome this problem is to right-
binarize the left-hand side (LHS) (or the English-
side) tree of R1 such that we can decompose
R1 into R3 and R4 by factoring NNP(viktor)
NNP(chernomyrdin) out as R4 according to the
word alignments; and left-binarize the LHS of R2 by
introducing a new tree node that collapses the two
NNP’s, so as to generalize this rule, getting rule R5

and rule R6. We also need to consistently syntact-
ify the root labels of R4 and the new frontier label
of R6 such that these two rules can be composed.
Since labeling is not a concern of this paper, we sim-
ply label new nodes with X-bar where X here is the
parent label. With all these in place, we now can
translate the foreign sentence by composing R6 and
R4 in Figure 1.

Binarizing the syntax trees for syntax-based ma-
chine translation is similar in spirit to generalizing
parsing models via markovization (Collins, 1997;
Charniak, 2000). But in translation modeling, it is
unclear how to effectively markovize the translation
rules, especially when the rules are complex like
those proposed by Galley et al. (2006).

In this paper, we explore the generalization abil-
ity of simple binarization methods like left-, right-,
and head-binarization, and also their combinations.
Simple binarization methods binarize syntax trees
in a consistent fashion (left-, right-, or head-) and
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NPB

NPBR4 R5

R6

R6

R4

NPB

Figure 1: Generalizing translation rules by binarizing trees.

thus cannot guarantee that all the substructures can
be factored out. For example, right binarization on
the LHS of R1 makes available R4, but misses R6

on R2. We then introduce a parallel restructuring
method, that is, one can binarize both to the left and
right at the same time, resulting in a binarization for-
est. We employ the EM (Dempster et al., 1977) algo-
rithm to learn the binarization bias for each tree node
from the parallel alternatives. The EM-binarization
yields best translation performance.

The rest of the paper is organized as follows.
Section 2 describes related research. Section 3 de-
fines the concepts necessary for describing the bina-
rizations methods. Section 4 describes the tree bina-
rization methods in details. Section 5 describes the
forest-based rule extraction algorithm, and section 6
explains how we restructure the trees using the EM
algorithm. The last two sections are for experiments
and conclusions.

2 Related Research

Several researchers (Melamed et al., 2004; Zhang
et al., 2006) have already proposed methods for bi-
narizing synchronous grammars in the context of
machine translation. Grammar binarization usually
maintains an equivalence to the original grammar
such that binarized grammars generate the same lan-

guage and assign the same probability to each string
as the original grammar does. Grammar binarization
is often employed to make the grammar fit in a CKY
parser. In our work, we are focused on binarization
of parse trees. Tree binarization generalizes the re-
sulting grammar and changes its probability distri-
bution. In tree binarization, synchronous grammars
built from restructured (binarized) training trees still
contain non-binary, multi-level rules and thus still
require the binarization transformation so as to be
employed by a CKY parser.

The translation model we are using in this paper
belongs to the xRs formalism (Knight and Graehl,
2004), which has been proved successful for ma-
chine translation in (Galley et al., 2004; Galley et
al., 2006; Marcu et al., 2006).

3 Concepts

We focus on tree-to-string (in noisy-channel model
sense) translation models. Translation models of
this type are typically trained on tuples of a source-
language sentence f, a target language (e.g., English)
parse tree π that yields e and translates from f, and
the word alignments a between e and f. Such a tuple
is called an alignment graph in (Galley et al., 2004).
The graph (1) in Figure 2 is such an alignment graph.
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(1) unbinarized tree

  

NPB

viktor chernomyrdin

VIKTOR−CHERNOMYRDIN

NNP1    NNP2   NNP3   NNP4*

(2) left-binarization (3) right-/head-binarization

NPB
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viktor

NNP∗4

chernomyrdin

NPB

NNP1 NPB
∗

NNP2 NNP3
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NNP4∗

chernomyrdin

(4) left-binarization (5) right-binarization (6) left-binarization (7) right-/head-binarization

NPB
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NNP1 NNP2

NNP3
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NNP4∗

chernomyrdin

- -
NPB

NNP1 NPB
∗

NNP2 NPB
∗
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viktor

NNP4∗

chernomyrdin

Figure 2: Left, right, and head binarizations. Heads are marked with ∗’s. New nonterminals introduced by binarization are
denoted by X-bars.

A tree node in π is admissible if the f string cov-
ered by the node is contiguous but not empty, and
if the f string does not align to any e string that is
not covered by π. An xRs rule can be extracted only
from an admissible tree node, so that we do not have
to deal with dis-contiguous f spans in decoding (or
synchronous parsing). For example, in tree (2) in
Figure 2, node NPB is not admissible because the
f string that the node covers also aligns to NNP4,
which is not covered by the NPB. Node NPB in tree
(3), on the other hand, is admissible.

A set of sibling tree nodes is called factorizable
if we can form an admissible new node dominating
them. For example, in tree (1) of Figure 2, sibling
nodes NNP2 NNP3 and NNP4 are factorizable be-
cause we can factorize them out and form a new
node NPB, resulting in tree (3). Sibling tree nodes
NNP1 NNP2 and NNP3 are not factorizable. In syn-
chronous parse trees, not all sibling nodes are fac-
torizable, thus not all sub-phrases can be acquired
and syntactified. The main purpose of our paper is
to restructure parse trees by factorization such that
syntactified sub-phrases can be employed in transla-
tion.

4 Binarizing Syntax Trees

We are going to binarize a tree node n that domi-
nates r children n1, ..., nr. Restructuring will be
performed by introducing new tree nodes to domi-
nate a subset of the children nodes. To avoid over-
generalization, we allow ourselves to form only one
new node at a time. For example, in Figure 2, we
can binarize tree (1) into tree (2), but we are not
allowed to form two new nodes, one dominating
NNP1 NNP2 and the other dominating NNP3 NNP4.
Since labeling is not the concern of this paper, we re-
label the newly formed nodes as n.

4.1 Simple binarization methods

The left binarization of node n (i.e., the NPB in
tree (1) of Figure 2) factorizes the leftmost r − 1
children by forming a new node n (i.e., NPB in
tree (2)) to dominate them, leaving the last child
nr untouched; and then makes the new node n the
left child of n. The method then recursively left-
binarizes the newly formed node n until two leaves
are reached. In Figure 2, we left-binarize tree (1)
into (2) and then into (4).

The right binarization of node n factorizes the
rightmost r − 1 children by forming a new node n

(i.e., NPB in tree (3)) to dominate them, leaving the
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first child n1 untouched; and then makes the new
node n the right child of n. The method then recur-
sively right-binarizes the newly formed node n. In
Figure 2, we right-binarize tree (1) into (3) and then
into (7).

The head binarization of node n left-binarizes
n if the head is the first child; otherwise, right-
binarizes n. We prefer right-binarization to left-
binarization when both are applicable under the head
restriction because our initial motivation was to gen-
eralize the NPB-rooted translation rules. As we will
show in the experiments, binarization of other types
of phrases contribute to the translation accuracy im-
provement as well.

Any of these simple binarization methods is easy
to implement, but is incapable of giving us all the
factorizable sub-phrases. Binarizing all the way to
the left, for example, from tree (1) to tree (2) and to
tree (4) in Figure 2, does not enable us to acquire a
substructure that yields NNP3 NNP4 and their trans-
lational equivalences. To obtain more factorizable
sub-phrases, we need to parallel-binarize in both di-
rections.

4.2 Parallel binarization

Simple binarizations transform a parse tree into an-
other single parse tree. Parallel binarization will
transform a parse tree into a binarization forest,
desirably packed to enable dynamic programming
when extracting translation rules from it.

Borrowing terms from parsing semirings (Good-
man, 1999), a packed forest is composed of addi-
tive forest nodes (⊕-nodes) and multiplicative forest
nodes (⊗-nodes). In the binarization forest, a ⊗-
node corresponds to a tree node in the unbinarized
tree; and this ⊗-node composes several ⊕-nodes,
forming a one-level substructure that is observed in
the unbinarized tree. A ⊕-node corresponds to al-
ternative ways of binarizing the same tree node in
the unbinarized tree and it contains one or more ⊗-
nodes. The same ⊕-node can appear in more than
one place in the packed forest, enabling sharing.
Figure 3 shows a packed forest obtained by pack-
ing trees (4) and (7) in Figure 2 via the following
parallel binarization algorithm.

To parallel-binarize a tree node n that has children
n1, ..., nr , we employ the following steps:

⊕1(NPB)

⊗2(NPB)

⊕3(NPB)

⊗4(NPB)

⊕5(NPB)

⊗6(NPB)

⊕7(NNP1) ⊕8(NNP2)

⊕9(NNP3)

⊕10(NNP4)

⊗11(NPB)

⊕7(NNP1) ⊕12(NPB)

⊗13(NPB)

⊕8(NNP2) ⊕14(NPB)

⊗15(NPB)

⊕9(NNP3) ⊕10(NNP4)

Figure 3: Packed forest obtained by packing trees (4) and (7)
in Figure 2

• We recursively parallel-binarize children nodes
n1, ..., nr, producing binarization ⊕-nodes
⊕(n1), ..., ⊕(nr), respectively.

• We right-binarize n, if any contiguous1 subset
of children n2, ..., nr is factorizable, by intro-
ducing an intermediate tree node labeled as n.
We recursively parallel-binarize n to generate
a binarization forest node ⊕(n). We form a
multiplicative forest node ⊗R as the parent of
⊕(n1) and ⊕(n).

• We left-binarize n if any contiguous subset
of n1, ..., nr−1 is factorizable and if this sub-
set contains n1. Similar to the above right-
binarization, we introduce an intermediate tree
node labeled as n, recursively parallel-binarize
n to generate a binarization forest node ⊕(n),
form a multiplicative forest node ⊗L as the par-
ent of ⊕(n) and ⊕(n1).

• We form an additive node ⊕(n) as the parent
of the two already formed multiplicative nodes
⊗L and ⊗R.

The (left and right) binarization conditions con-
sider any subset to enable the factorization of small
constituents. For example, in tree (1) of Figure 2,
although NNP1 NNP2 NNP3 of NPB are not factor-
izable, the subset NNP1 NNP2 is factorizable. The
binarization from tree (1) to tree (2) serves as a re-
laying step for us to factorize NNP1 NNP2 in tree
(4). The left-binarization condition is stricter than

1We factorize only subsets that cover contiguous spans to
avoid introducing dis-contiguous constituents for practical pur-
pose. In principle, the algorithm works fine without this bina-
rization condition.
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the right-binarization condition to avoid spurious bi-
narization; i.e., to avoid the same subconstituent be-
ing reached via both binarizations. We could trans-
form tree (1) directly into tree (4) without bother-
ing to generate tree (3). However, skipping tree (3)
will create us difficulty in applying the EM algo-
rithm to choose a better binarization for each tree
node, since tree (4) can neither be classified as left
binarization nor as right binarization of the original
tree (1) — it is the result of the composition of two
left-binarizations.

In parallel binarization, nodes are not always bi-
narizable in both directions. For example, we do not
need to right-binarize tree (2) because NNP2 NNP3

are not factorizable, and thus cannot be used to form
sub-phrases. It is still possible to right-binarize tree
(2) without affecting the correctness of the parallel
binarization algorithm, but that will spuriously in-
crease the branching factor of the search for the rule
extraction, because we will have to expand more tree
nodes.

A restricted version of parallel binarization is the
headed parallel binarization, where both the left and
the right binarization must respect the head propaga-
tion property at the same time.

A nice property of parallel binarization is that
for any factorizable substructure in the unbinarized
tree, we can always find a corresponding admissi-
ble ⊕-node in the parallel-binarized packed forest.
A leftmost substructure like the lowest NPB-subtree
in tree (4) of Figure 2 can be made factorizable
by several successive left binarizations, resulting in
⊕5(NPB)-node in the packed forest in Figure 3. A
substructure in the middle can be factorized by the
composition of several left- and right-binarizations.
Therefore, after a tree is parallel-binarized, to make
the sub-phrases available to the MT system, all we
need to do is to extract rules from the admissible
nodes in the packed forest. Rules that can be ex-
tracted from the original unrestructured tree can be
extracted from the packed forest as well.

Parallel binarization results in parse forests. Thus
translation rules need to be extracted from training
data consisting of (e-forest, f, a)-tuples.

5 Extracting translation rules from
(e-forest, f, a)-tuples

The algorithm to extract rules from (e-forest, f, a)-
tuples is a natural generalization of the (e-parse, f,
a)-based rule extraction algorithm in (Galley et al.,
2006). The input to the forest-based algorithm is a
(e-forest, f, a)-triple. The output of the algorithm is
a derivation forest (Galley et al., 2006) composed of
xRs rules. The algorithm recursively traverses the e-
forest top-down and extracts rules only at admissible
forest nodes.

The following procedure transforms the packed e-
forest in Figure 3 into a packed synchronous deriva-
tion in Figure 4.

Condition 1: Suppose we reach an additive
e-forest node, e.g. ⊕1(NPB) in Figure 3. For
each of ⊕1(NPB)’s children, e-forest nodes
⊗2(NPB) and ⊗11(NPB), we go to condi-
tion 2 to recursively extract rules on these
two e-forest nodes, generating multiplicative
derivation forest nodes, i.e., ⊗(NPB(NPB :
x0 NNP3(viktor) NNP4(chernomyrdin)4) →
x0 V-C) and ⊗(NPB(NNP1 NPB(NNP2 : x0 NPB :
x1)) → x0 x1 x2) in Figure 4. We make these
new ⊗ nodes children of ⊕(NPB) in the derivation
forest.

Condition 2: Suppose we reach a multiplicative
parse forest node, i.e., ⊗11(NPB) in Figure 3. We
extract rules rooted at it using the procedure in
(Galley et al., 2006), forming multiplicative deriva-
tion forest nodes, i.e., ⊗(NPB(NNP1 NPB(NNP2 :
x0 NPB : x1)) → x0 x1 x2) We then go
to condition 1 to form the derivation forest on
the additive frontier e-forest nodes of the newly
extracted rules, generating additive derivation for-
est nodes, i.e., ⊕(NNP1), ⊕(NNP2) and ⊕(NPB).
We make these ⊕ nodes the children of node
⊗(NPB(NNP1 NPB(NNP2 : x0 NPB : x1)) →
x0 x1 x2) in the derivation forest.

This algorithm is a natural extension of the extrac-
tion algorithm in (Galley et al., 2006) in the sense
that we have an extra condition (1) to relay rule ex-
traction on additive e-forest nodes.

It is worthwhile to eliminate the spuriously am-
biguous rules that are introduced by the parallel bi-
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⊕(NPB)

⊗
(

NPB(NPB : x0 NNP(viktor) NNP(chernomyrdin)) → x0 V-C
)

⊕(NPB)

⊗
(

NPB(NNP : x0 NNP : x1 → x0 x1)
)

⊗
(

NPB(NNP : x0 NPB(NNP : x1 NPB : x2)) → x0 x1 x2

)

⊕(NNP) ⊕(NNP) ⊕(NPB)

⊗
(

NPB(NNP(viktor) NNP(chernomyrdin)) → V-C
)

Figure 4: Derivation forest.

narization. For example, we may extract the follow-
ing two rules:

- A(A(B:x0 C:x1)D:x2) → x1 x0 x2

- A(B:x0 A(C:x1 D:x2)) → x1 x0 x2

These two rules, however, are not really distinct.
They both converge to the following rules if we
delete the auxiliary nodes A.

- A(B:x0 C:x1 D:x2) → x1 x0 x2

The forest-base rule extraction algorithm pro-
duces much larger grammars than the tree-based
one, making it difficult to scale to very large training
data. From a 50M-word Chinese-to-English parallel
corpus, we can extract more than 300 million trans-
lation rules, while the tree-based rule extraction al-
gorithm gives approximately 100 million. However,
the restructured trees from the simple binarization
methods are not guaranteed to give the best trees for
syntax-based machine translation. What we desire is
a binarization method that still produces single parse
trees, but is able to mix left binarization and right
binarization in the same tree. In the following, we
shall use the EM algorithm to learn the desirable bi-
narization on the forest of binarization alternatives
proposed by the parallel binarization algorithm.

6 Learning how to binarize via the EM
algorithm

The basic idea of applying the EM algorithm to
choose a restructuring is as follows. We perform a
set {β} of binarization operations on a parse tree τ .
Each binarization β is the sequence of binarizations
on the necessary (i.e., factorizable) nodes in τ in pre-
order. Each binarization β results in a restructured
tree τβ . We extract rules from (τβ , f, a), generating a
translation model consisting of parameters (i.e., rule

e−parse

  (Galley et al., 2006)
composed rule extraction

1

2

parallel binarization e−forest
forest−based rule extraction

         of minimal rules

f,a

synchronous derivation forests

EM

3

4
viterbi derivationsproject e−parse

model
syntax translation 

Figure 5: Using the EM algorithm to choose restructuring.

probabilities) θ. Our aim is to obtain the binarization
β∗ that gives the best likelihood of the restructured
training data consisting of (τβ , f , a)-tuples. That is

β∗ = arg max
β

p(τβ, f ,a|θ∗) (1)

In practice, we cannot enumerate all the exponen-
tial number of binarized trees for a given e-parse.
We therefore use the packed forest to store all the
binarizations that operate on an e-parse in a com-
pact way, and then use the inside-outside algorithm
(Lari and Young, 1990; Knight and Graehl, 2004)
for model estimation.

The probability p(τβ, f ,a) of a (τβ , f, a)-tuple
is what the basic syntax-based translation model is
concerned with. It can be further computed by ag-
gregating the rule probabilities p(r) in each deriva-
tion ω in the set of all derivations Ω (Galley et al.,
2004; Marcu et al., 2006). That is

p(τβ, f ,a) =
∑

ω∈Ω

∏

r∈ω

p(r) (2)

Since it has been well-known that applying EM
with tree fragments of different sizes causes over-
fitting (Johnson, 1998), and since it is also known
that syntax MT models with larger composed rules
in the mix significantly outperform rules that min-
imally explain the training data (minimal rules) in
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translation accuracy (Galley et al., 2006), we decom-
pose p(τb, f ,a) using minimal rules during running
of the EM algorithm, but, after the EM restructuring
is finished, we build the final translation model using
composed rules for evaluation.

Figure 5 is the actual pipeline that we use for
EM binarization. We first generate a packed e-forest
via parallel binarization. We then extract minimal
translation rules from the (e-forest, f, a)-tuples, pro-
ducing synchronous derivation forests. We run the
inside-outside algorithm on the derivation forests
until convergence. We obtain the Viterbi derivations
and project the English parses from the derivations.
Finally, we extract composed rules using Galley et
al. (2006)’s (e-tree, f, a)-based rule extraction algo-
rithm. This procedure corresponds to the path 13∗42
in the pipeline.

7 Experiments

We carried out a series of experiments to compare
the performance of different binarization methods
in terms of BLEU on Chinese-to-English translation
tasks.

7.1 Experimental setup

Our bitext consists of 16M words, all in the
mainland-news domain. Our development set is a
925-line subset of the 993-line NIST02 evaluation
set. We removed long sentences from the NIST02
evaluation set to speed up discriminative training.
The test set is the full 919-line NIST03 evaluation
set.

We used a bottom-up, CKY-style decoder that
works with binary xRs rules obtained via a syn-
chronous binarization procedure (Zhang et al.,
2006). The decoder prunes hypotheses using strate-
gies described in (Chiang, 2007).

The parse trees on the English side of the bitexts
were generated using a parser (Soricut, 2004) imple-
menting the Collins parsing models (Collins, 1997).

We used the EM procedure described in (Knight
and Graehl, 2004) to perform the inside-outside al-
gorithm on synchronous derivation forests and to
generate the Viterbi derivation forest.

We used the rule extractor described in (Galley et
al., 2006) to extract rules from (e-parse, f, a)-tuples,
but we made an important modification: new nodes

introduced by binarization will not be counted when
computing the rule size limit unless they appear as
the rule roots. The motivation is that binarization
deepens the parses and increases the number of tree
nodes. In (Galley et al., 2006), a composed rule
is extracted only if the number of internal nodes it
contains does not exceed a limit (i.e., 4), similar
to the phrase length limit in phrase-based systems.
This means that rules extracted from the restructured
trees will be smaller than those from the unrestruc-
tured trees, if the X nodes are deleted. As shown in
(Galley et al., 2006), smaller rules lose context, and
thus give lower translation performance. Ignoring X

nodes when computing the rule sizes preserves the
unstructured rules in the resulting translation model
and adds substructures as bonuses.

7.2 Experiment results

Table 1 shows the BLEU scores of mixed-cased and
detokenized translations of different systems. We
see that all the binarization methods improve the
baseline system that does not apply any binarization
algorithm. The EM-binarization performs the best
among all the restructuring methods, leading to 1.0
BLEU point improvement. We also computed the
bootstrap p-values (Riezler and Maxwell, 2005) for
the pairwise BLEU comparison between the base-
line system and any of the system trained from bina-
rized trees. The significance test shows that the EM
binarization result is statistically significant better
than the baseline system (p > 0.005), even though
the baseline is already quite strong. To our best
knowledge, 37.94 is the highest BLEU score on this
test set to date.

Also as shown in Table 1, the grammars trained
from the binarized training trees are almost two
times of the grammar size with no binarization. The
extra rules are substructures factored out by these bi-
narization methods.

How many more substructures (or translation
rules) can be acquired is partially determined by
how many more admissible nodes each binariza-
tion method can factorize, since rules are extractable
only from admissible tree nodes. According to
Table 1, binarization methods significantly increase
the number of admissible nodes in the training trees.
The EM binarization makes available the largest
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EXPERIMENT NIST03-BLEU # RULES # ADMISSIBLE NODES IN TRAINING
no-bin 36.94 63.4M 7,995,569

left binarization 37.47 (p = 0.047) 114.0M 10,463,148
right binarization 37.49 (p = 0.044) 113.0M 10,413,194
head binarization 37.54 (p = 0.086) 113.8M 10,534,339
EM binarization 37.94 (p = 0.0047) 115.6M 10,658,859

Table 1: Translation performance, grammar size and # admissible nodes versus binarization algorithms. BLEU scores are for
mixed-cased and detokenized translations, as we usually do for NIST MT evaluations.

nonterminal left-binarization right-binarization
NP 96.97% 3.03%
NP-C 97.49% 2.51%
NPB 0.25% 99.75%
VP 93.90% 6.10%
PP 83.75% 16.25%
ADJP 87.83% 12.17%
ADVP 82.74% 17.26%
S 85.91% 14.09%
S-C 18.88% 81.12%
SBAR 96.69% 3.31%
QP 86.40% 13.60%
PRN 85.18% 14.82%
WHNP 97.93% 2.07%
NX 100% 0
SINV 87.78% 12.22%
PRT 100% 0
SQ 93.53% 6.47%
CONJP 18.08% 81.92%

Table 2: Binarization bias learned by EM.

number of admissible nodes, and thus results in the
most rules.

The EM binarization factorizes more admissible
nodes because it mixes both left and right binariza-
tions in the same tree. We computed the binarization
biases learned by the EM algorithm for each nonter-
minal from the binarization forest of headed-parallel
binarizations of the training trees, getting the statis-
tics in Table 2. Of course, the binarization bias
chosen by left-/right-binarization methods would be
100% deterministic. One noticeable message from
Table 2 is that most of the categories are actually bi-
ased toward left-binarization, although our motivat-
ing example in our introduction section is for NPB,
which needed right binarization. The main reason
might be that the head sub-constituents of most cat-
egories tend to be on the left, but according to the
performance comparison between head binarization
and EM binarization, head binarization does not suf-
fice because we still need to choose the binarization
between left and right if they both are head binariza-
tions.

8 Conclusions

In this paper, we not only studied the impact of
simple tree binarization algorithms on the perfor-
mance of end-to-end syntax-based MT, but also pro-
posed binarization methods that mix more than one
simple binarization in the binarization of the same
parse tree. Binarizing a tree node whether to the left
or to the right was learned by employing the EM
algorithm on a set of alternative binarizations and
by choosing the Viterbi one. The EM binarization
method is informed by word alignments such that
unnecessary new tree nodes will not be “blindly” in-
troduced.

To our best knowledge, our research is the first
work that aims to generalize a syntax-based trans-
lation model by restructuring and achieves signifi-
cant improvement on a strong baseline. Our work
differs from traditional work on binarization of syn-
chronous grammars in that we are not concerned
with the equivalence of the binarized grammar to the
original grammar, but intend to generalize the orig-
inal grammar via restructuring of the training parse
trees to improve translation performance.
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Abstract

We compare and contrast the strengths
and weaknesses of a syntax-based machine
translation model with a phrase-based ma-
chine translation model on several levels.
We briefly describe each model, highlight-
ing points where they differ. We include a
quantitative comparison of the phrase pairs
that each model has to work with, as well
as the reasons why some phrase pairs are
not learned by the syntax-based model. We
then evaluate proposed improvements to the
syntax-based extraction techniques in light
of phrase pairs captured. We also compare
the translation accuracy for all variations.

1 Introduction

String models are popular in statistical machine
translation. Approaches include word substitution
systems (Brown et al., 1993), phrase substitution
systems (Koehn et al., 2003; Och and Ney, 2004),
and synchronous context-free grammar systems (Wu
and Wong, 1998; Chiang, 2005), all of which train
on string pairs and seek to establish connections be-
tween source and target strings. By contrast, ex-
plicit syntax approaches seek to directly model the
relations learned from parsed data, including models
between source trees and target trees (Gildea, 2003;
Eisner, 2003; Melamed, 2004; Cowan et al., 2006),
source trees and target strings (Quirk et al., 2005;
Huang et al., 2006), or source strings and target trees
(Yamada and Knight, 2001; Galley et al., 2004).

It is unclear which of these important pursuits will
best explain human translation data, as each has ad-

vantages and disadvantages. A strength of phrase
models is that they can acquire all phrase pairs con-
sistent with computed word alignments, snap those
phrases together easily by concatenation, and re-
order them under several cost models. An advan-
tage of syntax-based models is that outputs tend to
be syntactically well-formed, with re-ordering influ-
enced by syntactic context and function words intro-
duced to serve specific syntactic purposes.

A great number of MT models have been re-
cently proposed, and other papers have gone over the
expressive advantages of syntax-based approaches.
But it is rare to see an in-depth, quantitative study
of strengths and weaknesses of particular models
with respect to each other. This is important for a
scientific understanding of how these models work
in practice. Our main novel contribution is a com-
parison of phrase-based and syntax-based extraction
methods and phrase pair coverage. We also add to
the literature a new method of improving that cover-
age. Additionally, we do a careful study of several
syntax-based extraction techniques, testing whether
(and how much) they affect phrase pair coverage,
and whether (and how much) they affect end-to-end
MT accuracy. The MT accuracy tests are needed
because we want to see the individual effects of par-
ticular techniques under the same testing conditions.
For this comparison, we choose a previously estab-
lished statistical phrase-based model (Och and Ney,
2004) and a previously established statistical string-
to-tree model (Galley et al., 2004). These two mod-
els are chosen because they are the basis of two of
the most successful systems in the NIST 2006 MT
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evaluation1.

2 Phrase-based Extraction

The Alignment Template system (ATS) described by
Och and Ney (2004) is representative of statistical
phrase-based models. The basic unit of translation
is the phrase pair, which consists of a sequence of
words in the source language, a sequence of words
in the target language, and a vector of feature val-
ues which describe this pair’s likelihood. Decod-
ing produces a string in the target language, in or-
der, from beginning to end. During decoding, fea-
tures from each phrase pair are combined with other
features (e.g., re-ordering, language models) using a
log-linear model to compute the score of the entire
translation.

The ATS phrase extraction algorithm learns these
phrase pairs from an aligned, parallel corpus.
This corpus is conceptually a list of tuples of
<source sentence, target sentence, bi-directional
word alignments> which serve as training exam-
ples, one of which is shown in Figure 1.

Figure 1: a phrase-based training example

For each training example, the algorithm identi-
fies and extracts all pairs of<source sequence, tar-
get sequence> that are consistent with the align-
ments. It does this by first enumerating all source-
side word sequences up to a length limitL, and for
each source sequence, it identifies all target words
aligned to those source words. For example, in Fig-
ure 1, for the source phrase��� 			��� ���, the target
words it aligns to arefelt, obliged, anddo.
These words, and all those between them, are the
proposed target phrase. If no words in the proposed
target phrase align to words outside of the source
phrase, then this phrase pair is extracted.

The extraction algorithm can also look to the left
and right of the proposed target phrase for neighbor-
ing unaligned words and extracts phrases. For ex-
ample, for the phrase pair���			���↔ felt obliged,

1http://www.nist.gov/speech/tests/mt/
mt06eval official results.html

the wordto is a neighboring unaligned word. It
constructs new target phrases by adding on con-
secutive unaligned words in both directions, and
extracts those in new pairs, too (e.g.,��� 			��� ↔
felt obliged to). For efficiency reasons, imple-
mentations often skip this step.

Figure 2 shows the complete set of phrase pairs
up to length 4 that are extracted from the Figure 1
training example. Notice that no extracted phrase
pair contains the character···. Because of the align-
ments, the smallest legal phrase pair,··· ��� 			��� ���
↔ i felt obliged to do my, is beyond the size
limit of 4, so it is not extracted in this example.��� ↔ felt���			��� ↔ felt obliged���			������ ↔ felt obliged to do			��� ↔ obliged			������ ↔ obliged to do��� ↔ do���PPP ↔ part���PPPÅÅÅ ↔ part���PPPÅÅÅ . ↔ part .ÅÅÅ . ↔ .

. ↔ .

Figure 2: phrases up to length 4 extracted from the
example in Figure 1

Phrase pairs are extracted over the entire train-
ing corpus. Due to differing alignments, some
phrase pairs that cannot be learned from one exam-
ple may be learned from another. These pairs are
then counted, once for each time they are seen in a
training example, and these counts are used as the
basis for maximum likelihood probability features,
such asp(f |e) andp(e|f).

3 Syntax-based Extraction

The GHKM syntax-based extraction method for
learning statistical syntax-based translation rules,
presented first in (Galley et al., 2004) and expanded
on in (Galley et al., 2006), is similar to phrase-based
extraction in that it extracts rules consistent with
given word alignments. A primary difference is the
use of syntax trees on the target side, rather than se-
quences of words. The basic unit of translation is the
translation rule, consisting of a sequence of words
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and variables in the source language, a syntax tree
in the target language having words or variables at
the leaves, and again a vector of feature values which
describe this pair’s likelihood. Translation rules can:

• look like phrase pairs with syntax decoration:

NPB(NNP(prime)

NNP(minister)

NNP(keizo)

NNP(obuchi))

↔BBBÁÁÁÈÈÈ®®®DDD###
• carry extra contextual constraints:

VP(VBD(said)

x0:SBAR-C)
↔��� x0

(according to this rule,��� can translate to
said only if some Chinese sequence to the
right of��� is translated into anSBAR-C)

• be non-constituent phrases:

VP(VBD(said)

SBAR-C(IN(that)

x0:S-C))

↔��� x0

VP(VBD(pointed)

PRT(RP(out))

x0:SBAR-C)

↔���ñññ x0

• contain non-contiguous phrases, effectively
“phrases with holes”:

PP(IN(on)

NP-C(NPB(DT(the)

x0:NNP))

NN(issue))))

↔óóó x0 ¯̄̄���ÞÞÞ
PP(IN(on)

NP-C(NPB(DT(the)

NN(issue))

x0:PP))

↔óóó x0 ¯̄̄���ÞÞÞ
• be purely structural (no words):

S(x0:NP-C x1:VP)↔ x0 x1

• re-order their children:
NP-C(NPB(DT(the)

x0:NN)

PP(IN(of)

x1:NP-C))

↔ x1 {{{ x0

Decoding with this model produces a tree in the
target language, bottom-up, by parsing the foreign
string using a CYK parser and a binarized rule set

(Zhang et al., 2006). During decoding, features from
each translation rule are combined with a language
model using a log-linear model to compute the score
of the entire translation.

The GHKM extractor learns translation rules from
an aligned parallel corpus where the target side has
been parsed. This corpus is conceptually a list of tu-
ples of<source sentence, target tree, bi-directional
word alignments> which serve as training exam-
ples, one of which is shown in Figure 3.

Figure 3: a syntax-based training example

For each training example, the GHKM extrac-
tor computes the set of minimally-sized translation
rules that can explain the training example while re-
maining consistent with the alignments. This is, in
effect, a non-overlapping tiling of translation rules
over the tree-string pair. If there are no unaligned
words in the source sentence, this is a unique set.
This set, ordered into a tree of rule applications, is
called the derivation tree of the training example.
Unlike the ATS model, there are no inherent size
limits, just the constraint that the rules be as small
as possible for the example.

Ignoring the unalignedÅÅÅ for the moment, there
are seven minimal translation rules that are extracted
from the example in Figure 3, as shown in Fig-
ure 4. Notice that rule 6 is rather large and applies
to a very limited syntactic context. The only con-
stituent node that covers bothi and my is the S,
so the rule rooted atS is extracted, with variables
for every branch below this top constituent that can
be explained by other rules. Note also thatto be-
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comes a part of this rule naturally. If the alignments
were not as constraining (e.g., ifmy was unaligned),
then instead of this one big rule many smaller rules
would be extracted, such as structural rules (e.g.,
VP(x0:VBD x1:VP-C)↔ x0 x1) and function word in-
sertion rules (e.g.,VP(TO(to) x0:VP-C)↔ x0).

1. VBD(felt)↔���
2. VBN(obliged)↔			���
3. VB(do)↔���
4. NN(part)↔���PPP
5. PERIOD(.)↔ .

6. S(NP-C(NPB(PRP(I)))

VP(x0:VBD

VP-C(x1:VBN

SG-C(VP(TO(to)

VP-C(x2:VB

NP-C(NPB(PRP$(my)

x3:NN)))))))

x4:PERIOD)↔··· x0 x1 x2 x3 x4

7. TOP(x0:S)↔ x0

Figure 4: rules extracted from training example

We ignored unaligned source words in the exam-
ple above. Galley et al. (2004) attach the unaligned
source word to the highest possible location, in our
example, theS. Thus it is extracted along with our
large rule 6, changing the target language sequence
to “··· x0 x1 x2 x3 ÅÅÅ x4”. This treatment still re-
sults in a unique derivation tree no matter how many
unaligned words are present.

In Galley et al. (2006), instead of a unique deriva-
tion tree, the extractor computes several derivation
trees, each with the unaligned word added to a dif-
ferent rule such that the data is still explained. For
example, for the tree-string pair in Figure 3,ÅÅÅ
could be added not only to rule 6, but alternatively
to rule 4 or 5, to make the new rules:

NN(part)↔���PPPÅÅÅ
PERIOD(.)↔ÅÅÅ .

This results in three different derivations, one
with theÅÅÅ character in rule 4 (with rules 5 and 6
as originally shown), another with theÅÅÅ character
in rule 5 (with rules 4 and 6 as originally shown),
and lastly one with theÅÅÅ character in rule 6 (with
rules 4 and 5 as originally shown) as in the origi-
nal paper (Galley et al., 2004). In total, ten different
rules are extracted from this training example.

As with ATS, translation rules are extracted and
counted over the entire training corpus, a count of

one for each time they appear in a training example.
These counts are used to estimate several features,
including maximum likelihood probability features
for p(etree, fwords|ehead), p(ewords|fwords), and
p(fwords|ewords).

4 Differences in Phrasal Coverage

Both the ATS model and the GHKM model extract
linguistic knowledge from parallel corpora, but each
has fundamentally different constraints and assump-
tions. To compare the models empirically, we ex-
tracted phrase pairs (for the ATS model) and transla-
tion rules (for the GHKM model) from parallel train-
ing corpora described in Table 1. The ATS model
was limited to phrases of length 10 on the source
side, and length 20 on the target side. A super-
set of the parallel data was word aligned by GIZA
union (Och and Ney, 2003) and EMD (Fraser and
Marcu, 2006). The English side of training data was
parsed using an implementation of Collins’ model 2
(Collins, 2003).

Chinese Arabic
Document IDs LDC2003E07 LDC2004T17

LDC2003E14 LDC2004T18
LDC2005T06 LDC2005E46

# of segments 329,031 140,511
# of words in foreign corpus 7,520,779 3,147,420
# of words in English corpus 9,864,294 4,067,454

Table 1: parallel corpora used to train both models

Table 2 shows the total number of GHKM rules
extracted, and a breakdown of the different kinds
of rules. Non-lexical rules are those whose source
side is composed entirely of variables — there are
no source words in them. Because of this, they
potentially apply to any sentence. Lexical rules
(their counterpart) far outnumber non-lexical rules.
Of the lexical rules, a rule is considered aphrasal
rule if its source side and the yield of its target
side contain exactly one contiguous phrase each, op-
tionally with one or more variables on either side
of the phrase. Non-phrasal rules include structural
rules, re-ordering rules, and non-contiguous phrases.
These rules are not easy to directly compare to any
phrase pairs from the ATS model, so we do not focus
on them here.

Phrasal rules can be directly compared to ATS
phrase pairs, the easiest way being to discard the
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Statistic Chinese Arabic
total translation rules 2,487,110 662,037
non-lexical rules 110,066 15,812
lexical rules 2,377,044 646,225
phrasal rules 1,069,233 406,020
distinct GHKM-derived phrase pairs 919,234 352,783
distinct corpus-specific

GHKM-derived phrase pairs 203,809 75,807

Table 2: a breakdown of how many rules the
GHKM extraction algorithm produces, and how
many phrase pairs can be derived from them

syntactic context and look at the phrases contained
in the rules. The second to last line of Table 2 shows
the number of phrase pairs that can be derived from
the above phrasal rules. The number of GHKM-
derived phrase pairs is lower than the number of
phrasal rules because some rules represent the same
phrasal translation, but with different syntactic con-
texts. The last line of Table 2 shows the subset of
phrase pairs that contain source phrases found in our
development corpus.

Table 3 compares these corpus-specific GHKM-
derived phrase pairs with the corpus-specific ATS
phrase pairs. Note that the number of phrase pairs
derived from the GHKM rules is less than the num-
ber of phrase pairs extracted by ATS. Moreover, only
slightly over half of the phrase pairs extracted by the
ATS model are common to both models. The lim-
its and constraints of each model are responsible for
this difference in contiguous phrases learned.

Source of phrase pairs Chinese Arabic
GHKM-derived 203,809 75,807
ATS 295,537 133,576
Overlap between models160,901 75,038
GHKM only 42,908 769
ATS only 134,636 58,538
ATS-useful only 1,994 2,199

Table 3: comparison of corpus-specific phrase pairs
from each model

GHKM learns some contiguous phrase pairs that
the phrase-based extractor does not. Only a small
portion of these are due to the fact that the GHKM
model has no inherent size limit, while the phrase
based system has limits. More numerous are cases
where unaligned English words are not added to an
ATS phrase pair while GHKM adopts them at a syn-

tactically motivated location, or where a larger rule
contains mostly syntactic structure but happens to
have some unaligned words in it. For example, con-
sider Figure 5. Becausebasic andwill are un-
aligned, ATS will learn no phrase pairs that translate
to these words alone, though they will be learned as
a part of larger phrases.

Figure 5: Situation where GHKM is able to learn
rules that translate intobasic andwill, but ATS
is not

GHKM, however, will learn several phrasal rules
that translate tobasic, based on the syntactic con-
text

NPB(x0:DT

JJ(basic)

x1:NN)

↔ x0 ��� x1

NPB(x0:DT
JJ(basic)
x1:NN)

↔ x0 ���äääýýý x1

NPB(x0:DT
JJ(basic)
x1:NN)

↔ x0 äääýýý x1

and one phrasal rule that translates intowill

VP(MD(will)

x0:RB

x1:VP-C)

↔ x0 ���ÄÄÄ x1

The quality of such phrases may vary. For example,
the first translation of��� (literally: “one” or “a”) to
basic above is a phrase pair of poor quality, while
the other two forbasic and one forwill are ar-
guably reasonable.

However, Table 3 shows that ATS was able to
learn many more phrase pairs that GHKM was not.
Even more significant is the subset of these missing
phrase pairs that the ATS decoder used in its best2

2i.e. highest scoring
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translation of the corpus. According to the phrase-
based system these are the most “useful” phrase
pairs and GHKM could not learn them. Since this is
a clear deficiency, we will focus on analyzing these
phrase pairs (which we callATS-useful) and the rea-
sons they were not learned.

Table 4 shows a breakdown, categorizing each of
these missing ATS-useful phrase pairs and the rea-
sons they were not able to be learned. The most
common reason is straightforward: by extracting
only the minimally-sized rules, GHKM is unable to
learn many larger phrases that ATS learns. If GHKM
can make a word-level analysis, it will do that, at
the expense of a phrase-level analysis. Galley et
al. (2006) propose one solution to this problem and
Marcu et al. (2006) propose another, both of which
we explore in Sections 5.1 and 5.2.

Category of missing ATS-useful phrase pairsChinese Arabic
Not minimal 1,320 1,366
Extra target words in GHKM rules 220 27
Extra source words in GHKM rules 446 799
Other (e.g. parse failures) 8 7

Total missing useful phrase pairs 1,994 2,199

Table 4: reasons that ATS-useful phrase pairs could
not be extracted by GHKM as phrasal rules

The second reason is that the GHKM model is
sometimes forced by its syntactic constraints to in-
clude extra words. Sometimes this is only target lan-
guage words, and this is often useful — the rules are
learning to insert these words in their proper context.
But most of the time, source language words are also
forced to be part of the rule, and this is harmful — it
makes the rules less general. This latter case is often
due to poorly aligned target language words (such as
the··· in our Section 3 rule extraction example), or
unaligned words under large, flat constituents.

Another factor here: some of the phrase pairs are
learned by both systems, but GHKM is more specific
about the context of use. This can be both a strength
and a weakness. It is a strength when the syntactic
context helps the phrase to be used in a syntactically
correct way, as in

VP(VBD(said)

x0:SBAR-C)
↔��� x0

where the syntax rule requires a constituent of type
SBAR-C. Conversely its weakness is seen when the

context is too constrained. For example, ATS can
easily learn the phrase���®®®↔ prime minister

and is then free to use it in many contexts. But
GHKM learns 45 different rules, each that translate
this phrase pair in a unique context. Figure 6 shows
a sampling. Notice that though many variations are
present, the decoder is unable to use any of these
rules to produce certain noun phrases, such as “cur-
rent Japanese Prime Minister Shinzo Abe”, because
no rule has the proper number of English modifiers.

NPB(NNP(prime) NNP(minister) x0:NNP)↔ x0 ���®®®
NPB(x0:NNP NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

NPB(x0:JJ NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

NPB(NNP(prime) NNP(minister) x0:NNP)↔���®®® x0

NPB(NNP(prime) NNP(minister))↔���®®®
NPB(NNP(prime) NNP(minister) x0:NNP x1:NNP)↔ x0 x1 ���®®®
NPB(x0:DT x1:JJ JJ(prime) NN(minister))↔ x0 x1 ���®®®
NPB(x0:NNP NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

NPB(x0:NNP NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

Figure 6: a sampling of the 45 rules that translate���®®® to prime minister

5 Coverage Improvements

Each of the models presented so far has advantages
and disadvantages. In this section, we consider ideas
that make up for deficiencies in the GHKM model,
drawing our inspiration from the strong points of the
ATS model. We then measure the effects of each
idea empirically, showing both what is gained and
the potential limits of each modification.

5.1 Composed Rules

Galley et al. (2006) proposed the idea of composed
rules. This removes the minimality constraint re-
quired earlier: any two or more rules in a parent-
child relationship in the derivation tree can be com-
bined to form a larger, composed rule. This change
is similar in spirit to the move from word-based to
phrase-based MT models, or parsing with a DOP
model (Bod et al., 2003) rather than a plain PCFG.

Because this results in exponential variations, a
size limit is employed: for any two or more rules
to be allowed to combine, the size of the resulting
rule must be at mostn. The size of a rule is de-
fined as the number of non-part-of-speech, non-leaf
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constituent labels in a rule’s target tree. For exam-
ple, rules 1-5 shown in Section 3 have a size of 0,
and rule 6 has a size of 10. Composed rules are ex-
tracted in addition to minimal rules, which means
that a largern limit always results in a superset of
the rules extracted when a smallern value is used.
Whenn is set to0, then only minimal rules are ex-
tracted. Table 5 shows the growth in the number of
rules extracted for several size limits.

Size limit (n) Chinese Arabic
0 (minimal) 2,487,110 662,037

2 12,351,297 2,742,513
3 26,917,088 4,824,928
4 55,781,061 8,487,656

Table 5: increasing the size limit of composed rules
significantly increases the number of rules extracted

In our previous analysis, the main reason that
GHKM did not learn translations for ATS-useful
phrase pairs was due to its minimal-only approach.
Table 6 shows the effect that composed rule extrac-
tion has on the total number of ATS-useful phrases
missing. Note that as the allowed size of composed
rule increases, we are able to extract an greater per-
centage of the missing ATS-useful phrase pairs.

Size limit (n) Chinese Arabic
0 (minimal) 1,994 2,199

2 1,478 1,528
3 1,096 1,210
4 900 1,041

Table 6: number of ATS-useful phrases still missing
when using GHKM composed rule extraction

Unfortunately, a comparison of Tables 5 and 6 in-
dicates that the number of ATS-useful phrase pairs
gained is growing at a much slower rate than the total
number of rules. From a practical standpoint, more
rules means more processing work and longer de-
coding times, so there are diminishing returns from
continuing to explore larger size limits.

5.2 SPMT Model 1 Rules

An alternative for extracting larger rules called
SPMT model 1 is presented by Marcu et al. (2006).
Though originally presented as a separate model,
the method of rule extraction itself builds upon the

minimal GHKM method just as composed rules do.
For each training example, the method considers all
source language phrases up to lengthL. For each of
these phrases, it extracts the smallest possible syn-
tax rule that does not violate the alignments. Ta-
ble 7 shows that this method is able to extract rules
that cover useful phrases, and can be combined with
size 4 composed rules to an even better effect. Since
there is some overlap in these methods, when com-
bining the two methods we eliminate any redundant
rules.

Method Chinese Arabic
composed alone (size 4) 900 1,041
SPMT model 1 alone 676 854
composed + SPMT model 1 663 835

Table 7: ATS-useful phrases still missing after dif-
ferent non-minimal methods are applied

Note that having more phrasal rules is not the only
advantage of composed rules. Here, combining both
composed and SPMT model 1 rules, our gain in use-
ful phrases is not very large, but we do gain addi-
tional, larger syntax rules. As discussed in (Galley
et al., 2006), composed rules also allow the learning
of more context, such as

ADJP(ADVP(RB(far)

CC(and)

RB(away)

x0:JJ)

↔ÏÏÏÏÏÏ x0

This rule is not learned by SPMT model 1 because
it is not the smallest rule that can explain the phrase
pair, but it is still valuable for its syntactic context.

5.3 Restructuring Trees

Table 8 updates the causes of missing ATS-useful
phrase pairs. Most are now caused by syntactic con-
straints, thus we need to address these in some way.

GHKM translation rules are affected by large,
flat constituents in syntax trees, as in theprime
minister example earlier. One way to soften this
constraint is to binarize the trees, so that wide con-
stituents are broken down into multiple levels of tree
structure. The approach we take here is head-out bi-
narization (Wang et al., 2007), where any constituent
with more than two children is split into partial con-
stituents. The children to the left of the head word
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Category of ATS-useful phrase pairsChinese Arabic
Too large 12 9
Extra target words in GHKM rules 218 27
Extra source words in GHKM rules 424 792
Other (e.g. parse failures) 9 7

Total missing useful phrase pairs 663 835

Table 8: reasons that ATS-useful phrase pairs are
still not extracted as phrasal rules, with composed
and SPMT model 1 rules in place

are binarized one direction, while the children to
the right are binarized the other direction. The top
node retains its original label (e.g. NPB), while the
new partial constituents are labeled with a bar (e.g.
NPB). Figure 7 shows an example.

Figure 7: head-out binarization in the target lan-
guage: S, NPB, and VP are binarized according to
the head word

Table 9 shows the effect of binarization on phrasal
coverage, using both composed and SPMT rules. By
eliminating some of the syntactic constraints we al-
low more freedom, which allows increased phrasal
coverage, but generates more rules.

Category of missing ATS-useful phrase pairsChinese Arabic
Too large 16 12
Extra target words in GHKM rules 123 12
Extra source words in GHKM rules 307 591
Other (e.g. parse failures) 12 7

Total missing useful phrase pairs 458 622

Table 9: reasons that ATS-useful phrase pairs still
could not be extracted as phrasal rules after bina-
rization

6 Evaluation of Translations

To evaluate translation quality of each of these mod-
els and methods, we ran the ATS decoder using its
extracted phrase pairs and the syntax-based decoder
using all the rule sets mentioned above. Table 10 de-
scribes the development and test datasets used, along

with four references for measuring BLEU. Tun-
ing was done using Maximum BLEU hill-climbing
(Och, 2003). Features used for the ATS system were
the standard set. For the syntax-based translation
system, we used a similar set of features.

# of lines
Dataset Chinese Arabic

Development set NIST 2002 MT eval 925 696
(sentences< 47 tokens)

Test set NIST 2003 MT eval 919 663

Table 10: development and test corpora

Table 11 shows the case-insensitive NIST BLEU4
scores for both our development and test decod-
ings. The BLEU scores indicate, first of all, that
the syntax-based system is much stronger in trans-
lating Chinese than Arabic, in comparison to the
phrase-based system. Also, the ideas presented here
for improving phrasal coverage generally improve
the syntax-based translation quality. In addition,
composed rules are shown to be helpful as com-
pared to the minimal runs. This is true even when
SPMT model 1 is added, which indicates that the
size 4 composed rules bring more than just improved
phrasal coverage.

Chinese Arabic
Experiment Dev Test Dev Test

Baseline ATS 34.94 32.83 50.46 50.52
Baseline GHKM (minimal only) 38.02 37.67 49.34 49.99
GHKM composed size 2 40.24 39.75 50.76 50.94
GHKM composed size 3 40.95 40.44 51.56 51.48
GHKM composed size 4 41.36 40.69 51.60 51.71
GHKM minimal + SPMT model 1 39.78 39.16 50.17 51.27
GHKM composed + SPMT model 142.04 41.07 51.73 51.53
With binarization 42.17 41.26 52.50 51.79

Table 11: evaluation results (reported in case-
insensitive NIST BLEU4)

7 Conclusions

Both the ATS model for phrase-based machine
translation and the GHKM model for syntax-based
machine translation are state-of-the-art methods.
Each extraction method has strengths and weak-
nesses as compared to the other, and there are sur-
prising differences in phrasal coverage — neither is
merely a superset of the other. We have shown that
it is possible to gain insights from the strengths of
the phrase-based extraction model to increase both
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the phrasal coverage and translation accuracy of the
syntax-based model.

However, there is still room for improvement in
both models. For syntax models, there are still holes
in phrasal coverage, and other areas are needing
progress, such as decoding efficiency. For phrase-
based models, incorporating syntactic knowledge
and constraints may lead to improvements as well.
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Jens-S̈onke Vöckler for his assistance in setting up
an experimental pipeline, without which this work
would have been much more tedious and difficult.
This research was supported under DARPA Contract
No. HR0011-06-C-0022.

References
Rens Bod, Remko Scha, and Khalil Sima’an, editors. 2003.

Data-Oriented Parsing. CSLI Publications, University of
Chicago Press.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation.Computational
Linguistics, 19.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. InProc. ACL 2005.

Michael Collins. 2003. Head-driven statistical models for nat-
ural language parsing.Computational Linguistics, 29(4).
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Abstract

We achieved a state of the art performance
in statistical machine translation by using
a large number of features with an online
large-margin training algorithm. The mil-
lions of parameters were tuned only on a
small development set consisting of less than
1K sentences. Experiments on Arabic-to-
English translation indicated that a model
trained with sparse binary features outper-
formed a conventional SMT system with a
small number of features.

1 Introduction

The recent advances in statistical machine transla-
tion have been achieved by discriminatively train-
ing a small number of real-valued features based ei-
ther on (hierarchical) phrase-based translation (Och
and Ney, 2004; Koehn et al., 2003; Chiang, 2005) or
syntax-based translation (Galley et al., 2006). How-
ever, it does not scale well with a large number of
features of the order of millions.

Tillmann and Zhang (2006), Liang et al. (2006)
and Bangalore et al. (2006) introduced sparse binary
features for statistical machine translation trained on
a large training corpus. In this framework, the prob-
lem of translation is regarded as a sequential labeling
problem, in the same way as part-of-speech tagging,
chunking or shallow parsing. However, the use of a
large number of features did not provide any signifi-
cant improvements over a conventional small feature
set.

Bangalore et al. (2006) trained the lexical choice
model by using Conditional Random Fields (CRF)

realized on a WFST. Their modeling was reduced to
Maximum Entropy Markov Model (MEMM) to han-
dle a large number of features which, in turn, faced
the labeling bias problem (Lafferty et al., 2001).
Tillmann and Zhang (2006) trained their feature set
using an online discriminative algorithm. Since the
decoding is still expensive, their online training ap-
proach is approximated by enlarging a mergedk-
best list one-by-one with a 1-best output. Liang
et al. (2006) introduced an averaged perceptron al-
gorithm, but employed only 1-best translation. In
Watanabe et al. (2006a), binary features were trained
only on a small development set using a variant of
voted perceptron for rerankingk-best translations.
Thus, the improvement is merely relative to the
baseline translation system, namely whether or not
there is a good translation in theirk-best.

We present a method to estimate a large num-
ber of parameters — of the order of millions —
using an online training algorithm. Although it
was intuitively considered to be prone to overfit-
ting, training on a small development set — less
than 1K sentences — was sufficient to achieve im-
proved performance. In this method, each train-
ing sentence is decoded and weights are updated at
every iteration (Liang et al., 2006). When updat-
ing model parameters, we employ a memorization-
variant of a local updating strategy (Liang et al.,
2006) in which parameters are optimized toward
a set of good translations found in thek-best list
across iterations. The objective function is an ap-
proximated BLEU (Watanabe et al., 2006a) that
scales the loss of a sentence BLEU to a document-
wise loss. The parameters are trained using the
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Margin Infused Relaxed Algorithm (MIRA) (Cram-
mer et al., 2006). MIRA is successfully employed
in dependency parsing (McDonald et al., 2005) or
the joint-labeling/chunking task (Shimizu and Haas,
2006). Experiments were carried out on an Arabic-
to-English translation task, and we achieved signif-
icant improvements over conventional minimum er-
ror training with a small number of features.

This paper is organized as follows: First, Sec-
tion 2 introduces the framework of statistical ma-
chine translation. As a baseline SMT system, we
use the hierarchical phrase-based translation with
an efficient left-to-right generation (Watanabe et al.,
2006b) originally proposed by Chiang (2005). In
Section 3, a set of binary sparse features are defined
including numeric features for our baseline system.
Section 4 introduces an online large-margin training
algorithm using MIRA with our key components.
The experiments are presented in Section 5 followed
by discussion in Section 6.

2 Statistical Machine Translation

We use a log-linear approach (Och, 2003) in which
a foreign language sentencef is translated into an-
other language, for example English,e, by seeking a
maximum solution:

ê = argmax
e

wT · h( f , e) (1)

whereh( f , e) is a large-dimension feature vector.w
is a weight vector that scales the contribution from
each feature. Each feature can take any real value,
such as the log of then-gram language model to
represent fluency, or a lexicon model to capture the
word or phrase-wise correspondence.

2.1 Hierarchical Phrase-based SMT

Chiang (2005) introduced the hierarchical phrase-
based translation approach, in which non-terminals
are embedded in each phrase. A translation is gener-
ated by hierarchically combining phrases using the
non-terminals. Such a quasi-syntactic structure can
naturally capture the reordering of phrases that is not
directly modeled by a conventional phrase-based ap-
proach (Koehn et al., 2003). The non-terminal em-
bedded phrases are learned from a bilingual corpus
without a linguistically motivated syntactic struc-
ture.

Based on hierarchical phrase-based modeling, we
adopted the left-to-right target generation method
(Watanabe et al., 2006b). This method is able to
generate translations efficiently, first, by simplifying
the grammar so that the target side takes a phrase-
prefixed form, namely a target normalized form.
Second, a translation is generated in a left-to-right
manner, similar to the phrase-based approach using
Earley-style top-down parsing on the source side.
Coupled with the target normalized form,n-gram
language models are efficiently integrated during the
search even with a higher order ofn.

2.2 Target Normalized Form

In Chiang (2005), each production rule is restricted
to a rank-2 or binarized form in which each rule con-
tains at most two non-terminals. The target normal-
ized form (Watanabe et al., 2006b) further imposes
a constraint whereby the target side of the aligned
right-hand side is restricted to a Greibach Normal
Form like structure:

X →
〈

γ, b̄β,∼
〉

(2)

whereX is a non-terminal,γ is a source side string of
arbitrary terminals and/or non-terminals.̄bβ is a cor-
responding target side wherēb is a string of termi-
nals, or a phrase, andβ is a (possibly empty) string
of non-terminals.∼ defines one-to-one mapping be-
tween non-terminals inγ andβ. The use of phrase
b̄ as a prefix maintains the strength of the phrase-
base framework. A contiguous English side with a
(possibly) discontiguous foreign language side pre-
serves phrase-bounded local word reordering. At
the same time, the target normalized framework still
combines phrases hierarchically in a restricted man-
ner.

2.3 Left-to-Right Target Generation

Decoding is performed by parsing on the source side
and by combining the projected target side. We
applied an Earley-style top-down parsing approach
(Wu and Wong, 1998; Watanabe et al., 2006b; Zoll-
mann and Venugopal, 2006). The basic idea is
to perform top-down parsing so that the projected
target side is generated in a left-to-right manner.
The search is guided with a push-down automaton,
which keeps track of the span of uncovered source
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word positions. Combined with the rest-cost esti-
mation aggregated in a bottom-up way, our decoder
efficiently searches for the most likely translation.

The use of a target normalized form further sim-
plifies the decoding procedure. Since the rule form
does not allow any holes for the target side, the inte-
gration with ann-gram language model is straight-
forward: the prefixed phrases are simply concate-
nated and intersected withn-gram.

3 Features

3.1 Baseline Features

The hierarchical phrase-based translation system
employs standard numeric value features:

• n-gram language model to capture the fluency
of the target side.

• Hierarchical phrase translation probabilities in
both directions,h(γ|b̄β) andh(b̄β|γ), estimated
by relative counts, count(γ, b̄β).

• Word-based lexically weighted models of
hlex(γ|b̄β) and hlex(b̄β|γ) using lexical transla-
tion models.

• Word-based insertion/deletion penalties that
penalize through the low probabilities of the
lexical translation models (Bender et al., 2004).

• Word/hierarchical-phrase length penalties.

• Backtrack-based penalties inspired by the dis-
tortion penalties in phrase-based modeling
(Watanabe et al., 2006b).

3.2 Sparse Features

In addition to the baseline features, a large number
of binary features are integrated in our MT system.
We may use any binary features, such as

h( f , e) =



















1
English word “violate” and Arabic
word “tnthk” appeared ine and f .

0 otherwise.

The features are designed by considering the decod-
ing efficiency and are based on the word alignment
structure preserved in hierarchical phrase transla-
tion pairs (Zens and Ney, 2006). When hierarchi-
cal phrases are extracted, the word alignment is pre-
served. If multiple word alignments are observed

ei−1 ei ei+1 ei+2 ei+3 ei+4

f j−1 f j f j+1 f j+2 f j+3

Figure 1: An example of sparse features for a phrase
translation.

with the same source and target sides, only the fre-
quently observed word alignment is kept to reduce
the grammar size.

3.2.1 Word Pair Features

Word pair features reflect the word correspon-
dence in a hierarchical phrase. Figure 1 illustrates
an example of sparse features for a phrase trans-
lation pair f j, ..., f j+2 and ei, ..., ei+3

1. From the
word alignment encoded in this phrase, we can ex-
tract word pair features of (ei, f j+1), (ei+2, f j+2) and
(ei+3, f j).

The bigrams of word pairs are also used to
capture the contextual dependency. We assume
that the word pairs follow the target side order-
ing. For instance, we define ((ei−1, f j−1), (ei, f j+1)),
((ei, f j+1), (ei+2, f j+2)) and ((ei+2, f j+2), (ei+3, f j)) in-
dicated by the arrows in Figure 1.

Extracting bigram word pair features following
the target side ordering implies that the correspond-
ing source side is reordered according to the tar-
get side. The reordering of hierarchical phrases is
represented by using contextually dependent word
pairs across their boundaries, as with the feature
((ei−1, f j−1), (ei, f j+1)) in Figure 1.

3.2.2 Insertion Features

The above features are insufficient to capture the
translation because spurious words are sometimes
inserted in the target side. Therefore, insertion fea-
tures are integrated in which no word alignment is
associated in the target. The inserted words are asso-
ciated with all the words in the source sentence, such
as (ei+1, f1), ..., (ei+1, fJ) for the non-aligned word
ei+1 with the source sentencef J

1 in Figure 1. In the

1For simplicity, we show an example of phrase translation
pairs, but it is trivial to define the features over hierarchical
phrases.
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f j−1

f j f j+1

f j+2

f j+3

X
1

X 2

X 3

Figure 2: Example hierarchical features.

same way, we will be able to include deletion fea-
tures where a non-aligned source word is associated
with the target sentence. However, this would lead to
complex decoding in which all the translated words
are memorized for each hypothesis, and thus not in-
tegrated in our feature set.

3.2.3 Target Bigram Features

Target side bigram features are also included to
directly capture the fluency as in then-gram lan-
guage model (Roark et al., 2004). For instance, bi-
gram features of (ei−1, ei), (ei, ei+1), (ei+1, ei+2)... are
observed in Figure 1.

3.2.4 Hierarchical Features

In addition to the phrase motivated features, we
included features inspired by the hierarchical struc-
ture. Figure 2 shows an example of hierarchical
phrases in the source side, consisting ofX 1 →
〈

f j−1X 2 f j+3

〉

, X 2 →
〈

f j f j+1X 3

〉

andX 3 →
〈

f j+2

〉

.
Hierarchical features capture the dependency of
the source words in a parent phrase to the source
words in child phrases, such as (f j−1, f j), ( f j−1, f j+1),
( f j+3, f j), ( f j+3, f j+1), ( f j, f j+2) and (f j+1, f j+2) as in-
dicated by the arrows in Figure 2. The hierarchical
features are extracted only for those source words
that are aligned with the target side to limit the fea-
ture size.

3.3 Normalization

In order to achieve the generalization capability, the
following normalized tokens are introduced for each
surface form:

• Word class or POS.

• 4-letter prefix and suffix. For instance, the word

Algorithm 1 Online Training Algorithm

Training data:T =
{

( f t, et)
}T
t=1

m-best oracles:O = {}Tt=1
i = 0

1: for n = 1, ...,N do
2: for t = 1, ..., T do
3: Ct ← bestk( f t; wi)
4: Ot ← oraclem(Ot ∪ Ct; et)
5: wi+1 = updatewi usingCt w.r.t. Ot

6: i = i + 1
7: end for
8: end for
9: return

∑NT
i=1 wi

NT

“violate” is normalized to “viol+” and “+late”
by taking the prefix and suffix, respectively.

• Digits replaced by a sequence of “@”. For ex-
ample, the word “2007/6/27” is represented as
“@@@@/@/@@”.

We consider all possible combination of those to-
ken types. For example, the word pair feature (vi-
olate, tnthk) is normalized and expanded to (viol+,
tnthk), (viol+, tnth+), (violate, tnth+), etc. using the
4-letter prefix token type.

4 Online Large-Margin Training

Algorithm 1 is our generic online training algo-
rithm. The algorithm is slightly different from other
online training algorithms (Tillmann and Zhang,
2006; Liang et al., 2006) in that we keep and up-
date oracle translations, which is a set of good trans-
lations reachable by a decoder according to a met-
ric, i.e. BLEU (Papineni et al., 2002). In line 3,
a k-best list is generated by bestk(·) using the cur-
rent weight vectorwi for the training instance of
( f t, et). Each training instance has multiple (or, pos-
sibly one) reference translationset for the source
sentencef t. Using thek-best list, m-best oracle
translationsOt is updated by oraclem(·) for every it-
eration (line 4). Usually, a decoder cannot generate
translations that exactly match the reference transla-
tions due to its beam search pruning and OOV. Thus,
we cannot always assign scores for each reference
translation. Therefore, possible oracle translations
are maintained according to an objective function,
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i.e. BLEU. Tillmann and Zhang (2006) avoided the
problem by precomputing the oracle translations in
advance. Liang et al. (2006) presented a similar up-
dating strategy in which parameters were updated
toward an oracle translation found inCt, but ignored
potentially better translations discovered in the past
iterations.

Newwi+1 is computed using thek-best listCt with
respect to the oracle translationsOt (line 5). AfterN
iterations, the algorithm returns an averaged weight
vector to avoid overfitting (line 9). The key to this
online training algorithm is the selection of the up-
dating scheme in line 5.

4.1 Margin Infused Relaxed Algorithm

The Margin Infused Relaxed Algorithm (MIRA)
(Crammer et al., 2006) is an online version of the
large-margin training algorithm for structured clas-
sification (Taskar et al., 2004) that has been suc-
cessfully used for dependency parsing (McDonald et
al., 2005) and joint-labeling/chunking (Shimizu and
Haas, 2006). The basic idea is to keep the norm of
the updates to the weight vector as small as possible,
considering a margin at least as large as the loss of
the incorrect classification.

Line 5 of the weight vector update procedure in
Algorithm 1 is replaced by the solution of:

ŵi+1 = argmin
wi+1

||wi+1 − wi|| +C
∑

ê,e′
ξ(ê, e′)

subject to

si+1( f t, ê) − si+1( f t, e′) + ξ(ê, e′) ≥ L(ê, e′; et)

ξ(ê, e′) ≥ 0

∀ê ∈ Ot,∀e′ ∈ Ct (3)

where si( f t, e) =
{

wi
}T
· h( f t, e). ξ(·) is a non-

negative slack variable andC ≥ 0 is a constant to
control the influence to the objective function. A
larger C implies larger updates to the weight vec-
tor. L(·) is a loss function, for instance difference of
BLEU, that measures the difference between ˆe and
e′ according to the reference translationset. In this
update, a margin is created for each correct and in-
correct translation at least as large as the loss of the
incorrect translation. A larger error means a larger
distance between the scores of the correct and incor-
rect translations. Following McDonald et al. (2005),
only k-best translations are used to form the margins

in order to reduce the number of constraints in Eq. 3.
In the translation task, multiple translations are ac-
ceptable. Thus, margins form-oracle translation are
created, which amount tom × k large-margin con-
straints. In this online training, only active features
constrained by Eq. 3 are kept and updated, unlike
offline training in which all possible features have to
be extracted and selected in advance.

The Lagrange dual form of Eq. 3 is:

maxα(·)≥0 −
1
2
||
∑

ê,e′
α(ê, e′)

(

h( f t, ê) − h( f t, e′)
)

||2

+
∑

ê,e′
α(ê, e′)L(ê, e′; et)

−
∑

ê,e′
α(ê, e′)

(

si( f t, ê) − si( f t, e′)
)

subject to
∑

ê,e′
α(ê, e′) ≤ C (4)

with the weight vector update:

wi+1 = wi +
∑

ê,e′
α(ê, e′)

(

h( f t, ê) − h( f t, e′)
)

(5)

Equation 4 is solved using a QP-solver, such as a co-
ordinate ascent algorithm, by heuristically selecting
(ê, e′) and by updatingα(·) iteratively:

α(ê, e′) = max
(

0, α(ê, e′) + δ(ê, e′)
)

(6)

δ(ê, e′) =
L(ê, e′; et) −

(

si( f t, ê) − si( f t, e′)
)

||h( f t, ê) − h( f t, e′)||2

C is used to clip the amount of updates.
A single oracle with 1-best translation is analyti-

cally solved without a QP-solver and is represented
as the following perceptron-like update (Shimizu
and Haas, 2006):

α = max

















0,min

















C,
L(ê, e′; et) −

(

si( f t, ê) − si( f t, e′)
)

||h( f t, ê) − h( f t, e′)||2

































Intuitively, the update amount is controlled by the
margin and the loss between the correct and incor-
rect translations and by the closeness of two transla-
tions in terms of feature vectors. Indeed, Liang et al.
(2006) employed an averaged perceptron algorithm
in which α value was always set to one. Tillmann
and Zhang (2006) used a different update style based
on a convex loss function:

α = ηL(ê, e′; et) ·max
(

0, 1−
(

si( f t, ê) − si( f t, e′)
))
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Table 1: Experimental results obtained by varying normalized tokens used with surface form.
# features 2003 (dev) 2004 2005

NIST BLEU [%] NIST BLEU [%] NIST BLEU [%]
surface form 492K 11.32 54.11 10.57 49.01 10.77 48.05
w/ prefix/suffix 4,204K 12.38 63.87 10.42 48.74 10.58 47.18
w/ word class 2,689K 10.87 49.59 10.63 49.55 10.89 48.79
w/ digits 576K 11.01 50.72 10.66 49.67 10.84 48.39
all token types 13,759K 11.24 52.85 10.66 49.81 10.85 48.41

whereη > 0 is a learning rate for controlling the
convergence.

4.2 Approximated BLEU

We used the BLEU score (Papineni et al., 2002) as
the loss function computed by:

BLEU(E; E) = exp

















1
N

N
∑

n=1

log pn(E,E)

















· BP(E,E)

(7)
wherepn(·) is then-gram precision of hypothesized
translationsE = {et}Tt=1 given reference translations
E = {et}Tt=1 and BP(·) ≤ 1 is a brevity penalty. BLEU
is computed for a set of sentences, not for a sin-
gle sentence. Our algorithm requires frequent up-
dates on the weight vector, which implies higher cost
in computing the document-wise BLEU. Tillmann
and Zhang (2006) and Liang et al. (2006) solved
the problem by introducing a sentence-wise BLEU.
However, the use of the sentence-wise scoring does
not translate directly into the document-wise score
because of then-gram precision statistics and the
brevity penalty statistics aggregated for a sentence
set. Thus, we use an approximated BLEU score
that basically computes BLEU for a sentence set, but
accumulates the difference for a particular sentence
(Watanabe et al., 2006a).

The approximated BLEU is computed as follows:
Given oracle translationsO for T , we maintain the
best oracle translationsOT

1 =
{

ê1, ..., êT
}

. The ap-
proximated BLEU for a hypothesized translatione′

for the training instance (f t, et) is computed overOT
1

except for ˆet, which is replaced bye′:

BLEU({ê1, ..., êt−1, e′, êt+1, ..., êT }; E)

The loss computed by the approximated BLEU mea-
sures the document-wise loss of substituting the cor-
rect translation ˆet into an incorrect translatione′.

The score can be regarded as a normalization which
scales a sentence-wise score into a document-wise
score.

5 Experiments

We employed our online large-margin training pro-
cedure for an Arabic-to-English translation task.
The training data were extracted from the Ara-
bic/English news/UN bilingual corpora supplied by
LDC. The data amount to nearly 3.8M sentences.
The Arabic part of the bilingual data is tokenized by
isolating Arabic scripts and punctuation marks. The
development set comes from the MT2003 Arabic-
English NIST evaluation test set consisting of 663
sentences in the news domain with four reference
translations. The performance is evaluated by the
news domain MT2004/MT2005 test set consisting
of 707 and 1,056 sentences, respectively.

The hierarchical phrase translation pairs are ex-
tracted in a standard way (Chiang, 2005): First,
the bilingual data are word alignment annotated by
running GIZA++ (Och and Ney, 2003) in two di-
rections. Second, the word alignment is refined
by a grow-diag-final heuristic (Koehn et al., 2003).
Third, phrase translation pairs are extracted together
with hierarchical phrases by considering holes. In
the last step, the hierarchical phrases are constrained
so that they follow the target normalized form con-
straint. A 5-gram language model is trained on the
English side of the bilingual data combined with the
English Gigaword from LDC.

First, the use of normalized token types in Sec-
tion 3.3 is evaluated in Table 1. In this setting, all
the structural features in Section 3.2 are used, but
differentiated by the normalized tokens combined
with surface forms. Our online large-margin train-
ing algorithm performed 50 iterations constrained
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Table 2: Experimental results obtained by incrementally adding structural features.
# features 2003 (dev) 2004 2005

NIST BLEU [%] NIST BLEU [%] NIST BLEU [%]
word pairs 11,042K 11.05 51.63 10.43 48.69 10.73 47.72
+ target bigram 11,230K 11.19 53.49 10.40 48.60 10.66 47.47
+ insertion 13,489K 11.21 52.20 10.77 50.33 10.93 48.08
+ hierarchical 13,759K 11.24 52.85 10.66 49.81 10.85 48.41

Table 3: Experimental results for varyingk-best andm-oracle translations.
# features 2003 (dev) 2004 2005

NIST BLEU [%] NIST BLEU [%] NIST BLEU [%]
baseline 10.64 46.47 10.83 49.33 10.90 47.03
1-oracle 1-best 8,735K 11.25 52.63 10.82 50.77 10.93 48.11
1-oracle 10-best 10,480K 11.24 53.45 10.55 49.10 10.82 48.49

10-oracle 1-best 8,416K 10.70 47.63 10.83 48.88 10.76 46.00
10-oracle 10-best 13,759K 11.24 52.85 10.66 49.81 10.85 48.41
sentence-BLEU 14,587K 11.10 51.17 10.82 49.97 10.86 47.04

by 10-oracle and 10-best list. When decoding, a
1000-best list is generated to achieve better oracle
translations. The training took nearly 1 day using 8
cores of Opteron. The translation quality is eval-
uated by case-sensitive NIST (Doddington, 2002)
and BLEU (Papineni et al., 2002)2. The table also
shows the number of active features in which non-
zero values were assigned as weights. The addition
of prefix/suffix tokens greatly increased the number
of active features. The setting severely overfit to the
development data, and therefore resulted in worse
results in open tests. The word class3 with surface
form avoided the overfitting problem. The digit se-
quence normalization provides a similar generaliza-
tion capability despite of the moderate increase in
the active feature size. By including all token types,
we achieved better NIST/BLEU scores for the 2004
and 2005 test sets. This set of experiments indi-
cates that a token normalization is useful especially
trained on a small data.

Second, we used all the normalized token types,
but incrementally added structural features in Ta-
ble 2. Target bigram features account for only the
fluency of the target side without considering the
source/target correspondence. Therefore, the in-

2We used the tool available athttp://www.nist.gov/
speech/tests/mt/

3We induced 50 classes each for English and Arabic.

clusion of target bigram features clearly overfit to
the development data. The problem is resolved by
adding insertion features which can take into ac-
count an agreement with the source side that is not
directly captured by word pair features. Hierarchi-
cal features are somewhat effective in the 2005 test
set by considering the dependency structure of the
source side.

Finally, we compared our online training algo-
rithm with sparse features with a baseline system
in Table 3. The baseline hierarchical phrase-based
system is trained using standard max-BLEU training
(MERT) without sparse features (Och, 2003). Table
3 shows the results obtained by varying them-oracle
and k-best size (k,m = 1, 10) using all structural
features and all token types. We also experimented
sentence-wise BLEU as an objective function con-
strained by 10-oracle and 10-best list. Even the 1-
oracle 1-best configuration achieved significant im-
provements over the baseline system. The use of
a largerk-best list further optimizes to the devel-
opment set, but at the cost of degraded translation
quality in the 2004 test set. The largerm-oracle size
seems to be harmful if coupled with the 1-best list.
As indicated by the reduced active feature size, 1-
best translation seems to be updated toward worse
translations in 10-oracles that are “close” in terms
of features. We achieved significant improvements
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Table 4: Two-fold cross validation experiments.
closed test open test

NIST BLEU NIST BLEU
[%] [%]

baseline 10.71 44.79 10.68 44.44
online 11.58 53.42 10.90 47.64

when thek-best list size was also increased. The
use of sentence-wise BLEU as an objective provides
almost no improvement in the 2005 test set, but is
comparable for the 2004 test set.

As observed in three experiments, the 2004/2005
test sets behaved differently, probably because of
the domain mismatch. Thus, we conducted a two-
fold cross validation using the 2003/2004/2005 test
sets to observe the effect of optimization as shown
in Table 44. The MERT baseline system performed
similarly both in closed and open tests. Our on-
line large-margin training with 10-oracle and 10-
best constraints and the approximated BLEU loss
function significantly outperformed the baseline sys-
tem in the open test. The development data is almost
doubled in this setting. The MERT approach seems
to be confused with the slightly larger data and with
the mixed domains from different epochs.

6 Discussion

In this work, the translation model consisting of mil-
lions of features are successfully integrated. In or-
der to avoid poor overfitting, features are limited to
word-based features, but are designed to reflect the
structures inside hierarchical phrases. One of the
benefit of MIRA is its flexibility. We may include
as many constraints as possible, likem-oracle con-
straints in our experiments. Although we described
experiments on the hierarchical phrase-based trans-
lation, the online training algorithm is applicable to
any translation systems, such as phrase-based trans-
lations and syntax-based translations.

Online discriminative training has already been
studied by Tillmann and Zhang (2006) and Liang
et al. (2006). In their approach, training was per-
formed on a large corpus using the sparse features of
phrase translation pairs, targetn-grams and/or bag-
of-word pairs inside phrases. In Tillmann and Zhang

4We split data by document, not by sentence.

(2006), k-best list generation is approximated by a
step-by-step one-best merging method that separates
the decoding and training steps. The weight vector
update scheme is very similar to MIRA but based
on a convex loss function. Our method directly em-
ploys thek-best list generated by the fast decoding
method (Watanabe et al., 2006b) at every iteration.
One of the benefits is that we avoid the rather expen-
sive cost of merging thek-best list especially when
handling millions of features.

Liang et al. (2006) employed an averaged percep-
tron algorithm. They decoded each training instance
and performed a perceptron update to the weight
vector. An incorrect translation was updated toward
an oracle translation found in ak-best list, but dis-
carded potentially better translations in the past iter-
ations.

An experiment has been undertaken using a small
development set together with sparse features for the
reranking of ak-best translation (Watanabe et al.,
2006a). They relied on a variant of a voted percep-
tron, and achieved significant improvements. How-
ever, their work was limited to reranking, thus the
improvement was relative to the performance of the
baseline system, whether or not there was a good
translation in a list. In our work, the sparse features
are directly integrated into the DP-based search.

The design of the sparse features was inspired
by Zens and Ney (2006). They exploited the
word alignment structure inside the phrase trans-
lation pairs for discriminatively training a reorder-
ing model in their phrase-based translation. The re-
ordering model simply classifies whether to perform
monotone decoding or not. The trained model is
treated as a single feature function integrated in Eq.
1. Our approach differs in that each sparse feature is
individually integrated in Eq. 1.

7 Conclusion

We exploited a large number of binary features
for statistical machine translation. The model was
trained on a small development set. The optimiza-
tion was carried out by MIRA, which is an online
version of the large-margin training algorithm. Mil-
lions of sparse features are intuitively considered
prone to overfitting, especially when trained on a
small development set. However, our algorithm with
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millions of features achieved very significant im-
provements over a conventional method with a small
number of features. This result indicates that we
can easily experiment many alternative features even
with a small data set, but we believe that our ap-
proach can scale well to a larger data set for further
improved performance. Future work involves scal-
ing up to larger data and more features.

Acknowledgements

We would like to thank reviewers and our colleagues
for useful comment and discussion.

References

Srinivas Bangalore, Patrick Haffner, and Stephan Kan-
thak. 2006. Sequence classification for machine trans-
lation. In Proc. of Interspeech 2006, pages 1157–
1160, Pittsburgh.

Oliver Bender, Richard Zens, Evgeny Matusov, and Her-
mann Ney. 2004. Alignment templates: the RWTH
SMT system”. InProc. of IWSLT 2004, pages 79–84,
Kyoto, Japan.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProc. of ACL
2005, pages 263–270, Ann Arbor, Michigan, June.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms.Journal of Machine Learning
Research, 7:551–585, March.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. InIn Proc. ARPA Workshop on Human Lan-
guage Technology.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. InProc.
of COLING/ACL 2006, pages 961–968, Sydney, Aus-
tralia, July.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InProc.
of NAACL 2003, pages 48–54, Edmonton, Canada.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InProc.
18th International Conf. on Machine Learning, pages
282–289. Morgan Kaufmann, San Francisco, CA.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and
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Abstract

In text categorization, term selection is an
important step for the sake of both cate-
gorization accuracy and computational ef-
ficiency. Different dimensionalities are ex-
pected under different practical resource re-
strictions of time or space. Traditionally
in text categorization, the same scoring or
ranking criterion is adopted for all target
dimensionalities, which considers both the
discriminability and the coverage of a term,
such as χ2 or IG. In this paper, the poor ac-
curacy at a low dimensionality is imputed to
the small average vector length of the docu-
ments. Scalable term selection is proposed
to optimize the term set at a given dimen-
sionality according to an expected average
vector length. Discriminability and cover-
age are separately measured; by adjusting
the ratio of their weights in a combined cri-
terion, the expected average vector length
can be reached, which means a good com-
promise between the specificity and the ex-
haustivity of the term subset. Experiments
show that the accuracy is considerably im-
proved at lower dimensionalities, and larger
term subsets have the possibility to lower
the average vector length for a lower com-
putational cost. The interesting observations
might inspire further investigations.

1 Introduction

Text categorization is a classical text information
processing task which has been studied adequately

(Sebastiani, 2002). A typical text categorization pro-
cess usually involves these phases: document in-
dexing, dimensionality reduction, classifier learn-
ing, classification and evaluation. The vector space
model is frequently used for text representation
(document indexing); dimensions of the learning
space are called terms, or features in a general ma-
chine learning context. Term selection is often nec-
essary because:
• Many irrelevant terms have detrimental effect

on categorization accuracy due to overfitting
(Sebastiani, 2002).

• Some text categorization tasks have many rel-
evant but redundant features, which also hurt
the categorization accuracy (Gabrilovich and
Markovitch, 2004).

• Considerations on computational cost:
(i) Many sophisticated learning machines are
very slow at high dimensionalities, such as
LLSF (Yang and Chute, 1994) and SVMs.
(ii) In Asian languages, the term set is often
very large and redundant, which causes the
learning and the predicting to be really slow.
(iii) In some practical cases the computational
resources (time or space) are restricted, such as
hand-held devices, real-time applications and
frequently retrained systems. (iv) Some deeper
analysis or feature reconstruction techniques
rely on matrix factorization (e.g. LSA based
on SVD), which might be computationally in-
tractable while the dimensionality is large.

Sometimes an aggressive term selection might be
needed particularly for (iii) and (iv). But it is no-
table that the dimensionality is not always directly
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connected to the computational cost; this issue will
be touched on in Section 6. Although we have
many general feature selection techniques, the do-
main specified ones are preferred (Guyon and Elis-
seeff, 2003). Another reason for ad hoc term se-
lection techniques is that many other pattern clas-
sification tasks has no sparseness problem (in this
study the sparseness means a sample vector has
few nonzero elements, but not the high-dimensional
learning space has few training samples). As a ba-
sic motivation of this study, we hypothesize that the
low accuracy at low dimensionalities is mainly due
to the sparseness problem.

Many term selection techniques were presented
and some of them have been experimentally tested
to be high-performing, such as Information Gain, χ2

(Yang and Pedersen, 1997; Rogati and Yang, 2002)
and Bi-Normal Separation (Forman, 2003). Every-
one of them adopt a criterion scoring and ranking
the terms; for a target dimensionality d, the term se-
lection is simply done by picking out the top-d terms
from the ranked term set. These high performing cri-
teria have a common characteristic — both discrim-
inability and coverage are implicitly considered.
• discriminability: how unbalanced is the distri-

bution of the term among the categories.
• coverage: how many documents does the term

occur in.
(Borrowing the terminologies from document index-
ing, we can say the specificity of a term set corre-
sponds to the discriminability of each term, and the
exhaustivity of a term set corresponds to the cov-
erage of each term.) The main difference among
these criteria is to what extent the discriminability is
emphasized or the coverage is emphasized. For in-
stance, empirically IG prefers high frequency terms
more than χ2 does, which means IG emphasizes the
coverage more than χ2 does.

The problem is, these criteria are nonparametric
and do the same ranking for any target dimensional-
ity. Small term sets meet the specificity–exhaustivity
dilemma. If really the sparseness is the main rea-
son of the low performance of a small term set, the
specificity should be moderately sacrificed to im-
prove the exhaustivity for a small term set; that is
to say, the term selection criterion should consider
coverage more than discriminability. Contrariwise,
coverage could be less considered for a large term

set, because we need worry little about the sparse-
ness problem and the computational cost might de-
crease.

The remainder of this paper is organized as fol-
lows: Section 2 describes the document collections
used in this study, as well as other experiment set-
tings; Section 3 investigates the relation between
sparseness (measured by average vector length) and
categorization accuracy; Section 4 explains the basic
idea of scalable term selection and proposed a poten-
tial approach; Section 5 carries out experiments to
evaluate the approach, during which some empirical
rules are observed to complete the approach; Sec-
tion 6 makes some further observations and discus-
sions based on Section 5; Section 7 gives a conclud-
ing remark.

2 Experiment Settings

2.1 Document Collections

Two document collections are used in this study.
CE (Chinese Encyclopedia): This is from the

electronic version of the Chinese Encyclopedia. We
choose a Chinese corpus as the primary document
collection because Chinese text (as well as other
Asian languages) has a very large term set and a
satisfying subset is usually not smaller than 50000
(Li et al., 2006); on the contrary, a dimensional-
ity lower than 10000 suffices a general English text
categorization (Yang and Pedersen, 1997; Rogati
and Yang, 2002). For computational cost reasons
mentioned in Section 1, Chinese text categorization
would benefit more from an high-performing ag-
gressive term selection. This collection contains 55
categories and 71674 documents (9:1 split to train-
ing set and test set). Each documents belongs to
only one category. Each category contains 399–
3374 documents. This collection was also used by
Li et al. (2006).

20NG (20 Newsgroups1): This classical English
document collection is chosen as a secondary in this
study to testify the generality of the proposed ap-
proach. Some figures about this collection are not
shown in this paper as the figures about CE, viz. Fig-
ure 1–4 because they are similar to CE’s.

1http://people.csail.mit.edu/jrennie/
20Newsgroups
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2.2 Other Settings
For CE collection, character bigrams are chosen to
be the indexing unit for its high performance (Li et
al., 2006); but the bigram term set suffers from its
high dimensionality. This is exactly the case we tend
to tackle. For 20NG collection, the indexing units
are stemmed2 words. Both term set are df -cut by
the most conservative threshold (df ≥ 2). The sizes
of the two candidate term sets are |TCE| = 1067717
and |T20NG| = 30220.

Term weighting is done by tfidf (ti, dj) =

log(tf (ti, dj) + 1) · log
(

df (ti)+1
Nd

)
3, in which ti de-

notes a term, dj denotes a document, Nd denotes the
total document number.

The classifiers used in this study are support
vector machines (Joachims, 1998; Gabrilovich and
Markovitch, 2004; Chang and Lin, 2001). The ker-
nel type is set to linear, which is fast and enough
for text categorization. Also, Brank et al. (2002)
pointed out that the complexity and sophistication of
the criterion itself is more important to the success
of the term selection method than its compatibility
in design with the classifier.

Performance is evaluated by microaveraged F1-
measure. For single-label tasks, microaveraged pre-
cision, recall and F1 have the same value.

χ2 is used as the term selection baseline for its
popularity and high performance. (IG was also re-
ported to be good. In our previous experiments, χ2

is generally superior to IG.) In this study, features
are always selected globally, which means the maxi-
mum are computed for category-specific values (Se-
bastiani, 2002).

3 Average Vector Length (AVL)

In this study, vector length (how many different
terms does the document hold after term selection)
is used as a straightforward sparseness measure for a
document (Brank et al., 2002). Generally, document
sizes have a lognormal distribution (Mitzenmacher,
2003). In our experiment, vector lengths are also
found to be nearly lognormal distributed, as shown
in Figure 1. If the correctly classified documents

2Stemming by Porter’s Stemmer (http://www.
tartarus.org/ martin/PorterStemmer/).

3In our experiments this form of tfidf always outperforms
the basic tfidf (ti, dj) = tf (ti, dj) · log

“
df (ti)+1

Nd

”
form.
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Figure 1: Vector Length Distributions (smoothed),
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Figure 2: Error Rate vs. Vector Length (smoothed),
on CE Collection, 5000 Dimensions by χ2

and the wrongly classified documents are separately
investigated, they both yield a nearly lognormal dis-
tribution.

Also in Figure 1, wrongly classified documents
shows a relatively large proportion at low dimen-
sionalities. Figure 2 demonstrates this with more
clarity. Thus the hypothesis formed in Section 1 is
confirmed: there is a strong correlation between the
sparseness degree and the categorization error rate.

Therefore, it is quite straightforward a thought to
measure the “sparseness of a term subset” (or more
precisely, the exhaustivity) by the corresponding av-
erage vector length (AVL) of all documents.4 In the

4Due to the lognormal distribution of vector length, it seems
more plausible to average the logarithmic vector length. How-
ever, for a fixed number of documents , log

P |dj |
|D| should hold

a nearly fixed ratio to
P

log |dj |
|D| , in which |D| denotes the doc-

ument number and |dj | denotes the document vector length.
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remainder of this paper, (log) AVL is an important
metric used to assess and control the sparseness of a
term subset.

4 Scalable Term Selection (STS)

Since the performance droping down at low dimen-
sionalities is attributable to low AVLs in the previous
section, a scalable term selection criterion should
automatically accommodate its favor of high cov-
erage to different target dimensionalities.

4.1 Measuring Discriminability and Coverage

The first step is to separately measure the discrim-
inability and the coverage of a term. A basic guide-
line is that these two metrics should not be highly
(positive) correlated; intuitively, they should have a
slight negative correlation. The correlation of the
two metrics can be visually estimated by the joint
distribution figure. A bunch of term selection met-
rics were explored by Forman (2003). df (document
frequency) is a straightforward choice to measure
coverage. Since df follows the Zipf’s law (inverse
power law), log(df ) is adopted. High-performing
term selection criterion themselves might not be
good candidates for the discriminability metric be-
cause they take coverage into account. For exam-
ple, Figure 3 shows that χ2 is not satisfying. (For
readability, the grayness is proportional to the log
probability density in Figure 3, Figure 4 and Fig-
ure 12.) Relatively, probability ratio (Forman, 2003)
is a more straight metric of discriminability.

PR(ti, c) =
P (ti|c+)
P (ti|c−)

=
df (ti, c+)/df (c+)
df (ti, c−)/df (c−)

It is a symmetric ratio, so log(PR) is likely to be
more appropriate. For multi-class categorization,
a global value can be assessed by PRmax(ti) =
maxc PR(ti, c), like χ2

max for χ2 (Yang and Ped-
ersen, 1997; Rogati and Yang, 2002; Sebastiani,
2002); for brief, PR denotes PRmax hereafter. The
joint distribution of log(PR) and log(df ) is shown in
Figure 12. We can see that the distribution is quite
even and they have a slight negative correlation.

4.2 Combined Criterion

Now we have the two metrics: log(PR) for discrim-
inability and log(df ) for coverage, and a parametric
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Figure 3:
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Distribution, on CE
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Figure 4: (log(df ), log(PR)) Distribution, on CE

term selection criterion comes forth:

ζ(ti;λ) =
(

λ

log(PR(ti))
+

1− λ

log(df (ti))

)−1

A weighted harmonic averaging is adopted here be-
cause either metric’s being too small is a severe
detriment. λ ∈ [0, 1] is the weight for log(PR),
which denotes how much the discriminability is
emphasized. When the dimensionality is fixed, a
smaller λ leads to a larger AVL and a larger λ leads
to a smaller AVL. The optimal λ should be a function
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of the expected dimensionality (k):

λ∗(k) = arg max
λ

F1(Sk(λ))

in which the term subset Sk(λ) ∈ T is selected by
ζ(◦;λ) , |Sk| = k, and F1 is the default evaluation
criterion. Naturally, this optimal λ leads to a corre-
sponding optimal AVL:

AVL∗(k) ←→ λ∗(k)

For a concrete implementation, we should have an
(empirical) function to estimate λ∗ or AVL∗:

AVL◦(k) .= AVL∗(k)

In the next section, the values of AVL∗ (as well as λ∗)
for some k-s are figured out by experimental search;
then an empirical formula, AVL◦(k), comes forth. It
is interesting and inspiring that by adding the “cor-
pus AVL” as a parameter this formula is universal
for different document collections, which makes the
whole idea valuable.

5 Experiments and Implementation

5.1 Experiments

The expected dimensionalities (k) chosen for exper-
imentation are
CE: 500, 1000, 2000, 4000, . . . , 32000, 64000;
20NG: 500, 1000, 2000, . . . , 16000, 30220.5

For a given document collection and a given target
dimensionality, there is a corresponding AVL for a λ,
and vice versa (for the possible value range of AVL).
According to the observations in Section 5.2, AVL
other than λ is the direct concern because it is more
intrinsic, but λ is the one that can be tuned directly.
So, in the experiments, we vary AVL by tuning λ to
produce it, which means to calculate λ(AVL).

AVL(λ) is a monotone function and fast to cal-
culate. For a given AVL, the corresponding λ can
be quickly found by a Newton iteration in [0,1]. In
fact, AVL(λ) is not a continuous function, so λ is
only tuned to get an acceptable match, e.g. within
±0.1.

5STS is tested to the whole T on 20NG but not on CE, be-
cause (i) TCE is too large and time consuming for training and
testing, and (ii) χ2 was previously tested on larger k and the
performance (F1) is not stable while k > 64000.

For each k, by the above way of fitting λ,
we manually adjust AVL (only in integers) until
F1(Sk(λ(AVL))) peaks. By this way, Figure 5–11
are manually tuned best-performing results as obser-
vations for figuring out the empirical formulas.

Figure 5 shows the F1 peaks at different dimen-
sionalities. Comparing to χ2, STS has a consid-
erable potential superiority at low dimensionalities.
The corresponding values of AVL∗ are shown in Fig-
ure 6, along with the AVLs of χ2-selected term sub-
sets. The dotted lines show the trend of AVL∗; at the
overall dimensionality, |TCE| = 1067717, they have
the same AVL = 898.5. We can see that log(AVL∗)
is almost proportional to log(k) when k is not too
large. The corresponding values of λ∗ are shown in
Figure 7; the relation is nearly linear between λ∗ and
log(k).

Now it is necessary to explain why an empirical
AVL◦(k) derived from the straight line in Figure 6
can be used instead of AVL∗(k) in practice. One
important but not plotted property is that the per-
formance of STS is not very sensitive to a small
value change of AVL. For instance, at k = 4000,
AVL∗ = 120 and the F1 peak is 85.8824%, and
for AVL = 110 and 130 the corresponding F1 are
85.8683% and 85.6583%; at the same k, the F1

of χ2 selection is 82.3950%. This characteristic of
STS guarantee that the empirical AVL◦(k) has a very
close performance to AVL∗(k); due to the limited
space, the performance curve of AVL◦(k) will not
be plotted in Section 5.2.

Same experiments are done on 20NG and the re-
sults are shown in Figure 8, Figure 9 and Figure 10.
The performance improvements is not as signifi-
cant as on the CE collection; this will be discussed
in Section 6.2. The conspicuous relations between
AVL∗, λ∗ and k remain the same.

5.2 Algorithm Completion

In Figure 6 and Figure 9, the ratios of log(AVL∗(k))
to log(k) are not the same on CE and 20NG. Tak-
ing into account the corpus AVL (the AVL produced
by the whole term set): AVLTCE = 898.5286 and
AVLT20NG = 82.1605, we guess log(AVL∗(k))

log(AVLT ) is ca-
pable of keeping the same ratio to log(k) for both
CE and 20NG. This hypothesis is confirmed (not for
too high dimensionalities) by Figure 11; Section 6.2
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contains some discussion on this.
From the figure, we get the value of this ratio (the

base of log is set to e):

γ =
log(AVL∗(k))/log(AVLT )

log(k)
∼= 0.085

which should be a universal constant for all text cat-
egorization tasks.

So the empirical estimation of AVL∗(k) is given
by

AVL◦(k) = exp(γ log(AVLT ) · log(k))

= AVL γ log(k)
T

and the final STS criterion is

ζ(ti, k) = ζ(ti;λ(AVL◦(k)))

= ζ(ti;λ(AVL γ log(k)
T ))

in which λ(◦) can be calculated as in Section 5.1.
The target dimensionality, k, is involved as a param-
eter, so the approach is named scalable term selec-
tion. As stated in Section 5.1, AVL◦(k) has a very
close performance to AVL∗(k) and its performance
is not plotted here.

6 Further Observation and Discussion

6.1 Comparing the Selected Subsets
An investigation shows that for a quite large range
of λ, term rankings by ζ(ti;λ) and χ2(ti) have a
strong correlation (the Spearman’s rank correlation
coefficient is bigger than 0.999). In order to com-
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pare the two criteria’s preferences for discriminabil-
ity and coverage, the selected subsets of different
dimensionalities are shown in Figure 12 (the cor-
responding term density distribution was shown in
Figure 4) and Figure 13. For different dimension-
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alities, the selection areas of STS are represented by
boundary lines, and the selection areas of χ2 are rep-
resented by different grayness.

In Figure 12, STS shows its superiority at low di-
mensionalities by more emphasis on the coverage
of terms. In Figure 13, STS shows its superior-
ity at high dimensionalities by more emphasis on
the discriminability of terms; lower coverage yields
smaller index size and lower computational cost.
At any dimensionality, STS yields a relatively fixed
bound for either discriminability or coverage, other
than a compromise between them like χ2; this is at-
tributable to the harmonic averaging.

6.2 Adaptability of STS
There are actually two kinds of sparseness in a (vec-
torized) document collection:
collection sparseness: the high-dimensional learn-

ing space contains few training samples;
document sparseness: a document vector has few

nonzero dimensions.
In this study, only the document sparseness is inves-
tigated. The collection sparseness might be a back-
room factor influencing the actual performance on
different document collections. This might explain
why the explicit characteristics of STS are not the
same on CE to 20NG: (comparing with χ2, see Fig-
ure 5, Figure 6, Figure 8 and Figure 9)

CE. The significant F1 improvements at low di-
mensionalities sacrifice the short of AVL. In some
learning process implementations, it is AVL other
than k that determines the computational cost; in
many other cases, k is the determinant. Further
more, possible post-processing, like matrix factor-
ization, might benefit from a low k.

20NG. The F1 improvements at low dimension-
alities is not quite significant, but AVL remains a
lower level. For higher k, there is less difference in
F1, but the smaller AVL yield lower computational
cost than χ2.

Nevertheless, STS shows a stable behavior for
various dimensionalities and quite different docu-
ment collections. The existence of the universal
constant γ empowers it to be adaptive and practi-
cal. As shown in Figure 11, STS draws the rela-
tive log AVL∗(k) to the same straight line, γ log(k),
for different document collections. This might
means that the relative AVL is an intrinsic demand

for the term subset size k.

7 Conclusion

In this paper, Scalable Term Selection (STS) is pro-
posed and supposed to be more adaptive than tra-
ditional high-performing criteria, viz. χ2, IG, BNS,
etc. The basic idea of STS is to separately measure
discriminability and coverage, and adjust the relative
importance between them to produce a optimal term
subset of a given size. Empirically, the constant re-
lation between target dimensionality and the optimal
relative average vector length is found, which turned
the idea into implementation.

STS showed considerable adaptivity and stability
for various dimensionalities and quite different doc-
ument collections. The categorization accuracy in-
creasing at low dimensionalities and the computa-
tional cost decreasing at high dimensionalities were
observed.

Some observations are notable: the loglinear rela-
tion between optimal average vector length (AVL∗)
and dimensionality (k), the semi-loglinear relation
between weight λ and dimensionality, and the uni-
versal constant γ. For a future work, STS needs to be
conducted on more document collections to check if
γ is really universal.

In addition, there could be other implementations
of the general STS idea, via other metrics of discrim-
inability and coverage, other weighted combination
forms, or other term subset evaluations.
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Abstract 

In this paper, we analyze the effect of 
resampling techniques, including under-
sampling and over-sampling used in active 
learning for word sense disambiguation 
(WSD). Experimental results show that un-
der-sampling causes negative effects on ac-
tive learning, but over-sampling is a rela-
tively good choice. To alleviate the within-
class imbalance problem of over-sampling, 
we propose a bootstrap-based over-
sampling (BootOS) method that works bet-
ter than ordinary over-sampling in active 
learning for WSD. Finally, we investigate 
when to stop active learning, and adopt two 
strategies, max-confidence and min-error, 
as stopping conditions for active learning. 
According to experimental results, we sug-
gest a prediction solution by considering 
max-confidence as the upper bound and 
min-error as the lower bound for stopping 
conditions. 

1 Introduction 

Word sense ambiguity is a major obstacle to accu-
rate information extraction, summarization, and 
machine translation (Ide and Veronis, 1998). In 
recent years, a variety of techniques for machine 
learning algorithms have demonstrated remarkable 
performance for automated word sense disam-
biguation (WSD) (Chan and Ng, 2006; Dagan et. 
al., 2006; Xue et. al., 2006; Kohomban and Lee. 
2005; Dang and Palmer, 2005), when enough la-
beled training data is available. However, creating 

a large sense-tagged corpus is very expensive and 
time-consuming, because these data have to be an-
notated by human experts.  

Among the techniques to solve the knowledge 
bottleneck problem, active learning is a promising 
way (Lewis and Gale, 1994; McCallum and Ni-
gram, 1998). The purpose of active learning is to 
minimize the amount of human labeling effort by 
having the system automatically select for human 
annotation the most informative unannotated case.  

In real-world data, the distribution of the senses 
of a word is often very skewed. Some studies re-
ported that simply selecting the predominant sense 
provides superior performance, when a highly 
skewed sense distribution and insufficient context 
exist (Hoste et al., 2001; McCarthy et. al., 2004). 
The data set is imbalanced when at least one of the 
senses is heavily underrepresented compared to the 
other senses. In general, a WSD classifier is de-
signed to optimize overall accuracy without taking 
into account the class imbalance distribution in a 
real-world data set. The result is that the classifier 
induced from imbalanced data tends to over-fit the 
predominant class and to ignore small classes 
(Japkowicz and Stephen, 2002). Recently, much 
work has been done in addressing the class 
imbalance problem, reporting that resampling 
methods such as over-sampling and under-
sampling are useful in supervised learning with 
imbalanced data sets to induce more effective 
classifiers (Estabrooks et al., 2004; Zhou and Liu, 
2006).  

In general framework of active learning, the 
learner (i.e. supervised classifier) is formed by us-
ing supervised learning algorithms. To date, how-
ever, no-one has studied the effects of over-
sampling and under-sampling on active learning 
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methods. In this paper, we study active learning 
with resampling methods addressing the class im-
balance problem for WSD. It is noteworthy that 
neither of these techniques need modify the 
architecture or learning algorithm, making them 
very easy to use and extend to other domains. 

Another problem in active learning is  knowing 
when to stop the process. We address this problem 
in this paper, and discuss how to form the final 
classifier for use. This is a problem of estimation 
of classifier effectiveness (Lewis and Gale, 1994). 
Because it is difficult to know when the classifier 
reaches maximum effectiveness, previous work 
used a simple stopping condition when the training 
set reaches desirable size. However, in fact it is 
almost impossible to predefine an appropriate size 
of desirable training data for inducing the most 
effective classifier. To solve the problem, we 
consider the problem of estimation of classifier 
effectiveness as a second task of estimating 
classifier confidence. This paper adopts two 
strategies: max-confidence and min-error, and sug-
gests a prediction solution by considering max-
confidence as the upper bound and min-error as the 
lower bound for the stopping conditions. 

2 Related Work 

The ability of the active learner can be referred to 
as selective sampling, of which two major schemes 
exist: uncertainty sampling and committee-based 
sampling. The former method, for example pro-
posed by Lewis and Gale (1994), is to use only one 
classifier to identify unlabeled examples on which 
the classifier is least confident. The latter method 
(McCallum and Nigam, 1998) generates a commit-
tee of classifiers (always more than two classifiers) 
and selects the next unlabeled example by the prin-
ciple of maximal disagreement among these classi-
fiers. With selective sampling, the size of the train-
ing data can be significantly reduced for text 
classification (Lewis and Gale, 1994; McCallum 
and Nigam, 1998), and word sense disambiguation 
(Chen, et al. 2006).  

A method similar to committee-based sampling 
is co-testing proposed by Muslea et al. (2000), 
which trains two learners individually on two 
compatible and uncorrelated views that should be 
able to reach the same classification accuracy. In 
practice, however, these conditions of view selec-

tion are difficult to meet in real-world word sense 
disambiguation tasks.  

Recently, much work has been done on the class 
imbalance problem. The well-known approach is 
resampling, in which some training material is du-
plicated. Two types of popular resampling methods 
exist for addressing the class imbalance problem: 
over-sampling and under-sampling. The basic idea 
of resampling methods is to change the training 
data distribution and make the data more balanced. 
It works ok in supervised learning, but has not 
been tested in active learning. Previous work re-
ports that cost-sensitive learning is a good solution 
to the class imbalance problem (Weiss, 2004). In 
practice, for WSD, the costs of various senses of a 
disambiguated word are unequal and unknown, 
and they are difficult to evaluate in the process of 
learning.   

In recent years, there have been attempts to ap-
ply active learning for word sense disambiguation 
(Chen et al., 2006). However, to our best knowl-
edge, there has been no such attempt to consider 
the class imbalance problem in the process of ac-
tive learning for WSD tasks. 

3 Resampling Methods 

3.1 Under-sampling 

Under-sampling is a popular method in addressing 
the class imbalance problem by changing the train-
ing data distribution by removing some exemplars 
of the majority class at random. Some previous 
work reported that under-sampling is effective in 
learning on large imbalanced data sets (Japkowicz 
and Stephen, 2002). However, as under-sampling 
removes some potentially useful training samples, 
it could cause negative effects on the classifier per-
formance.  

One-sided sampling is a method similar to un-
der-sampling, in which redundant and borderline 
training examples are identified and removed from 
training data (Kubat and Matwin, 1997). Kuban 
and Matwin reported that one-sided sampling is 
effective in learning with two-class large imbal-
anced data sets. However, the relative computa-
tional cost of one-sided sampling in active learning 
is very high, because sampling computations must 
be implemented for each learning iteration. Our 
primitive experimental results show that, in the 
multi-class problem of WSD, one-sided sampling 
degrades the performance of active learning. And 
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due to the high computation complexity of one-
sided sampling, we use random under-sampling in 
our comparison experiments instead.  

To control the degree of change of the training 
data distribution, the ratio of examples from the 
majority and the minority class after removal from 
the majority class is called the removal rate (Jo 
and Japkowicz, 2004). If the removal rate is 1.0, 
then under-sampling methods build data sets with 
complete class balance. However, it was reported 
previously that perfect balance is not always the 
optimal rate (Estabrooks et al., 2004). In our com-
parison experiments, we set the removal rate for 
under-sampling to 0.8, since some cases have 0.8 
as the optimal rate reported in (Estabrooks et al., 
2004). 

3.2 Over-sampling 

Over-sampling is also a popular method in ad-
dressing the class imbalance problem by resam-
pling the small class until it contains as many ex-
amples as the large one. In contrast to under-
sampling, over-sampling is the process of adding 
examples to the minority class, and is accom-
plished by random sampling and duplication. Be-
cause the process of over-sampling involves 
making exact copies of examples, it usually in-
creases the training cost and may lead to overfit-
ting. There is a recent variant of over-sampling 
named SMOTE (Chawla et al., 2002) which is a 
synthetic minority over-sampling technique. The 
authors reported that a combination of SMOTE 
and under-sampling can achieve better classifier 
performance in ROC space than only under-
sampling the majority class. 

In our comparison experiments, we use over-
sampling, measured by a resampling rate called the 
addition rate (Jo and Japkowicz, 2004) that indi-
cates the number of examples that should be added 
into the minority class. The addition rate for over-
sampling is also set to 0.8 in our experiments. 

3.3 Bootstrap-based Over-sampling 

While over-sampling decreases the between-class 
imbalance, it increases the within-class imbalance 
(Jo and Japkowicz, 2004) because of the increase 
of exact copies of examples at random. To allevi-
ate this within-class imbalance problem, we pro-
pose a bootstrap-based over-sampling method 
(BootOS) that uses a bootstrap resampling tech-
nique in the process of over-sampling.  Bootstrap-

ping, explained below, is a resampling technique 
similar to jackknifing.  

There are two reasons for choosing a bootstrap 
method as resampling technique in the process of 
over-sampling. First, using a bootstrap set can 
avoid exactly copying samples in the minority 
class. Second, the bootstrap method may give a 
smoothing of the distribution of the training sam-
ples (Hamamoto et al., 1997), which can alleviate 
the within-class imbalance problem cased by over-
sampling.  

To generate the bootstrap set, we use a well-
known bootstrap technique proposed by Hama-
moto et al. (1997) that does not select samples ran-
domly, allowing all samples in the minority 
class(es) an equal chance to be selected.  

Algorithm BootOS(X, N, r, k) 
Input: Minority class sample set X={x1, x2, …, xn} of 
size n; Difference in number of examples between the 
majority and the minority class = N; Addition rate = r 
(< 1.0); Number of nearest neighbors = k. 
Output: bootstrap sample set XB of size N*r 
=X (xB1, xB2, …, xB(N*r)). ∪
1. For i = 1 To N*r 
2.       If i == n then (*all samples in minority class 

sample set have been used*) 
3.             j = 1; //the first sample is selected again  
4.       Else     
5.             j = i; // the i-th sample is selected 
6.       Endif 
7.       Select j-th sample xj (also as xj,0) from X 
8.       Find the k nearest neighbor samples xj,1, xj,2, 

…, xj,k using similarity functions. 
9.       Compute a bootstrap sample xBi: 

,01
k

Bi j ll

1x x
k =

=
+ ∑  

10. Endfor 
11. return 

Figure 1. The BootOS algorithm 

4 Active Learning with Resampling 

In this work, we are interested in selective sam-
pling for pool-based active learning, and focus on 
uncertainty sampling (Lewis and Gale, 1994). The 
key point is how to measure the uncertainty of an 
unlabeled exemplar, and select a new exemplar 
with maximum uncertainty to augment the training 
data. The maximum uncertainty implies that the 
current classifier has the least confidence in its 
classification of this exemplar. The well-known 
entropy is a good uncertainty measurement widely 
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used in active learning (zhang and Chen, 2002; 
Chen et al., 2006): 

1
( ) ( ) ( | ) log ( | )i j i j

j
U i H P p s w p s w

=

= = −∑
in

i    (1) 

where U is the uncertainty measurement function 
H represents the entropy function. In the WSD 
task, p(sj|wi) is the predicted probability of sense sj 
outputted by the current classifier, when given a 
sample i containing a disambiguated word wi.  
Algorithm Active-Learning-with-Resampling(L,U,m) 
Input: Let L be initial small training data set; U the 
pool of unlabeled exemplars 
Output: labeled training data set L 
1. Resample L to generate new training data set L* 

using resampling techniques such as under-
sampling, over-sampling or BootOS, and then use 
L* to train the initial classifier 

2. Loop while adding new instances into L 
a. use the current classifier to probabilistically la-

bel all unlabeled exemplars in U 
b. Based on active learning rules, present m top-

ranked exemplars to oracle for labeling 
c. Augment L with the m new exemplars, and re-

move them from U 
d. Resample L to generate new training data set 

L* using resampling techniques such as under-
sampling, over-sampling, or BootOS, and use 
L* to retrain the current classifier         

3. Until the predefined stopping condition is met. 
4. return 
Figure 2. Active learning with resampling 
 

In step 1 and 2(d) in Fig. 2, if we do not gener-
ate L*, and L is used directly to train the current 
classifier, we call it ordinary active learning. In the 
process of active learning, we used the entropy-
based uncertainty measurement for all active learn-
ing frameworks in our comparison experiments. 
Actually our active learning with resampling is a 
heterogeneous approach in which the classifier 
used to select new instances is different from the 
resulting classifier (Lewis and Catlett, 1994).  

We utilize a maximum entropy (ME) model 
(Berger et al., 1996) to design the basic classifier 
used in active learning for WSD. The advantage of 
the ME model is the ability to freely incorporate 
features from diverse sources into a single, well-
grounded statistical model. A publicly available 
ME toolkit (Zhang et. al., 2004) was used in our 
experiments. In order to extract the linguistic fea-
tures necessary for the ME model, all sentences 
containing the target word were automatically part-

of-speech (POS) tagged using the Brill POS tagger 
(Brill, 1992). Three knowledge sources were used 
to capture contextual information: unordered single 
words in topical context, POS of neighboring 
words with position information, and local colloca-
tions.  These are same as three of the four knowl-
edge sources used in (Lee and Ng, 2002). Their 
fourth knowledge source (named syntactic rela-
tions) was not used in our work. 

5 Stopping Conditions 

In active learning algorithm, defining the stopping 
condition for active learning is a critical problem, 
because it is almost impossible for the human an-
notator to label all unlabeled samples. This is a 
problem of estimation of classifier effectiveness 
(Lewis and Gale 1994). In fact, it is difficult to 
know when the classifier reaches maximum 
effectiveness. In previous work some researchers 
used a simple stopping condition when the training 
set reached a predefined desired size. It is almost 
impossible to predefine an appropriate size of 
desirable training data for inducing the most 
effective classifier.  

To solve the problem, we consider the problem 
of estimating  classifier effectiveness as the 
problem of confidence estimation of classifier on 
the remaining unlabeled samples. Concretely, if we 
find that the current classifier already has 
acceptably strong confidence on its classification 
results for all remained unlabeled data, we assume 
the current training data is sufficient to train the 
classifier with maximum effectiveness. In other 
words, if a classifier induced from the current 
training data has strong classification confidence 
on an unlabeled example, we could consider it as a 
redundant example. 

Based on above analyses, we adopt here two 
stopping conditions for active learning: 
• Max-confidence: This strategy is based on 

uncertainty measurement, considering whether 
the entropy of each selected unlabeled example 
is less than a very small predefined threshold 
close to zero, such as 0.001.  

• Min-error: This strategy is based on feedback 
from the oracle when the active learner asks 
for true labels for selected unlabeled examples, 
considering whether the current trained 
classifier could correctly predict the labels or 
the accuracy performance of predictions on 
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selected unlabeled examples is already larger 
than a predefined accuacy threshold. 

Once max-confidence and min-error conditions 
are met, the current classifier is assumed to have 
strong enough confidence on the classification 
results of all remained unlabeled data. 

6 Evaluation 

6.1 Data 

The data used for our comparison experiments 
were developed as part of the OntoNotes project 
(Hovy et al., 2006), which uses the WSJ part of the 
Penn Treebank (Marcus et al., 1993). The senses 
of noun words occurring in OntoNotes are linked 
to the Omega ontology. In OntoNotes, at least two 
humans manually annotate the coarse-grained 
senses of selected nouns and verbs in their natural 
sentence context. To date, OntoNotes has 
annotated several tens of thousands of examples, 
covering several hundred nouns and verbs, with an 
inter-annotator agreement rate of at least 90%.   

Those 38 random chosen ambiguous nouns used 
in all following experiments are shown in Table 1. 
It is apparent that the sense distributions of most 
nouns are very skewed (frequencies shown in the 
table, separated by /). 
Words sense distribution  words sense distribution 
Rate 1025/182 president 936/157/17 
People 815/67/7/5 part 456/102/75/16 
Point 471/88/37/19/9/6 director 517/23 
Revenue 517/23 bill 348/130/40 
Future 413/82/23 order 354/61/54/6/6 
Plant 376/51 board 369/15 
Today 238/149 policy 308/74 
Capital 325/21/8 term 147/137/52/13 
management 210/130 move 302/13/5 
Position 97/75/67/61/10/7 amount 236/57/16 
Home 267/17/16 power 154/134/15 
Leader 244/38 return 191/35/29/12/9 
administration 266/11 payment 201/69 
Account 233/18/13 control 90/66/64/21/12/5 
Lot 221/20 activity 218/23 
Drug 160/74 building 177/48/5 
Estate 214/11 house 112/71/25 
development 165/46/6 network 127/53/29 
Strategy 198/11 place 69/63/50/18/5 
Table 1. Data set used in experiments 

6.2 Results 

In the following active learning comparison 
experiments, we tested with five resampling 
methods including random sampling (Random), 
uncertainty sampling (Ordinary), under-sampling, 
over-sampling, and BootOS. The 1-NN technique 

was used for bootstrap-based resampling of 
BootOS in our experiments. A 5 by 5-fold cross-
validation was performed on each noun’s data.  

We used 20% randomly chosen data for held-out 
evaluation  and the other 80% as the pool of 
unlabeled data for each round of the active 
learning.  For all words, we started with a 
randomly chosen initial training set of 10 
examples, and we made 10 queries after each 
learning iteration.  

In the evaluation, average accuracy and recall 
are used as measures of performances for each 
active learning method. Note that the macro-
average way is adopted for recall evaluation in 
each noun WSD task. The accuracy measure 
indicates the percentage of testing instances 
correctly identified by the system. The macro-
average recall measure indicates how well the 
system performs on each sense.   

 
Experiment 1: Performance comparison ex-
periments on active learning 
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Figure 3. Average accuracy performance com-

parison experiments 
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Figure 4. Average recall performance comparison 
experiments 
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As shown in Fig. 3 and Fig. 4, when the number of 
learned samples for each noun is smaller than 120, 
the BootOS has the best performance, followed by 
over-sampling and ordinary method. As the num-
ber of learned samples increases, ordinary, over-
sampling and BootOS have similar performances 
on accuracy and recall. Our experiments also ex-
hibit that random sampling method is the worst on 
both accuracy and recall.  

Previous work (Estabrooks et al., 2004) reported 
that under-sampling of the majority class (pre-
dominant sense) has been proposed as a good 
means of increasing the sensitivity of a classifier to 
the minority class (infrequent sense). However, in 
our active learning experiments, under-sampling is 
apparently worse than ordinary, over-sampling and 
our BootOS. The reason is that in highly imbal-
anced data, too many useful training samples of 
majority class are discarded in under-sampling, 
causing the performance of active learning to de-
grade.  
 
Experiment 2: Effectiveness of learning in-
stances for infrequent senses 
It is important to enrich the corpora by learning 
more instances for infrequent senses using active 
learning with less human labeling. This procedure 
not only makes the corpora ‘richer’, but also 
alleviates  the domain dependence problem faced 
by corpus-based supervised approaches to WSD.  

The objective of this experiment is to evaluate 
the performance of active learning in learning 
samples of infrequent senses from an unlabeled 
corpus. Due to highly skewed word sense 
distributions in our data set, we consider all senses 
other than the predominant sense as infrequent 
senses in this experiment.  
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Figure 5. Comparison experiments on learning in-
stances for infrequent senses 

Fig. 5 shows that random sampling is the worst 
in active learning for infrequent senses. The reason 
is very obvious: the sense distribution of the 
learned sample set by random sampling is almost 
identical to that of the original data set. 

 Under-sampling is apparently worse than ordi-
nary active learning, over-sampling and BootOS 
methods. When the number of learned samples for 
each noun is smaller than 80, BootOS achieves 
slight better performance than ordinary active 
learning and over-sampling.  

When the number of learned samples is larger 
than 80 and smaller than 160, these three methods 
exhibit similar performance. As the number of it-
erations increases, ordinary active learning is 
slightly better than over-sampling and BootOS. In 
fact, after the 16th iteration (10 samples chosen in 
each iteration), results indicate that most instances 
for infrequent senses have been learned.  
 
Experiment 3: Effectiveness of Stopping Condi-
tions for active learning 
To evaluate the effectiveness of two strategies 
max-confidence and min-error as stopping condi-
tions of active learning, we first construct an ideal 
stopping condition when the classifier could reach 
the highest accuracy performance at the first time 
in the procedure of active learning. When the ideal 
stopping condition is met, it means that the current 
classifier has reached maximum effectiveness. In 
practice, it is impossible to exactly know when the 
ideal stopping condition is met before all unlabeled 
data are labeled by a human annotator. We only 
use this ideal method in our comparison experi-
ments to analyze the effectiveness of our two pro-
posed stopping conditions. 

For general purpose, we focus on the ordinary 
active learning to design the basic system, and to 
evaluate the effectiveness of three stop conditions. 
In the following experiments, the entropy threshold 
used in max-confidence strategy is set to 0.001, and 
the accuracy threshold used in min-error strategy 
is set to 0.9.   

In Table 2, the column “Size” stands for the size 
of unlabeled data set of corresponding noun word 
used in active learning. There are two columns for 
each stopping condition: the left column “num” 
presents number of learned instances and the right 
column “%” presents its percentage over all data 
when the corresponding stopping condition is met. 
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Ideal Max-
confidence Min-error 

Words Size 
num % num % num % 

Rate 966 200 .23 410 .41 290 .29 
People 715 140 .20 290 .41 200 .28 
Point 504 90 .18 220 .44 120 .24 
Revenue 432 70 .16 110 .25 80 .19 
Future 414 120 .29 140 .34 60 .14 
Plant 342 210 .61 180 .53 110 .32 
Today 382 250 .65 240 .63 230 .60 
Capital 283 70 .25 180 .64 90 .32 
Management 272 200 .74 210 .77 210 .77 
Position 254 210 .83 230 .91 220 .87 
Home 240 60 .25 160 .67 60 .25 
Leader 226 60 .27 120 .53 70 .31 
administration 222 30 .14 90 .41 50 .23 
Account 211 50 .24 130 .62 70 .33 
Lot 185 30 .16 60 .32 40 .22 
Drug 187 130 .70 140 .75 120 .64 
Estate 180 20 .11 50 .28 30 .17 
Development 174 40 .23 150 .86 80 .46 
Strategy 167 10 .06 100 .60 10 .06 
President 888 120 .14 220 .25 120 .14 
Part 519 110 .21 240 .46 130 .25 
Director 432 110 .25 130 .30 90 .21 
Bill 414 120 .29 280 .68 150 .36 
Order 385 130 .34 220 .57 140 .36 
Board 307 40 .13 190 .62 40 .13 
Policy 306 90 .29 200 .65 150 .49 
Term 279 120 .43 190 .68 130 .47 
Move 256 50 .20 140 .55 50 .20 
Amount 247 210 .85 200 .81 140 .57 
Power 242 190 .78 190 .78 190 .78 
Return 221 90 .41 160 .72 100 .45 
Payment 216 120 .56 160 .74 150 .69 
Control 206 160 .78 200 .97 200 .97 
Activity 193 30 .16 130 .67 70 .36 
Building 184 90 .49 130 .71 110 .60 
House 166 100 .60 150 .90 110 .66 
Network 167 110 .66 130 .78 100 .60 
Place 164 120 .73 150 .91 120 .73 

Table 2 Effectiveness of three stopping conditions 
 

As shown in Table 2, the min-error strategy 
based on feedback of human annotator is very 
close to the ideal method. Therefore, when com-
paring to ideal stopping condition, min-error strat-
egy is a good choice as stopping condition for ac-
tive learning. It is important to note that the min-
error method does not need more additional 
computational costs, it only depends upon the 
feedback of human annotator when labeling the 
chosen unlabeled samples.   

From experimental results, we can see that max-
confidence strategy is worse than min-error 
method. However, we believe that the entropy of 
each unlabeled sample is a good signal to stop ac-
tive learning. So we suggest that there may be a 
good prediction solution in which the min-error 
strategy is used as the lower-bound of stopping 
condition, and max-confidence strategy as the up-
per-bound of stopping condition for active learning. 

7 Discussion 

As discussed above, finding more instances for 
infrequent senses at the earlier stages of active 
learning is very significant in making the corpus 
richer, meaning less effort for human labeling. In 
practice, another way to learn more instances for 
infrequent senses is to first build a training data set 
by active learning or by human efforts, and then 
build a supervised classifier to find more instances 
for infrequent sense. However, it is interesting to 
know how much initial training data is enough for 
this task, and how much human labeling efforts 
could be saved.  

From experimental results, we found that among 
these chosen unlabeled instances by active learner, 
some instances are informative samples helpful for 
improving classification performance, and other 
instances are borderline samples which are unreli-
able because even a small amount of noise can lead 
the sample to the wrong side of the decision 
boundary. The removal of these borderline samples 
might improve the performance of active learning. 

The proposed prediction solution based on max-
confidence and min-error strategies is a coarse 
framework. To predict when to stop active learning 
procedure, it is logical to consider the changes of 
accuracy performance of the classifier as a signal 
to stop the learning iteration. In other words, dur-
ing the range predicted by the proposed solution, if 
the change of accuracy performance of the learner 
(classifier) is very small, we could assume that the 
current classifier has reached maximum effective-
ness. 

8 Conclusion and Future Work 

In this paper, we consider the class imbalance 
problem in WSD tasks, and analyze the effect of 
resampling techniques including over-sampling 
and under-sampling in active learning. Experimen-
tal results show that over-sampling is a relatively 
good choice in active learning for WSD in highly 
imbalanced data. Under-sampling causes negative 
effect on active learning. A new over-sampling 
method named BootOS based on bootstrap tech-
nique is proposed to alleviate the within-class im-
balance problem of over-sampling, and works bet-
ter than ordinary over-sampling in active learning 
for WSD. It is noteworthy that none of these 
techniques require to modify the architecture or 
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learning algorithm; therefore, they are very easy to 
use and extend to other applications. To predict 
when to stop active learning, we adopt two 
strategies including max-confidence and min-error 
as stopping conditions. According to our 
experimental results, we suggest a prediction 
solution by considering max-confidence as the 
upper bound and min-error as the lower bound of 
stopping conditions for active learning.  

In the future work, we will study how to exactly 
identify these borderline samples thus they are not 
firstly selected in active learning procedure. The 
borderline samples have the higher entropy values 
meaning least confident for the current classifier. 
The borderline instances can be detected using the 
concept of Tomek links (Tomek 1976). It is also 
worth studying cost-sensitive learning for active 
learning with imbalanced data, and using such 
techniques for WSD. 
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Abstract

This paper proposes a framework for
semi-supervised structured output learning
(SOL), specifically for sequence labeling,
based on a hybrid generative and discrim-
inative approach. We define the objective
function of our hybrid model, which is writ-
ten in log-linear form, by discriminatively
combining discriminative structured predic-
tor(s) with generative model(s) that incor-
porate unlabeled data. Then, unlabeled
data is used in a generative manner to in-
crease the sum of the discriminant functions
for all outputs during the parameter estima-
tion. Experiments on named entity recogni-
tion (CoNLL-2003) and syntactic chunking
(CoNLL-2000) data show that our hybrid
model significantly outperforms the state-
of-the-art performance obtained with super-
vised SOL methods, such as conditional ran-
dom fields (CRFs).

1 Introduction

Structured output learning (SOL) methods, which
attempt to optimize an interdependent output space
globally, are important methodologies for certain
natural language processing (NLP) tasks such as
part-of-speech tagging, syntactic chunking (Chunk-
ing) and named entity recognition (NER), which are
also referred to as sequence labeling tasks. When we
consider the nature of these sequence labeling tasks,
a semi-supervised approach appears to be more nat-
ural and appropriate. This is because the number of
features and parameters typically become extremely
large, and labeled examples can only sparsely cover
the parameter space, even if thousands of labeled ex-

amples are available. In fact, many attempts have re-
cently been made to develop semi-supervised SOL
methods (Zhu et al., 2003; Li and McCallum, 2005;
Altun et al., 2005; Jiao et al., 2006; Brefeld and
Scheffer, 2006).

With the generative approach, we can easily in-
corporate unlabeled data into probabilistic models
with the help of expectation-maximization (EM) al-
gorithms (Dempster et al., 1977). For example, the
Baum-Welch algorithm is a well-known algorithm
for training a hidden Markov model (HMM) of se-
quence learning. Generally, with sequence learning
tasks such as NER and Chunking, we cannot expect
to obtain better performance than that obtained us-
ing discriminative approaches in supervised learning
settings.

In contrast to the generative approach, with the
discriminative approach, it is not obvious how un-
labeled training data can be naturally incorporated
into a discriminative training criterion. For ex-
ample, the effect of unlabeled data will be elimi-
nated from the objective function if the unlabeled
data is directly used in traditional i.i.d. conditional-
probability models. Nevertheless, several attempts
have recently been made to incorporate unlabeled
data in the discriminative approach. An approach
based on pairwise similarities, which encourage
nearby data points to have the same class label, has
been proposed as a way of incorporating unlabeled
data discriminatively (Zhu et al., 2003; Altun et al.,
2005; Brefeld and Scheffer, 2006). However, this
approach generally requires joint inference over the
whole data set for prediction, which is not practi-
cal as regards the large data sets used for standard
sequence labeling tasks in NLP. Another discrim-
inative approach to semi-supervised SOL involves
the incorporation of an entropy regularizer (Grand-
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valet and Bengio, 2004). Semi-supervised condi-
tional random fields (CRFs) based on a minimum
entropy regularizer (SS-CRF-MER) have been pro-
posed in (Jiao et al., 2006). With this approach, the
parameter is estimated to maximize the likelihood of
labeled data and the negative conditional entropy of
unlabeled data. Therefore, the structured predictor
is trained to separate unlabeled data well under the
entropy criterion by parameter estimation.

In contrast to these previous studies, this paper
proposes a semi-supervised SOL framework based
on a hybrid generative and discriminative approach.
A hybrid approach was first proposed in a super-
vised learning setting (Raina et al., 2003) for text
classification. (Fujino et al., 2005) have developed a
semi-supervised approach by discriminatively com-
bining a supervised classifier with generative mod-
els that incorporate unlabeled data. We extend this
framework to the structured output domain, specifi-
cally for sequence labeling tasks. Moreover, we re-
formalize the objective function to allow the incor-
poration of discriminative models (structured pre-
dictors) trained from labeled data, since the original
framework only considers the combination of gen-
erative classifiers. As a result, our hybrid model can
significantly improve on the state-of-the-art perfor-
mance obtained with supervised SOL methods, such
as CRFs, even if a large amount of labeled data is
available, as shown in our experiments on CoNLL-
2003 NER and CoNLL-2000 Chunking data. In
addition, compared with SS-CRF-MER, our hybrid
model has several good characteristics including a
low calculation cost and a robust optimization in
terms of a sensitiveness of hyper-parameters. This
is described in detail in Section 5.3.

2 Supervised SOL: CRFs

This paper focuses solely on sequence labeling
tasks, such as named entity recognition (NER) and
syntactic chunking (Chunking), as SOL problems.
Thus, letx=(x1, . . . , xS)∈X be an input sequence,
andy=(y0, . . . , yS+1)∈Y be a particular output se-
quence, wherey0 andyS+1 are special fixed labels
that represent the beginning and end of a sequence.

As regards supervised sequence learning, CRFs
are recently introduced methods that constitute flex-
ible and powerful models for structured predictors
based on undirected graphical models that have been

globally conditioned on a set of inputs (Lafferty
et al., 2001). Letλ be a parameter vector and
f(ys−1, ys, x) be a (local) feature vector obtained
from the corresponding positions given x. CRFs
define the conditional probability,p(y|x), as being
proportional to a product of potential functions on
the cliques. That is,p(y|x) on a (linear-chain) CRF
can be defined as follows:

p(y|x; λ) =
1

Z(x)

S+1∏

s=1

exp(λ · f (ys−1, ys, x)).

Z(x) =
∑

y

∏S+1
s=1 exp(λ · f(ys−1, ys, x)) is a nor-

malization factor over all output values,Y, and is
also known as the partition function.

For parameter estimation (training), given labeled
dataDl = {(xk, yk)}K

k=1, the Maximum a Posteri-
ori (MAP) parameter estimation, namely maximiz-
ing log p(λ|Dl), is now the most widely used CRF
training criterion. Thus, we maximize the following
objective function to obtain optimalλ:

LCRF(λ) =
∑

k

[
λ ·

∑

s

f s − log Z(xk)
]

+ log p(λ), (1)

wheref s is an abbreviation off(ys−1, ys, x) and
p(λ) is a prior probability distribution ofλ. A
gradient-based optimization algorithm such as L-
BFGS (Liu and Nocedal, 1989) is widely used for
maximizing Equation (1). The gradient of Equation
(1) can be written as follows:

∇LCRF(λ) =
∑

k

Ep̃(yk,xk;λ)

[∑

s

f s

]

−
∑

k

Ep(Y|xk;λ)

[∑

s

f s

]
+∇ log p(λ).

CalculatingEp(Y|x,λ) as well as the partition func-
tion Z(x) is not always tractable. However, for
linear-chain CRFs, a dynamic programming algo-
rithm similar in nature to the forward-backward al-
gorithm in HMMs has already been developed for
an efficient calculation (Lafferty et al., 2001).

For prediction, the most probable output, that is,
ŷ = arg maxy∈Y p(y|x; λ), can be efficiently ob-
tained by using the Viterbi algorithm.

3 Hybrid Generative and Discriminative
Approach to Semi-Supervised SOL

In this section, we describe our formulation of a
hybrid approach to SOL and a parameter estima-
tion method for sequence predictors. We assume
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that we have a set of labeled and unlabeled data,
D = {Dl,Du}, whereDl = {(xn, yn)}N

n=1 and
Du = {xm}M

m=1.
Let us assume that we haveI-units of discrimina-

tive models,pD
i , andJ-units of generative models,

pG
j . Our hybrid model for a structured predictor is

designed by the discriminative combination of sev-
eral joint probability densities ofx andy, p(x, y).
That is, the posterior probability of our hybrid model
is defined by providing the log-values ofp(x, y) as
the features of a log-linear model, such that:

R(y|x;Λ,Θ,Γ)

=

∏
i
pD

i (x, y; λi)
γi

∏
j
pG

j (x, y; θj)
γj

∑
y

∏
i
pD

i (x, y; λi)γi
∏

j
pG

j (x, y; θj)γj

=

∏
i
pD

i (y|x; λi)
γi

∏
j
pG

j (x, y; θj)
γj

∑
y

∏
i
pD

i (y|x; λi)γi
∏

j
pG

j (x, y; θj)γj
.

(2)

Here, Γ = {{γi}I
i=1, {γj}I+J

j=I+1} represents the
discriminative combination weight of each model
whereγi,γj∈ [0, 1]. Moreover,Λ={λi}I

i=1 andΘ=
{θj}J

j=1 represent model parameters of individual
models estimated from labeled and unlabeled data,
respectively. UsingpD(x,y) = pD(y|x)pD(x), we
can derive the third line from the second line, where
pD

i (x; λi)γi for all i are canceled out. Thus, our hy-
brid model is constructed by combining discrimina-
tive models,pD

i (y|x; λi), with generative models,
pG

j (x, y; θj).
Hereafter, let us assume that our hybrid model

consists of CRFs for discriminative models,pD
i , and

HMMs for generative models,pG
j , shown in Equa-

tion (2), since this paper focuses solely on sequence
modeling. For HMMs, we consider a first order
HMM defined in the following equation:

p(x, y|θ) =

S+1∏

s=1

θys−1,ysθys,xs ,

where θys−1,ys and θys,xs represent the transition
probability between statesys−1 andys and the sym-
bol emission probability of thes-th position of the
corresponding input sequence, respectively, where
θyS+1,xS+1 = 1.

It can be seen that the formalization in the log-
linear combination of our hybrid model is very sim-
ilar to that of LOP-CRFs (Smith et al., 2005). In
fact, if we only use a combination of discriminative

models (CRFs), which is equivalent toγj = 0 for
all j, we obtain essentially the same objective func-
tion as that of the LOP-CRFs. Thus, our framework
can also be seen as an extension of LOP-CRFs that
enables us to incorporate unlabeled data.

3.1 Discriminative Combination
For estimating the parameterΓ, let us assume that
we already have discriminatively trained models on
labeled data,pD

i (y|x;λi). We maximize the fol-
lowing objective function for estimating parameter
Γ under a fixedΘ:

LHySOL(Γ|Θ) =
∑

n

log R(yn|xn;Λ,Θ,Γ)+log p(Γ). (3)

wherep(Γ) is a prior probability distribution ofΓ.
The value ofΓ providing a global maximum of

LHySOL(Γ|Θ) is guaranteed under an arbitrary fixed
value in theΘ domain, sinceLHySOL(Γ|Θ) is a con-
cave function ofΓ. Thus, we can easily maximize
Equation (3) by using a gradient-based optimization
algorithm such as (bound constrained) L-BFGS (Liu
and Nocedal, 1989).

3.2 Incorporating Unlabeled Data
We cannot directly incorporate unlabeled data for
discriminative training such as Equation (3) since
the correct outputsy for unlabeled data are un-
known. On the other hand, generative approaches
can easily deal with unlabeled data as incomplete
data (data with missing variabley) by using a mix-
ture model. A well-known way to achieve this in-
corporation is to maximize the log likelihood of un-
labeled data with respect to the marginal distribution
of generative models as

L(θ) =
∑

m

log
∑

y

p(xm, y; θ).

In fact, (Nigam et al., 2000) have reported that using
unlabeled data with a mixture model can improve
the text classification performance.

According to Bayes’ rule, p(y|x; θ) ∝
p(x, y; θ), the discriminant functions of gener-
ative classifiers are provided by generative models
p(x, y; θ). Therefore, we can regardL(θ) as the
logarithm of the sum of discriminant functions for
all missing variablesy of unlabeled data. Following
this view, we can directly incorporate unlabeled
data into our hybrid model by maximizing the
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discriminant functionsg of our hybrid model in
the same way as for a mixture model as explained
above. Thus, we maximize the following objective
function for estimating the model parametersΘ for
generative models of unlabeled data:

G(Θ|Γ) =
∑

m

log
∑

y

g(xm, y;Θ) + log p(Θ). (4)

wherep(Θ) is a prior probability distribution ofΘ.
Here, the discriminant functiong of outputy given
input x in our hybrid model can be obtained by the
numerator on the third line of Equation (2), since the
denominator does not affect the determination ofy,
that is,

g(x, y;Θ) =
∏

i

pD
i (y|x; λi)

γi
∏

j

pG
j (x, y; θj)

γj .

Under a fixedΓ, we can estimate the local max-
imum of G(Θ|Γ) around the initialized value ofΘ
by an iterative computation such as the EM algo-
rithm (Dempster et al., 1977). LetΘ′′ andΘ′ be
estimates ofΘ in the next and current steps, respec-
tively. Using Jensen’s inequality,log a ≤ a − 1,
we obtain aQ-function that satisfies the inequality
G(Θ′′|Γ)−G(Θ′|Γ)≥Q(Θ′′,Θ′;Γ)−Q(Θ′,Θ′;Γ),
such that

Q(Θ′′,Θ′;Γ)

=
∑

j

γj

∑

m

∑

y

R(y|xm;Λ,Θ′,Γ) log pG
j (xm, y;Θ′′)

+ log p(Θ′′).
(5)

SinceQ(Θ′,Θ′;Γ) is independent ofΘ′′, we can
improve the value ofG(Θ|Γ) by computingΘ′′ to
maximizeQ(Θ′′,Θ′;Γ). We can obtain aΘ es-
timate by iteratively performing this update while
G(Θ|Γ) is hill climbing.

As shown in Equation (5),R is used for estimat-
ing the parameterΘ. The intuitive effect of maxi-
mizing Equation (4) is similar to performing ‘soft-
clustering’. That is, unlabeled data is clustered with
respect to theR distribution, which also includes in-
formation about labeled data, under the constraint of
generative model structures.

3.3 Parameter Estimation Procedure
According to our definition, theΘ and Γ estima-
tions are mutually dependent. That is, the param-
eters of the hybrid model,Γ, should be estimated

1.Given training set:Du = {xm}M
m=1 and

Dl = {D′
l = {(xk, yk)}K

k=1,D′′
l = {(xn, yn)}N

n=1}
2.ComputeΛ, usingD′

l.
3.InitializeΓ(0), Θ(0) andt ← 0.

4.Perform the following until|Θ
(t+1)−Θ(t)|
|Θ(t)|

< ε.

4.1. ComputeΘ(t+1) to maximize Equation (4)
under fixedΓ(t) andΛ usingDu.

4.2. ComputeΓ(t+1) to maximize Equation (3)
under fixedΘ(t+1) andΛ usingD′′

l .
4.3. t ← t + 1.

5.Output a structured predictorR(y|x,Λ,Θ(t),Γ(t)).

Figure 1: Algorithm of learning model parameters
used in our hybrid model.

using Equation (3) with a fixedΘ, while the param-
eters of the generative models,Θ, should be esti-
mated using Equation (4) with a fixedΓ. As a solu-
tion to our parameter estimation, we search for the
Θ andΓ that maximizeLHySOL(Γ|Θ) andG(Θ|Γ)
simultaneously. For this search, we computeΘ and
Γ by maximizing the objective functions shown in
Equations (4) and (3) iteratively and alternately. We
summarize the algorithm for estimating these model
parameters in Figure 1.

Note that during theΓ estimation (procedure 4.2
in Figure 1),Γ can be over-fitted to the labeled train-
ing data if we use the same labeled training data as
used for theΛ estimation. There are several possible
ways to reduce this over-fit. In this paper, we select
one of the simplest; we divide the labeled training
dataDl into two distinct setsD′

l andD′′
l . Then,D′

l

andD′′
l are individually used for estimatingΛ and

Γ, respectively. In our experiments, we divide the
labeled training dataDl so that 4/5 is used forD′

l

and the remaining 1/5 forD′′
l .

3.4 Efficient Parameter Estimation Algorithm
Let NR(x) represent the denominator of Equation
(2), that is the normalization factor ofR. We can
rearrange Equation (2) as follows:

R(y|x;Λ,Θ,Γ) =

∏
s

∏
i

[
V D

i,s

]γi ∏
j

[
V G

j,s

]γj

NR(x)
∏

i
[Zi(x)]γi

, (6)

whereV D
i,s represents the potential function of the

s-th position of the sequence in thei-th CRF and
V G

j,s represents the probability of thes-th position
in the j-th HMM, that is,V D

i,s = exp(λi · f s) and
V G

j,s = θys−1,ysθys,xs , respectively. See the Ap-
pendix for the derivation of Equation (6) from Equa-
tion (2).
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To estimateΓ(t+1), namely procedure 4.2 in Fig-
ure 1, we employ the derivatives with respect toγi

andγj shown in Equation (6), which are the parame-
ters of the discriminative and generative models, re-
spectively. Thus, we obtain the following derivatives
with respect toγi:

∂LHySOL(Γ|Θ)

∂γi
=

∑

n

log pD
i (yn|xn) +

∑

n

log ZD
i (xn)

−
∑

n

ER(Y|xn;Λ,Θ,Γ)

[∑

s

log V D
i,s

]
.

The first and second terms are constant during it-
erative procedure 4 in our optimization algorithm
shown in Figure 1. Thus, we only need to calcu-
late these values once at the beginning of proce-
dure 4. Letαs(y) andβs(y) represent the forward
and backward state costs at positions with output
y for corresponding inputx. Let Vs(y, y′) repre-
sent the products of the total value of the transition
cost betweens−1 ands with labelsy andy′ in the
corresponding input sequence, that is,Vs(y, y′) =∏

i[V
D
i,s(y, y′)]γi

∏
j [V

G
j,s(y, y′)]γj . The third term,

which indicates the expectation of potential func-
tions, can be rewritten in the form of a forward-
backward algorithm, that is,

ER(Y|x;Λ,Θ,Γ)

[∑

s

log V D
i,s

]

=
1

ZR(x)

∑

s

∑

y,y′

αs−1(y)Vs(y, y′)βs(y
′) log V D

i,s(y, y′),

(7)

whereZR(x) represents the partition function of our
hybrid model, that is,ZR(x)=NR(x)

∏
i[Zi(x)]γi .

Hence, the calculation of derivatives with respect to
γi is tractable since we can incorporate the same
forward-backward algorithm as that used in a stan-
dard CRF.

Then, the derivatives with respect toγj , which are
the parameters of generative models, can be written
as follows:

∂LHySOL(Γ|Θ)

∂γj

=
∑

n

log pG
j (xn, yn)−

∑

n

ER(Y|xn;Λ,Θ,Γ)

[∑

s

log V G
j,s

]
.

Again, the second term, which indicates the expec-
tation of transition probabilities and symbol emis-
sion probabilities, can be rewritten in the form of a
forward-backward algorithm in the same manner as

γi, where the only difference is thatV D
i,s is substi-

tuted byV G
j,s in Equation (7).

To estimateΘ(t+1), which is procedure 4.1 in Fig-
ure 1, the same forward-backward algorithm as used
in standard HMMs is available since the form of our
Q-function shown in Equation (5) is the same as that
of standard HMMs. The only difference is that our
method uses marginal probabilities given byR in-
stead of thep(x, y; θ) of standard HMMs.

Therefore, only a forward-backward algorithm is
required for the efficient calculation of our param-
eter estimation process. Note that even though our
hybrid model supports the use of a combination of
several generative and discriminative models, we
only need to calculate the forward-backward algo-
rithm once for each sample during optimization pro-
cedures 4.1 and 4.2. This means that the required
number of executions of the forward-backward al-
gorithm for our parameter estimation is independent
of the number of models used in the hybrid model.

In addition, after training, we can easily merge all
the parameter values in a single parameter vector.
This means that we can simply employ the Viterbi-
algorithm for evaluating unseen samples, as well as
that of standard CRFs, without any additional cost.

4 Experiments

We examined our hybrid model (HySOL) by ap-
plying it to two sequence labeling tasks, named
entity recognition (NER) and syntactic chunking
(Chunking). We used the same Chunking and
‘English’ NER data as those used for the shared
tasks of CoNLL-2000 (Tjong Kim Sang and Buch-
holz, 2000) and CoNLL-2003 (Tjong Kim Sang and
Meulder, 2003), respectively.

For the baseline method, we performed a condi-
tional random field (CRF), which is exactly the same
training procedure described in (Sha and Pereira,
2003) with L-BFGS. Moreover, LOP-CRF (Smith et
al., 2005) is also compared with our hybrid model,
since the formalism of our hybrid model can be seen
as an extension of LOP-CRFs as described in Sec-
tion 3. For CRF, we used the Gaussian prior as
the second term on the RHS in Equation (1), where
δ2 represents the hyper-parameter in the Gaussian
prior. In contrast, for LOP-CRF and HySOL, we
used the Dirichlet priors as the second term on the
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λ1 f(words), f(lwords), f(poss), f(wtypes),
f(poss−1, poss), f(wtypes−1, wtypes),
f(poss, poss+1), f(wtypes, wtypes+1),
f(pref1s), f(pref2s), f(pref3s), f(pref4s),
f(suf1s), f(suf2s), f(suf3s), f(suf4s)

λ2 f(words), f(lwords), f(poss), f(wtypes),
f(words−1), f(lwords−1), f(poss−1), f(wtypes−1),
f(words−2), f(lwords−2), f(poss−2), f(wtypes−2),
f(poss−2, poss−1), f(wtypes−2, wtypes−1)

λ3 f(words), f(lwords), f(poss), f(wtypes),
f(words+1), f(lwords+1), f(poss+1), f(wtypes+1),
f(words+2), f(lwords+2), f(poss+2), f(wtypes+2),
f(poss+1, poss+2), f(wtypes+1, wtypes+2)

λ4 all of the above
lword : lowercase of word, wtype : ‘word type’
pref1-4: 1-4 character prefix of word
suf1-4 : 1-4 character suffix of word

Table 1: Features used in NER experiments

RHS in Equations (3), and (4), whereξ andη are the
hyper-parameters in each Dirichlet prior.

4.1 Named Entity Recognition Experiments

The English NER data consists of 203,621, 51,362
and 46,435 words from 14,987, 3,466 and 3,684 sen-
tences in training, development and test data, re-
spectively, with four named entity tags, PERSON,
LOCATION, ORGANIZATION and MISC, plus the
‘O’ tag. The unlabeled data consists of 17,003,926
words from 1,029,122 sentences. These data sets are
exactly the same as those provided for the shared
task of CoNLL-2003.

We slightly extended the feature set of the sup-
plied data by adding feature types such as ‘word
type’, and word prefix and suffix. Examples of
‘word type’ include whether the word is capitalized,
contains digit or contains punctuation, which basi-
cally follows the baseline features of (Sutton et al.,
2006) without regular expressions. Note that, unlike
several previous studies, we did not employ addi-
tional information from external resources such as
gazetteers. All our features can be automatically ex-
tracted from the supplied data.

For LOP-CRF and HySOL, we used four base dis-
criminative models trained by CRFs with different
feature sets. Table 1 shows the feature sets we used
for training these models. The design of these fea-
ture sets was derived from a suggestion in (Smith et
al., 2005), which exhibited the best performance in
the several feature division. Note that the CRF for
the comparison method was trained by using all fea-

λ1 f(words), (poss),
f(words−1, words), f(poss−1, poss),
f(words, words+1), f(poss, poss+1)

λ2 f(words), (poss),
f(words−1), f(poss−1), f(words−2), f(poss−2),
f(words−2, words−1), f(poss−2, poss−1)

λ3 f(words), (poss),
f(words+1), f(poss+1), f(words+2), f(poss+2),
f(words+1, words+2), f(poss+1, poss+2)

λ4 all of the above

Table 2: Features used in Chunking experiments

ture types, namely the same asλ4.

As we explained in Section 3.3, for training
HySOL, the parameters of four discriminative mod-
els,Λ, were trained from 4/5 of the labeled training
data, andΓ were trained from remaining 1/5. For
the features of the generative models, we used all of
the feature types shown in Figure 1. Note that one
feature type corresponds to one HMM. Thus, each
HMM maintains to consist of a non-overlapping fea-
ture set since each feature type only generates one
symbol per state.

4.2 Syntactic Chunking Experiments

CoNLL-2000 Chunking data was obtained from the
Wall Street Journal (WSJ) corpus: sections 15-18 as
training data (8,936 sentences and 211,727 words),
and section 20 as test data (2,012 sentences and
47,377 words), with 11 different chunk-tags, such
as NP and VP plus the ‘O’ tag, which represents the
region outside any target chunk.

For LOP-CRF and HySOL, we also used four
base discriminative models trained by CRFs with
different feature sets. Table 2 shows the feature set
we used in the Chunking experiments. We used the
feature set of the supplied data without any exten-
sion of additional feature types.

To train HySOL, we used the same unlabeled data
as used for our NER experiments (17,003,926 words
from the Reuters corpus). Moreover, the division of
the labeled training data and the feature set of the
generative models were derived in the same man-
ner as our NER experiments (see Section 4.1). That
is, we divided the labeled training data into 4/5 for
estimatingΛ and 1/5 for estimatingΓ; one feature
type shown in Table 2 is assigned in one generative
model.
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methods (hyper-params) Fβ=1 (gain) Sent (gain)

CRF (δ2=100.0) 84.70 - 78.30 -
(4/5 labeled data,δ2=100.0) 83.74 (-0.96)77.06 (-1.24)

LOP-CRF (ξ′=0.1) 84.90 (+0.20)79.02 (+0.72)
HySOL (ξ′=0.1,η′=0.0001)87.20 (+2.50) 81.19 (+2.89)

(w/o prior) 86.86 (+2.16)80.75 (+2.45)
w/o pG

j ∀j ( ξ′=1.0) 84.56 (-0.14)78.23 (-0.07)

Table 3: NER performance (CoNLL-2003)

methods (hyper-params) Fβ=1 (gain) Sent (gain)

CRF (δ2=10.0) 93.87 - 59.84 -
(4/5 labeled data,δ2=10.0) 93.70 (-0.17)58.85 (-0.99)

LOP-CRF (ξ′=0.1) 93.91 (+0.04)60.34 (+0.50)
HySOL (ξ′=1.0,η′=0.0001)94.30 (+0.43) 61.73 (+1.89)

(w/o prior) 94.17 (+0.30)61.23 (+1.39)
w/o pG

j ∀j (ξ′=1.0) 93.84 (-0.03)59.74 (-0.10)

Table 4: Chunking performance (CoNLL-2000)

5 Results and Discussion

We evaluated the performance in terms of the Fβ=1

score, which is the evaluation measure used in
CoNLL-2000 and 2003, and sentence accuracy,
since all the methods in our experiments optimize
sequence loss. Tables 3 and 4 show the results of
the NER and Chunking experiments, respectively.
The Fβ=1 and ‘Sent’ columns show the performance
evaluated using the Fβ=1 score and sentence accu-
racy, respectively.δ2, ξ andη, which are the hyper-
parameters in Gaussian or Dirichlet priors, are se-
lected from a certain value set by using a develop-
ment set1, that is,δ2 ∈ {0.01, 0.1, 1, 10, 100, 1000},
ξ − 1 = ξ′ ∈ {0.01, 0.1, 1, 10} andη − 1 = η′ ∈
{0.00001, 0.0001, 0.001, 0.01}. The second rows of
CRF in Tables 3 and 4 represent the performance of
base discriminative models used in HySOL with all
the features, which are trained with 4/5 of the la-
beled training data. The third rows of HySOL show
the performance obtained without using generative
models (unlabeled data). The model itself is essen-
tially the same as LOP-CRFs. However the perfor-
mance in the third HySOL rows was consistently
lower than that of LOP-CRF since the discrimina-
tive models in HySOL are trained with 4/5 labeled
data.

As shown in Tables 3 and 4, HySOL signifi-
1Chunking (CoNLL-2000) data has no common develop-

ment set. Thus, our preliminary examination employed by using
4/5 labeled training data with the remaining 1/5 as development
data to determine the hyper-parameter values.
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Figure 2: Changes in the performance and the con-
vergence condition value (procedure 4 in Figure 1)
of HySOL.

cantly improved the performance of supervised set-
ting, CRF and LOP-CRF, as regards both NER and
Chunking experiments.

5.1 Impact of Incorporating Unlabeled Data
The contributions provided by incorporating unla-
beled data in our hybrid model can be seen by com-
parison with the performance of the first and third
rows in HySOL, namely a 2.64 point F-score and a
2.96 point sentence accuracy gain in the NER exper-
iments and a 0.46 point F-score and a 1.99 point sen-
tence accuracy gain in the Chunking experiments.

We believe there are two key ideas that enable
the unlabeled data in our approach to exhibit this
improvement compared with the the state-of-the-art
performance provided by discriminative models in
supervised settings. First, unlabeled data is only
used for optimizing Equation (4) to obtain a similar
effect to ’soft-clustering’, which can be calculated
without information about the correct output. Sec-
ond, by using a combination of generative models,
we can enhance the flexibility of the feature design
for unlabeled data. For example, we can handle ar-
bitrary overlapping features, similar to those used in
discriminative models, for unlabeled data by assign-
ing one feature type for one generative model as in
our experiments.

5.2 Impact of Iterative Parameter Estimation
Figure 2 shows the changes in the performance and
the convergence condition value of HySOL dur-
ing parameter estimation iteration in our NER and
Chunking experiments, respectively. As shown in
the figure, HySOL was able to reach the conver-
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gence condition in a small number of iterations in
our experiments. Moreover, the change in the per-
formance remains quite stable during the iteration.
However, theoretically, our optimization procedure
is not guaranteed to converge in theΓ andΘ space,
since the optimization ofΘ has local maxima. Even
if we were unable to meet the convergence condi-
tion, we were easily able to obtain model parame-
ters by performing a sufficient fixed number of itera-
tions, and then select the parameters when Equation
(4) obtained the maximum objective value.

5.3 Comparison with SS-CRF-MER

When we consider semi-supervised SOL methods,
SS-CRF-MER (Jiao et al., 2006) is the most compet-
itive with HySOL, since both methods are defined
based on CRFs. We planned to compare the perfor-
mance with that of SS-CRF-MER in our NER and
Chunking experiments. Unfortunately, we failed to
implement SS-CRF-MER since it requires the use of
a slightly complicated algorithm, called the ‘nested’
forward-backward algorithm.

Although, we cannot compare the performance,
our hybrid approach has several good characteris-
tics compared with SS-CRF-MER. First, it requires
a higher order algorithm, namely a ‘nested’ forward-
backward algorithm, for the parameter estimation of
unlabeled data whose time complexity isO(L3S2)
for each unlabeled data, whereL andS represent the
output label size and unlabeled sample length, re-
spectively. Thus, our hybrid approach is more scal-
able for the size of unlabeled data, since HySOL
only needs a standard forward-backward algorithm
whose time complexity isO(L2S). In fact, we
still have a question as to whether SS-CRF-MER
is really scalable in practical time for such a large
amount of unlabeled data as used in our experi-
ments, which is about 680 times larger than that of
(Jiao et al., 2006). Scalability for unlabeled data
will become really important in the future, as it will
be natural to use millions or billions of unlabeled
data for further improvement. Second, SS-CRF-
MER has a sensitive hyper-parameter in the objec-
tive function, which controls the influence of the un-
labeled data. In contrast, our objective function only
has a hyper-parameter of prior distribution, which is
widely used for standard MAP estimation. More-
over, the experimental results shown in Tables 3 and

Fβ=1 additional resources
ASO-semi 89.31 unlabeled data (27M words)
(Ando and Zhang, 2005)
(Florian et al., 2003) 88.76 their own large gazetteers,

2M-word labeled data
(Chieu and Ng, 2003) 88.31 their own large gazetteers,

very elaborated features
HySOL 88.14 unlabeled data (17M words)

supplied gazetters
HySOL 87.20 unlabeled data (17M words)

Table 5: Previous top systems in NER (CoNLL-
2003) experiments

Fβ=1 additional resources
ASO-semi 94.39 unlabeled data
(Ando and Zhang, 2005) (15M words: WSJ)
HySOL 94.30 unlabeled data

(17M words: Reuters)
(Zhang et al., 2002) 94.17 full parser output
(Kudo and Matsumoto, 2001)93.91 –

Table 6: Previous top systems in Chunking
(CoNLL-2000) experiments

4 indicate that HySOL is rather robust with respect
to the hyper-parameter since we can obtain fairly
good performance without a prior distribution.

5.4 Comparison with Previous Top Systems

With respect to the performance of NER and Chunk-
ing tasks, the current best performance is reported
in (Ando and Zhang, 2005), which we refer to as
‘ASO-semi’, as shown in Figures 5 and 6. ASO-
semi also incorporates unlabeled data solely for
the additional information in the same way as our
method. Unfortunately, our results could not reach
their level of performance, although the size and
source of the unlabeled data are not the same for cer-
tain reasons. First, (Ando and Zhang, 2005) does not
describe the unlabeled data used in their NER ex-
periments in detail, and second, we are not licensed
to use the TREC corpus including WSJ unlabeled
data that they used for their Chunking experiments
(training and test data for Chunking is derived from
WSJ). Therefore, we simply used the supplied unla-
beled data of the CoNLL-2003 shared task for both
NER and Chunking. If we consider the advantage of
our approach, our hybrid model incorporating gener-
ative models seems rather intuitive, since it is some-
times difficult to find out a design of effective auxil-
iary problems for the target problem.

Interestingly, the additional information obtained

798



Fβ=1 (gain)

HySOL (ξ′=0.1,η′=0.0001) 87.20 -
+ w/ F-score opt. (Suzuki et al., 2006)88.02 (+0.82)
+ unlabeled data (17M→ 27M words) 88.41 (+0.39)
+ supplied gazetters 88.90 (+0.49)
+ add dev. set for estimatingΓ 89.27 (+0.37)

Table 7: The HySOL performance with the F-
score optimization technique and some additional
resources in NER (CoNLL-2003) experiments

Fβ=1 (gain)
HySOL (ξ′=0.1,η′=0.0001) 94.30 -

+ w/ F-score opt. (Suzuki et al., 2006)94.36 (+0.06)

Table 8: The HySOL performance with the F-score
optimization technique on Chunking (CoNLL-2000)
experiments

from unlabeled data appear different from each
other. ASO-semi uses unlabeled data for construct-
ing auxiliary problems to find the ‘shared structures’
of auxiliary problems that are expected to improve
the performance of the main problem. Moreover,
it is possible to combine both methods, for exam-
ple, by incorporating the features obtained with their
method in our base discriminative models, and then
construct a hybrid model using our method. There-
fore, there may be a possibility of further improving
the performance by this simple combination.

In NER, most of the top systems other than
ASO-semi boost performance by employing exter-
nal hand-crafted resources such as large gazetteers.
This is why their results are superior to those ob-
tained with HySOL. In fact, if we simply add the
gazetteers included in CoNLL-2003 supplied data as
features, HySOL achieves 88.14.

5.5 Applying F-score Optimization Technique

In addition, we can simply apply the F-score opti-
mization technique for the sequence labeling tasks
proposed in (Suzuki et al., 2006) to boost the
HySOL performance since the base discriminative
models pD(y|x) and discriminative combination,
namely Equation (3), in our hybrid model basically
uses the same optimization procedure as CRFs. Ta-
bles 7 and 8 show the F-score gain when we apply
the F-score optimization technique. As shown in the
Tables, the F-score optimization technique can eas-
ily improve the (F-score) performance without any
additional resources or feature engineering.

In NER, we also examined HySOL with addi-
tional resources to observe the performance gain.
The third row represents the performance when we
add approximately 10M words of unlabeled data (to-
tal 27M words)2 that are derived from 1996/11/15-
30 articles in Reuters corpus. Then, the fourth and
fifth rows represent the performance when we add
the supplied gazetters in the CoNLL-2003 data as
features, and adding development data as training
data ofΓ. In this case, HySOL achieved a com-
parable performance to that of the current best sys-
tem, ASO-semi, in both NER and Chunking exper-
iments even though the NER experiment is not a
fair comparison since we added additional resources
(gazetters and dev. set) that ASO-semi does not use
in training.

6 Conclusion and Future Work

We proposed a framework for semi-supervised SOL
based on a hybrid generative and discriminative ap-
proach. Experimental results showed that incorpo-
rating unlabeled data in a generative manner has
the power to further improve on the state-of-the-art
performance provided by supervised SOL methods
such as CRFs, with the help of our hybrid approach,
which discriminatively combines with discrimina-
tive models. In future we intend to investigate more
appropriate model and feature design for unlabeled
data, which may further improve the performance
achieved in our experiments.

Appendix

Let V D
i,s = exp(λ · f s) andV G

j,s = θys−1,ysθys,xs .
Equation (6) can be obtained by the following rear-
rangement of Equation (2) :

R(y|x;Λ,Θ,Γ)

=

∏
i
pD

i (y|x, λi)
γi

∏
j
pG

j (x, y, θj)
γj

∑
y

∏
i
pD

i (y|x, λi)γi
∏

j
pG

j (x, y, θj)γj

=
1

NR(x)

∏

i

[∏
s
V D

i,s

Zi(x)

]γi
∏

j
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s
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j,s

]γj
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1

NR(x)
∏

i
[Zi(x)]γi

∏

i

[∏

s

V D
i,s

]γi
∏

j

[∏

s

V G
j,s

]γj

=
1

NR(x)
∏

i
[Zi(x)]γi

∏

s

∏

i

[
V D

i,s

]γi
∏

j

[
V G

j,s

]γj
.

2In order to keep the consistency of POS tags, we re-
attached POS tags of the supplied data set and new 10M words
of unlabeled data using a POS tagger trained from WSJ corpus.
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Abstract

In Sequential Viterbi Models, such as
HMMs, MEMMs, and Linear Chain CRFs,
the type of patterns over output sequences
that can be learned by the model depend di-
rectly on the model’s structure: any pattern
that spans more output tags than are covered
by the models’ order will be very difficult
to learn. However, increasing a model’s or-
der can lead to an increase in the number of
model parameters, making the model more
susceptible to sparse data problems.

This paper shows how the notion of output
transformation can be used to explore a va-
riety of alternative model structures. Us-
ing output transformations, we can selec-
tively increase the amount of contextual in-
formation available for some conditions, but
not for others, thus allowing us to capture
longer-distance consistencies while avoid-
ing unnecessary increases to the model’s pa-
rameter space. The appropriate output trans-
formation for a given task can be selected by
applying a hill-climbing approach to held-
out data. On the NP Chunking task, our
hill-climbing system finds a model structure
that outperforms both first-order and second-
order models with the same input feature set.

1 Sequence Prediction

A sequence prediction task is a task whose input is
a sequence and whose output is a corresponding se-
quence. Examples of sequence prediction tasks in-

clude part-of-speech tagging, where a sequence of
words is mapped to a sequence of part-of-speech
tags; and IOB noun phrase chunking, where a se-
quence of words is mapped to a sequence of labels,
I, O, and B, indicating whether each word is inside a
chunk, outside a chunk, or at the boundary between
two chunks, respectively.

In sequence prediction tasks, we are interested in
finding the most likely output sequence for a given
input. In order to be considered likely, an output
value must be consistent with the input value, but it
must also be internally consistent. For example, in
part-of-speech tagging, the sequence “preposition-
verb” is highly unlikely; so we should reject an out-
put value that contains that sequence, even if the
individual tags are good candidates for describing
their respective words.

2 Sequential Viterbi Models

This intuition is captured in many sequence learning
models, including Hidden Markov Models (HMMs),
Maximum Entropy Markov Models (MEMMs), and
Linear Chain Conditional Random Fields (LC-
CRFs), by including terms corresponding to pieces
of output structure in their scoring functions. (Sha
and Pereira, 2003; Sutton and McCallum, 2006; Mc-
Callum et al., 2000; Alpaydin, 2004)

Each of these Sequential Viterbi Models defines
a set of scoring functions that evaluate fixed-size
pieces of the output sequence based on fixed-size
pieces of the input sequence.1 The overall score for

1For HMMs and MEMMs, the local scores are negative log
probabilities. For LC-CRFs, the local scores do not have any
direct probabilistic interpretation.
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(a)

(b)

(c)

(d)

Figure 1: Common Model Structures. (a) Simple
first order. (b) Extended first order. (c) Simple sec-
ond order. (d) Extended second order.

an output value is then computed by summing the
scores for all its fixed-size pieces. Sequence predic-
tion models can differ from one another along two
dimensions:

1. Model Structure: The set of output pieces and
input pieces for which local scoring functions
are defined.

2. Model Type: The set of parametrized equa-
tions used to define those local scoring func-
tions, and the procedures used to determine
their parameters.

In this paper, we focus on model structure. In par-
ticular, we are interested in finding a suitable model
structure for a given task and training corpus.

2.1 Common Model Structures
The model structure used by classical HMMs is the
“simple first order” structure. This model structure
defines two local scoring functions. The first scoring
function evaluates an output value in the context of
the corresponding input value; and the second scor-
ing function evaluates adjacent pairs of output val-
ues. Simple LC-CRFs often extend this structure by
adding a third local scoring function, which evalu-
ates adjacent pairs of output values in the context of
the input value corresponding to one of those out-
puts. These model structures are illustrated in Fig-
ure 1.

Because these first order structures include scor-
ing functions for adjacent pairs of output items,
they can identify and reject output values that con-
tain improbable subsequences of length two. For

example, in part-of-speech tagging, the sequence
“preposition-verb” is highly unlikely; and such
models will easily learn to reject outputs contain-
ing that sequence. However, it is much more dif-
ficult for first order models to identify improbable
subsequences of length three or more. For example,
in English texts, the sequence “verb-noun-verb” is
much less likely than one would predict based just
on the subsequences “verb-noun” and “noun-verb.”
But first order models are incapable of learning that
fact.

Thus, in order to improve performance, it is of-
ten necessary to include scoring functions that span
over larger sequences. In the “simple second order”
model structure, the local scoring function for adja-
cent pairs of output values is replaced with a scoring
function for each triple of consecutive output values.
In extended versions of this structure typically used
by LC-CRFs, scoring functions are also added that
combine output value triples with an input value.
These model structures are illustrated in Figure 1.
Similarly, third order and and fourth order models
can be used to further increase the span over which
scoring functions are defined.

Moving to higher order model structures increases
the distance over which the model can check con-
sistency. However, it also increases the number of
parameters the model must learn, making the model
more susceptible to sparse data problems. Thus, the
usefulness of a model structure for a given task will
depend on the types of constraints that are important
for the task itself, and on the size and diversity of the
training corpus.

3 Searching for Good Model Structures

We can therefore use simple search methods to look
for a suitable model structure for a given task and
training corpus. In particular, we have performed
several experiments using hill-climbing methods to
search for an appropriate model structure for a given
task. In order to apply hill-climbing methods, we
need to define:

1. The search space. I.e., concrete representations
for the set of model structures we will consider.

2. A set of operations for moving through that
search space.
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3. An evaluation metric.

In Section 4, we will define the search space us-
ing transformations on output values. This will al-
low us to consider a wide variety of model struc-
tures without needing to make any direct modifica-
tions to the underlying sequence modelling systems.
Output value transformations will be concretely rep-
resented using Finite State Transducers (FSTs). In
Section 5, we will define the set of operations for
moving through the search space as modification op-
erations on FSTs. For the evaluation metric, we sim-
ply train and test the model, using a given model
structure, on held-out data.

4 Representing Model Structure with
Reversible Output Transformations

The common model structures described in Sec-
tion 2.1 differ from one another in that they exam-
ine varying sizes of “windows” on the output struc-
ture. Rather than varying the size of the window, we
can achieve the same effect by fixing the window
size, but transforming the output values. For exam-
ple, consider the effects of transforming the output
values by replacing individual output tags with pairs
of adjacent output tags:

y1, y2, . . . , yt →
〈START, y1〉, 〈y1, y2〉, 〈y2, y3〉, . . . , 〈yt−1, yt〉

E.g.:
I O O I I B I →
OI IO OO OI II IB BI

Training a first order model based on these trans-
formed values is equivalent to training a second or-
der model based on the original values, since in each
case the local scoring functions will be based on
pairs of adjacent output tags. Similarly, transform-
ing the output values by replacing individual output
tags with triples of adjacent output tags is equivalent
to training a third order model based on the original
output values.

Of course, when we apply a model trained on this
type of transformed output to new inputs, it will gen-
erate transformed output values. Thus, the transfor-
mation must be reversible, so that we can map the
output of the model back to an un-transformed out-
put value.

This transformational approach has the advantage
that we can explore different model structures us-
ing off-the-shelf learners, without modifying them.
In particular, we can apply the transformation corre-
sponding to a given model structure to the training
corpus, and then train the off-the-shelf learner based
on that transformed corpus. To predict the value for
a new input, we simply apply the learned model to
generate a corresponding transformed output value,
and then use the inverse transformation to map that
value back to an un-transformed value.

Output encoding transformations can be used to
represent a large class of model structures, including
commonly used structures (first order, second order,
etc) as well as a number of “hybrid” structures that
use different window sizes depending on the content
of the output tags.

Output encoding transformations can also be used
to represent a wide variety of other model struc-
tures. For example, there has been some debate
about the relative merits of different output encod-
ings for the chunking task (Tjong Kim Sang and
Veenstra, 1999; Tjong Kim Sang, 2000; Shen and
Sarkar, 2005). These encodings differ in whether
they define special tags for the beginning of chunks,
for the ends of chunks, and for boundaries between
chunks. The output transformation procedure de-
scribed here is capable of capturing all of the output
encodings used for chunking. Thus, this transforma-
tional method provides a unified framework for con-
sidering both the type of information that should be
encoded by individual tags (i.e., the encoding) and
the distance over which that information should be
evaluated (i.e., the order of the model). Under this
framework, we can use simple search procedures to
find an appropriate transformation for a given task.

4.1 Representing Transformations as FSTs

Finite State Transducers (FSTs) provide a natural
formalism for representing output transformations.
FSTs are powerful enough to capture different or-
ders of model structure, including hybrid orders; and
to capture different output encodings, such as the
ones considered in (Shen and Sarkar, 2005). FSTs
are efficient, so they add very little overhead. Fi-
nally, there exist standard algorithms for inverting
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Figure 2: FSTs for Five Common Chunk Encod-
ings. Each transducer takes an IOB1-encoded string
for a given output value, and generates the corre-
sponding string for the same output value, using a
new encoding. Note that the IOB1 FST is an iden-
tity transducer; and note that the transducers that
make use of the E tag must use ε-output edges to
delay the decision of which tag should be used until
enough information is available.

and determinizing FSTs. 2

4.1.1 Necessary Properties for
Output-Transformation FSTs

In order for an FST to be used to transform output
values, it must have the following three properties:

1. The FST’s inverse should be deterministic.3

Otherwise, we will be unable to convert
the model’s (transformed) output into an un-
transformed output value.

2. The FST should recognize exactly the set of
valid output values. If it does not recognize
some valid output value, then it won’t be able
to transform that value. If it recognizes some
invalid output value, then there exists an trans-
formed output value that would map back to an
invalid output value.

3. The FST should not modify the length of the
output sequence. Otherwise, it will not be pos-

2Note that we are not attempting to learn a transducer
that generates the output values from input values, as is done
in e.g. (Oncina et al., 1993) and (Stolcke and Omohundro,
1993). Rather, we we are interested in finding a transducer from
one output encoding to another output encoding that will be
more amenable to learning by the underlying Sequential Viterbi
Model.

3Or at least determinizable.

sible to align the output values with input val-
ues when running the model.

In addition, it seems desirable for the FST to have
the following two properties:

4. The FST should be deterministic. Otherwise, a
single training example’s output could be en-
coded in multiple ways, which would make
training the individual base decision classifiers
difficult.

5. The FST should generate every output string.
Otherwise, there would be some possible sys-
tem output that we are unable to map back to
an un-transformed output.

Unfortunately, these two properties, when taken to-
gether with the first three, are problematic. To see
why, assume an FST with an output alphabet of
size k. Property (5) requires that all possible out-
put strings be generated, and property (1) requires
that no string is generated for two input strings,
so the number of strings generated for an input
of length n must be exactly kn. But the number
of possible chunkings for an input of length n is
3n − 3n−1 − 3n−2; and there is no integer k such
that kn = 3n − 3n−1 − 3n−2.4

We must therefore relax at least one of these two
properties. Relaxing the property 4 (deterministic
FSTs) will make training harder; and relaxing the
property 5 (complete FSTs) will make testing harder.
In the experiments presented here, we chose to relax
the second property.

4.1.2 Inverting the Transformation
Recall that the motivation behind property 5 is

that we need a way to map any output generated
by the machine learning system back to an un-
transformed output value.

As an alternative to requiring that the FST gener-
ate every output string, we can define an extended
inversion function, that includes the inverted FST,
but also generates output values for transformed val-
ues that are not generated by the FST. In particular,

4To see why the number of possible chunkings is 3n −
3n−1 − 3n−2, consider the IOB1 encoding: it generates all
chunkings, and is valid for any of the 3n strings except those
that start with B (of which there are 3n−1) and those that in-
clude the sequence OB (of which there are 3n−2).
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in cases where the transformed value is not gener-
ated by the FST, we can assume that one or more
of the transformed tags was chosen incorrectly; and
make the minimal set of changes to those tags that
results in a string that is generated by the FST. Thus,
we can compute the optimal un-transformed output
value corresponding to each transformed output us-
ing the following procedure:

1. Invert the original FST. I.e., replace each arc
〈S → Q[α : β]〉 with an arc 〈S → Q[β : α]〉.

2. Normalize the FST such that each arc has ex-
actly one input symbol.

3. Convert the FST to a weighted FST by as-
signing a weight of zero to all arcs. This
weighted FST uses non-negative real-valued
weights, and the weight of a path is the sum
of the weights of all edges in that path.

4. For each arc 〈S → Q[x : α]〉, and each y 6= x,
add a new arc 〈S → Q[y : α]〉 with a weight
one.

5. Determinize the resulting FST, using a vari-
ant of the algorithm presented in (Mohri,
1997). This determinization algorithm will
prune paths that have non-optimal weights.
In cases where determinization algorithm has
not completed by the time it creates 10,000
states, the candidate FST is assumed to be non-
determinizable, and the original FST is rejected
as a candidate.

The resulting FST will accept all sequences of
transformed tags, and will generate for each trans-
formed tag the un-transformed output value that is
generated with the fewest number of “repairs” made
to the transformed tags.

5 FST Modification Operations

In order to search the space of output-transforming
FSTs, we must define a set of modification oper-
ations, that generate a new FST from a previous
FST. In order to support a hill-climbing search
strategy, these modification operations should make
small incremental changes to the FSTs. The selec-
tion of appropriate modification operations is impor-
tant, since it will significantly impact the efficiency

of the search process. In this section, I describe the
set of FST modification operations that are used for
the experiments described in this paper. These oper-
ations were chosen based our intuitions about what
modifications would support efficient hill-climbing
search. In future experiments, we plan to examine
alternative modification operations.

5.1 New Output Tag

The new output tag operation replaces an arc 〈S →
Q[α : βxγ]〉 with an arc 〈S → Q[α : βyγ]〉, where
y is a new output tag that is not used anywhere else
in the transducer. When a single output tag appears
on multiple arcs, this operation effectively splits that
tag in two. For example, when applied to the identity
transducer for the IOB1 encoding shown in Figure 2,
this operation can be used to distinguish O tags that
follow other O tags from O tags that follow I or B
tags – effectively increasing the order of the model
structure for just O tags.

5.2 Specialize Output Tag5

The specialize output tag operation is similar to the
new output tag operation, but rather than replacing
the output tag with a new tag, we “subdivide” the
tag. When the model is trained, features will be in-
cluded for both the subdivided tag and the original
(undivided) tag.

5.3 Loop Unrolling

The loop unrolling operation acts on a single self-
loop arc e at a state S, and makes the following
changes to the FST:

1. Create a new state S’.

2. For each outgoing arc e1 = 〈S → Q[α : β]〉 6=
e, add add an arc e2 = 〈S′ → Q[α : β]〉. Note
that if e1 was a self-loop arc (i.e., S = Q), then
e2 will point from S′ to S.

3. Change the destination of loop arc e from S to
S′.

By itself, the loop unrolling operation just mod-
ifies the structure of the FST, but does not change

5This operation requires the use of a model where features
are defined over (input,output) pairs, such as MEMMs or LC-
CRFs.
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the actual transduction performed by the FST. It is
therefore always immediately followed by applying
the new output tag operation or the specialize output
tag operation to the loop arc e.

5.4 Copy Tag Forward
The copy tag forward operation splits an existing
state in two, directing all incoming edges that gen-
erate a designated output tag to one copy, and all
remaining incoming edges to the other copy. The
outgoing edges of these two states are then distin-
guished from one another, using either the specialize
output tag operation (if available) or the new output
tag operation.

This modification operation creates separate
edges for different output histories, effectively in-
creasing the “window size” of tags that pass through
the state.

5.5 Copy State Forward
The copy state forward operation is similar to the
copy tag forward operation; but rather than redirect-
ing incoming edges based on what output tags they
generate, it redirects incoming edges based on what
state they originate from. This modification opera-
tion allows the FST to encode information about the
history of states in the transformational FST as part
of the model structure.

5.6 Copy Feature Forward
The copy feature forward operation is similar to the
copy tag forward operation; but rather than redirect-
ing incoming edges based on what output tags they
generate, it redirects incoming edges based on a fea-
ture of the current input value. This modification op-
eration allows the transformation to subdivide out-
put tags based on features of the input value.

6 Hill Climbing System

Having defined a search space, a set of transforma-
tions to explore that space, and an evaluation met-
ric, we can use a hill-climbing system to search for
a good model structure. This approach starts with
a simple initial FST, and makes incremental local
changes to that FST until a locally optimal FST is
found. In order to help avoid sub-optimal local max-
ima, we use a fixed-size beam search. To increase
the search speed, we used a 12-machine cluster to

evaluate candidate FSTs in parallel. The hill climb-
ing system iteratively performs the following proce-
dure:

1. Initialize candidates to be the singleton set
containing the identity transducer.

2. Repeat ...

(a) Generate a new FST, by applying a ran-
dom modification operation to a randomly
selected member of the candidates
set.

(b) Evaluate the new FSTs, and test its perfor-
mance on the held-out data set. (This is
done in parallel.)

(c) Once the FST has been evaluated, add it to
the candidates set.

(d) Sort the candidates set by their score
on the held-out data, and discard all but
the 10 highest-scoring candidates.

... until no improvement is made for twenty
consecutive iterations.

3. Return the candidate FST with the highest
score.

7 Noun Phrase Chunking Experiment

In order to test this approach to finding a good model
structure, we applied our hill-climbing system to the
task of noun phrase chunking. The base system
was a Linear Chain CRF, implemented using Mal-
let (McCallum, 2002). The set of features used are
listed in Figure 1. Training and testing were per-
formed using the noun phrase chunking corpus de-
scribed in Ramshaw & Marcus (1995) (Ramshaw
and Marcus, 1995). A randomly selected 10% of the
original training corpus was used as held-out data,
to provide feedback to the hill-climbing system.

7.1 NP Chunking Experiment: Results

Over 100 iterations, the hill-climbing system in-
creased chunking performance on the held-out data
from a F-score of 94.93 to an F-score of 95.32.
This increase was reflected in an improvement on
the test data from an F-score of 92.48 to an F-score
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Feature Description
yi The current output tag.
yi, wi+n A tuple of the current output tag and

the i + nth word, −2 ≤ n ≤ 2.
yi, wi, wi−1 A tuple of the current output tag, the

current word, and the previous word.
yi, wi, wi+1 A tuple of the current output tag, the

current word, and the next word.
yi, ti+n A tuple of the current output tag and

the part of speech tag of the i + nth
word, −2 ≤ n ≤ 2.

yi, ti+n,
ti+n+1

A tuple of the current output tag and
the two consecutive part of speech
tags starting at word i + n, −2 ≤
n ≤ 1.

yi+n−1, ti+n,
ti+n+1

A tuple of the current output tag, and
three consecutive part of speech tags
centered on word i+n,−1 ≤ n ≤ 1.

Table 1: Feature Set for the CRF NP Chunker. yi

is the ith output tag; wi is the ith word; and ti is the
part-of-speech tag for the ith word.

System F1 (Held-out) F1 (Test)
Baseline (first order) 94.93 92.48
Second order 95.14 92.63
Learned structure 95.32 92.80

Table 2: Results for NP Chunking Experiment.

of 92.80.6 As a point of comparison, a simple sec-
ond order model achieves an intermediate F-score of
92.63 on the test data. Thus, the model learned by
the hill-climbing system outperforms both the sim-
ple first-order model and the simple second-order
model.

Figure 3 shows how the scores of FSTs on held-
out data changed as the hill-climbing system ran.
Figure 4 shows the search tree explored by the hill-
climbing system.

6The reason that held-out scores are significantly higher than
test scores is that held-out data was taken from the same sec-
tions of the original corpus as the training data; but test data was
taken from new sections. Thus, there was more lexical overlap
between the training data and the held-out data than between
the training data and the testing data.

...

Figure 3: Performance on Heldout Data for NP
Chunking Experiment. In this graph, each point
corresponds to a single transducer generated by the
hill-climbing system. The height of each trans-
ducer’s point indicates its score on held-out data.
The line indicates the highest score that has been
achieved on the held-out data by any transducer.

Figure 4: Hill Climbing Search Tree for NP
Chunking Experiment This tree shows the “an-
cestry” of each transducer tried by the hill climb-
ing system. Lighter colors indicate higher scores
on the held-out data. After one hundred iterations,
the five highest scoring transducers were fst047,
fst058, fst083, fst102, and fst089.
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Figure 5: Final FST. The highest-scoring FST gen-
erated by the hill-climbing algorithm, after a run of
100 iterations. For a discussion of this transducer,
see Section 7.1.1.

7.1.1 NP Chunking Experiment: The Selected
Transformation

Figure 5 shows the FST for the best output trans-
formation found after 100 iterations of the hill-
climbing algorithm. Inspection of this FST reveals
that it transforms the original set of three tags (I , O,
and B) to six new tags: I1, I2, I3, O, B1, and B2.

The first three of these tags are used at the begin-
ning of a chunk: I1 is used if the preceding tag was
O; B1 is used if the preceding tag was B; and B2

is used if the preceding tag was I . This is similar to
a second order model, in that it records information
about both the current tag and the previous tag.

The next tag, O, is used for all words outside of
chunks. Thus, the hill-climbing system found that
increasing the window size used for O chunks does
not help to learn any useful constraints with neigh-
boring tags.

Finally, two tags are used for words that are inside
a chunk, but not at the beginning of the chunk: I2

and I3. The choice of which tag should be used de-
pends on the input feature that tests whether the cur-
rent word is a comma, and the previous word was a
proper noun (NNP). At first, this might seem like an
odd feature to distinguish. But note that in the Wall
Street Journal, it is quite common for proper nouns
to include internal commas; but for other nouns, it is

fairly uncommon. By dividing the I tag in two based
on this feature, the model can use separate distribu-
tions for these two cases. Thus, the model avoids
conflating two contexts that are significantly differ-
ent from one another for the task at hand.

8 Discussion

Sequential Viterbi Models are capable of learning to
model the probability of local patterns on the out-
put structure. But the distance that these patterns
can span is limited by the model’s structure. This
distance can be lengthened by moving to higher or-
der model structures, but only at the expense of an
increase in the number of model parameters, along
with the data sparsity issues that can arise from that
increase. Therefore, it makes sense to be more selec-
tive about how we extend the model structure. Using
reversible output transformations, it is possible to
define model structures that extend the reach of the
model only where necessary. And as we have shown
here, it is possible to find a suitable output transfor-
mation for a given task by using simple search pro-
cedures.
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Abstract

Speech recognition transcripts are far from
perfect; they are not of sufficient quality to
be useful on their own for spoken document
retrieval. This is especially the case for con-
versational speech. Recent efforts have tried
to overcome this issue by using statistics
from speech lattices instead of only the 1-
best transcripts; however, these efforts have
invariably used the classical vector space re-
trieval model. This paper presents a novel
approach to lattice-based spoken document
retrieval using statistical language models: a
statistical model is estimated for each doc-
ument, and probabilities derived from the
document models are directly used to mea-
sure relevance. Experimental results show
that the lattice-based language modeling
method outperforms both the language mod-
eling retrieval method using only the 1-best
transcripts, as well as a recently proposed
lattice-based vector space retrieval method.

1 Introduction

Information retrieval (IR) is the task of ranking a
collection of documents according to an estimate of
their relevance to a query. With the recent growth
in the amount of speech recordings in the form of
voice mails, news broadcasts, and so forth, the task
of spoken document retrieval (SDR) – information
retrieval in which the document collection is in the
form of speech recordings – is becoming increas-
ingly important.

SDR on broadcast news corpora has been
“deemed to be a solved problem”, due to the fact that
the performance of retrieval engines working on 1-
best automatic speech recognition (ASR) transcripts
was found to be “virtually the same as their perfor-
mance on the human reference transcripts” (NIST,
2000). However, this is still not the case for SDR
on data which are more challenging, such as conver-
sational speech in noisy environments, as the 1-best
transcripts of these data contain too many recogni-
tion errors to be useful for retrieval. One way to
ameliorate this problem is to work with not just one
ASR hypothesis for each utterance, but multiple hy-
potheses presented in alattice data structure. A lat-
tice is a connected directed acyclic graph in which
each edge is labeled with a term hypothesis and a
likelihood value (James, 1995); each path through a
lattice gives a hypothesis of the sequence of terms
spoken in the utterance.

Each lattice can be viewed as a statistical model
of the possible transcripts of an utterance (given the
speech recognizer’s state of knowledge); thus, an
IR model based on statistical inference will seem
to be a more natural and more principled approach
to lattice-based SDR. This paper thus proposes a
lattice-based SDR method based on the statistical
language modeling approach of Song and Croft
(1999). In this method, theexpected word count –
the mean number of occurrences of a word given
a lattice’s statistical model – is computed for each
word in each lattice. Using these expected counts,
a statistical language model is estimated for each
spoken document, and a document’s relevance to a
query is computed as a probability under this model.
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The rest of this paper is organized as follows. In
Section 2 we review related work in the areas of
speech processing and IR. Section 3 describes our
proposed method as well as the baseline methods.
Details of the experimental setup are given in Sec-
tion 4, and experimental results are in Section 5. Fi-
nally, Section 6 concludes our discussions and out-
lines our future work.

2 Related Work

2.1 Lattices for Spoken Document Retrieval

James and Young (1994) first introduced the lattice
as a representation for indexing spoken documents,
as part of a method for vocabulary-independent key-
word spotting. The lattice representation was later
applied to the task of spoken document retrieval
by James (1995): James counted how many times
each query word occurred in each phone lattice with
a sufficiently high normalized log likelihood, and
these counts were then used in retrieval under a vec-
tor space model withtf · idf weighting. Jones et al.
(1996) combined retrieval from phone lattices using
variations of James’ method with retrieval from 1-
best word transcripts to achieve better results.

Since then, a number of different methods for
SDR using lattices have been proposed. For in-
stance, Siegler (1999) used word lattices instead of
phone lattices as the basis of retrieval, and gener-
alized thetf · idf formalism to allow uncertainty
in word counts. Chelba and Acero (2005) prepro-
cessed lattices into more compact Position Specific
Posterior Lattices (PSPL), and computed an aggre-
gate score for each document based on the poste-
rior probability of edges and the proximity of search
terms in the document. Mamou et al. (2006) con-
verted each lattice into a word confusion network
(Mangu et al., 2000), and estimated the inverse doc-
ument frequency (idf ) of each wordt as the ratio of
the total number of words in the document collection
to the total number of occurrences oft.

Despite the differences in the details, the above
lattice-based SDR methods have all been based on
the classical vector space retrieval model withtf ·idf
weighting.

2.2 Expected Counts from Lattices

A speech recognizer generates a 1-best transcript
of a spoken document by considering possible tran-
scripts of the document, and then selecting the tran-
script with the highest probability. However, unlike
a text document, such a 1-best transcript is likely to
be inexact due to speech recognition errors. To rep-
resent the uncertainty in speech recognition, and to
incorporate information from multiple transcription
hypotheses rather than only the 1-best, it is desirable
to use expected word counts from lattices output by
a speech recognizer.

In the context of spoken document search, Siegler
(1999) described expected word counts and for-
mulated a way to estimate expected word counts
from lattices based on the relative ranks of word
hypothesis probabilities; Chelba and Acero (2005)
used a more explicit formula for computing word
counts based on summing edge posterior probabili-
ties in lattices; Saraclar and Sproat (2004) performed
word-spotting in speech lattices by looking for word
occurrences whose expected counts were above a
certain threshold; and Yu et al. (2005) searched for
phrases in spoken documents using a similar mea-
sure, the expected word relevance.

Expected counts have also been used to sum-
marize the phonotactics of a speech recording rep-
resented in a lattice: Hatch et al. (2005) per-
formed speaker recognition by computing the ex-
pected counts of phone bigrams in a phone lattice,
and estimating an unsmoothed probability distribu-
tion of phone bigrams.

Although many uses of expected counts have been
studied, the use of statistical language models built
from expected word counts has not been well ex-
plored.

2.3 Retrieval via Statistical Language
Modeling

Finally, the statistical language modeling approach
to retrieval was used by Ponte and Croft (1998) for
IR with text documents, and it was shown to outper-
form thetf · idf approach for this task; this method
was further improved on in Song and Croft (1999).
Chen et al. (2004) applied Song and Croft’s method
to Mandarin spoken document retrieval using 1-best
ASR transcripts. In this task, it was also shown to
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outperformtf · idf . Thus, the statistical language
modeling approach to retrieval has been shown to be
superior to the vector space approach for both these
IR tasks.

2.4 Contributions of Our Work

The main contributions of our work include

• extending the language modeling IR approach
from text-based retrieval to lattice-based spo-
ken document retrieval; and

• formulating a method for building a statistical
language model based on expected word counts
derived from lattices.

Our method is motivated by the success of the sta-
tistical retrieval framework over the vector space ap-
proach withtf · idf for text-based IR, as well as
for spoken document retrieval via 1-best transcripts.
Our use of expected counts differs from Saraclar and
Sproat (2004) in that we estimate probability mod-
els from the expected counts. Conceptually, our
method is close to that of Hatch et al. (2005), as
both methods build a language model to summa-
rize the content of a spoken document represented
in a lattice. In practice, our method differs from
Hatch et al. (2005)’s in many ways: first, we derive
word statistics for representing semantics, instead of
phone bigram statistics for representing phonotac-
tics; second, we introduce a smoothing mechanism
(Zhai and Lafferty, 2004) to the language model that
is specific for information retrieval.

3 Methods

We now describe the formulation of three different
SDR methods: a baseline statistical retrieval method
which works on 1-best transcripts, our proposed sta-
tistical lattice-based SDR method, as well as a pre-
viously published vector space lattice-based SDR
method.

3.1 Baseline Statistical Retrieval Method

Our baseline retrieval method is motivated by Song
and Croft (1999), and uses the language model
smoothing methods of Zhai and Lafferty (2004).
This method is used to perform retrieval on the docu-
ments’ 1-best ASR transcripts and reference human
transcripts.

Let C be the collection of documents to retrieve
from. For each documentd contained inC, and each
queryq, the relevance ofd to q can be defined as
Pr(d | q). This probability cannot be computed di-
rectly, but under the assumption that the priorPr(d)
is uniform over all documents inC, we see that

Pr(d | q) =
Pr(q | d) Pr(d)

Pr(q)
∝ Pr(q | d);

This means that ranking documents byPr(d | q) is
equivalent to ranking them byPr(q | d), and thus
Pr(q | d) can be used to measure relevance (Berger
and Lafferty, 1999).

Now expressq as a series of words drawn from
a vocabularyV = {w1, w2, · · ·wV }; that is,q =
q1q2 · · · qK , whereK is the number of words in the
query, andqi ∈ V for 1 ≤ i ≤ K. Then given
a unigram model derived fromd which assigns a
probability Pr(w | d) to each wordw in V, we can
computePr(q | d) as follows:

Pr(q | d) = Pr(q1q2 · · · qK | d)

=
K
∏

i=1

Pr(qi | d)

=
∏

w∈V ,
C(w|q)>0

Pr(w|d)C(w|q) (1)

whereC(w | q) is the word count ofw in q.
Before using Equation 1, we must estimate a uni-

gram model fromd: that is, an assignment of proba-
bilities Pr(w | d) for all w ∈ V. One way to do this
is to use a maximum likelihood estimate (MLE) – an
assignment ofPr(w | d) for all w which maximizes
the probability of generatingd. The MLE is given
by the equation

Pr mle(w | d) =
C(w | d)

|d|

whereC(w | d) is the number of occurrences of
w in d, and |d| is the total number of words ind.
However, using this formula means we will get a
value of zero forPr(q | d) if even a single query
wordqi is not found ind. To overcome this problem,
we smooth the model by assigning some probability
mass to such unseen words. Specifically, we adopt
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a two-stage smoothing method (Zhai and Lafferty,
2004):

Pr(w | d) = (1 − λ)
C(w | d) + µ Pr(w | C)

|d| + µ

+λPr(w | U) (2)

Here,U denotes a background language model, and
µ > 0 andλ ∈ (0, 1) are parameters to the smooth-
ing procedure. This is a combination of Bayesian
smoothing using Dirichlet priors (MacKay and Peto,
1984) and Jelinek-Mercer smoothing (Jelinek and
Mercer, 1980).

The parameterλ can be set empirically according
to the nature of the queries. For the parameterµ, we
adopt the estimation procedure of Zhai and Lafferty
(2004): we maximize the leave-one-out log likeli-
hood of the document collection, namely

ℓ−1(µ | C) =
∑

d∈C

∑

w∈V

C(w | d)

log

(

C(w | d) − 1 + µ Pr(w | C)

|d| − 1 + µ

)

(3)

by using Newton’s method to solve the equation

ℓ′−1(µ | C) = 0

3.2 Our Proposed Statistical Lattice-Based
Retrieval Method

We now propose our lattice-based retrieval method.
In contrast to the above baseline method, our pro-
posed method works on the lattice representation of
spoken documents, as generated by a speech recog-
nizer.

First, each spoken document is divided intoM

short speech segments. A speech recognizer then
generates a lattice for each speech segment. As
previously stated, a lattice is a connected directed
acyclic graph with edges labeled with word hypothe-
ses and likelihoods. Thus, each path through the lat-
tice contains a hypothesis of the series of words spo-
ken in this speech segment,t = t1t2 · · · tN , along
with acoustic probabilitiesPr(o1 | t1), Pr(o2 | t2),
· · · Pr(oN | tN ), where oi denotes the acoustic
observations for the time interval of the wordti
hypothesized by the speech recognizer. Leto =
o1o2 · · · oN denote the acoustic observations for the

entire speech segment; then

Pr(o | t) =

N
∏

i=1

Pr(oi | ti)

We then rescore each lattice with ann-gram lan-
guage model. Effectively, this means multiplying
the acoustic probabilities withn-gram probabilities:

Pr(t,o) = Pr(o | t) Pr(t)

=

N
∏

i=1

Pr(oi | ti) Pr(ti | ti−n+1 · · · ti−1)

This produces an expanded lattice in which paths
(hypotheses) are weighted by their posterior proba-
bilities rather than their acoustic likelihoods: specif-
ically, by Pr(t,o) ∝ Pr(t | o) rather thanPr(o | t)
(Odell, 1995). The lattice is then pruned, by remov-
ing those paths in the lattice whose log posterior
probabilities – to be precise, whoseγ ln Pr(t | o)
– are not within a thresholdΘ of the best path’s log
posterior probability (in our implementation,γ =
10000.5).

Next, we compute the expected count of each
word in each document. For each wordw and each
documentd comprised ofM speech segments rep-
resented byM acoustic observationso(1), o(2), · · ·
o(M), the expected count ofw in d is

E[C(w | d)] =

M
∑

j=1

∑

t

C(w | t) Pr(t | o(j))

whereC(w | t) is the word count ofw in the hy-
pothesized transcriptt. We can also analogously
compute the expected document length:

E[|d|] =
M
∑

j=1

∑

t

|t|Pr(t | o(j))

where|t| denotes the number of words int.
We now replaceC(w | d) and |d| in Equation 2

with E[C(w | d)] andE[|d|]; thus

Pr(w | d) = (1 − λ)
E[C(w | d)] + µ Pr(w | C)

E[|d|] + µ

+λPr(w | U) (4)

In addition, we also modify the procedure for
estimating µ, by replacing C(w | d) and

813



ããã 0.528óóó 0.472
–

��� 0.580333 0.404°°° 0.016

–
��� 0.764

ǫ 0.236
–

������ 0.764ÞÞÞqqq 0.099ÏÏÏ--- 0.071ÔÔÔ��� 0.066

–
��� 0.673

ǫ 0.327

Figure 1: Example of a word confusion network

|d| in Equation 3 with
⌊

E[C(w | d)] + 1
2

⌋

and
∑

w∈V

⌊

E[C(w | d)] + 1
2

⌋

respectively. The prob-
ability estimates from Equation 4 can then be sub-
stituted into Equation 1 to yield relevance scores.

3.3 Baseline tf · idf Lattice-Based Retrieval
Method

As a further comparison, we also implemented
Mamou et al. (2006)’s vector space retrieval method
(without query refinement via lexical affinities). In
this method, each documentd is represented as
a word confusion network (WCN) (Mangu et al.,
2000) – a simplified lattice which can be viewed as
a sequence of confusion setsc1, c2, c3, · · · . Eachci

corresponds approximately to a time interval in the
spoken document and contains a group of word hy-
potheses, and each wordw in this group of hypothe-
ses is labeled with the probabilityPr(w | ci,d) – the
probability thatw was spoken in the time interval of
ci. A confusion set may also give a probability for
Pr(ǫ | ci,d), the probability that no word was spo-
ken in the time ofci. Figure 1 gives an example of a
WCN.

Mamou et al.’s retrieval method proceeds as fol-
lows. First, the documents are divided into speech
segments, lattices are generated from the speech seg-
ments, and the lattices are pruned according to the
path probability thresholdΘ, as described in Sec-
tion 3.2. The lattice for each speech segment is then
converted into a WCN according to the algorithm
of Mangu et al. (2000). The WCNs for the speech
segments in each document are then concatenated to
form a single WCN per document.

Now, to retrieve documents in response to a query
q, the method computes, for each documentd ∈ C
and each wordw ∈ V,

• the “document length”|d|, computed as the
number of confusion sets in the WCN ofd;

• the “average document length”avdl, computed

as

avdl =
1

|C|

∑

d′∈C

∣

∣d′
∣

∣ ;

• the “document term frequency”C∗(w | d),
computed as

C∗(w|d) =
∑

c∈occ(w,d)

(brank(w|c,d)·Pr(w|c,d))

where occ(w,d) is the set of confusion sets
in d’s WCN which containw as a hypothe-
sis, rank(w | c,d) is the rank ofw in terms
of probability within the confusion setc, and
(b1, b2, b3, · · · ) = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
0, 0, 0, · · · ) is a boosting vector which serves
to discard all but the top 10 hypotheses, and
gives more weight to higher-ranked word hy-
potheses;

• the query term frequencyC(w | q), which is
simply the word count ofw in q; and

• the “inverse document frequency”idf(w),
computed as

idf(w) = log
O

Ow

where

Ow =
∑

d∈C

∑

c∈occ(w,d)

Pr(w | c,d)

O =
∑

w′∈V

Ow′

With these, the relevance ofd to q is computed as
(Carmel et al., 2001)

rel(d,q) =

P

w∈V
C∗(w | d) · C(w | q) · idf(w)
p

0.8 · avdl + 0.2 · |d|

4 Experiments

4.1 Document Collection

To evaluate our proposed retrieval method, we per-
formed experiments using the Hub5 Mandarin train-
ing corpus released by the Linguistic Data Consor-
tium (LDC98T26). This is a conversational tele-
phone speech corpus which is 17 hours long, and
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contains recordings of 42 telephone calls corre-
sponding to approximately 600Kb of transcribed
Mandarin text. Each conversation has been broken
up into speech segments of less than 8 seconds each.

As the telephone calls in LDC98T26 have not
been divided neatly into “documents”, we had to
choose a suitable unit of retrieval which could serve
as a “document”. An entire conversation would be
too long for such a purpose, while a speech segment
or speaker turn would be too short. We decided to
use1

2 -minute time windows with 50% overlap as re-
trieval units, following Abberley et al. (1999) and
Tuerk et al. (2001). The 42 telephone conversations
were thus divided into 4,312 retrieval units (“doc-
uments”). Each document comprises multiple con-
secutive speech segments.

4.2 Queries and Ground Truth Relevance
Judgements

We then formulated 18 queries (14 test queries, 4
development queries) to issue on the document col-
lection. Each query was comprised of one or more
written Chinese keywords. We then obtained ground
truth relevance judgements by manually examining
each of the 4,312 documents to see if it is relevant
to the topic of each query. The number of retrieval
units relevant to each query was found to range from
4 to 990. The complete list of queries and the num-
ber of documents relevant to each query are given in
Table 1.

4.3 Preprocessing of Documents and Queries

Next, we processed the document collection with a
speech recognizer. For this task we used the Abacus
system (Hon et al., 1994), a large vocabulary contin-
uous speech recognizer which contains a triphone-
based acoustic system and a frame-synchronized
search algorithm for effective word decoding. Each
Mandarin syllable was modeled by one to four tri-
phone models. Acoustic models were trained from
a corpus of 200 hours of telephony speech from
500 speakers sampled at 8kHz. For each speech
frame, we extracted a 39-dimensional feature vec-
tor consisting of 12 MFCCs and normalized en-
ergy, and their first and second order derivatives.
Sentence-based cepstral mean subtraction was ap-
plied for acoustic normalization both in the training
and testing. Each triphone was modeled by a left-

Test queries

Topic Keywords # relevant

documents

Contact information ������,RRRhhh,ǑǑǑ���,ÉÉÉøøø,vvv 103

Chicago zzz���¸̧̧ 15

The weather ���ííí,¥¥¥,yyy,FFFZZZ,ZZZ,ØØØOOO,¥¥¥,888®®®, 117������,¬¬¬���,ííí���,§§§ÝÝÝ
Housing matters 222���,���,ÔÔÔ,222���,���äää,ÂÂÂ,óóó222, 354¹¹¹???,yyy���,222ÀÀÀ,ÓÓÓ���
Studies, academia ÆÆÆ���,���   ,���AAA,���,ÖÖÖ,WWWttt,'''VVV, 990111,���III,������,���DDD,333���
Litigation ���FFF,FFF���,KKK������,åååªªª 31

Raising children BBB///,///���,			¸̧̧,ÆÆÆ���,���ÆÆÆÉÉÉ,mmm, 334mmmäää,EEEÆÆÆ
Christian churches sssÌÌÌ,���,ÌÌÌ,²²²¾¾¾,sssììì,ÙÙÙÄÄÄ,���²²², 78LLLêêê
Floods vvvyyy,ÌÌÌ,���,yyy 4

Clothing ���qqq,������,������,FFF���,°°°:::ggg,ggg���, 28:::���FFF,ÜÜÜqqq,���
Eating out ÏÏÏ,jjj���,iiiqqq,¥¥¥jjj,>>>000,,,,¡¡¡ 57

Playing sports KKKEEE,ÙÙÙÄÄÄ,���|||EEE,\\\EEE 24

Dealings with banks UUUqqq,|||���,���,


���,TTTQQQ 54

Computers and ���


,���®®®ååå,���GGG 175

software

Development queries

Topic Keywords # relevant

documents

Passport and visa ǑǑǑLLL,üüüyyy,���¸̧̧,CCC���,III���,###ÌÌÌ 143

matters

Washington D. C. ������îîî 15

Working life ÙÙÙÆÆÆ,���,KKKÓÓÓ,{{{,ÓÓÓ***,���ÆÆÆ,ñññ���, 509ÚÚÚ���,lll,ÓÓÓýýý,ÞÞÞ���,333///,���,������
1996 Olympics £££äääÌÌÌ,ÆÆÆ���}}}LLL 8

Table 1: List of test and development queries

to-right 3-state hidden Markov model (HMM), each
state having 16 Gaussian mixture components. In
total, we built 1,923 untied within-syllable triphone
models for 43 Mandarin phonemes, as well as 3 si-
lence models. The search algorithm was supported
by a loop grammar of over 80,000 words.

We processed the speech segments in our collec-
tion corpus, to generate lattices incorporating acous-
tic likelihoods but notn-gram model probabilities.
We then rescored the lattices using a backoff tri-
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gram language model interpolated in equal propor-
tions from two trigram models:

• a model built from the TDT-2, TDT-3, and
TDT-4 Mandarin news broadcast transcripts
(about 58Mb of text)

• a model built from corpora of transcripts of
conversations, comprised of a 320Kb subset of
the Callhome Mandarin corpus (LDC96T16)
and the CSTSC-Flight corpus from the Chinese
Corpus Consortium (950Kb)

The unigram counts from this model were also used
as the background language modelU in Equations 2
and 4.

The reference transcripts, queries, and trigram
model training data were all segmented into words
using Low et al. (2005)’s Chinese word segmenter,
trained on the Microsoft Research (MSR) corpus,
with the speech recognizer’s vocabulary used as an
external dictionary. The 1-best ASR transcripts were
decoded from the rescored lattices.

Lattice rescoring, trigram model building, WCN
generation, and computation of expected word
counts were done using the SRILM toolkit (Stolcke,
2002), while lattice pruning was done with the help
of the AT&T FSM Library (Mohri et al., 1998).

We also computed the character error rate (CER)
and syllable error rate (SER) of the 1-best tran-
scripts, and the lattice oracle CER, for one of
the telephone conversations in the speech corpus
(ma_4160). The CER was found to be 69%, the
SER 63%, and the oracle CER 29%.

4.4 Retrieval and Evaluation

We then performed retrieval on the document col-
lection using the algorithms in Section 3, using the
reference transcripts, the 1-best ASR transcripts, lat-
tices, and WCNs. We setλ = 0.1, which was sug-
gested by Zhai and Lafferty (2004) to give good re-
trieval performance for keyword queries.

The results of retrieval were checked against the
ground truth relevance judgements, and evaluated in
terms of the non-interpolated mean average preci-
sion (MAP):

MAP =
1

L

L
∑

i=1





1

Ri

Ri
∑

j=1

j

ri,j





Retrieval Retrieval MAP for MAP for

method source development test

queries queries

Statistical Reference 0.5052 0.4798

transcripts

Statistical 1-best 0.1251 0.1364

transcripts

Vector space Lattices, 0.1685 0.1599

tf · idf Θ = 27, 500

Statistical Lattices, 0.2180 0.2154

Θ = 65, 000

Table 2: Summary of experimental results

whereL denotes the total number of queries,Ri the
total number of documents relevant to theith query,
and ri,j the position of thejth relevant document
in the ranked list output by the retrieval method for
queryi.

For the lattice-based retrieval methods, we per-
formed retrieval with the development queries using
several values ofΘ between 0 and 100,000, and then
used the value ofΘ with the best MAP to do retrieval
with the test queries.

5 Experimental Results

The results of our experiments are summarized
in Table 2; the MAP of the two lattice-based
retrieval methods, Mamou et al. (2006)’s vector
space method and our proposed statistical retrieval
method, are shown in Figure 2 and Figure 3 respec-
tively.

The results show that, for the vector space re-
trieval method, the MAP of the development queries
is highest atΘ = 27, 500, at which point the MAP
for the test queries is 0.1599; and for our proposed
method, the MAP for the development queries is
highest atΘ = 65, 000, and at this point the MAP
for the test queries reaches 0.2154.

As can be seen, the performance of our statistical
lattice-based method shows a marked improvement
over the MAP of 0.1364 achieved using only the 1-
best ASR transcripts, and indeed a one-tailed Stu-
dent’st-test shows that this improvement is statisti-
cally significant at the 99.5% confidence level. The
statistical method also yields better performance
than Mamou et al.’s vector space method – at-test
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For 4 development queries
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Figure 2: MAP of Mamou et al. (2006)’s vector
space method for lattice-based retrieval, at various
pruning thresholdsΘ

shows the performance difference to be statistically
significant at the 97.5% confidence level.

6 Conclusions and Future Work

We have presented a method for performing spo-
ken document retrieval using lattices which is based
on a statistical language modeling retrieval frame-
work. Results show that our new method can sig-
nificantly improve the retrieval MAP compared to
using only the 1-best ASR transcripts. Also, our
proposed retrieval method has been shown to out-
perform Mamou et al. (2006)’s vector space lattice-
based retrieval method.

Besides the better empirical performance, our
method also has other advantages over Mamou et
al.’s vector space method. For one, our method com-
putes expected word counts directly from rescored
lattices, and does not require an additional step to

For 4 development queries
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Figure 3: MAP of our proposed statistical method
for lattice-based retrieval, at various pruning thresh-
oldsΘ

convert lattices lossily to WCNs. Furthermore, our
method uses all the hypotheses in each lattice, rather
than just the top 10 word hypotheses at each time
interval. Most importantly, our method provides
a more natural and more principled approach to
lattice-based spoken document retrieval based on a
sound statistical foundation, by harnessing the fact
that lattices are themselves statistical models; the
statistical approach also means that our method can
be more easily augmented with additional statistical
knowledge sources in a principled way.

For future work, we plan to test our proposed
method on English speech corpora, and with larger-
scale retrieval tasks involving more queries and
more documents. We would like to extend our
method to other speech processing tasks, such as
spoken document classification and example-based
spoken document retrieval as well.
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Abstract

Query segmentation is the process of tak-
ing a user’s search-engine query and di-
viding the tokens into individual phrases
or semantic units. Identification of these
query segments can potentially improve
both document-retrieval precision, by first
returning pages which contain the exact
query segments, and document-retrieval re-
call, by allowing query expansion or substi-
tution via the segmented units. We train and
evaluate a machine-learned query segmenta-
tion system that achieves 86% segmentation-
decision accuracy on a gold standard set of
segmented noun phrase queries, well above
recently published approaches. Key en-
ablers of this high performance are features
derived from previous natural language pro-
cessing work in noun compound bracketing.
For example, token association features be-
yond simple N-gram counts provide power-
ful indicators of segmentation.

1 Introduction

Billions of times every day, people around the world
communicate with Internet search engines via a
small text box on a web page. The user provides
a sequence of words to the search engine, and the
search engine interprets the query and tries to return
web pages that not only contain the query tokens,
but that are also somehow about the topic or idea
that the query terms describe.

Recent years have seen a widespread recognition
that the user is indeed providing natural language

text to the search engine; query tokens are not inde-
pendent, unordered symbols to be matched on a web
document but rather ordered words and phrases with
syntactic relationships. For example, Zhai (1997)
pointed out that indexing on single-word symbols is
not able to distinguish a search for “bank terminol-
ogy” from one for “terminology bank.” The reader
can submit these queries to a current search engine
to confirm that modern indexing does recognize the
effect of token order on query meaning in some way.

Accurately interpreting query semantics also de-
pends on establishing relationships between the
query tokens. For example, consider the query “two
man power saw.” There are a number of possible
interpretations of this query, and these can be ex-
pressed through a number of different segmentations
or bracketings of the query terms:

1. [two man power saw]

2. [two man] [power saw]

3. [two] [man] [power saw]

4. [two] [man power] [saw], etc.
One simple way to make use of these interpretations
in search would be to put quotation marks around the
phrasal segments to require the search engine to only
find pages with exact phrase matches. If, as seems
likely, the searcher is seeking pages about the large,
mechanically-powered two-man saws used by lum-
berjacks and sawyers to cut big trees, then the first
segmentation is correct. Indeed, a phrasal search
for “two man power saw” on Google does find the
device of interest. So does the second interpreta-
tion, but along with other, less-relevant pages dis-
cussing competitions involving “two-man handsaw,
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two-woman handsaw, power saw log bucking, etc.”
The top document returned for the third interpreta-
tion, meanwhile, describes a man on a rampage at a
subway station with two cordless power saws, while
the fourth interpretation finds pages about topics
ranging from hockey’s thrilling two-man power play
advantage to the man power situation during the
Second World War. Clearly, choosing the right seg-
mentation means finding the right documents faster.

Query segmentation can also help if insufficient
pages are returned for the original query. A tech-
nique such as query substitution or expansion (Jones
et al., 2006) can be employed using the segmented
units. For example, we could replace the sexist “two
man” modifier with the politically-correct “two per-
son” phrase in order to find additional relevant doc-
uments. Without segmentation, expanding via the
individual words “two,” “man,” “power,” or “saw”
could produce less sensible results.

In this paper, we propose a data-driven, machine-
learned approach to query segmentation. Similar to
previous segmentation approaches described in Sec-
tion 2, we make a decision to segment or not to seg-
ment between each pair of tokens in the query. Un-
like previous work, we view this as a classification
task where the decision parameters are learned dis-
criminatively from gold standard data. In Section 3,
we describe our approach and the features we use.
Section 4 describes our labelled data, as well as the
specific tools used for our experiments. Section 5
provides the results of our evaluation, and shows the
strong gains in performance possible using a wide
set of features within a discriminative framework.

2 Related Work

Query segmentation has previously been ap-
proached in an unsupervised manner. Risvik et
al. (2003) combine the frequency count of a seg-
ment and the mutual information (MI) between pairs
of words in the segment in a heuristic scoring func-
tion. The system chooses the segmentation with the
highest score as the output segmentation. Jones et
al. (2006) use MI between pairs of tokens as the sole
factor in deciding on segmentation breaks. If the MI
is above a threshold (optimized on a small training
set), the pair of tokens is joined in a segment. Oth-
erwise, a segmentation break is made.

Query segmentation is related to the task of noun
compound (NC) bracketing. NC bracketing deter-
mines the syntactic structure of an NC as expressed
by a binary tree, or, equivalently, a binary bracket-
ing (Nakov and Hearst, 2005a). Zhai (1997) first
identified the importance of syntactic query/corpus
parsing for information retrieval, but did not con-
sider query segmentation itself. In principle, as
N increases, the number of binary trees for an N -
token compound is much greater than the 2N−1 pos-
sible segmentations. In practice, empirical NC re-
search has focused on three-word compounds. The
computational problem is thus deciding whether the
three-word NC has a left or right-bracketing struc-
ture (Lauer, 1995). For the segmentation task,
analysing a three-word NC requires deciding be-
tween four different segmentations. For example,
there are two bracketings for “used car parts,” the
left-bracketing “[[used car] parts]” and the right-
bracketing “[used [car parts]],” while there are four
segmentations, including the case where there is
only one segment, “[used car parts]” and the base
case where each token forms its own segment,
“[used] [car] [parts].” Query segmentation thus nat-
urally handles the case where the query consists of
multiple, separate noun phrases that should not be
analysed with a single binary tree.

Despite the differences between the tasks, it is
worth investigating whether the information that
helps disambiguate left and right-bracketings can
also be useful for segmentation. In particular, we
explored many of the sources of information used
by Nakov and Hearst (2005a), as well as several
novel features that aid segmentation performance
and should also prove useful for NC analysis re-
searchers. Unlike all previous approaches that we
are aware of, we apply our features in a flexible
discriminative framework rather than a classification
based on a vote or average of features.

NC analysis has benefited from the recent trend
of using web-derived features rather than corpus-
based counts (Keller and Lapata, 2003). Lapata and
Keller (2004) first used web-based co-occurrence
counts for the bracketing of NCs. Recent inno-
vations have been to use statistics “beyond the N-
gram,” such as counting the number of web pages
where a pair of words w, x participate in a genitive
relationship (“w’s x”), occur collapsed as a single
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phrase (“wx”) (Nakov and Hearst, 2005a) or have
a definite article as a left-boundary marker (“the
w x”) (Nicholson and Baldwin, 2006). We show
strong performance gains when such features are
employed for query segmentation.

NC bracketing is part of a larger field of research
on multiword expressions including general NC in-
terpretation. NC interpretation explores not just
the syntactic dependencies among compound con-
stituents, but the semantics of the nominal relation-
ships (Girju et al., 2005). Web-based statistics have
also had an impact on these wider analysis tasks, in-
cluding work on interpretation of verb nominalisa-
tions (Nicholson and Baldwin, 2006) and NC coor-
dination (Nakov and Hearst, 2005b).

3 Methodology

3.1 Segmentation Classification

Consider a query x = {x1, x2, ..., xN} consisting
of N query tokens. Segmentation is a mapping S :
x → y ∈ YN , where y is a segmentation from the
set YN . Since we can either have or not have a seg-
mentation break at each of the N−1 spaces between
the N tokens, |YN | = 2N−1. Supervised machine
learning can be applied to derive the mapping S au-
tomatically, given a set of training examples con-
sisting of pairs of queries and their segmentations
T = {(xi,yi)}. Typically this would be done via a
set of features Ψ(x,y) for the structured examples.
A set of weights w can be learned discriminatively
such that each training example (xi,yi) has a higher
score, Scorew(x,y) = w · Ψ(x,y), than alterna-
tive query-segmentation pairs, (xi, zi), zi 6= yi.1 At
test time, the classifier chooses the segmentation for
x that has the highest score according to the learned
parameterization: ŷ = argmaxy Scorew(x,y).
Unlike many problems in NLP such as parsing or
part-of-speech tagging, the small cardinality of YN

makes enumerating all the alternative query segmen-
tations computationally feasible.

In our preliminary experiments, we used a Sup-
port Vector Machine (SVM) ranker (Joachims,
2002) to learn the structured classifier.2 We also in-

1See e.g. Collins (2002) for a popular training algorithm.
2A ranking approach was also used previously by Daumé III

and Marcu (2004) for the CoNLL-99 nested noun phrase iden-
tification task.

vestigated a Hidden Markov Model SVM (Altun et
al., 2003) to label the segmentation breaks using in-
formation from past segmentation decisions. Ulti-
mately, the mappings produced by these approaches
were not as accurate as a simple formulation that
creates a full query segmentation y as the combi-
nation of independent classification decisions made
between each pair of tokens in the query.3

In the classification framework, the input is a
query, x, a position in the query, i, where 0<i<N ,
and the output is a segmentation decision yes/no.
The training set of segmented queries is converted
into examples of decisions between tokens and
learning is performed on this set. At test time, N −1
segmentation decisions are made for the N -length
query and an output segmentation y is produced.
Here, features depend only on the input query x and
the position in the query i. For a decision at position
i, we use features from tokens up to three positions
to the left and to the right of the decision location.
That is, for a decision between xL0 and xR0, we ex-
tract features from a window of six tokens in the
query: {..., xL2, xL1, xL0, xR0, xR1, xR2, ...}. We
now detail the features derived from this window.

3.2 Features

There are a number of possible indicators of whether
a segmentation break occurs between a pair of to-
kens. Some of these features fire separately for each
token x in our feature window, while others are de-
fined over pairs or sets of tokens in the window. We
first describe the features that are defined for the to-
kens around the decision boundary, xL0 and xR0,
before describing how these same features are ex-
tended to longer phrases and other token pairs.

3.2.1 Decision-boundary features

Table 1 lists the binary features that fire if partic-
ular aspects of a token or pair of tokens are present.
For example, one of the POS-tags features will fire
if the pair’s part-of-speech tags are DT JJ , another
feature will fire if the position of the pair in the to-

3The structured learners did show large gains over the clas-
sification framework on the dev-set when using only the basic
features for the decision-boundary tokens (see Section 3.2.1),
but not when the full feature set was deployed. Also, features
only available to structured learners, e.g. number of segments
in query, etc., did improve the performance of the structured
approaches, but not above that of the simpler classifier.
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Table 1: Indicator features.
Name Description
is-the token x = “the”
is-free token x = “free”
POS-tags Part-of-speech tags of pair xL0 xR0

fwd-pos position from beginning, i
rev-pos position from end N − i

ken is 2, etc. The two lexical features (for when the
token is “the” and when the token is “free”) fire sep-
arately for the left and right tokens around the deci-
sion boundary. They are designed to add discrimi-
nation for these common query words, motivated by
examples in our training set. For example, in the
training set, “free” often occurs in its own segment
when it’s on the left-hand-side of a decision bound-
ary (e.g. “free” “online” ...), but may join into a
larger segment when it’s on the right-hand-side of a
collocation (e.g. “sulfite free” or “sugar free”). The
classifier can use the feature weights to encourage or
discourage segmentation in these specific situations.

For statistical features, previous work (Section 2)
suggests that the mutual information between the de-
cision tokens xL0 and xR0 may be appropriate. The
log of the pointwise mutual information (Church and
Hanks, 1989) between the decision-boundary tokens
xL0, xR0 is:

MI(xL0, xR0) = log
Pr(xL0xR0)

Pr(xL0)Pr(xR0)

This is equivalent to the sum: log C(xL0xR0) +
log K − log C(xL0) − log C(xR0). For web-based
features, the counts C(.) can be taken as a search en-
gine’s count of the number of pages containing the
term. The normalizer K is thus the total number of
pages on the Internet.

Represented as a summation, we can see that pro-
viding MI as the feature effectively ties the weights
on the logarithmic counts C(xL0xR0), C(xL0), and
C(xR0). Another approach would be to provide
these logarithmic counts as separate features to our
learning algorithm, which can then set the weights
optimally for segmentation. We call this set of
counts the “Basic” features. In Section 5, we con-
firm results on our development set that showed us-
ing the basic features untied increased segmentation

Table 2: Statistical features.
Name Description
web-count count of “x” on the web
pair-count web count “w x”
definite web count “the w x”
collapsed web count “wx” (one word)
and-count web count “w and x”
genitive web count “w’s x”
Qcount-1 Counts of “x” in query database
Qcounts-2 Counts of “w x” in database

performance by up to 4% over using MI – an impor-
tant observation for all researchers using association
models as features in their discriminative classifiers.

Furthermore, with this technique, we do not need
to normalize the counts for the other pairwise statis-
tical features given in Table 2. We can simply rely
on our learning algorithm to increase or decrease the
weights on the logarithm of the counts as needed.

To illustrate how the statistical features work,
consider a query from our development set: “star
wars weapons guns.” The phrase “star wars” can
easily be interpreted as a phrase; there is a high
co-occurrence count (pair-count), and many pages
where they occur as a single phrase (collapsed),
e.g. “starwars.com.” “Weapons” and “guns,” on the
other hand, should not be joined together. Although
they may have a high co-occurrence count, the coor-
dination feature (and-count) is high (“weapons and
guns”) showing these to be related concepts but not
phrasal constituents. Including this novel feature re-
sulted in noticeable gains on the development set.

Since this is a query-based segmentation, features
that consider whether sets of tokens occurred else-
where in the query database may provide domain-
specific discrimination. For each of the Qcount fea-
tures, we look for two quantities: the number of
times the phrase occurs as a query on its own and the
number of times the phrase occurs within another
query.4 Including both of these counts also resulted
in performance gains on the development set.

We also extensively investigated other corpus-
based features, such as the number of times the
phrase occurred hyphenated or capitalized, and the

4We exclude counts from the training, development, and
testing queries discussed in Section 4.1.
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corpus-based distributional similarity (Lin, 1998)
between a pair of tokens. These features are
not available from search-engine statistics because
search engines disregard punctuation and capitaliza-
tion, and collecting page-count-based distributional
similarity statistics is computationally infeasible.

Unfortunately, none of the corpus-based features
improved performance on the development set and
are thus excluded from further consideration. This
is perhaps not surprising. For such a task that in-
volves real user queries, with arbitrary spellings and
sometimes exotic vocabulary, gathering counts from
web search engines is the only way to procure reli-
able and broad-coverage statistics.

3.2.2 Context Features

Although the tokens at the decision boundary
are of paramount importance, information from the
neighbouring tokens is also critical for segmentation
decision discrimination. We thus include features
that take into consideration the preceding and fol-
lowing tokens, xL1 and xR1, as context information.
We gather all the token indicator features for each of
these tokens, as well as all pairwise features between
xL1 and xL0, and then xR0 and xR1. If context to-
kens are not available at this position in the query,
a feature fires to indicate this. Also, if the context
features are available, we include trigram web and
query-database counts of “xL1 xL0 xR0” and “xL0

xR0 xR1”, and a fourgram spanning both contexts.
Furthermore, if tokens xL2 and xR2 are available, we
collect relevant token-level, pairwise, trigram, and
fourgram counts including these tokens as well.

In Section 5, we show that context features are
very important. They allow our system to implic-
itly leverage surrounding segmentation decisions,
which cannot be accessed directly in an independent
segmentation-decision classifier. For example, con-
sider the query “bank loan amoritization schedule.”
Although “loan amoritization” has a strong connec-
tion, we may nevertheless insert a break between
them because “bank loan” and “amoritization sched-
ule” each have even stronger association.

3.2.3 Dependency Features

Motivated by work in noun phrase parsing, it
might be beneficial to check if, for example, token
xL0 is more likely to modify a later token, such as

xR1. For example, in “female bus driver”, we might
not wish to segment “female bus” because “female”
has a much stronger association with “driver” than
with “bus”. Thus, as features, we include the pair-
wise counts between xL0 and xR1, and then xL1 and
xR0. Features from longer range dependencies did
not improve performance on the development set.

4 Experimental Setup

4.1 Data

Our dataset was taken from the AOL search query
database (Pass et al., 2006), a collection of 35
million queries submitted to the AOL search en-
gine. Most punctuation has been removed from the
queries.5 Along with the query, each entry in the
database contains an anonymous user ID and the do-
main of the URL the user clicked on, if they selected
one of the returned pages. For our data, we used only
those queries with a click-URL. This subset has a
higher proportion of correctly-spelled queries, and
facilitates annotation (described below).

We then tagged the search queries using a max-
imum entropy part-of-speech tagger (Ratnaparkhi,
1996). As our approach was designed particularly
for noun phrase queries, we selected for our final ex-
periments those AOL queries containing only deter-
miners, adjectives, and nouns. We also only consid-
ered phrases of length four or greater, since queries
of these lengths are most likely to benefit from a seg-
mentation, but our approach works for queries of any
length. Future experiments will investigate applying
the current approach to phrasal verbs, prepositional
idioms and segments with other parts of speech.

We randomly selected 500 queries for training,
500 for development, and 500 for final testing.
These were all manually segmented by our annota-
tors. Manual segmentation was done with improv-
ing search precision in mind. Annotators were asked
to analyze each query and form an idea of what the
user was searching for, taking into consideration the
click-URL or performing their own online searches,
if needed. The annotators were then asked to seg-
ment the query to improve search retrieval, by forc-
ing a search engine to find pages with the segments

5Including, unfortunately, all quotation marks, precluding
our use of users’ own segmentations as additional labelled ex-
amples or feature data for our system
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occurring as unbroken units.
One annotator segmented all three data sets, and

these were used for all the experiments. Two ad-
ditional annotators also segmented the final test set
to allow inter-annotator agreement calculation. The
pairwise agreement on segmentation decisions (be-
tween each pair of tokens) was between 84.0% and
84.6%. The agreement on entire queries was be-
tween 57.6% and 60.8%. All three agreed com-
pletely on 219 of the 500 queries, and we use this
“intersected” set for a separate evaluation in our ex-
periments.6 If we take the proportion of segmenta-
tion decisions the annotators would be expected to
agree on by chance to be 50%, the Kappa statis-
tic (Jurafsky and Martin, 2000, page 315) is around
.69, below the .8 considered to be good reliability.

This observed agreement was lower than we an-
ticipated, and reflects both differences in query in-
terpretation and in the perceived value of differ-
ent segmentations for retrieval performance. An-
notators agreed that terms like “real estate,” “work
force,” “west palm beach,” and “private investiga-
tor” should be separate segments. These are colloca-
tions in the linguistics sense (Manning and Schütze,
1999, pages 183-187); we cannot substitute related
words for terms in these expressions nor apply syn-
tactic transformations or paraphrases (e.g. we don’t
say “investigator of privates”). However, for a query
such as “bank manager,” should we exclude web
pages that discuss “manager of the bank” or “branch
manager for XYZ bank”? If a user is searching for a
particular webpage, excluding such results could be
harmful. However, for query substitution or expan-
sion, identifying that “bank manager” is a single unit
may be useful. We can resolve the conflicting objec-
tives of our two motivating applications by moving
to a multi-layer query bracketing scheme, first seg-
menting unbreakable collocations and then building
them into semantic units with a query segmentation
grammar. This will be the subject of future research.

4.2 Experiments

All of our statistical feature information was col-
lected using the Google SOAP Search API.7 For
training and classifying our data, we use the popular

6All queries and statistical feature information is available
at http://www.cs.ualberta.ca/˜bergsma/QuerySegmentation/

7http://code.google.com/apis/soapsearch/

Support Vector Machine (SVM) learning package
SVMlight (Joachims, 1999). SVMs are maximum-
margin classifiers that achieve good performance on
a range of tasks. In each case, we learn a linear ker-
nel on the training set segmentation decisions and
tune the parameter that trades-off training error and
margin on the development set.

We use the following two evaluation criteria:

1. Seg-Acc: Segmentation decision accuracy: the
proportion of times our classifier’s decision to
insert a segment break or not between a pair of
tokens agrees with the gold standard decision.

2. Qry-Acc: Query segmentation accuracy: the
proportion of queries for which the complete
segmentation derived from our classifications
agrees with the gold standard segmentation.

5 Results

Table 3 provides our results for various configu-
rations of features and token-combinations as de-
scribed in Section 3.8 For comparison, a baseline
that always chooses a segmentation break achieves
44.8% Seg-Acc and 4.2% Qry-Acc, while a system
that inserts no breaks achieves 55.2% Seg-Acc and
4.0% Qry-Acc. Our comparison system is the MI
approach used by Jones et al. (2006), which achieves
68% Seg-Acc and 26.6% Qry-Acc (Table 3). We let
the SVM set the threshold for MI on the training set.

Note that the Basic, Decision-Boundary system
(Section 3.2.1), which uses exactly the same co-
occurrence information as the MI system (in the
form of the Basic features) but allows the SVM to
discriminatively weight the logarithmic counts, im-
mediately increases Seg-Acc performance by 3.7%.
Even more strikingly, adding the Basic count infor-
mation for the Context tokens (Section 3.2.2) boosts
performance by another 8.5%, increasing Qry-Acc
by over 22%. Smaller, further gains arise by adding
Dependency token information (Section 3.2.3).

Also, notice that moving from Basic features for
the Decision-Boundary tokens to all of our indica-
tor (Table 1) and statistical (Table 2) features (re-
ferred to as All features) increases performance from
71.7% to 84.3%. These gains convincingly justify

8Statistically significant intra-row differences in Qry-Acc
are marked with an asterix (McNemar’s test, p<0.05)

824



Table 3: Segmentation Performance (%)

Feature Type Feature Span Test Set Intersection Set
Seg-Acc Qry-Acc Seg-Acc Qry-Acc

MI Decision-Boundary 68.0 26.6 73.8 34.7
Basic Decision-Boundary 71.7 29.2 77.6 39.7
Basic Decision-Boundary, Context 80.2 52.0* 85.6 62.1*
Basic Decision-Boundary, Context, Dependency 81.1 53.2 86.2 64.8
All Decision-Boundary 84.3 57.8* 86.6 63.5
All Decision-Boundary, Context 86.3 63.8* 89.2 71.7*
All Decision-Boundary, Context, Dependency 85.8 61.0 88.7 69.4

our use of an expanded feature set for this task.
Including Context with the expanded features adds
another 2%, while adding Dependency information
actually seems to hinder performance slightly, al-
though gains were seen when adding Dependency
information on the development set.

Note, however, that these results must also be
considered in light of the low inter-annotator agree-
ment (Section 4.1). Indeed, results are lower if we
evaluate using the test-set labels from another an-
notator (necessarily training on the original anno-
tator’s labels). On the intersected set of the three
annotators, however, results are better still: 88.7%
Seg-Acc and 69.4% Qry-Acc on the intersected
queries for the full-featured system (Table 3). Since
high performance is dependent on consistent train-
ing and test labellings, it seems likely that develop-
ing more-explicit annotation instructions may allow
further improvements in performance as within-set
and between-set annotation agreement increases.

It would also be theoretically interesting, and of
significant practical importance, to develop a learn-
ing approach that embraces the agreement of the
annotations as part of the learning algorithm. Our
initial ranking formulation (Section 3.1), for exam-
ple, could learn a model that prefers segmentations
with higher agreement, but still prefers any anno-
tated segmentation to alternative, unobserved struc-
tures. As there is growing interest in making max-
imal use of annotation resources within discrimina-
tive learning techniques (Zaidan et al., 2007), devel-
oping a general empirical approach to learning from
ambiguously-labelled examples would be both an
important contribution to this trend and a potentially
helpful technique in a number of NLP domains.

6 Conclusion

We have developed a novel approach to search query
segmentation and evaluated this approach on actual
user queries, reducing error by 56% over a recent
comparison approach. Gains in performance were
made possible by both leveraging recent progress in
feature engineering for noun compound bracketing,
as well as using a flexible, discriminative incorpora-
tion of association information, beyond the decision-
boundary tokens. We have created and made avail-
able a set of manually-segmented user queries, and
thus provided a new testing platform for other re-
searchers in this area. Our initial formulation of
query segmentation as a structured learning prob-
lem, and our leveraging of association statistics be-
yond the decision boundary, also provides power-
ful tools for noun compound bracketing researchers
to both move beyond three-word compounds and to
adopt discriminative feature weighting techniques.

The positive results achieved on this important ap-
plication should encourage further inter-disciplinary
collaboration between noun compound interpreta-
tion and information retrieval researchers. For ex-
ample, analysing the semantics of multiword expres-
sions may allow for more-focused query expansion;
knowing to expand “bank manager” to include pages
describing a “manager of the bank,” but not doing
the same for non-compositional phrases like “real
estate” or “private investigator,” requires exactly the
kind of techniques being developed in the noun com-
pound interpretation community. Thus for query ex-
pansion, as for query segmentation, work in natural
language processing has the potential to make a real
and immediate impact on search-engine technology.
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The next step in this research is to directly inves-
tigate how query segmentation affects search perfor-
mance. For such an evaluation, we would need to
know, for each possible segmentation (including no
segmentation), the document retrieval performance.
This could be the proportion of returned documents
that are deemed to be relevant to the original query.
Exactly such an evaluation was recently used by Ku-
maran and Allan (2007) for the related task of query
contraction. Of course, a dataset with queries and
retrieval scores may serve for more than evaluation;
it may provide the examples used by the learning
module. That is, the parameters of the contraction
or segmentation scoring function could be discrim-
inatively set to optimize the retrieval of the training
set queries. A unified framework for query contrac-
tion, segmentation, and expansion, all based on dis-
criminatively optimizing retrieval performance, is
a very appealing future research direction. In this
framework, the size of the training sets would not
be limited by human annotation resources, but by
the number of queries for which retrieved-document
relevance judgments are available. Generating more
training examples would allow the use of more pow-
erful, finer-grained lexical features for classification.
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Abstract

We present two machine learning ap-
proaches to information extraction from
semi-structured documents that can be used
if no annotated training data are available,
but there does exist a database filled with
information derived from the type of docu-
ments to be processed. One approach em-
ploys standard supervised learning for infor-
mation extraction by artificially constructing
labelled training data from the contents of
the database. The second approach com-
bines unsupervised Hidden Markov mod-
elling with language models. Empirical
evaluation of both systems suggests that it is
possible to bootstrap a field segmenter from
a database alone. The combination of Hid-
den Markov and language modelling was
found to perform best at this task.

1 Introduction

Over the past decades much textual data has be-
come available in electronic form. Many text types
are inherently more or less structured, for example,
classified advertisements for appartments, medical
records, or logs of archaeological finds or zoological
specimens collected during expeditions. Such doc-
uments consist of a number of shorter texts (oren-
tries), each describing an individual object (e.g., an
appartment, or an archaeological find) or event (e.g.,
a patient presenting to a health care provider). These
descriptions in turn typically consist of different seg-
ments (orfields) which contain information of a spe-

cific type drawn from a more or less given inven-
tory. Example (1), for instance, shows two descrip-
tions of zoological specimens (a snake and three
frogs) collected during an expedition. The descrip-
tions contain different segments giving information
about the specimens and the circumstances of their
collection. For example, in the first description,Lep-
tophisandahaetullarefer, respectively, to the genus
and species of the specimen,road to Overtoommen-
tions the place of collection,in bush above wateren-
codes information about the biotope,in the process
of eating Hyla minutais a remark about the circum-
stances of collection,16-V-1968gives the collection
date andRMNH 15100the registration number.

(1) Leptophis ahaetulla, road to Overtoom, in bush
above water in the process of eating Hyla minuta
16-V-1968. RMNH 15100

Hyla minuta 1♀ 2 ♂ Las Claritas, 9-VI-1978 quak-
ing near water 50 cm above water surface, near sec-
ondary vegetation, 200 m, M.S. Hoogmoed, RMNH
27217 27219

Unfortunately, this inherent structure is rarely
made explicit. While the different object or event
descriptions might be indicated by additional white-
space or other formatting means, as in the example
above, the individual fields within a description are
typically not marked in any way. However, knowl-
edge of the inherent structure would be very bene-
ficial for information extraction and retrieval. For
instance, texts in their raw form only allow key word
search. To retrieve all entries describing specimens
of type Hyla minutafrom a zoological field report,
one can only search for occurrences of that string
anywhere in the document. This can return false
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positives, such as the first description in (1) above,
which does contain the string but is not about aHyla
minutaspecimen but about a specimen of typeLep-
tophis ahaetulla(the stringHyla minuta just hap-
pens to occur in theSPECIAL REMARKSfield). On
the other hand, if the genus and species information
in an entry was explicitly marked, it would be pos-
sible to query specifically for entries whoseGENUS

is Hyla and whoseSPECIESis minuta, thus avoiding
the retrieval of entries in which this string occurs in
another field.

The task of automatically finding and labelling
segments in object or event descriptions has been
referred to asfield segmentation(Grenager et al.,
2005).1 It can be seen as a sequence labelling prob-
lem, where each text is viewed as a sequence of
tokens and the aim is to assign each token a label
indicating to what segment the token belongs (e.g.,
BIOTOPEor LOCATION). If training data in the form
of texts annotated with segment information was
readily available, the problem could be approached
by training a sequence labeller in a supervised ma-
chine learning set-up. However, manually annotated
data is rarely available. Creating it from scratch is
not only time consuming but usually also requires
a certain amount of expert knowledge. Moreover,
the sequence labeller has to be re-trained for each
new domain (e.g., natural history vs. archaeology)
and possibly also each sub-domain (e.g., insects vs.
mammals) due to the fact that the inventory of fields
varies.

Thus, fully supervised machine learning is not
feasible for this task. In this paper, we explore two
approaches which require no or only a very small
amount of manually labelled training data. Both
approaches exploit the fact that there are often re-
sourcesderived from the original documents that
can potentially be utilised to bootstrap a sequence
labeller in the absence of labelled training data. It
is common practice, for example, that information
contained in (semi-structured) field reports or medi-
cal records is manually entered into a database, usu-
ally in an attempt to make the data more accessi-

1The task differs from many other information extraction
problems in which the aim is to extract short pieces of relevant
information from larger text of largely irrelevant information.
In field segmentation, all or most of the information in the input
document is assumed to be relevant and the task is to segment it
into fields containing different types of information.

ble and easier to search. In such databases, each
row corresponds to an entry in the original docu-
ment (e.g., a zoological specimen) and the database
columns correspond to the fields one would like to
discern in the original document. Manually convert-
ing raw text documents into databases is a labori-
ous task though, and it is rather common that the
database covers only a small fraction of the objects
described in the original texts. The research question
we address in this paper is whether it is possible to
bootstrap a domain-specific field segmentation sys-
tem from an existing, manually created database for
that domain. Such a system could then be applied to
the remaining texts in that domain, which could then
be segmented (semi-)automatically and possibly be
added to the original database.

A database does not make perfect training mate-
rial for a field segmenter though, as it is only de-
rived from the original document and there are typ-
ically significant (and sometimes systematic) differ-
ences between the two data sources: First, while
the ordering of the segments in a semi-structured
text document is often not entirely fixed, some or-
derings are more likely than others. This informa-
tion is lost in the derived databases. Second, the
databases may contain information that is not nor-
mally present in the underlying text documents, for
example information relating to the storage of an
object in a collection. Conversely, some of the de-
tails present in the texts might be omitted from the
database, e.g., theSPECIAL REMARKS field might
be significantly shortened in the database. Third,
pieces of information are frequently re-written when
entered in the database, in some cases these differ-
ences may be systematic, e.g., dates, person names,
or registration numbers might be written in a differ-
ent format. Also, field boundaries in the text docu-
ments are sometimes indicated by punctuation, such
as commas, and fields sometimes start with explicit
key words, such ascollector. Both of these features
are missing from the database.

Despite of this, these databases will provide cer-
tain clues about the structure and content of differ-
ent segments in the text documents. We exploit this
in two different ways: (i) by concatenating database
fields to artificially create annotated training data for
a supervised machine learner, and (ii) by using the
database to build language models for the field seg-
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mentation task.

2 Related Work

Most approaches to field segmentation and related
information extraction tasks, such as filling tem-
plates with information about specific events, have
been supervised. Freitag and Kushmerick (2000)
combine a pattern learner with boosting to perform
field segmentation in raw texts and in highly struc-
tured texts such as web pages and test this approach
on a variety of field segmentation and template fill-
ing tasks. Kushmerick et al. (2001) address the prob-
lem of extracting contact information from busi-
ness cards. They mainly focus on fieldlabelling,
bypassing the segmentation step by assuming that
each line on a business card only contains one field
(though a field likeADDRESS may span several
lines). Their method combines a text classifier, for
assigning likely labels to each field, with a trained
Hidden Markov Model (HMM) for learning order-
ing constraints between fields. Borkar et al. (2001)
identify fields in international postal addresses and
bibliographic records by nesting HMMs: an outer
HMM for modelling field transitions and a num-
ber of inner HMMs for modelling token transitions
within fields. Viola and Narasimhand (2005) also
deal with address segmentation but employ a trained
context-free grammar.

One of the few unsupervised approaches is pro-
vided by Grenager et al. (2005), who perform field
segmentation on bibliographic records and classified
advertisements, using EM to fit an HMM to the data.
They show that an unconstrained model does not
learn the field structure very well and propose aug-
menting the model with a limited amount of domain-
unspecific background knowledge, for example, by
modifying the transition model to bias it towards
recognising larger-scale patterns.

3 Learning Field Segmentation from
Databases

3.1 Data

We tested our approach on two datasets provided
by Naturalis, the Dutch National Museum of Nat-
ural History2 Each dataset consists of (i) a number

2http://www.naturalis.nl

of field book entries describing the circumstances
under which animal specimens were collected, and
(ii) a database containing similar information about
the same group of animals but in a more structured
form. The latter were used for training, the former
for testing. While the databases were manually cre-
ated from the corresponding field books, we made
sure that the field book entries we selected for test-
ing did not overlap with the database entries. The
two data sets are described below. Table 1 lists the
main properties of the data.

Reptiles and Amphibians (RA) This dataset de-
scribes a number of reptile and amphibian speci-
mens. The database consists of 16,670 entries and
41 columns. The columns relate, for example, to the
circumstances of a specimen’s collection, its taxo-
nomic classification, how and where it is stored, who
entered the entry into the database and when. Many
database cells are empty. Those that are filled come
in a variety of format, i.e., numbers, dates, individ-
ual words, and free text of various lengths. 22 of
the columns contained information that was miss-
ing from the field books, e.g., information relating
to the storage of the specimens; these columns were
excluded from the experiments.

From the corresponding field books, 210 entries
were selected randomly and manually annotated
with segment information. To test the reliability of
the manual annotation, 50 entries were labelled by
two annotators. The inter-annotator accuracy on the
token level was 92.84% and the kappa .92. The num-
ber of distinct field types found in the entries was 19,
some of which only occurred in two entries, others
occurred in virtually every entry. The average field
length was four tokens, with a maximum average of
21 for theSPECIAL REMARKSfield, and a minimum
of one for fields such asSPECIES. The average num-
ber of tokens per entry was 60. Punctuation marks
that did not clearly belong to any field were labelled
asOTHER. In the experiments, 200 entries were used
for testing and 10 for parameter tuning.

Pisces The second dataset contains information
about the stations where fish specimens were caught.
The database consists of 1,375 entries and four
columns which provide information on the location
of the stations. From the corresponding field books,
we manually labelled 100 entries. Compared to the
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RA Pisces
# entries in DB 16,670 1,375
# fields 19 4
entry length (avg.) 60.17 39.79
segment length (avg.) 4.08 4.75

Table 1: Properties of the two datasets

first data set, this set is much more regular, with less
variation in the number of segments per entry and in
the average segment length. The field book entries
are also much shorter and there are fewer segments
(see Table 1).

3.2 Baselines

In order to get a sense of the difficulty of the task, we
implemented five baseline approaches. For the first,
Majority (MajB ), we always assign the field label
that occurs most frequently in the manually labelled
test data, namelySPECIAL REMARKS. The other
four baselines implement different look-up strate-
gies, using the database to determine which label
should be assigned to a token or token sequence.

Exact (ExactB) looks for substrings in a field
book entry which exactly match the content of a
database cell and then assigns each token in the
matched string the corresponding column label from
the database. There are normally several ways to
match a field book entry to the database cells; we
employed a greedy search, labelling the longest
matching substrings first. All tokens that could
not be matched in this way were assigned the label
OTHER.

Unigram (UniB) assigns each token the column
label of the database cell in which it occurs most
frequently. If a token is not found in the database, it
is assigned the labelOTHER.

Trigram (TriB ) assigns each token the most fre-
quent column label of the trigram centred on it. If
a trigram is not found in the database, the baseline
backs off to the two bigrams covering the token and
then to the unigram. If the token is not found in the
database,OTHER is assigned.

Trigram+Voting (TriB+Vote ) is based on a tech-
nique proposed by Van den Bosch and Daelemans
(2005) for sequence labelling tasks. The main idea
is to assign labels to trigrams in the sequence using
a sliding window. Because each token, except the
boundary tokens, is contained in three different tri-

grams (i.e., the one centred on the token to its left,
the one centred on itself, and the one centred on the
token to its right), each token gets three labels as-
signed to it, over which voting can be performed. In
our case the labels are assigned by database look-up.
If a trigram is not found in the database, no label is
assigned to it. If the labels assigned to a given token
differ, majority voting is used to resolve the conflict.
If this does not break the tie (i.e., because all three
trigrams assign different labels), the label of the tri-
gram that occurs most frequently in the database is
assigned. We also implemented two post-processing
rules: (i) turning the labelOTHERbetween two iden-
tical neighbouring labels into the surrounding labels,
and (ii) labelling commas asOTHER if the neigh-
bouring labels are not identical.

3.3 Supervised Learning from Automatically
Generated Training Data

Our first strategy was to automatically generate
training data for a supervised machine learner from
the database. Since the rows in the database corre-
spond to field book entries and the columns corre-
sponds to the fields that we want to identify, train-
ing data can be obtained by concatenating the cells
in each database row. The order of the fields in the
field book entries is not fixed and this should also be
reflected in the artificially generated training data.
However, the field sequence is not entirely random,
i.e., not all sequences are equally likely. If a small
amount of manually annotated data is available, the
field transition probabilities can be estimated from
this, otherwise the best one can do is to assume uni-
form probabilities for all possible orderings. We
experimented with both strategies, creating two dif-
ferent training sets, one in which the database cells
were concatenated randomly with uniform probabil-
ities, and another in which the cells were concate-
nated to reflect the field ordering probabilities esti-
mated from ten entries in the manually labelled de-
velopment set.3 When estimating the field transition

3We found that 10 annotated entries are enough for this pur-
pose; the field segmentation results we obtained by estimating
the sequence probabilities for the training set from 100 entries
were not significantly different. This is probably because the
probabilities are only used indirectly, i.e. to bias the field order-
ings for the generated training data. If the probabilities were
used directly in the model, the amount of manually annotated
data would probably matter much more.
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probabilities, we computed a probability distribution
over the initial fields of an entry as well as the condi-
tional probability distributions of a fieldx following
a fieldy for all seen segment pairs in the ten entries.
To account for unobserved events, we used Laplace
smoothing.

The artificially created training data were then
converted to a token-based representation in which
each token corresponds to an instance to be labelled
with the field to which it belongs. On the whole, we
had just under 700,000 instances (i.e., tokens) in our
training data. We implemented 107 features, falling
in three classes:
• the neighbouring tokens (in a window of 5 cen-

tering on the token in focus)

• the typographic properties of the focus token
(word vs. number, capitalisation, number of
characters in the token etc.)

• the tfidf weight of the focus token in its con-
text with respect to each of the columns in the
database (i.e., the fields)

The tfidf-based features were computed for a win-
dow of three, centering on the token in focus. For all
n-grams in this window covering the token in focus
(i.e., the trigram, the two bigrams, and the unigram
of the focus token), we calculated thetfidf simi-
larity with the columns in the database, where the
similarity between ann-gramti and a columncolx
is defined as:

tfidfti,colx = tfti,colx log idfti

The term frequency,tfti,colx is the number of oc-
currences ofti in colx divided by the number of oc-
currences of alln-grams of lengthn in colx (0 if
then-gram does not occur in the column). The in-
verse document frequency,idfti , is the number of
all columns in the database divided by the number
of columns containingti. A high tfidf weight for a
given n-gram in a given column means that it fre-
quently occurs in that column but rarely in other
columns, thus it is a good indicator for that column.

The training data was then used to train a
memory-based machine learner (TiMBL (Daele-
mans et al., 2004), default settings,k = 3, numeric
features declared) to determine which field each to-
ken belongs to.4

4We chose TiMBL because it has been applied successfully

3.4 Hidden Markov Models

Our second approach combines language modelling
and Hidden Markov Models (HMMs) (Rabiner,
1989). Hidden Markov Models have been in use for
information extraction tasks for a long time. A prob-
abilistic model is trained to assign a label, orstate
to each of a sequence of observations, where both
labels and observations are expected to be sequen-
tially correlated; hence the popularity of HMMs in
natural language processing and information extrac-
tion. Recently, a large number of more sophisticated
learning techniques have largely replaced HMMs
for information extraction; however unlike most of
those newer techniques, HMMs offer the advantage
of having a well-established unsupervised training
procedure: the Baum-Welch algorithm (Baum et al.,
1970).

Training a Hidden Markov Model, whether su-
pervised or unsupervised, comes down to estimating
three probability distributions.

1. An initial state distributionπ, which models
the probability of the first observation of a se-
quence to have a certain label.

2. A state-transition distributionA, modelling the
conditional probability of being in a certain
states, given that the previous state wass′.

3. A state-emission distributionB, which models
the conditional probability of observing a cer-
tain objecto given some states.

For information extraction tasks, the typical in-
terpretation of anobservationas referred to above,
is that of a token, where the entire observation se-
quence commonly corresponds to one sentence. In
the current study, we chose to apply HMMs on a
somewhat higher level, where an observation corre-
sponds to asegmentof the field book entry. Ideally,
one such segment maps one-to-one to a cell in the
specimen database, though we leave open the possi-
bility of merging several segments into one database
cell.

Provided that a field book entry can be segmented
reliably, we have turned one part of the learn-
ing problem, that of estimating the state-emission

to sequence labelling tasks (Van den Bosch and Canisius, 2006;
Van den Bosch and Daelemans, 2005).
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distribution, into one for which we have (almost)
perfect supervised training data: the contents of
the database cells. The general form of a Hid-
den Markov Model’s state-emission distribution is
P (o|s), wheres is the state, i.e. a field type in our
case, ando is the observation. As mentioned be-
fore, we treat a segment of tokens as one observa-
tion, therefore our state-emission distribution will
look like P (o = t1, t2, ..., tn|s). Essentially, what
we have here is a language model, conditioned on
the current state. Since the specimen database pro-
vides a large amount of labelled segment sequences,
any probabilistic language modelling method can be
used to estimate the state-emission distribution.

Whereas the specimen database provides suffi-
cient information to estimate the state-emission dis-
tribution in a fully supervised way, the initial-state
and state-transition distributions cannot be derived
from the database alone. Columns in a database
are either unordered or ordered in a way that does
not necessarily reflect the order they had in the field
book entries they were extracted from. However, the
original field book entries do show a rather system-
atic structure. Often, using information about the
order fields typically occur in, seems to be the only
way to distinguish certain field types from one an-
other. To estimate the two missing probability dis-
tributions, the Baum-Welch algorithm was used, up-
dating the initial-state and state-transition distribu-
tions, while keeping the state-emission distributions
unchanged.

3.4.1 Segmentation of Field Book Entries

In our setup, the Hidden Markov Model expects
the input texts to be pre-segmented. To come up
with a good initial segmentation of an input entry,
we again chose a language-modelling approach. It is
expected that segment boundaries can best be recog-
nised by looking for unusual token subsequences;
that is, token sequences that are highly unlikely to
occur within a field according to the information we
obtained from the specimen database about what a
typical segment does look like. A bigram language
model has been trained on the contents ofall the
columns of the specimen database. Using this lan-
guage model and the Viterbi algorithm, the globally
most-likely segmentation of the input text is pre-
dicted.

3.4.2 The State-emission Model

The state-emission model is constructed by train-
ing a separate bigram language model for each col-
umn of the specimen database. Combining those
gives us the conditional distribution required for a
Hidden Markov Model. However, in a database, not
every column has necessarily been filled for every
record. For example, in the Reptiles and Amphib-
ians database, there are columns that only contain
actual data as infrequently as in 5% of the records.
Relative to columns that contain data more often,
these sparsely-filled columns tend to be overesti-
mated when simply computing a likelihood accord-
ing to the language model. For this reason, a penalty
term is added to the state-emission distribution cor-
responding to the probability that a record contains
data for the given column. The likelihood com-
puted by the language model and the corresponding
penalty term are then simply multiplied.

3.4.3 Language Modelling

For building both types of language model pre-
sented in the two previous sections, we usedn-
gram language modelling as implemented by the
SRI Language Modelling Toolkit (Stolcke, 2002).
With this toolkit, high-ordern-gram models can be
built, where the sparsity problem often encountered
with such models is tackled by various smoothing
methods. We supplemented this built-inn-gram
smoothing, with our own smoothing on the token
level by replacing low-frequent words with symbols
reflecting certain orthographic features of the origi-
nal word, and numbers with a symbol only encoding
the number of digits in the original number.

In addition to these general measures to deal
with sparsity, we also applied a small number of
knowledge-driven modifications to the training data
for the language models. The need for those is
caused by the fact that the contents of the specimen
database are almost, but not entirely extracted liter-
ally from the original field book entries. For exam-
ple, for the second entry of Example 1, the following
information is stored in the database.

Genus Hyla

Speciesminuta

Gender 1 f + 2 m

Place Las Claritas
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Collection date 9-6-1978

Biotope quaking near water 50 cm above water sur-
face, near secondary vegetation

Height 200 m

Collector M.S. Hoogmoed

Registration number 27217 27219

Comparing just this single field book entry with
its corresponding database record, one can already
see several mismatches. The gender symbols♂ and
♀ in the field book texts are stored asm and f in
the database. The collection date 9-VI-1978, has
been converted to 9-6-1978 before adding it to the
database, i.e. the Roman numeral for the month
number has been mapped to the corresponding Ara-
bic numeral. As a final example, in the field book en-
try the registration number for the specimen is pre-
ceded by the symbolRMNH; in the database this stan-
dard symbol is stripped of and only the number is
stored. Each of these differences, while only small,
will hinder the performance of a language model
trained on the contents of the database and applied
to field book texts.

As a simple illustration of this, when encounter-
ing the symbolRMNHin a field book entry, this most
likely indicates the start of a new (registration num-
ber) segment. However, in the database, on which
all language models are trained,RMNHnever occurs
as a symbol in the registration number column; it
does occur a few times in the column for special re-
marks but never at the start of the text. As a result,
a segmentation model trained on the contents of the
database, on encountering the symbolRMNHwill al-
ways opt for continuing the existing segment as op-
posed to starting a new one, which is most likely the
better choice.

Fortunately, many such mismatches between the
text in field books and the database are systematic
and can easily be covered by a small number of man-
ually constructed rules that modify the training data
for the language models. Among others, we added
the RMNHsymbol in front of registration numbers,
and randomly changed some month numbers from
Arabic numerals to Roman numerals.

Another difference between the field books and
the database that turned out to be rather crucial is
the fact that many segments in the field book en-
tries are separated by commas. Such commas used

Token Segment
Acc. Prec. Rec. Fβ=1 WDiff

MajB 24.8 0.0 0.0 0.0 .346
ExactB 16.0 25.7 23.1 24.3 .425
UniB 27.0 8.9 22.8 12.8 .818
TriB 43.8 12.9 24.8 16.9 .582
TriB+Vote 45.1 14.9 27.8 19.4 .536

MBL rand. 44.6 7.1 19.2 10.4 .568
MBL bias 53.4 12.1 32.0 17.6 .533

HMM 56.9 62.7 58.1 60.3 .177

Table 2: Performance of all baseline and learning
approaches on the Reptiles and Amphibians data,
expressed in token accuracy, precision, recall, F-
score, and WindowDiff. For WindowDiff, lower
scores are better.

as delimitersbetween fieldsdo not appear in the
database, where fields correspond to columns and
boundaries between fields consequently do not have
to be explicitly marked by punctuation. For exam-
ple, the comma between Las Claritas and 9-VI-1978
only serves to separate thePlacesegment from the
Collection datesegment; the comma is not copied
to the database. However, commas do occurfield-
internally in the database, especially in longer fields
such asSPECIAL REMARKS. Hence a language
model trained on the database in its original form
will never have encountered a comma functioning as
a segment boundary marker and thus will not recog-
nise that commas may be used for this purpose in the
field book entries. To deal with this, we modified the
training data for the segment model by randomly in-
serting commas at the end of some segments. Exper-
imental results point out that this modification has a
large impact on the performance of the segmentation
model.

3.5 Results and Discussion

To evaluate the performance of the two approaches,
we applied them to the Reptiles and Amphibians
database. First we computed baseline scores using
the approaches described in Section 3.2. All result-
ing scores are listed in Table 2.

Performance of the systems was measured us-
ing a number of different metrics, each reflecting
different qualities of the output. The most basic
one, token accuracy, simply measures the percent-
age of tokens that were assigned the correct field
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type. It has the disadvantage that it does not reflect
the quality of the segments that were found. For a
more segment-oriented evaluation, we used preci-
sion, recall and F-score on correctly identified and
labelled segments. As a last measure for segmen-
tation quality we used WindowDiff (Pevzner and
Hearst, 2002), which only evaluates segment bound-
aries not the labels assigned to them. In comparison
with F-score, it is more forgiving with respect to seg-
ment boundaries that are slightly off.

The baseline performance scores support our as-
sumption that the contents of the database can be
used to learn how to segment and label field book
entries, i.e. the increasingly more sophisticated
database matching strategies each cause a substan-
tial performance improvement up to 45.1 token ac-
curacy for the trigram lookup with voting strategy.
The biggest problem of all baseline approaches is
that their performance with respect to the segment-
oriented measures is disappointing. Even trigram
lookup with voting only reaches an F-score of 19.4.

Looking at the performance of the two memory-
based learners in Table 2 (MBL rand.was trained on
randomly concatenated training data,MBL biason
data modelled after 10 training sequences), we see
that the small amount of prior knowledge used for
generating the artificial training data results in a sub-
stantial improvement compared with the memory-
based learner that was trained on randomly concate-
nated training data with uniform probabilities.

As can be seen in the last row of Table 2, the Hid-
den Markov Model outperforms all other approaches
in all aspects; it attains both the best token accuracy
(56.9), and by far the best F-score (60.3). The most
probable explanation for the superior performance
of the HMM-based approach is that this approach
models sequential constraints between different seg-
ments, whereas the baselines and the memory-based
models are predominantly local.

In Table 3, we consider the effect that the
knowledge-based rewriting rules discussed in Sub-
section 3.4.3 have on the performance of both the
segmentation and the labelling step. We evaluate
both (i) the performance of the two processing steps
separately—for labelling this presupposes perfectly
segmented input— and (ii) the performance of the
cascade of segmentation and labelling. As before,
the performance of the labelling and the cascade is

expressed in F-score on segments. Performance of
the segmentation is measured in F-score on inserted
segmentboundaries.

The first row of the table shows the scores if no
modification rules are used. This proves detrimen-
tal for the segmentation, only attaining an F-score
of 28.4. With 62.3, the F-score for labelling is rea-
sonable; however, the weakness of the segmentation
causes the output of the entire cascade to be use-
less. Modifying the training data for the segmen-
tation model by randomly inserting a comma at the
end of segments gives a substantial improvement in
segmentation performance, and as a result the qual-
ity of the cascade improves with it, as can be seen in
the second row. All remaining rows list the scores
of a single modification rule applied to the training
datain addition tothe comma rule. Each of the rules
gives a slight performance increase. Using all rules
together makes a big difference: the F-score of the
cascade increases from 44.7 with the comma rule
only, to 60.3.

Rule Boundaries Labels Cascade

None 28.4 62.3 17.2

Comma 69.7 62.3 44.7

Comma+Collection Date 69.7 64.4 46.8
Comma+Reg. Number 72.9 68.6 50.9
Comma+Gender 71.5 65.0 49.5
Comma+Collector 70.4 65.8 45.3

All 72.0 78.3 60.3

Table 3: The effect of systematically modifying the
training data for both the segmentation and labelling
models. The comma rule is used only in the train-
ing of the segmentation model. The other rules are
named after the database field they are applied to.
The scores reflect their performance when applied
in conjunction with the comma rule.

To confirm that the HMM-based approach carries
over to other datasets, we also tested it on the Pisces
data. The results of this experiment, as well as all
baseline scores are presented in Table 4.5 The fact
that this data set is more regular and contains fewer
segments is reflected by the relatively high token ac-
curacies attained by the baseline approaches. With

5We did not test the memory-based approaches as these led
to significantly worse results than the HMM-based model on the
Reptiles and Amphibians data set.
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the simple database lookup strategies, however, al-
most no entire segments are predicted correctly. At-
taining a token accuracy of 94.4 and an F-score of
86.9, the performance of the Hidden Markov Model
is again more than satisfactory, confirming the re-
sults observed with the Reptiles and Amphibians
data.

Token Segment
Acc. Prec. Rec. Fβ=1 WDiff

MajB 50.0 0.0 0.0 0.0 .279
ExactB 9.3 0.0 0.0 0.0 .565
UniB 53.7 1.5 3.6 2.1 .588
TriB 68.6 0.2 0.2 0.2 .359
TriB+Vote 67.1 2.2 2.8 2.4 .384

HMM 94.4 87.6 86.3 86.9 .049

Table 4: Performance of Hidden Markov Model and
all baseline approaches on the Pisces data, expressed
in token accuracy, precision, recall, F-score, and
WindowDiff. For WindowDiff, lower scores are bet-
ter.

4 Conclusion

Information extraction is often used to automate the
process of filling a structured database with content
extracted from written texts. Supervised machine
learning approaches have been successfully applied
for creating systems capable of performing this task.
However, the supervised nature of these approaches
requires large amounts of annotated training data;
the acquisition of which is often a laborious and
time-consuming process. In this study, we experi-
mented with two machine learning techniques that
do not require such annotated training data, but can
be trained on a database containing information de-
rived from the type of documents targeted by the ap-
plication.

The first approach is an attempt to employ a stan-
dard supervised machine learning algorithm, train-
ing it on artificial labelled training data. These data
are created by concatenating the contents of the cells
of the database records in random order. Experi-
ments with this approach pointed out that truly ran-
dom concatenation of database fields results in weak
performance; a rather simple baseline approach,
which only matches substrings of a field book en-
try with the contents of the database, leads to better

results. However, if a small amount of annotated
field book entries is available —in this study, 10 en-
tries turned out to be sufficient— one can estimate
field ordering probabilities that can be used to gener-
ate more realistic training data from the database. A
machine learner trained on these data labelled 10%
more tokens correctly than the system trained on the
randomly generated data.

Our second approach is based on unsupervised
Hidden Markov modelling. First, ann-gram lan-
guage model is used to divide the field book en-
tries into unlabelled segments. Then, a Hidden
Markov Model is trained on these segmented entries
using the Baum-Welch algorithm to estimate state-
transition probabilities. The resulting HMM labels
the segments found in the preceding segmentation
step. The HMM state-emission distributions are es-
timated by trainingn-gram language models on the
contents of the database columns.

The performance of the HMM proved to be supe-
rior to the other approaches, outperforming the su-
pervised learner by labelling 56.9% of the tokens
correctly, as well as attaining good results in terms
of segment-level F-score (60.3). Experiments with
the HMM approach on a second, independent data
set confirmed its generality.
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Abstract 

In this paper, we address the problem of 
extracting data records and their attributes 
from unstructured biomedical full text. 
There has been little effort reported on this 
in the research community. We argue that 
semantics is important for record extraction 
or finer-grained language processing tasks. 
We derive a data record template including 
semantic language models from unstruc-
tured text and represent them with a dis-
course level Conditional Random Fields 
(CRF) model. We evaluate the approach 
from the perspective of Information Extrac-
tion and achieve significant improvements 
on system performance compared with 
other baseline systems. 

1 Introduction 

The discovery and extraction of specific types of 
information, and its (re)structuring and storage into 
databases, are critical tasks for data mining, 
knowledge acquisition, and information integration 
from large corpora or heterogeneous resources 
(e.g., Muslea et al., 2001; Arasu and Garcia-
Molina, 2003). For example, webpages of products 
on Amazon may contain a list of data records such 
as books, watches, and electronics. Automatic 
extraction of individual records will facilitate the 
access and management of data resources. 

Most current approaches address this problem 
for structured or semi-structured text, for instance, 
from XML format files or lists and/or tabular data 
records on webpages (e.g., Liu et al., 2003; Zhu et 
al., 2006). The techniques applied rely strongly on 
the analysis of document structure derived from 

the webpage’s html tags (e.g., the DOM tree 
model). 

Regarding unstructured text, most Information 
Extraction (IE) work has focused on named entities 
(people, organizations, places, etc.). Such IE treats 
each extracted element as a separate record. Much 
less work has focused on the case where several 
related pieces of information have to be extracted 
to jointly comprise a single data record. In this 
work, it is usually assumed that there is only one 
record for each document (e.g., Kristjannson et al., 
2004). Almost no work tries to extract multiple 
data records from a single document. Multiple data 
records can be scattered across the narrative in free 
text. The problem becomes much harder as there 
are no explicit boundaries between data records 
and no heavily indicative format features (like html 
tags) to utilize. 

With the exponential increase of unstructured 
text resources (e.g., digitalized publications, papers 
and/or technical reports), knowledge needs have 
made it a necessity to explore this problem. For 
example, biomedical papers contain numerous ex-
periments and findings. But the large volume and 
rate of publication have made it infeasible to read 
through the articles and manually identify data re-
cords and attributes. 

We present a study to extract data records and 
attributes from the biomedical research literature. 
This is part of an effort to develop a Knowledge 
Base Management System to benefit neuroscience 
research. Specifically we are interested in knowl-
edge of various aspects (attributes) of Tract-tracing 
Experiments (TTE) (data records) in neuroscience. 
The goal of TTE experiments is to chart the inter-
connectivity of the brain by injecting tracer chemi-
cals into a region of the brain and identifying cor-
responding labeled regions where the tracer is 
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Figure 1. An example of data records and attributes in a research article. 

taken up and transported to (Burns et al., 2007). 
To extract data records from the research litera-

ture, we need to solve two sub-problems: discover-
ing individual attributes of records and grouping 
them into one or more individual records, each re-
cord representing one TTE experiment. Each at-
tribute may contain a list of words or phrases and 
each record may contain a list of attributes.  

Listing each sentence from top to bottom, we 
call the first problem the Horizontal Problem (HP) 
and the second the Vertical Problem (VP). Figure 
1 provides an example of a TTE research article 
with colored fragments representing attributes and 
dashed frames representing data records. For in-
stance, the third dashed frame represents one ex-
periment record having three attributes with corre-
sponding biological interpretations: “no labeled 
cells”, “the DCN”, and “the contralateral AVCN”. 

We view the HP and VP problems as two se-
quential labeling problems and describe our ap-
proach using two-level Conditional Random Fields 
(CRF) (Lafferty et al., 2001) models to extract data 
records and their attributes.  

The HP problem (finding individual attribute 
values) is solved using a sentence-level CRF label-
ing model that integrates a rich set of linguistic 
features. For the VP problem, we apply a dis-
course-level CRF model to identify individual ex-
periments (data records). This model utilizes deep 

semantic knowledge from the HP results (attribute 
labels within sentences) together with semantic 
language models and achieves significant im-
provements over baseline systems.  

This paper mainly focuses on the VP problem, 
since linguistic features for the HP problem is the 
general IE topic of much past research (e.g., Peng 
and McCallum, 2004). We apply various feature 
combinations to learn the most suitable and indica-
tive linguistic features. 

The remainder of this paper is organized as fol-
lows: in the next section we discuss related work. 
Following that, we present the approach to extract 
data records in Section 3. We give extensive ex-
perimental evaluations in Section 4 and conclude 
in Section 5. 

2 Related Work 

As mentioned, data record extraction has been 
extensively studied for structured and semi-
structured resources (e.g., Muslea et al., 2001; 
Arasu and Garcia-Molina, 2003; Liu et al., 2003; 
Zhu et al., 2006). Most of those approaches rely on 
the analysis of document structure (reflected in, for 
example, html tags), from which record templates 
are derived. However, this approach does not apply 
to unstructured text. The reason lies in the 
difficulty of representing a data record template in 
free text without formatting tags and integrating it 
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into a learning system. We show how to address 
this problem by deriving data record templates 
through language analysis and representing them 
with a discourse level CRF model. 

Given the problem of identifying one or more 
records in free text, it is natural to turn toward text 
segmentation. The Natural Language Processing 
(NLP) community has come up with various 
solutions towards topic-based text segmentation 
(e.g., Hearst, 1994; Choi, 2000; Malioutov and 
Barzilay, 2006). Most unsupervised text 
segmentation approaches work under optimization 
criteria to maximize the intra-segment similarity 
and minimize the inter-segment similarity based on 
word distribution statistics. However, this 
approach cannot be applied directly to data record 
extraction. A careful study of our corpus shows 
that data records share many words and phrases 
and are not distinguishable based on word 
similairties. In other words, different experiments 
(records) always belong to the same topic and there 
is no way to segment them using standard topic 
segmentation techniques (even if one views the 
problem as a finer-level segmentation than 
traditional text segmentation). In addition, most 
text segmentation approaches require a 
prespecified number of segments, which in our 
domain cannot be provided. 

(Wick et al., 2006) report extracting database re-
cords by learning record field compatibility. How-
ever, in our case, the field compatibility is hard to 
distinguish even by a human expert. Cluster-based 
or pairwise field similarity measures do not apply 
to our corpora without complex knowledge reason-
ing. Most of Wick et al.’s data (faculty and stu-
dent’s homepages) contains one record. 

In addition, as explained below, we have found 
that surface word statistics alone are not sufficient 
to derive data record templates for extraction. 
Some (limited) form of semantic understanding of 
text is necessary. We therefore first perform some  
sentence level extraction (following the HP 
problem) and then integrate semantic labels and 
semantic language model features into a discourse 
level CRF model to represent the template for 
extracting data records in the future. 

Recently an increasing number of research ef-
forts on text mining and IE have used CRF models 
(e.g., Peng and McCallum, 2004). The CRF model 
provides a compact way to integrate different types 
of features when sequential labeling is important. 

Recent work includes improved model variants 
(e.g., Jiao et al., 2006; Okanohara et al., 2006) and 
applications such as web data extraction (Pinto et 
al., 2003), scientific citation extraction (Peng and 
McCallum, 2004), and word alignment (Blunsom 
and Cohn, 2006). But none of them have used 
CRFs for discourse level data record extraction. 

We use a CRF model to represent a data record 
template and integrate various knowledge as CRF 
features. Instead of traditional work on the sen-
tence level, our focus here is on the discourse level. 
As this has not been carefully explored, we ex-
periment with various selected features. 

For the biomedical domain, our work will facili-
tate biomedical research by supporting the con-
struction of Knowledge Base Management Sys-
tems (e.g., Stephan et al., 2001; Hahn et al., 2002; 
Burns and Cheng, 2006). Unlike the well-studied 
problem of relation extraction from biomedical 
text, our work focuses on grouping extracted at-
tributes across sentences into meaningful data re-
cords. TTE experiment is only one of many ex-
perimental types in biology. Our work can be gen-
eralized to many different types of data records to 
facilitate biology research. 

In the next section, we present our approach to 
extracting data records. 

3 Extracting Data Records 

Inspired by the idea of Noun Phrase (NP) chunking 
in a single sentence, we view the data records 
extraction problem as discourse chunking from a 
sequence of sentences using a sequential labeling 
CRF model. 

3.1 Sequential Labeling Model: CRF 

The CRF model addresses the problem of labeling 
sequential tokens while relaxing the strong 
independence assumptions of Hidden Markov 
Models (HMMs) and avoiding the presence of 
label bias from having few successor states. For 
each current state, we obtain the conditional 
probability of its output states given previously 
assigned values of input states. For most language 
processing tasks, this model is simply a linear-
chain Markov Random Fields model. 

In typical labeling processes using CRFs each 
token is viewed as a labeling unit. For our prob-
lem, we process each input document 

),...,,( 21 nsssD =  as a sequence of individual sen-
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tences, with a corresponding labeling sequence of 
labels, ),...,,( 21 nlllL = , so that each sentence corre-
sponds to only one label. In our problem, each data 
record corresponds to a distinct TTE experiment. 
Similar to NP chunking, we define three labels for 
sentences, “B_REC” (beginning of record), 
“I_REC” (inside record), and “O” (other). The de-
fault label “O” indicates that this sentence is be-
yond our concern. 

The CRF model is trained to maximize the 
probability of )|( DLP , that is, given an input 
document D, we find the most probable labeling 
sequence L. The decision rule for this procedure is: 

)|(maxargˆ DLPL
L

=                                        (1) 

A CRF model of the two sequences is character-
ized by a set of feature functions kf and their corre-
sponding weights kλ . As in Markov fields, the 
conditional probability )|( DLP  can be computed 
using Equation 2. 
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where ),,,( 1 tDllf ttk − is a feature function, represent-
ing either the state transition feature ),,( 1 Dllf ttk −  or 
the feature of output state ),( Dlf tk given the input 
sequence. All these feature functions are user-
defined boolean functions. 

CRF works under the framework of supervised 
learning, which requires a pre-labeled training set 
to learn and optimize system parameters to maxi-
mize the probability or its log format. Equipped 
with this model, we investigate how to apply it and 
prepare features accordingly. 

3.2 Feature Preparation 

The CRF model provides a compact, unified 
framework to integrate features. However, unlike 
sentence-level processing, where features are very 
intuitive and circumscribed, it is not obvious what 
features are most indicative for our problem. We 
therefore explore three categories of features for 
discourse level chunking. 

3.2.1 Semantic Attribute Labels 

Most text segmentation approaches compute 
surface word similarity scores in given corpora 
without semantic analysis. However, in our case, 
data records have very similar characteristics and 

share most of the words. They are not 
distinguishable just from an analysis of surface 
word statistics. We have to understand the 
semantics before we can make decisions about data 
record extraction.  

In our case, we care about the four types of at-
tributes of each data record (one TTE experiment). 
Table 1 gives the definitions of the four attributes 
for each data record. 

Name Description 

injectionLocation the named brain region where 
the injection was made. 

tracerChemical the tracer chemical used. 

labelingLocation the region/location where the 
labeling was found. 

labelingDescription 
a description of labeling, in-
cluding label density or label 
type. 

Table 1. Attributes of data records (a TTE experiment). 
To obtain this semantic attributes information of 

individual sentences (the HP problem), we first 
apply another sentence-level CRF model to label 
each sentence. We consider five categories of fea-
tures based on language analysis. Table 2 shows 
the features for each category. 

Name Feature Description 
TOPOGRAPHY Is word topog-

raphic? 
BRAIN_REGION Is word a region 

name? 
TRACER Is word a tracer 

chemical? 
DENSITY Is word a den-

sity term? 

Lexicon 
Knowledge 

LABELING_TYPE Does word de-
note a labeling 
type? 

Surface 
Word 

Word Current word 

Context    
Window 

CONT-INJ If current word 
is within a win-
dow of injection 
context 

Prev-word Previous word Window 
Words Next-word Next word 

Root-form Root form of 
the word if dif-
ferent 

Gov-verb The governing 
verb 

Subject The sentence 
subject  

Dependency 
Features 

Object The sentence 
object 

Table 2. The features for labeling words. 
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a. Lexicon knowledge. We used names of brain 
structures taken from brain atlases (Swanson, 
2004), standard terms to denote neuro-
anatomical topographical relationships (e.g., 
“rostral”), the name or abbreviation of the 
tracer chemical used (e.g., “PHAL”), and 
commonsense descriptions for descriptions of 
the labeling (e.g., “dense”, “light”).  

b. Surface and window word. The current 
word and the words around are important in-
dicators of the most probable label. 

c. Context window. The TTE is a description of 
the inject-label-findings process. Whenever a 
word having a root form of “injection” or 
“deposit” appears, we generate a context 
window and all the words falling into this 
window are assigned a feature of “CONT-
INJ”.  

d. Dependency features. We apply a depend-
ency parser MiniPar (Lin, 1998) to parse each 
sentence, and then derive four types of fea-
tures from the parsing result. These features 
are (a) root form of every word, (b) the sub-
ject within the sentence, (c) the object within 
the sentence, and (d) the governing verbs. 

The labeling system assigns a label for every to-
ken in each sentence. We achieved the best per-
formance with an F-score of 0.79 (based on a pre-
cision of 0.80 and a recall of 0.78). This is not the 
focus of this paper. Please refer to our previous 
work (Burns et al., 2007) for details. 

 
 
 
 
 
 
 
Figure 2. An example of semantic attribute labels. 
With the sentence-level understanding of each 

sentence, we obtain the semantic attribute labels 
for the data records. Figure 2 gives an example 
sentence with semantic attribute labels. Here 
<tracerChemical>, <labelingLocation>, and <la-
belingDescription> are recognized by the system, 
and the attribute names will be used as features for 
this sentence. 

3.2.2 Semantic Language Model 

Since text narratives might adhere to logical ways 
of expressing facts, language models for each sen-
tence will also provide good features to extract 
data records. However, in biomedical research arti-
cles many of the technical words/phrases used in 
the narrative are repeated across experiments, mak-
ing the surface word language model of little use in 
deriving generalized data record templates. Con-
sidering this, we replace in each sentence the la-
beled fragments with their attribute labels and then 
derive semantic language models from that format. 
By ‘semantic language model’ we therefore mean 
a combination of semantic labels and surface 
words.  

For example, in the sentence shown in Figure 2, 
we have the semantic language model trigrams 
location-of-<tracerChemical>, sites-in-
<injectionLocation>, and <labelingDescription>-
followed-the. In addition, we also query WordNet 
for the root form of each word to generalize the 
semantic language models. This for example pro-
duces the semantic language model trigrams site-
in-<injectionLocation> and <labelingDescription>-
follow-the. 

We believe the collected semantic language 
models represent an inherent structure of unstruc-
tured data records. By integrating them as features 
with a CRF model, we expect to represent data re-
cord templates and use the learned model to extract 
new data records.  

However, it is not clear what semantic language 
models are most indicative and useful. A bag-of-
words (language models) approach may bring 
much noise in. We show below a comparison of 
regular language models and semantic language 
models in evaluations.  

3.2.3 Layout and Word Heuristics 

The previous two categories of features come from 
the discovery of semantic components of sentences 
and their narrative form word analysis. When in-
terviewing the neuroscience expert annotator, we 
learned that some layout and word level heuristics 
may also help to delineate individual data records. 
Table 3 gives the two types of heuristic features. 

When a sentence contains heuristic words, it 
will be assigned to a word heuristic feature. If the 
sentence is at the boundary of a paragraph, it will 
be assigned a layout heuristic feature, namely the 
first or the last sentence in the paragraph.  

<SENT FILE="1995-360-213-ns.xml" INDEX= "63"> 
Regardless of the precise location of <tracerChemical> 
PHAL </tracerChemical> injection sites in <injectionLo-
cation> the MEA </injectionLocation> , <labelingDe-
scription> labeled axons </labelingDescription> followed 
the same basic routes . 
</SENT> 
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Name Feature Descrip-
tion 

EXP_B_WORD 

INJECT 
CASE 
EXPERIMENT 
APPLICATION 
DEPOSIT 
PLACEMENT 
INTRODUCTION 

Heuristic 
words for 
beginning 
of an ex-
periment 
descrip-
tion 

POS_IN_PARA FIRST_IN_PARA 
LAST_IN_PARA 

Position of 
the sen-
tence in 
the para-
graph 

Table 3. The heuristic features. 

4 Empirical Evaluation 

To evaluate the effectiveness and performance of 
our technique, we conducted extensive experi-
ments to measure the data record extraction ap-
proach. 

4.1 Experimental Setup 

We used the machine learning package MALLET 
(McCallum, 2002) to conduct the CRF model 
training and labeling. 

We have obtained the digital publications of 
9474 Journal of Comparative Neurology (JCN)1 
articles from 1982 to 2005. We have converted the 
PDF format into plain text, maintaining paragraph 
breaks (some errors still occur though).  A simple 
heuristic based approach identifies semantic sec-
tions of the paper (e.g, Introduction, Results, Dis-
cussion). As most experimental descriptions appear 
in the Results section, we only process the Results 
section. A neuroscience expert manually annotated 
the data records in the Results section of 58 re-
search articles. The total number of sentences in 
the Results section of the 58 files is 6630 (averag-
ing 114.3 sentences per article). 

 Training Set Testing Set 
Docs 39 19 

Data Records 249 133 
Table 4. Experiment configuration. 

We randomly divided this material into training 
and testing sets under a 2:1 ratio, giving 39 docu-
ments in the training set and 19 in the testing set. 

                                                 
1 http://www3.interscience.wiley.com/cgi-bin/jhome/31248 

Table 4 gives the numbers of documents and data 
records in the training and the testing set. 

4.2 Evaluation Metrics 

To evaluate data record extraction, we notice it is 
not fair to strictly evaluate the boundaries of data 
records because this does not penalize the near-
miss and false positive of data records in a reason-
able way; sentences near a boundary that contain 
no relevant record information can be included or 
omitted without affecting the results. Hence the 
standard Pk (Beeferman et al., 1997) and WinDiff 
(Pevzner and Hearst, 2002) measures for text seg-
mentation are not so suitable for our task. 

As we are concerned with the usefulness of 
knowledge in extracted data records, we instead 
evaluate from the perspective of IE. We measure 
system performance on the quality of the extracted 
data records. For each extracted data record, it will 
be aligned to one of the data records in the gold 
standard using the “dominance rule” (if the data 
record can be aligned to multiple records in the 
gold standard, it will be aligned to the one with 
highest overlap). Then we evaluate the precision, 
recall, and F1 scores of extracted units of the data 
record. The units are the attributes in data records. 

system by the units extracted  theof #
unitscorrect   # of

precision =   (3) 

standard gold in the units  theof #
 unitscorrect   # ofrecall =                (4) 

ecallrprecision
recall*precisionF

+
=

*21                                    (5) 

These measures provide an indication of the 
completeness and correctness of each extracted 
record (experiment). We also measure the number 
of distinct records extracted, compared with the 
gold standard as appearing in the document. 

4.3 Experiment Results 

To fully compare the effectiveness of our semantic 
analysis functionality, we evaluated system per-
formance for all the following systems:  

TextTiling (TT): To compare with text segmen-
tation techniques, we use TextTiling (Hearst, 1994) 
with default parameters as the first baseline sys-
tem. 

Random Guess (RG): In order to demonstrate 
the data balance of all the possible labels in the 
testing set, we also use another baseline system 
with random decisions for each sentence.  
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Domain Heuristics (DH): In a regular TTE ex-
periment, only one tracer chemical will typically 
be used. Given this heuristic, we assume each data 
record contains one tracer chemical. In this system, 
we first locate sentences with identified trace 
chemicals, and then we greedily expand backward 
and forward until another new tracer chemical ap-
pears or no other attribute is included. 

Surface Text (ST): To measure the effective-
ness of the semantic analysis (attribute labels and 
semantic language models), the ST system utilizes 
only standard surface word language models and 
heuristic features. 

Semantic Analysis (SEM): The SEM system 
uses all the semantic features available (including 
identified attributes and semantic language models) 
and two heuristic features. 

Table 5 shows the final performance of these 
different systems. The second column provides the 
numbers of extracted data records. In this task, a 
larger number does not necessarily mean a better 
system, as a system might produce too many false 
positives. The remaining three columns represent 
the precision, recall, and F1 scores, averaged over 
all data records. With our approach, the system 
performance is significantly improved compared 
with other systems. System TT fails in this task as 
it only outputs the full document as one single re-
cord. 

 # of     
Records 

Prec. Rec. F1 

TT 19 0.3861 1.0 0.5571 
RG 758 0.6331 0.0913 0.1595 
DH 162 0.6703 0.4902 0.5663 
ST 82 0.8182 0.8339 0.8260 

SEM 72 0.8505 0.9258 0.8865 
Table 5. System performance. 

To investigate how plain text language models 
and semantic language models affect system per-
formance, we also experimented with all the lan-
guage models. Table 6 shows comparisons of three 
types of language models. Systems with semantic 
analysis always work better than those with only 
surface text analysis. Without semantic analysis, 
unigram features work better than bigram and tri-
gram features. This matches our intuition: without 
generalizing to semantic language models, higher 
order language models will be relatively sparse and 
contain much noise. However, when taking into 
account the semantic features, we found that bi-
gram and trigram semantic language model fea-

tures outperformed unigrams. They are especially 
important in boosting the recall scores as they cap-
ture more generalized information when derived. 

Unigram (%) Bigram (%) Trigram (%)  
Prec/Rec/F1 Prec/Rec/F1 Prec/Rec/F1 

ST 81.8/83.4/82.6 69.1/88.4/77.6 57.9/88.8/70.1 

SEM 85.1/86.6/85.6 85.1/92.6/88.7 82.2/92.7/87.1 

Table 6. Language model comparisons. 
As an example, Table 7 gives a list of high qual-

ity bigram semantic language models ranked by 
their information gains based on the training data. 

through_<labelingLocation> rat_no 
<labelingDescription>_be of_<tracerChemical> 
<labelingLocation>_( <tracerChemical>_be 
<tracerChemical>_injection be_inject 
into_<injectionLocation> be_center 
<labelingDescription>_from inject_with 
<tracerChemical>_in injection_of 
in_<labelingLocation> in_experiment 

Table 7. An example list of top-ranked bigrams. 
The main difficulty for data record extraction 

from unstructured text lies in deriving and repre-
senting a template for future extraction. We actu-
ally take advantage of CRF and represent the tem-
plate with a CRF model.  

Each data record is measured with precision, re-
call, and F1 scores. Figure 3 depicts the distribu-
tion of extracted data records according to these 
measures in the best system. 
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Figure 3. Data records performance distribution. 

The results are encouraging, especially given the 
complexity and flexibility of data record descrip-
tions in the unstructured text. In Figure 3, Axis X 
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represents the value interval for precision, recall, 
and F1, and Axis Y represents the number of ex-
tracted records with their corresponding values. 
For example, 57 records have recall scores falling 
into [0.9, 1.0].  

Figure 4 gives an example alignment between 
system result and the gold standard. Each record is 
represented by a range of sentences. The numbers 
following each record in the system result are indi-
vidual data record’s precision and recall scores. 

          System                                   Gold 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. An example of record extraction in one doc. 
This is a real example from the testing set. For 

records R1, R3, and R6, the system can extract the 
exact sentences contained. For record R2 and R5, 
although they do not exactly match at the sentence 
level, the extracted record contains the entire re-
quired set of attributes as in the gold standard.  

4.4 Error Analysis and Discussion 

When we investigated the errors, we found that 
sometimes the extracted data records combined 
two or more smaller gold standard records, or vice 
versa. As shown in Figure 4, extracted records R4 
and R7 are both combinations of records in the 
gold standard. This is partially due to the granular-
ity definition problem. Authors may mention sev-
eral approaches/symptoms to one type of experi-
ment for a single purpose. In this case, it is almost 
infeasible to have annotators strictly agree on 
granularity and thus to teach the system to acquire 
this knowledge. For example, in the gold standard, 
the annotator annotated three successive sentences 
as three separate records but the system output 

those as only one data record. In this extreme case, 
it is too hard to expect the system to perform well. 

In our approach, the semantic attribute labels 
and semantic language models require the result of 
the initial sentence-level labeling, which has an F-
score of 0.79. The error may propagate into the 
data record extraction procedure and lower overall 
system performance. 

In our current experiments, we also assume all 
the attributes within one segment belong to one 
record. However, the situation of embedded data 
records will make this problem harder. For exam-
ple, authors sometimes compare the current ex-
periment with other approaches in referenced pa-
pers. In this case, those attributes should be ex-
cluded from the records. We need to invent rules or 
constraints to filter them out. When such reference 
occurs at experiment boundaries, it brings higher 
risk for correct results.  

It is a very hard problem to extract from unstruc-
tured text neat structured records. The annotators 
sometimes employ background knowledge or rea-
soning when performing manual extraction; such 
knowledge cannot today be easily modeled and 
integrated into learning systems.  

In our study, we also compared some feature se-
lection approaches. Similar to (Yang and Pedersen, 
1997), we tried Feature Instance Frequency, Mu-
tual Information, Information Gain, and CHI-
square test. But we eventually found that the sys-
tem including all the features worked best, and 
with all the other configurations unchanged, fea-
ture instance frequency worked at almost the same 
level as other complex measures such as mutual 
information and information gain.  

5 Conclusion and Future Work 

In this paper, we explored the problem of extract-
ing data records from unstructured text. The lack 
of structure makes it difficult to derive meaningful 
objects and their values without resorting to deeper 
language analysis techniques. We derived indica-
tive linguistic features to represent data record 
templates in free text, using a two-pass approach in 
which the second pass used the IE labels derived 
from the first to compose attributes into coherent 
data records. We evaluated the results from an IE 
perspective and reported potential problems of er-
ror generation. 

… 
R1:S12~S29 (1.0/1.0) 
… 
R2: S31~S41 (1.0/1.0) 
 
R3: S42~S52 (1.0/1.0) 
… 
R4: S56~S73 
(0.517/1.0) 
… 
R5: S75~S88 (1.0/1.0) 
… 
R6: S91~S106(1.0/1.0) 
… 
R7: S108~S118 
(0.523/1.0)  
… 

… 
R1': S12~S29 
… 
R2': S31~S40  
… 
R3': S42~S52 
… 
R4': S56~S63 
… 
R5': S65~S73 
R6': S74~S88 
.. 
R7': S91~S106 
… 
R8': S108~S114 
R9': S115~S118 
… 
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For the future, we plan to explore additional fea-
ture types and feature selection strategies to deter-
mine what is “good” for unstructured record tem-
plates to improve our results. More effort will also 
be put into the sentence-level analysis to reduce 
error propagations. In addition, ontology based 
knowledge inference strategies might be useful to 
validate attributes in single record and in turn help 
data record extraction. The last thing under our 
direction is to explore new models if applicable.  

We hope this thought-provoking problem will 
attract more attention from the community. In the 
future, we plan to make our corpus available to the 
community. The solution to this problem will 
highly affect the access of knowledge in large scale 
unstructured text corpora. 
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Abstract

In scientific literature, sentences that cite re-
lated work can be a valuable resource for
applications such as summarization, syn-
onym identification, and entity extraction.
In order to determine which equivalent en-
tities are discussed in the various citation
sentences, we propose aligning the words
within these sentences according to semantic
similarity. This problem is partly analogous
to the problem of multiple sequence align-
ment in the biosciences, and is also closely
related to the word alignment problem in sta-
tistical machine translation. In this paper
we address the problem of multiple citation
concept alignment by combining and mod-
ifying the CRF based pairwise word align-
ment system of Blunsom & Cohn (2006)
and a posterior decoding based multiple se-
quence alignment algorithm of Schwartz &
Pachter (2007). We evaluate the algorithm
on hand-labeled data, achieving results that
improve on a baseline.

1 Introduction

The scientific literature of biomedicine, genomics,
and other biosciences is a rich, complex, and con-
tinually growing resource. With appropriate infor-
mation extraction and retrieval tools, bioscience re-
searchers can use the contents of the literature to
further their research goals. With online full text

∗Current address: Department of Bioengineering, Univer-
sity of California, San Diego, La Jolla, CA 92093-0412. Email:
sariel@ucsd.edu.

of journal articles finally becoming the norm, new
forms of citation analysis become possible.

Nearly every statement in biology articles is
backed up by at least one citation, and, conversely,
it is quite common for papers in the bioscience do-
main to be cited by 30–100 other papers. The cited
facts are typically stated in a more concise way in the
citing papers than in the original papers. Since the
same facts are repeatedly stated in different ways in
different papers, statistical models can be trained on
existing citation sentences to identify similar facts in
unseen text. Citation sentences also have the poten-
tial to be useful for text summarization and database
curation. Figure 1 shows an example of three differ-
ent citation sentences to the same target paper.

Most citation analysis work focuses on the cita-
tion network structure, to determine which papers
are most central, or uses co-citation analysis to de-
termine which papers are similar to one another in
content (White, 2004; Liu, 1993; Garfield, 1955;
Lipetz, 1965; Giles et al., 1998). In this paper we
focus instead on analyzing the sentences that sur-
round the citations to related work, which we termed
citances in Nakov et al. (2004). In that paper we
note that one subproblem for using citances for au-
tomated analysis is to identify the different concepts
mentioned; a given paper may be cited for more than
one fact or relation.

Citances often state similar information using
varying words and phrases. In order to build con-
cise summaries, those entities and relations that are
expressed in different ways should be matched up,
or aligned, so that subsequent processing steps will
know what the core concepts are. In this paper we
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Example of unaligned citances
“In response to genotoxic stress, Chk1 and Chk2 phosphorylate Cdc25A on N-terminal 
sites and target it rapidly for ubiquitin-dependent degradation (Mailand et al, 2000, 2002; 
Molinari et al, 2000; Falck et al, 2001; Shimuta et al, 2002; Busino et al, 2003), which is 
thought to be central to the S and G2 cell cycle checkpoints (Bartek and Lukas, 2003; 
Donzelli and Draetta, 2003).”

“Given that Chk1 promotes Cdc25A turnover in response to DNA damage in vivo 
(Falck et al. 2001; Sorensen et al. 2003) and that Chk1 is required for Cdc25A 
ubiquitination by SCFβ-TRCP in vitro, we explored the role of Cdc25A 
phosphorylation in the ubiquitination process.”

“Since activated phosphorylated Chk2-T68 is involved in phosphorylation and 
degradation of Cdc25A (Falck et al., 2001, Falck et al., 2002; Bartek and Lukas, 
2003), we also examined the levels of Cdc25A in 2fTGH and U3A cells exposed to 
γ-IR.”

Figure 1: Example of three unaligned citances.

Alignment after normalization

response genotoxic stress Chk1 Chk2 phosphorylate Cdc25A N terminal sites target 
rapidly ubiquitin dependent degradation thought central S G2 cell cycle checkpoints

Given Chk1 promotes Cdc25A turnover response DNA damage vivo Chk1 required
Cdc25A ubiquitination SCF beta TRCP vitro explored role Cdc25A phosphorylation
ubiquitination process

activated phosphorylated Chk2 T68 involved phosphorylation degradation Cdc25A
examined levels Cdc25A 2fTGH U3A cells exposed gamma IR

Figure 2: Example of three normalized aligned ci-
tances. Homologous entities are colored the same.
Unaligned entities are black.

build on the work of Nakov et al. (2004) by tackling
the entity normalization step.

The citance alignment problem is partially anal-
ogous to the problem of multiple alignment of bi-
ological sequences (Durbin et al., 1998). In both
cases the goal is to align homologous entities that
are derived from the same ancestral entity. While in
biology homology is well-defined in the molecular
level, in the citances case it is defined in the seman-
tic level, which is much more subjective. Given a
group of citances that cite the same target paper, we
loosely define semantic homology as a symmetric,
transitive, and reflexive relation between two enti-
ties (words or phrases) in the same or different ci-
tance that have similar semantics in the context of
the cited paper.

Figure 1 shows an example of three citances that
cite the same target paper (Falck et al., 2001). A
multiple alignment of the entities in the same ci-
tances (after removal of stopwords) is shown in Fig-
ure 2. Homologous entities are colored the same.
This small example illustrates some of the main
challenges of multiple citance alignment (MCA).

While orthographic similarity can help to identify
semantic homology (e.g., phosphorylate and phos-
phorylation), it can also be misleading (e.g., cell cy-
cle and U3A cells). In addition, semantic homology
might not include any orthographic clues (e.g., geno-
toxic stress and DNA damage).

Unlike global multiple sequence alignment
(MSA) in genomics, where each character can be
aligned to at most one character in every other se-
quence, in multiple citance alignment, each word
can be aligned to any number of words in other sen-
tences. Another major difference between the two
problems is the fact that while the sequential order-
ing of characters must be maintained in multiple se-
quence alignment, this is not the case for multiple
citance alignment.

MCA is also related to the problem of word align-
ment in statistical machine translation (SMT) (Och
and Ney, 2003). However, unlike SMT alignment,
MCA aligns multiple citances in the same language
rather than a pair of sentences in different languages.

In this paper we present an MCA algorithm that
is based on an extension to the posterior decoding
algorithm for MSA called AMAP (Schwartz et al.,
2006; Schwartz and Pachter, 2007), with an under-
lying pairwise alignment model based on the CRF
SMT alignment of Blunsom & Cohn (2006).

2 Multiple citance alignments

Let G , {C1, C2, . . . , CK} be a group of K ci-
tances that cite the same target paper, where the ith

citance is a sequence of words Ci , Ci
1C

i
2 · · ·Ci

ni ,
and ci , {ci

1, c
i
2, . . . , c

i
ni} is the set of word indices

of Ci. A pairwise citance alignment of Ci and Cj

is an equivalence (symmetric, reflexive, and transi-
tive) relation ∼ij on the set ci ∪ cj . The expres-
sion ci

k ∼ij cj
l means that according to the pairwise

alignment∼ij word k in citance Ci and word l in ci-
tance Cj are aligned. A multiple citance alignment

(MCA) is an equivalence relation ∼,
(⋃

ij ∼ij

)+

on the set
⋃

i c
i, which is the transitive closure of

the union of all pairwise alignments of citance pairs
in G. Taking the transitive closure and not only
the union of all pairwise alignments ensures that the
MCA is an equivalence relation.

An MCA ∼ defines a partition of the set of all
word indices c ,

⋃
ik {ci

k}, which is of size n ,
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|c| =
∑

i n
i. Therefore, the number of distinct

MCAs of G is the number of partitions of a set of
size n. This number is called the nth Bell number
(Rota, 1964)

Bn ,
1
e

∞∑
k=0

kn

k!
. (1)

Asymptotically, Bn grows faster than an exponential
but slower than a factorial. For example B100 ≈
10116. Obviously, enumerating all possible MCAs
is impractical even for small problems.

3 Probabilistic model for MCA

Unlike biological sequences, for which pair-HMMs
are a natural choice for modeling evolutionary pro-
cesses between two sequences, there is no simple
generative model that can be used for modeling
pairwise citance alignment. Most of the work on
pairwise alignment of sentences at the word level
has been done in the statistical machine translation
(SMT) community.

Och & Ney (2003) present an overview and com-
parison of the most common models used for SMT
word alignments. Out of the models they describe,
the HMM models are the most expressive mod-
els that can compute posterior probabilities using
the forward-backward algorithm. However, unlike
sequence alignments, there are no ordering con-
straints in word alignments, and the alignments are
many-to-many as opposed to one-to-one. Therefore,
the SMT HMM models cannot be based on pair-
HMMs, which generate two sentences simultane-
ously. Rather, they are directional models that model
the probability of generating a target sentence given
a source sentence. In other words they only model
many-to-one alignments, recovering the many-to-
many alignments in a preprocessing step. Therefore,
SMT HMMs can only compute the posterior proba-
bilities P (ci

k ; cj
l |C

i, Cj) and P (cj
l ; ci

k|Ci, Cj),
where the relation ; represents the (directional)
event that a source word is translated into a target
word. Nevertheless, recently such posterior proba-
bilities have been used in SMT word alignment sys-
tem as an alternative to Viterbi decoding, and helped
to improve the performance of such systems (Ma-
tusov et al., 2004; Liang et al., 2006).

Generative models like HMMs have several lim-
itations. First, they require relatively large train-

ing data, which is difficult to attain in case of SMT
word alignment, and even more so in the case of
MCA. Second, generative models explicitly model
the inter-dependence of different features, which re-
duces the ability to incorporate multiple arbitrary
features into the model. Since orthographic similar-
ity is not a strong enough indication for semantic ho-
mology in MCA, we would like to be able to incor-
porate multiple inter-dependent features into a single
model, including orthographic, contextual, ontolog-
ical, and lexical features.

Recently, several authors have described dis-
criminative SMT alignment models (Moore, 2005;
Lacoste-Julien et al., 2006; Blunsom and Cohn,
2006). However, to the best of our knowledge only
the model of Blunsom & Cohn (2006), which is
based on a Conditional Random Field (CRF) (Laf-
ferty et al., 2001), can compute word indices pairs’
directional posterior probabilities, like those com-
puted by the HMM models. Therefore, we decided
to adopt the CRF-based model to the MCA problem.

3.1 Conditional random fields for word
alignment

The model of Blunsom & Cohn (2006) is based on
a linear chain CRF, which can be viewed as the
undirected version of an HMM. The CRF models
a many-to-one pairwise alignment, in which every
source word can get aligned to zero or one target
words, but every word in the target sentence can be
the target of multiple source words. CRFs define
a conditional distribution over a latent labeling se-
quence given observation sequence(s). In the case
of CRF for word alignment, the observed sequences
are the source and target sentences (citances), and
the latent labeling sequence is the mapping of source
words to target word-indices. Given a source citance
Ci of length ni, and a target citance Cj of length nj ,
the many-to-one alignment of Ci to Cj is the rela-
tion ;. Since this is a many-to-one alignment, ;

can be represented by a vector a of length ni. The
CRF models the probability of the alignment a con-
ditioned on Ci and Cj as follows:

PΛ(a|Ci, Cj) =

exp
(∑

t

∑
k λkfk(t, at−1, at, C

i, Cj)
)

ZΛ(Ci, Cj)
, (2)
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where f , {fk} are the model’s features, Λ , {λk}
are the features’ weights, and ZΛ(Ci, Cj) is the par-
tition (normalization) function which is defined as:

ZΛ(Ci, Cj) ,∑
a

exp

(∑
t

∑
k

λkfk(t, at−1, at, C
i, Cj)

)
.

(3)

Parameters are estimated from fully observed data
(manually aligned citances) using a maximum a pos-
teriori estimate. The parameter estimation proce-
dure is described in more details in the original pa-
per. Blunsom & Cohn (2006) use Viterbi decoding
to find an alignment of two sentences given a trained
CRF model, a∗ , argmaxa PΛ(a|Ci, Cj). How-
ever, the posterior probabilities of the labels at each
position can be calculated as well using the forward-
backward algorithm:

PΛ(ci
l ; cj

k|C
i, Cj) = PΛ(al = cj

k|C
i, Cj) =

αl(c
j
k|C

i, Cj)βl(c
j
k|C

i, Cj)
ZΛ(Ci, Cj)

(4)

where αl and βl are the forward and backward vec-
tors that are computed with the forward-backward
algorithm (Lafferty et al., 2001).

3.2 The posterior decoding algorithm for MCA
Ultimately, the success of an MCA algorithm should
be judged by its effect on the success of the citance
analysis systems that use MCAs as their input. How-
ever, measuring this effect directly is difficult, since
high-level tasks such as summarization are difficult
to evaluate objectively. More to the point, it is dif-
ficult to quantify the contribution of the MCA ac-
curacy to the accuracy of the high-level system that
uses it. A more practical alternative is to measure the
accuracy of MCAs directly using a meaningful ac-
curacy measure, under the simplifying assumption
that there is a strong correlation between the mea-
sured MCA accuracy and the performance of the
high-level application.

We argue that a useful utility function should be
correlated (or even identical) to the accuracy mea-
sure used to evaluate the performance of an algo-
rithm. In addition, the utility function should be
easily decomposable, to enable direct optimization

using posterior-decoding. Although any accuracy
measure that is acceptable as a single performance
measure can be used to guide the design of the util-
ity function, metric-based accuracy measures have
several noticeable advantages. First, a metric for-
malizes the intuitive notion of distance. Hence, an
accuracy measure which is based on a metric fol-
lows the intuition that reducing the distance to the
correct answer should increase the accuracy of the
predicted answer. Therefore, defining a metric space
for the objects of a given problem leads to a nat-
ural definition of accuracy. Another advantage of
using a metric-based accuracy measure is the abil-
ity to provide bounds in the search space using the
triangle inequality. For example, while searching for
the answer with the optimal (metric-based) expected
utility, a step of length x can only change the ex-
pected utility as well as the actual utility by at most
±x units. Examples of more complex bounds us-
ing metric loss functions are described in (Schlüter
et al., 2005) and (Domingos, 2000).

Schwartz et al. (2006) define the alignment met-
ric accuracy (AMA), which is a utility function for
one-to-one MSA. Intuitively, AMA measures the
fraction of characters that are aligned correctly ac-
cording to the reference alignment, either to another
character or to a gap (null). We extend the definition
of AMA to the case of many-to-many MCA.

A good utility function for MCA should give par-
tial credit to word positions that align to some of the
correct word positions while penalizing for aligning
to wrong word positions. To help define such a util-
ity function we define the following. Let mij

∼(cj
l ) ,

{ci
k ∈ ci|ci

k ∼ cj
l } be the set of all word positions

in citance Ci that align to word position l in citance
Cj according to MCA ∼. We can then define the
following utility function for the MCA ∼p of the ci-
tance group G given a reference MCA ∼r:

UAMA(∼r,∼p) ,∑
ijl|i6=j Uset agreement

(
mij
∼r(cj

l ),m
ij
∼p(cj

l )
)

n(K − 1)
, (5)

where n is the number of word indices in G, K ,
|G| is the number of citances in the group, and
Uset agreement is any utility function for agreement
between sets that assigns values in the range [0, 1].

850



Uset agreement can be viewed as a “score” assigned
to each word position based on the agreement be-
tween the two alignments with regards to the other
word positions that align to it. Using a 0–1 loss as
the set agreement score is equivalent to the original
AMA. Other utility functions, such as Dice, Jaccard
and Hamming can be used as Uset agreement. How-
ever, only metric-based utility functions will result
in a metric-based UAMA utility function. It is easy
to see that 1 − UAMA satisfies all the requirements
of a metric, i.e., it is non-negative, equals zero if
and only if ∼r=∼p, symmetric, and obeys the trian-
gle inequality, since if the triangle inequality holds
for 1 − Uset agreement, it must hold for a sum of
1 − Uset agreement values. (We refer the reader to
Schwartz (2007) for a longer discussion of the prop-
erties of the different utility functions.) We define
the AMA for MCA by setting the Uset agreement to
be the Braun-Blanquet coefficient (Braun-Blanquet,
1932), which is defined as:

UBraun−Blanquet

(
mij
∼r(cj

l ),m
ij
∼p(cj

l )
)

,
1 if mij

∼r(cj
l ) = ∅

and mij
∼p(cj

l ) = ∅
|mij

∼r (cj
l )∩mij

∼p (cj
l )|

max{|mij
∼r (cj

l )|,|m
ij
∼p (cj

l )|}
otherwise

.

(6)

Caillez & Kuntz (1996) show that the Braun-
Blanquet coefficient is based on a metric.

As with the MSA case, a family of utility func-
tions can be defined to enable control of the re-
call/precision trade-off. Unlike MSA, in the case of
MCA two free parameters are needed, in order to
have better control of the trade-off using posterior-
decoding. In addition to a gap-factor that controls
the threshold at which unaligned words start to get
aligned, a match-factor is added to enable control of
the number of word-positions each word aligns to.
The result is the following utility function:

Uµ,γ(∼r,∼p) ,
1

n(K − 1)

∑
ijl|i6=j

(

µ|m
ij
∼p (cj

l )|
|mij

∼r(cj
l ) ∩mij

∼p(cj
l )|

max
{
|mij

∼r(cj
l )|, |m

ij
∼p(cj

l )|, 1
}+

γ1{mij
∼r(cj

l ) = mij
∼p(cj

l ) = ∅}
)
, (7)

where γ ∈ [0,∞) is a gap-factor, and µ ∈ (0,∞) is
a match factor. The neutral value for both parame-
ters is 1. Increasing γ results in increased utility to
sparser MCAs, while reducing γ increases the util-
ity of denser alignments. However, in the case of
MCA, the gap-factor only affects the first aligned
word position, but it cannot affect the number of
word positions each word is aligned to. The match-
factor adds this functionality by rewarding MCAs
that align words to multiple word positions when
µ > 1, and penalizing such MCAs when µ < 1.

Given a group of K citances G and a trained
CRF model, the goal of the MCA algorithm is to
find the MCA ∼∗, argmax∼p E∼tUµ,γ(∼t,∼p)
that maximizes the expected utility. Since search-
ing the space of possible MCAs exhaustively is in-
feasible, we resort to a simple heuristic for predict-
ing an MCA. Instead of searching for a global opti-
mum, the predicted MCA is defined as the equiva-
lence (symmetric transitive) closure of the union of
multiple local optima. For each target word posi-
tion cj

l and every source citance Ci the combina-
tion of source word positions ci

◦ that maximize the
expected set-agreement score of cj

l is added to the
predicted MCA. Formally, let P(ci) be the power-
set of ci, then we define the predicted MCA as
∼p,

(
;p ∪(;p)−1

)+, where ;p is defined as:

;p,
⋃

ijl|i6=j

{cj
l } × argmax

ci
◦∈P(ci)

E
mij

∼t (c
j
l )µ|c

i
◦|

|mij
∼t(c

j
l ) ∩ ci

◦|

max
{
|mij

∼t(c
j
l )|, |ci

◦|, 1
}+

γ1{mij
∼t(c

j
l ) = ci

◦ = ∅}

)
. (8)

The value of ;p can be computed from the CRF
directional posterior probabilities as follows:

;p=⋃
ijl|i6=j

{cj
l } × argmax

ci
◦∈P(ci)

∑
ci
∗∈P(ci)

P
(
mij
∼t(c

j
l ) = ci

∗

)
(

µ|c
i
◦| |ci

∗ ∩ ci
◦|

max {|ci
∗|, |ci

◦|, 1}
+ γ1{ci

∗ = ci
◦ = ∅}

)
,

(9)
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and using an independence assumption we get:

;p≈
⋃

ijl|i6=j

{cj
l } × argmax

ci
◦∈P(ci)

∑
ci
∗∈P(ci)∏

ci
k

(
PΛ(ci

k ; cj
l |C

i, Cj)1{ci
k ∈ ci

∗}+

(1− PΛ(ci
k ; cj

l |C
i, Cj))1{ci

k /∈ ci
∗}
))

(
µ|c

i
◦| |ci

∗ ∩ ci
◦|

max {|ci
∗|, |ci

◦|, 1}
+ γ1{ci

∗ = ci
◦ = ∅}

)
.

(10)

Note that although the directional posterior prob-
abilities are used to generate the predicted MCA,
the result is a many-to-many alignment, since the
union is done over all pairs of sequences in both
directions. The calculation in Equation (10) can
be computationally intensive in practice, as it re-
quires |P(ci)|2 = 22ni

operations for each word
position cj

l and citance Ci. This can be over-
come by restricting the combinations of source word
positions (ci

∗ and ci
◦) to include only the the top

MAX SOURCES source words with a minimum
posterior probability of MIN PROB to align to cj

l

(PΛ(ci
k ; cj

l |C
i, Cj) ≥ MIN PROB). In our im-

plementation we set MAX SOURCES to 8 and
MIN PROB to 0.01. Additionally, the probabilities
of each combination ci

∗ can be calculated only once,
since it is independent of ci

◦. This reduces the to-
tal computational complexity of calculating ∼p to
O
(
216(K2 −K) maxni

{
ni
})

.

4 Data sets

Since citance alignment is a new task, we had to
create our own evaluation and training sets. We re-
stricted the domain of the target papers to molec-
ular interactions, a domain which is actively re-
searched in the biosciences text mining community
(Hirschman et al., 2002). The biologist in our group
annotated citances to 6 target papers. The training
set consisted of 40 citances to 4 different target pa-
pers (10 citances each; we wanted to have variety in
the training set). The development set consisted of
51 citances to the fifth target paper, and the test set
contained 45 citances to the sixth target paper.

For each target paper we downloaded the full text
of those papers citing it that were available in HTML
format. The link structure of the cited references in
the HTML documents allowed us to automatically
extract citances to a given target paper. We defined a
citance to be the full sentence that contains a citation
to the target paper. Each citance was then tokenized,
and normalized by removing all stopwords from a
predefined list.

One goal of the annotation was to cover as much
of the content of the citances as possible. Another
goal was consistency; our biologist manually fol-
lowed a small number of rules to determine seman-
tic similarity. Distinct semantic units (words or
phrases) were identified and given an annotation ID.
Within each group of citances, words or phrases that
share semantic similarity were annotated with the
same ID.

Using the manually annotated citance groups,
pairwise word alignments were generated for every
source-target pair of citances from every group. That
resulted in a training, development, and test sets
of 180, 1275, and 990 pairwise alignments respec-
tively.

Alignments that were used for development and
testing were generated as many-to-many alignments.
However, many-to-many alignments are not suit-
able for the training the many-to-one CRF align-
ment model. When a given source word ci

k aligns
to multiple words in the target citance, the CRF
model chooses only one target word as a true pos-
itive, while incorrectly treating the other true posi-
tive target words as true negatives. To alleviate this
problem, in such cases we replaced all true-positive
target words other than the first with ’*’, thus forcing
them to act as real true negatives for the purpose of
training. This adjustment does not solve the inher-
ent limitation of the CRF’s many-to-one modeling of
a many-to-many alignment, but it prevents learning
incorrect weights for good features.

5 Feature engineering

The CRF alignment model can combine multiple
overlapping features. We evaluated the effectiveness
of different features by training models on the train-
ing set and evaluating their performance on the de-
velopment set. We considered variations of features
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that were part of the original system of Blunsom &
Cohn (2006), and also designed new features that are
specific to the problem of MCA.

Orthographic features

We used the following orthographic features from
the original system of Blunsom & Cohn (2006) (be-
low all features are either Boolean indicator func-
tions (b) or real valued (r)):

(b) exact string similarity of source-target words;
(b) every possible source-target pair of length 3 prefixes;
(b) exact string match of length 3 prefixes;
(b) exact string match of length 3 suffixes;
(r) absolute difference in word lengths;
(b) both words are shorter than 4 characters.

In addition, the following orthographic features
were added: indicator that both words include capi-
tal letters, and normalized edit-similarity of the two

words (1− edit distance(ci
k,cj

l )

max{|ci
k|,|c

j
l |}

).

Markov features

We used the following Markov features from the
original system:

(r) absolute jump width (abs(at−at−1−1), which measures
the distance between the target words of adjacent source
words;

(r) positive jump width (max{at − at−1 − 1, 0});
(r) negative jump width (max{at−1 + 1− at, 0});
(b) transition from null aligned source-word to non-null

aligned source-word;
(b) transition from non-null aligned source-word to null

aligned source-word;
(b) transition from null aligned source-word to null aligned

source-word.

In addition we added the following Markov fea-
tures in order to model the tendency of certain words
to be part of longer phrases:

(b) source-word aligns to the same target-word as the previ-
ous source-word;

(b) source-word aligns to the same target-word as the next
source-word;

(b) transition from non-null aligned source-word to non-null
aligned source-word.

Sentence position: We included the relative sen-
tence position feature from the original system,
which is defined as abs( at

|cj | −
t
ci ). Although it was

not expected to be relevant for MCA, since the ci-
tances are not expected to align along the diagonal,

this feature slightly improved the performance of the
development set.

Null: An indicator function for leaving a source-
word unaligned was retained from the original sys-
tem. This is an essential feature since without it the
CRF tends to over-align words, and produces mean-
ingless posterior probabilities.

Ontological features: Orthographic and posi-
tional features alone do not cover all cases of se-
mantic homology. We therefore included features
that are based on domain specific ontologies.

Using an automated script we mapped specific
words and phrases in every citance to MeSH1 terms,
Gene identifiers from Entrez Gene,2 UniProt,3 and
OMIM.4 We then added features indicating when
the source and target words are annotated with the
same MeSH term or the same gene identifier. We
tried numerous features that compare MeSH terms
based on their distance in the ontology, and other
features that indicate whether a word is part of a
longer term. However, none of these feature were
selected for the final system.

In addition to biological ontologies we added a
feature for semantic word similarity between the
source and target words, based on the Lin (1998)
WordNet similarity measure.

6 Results

We modified the CRF alignment system of Blun-
som & Cohn (2006) to support MCA by incorpo-
rating the posterior decoding algorithm from Sec-
tion 3.2 into the existing system. The CRF model
was trained using the features that were selected us-
ing the development set, on a dataset that included
the training and development MCAs. All the perfor-
mance results in this section are reported on the test
set, which includes 990 pairs of citances (45×44/2),
with a total of 34188 words (8547 × 44). On aver-
age, 20% of the source words are aligned to at least
one other target word in a given reference pairwise
alignment. Since the union of all the pairwise align-
ments results in only a single test MCA, it is hard
to make strong arguments about the performance

1http://www.nlm.nih.gov/mesh/
2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
3http://www.pir.uniprot.org/
4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
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Figure 3: Recall/Precision curve of pairwise ci-
tance alignments comparing Viterbi to posterior
decoding.

of the system in general. Therefore, we concen-
trate our discussion on general trends, and do not
claim that the specific performance numbers we re-
port here are statistically significant. As a point of
comparison, the SMT community has been evalu-
ating performance of word-alignment systems on an
even smaller dataset of 447 pairs of non-overlapping
sentences (Mihalcea and Pedersen, 2003).

We first analyze the performance of the system
on pairwise citance alignments. Instead of tak-
ing the equivalence closure of ;p we take only
the symmetric closure. The result is 990 many-
to-many pairwise alignments. In order to evalu-
ate the effectiveness of the posterior-decoding al-
gorithm, we generate the Viterbi alignments using
the same CRF model. The Viterbi many-to-many
pairwise alignments are then generated by combin-
ing equivalent pairs of many-to-one alignments us-
ing three different standard symmetrization methods
for word-alignment—union, intersection, and the re-
fined method of Och & Ney (2003).

Figure 3 shows the recall/precision trade-off of
the pairwise posterior-decoding and Viterbi align-
ments. The curve for the posterior-decoding align-
ments was produced by varying the gap and match
factors. For the Viterbi alignments, only three re-
sults could be generated (one for each symmetriza-
tion method). However, since the refined method
produced a very similar result to the union, only
the union is displayed in the figure. The impor-
tant observation is that while posterior-decoding en-

ables refined control over the recall/precision trade-
off, the Viterbi decoding generates only three align-
ments, which cover only a small fraction of the curve
at its high precision range. The union of Viterbi
alignments achieves 0.531 recall at 0.913 preci-
sion, which is similar result to the 0.540 recall at
0.909 precision achieved using posterior-decoding
with gap-factor and match-factor set to 1. However,
unlike Viterbi, posterior-decoding produces align-
ments with much higher recall levels, by increas-
ing the match-factor and decreasing the gap-factor.
For example setting the gap-factor to 0.1 and match-
factor to 1.2 results in alignments with 0.636 recall
at 0.517 precision, and setting them to 0.05 and 1.5
results in 0.742 recall at 0.198 precision. Generally,
the gap and match factor affect the accuracy of the
alignments as expected. In particular, the alignments
with the best AMA (0.889) and the best F1-measure
(0.678) are generated when the gap match factor are
set to their natural values (1,1), which theoretically
should maximize the expected AMA.

The performance of the pairwise alignments
validates the underlying probabilistic model,
showing it behaves as theoretically expected.
However, the union of all pairwise alignments
is not a valid MCA. To evaluate the MCA
posterior decoding algorithm, we compared it
to baseline MCAs. The baseline MCAs are
constructed by using only the normalized-edit-

distance edit distance(ci
k,cj

l )

max{|ci
k|,|c

j
l |}

, and defining ci
k ;δ

cj
l if and only if normalized edit distance(ci

k, c
j
l ) ≤

δ, where δ is a distance threshold. The fi-
nal baseline MCA is constructed by taking the
equivalence closure of all pairwise alignments,
∼δ,

(
;δ ∪(;δ)−1)

)+. The δ parameter can
be used to control the recall/precision trade-off,
since increasing it adds more position-pairs to the
alignment, thus increasing recall, while decreasing
it increases precision.

Figures 4 compares the performance of the CRF
posterior-decoding MCAs with the baseline MCAs.
The different MCAs were produced by varying the
gap and match factors in the case of the posterior-
decoding, and δ for the baseline MCAs. The CRF
curve clearly dominates the baseline curve. How-
ever, they do overlap in range between 0.52 and
0.55 recall (0.84 and 0.90 precision). This is prob-
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Figure 4: Recall/Precision curve of MCAs
comparing CRF with posterior decoding to
normalized-edit-distance baseline.

ably a range in which for this particular MCA the
orthographic similarity is the most dominant fea-
ture. While the baseline curve drops sharply after
that range, the posterior-decoding curve keeps im-
proving recall up to 0.636 at 0.748 precision, be-
fore a major drop in precision. The additional recall
is due to the ability of the CRF model to incorpo-
rate multiple overlapping features. In particular, the
domain-specific features are important for aligning
words and phrases that have little or no orthographic
similarity. At the other end of the overlap range, the
posterior-decoding achieves better precision than the
baseline for the same recall levels. For example, the
posterior decoding gets 0.381 recall at 0.982 preci-
sion compared with 0.346 at 0.937 for the baseline.

Unlike the pairwise alignment case, the neutral
settings of the gap and match factors did not result in
the best AMA score. This is due to the equivalence
closure heuristic that results in MCAs that are too
dense, since a single link between two equivalence
classes causes them to merge. The best AMA score
(0.886) is obtained by reducing the gap-factor to 0.5
and match-factor to 0.45, in order to compensate for
the effect of the equivalence closure heuristic. For
comparison, the best F1-measure (0.690) is achieved
by setting the gap and match factors to 0.75.

An error analysis on the latter MCA shows that
out of 1400 unique errors, 1194 (85.3%) are false
negatives (FN) and 206 (14.7%) false positives (FP).
Most errors (more than 600) are due to misalign-
ment of subtypes (e.g., cdc, cdc6, cdc25A), oppo-

sites (e.g., phosphorylated and unphosphorylated)
and complex entities (e.g., cell cycle v.s. cell line).
In addition, a large portion of FN errors are due to
not aligning entities that belong to just four equiva-
lence classes (e.g., 97 FN errors caused by terms in
the class of motif, site and domain). Other types of
errors include not aligning plural and singular forms
of the same entities, aligning only part of multi-
word entities, and incorrectly aligning orthographi-
cally similar entities that belong to different classes.

7 Conclusions

We have shown how to derive a posterior-decoding
algorithm that aims at maximizing the expected util-
ity for the MCA problem, as a substitute for the
sequence-annealing algorithm for MSA. Adding a
gap and match factor to the utility function allows
control over the recall/precision trade-off when us-
ing posterior-decoding. Another advantage of opti-
mizing the expected utility with posterior-decoding
methods is the decoupling from the probabilistic
model that generated the posterior probabilities.
This allows the use of CRFs instead of HMMs with
a similar posterior decoding algorithm.

Our experiments were limited by the size of the
labeled data. However, the results support the the-
oretical predictions, and demonstrate the advantage
of posterior-decoding over Viterbi decoding.

Since citances are still a relatively unexplored re-
source, it is still unclear whether the formulation we
presented here for citance alignment is the most use-
ful for applications that use citances for compara-
tive analysis of bioscience text. Unlike biological
sequence alignment, citance alignments are much
more subjective, as they depend on a loose defini-
tion of semantic homology between entities. Even
the definition of the basic entities can vary, since in
many cases noun-compounds and other multi-word
entities seem to be a more natural choice for basic el-
ements of semantic homology and alignment. How-
ever, automatic segmentation and entity recognition
are still difficult tasks in the bioscience text domain
and so new methods are worth investigating.
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Ralf Schlüter, Thomas Scharrenbach, Volker Steinbiss,
and Hermann Ney. 2005. Bayes risk minimization
using metric loss functions. In Proceedings of the
European Conference on Speech Communication and
Technology, Interspeech, pages 1449–1452, Portugal,
September.

Ariel S. Schwartz and Lior Pachter. 2007. Multiple
alignment by sequence annealing. Bioinformatics,
23(2):e24–29.

856



Ariel S. Schwartz, Eugene W. Myers, and Lior Pachter.
2006. Alignment metric accuracy. arXiv:q-
bio.QM/0510052.

Ariel S. Schwartz. 2007. Posterior Decoding Meth-
ods for Optimization and Accuracy Control of Multiple
Alignments. Ph.D. thesis, EECS Department, Univer-
sity of California, Berkeley.

Howard D. White. 2004. Citation analysis and discourse
analysis revisited. Applied Linguistics, 25(1):89–116.

857



Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 858–867, Prague, June 2007. c©2007 Association for Computational Linguistics

Large Language Models in Machine Translation

Thorsten Brants Ashok C. Popat Peng Xu Franz J. Och Jeffrey Dean

Google, Inc.
1600 Amphitheatre Parkway

Mountain View, CA 94303, USA
{brants,popat,xp,och,jeff}@google.com

Abstract

This paper reports on the benefits of large-
scale statistical language modeling in ma-
chine translation. A distributed infrastruc-
ture is proposed which we use to train on
up to 2 trillion tokens, resulting in language
models having up to 300 billion n-grams. It
is capable of providing smoothed probabil-
ities for fast, single-pass decoding. We in-
troduce a new smoothing method, dubbed
Stupid Backoff, that is inexpensive to train
on large data sets and approaches the quality
of Kneser-Ney Smoothing as the amount of
training data increases.

1 Introduction

Given a source-language (e.g., French) sentence f ,
the problem of machine translation is to automati-
cally produce a target-language (e.g., English) trans-
lation ê. The mathematics of the problem were for-
malized by (Brown et al., 1993), and re-formulated
by (Och and Ney, 2004) in terms of the optimization

ê = arg max
e

M
∑

m=1

λmhm(e, f) (1)

where {hm(e, f)} is a set of M feature functions and
{λm} a set of weights. One or more feature func-
tions may be of the form h(e, f) = h(e), in which
case it is referred to as a language model.

We focus on n-gram language models, which are
trained on unlabeled monolingual text. As a general
rule, more data tends to yield better language mod-
els. Questions that arise in this context include: (1)

How might one build a language model that allows
scaling to very large amounts of training data? (2)
How much does translation performance improve as
the size of the language model increases? (3) Is there
a point of diminishing returns in performance as a
function of language model size?

This paper proposes one possible answer to the
first question, explores the second by providing
learning curves in the context of a particular statis-
tical machine translation system, and hints that the
third may yet be some time in answering. In particu-
lar, it proposes a distributed language model training
and deployment infrastructure, which allows direct
and efficient integration into the hypothesis-search
algorithm rather than a follow-on re-scoring phase.
While it is generally recognized that two-pass de-
coding can be very effective in practice, single-pass
decoding remains conceptually attractive because it
eliminates a source of potential information loss.

2 N -gram Language Models

Traditionally, statistical language models have been
designed to assign probabilities to strings of words
(or tokens, which may include punctuation, etc.).
Let wL

1 = (w1, . . . , wL) denote a string of L tokens
over a fixed vocabulary. An n-gram language model
assigns a probability to wL

1 according to

P (wL
1 ) =

L
∏

i=1

P (wi|w
i−1
1 ) ≈

L
∏

i=1

P̂ (wi|w
i−1
i−n+1)

(2)
where the approximation reflects a Markov assump-
tion that only the most recent n − 1 tokens are rele-
vant when predicting the next word.
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For any substring w
j
i of wL

1 , let f(wj
i ) denote the

frequency of occurrence of that substring in another
given, fixed, usually very long target-language string
called the training data. The maximum-likelihood
(ML) probability estimates for the n-grams are given
by their relative frequencies

r(wi|w
i−1
i−n+1) =

f(wi
i−n+1)

f(wi−1
i−n+1)

. (3)

While intuitively appealing, Eq. (3) is problematic
because the denominator and / or numerator might
be zero, leading to inaccurate or undefined probabil-
ity estimates. This is termed the sparse data prob-
lem. For this reason, the ML estimate must be mod-
ified for use in practice; see (Goodman, 2001) for a
discussion of n-gram models and smoothing.

In principle, the predictive accuracy of the lan-
guage model can be improved by increasing the or-
der of the n-gram. However, doing so further exac-
erbates the sparse data problem. The present work
addresses the challenges of processing an amount
of training data sufficient for higher-order n-gram
models and of storing and managing the resulting
values for efficient use by the decoder.

3 Related Work on Distributed Language
Models

The topic of large, distributed language models is
relatively new. Recently a two-pass approach has
been proposed (Zhang et al., 2006), wherein a lower-
order n-gram is used in a hypothesis-generation
phase, then later the K-best of these hypotheses are
re-scored using a large-scale distributed language
model. The resulting translation performance was
shown to improve appreciably over the hypothesis
deemed best by the first-stage system. The amount
of data used was 3 billion words.

More recently, a large-scale distributed language
model has been proposed in the contexts of speech
recognition and machine translation (Emami et al.,
2007). The underlying architecture is similar to
(Zhang et al., 2006). The difference is that they in-
tegrate the distributed language model into their ma-
chine translation decoder. However, they don’t re-
port details of the integration or the efficiency of the
approach. The largest amount of data used in the
experiments is 4 billion words.

Both approaches differ from ours in that they store
corpora in suffix arrays, one sub-corpus per worker,
and serve raw counts. This implies that all work-
ers need to be contacted for each n-gram request.
In our approach, smoothed probabilities are stored
and served, resulting in exactly one worker being
contacted per n-gram for simple smoothing tech-
niques, and in exactly two workers for smoothing
techniques that require context-dependent backoff.
Furthermore, suffix arrays require on the order of 8
bytes per token. Directly storing 5-grams is more
efficient (see Section 7.2) and allows applying count
cutoffs, further reducing the size of the model.

4 Stupid Backoff

State-of-the-art smoothing uses variations of con-
text-dependent backoff with the following scheme:

P (wi|w
i−1
i−k+1) =

{

ρ(wi
i−k+1) if (wi

i−k+1) is found

λ(wi−1
i−k+1)P (wi

i−k+2) otherwise
(4)

where ρ(·) are pre-computed and stored probabili-
ties, and λ(·) are back-off weights. As examples,
Kneser-Ney Smoothing (Kneser and Ney, 1995),
Katz Backoff (Katz, 1987) and linear interpola-
tion (Jelinek and Mercer, 1980) can be expressed in
this scheme (Chen and Goodman, 1998). The recur-
sion ends at either unigrams or at the uniform distri-
bution for zero-grams.

We introduce a similar but simpler scheme,
named Stupid Backoff 1 , that does not generate nor-
malized probabilities. The main difference is that
we don’t apply any discounting and instead directly
use the relative frequencies (S is used instead of
P to emphasize that these are not probabilities but
scores):

S(wi|w
i−1
i−k+1) =











f(wi
i−k+1)

f(wi−1
i−k+1)

if f(wi
i−k+1) > 0

αS(wi|w
i−1
i−k+2) otherwise

(5)

1The name originated at a time when we thought that such
a simple scheme cannot possibly be good. Our view of the
scheme changed, but the name stuck.
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In general, the backoff factor α may be made to de-
pend on k. Here, a single value is used and heuris-
tically set to α = 0.4 in all our experiments2 . The
recursion ends at unigrams:

S(wi) =
f(wi)

N
(6)

with N being the size of the training corpus.
Stupid Backoff is inexpensive to calculate in a dis-

tributed environment while approaching the quality
of Kneser-Ney smoothing for large amounts of data.
The lack of normalization in Eq. (5) does not affect
the functioning of the language model in the present
setting, as Eq. (1) depends on relative rather than ab-
solute feature-function values.

5 Distributed Training

We use the MapReduce programming model (Dean
and Ghemawat, 2004) to train on terabytes of data
and to generate terabytes of language models. In this
programming model, a user-specified map function
processes an input key/value pair to generate a set of
intermediate key/value pairs, and a reduce function
aggregates all intermediate values associated with
the same key. Typically, multiple map tasks oper-
ate independently on different machines and on dif-
ferent parts of the input data. Similarly, multiple re-
duce tasks operate independently on a fraction of the
intermediate data, which is partitioned according to
the intermediate keys to ensure that the same reducer
sees all values for a given key. For additional details,
such as communication among machines, data struc-
tures and application examples, the reader is referred
to (Dean and Ghemawat, 2004).

Our system generates language models in three
main steps, as described in the following sections.

5.1 Vocabulary Generation

Vocabulary generation determines a mapping of
terms to integer IDs, so n-grams can be stored us-
ing IDs. This allows better compression than the
original terms. We assign IDs according to term fre-
quency, with frequent terms receiving small IDs for
efficient variable-length encoding. All words that

2The value of 0.4 was chosen empirically based on good
results in earlier experiments. Using multiple values depending
on the n-gram order slightly improves results.

occur less often than a pre-determined threshold are
mapped to a special id marking the unknown word.

The vocabulary generation map function reads
training text as input. Keys are irrelevant; values are
text. It emits intermediate data where keys are terms
and values are their counts in the current section
of the text. A sharding function determines which
shard (chunk of data in the MapReduce framework)
the pair is sent to. This ensures that all pairs with
the same key are sent to the same shard. The re-
duce function receives all pairs that share the same
key and sums up the counts. Simplified, the map,
sharding and reduce functions do the following:

Map(string key, string value) {
// key=docid, ignored; value=document
array words = Tokenize(value);
hash_map<string, int> histo;
for i = 1 .. #words

histo[words[i]]++;
for iter in histo

Emit(iter.first, iter.second);
}

int ShardForKey(string key, int nshards) {
return Hash(key) % nshards;

}

Reduce(string key, iterator values) {
// key=term; values=counts
int sum = 0;
for each v in values

sum += ParseInt(v);
Emit(AsString(sum));

}

Note that the Reduce function emits only the aggre-
gated value. The output key is the same as the inter-
mediate key and automatically written by MapRe-
duce. The computation of counts in the map func-
tion is a minor optimization over the alternative of
simply emitting a count of one for each tokenized
word in the array. Figure 1 shows an example for
3 input documents and 2 reduce shards. Which re-
ducer a particular term is sent to is determined by a
hash function, indicated by text color. The exact par-
titioning of the keys is irrelevant; important is that all
pairs with the same key are sent to the same reducer.

5.2 Generation of n-Grams

The process of n-gram generation is similar to vo-
cabulary generation. The main differences are that
now words are converted to IDs, and we emit n-
grams up to some maximum order instead of single
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Figure 1: Distributed vocabulary generation.

words. A simplified map function does the follow-
ing:
Map(string key, string value) {
// key=docid, ignored; value=document
array ids = ToIds(Tokenize(value));
for i = 1 .. #ids

for j = 0 .. maxorder-1
Emit(ids[i-j .. i], "1");

}

Again, one may optimize the Map function by first
aggregating counts over some section of the data and
then emit the aggregated counts instead of emitting
“1” each time an n-gram is encountered.

The reduce function is the same as for vocabu-
lary generation. The subsequent step of language
model generation will calculate relative frequencies
r(wi|w

i−1
i−k+1) (see Eq. 3). In order to make that step

efficient we use a sharding function that places the
values needed for the numerator and denominator
into the same shard.

Computing a hash function on just the first words
of n-grams achieves this goal. The required n-
grams wi

i−n+1 and wi−1
i−n+1 always share the same

first word wi−n+1, except for unigrams. For that we
need to communicate the total count N to all shards.

Unfortunately, sharding based on the first word
only may make the shards very imbalanced. Some
terms can be found at the beginning of a huge num-
ber of n-grams, e.g. stopwords, some punctuation
marks, or the beginning-of-sentence marker. As an
example, the shard receiving n-grams starting with

the beginning-of-sentence marker tends to be several
times the average size. Making the shards evenly
sized is desirable because the total runtime of the
process is determined by the largest shard.

The shards are made more balanced by hashing
based on the first two words:

int ShardForKey(string key, int nshards) {
string prefix = FirstTwoWords(key);
return Hash(prefix) % nshards;

}

This requires redundantly storing unigram counts in
all shards in order to be able to calculate relative fre-
quencies within shards. That is a relatively small
amount of information (a few million entries, com-
pared to up to hundreds of billions of n-grams).

5.3 Language Model Generation

The input to the language model generation step is
the output of the n-gram generation step: n-grams
and their counts. All information necessary to calcu-
late relative frequencies is available within individ-
ual shards because of the sharding function. That is
everything we need to generate models with Stupid
Backoff. More complex smoothing methods require
additional steps (see below).

Backoff operations are needed when the full n-
gram is not found. If r(wi|w

i−1
i−n+1) is not found,

then we will successively look for r(wi|w
i−1
i−n+2),

r(wi|w
i−1
i−n+3), etc. The language model generation

step shards n-grams on their last two words (with
unigrams duplicated), so all backoff operations can
be done within the same shard (note that the required
n-grams all share the same last word wi).

5.4 Other Smoothing Methods

State-of-the-art techniques like Kneser-Ney
Smoothing or Katz Backoff require additional,
more expensive steps. At runtime, the client needs
to additionally request up to 4 backoff factors for
each 5-gram requested from the servers, thereby
multiplying network traffic. We are not aware of
a method that always stores the history backoff
factors on the same shard as the longer n-gram
without duplicating a large fraction of the entries.
This means one needs to contact two shards per
n-gram instead of just one for Stupid Backoff.
Training requires additional iterations over the data.
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Step 0 Step 1 Step 2
context counting unsmoothed probs and interpol. weights interpolated probabilities

Input key wi
i−n+1 (same as Step 0 output) (same as Step 1 output)

Input value f(wi
i−n+1) (same as Step 0 output) (same as Step 1 output)

Intermediate key wi
i−n+1 wi−1

i−n+1 wi−n+1
i

Sharding wi
i−n+1 wi−1

i−n+1 wi−n+2
i−n+1 , unigrams duplicated

Intermediate value fKN (wi
i−n+1) wi,fKN (wi

i−n+1)
fKN (wi

i−n+1)−D

fKN (w
i−1

i−n+1
)

,λ(wi−1
i−n+1)

Output value fKN (wi
i−n+1) wi,

fKN (wi

i−n+1)−D

fKN (wi−1

i−n+1
)

,λ(wi−1
i−n+1) PKN (wi|w

i−1
i−n+1), λ(wi−1

i−n+1)

Table 1: Extra steps needed for training Interpolated Kneser-Ney Smoothing

Kneser-Ney Smoothing counts lower-order n-
grams differently. Instead of the frequency of the
(n− 1)-gram, it uses the number of unique single
word contexts the (n−1)-gram appears in. We use
fKN(·) to jointly denote original frequencies for the
highest order and context counts for lower orders.
After the n-gram counting step, we process the n-
grams again to produce these quantities. This can
be done similarly to the n-gram counting using a
MapReduce (Step 0 in Table 1).

The most commonly used variant of Kneser-Ney
smoothing is interpolated Kneser-Ney smoothing,
defined recursively as (Chen and Goodman, 1998):

PKN (wi|w
i−1
i−n+1) =

max(fKN(wi
i−n+1) − D, 0)

fKN(wi−1
i−n+1)

+ λ(wi−1
i−n+1)PKN (wi|w

i−1
i−n+2),

where D is a discount constant and {λ(wi−1
i−n+1)} are

interpolation weights that ensure probabilities sum
to one. Two additional major MapReduces are re-
quired to compute these values efficiently. Table 1
describes their input, intermediate and output keys
and values. Note that output keys are always the
same as intermediate keys.

The map function of MapReduce 1 emits n-gram
histories as intermediate keys, so the reduce func-
tion gets all n-grams with the same history at the
same time, generating unsmoothed probabilities and
interpolation weights. MapReduce 2 computes the
interpolation. Its map function emits reversed n-
grams as intermediate keys (hence we use wi−n+1

i

in the table). All unigrams are duplicated in ev-
ery reduce shard. Because the reducer function re-
ceives intermediate keys in sorted order it can com-
pute smoothed probabilities for all n-gram orders
with simple book-keeping.

Katz Backoff requires similar additional steps.
The largest models reported here with Kneser-Ney
Smoothing were trained on 31 billion tokens. For
Stupid Backoff, we were able to use more than 60
times of that amount.

6 Distributed Application

Our goal is to use distributed language models in-
tegrated into the first pass of a decoder. This may
yield better results than n-best list or lattice rescor-
ing (Ney and Ortmanns, 1999). Doing that for lan-
guage models that reside in the same machine as the
decoder is straight-forward. The decoder accesses
n-grams whenever necessary. This is inefficient in a
distributed system because network latency causes a
constant overhead on the order of milliseconds. On-
board memory is around 10,000 times faster.

We therefore implemented a new decoder archi-
tecture. The decoder first queues some number of
requests, e.g. 1,000 or 10,000 n-grams, and then
sends them together to the servers, thereby exploit-
ing the fact that network requests with large numbers
of n-grams take roughly the same time to complete
as requests with single n-grams.

The n-best search of our machine translation de-
coder proceeds as follows. It maintains a graph of
the search space up to some point. It then extends
each hypothesis by advancing one word position in
the source language, resulting in a candidate exten-
sion of the hypothesis of zero, one, or more addi-
tional target-language words (accounting for the fact
that variable-length source-language fragments can
correspond to variable-length target-language frag-
ments). In a traditional setting with a local language
model, the decoder immediately obtains the nec-
essary probabilities and then (together with scores
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Figure 2: Illustration of decoder graph and batch-
querying of the language model.

from other features) decides which hypotheses to
keep in the search graph. When using a distributed
language model, the decoder first tentatively extends
all current hypotheses, taking note of which n-grams
are required to score them. These are queued up for
transmission as a batch request. When the scores are
returned, the decoder re-visits all of these tentative
hypotheses, assigns scores, and re-prunes the search
graph. It is then ready for the next round of exten-
sions, again involving queuing the n-grams, waiting
for the servers, and pruning.

The process is illustrated in Figure 2 assuming a
trigram model and a decoder policy of pruning to
the four most promising hypotheses. The four ac-
tive hypotheses (indicated by black disks) at time t

are: There is, There may, There are, and There were.
The decoder extends these to form eight new nodes
at time t + 1. Note that one of the arcs is labeled ε,
indicating that no target-language word was gener-
ated when the source-language word was consumed.
The n-grams necessary to score these eight hypothe-
ses are There is lots, There is many, There may be,
There are lots, are lots of, etc. These are queued up
and their language-model scores requested in a batch
manner. After scoring, the decoder prunes this set as
indicated by the four black disks at time t + 1, then
extends these to form five new nodes (one is shared)
at time t + 2. The n-grams necessary to score these
hypotheses are lots of people, lots of reasons, There
are onlookers, etc. Again, these are sent to the server
together, and again after scoring the graph is pruned
to four active (most promising) hypotheses.

The alternating processes of queuing, waiting and
scoring/pruning are done once per word position in
a source sentence. The average sentence length in
our test data is 22 words (see section 7.1), thus we
have 23 rounds3 per sentence on average. The num-
ber of n-grams requested per sentence depends on
the decoder settings for beam size, re-ordering win-
dow, etc. As an example for larger runs reported in
the experiments section, we typically request around
150,000 n-grams per sentence. The average net-
work latency per batch is 35 milliseconds, yield-
ing a total latency of 0.8 seconds caused by the dis-
tributed language model for an average sentence of
22 words. If a slight reduction in translation qual-
ity is allowed, then the average network latency per
batch can be brought down to 7 milliseconds by re-
ducing the number of n-grams requested per sen-
tence to around 10,000. As a result, our system can
efficiently use the large distributed language model
at decoding time. There is no need for a second pass
nor for n-best list rescoring.

We focused on machine translation when describ-
ing the queued language model access. However,
it is general enough that it may also be applicable
to speech decoders and optical character recognition
systems.

7 Experiments

We trained 5-gram language models on amounts of
text varying from 13 million to 2 trillion tokens.
The data is divided into four sets; language mod-
els are trained for each set separately4 . For each
training data size, we report the size of the result-
ing language model, the fraction of 5-grams from
the test data that is present in the language model,
and the BLEU score (Papineni et al., 2002) obtained
by the machine translation system. For smaller train-
ing sizes, we have also computed test-set perplexity
using Kneser-Ney Smoothing, and report it for com-
parison.

7.1 Data Sets

We compiled four language model training data sets,
listed in order of increasing size:

3One additional round for the sentence end marker.
4Experience has shown that using multiple, separately

trained language models as feature functions in Eq (1) yields
better results than using a single model trained on all data.
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Figure 3: Number of n-grams (sum of unigrams to
5-grams) for varying amounts of training data.

target: The English side of Arabic-English parallel
data provided by LDC5 (237 million tokens).
ldcnews: This is a concatenation of several English
news data sets provided by LDC6 (5 billion tokens).
webnews: Data collected over several years, up to
December 2005, from web pages containing pre-
dominantly English news articles (31 billion to-
kens).
web: General web data, which was collected in Jan-
uary 2006 (2 trillion tokens).

For testing we use the “NIST” part of the 2006
Arabic-English NIST MT evaluation set, which is
not included in the training data listed above7. It
consists of 1797 sentences of newswire, broadcast
news and newsgroup texts with 4 reference transla-
tions each. The test set is used to calculate transla-
tion BLEU scores. The English side of the set is also
used to calculate perplexities and n-gram coverage.

7.2 Size of the Language Models

We measure the size of language models in total
number of n-grams, summed over all orders from
1 to 5. There is no frequency cutoff on the n-grams.

5http://www.nist.gov/speech/tests/mt/doc/
LDCLicense-mt06.pdf contains a list of parallel resources
provided by LDC.

6The bigger sets included are LDC2005T12 (Gigaword,
2.5B tokens), LDC93T3A (Tipster, 500M tokens) and
LDC2002T31 (Acquaint, 400M tokens), plus many smaller
sets.

7The test data was generated after 1-Feb-2006; all training
data was generated before that date.

target webnews web
# tokens 237M 31G 1.8T
vocab size 200k 5M 16M
# n-grams 257M 21G 300G
LM size (SB) 2G 89G 1.8T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours 2 days –
# machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).

There is, however, a frequency cutoff on the vocab-
ulary. The minimum frequency for a term to be in-
cluded in the vocabulary is 2 for the target, ldcnews
and webnews data sets, and 200 for the web data set.
All terms below the threshold are mapped to a spe-
cial term UNK, representing the unknown word.

Figure 3 shows the number of n-grams for lan-
guage models trained on 13 million to 2 trillion to-
kens. Both axes are on a logarithmic scale. The
right scale shows the approximate size of the served
language models in gigabytes. The numbers above
the lines indicate the relative increase in language
model size: x1.8/x2 means that the number of n-
grams grows by a factor of 1.8 each time we double
the amount of training data. The values are simi-
lar across all data sets and data sizes, ranging from
1.6 to 1.8. The plots are very close to straight lines
in the log/log space; linear least-squares regression
finds r2 > 0.99 for all four data sets.

The web data set has the smallest relative increase.
This can be at least partially explained by the higher
vocabulary cutoff. The largest language model gen-
erated contains approx. 300 billion n-grams.

Table 2 shows sizes and approximate training
times when training on the full target, webnews, and
web data sets. The processes run on standard current
hardware with the Linux operating system. Gen-
erating models with Kneser-Ney Smoothing takes
6 – 7 times longer than generating models with
Stupid Backoff. We deemed generation of Kneser-
Ney models on the web data as too expensive and
therefore excluded it from our experiments. The es-
timated runtime for that is approximately one week
on 1500 machines.
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7.3 Perplexity and n-Gram Coverage

A standard measure for language model quality is
perplexity. It is measured on test data T = w

|T |
1 :

PP (T ) = e
− 1
|T |

|T |�

i=1
log p(wi|w

i−1
i−n+1)

(7)

This is the inverse of the average conditional prob-
ability of a next word; lower perplexities are bet-
ter. Figure 4 shows perplexities for models with
Kneser-Ney smoothing. Values range from 280.96
for 13 million to 222.98 for 237 million tokens tar-
get data and drop nearly linearly with data size (r2 =
0.998). Perplexities for ldcnews range from 351.97
to 210.93 and are also close to linear (r2 = 0.987),
while those for webnews data range from 221.85 to
164.15 and flatten out near the end. Perplexities are
generally high and may be explained by the mix-
ture of genres in the test data (newswire, broadcast
news, newsgroups) while our training data is pre-
dominantly written news articles. Other held-out
sets consisting predominantly of newswire texts re-
ceive lower perplexities by the same language mod-
els, e.g., using the full ldcnews model we find per-
plexities of 143.91 for the NIST MT 2005 evaluation
set, and 149.95 for the NIST MT 2004 set.

Note that the perplexities of the different language
models are not directly comparable because they use
different vocabularies. We used a fixed frequency
cutoff, which leads to larger vocabularies as the
training data grows. Perplexities tend to be higher
with larger vocabularies.
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Figure 5: BLEU scores for varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB).

Perplexities cannot be calculated for language
models with Stupid Backoff because their scores are
not normalized probabilities. In order to neverthe-
less get an indication of potential quality improve-
ments with increased training sizes we looked at the
5-gram coverage instead. This is the fraction of 5-
grams in the test data set that can be found in the
language model training data. A higher coverage
will result in a better language model if (as we hy-
pothesize) estimates for seen events tend to be bet-
ter than estimates for unseen events. This fraction
grows from 0.06 for 13 million tokens to 0.56 for 2
trillion tokens, meaning 56% of all 5-grams in the
test data are known to the language model.

Increase in coverage depends on the training data
set. Within each set, we observe an almost constant
growth (correlation r2 ≥ 0.989 for all sets) with
each doubling of the training data as indicated by
numbers next to the lines. The fastest growth oc-
curs for webnews data (+0.038 for each doubling),
the slowest growth for target data (+0.022/x2).

7.4 Machine Translation Results

We use a state-of-the-art machine translation system
for translating from Arabic to English that achieved
a competitive BLEU score of 0.4535 on the Arabic-
English NIST subset in the 2006 NIST machine
translation evaluation8 . Beam size and re-ordering
window were reduced in order to facilitate a large

8See http://www.nist.gov/speech/tests/mt/
mt06eval official results.html for more results.
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number of experiments. Additionally, our NIST
evaluation system used a mixture of 5, 6, and 7-gram
models with optimized stupid backoff factors for
each order, while the learning curve presented here
uses a fixed order of 5 and a single fixed backoff fac-
tor. Together, these modifications reduce the BLEU
score by 1.49 BLEU points (BP)9 at the largest train-
ing size. We then varied the amount of language
model training data from 13 million to 2 trillion to-
kens. All other parts of the system are kept the same.

Results are shown in Figure 5. The first part
of the curve uses target data for training the lan-
guage model. With Kneser-Ney smoothing (KN),
the BLEU score improves from 0.3559 for 13 mil-
lion tokens to 0.3832 for 237 million tokens. At
such data sizes, Stupid Backoff (SB) with a constant
backoff parameter α = 0.4 is around 1 BP worse
than KN. On average, one gains 0.62 BP for each
doubling of the training data with KN, and 0.66 BP
per doubling with SB. Differences of more than 0.51
BP are statistically significant at the 0.05 level using
bootstrap resampling (Noreen, 1989; Koehn, 2004).

We then add a second language model using ldc-
news data. The first point for ldcnews shows a large
improvement of around 1.4 BP over the last point
for target for both KN and SB, which is approxi-
mately twice the improvement expected from dou-
bling the amount of data. This seems to be caused
by adding a new domain and combining two models.
After that, we find an improvement of 0.56–0.70 BP
for each doubling of the ldcnews data. The gap be-
tween Kneser-Ney Smoothing and Stupid Backoff
narrows, starting with a difference of 0.85 BP and
ending with a not significant difference of 0.24 BP.

Adding a third language models based on web-
news data does not show a jump at the start of the
curve. We see, however, steady increases of 0.39–
0.51 BP per doubling. The gap between Kneser-Ney
and Stupid Backoff is gone, all results with Stupid
Backoff are actually better than Kneser-Ney, but the
differences are not significant.

We then add a fourth language model based on
web data and Stupid Backoff. Generating Kneser-
Ney models for these data sizes is extremely ex-
pensive and is therefore omitted. The fourth model

91 BP = 0.01 BLEU. We show system scores as BLEU, dif-
ferences as BP.

shows a small but steady increase of 0.15 BP per
doubling, surpassing the best Kneser-Ney model
(trained on less data) by 0.82 BP at the largest
size. Goodman (2001) observed that Kneser-Ney
Smoothing dominates other schemes over a broad
range of conditions. Our experiments confirm this
advantage at smaller language model sizes, but show
the advantage disappears at larger data sizes.

The amount of benefit from doubling the training
size is partly determined by the domains of the data
sets10. The improvements are almost linear on the
log scale within the sets. Linear least-squares regres-
sion shows correlations r2 > 0.96 for all sets and
both smoothing methods, thus we expect to see sim-
ilar improvements when further increasing the sizes.

8 Conclusion

A distributed infrastructure has been described to
train and apply large-scale language models to ma-
chine translation. Experimental results were pre-
sented showing the effect of increasing the amount
of training data to up to 2 trillion tokens, resulting
in a 5-gram language model size of up to 300 billion
n-grams. This represents a gain of about two orders
of magnitude in the amount of training data that can
be handled over that reported previously in the liter-
ature (or three-to-four orders of magnitude, if one
considers only single-pass decoding). The infra-
structure is capable of scaling to larger amounts of
training data and higher n-gram orders.

The technique is made efficient by judicious
batching of score requests by the decoder in a server-
client architecture. A new, simple smoothing tech-
nique well-suited to distributed computation was
proposed, and shown to perform as well as more
sophisticated methods as the size of the language
model increases.

Significantly, we found that translation quality as
indicated by BLEU score continues to improve with
increasing language model size, at even the largest
sizes considered. This finding underscores the value
of being able to train and apply very large language
models, and suggests that further performance gains
may be had by pursuing this direction further.

10There is also an effect of the order in which we add the
models. As an example, web data yields +0.43 BP/x2 when
added as the second model. A discussion of this effect is omit-
ted due to space limitations.
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Abstract

We present an extension of phrase-based
statistical machine translation models that
enables the straight-forward integration of
additional annotation at the word-level —
may it be linguistic markup or automati-
cally generated word classes. In a num-
ber of experiments we show that factored
translation models lead to better transla-
tion performance, both in terms of auto-
matic scores, as well as more grammatical
coherence.

1 Introduction

The current state-of-the-art approach to statistical
machine translation, so-called phrase-based models,
is limited to the mapping of small text chunks with-
out any explicit use of linguistic information, may
it be morphological, syntactic, or semantic. Such
additional information has been demonstrated to be
valuable by integrating it in pre-processing or post-
processing steps.

However, a tighter integration of linguistic infor-
mation into the translation model is desirable for two
reasons:

• Translation models that operate on more gen-
eral representations, such as lemmas instead
of surface forms of words, can draw on richer
statistics and overcome the data sparseness
problems caused by limited training data.

• Many aspects of translation can be best ex-
plained on a morphological, syntactic, or se-
mantic level. Having such information avail-
able to the translation model allows the direct
modeling of these aspects. For instance: re-
ordering at the sentence level is mostly driven

word word

part-of-speech

OutputInput

morphology

part-of-speech

morphology

word class

lemma

word class

lemma

......

Figure 1: Factored representations of input and out-
put words incorporate additional annotation into the
statistical translation model.

by general syntactic principles, local agreement
constraints show up in morphology, etc.

Therefore, we extended the phrase-based ap-
proach to statistical translation to tightly integrate
additional information. The new approach allows
additional annotation at the word level. A word in
our framework is not only a token, but a vector of
factors that represent different levels of annotation
(see Figure 1).

We report on experiments with factors such as
surface form, lemma, part-of-speech, morphologi-
cal features such as gender, count and case, auto-
matic word classes, true case forms of words, shal-
low syntactic tags, as well as dedicated factors to en-
sure agreement between syntactically related items.

This paper describes the motivation, the modeling
aspects and the computationally efficient decoding
methods of factored translation models. We present
briefly results for a number of language pairs. How-
ever, the focus of this paper is the description of the
approach. Detailed experimental results will be de-
scribed in forthcoming papers.
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2 Related Work

Many attempts have been made to add richer in-
formation to statistical machine translation models.
Most of these focus on the pre-processing of the in-
put to the statistical system, or the post-processing
of its output. Our framework is more general and
goes beyond recent work on models that back off
to representations with richer statistics (Nießen and
Ney, 2001; Yang and Kirchhoff, 2006; Talbot and
Osborne, 2006) by keeping a more complex repre-
sentation throughout the translation process.

Rich morphology often poses a challenge to sta-
tistical machine translation, since a multitude of
word forms derived from the same lemma fragment
the data and lead to sparse data problems. If the in-
put language is morphologically richer than the out-
put language, it helps to stem or segment the input
in a pre-processing step, before passing it on to the
translation system (Lee, 2004; Sadat and Habash,
2006).

Structural problems have also been addressed by
pre-processing: Collins et al. (2005) reorder the in-
put to a statistical system to closer match the word
order of the output language.

On the other end of the translation pipeline, addi-
tional information has been used in post-processing.
Och et al. (2004) report minor improvements with
linguistic features on a Chinese-English task, Koehn
and Knight (2003) show some success in re-ranking
noun phrases for German-English. In their ap-
proaches, first, an n-best list with the best transla-
tions is generated for each input sentence. Then,
the n-best list is enriched with additional features,
for instance by syntactically parsing each candidate
translation and adding a parse score. The additional
features are used to rescore the n-best list, resulting
possibly in a better best translation for the sentence.

The goal of integrating syntactic information
into the translation model has prompted many re-
searchers to pursue tree-based transfer models (Wu,
1997; Alshawi et al., 1998; Yamada and Knight,
2001; Melamed, 2004; Menezes and Quirk, 2005;
Galley et al., 2006), with increasingly encouraging
results. Our goal is complementary to these efforts:
we are less interested in recursive syntactic struc-
ture, but in richer annotation at the word level. In
future work, these approaches may be combined.

lemma lemma

part-of-speech

OutputInput

morphology

part-of-speech

word word

morphology

Figure 2: Example factored model: morphologi-
cal analysis and generation, decomposed into three
mapping steps (translation of lemmas, translation of
part-of-speech and morphological information, gen-
eration of surface forms).

3 Motivating Example: Morphology

One example to illustrate the short-comings of the
traditional surface word approach in statistical ma-
chine translation is the poor handling of morphol-
ogy. Each word form is treated as a token in it-
self. This means that the translation model treats,
say, the word house completely independent of the
word houses. Any instance of house in the training
data does not add any knowledge to the translation
of houses.

In the extreme case, while the translation of house
may be known to the model, the word houses may be
unknown and the system will not be able to translate
it. While this problem does not show up as strongly
in English — due to the very limited morphologi-
cal inflection in English — it does constitute a sig-
nificant problem for morphologically rich languages
such as Arabic, German, Czech, etc.

Thus, it may be preferably to model translation
between morphologically rich languages on the level
of lemmas, and thus pooling the evidence for differ-
ent word forms that derive from a common lemma.
In such a model, we would want to translate lemma
and morphological information separately, and com-
bine this information on the output side to ultimately
generate the output surface words.

Such a model can be defined straight-forward as
a factored translation model. See Figure 2 for an
illustration of this model in our framework.

Note that while we illustrate the use of factored
translation models on such a linguistically motivated
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example, our framework also applies to models that
incorporate statistically defined word classes, or any
other annotation.

4 Decomposition of Factored Translation

The translation of factored representations of in-
put words into the factored representations of out-
put words is broken up into a sequence of mapping
steps that either translate input factors into output
factors, or generate additional output factors from
existing output factors.

Recall the example of a factored model motivated
by morphological analysis and generation. In this
model the translation process is broken up into the
following three mapping steps:

1. Translate input lemmas into output lemmas

2. Translate morphological and POS factors

3. Generate surface forms given the lemma and
linguistic factors

Factored translation models build on the phrase-
based approach (Koehn et al., 2003) that breaks up
the translation of a sentence into the translation of
small text chunks (so-called phrases). This approach
implicitly defines a segmentation of the input and
output sentences into phrases. See an example in
Figure 3.

Our current implementation of factored transla-
tion models follows strictly the phrase-based ap-
proach, with the additional decomposition of phrase
translation into a sequence of mapping steps. Trans-
lation steps map factors in input phrases to factors
in output phrases. Generation steps map output
factors within individual output words. To reiter-
ate: all translation steps operate on the phrase level,
while all generation steps operate on the word level.
Since all mapping steps operate on the same phrase
segmentation of the input and output sentence into
phrase pairs, we call these synchronous factored
models.

Let us now take a closer look at one example, the
translation of the one-word phrase häuser into En-
glish. The representation of häuser in German is:
surface-form häuser | lemma haus | part-of-speech
NN | count plural | case nominative | gender neutral.

neue häuser werden gebaut

new houses are built

Figure 3: Example sentence translation by a stan-
dard phrase model. Factored models extend this ap-
proach.

The three mapping steps in our morphological
analysis and generation model may provide the fol-
lowing applicable mappings:

1. Translation: Mapping lemmas
• haus → house, home, building, shell

2. Translation: Mapping morphology
• NN|plural-nominative-neutral →

NN|plural, NN|singular

3. Generation: Generating surface forms
• house|NN|plural → houses
• house|NN|singular → house
• home|NN|plural → homes
• ...

We call the application of these mapping steps
to an input phrase expansion. Given the multi-
ple choices for each step (reflecting the ambigu-
ity in translation), each input phrase may be ex-
panded into a list of translation options. The German
häuser|haus|NN|plural-nominative-neutral may be
expanded as follows:

1. Translation: Mapping lemmas
{ ?|house|?|?, ?|home|?|?, ?|building|?|?,
?|shell|?|? }

2. Translation: Mapping morphology
{ ?|house|NN|plural, ?|home|NN|plural,
?|building|NN|plural, ?|shell|NN|plural,
?|house|NN|singular, ... }

3. Generation: Generating surface forms
{ houses|house|NN|plural,
homes|home|NN|plural,
buildings|building|NN|plural,
shells|shell|NN|plural,
house|house|NN|singular, ... }
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5 Statistical Model

Factored translation models follow closely the sta-
tistical modeling approach of phrase-based models
(in fact, phrase-based models are a special case of
factored models). The main difference lies in the
preparation of the training data and the type of mod-
els learned from the data.

5.1 Training

The training data (a parallel corpus) has to be anno-
tated with the additional factors. For instance, if we
want to add part-of-speech information on the input
and output side, we need to obtain part-of-speech
tagged training data. Typically this involves running
automatic tools on the corpus, since manually anno-
tated corpora are rare and expensive to produce.

Next, we need to establish a word-alignment
for all the sentences in the parallel training cor-
pus. Here, we use the same methodology as
in phrase-based models (typically symmetrized
GIZA++ alignments). The word alignment methods
may operate on the surface forms of words, or on any
of the other factors. In fact, some preliminary ex-
periments have shown that word alignment based on
lemmas or stems yields improved alignment quality.

Each mapping step forms a component of the
overall model. From a training point of view this
means that we need to learn translation and gener-
ation tables from the word-aligned parallel corpus
and define scoring methods that help us to choose
between ambiguous mappings.

Phrase-based translation models are acquired
from a word-aligned parallel corpus by extracting all
phrase-pairs that are consistent with the word align-
ment. Given the set of extracted phrase pairs with
counts, various scoring functions are estimated,
such as conditional phrase translation probabilities
based on relative frequency estimation or lexical
translation probabilities based on the words in the
phrases.

In our approach, the models for the translation
steps are acquired in the same manner from a word-
aligned parallel corpus. For the specified factors in
the input and output, phrase mappings are extracted.
The set of phrase mappings (now over factored rep-
resentations) is scored based on relative counts and
word-based translation probabilities.

The generation distributions are estimated on the
output side only. The word alignment plays no
role here. In fact, additional monolingual data may
be used. The generation model is learned on a
word-for-word basis. For instance, for a genera-
tion step that maps surface forms to part-of-speech,
a table with entries such as (fish,NN) is constructed.
One or more scoring functions may be defined over
this table, in our experiments we used both condi-
tional probability distributions, e.g., p(fish|NN) and
p(NN|fish), obtained by maximum likelihood esti-
mation.

An important component of statistical machine
translation is the language model, typically an n-
gram model over surface forms of words. In the
framework of factored translation models, such se-
quence models may be defined over any factor, or
any set of factors. For factors such as part-of-speech
tags, building and using higher order n-gram models
(7-gram, 9-gram) is straight-forward.

5.2 Combination of Components
As in phrase-based models, factored translation
models can be seen as the combination of several
components (language model, reordering model,
translation steps, generation steps). These compo-
nents define one or more feature functions that are
combined in a log-linear model:

p(e|f) =
1
Z

exp
n∑

i=1

λihi(e, f) (1)

Z is a normalization constant that is ignored in
practice. To compute the probability of a translation
e given an input sentence f, we have to evaluate each
feature function hi. For instance, the feature func-
tion for a bigram language model component is (m
is the number of words ei in the sentence e):

hLM(e, f) = pLM(e)
= p(e1) p(e2|e1)..p(em|em−1)

(2)

Let us now consider the feature functions intro-
duced by the translation and generation steps of fac-
tored translation models. The translation of the input
sentence f into the output sentence e breaks down to
a set of phrase translations {(f̄j , ēj)}.

For a translation step component, each feature
function hT is defined over the phrase pairs (f̄j , ēj)
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given a scoring function τ :

hT(e, f) =
∑

j

τ(f̄j , ēj) (3)

For a generation step component, each feature
function hG given a scoring function γ is defined
over the output words ek only:

hG(e, f) =
∑

k

γ(ek) (4)

The feature functions follow from the scoring
functions (τ , γ) acquired during the training of
translation and generation tables. For instance, re-
call our earlier example: a scoring function for a
generation model component that is a conditional
probability distribution between input and output
factors, e.g., γ(fish,NN,singular) = p(NN|fish).

The feature weights λi in the log-linear model
are determined using a minimum error rate training
method, typically Powell’s method (Och, 2003).

5.3 Efficient Decoding
Compared to phrase-based models, the decomposi-
tion of phrase translation into several mapping steps
creates additional computational complexity. In-
stead of a simple table look-up to obtain the possible
translations for an input phrase, now multiple tables
have to be consulted and their content combined.

In phrase-based models it is easy to identify the
entries in the phrase table that may be used for a
specific input sentence. These are called translation
options. We usually limit ourselves to the top 20
translation options for each input phrase.

The beam search decoding algorithm starts with
an empty hypothesis. Then new hypotheses are gen-
erated by using all applicable translation options.
These hypotheses are used to generate further hy-
potheses in the same manner, and so on, until hy-
potheses are created that cover the full input sen-
tence. The highest scoring complete hypothesis in-
dicates the best translation according to the model.

How do we adapt this algorithm for factored
translation models? Since all mapping steps operate
on the same phrase segmentation, the expansions of
these mapping steps can be efficiently pre-computed
prior to the heuristic beam search, and stored as
translation options. For a given input phrase, all pos-
sible translation options are thus computed before

word word

part-of-speech

OutputInput

    3
gram

    7
gram

Figure 4: Syntactically enriched output: By gener-
ating additional linguistic factors on the output side,
high-order sequence models over these factors sup-
port syntactical coherence of the output.

decoding (recall the example in Section 4, where we
carried out the expansion for one input phrase). This
means that the fundamental search algorithm does
not change.

However, we need to be careful about combina-
torial explosion of the number of translation options
given a sequence of mapping steps. In other words,
the expansion may create too many translation op-
tions to handle. If one or many mapping steps result
in a vast increase of (intermediate) expansions, this
may be become unmanageable. We currently ad-
dress this problem by early pruning of expansions,
and limiting the number of translation options per
input phrase to a maximum number, by default 50.
This is, however, not a perfect solution. We are cur-
rently working on a more efficient search for the top
50 translation options to replace the current brute-
force approach.

6 Experiments

We carried out a number of experiments using the
factored translation model framework, incorporating
both linguistic information and automatically gener-
ated word classes.

This work is implemented as part of the open
source Moses1 system (Koehn et al., 2007). We used
the default settings for this system.

6.1 Syntactically Enriched Output

In the first set of experiments, we translate surface
forms of words and generate additional output fac-
tors from them (see Figure 4 for an illustration). By
adding morphological and shallow syntactic infor-

1available at http://www.statmt.org/moses/
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English–German

Model BLEU
best published result 18.15%
baseline (surface) 18.04%
surface + POS 18.15%
surface + POS + morph 18.22%

English–Spanish

Model BLEU
baseline (surface) 23.41%
surface + morph 24.66%
surface + POS + morph 24.25%

English–Czech

Model BLEU
baseline (surface) 25.82%
surface + all morph 27.04%
surface + case/number/gender 27.45%
surface + CNG/verb/prepositions 27.62%

Table 1: Experimental results with syntactically en-
riched output (part of speech, morphology)

mation, we are able to use high-order sequence mod-
els (just like n-gram language models over words) in
order to support syntactic coherence of the output.
Table 1 summarizes the experimental results.

The English–German systems were trained on the
full 751,088 sentence Europarl corpus and evaluated
on the WMT 2006 test set (Koehn and Monz, 2006).
Adding part-of-speech and morphological factors on
the output side and exploiting them with 7-gram
sequence models results in minor improvements in
BLEU. The model that incorporates both POS and
morphology (18.22% BLEU vs. baseline 18.04%
BLEU) ensures better local grammatical coherence.
The baseline system produces often phrases such
as zur(to) zwischenstaatlichen(inter-governmental)
methoden(methods), with a mismatch between the
determiner (singular) and the noun (plural), while
the adjective is ambiguous. In a manual evaluation
of intra-NP agreement we found that the factored
model reduced the disagreement error within noun
phrases of length ≥ 3 from 15% to 4%.

English–Spanish systems were trained on a
40,000 sentence subset of the Europarl corpus. Here,
we also used morphological and part-of-speech fac-

tors on the output side with an 7-gram sequence
model, resulting in absolute improvements of 1.25%
(only morph) and 0.84% (morph+POS). Improve-
ments on the full Europarl corpus are smaller.

English-Czech systems were trained on a 20,000
sentence Wall Street Journal corpus. Morphologi-
cal features were exploited with a 7-gram language
model. Experimentation suggests that it is benefi-
cial to carefully consider which morphological fea-
tures to be used. Adding all features results in
lower performance (27.04% BLEU), than consider-
ing only case, number and gender (27.45% BLEU)
or additionally verbial (person, tense, and aspect)
and prepositional (lemma and case) morphology
(27.62% BLEU). All these models score well above
the baseline of 25.82% BLEU.

An extended description of these experiments is
in the JHU workshop report (Koehn et al., 2006).

6.2 Morphological Analysis and Generation
The next model is the one described in our motivat-
ing example in Section 4 (see also Figure 2). Instead
of translating surface forms of words, we translate
word lemma and morphology separately, and gener-
ate the surface form of the word on the output side.

We carried out experiments for the language pair
German–English, using the 52,185 sentence News
Commentary corpus2. We report results on the de-
velopment test set, which is also the out-of-domain
test set of the WMT06 workshop shared task (Koehn
and Monz, 2006). German morphological analysis
and POS tagging was done using LoPar Schmidt and
Schulte im Walde (2000), English POS tagging was
done with Brill’s tagger (Brill, 1995), followed by a
simple lemmatizer based on tagging results.

Experimental results are summarized in Table 2.
For this data set, we also see an improvement when
using a part-of-speech language model — the BLEU

score increases from 18.19% to 19.05% — consis-
tent with the results reported in the previous section.
However, moving from a surface word translation
mapping to a lemma/morphology mapping leads to
a deterioration of performance to a BLEU score of
14.46%.

Note that this model completely ignores the sur-
face forms of input words and only relies on the

2Made available for the WMT07 workshop shared task
http://www.statmt.org/wmt07/
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German–English

Model BLEU
baseline (surface) 18.19%
+ POS LM 19.05%
pure lemma/morph model 14.46%
backoff lemma/morph model 19.47%

Table 2: Experimental results with morphological
analysis and generation model (Figure 2), using
News Commentary corpus

more general lemma and morphology information.
While this allows the translation of word forms with
known lemma and unknown surface form, on bal-
ance it seems to be disadvantage to throw away sur-
face form information.

To overcome this problem, we introduce an al-
ternative path model: Translation options in this
model may come either from the surface form model
or from the lemma/morphology model we just de-
scribed. For surface forms with rich evidence in
the training data, we prefer surface form mappings,
and for surface forms with poor or no evidence in
the training data we decompose surface forms into
lemma and morphology information and map these
separately. The different translation tables form dif-
ferent components in the log-linear model, whose
weights are set using standard minimum error rate
training methods.

The alternative path model outperforms the sur-
face form model with POS LM, with an BLEU score
of 19.47% vs. 19.05%. The test set has 3276 un-
known word forms vs 2589 unknown lemmas (out
of 26,898 words). Hence, the lemma/morph model
is able to translate 687 additional words.

6.3 Use of Automatic Word Classes

Finally, we went beyond linguistically motivated
factors and carried out experiments with automati-
cally trained word classes. By clustering words to-
gether by their contextual similarity, we are able to
find statistically similarities that may lead to more
generalized and robust models.

We trained models on the IWSLT 2006 task
(39,953 sentences). Compared to a baseline
English–Chinese system, adding word classes on the
output side as additional factors (in a model as pre-

English–Chinese

Model BLEU
baseline (surface) 19.54%
surface + word class 21.10%

Table 3: Experimental result with automatic word
classes obtained by word clustering

Chinese–English

Recase Method BLEU
Standard two-pass: SMT + recase 20.65%
Integrated factored model (optimized) 21.08%

OutputInput

mixed-cased

lower-cased lower-cased

Table 4: Experimental result with integrated recas-
ing (IWSLT 2006 task)

viously illustrated in Figure 4) to be exploited by
a 7-gram sequence model, we observe a gain 1.5%
BLEU absolute. For more on this experiment, see
(Shen et al., 2006).

6.4 Integrated Recasing

To demonstrate the versatility of the factored trans-
lation model approach, consider the task of recas-
ing (Lita et al., 2003; Wang et al., 2006). Typically
in statistical machine translation, the training data is
lowercased to generalize over differently cased sur-
face forms — say, the, The, THE — which neces-
sitates a post-processing step to restore case in the
output.

With factored translation models, it is possible
to integrate this step into the model, by adding a
generation step. See Table 4 for an illustration of
this model and experimental results on the IWSLT
2006 task (Chinese-English). The integrated recas-
ing model outperform the standard approach with an
BLEU score of 21.08% to 20.65%. For more on this
experiment, see (Shen et al., 2006).
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6.5 Additional Experiments
Factored translation models have also been used
for the integration of CCG supertags (Birch et al.,
2007), domain adaptation (Koehn and Schroeder,
2007) and for the improvement of English-Czech
translation (Bojar, 2007).

7 Conclusion and Future Work

We presented an extension of the state-of-the-art
phrase-based approach to statistical machine trans-
lation that allows the straight-forward integration of
additional information, may it come from linguistic
tools or automatically acquired word classes.

We reported on experiments that showed gains
over standard phrase-based models, both in terms
of automatic scores (gains of up to 2% BLEU), as
well as a measure of grammatical coherence. These
experiments demonstrate that within the framework
of factored translation models additional informa-
tion can be successfully exploited to overcome some
short-comings of the currently dominant phrase-
based statistical approach.

The framework of factored translation models is
very general. Many more models that incorporate
different factors can be quickly built using the ex-
isting implementation. We are currently exploring
these possibilities, for instance use of syntactic in-
formation in reordering and models with augmented
input information.

We have not addressed all computational prob-
lems of factored translation models. In fact, compu-
tational problems hold back experiments with more
complex factored models that are theoretically pos-
sible but too computationally expensive to carry out.
Our current focus is to develop a more efficient im-
plementation that will enable these experiments.

Moreover, we expect to overcome the constraints
of the currently implemented synchronous factored
models by developing a more general asynchronous
framework, where multiple translation steps may
operate on different phrase segmentations (for in-
stance a part-of-speech model for large scale re-
ordering).
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Abstract

Unknown words are a well-known hindrance
to natural language applications. In particu-
lar, they drastically impact machine transla-
tion quality. An easy way out commercial
translation systems usually offer their users
is the possibility to add unknown words
and their translations into a dedicated lex-
icon. Recently, Stroppa and Yvon (2005)
have shown how analogical learning alone
deals nicely with morphology in different
languages. In this study we show that ana-
logical learning offers as well an elegant and
effective solution to the problem of identify-
ing potential translations of unknown words.

1 Introduction

Analogical reasoning has received some attention in
cognitive science and artificial intelligence (Gentner
et al., 2001). It has been for a long time a faculty as-
sessed in the so-called SAT Reasoning tests used in
the application process to colleges and universities
in the United States. Turney (2006) has shown that
it is possible to compute relational similarities in a
corpus in order to solve 56% of typical analogical
tests quizzed in SAT exams. The interested reader
can find in (Lepage, 2003) a particularly dense treat-
ment of analogy, including a fascinating chapter on
the history of the notion of analogy.

The concept ofproportional analogy, denoted
[A : B = C : D ], is a relation between four
entities which reads: “A is to B as C is to D ”.
Among proportional analogies, we distinguishfor-
mal analogies, that is, ones that arise at the graph-
ical level, such as[fournit : fleurit = fournie :
fleurie] in French or[believer : unbelievable =
doer : undoable] in English. Formal analogies are

often good indices for deeper analogies (Stroppa and
Yvon, 2005).

Lepage and Denoual (2005) presented the sys-
tem ALEPH, an intriguing example-based system
entirely built on top of an automatic formal anal-
ogy solver. This system has achieved state-of-the-
art performance on the IWSLT task (Eck and Hori,
2005), despite its striking purity. As a matter of
fact, ALEPH requires no distances between exam-
ples, nor any threshold.1 It does not even rely on
a tokenization device. One reason for its success
probably lies in the specificity of the BTEC corpus:
short and simple sentences of a narrow domain. It is
doubtful that ALEPH would still behave adequately
on broader tasks, such as translating news articles.

Stroppa and Yvon (2005) propose a very help-
ful algebraic description of a formal analogy and
describe the theoretical foundations ofanalogical
learning which we will recap shortly. They show
both its elegance and efficiency on two morphologi-
cal analysis tasks for three different languages.

Recently, Moreau et al. (2007) showed that for-
mal analogies of a simple kind (those involving suf-
fixation and/or prefixation) offer an effective way to
extend queries for improved information retrieval.

In this study, we show that analogical learning
can be used as an effictive method for translating
unknown words or phrases. We found that our ap-
proach has the potential to propose a valid transla-
tion for 80% of ordinary unknown words, that is,
words that are not proper names, compound words,
or numerical expressions. Specific solutions have
been proposed for those token types (Chen et al.,
1998; Al-Onaizan and Knight, 2002; Koehn and
Knight, 2003).

The paper is organized as follows. We first recall

1Some heuristics are applied for speeding up the system.
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in Section 2 the principle of analogical learning and
describe how it can be applied to the task of enrich-
ing a bilingual lexicon. In Section 3, we present the
corpora we used in our experiments. We evaluate
our approach over two translation tasks in Section 4.
We discuss related work in Section 5 and give per-
spectives of our work in Section 6.

2 Analogical Learning

2.1 Principle

Our approach to bilingual lexical enrichment is an
instance of analogical learning described in (Stroppa
and Yvon, 2005). A learning setL = {L1, . . . , LN}
gathersN observations. A set of features computed
on an incomplete observationX defines an input
space. The inference task consists in predicting the
missing features which belong to an output space.
We denoteI(X) (resp.O(X)) the projection ofX
into the input (resp. output) space. The inference
procedure involves three steps:

1. Building EI(X) = {(A,B, C) ∈ L3 | [I(A) :
I(B) = I(C) : I(X)]}, the set of inputstems2

of X, that is the set of triplets(A,B, C) which
form with X an analogical equation.

2. Building EO(X) = {Y | [O(A) : O(B) =
O(C) : Y ] ,∀(A,B, C) ∈ EI(X)} the set of
solutions to the analogical equations obtained
by projecting the stems ofEI(X) into the out-
put space.

3. Selecting O(X) among the elements of
EO(X).

This inference procedure shares similarities with
the K-nearest-neighbor (k-NN) approach. In partic-
ular, since no model of the training material is be-
ing learned, the training corpus needs to be stored
in order to be queried. On the contrary to k-NN,
however, the search for closest neighbors does not
require any distance, but instead relies on relational
similarities. This purity has a cost: while in k-NN
inference, neighbors can be found in time linear to
the training size, in analogical learning, this oper-
ation requires a computation time cubic inN , the

2In Turney’s work (Turney, 2006), a stem designates the first
two words of a proportional analogy.

number of observations. In many applications of in-
terest, including the one we tackle here, this is sim-
ply impractical and heuristics must be applied.

The first and second steps of the inference proce-
dure rely on the existence of an analogical solver,
which we sketch in the next section. One impor-
tant thing to note at this stage, is that an analogical
equation may have several solutions, some being le-
gitimate word-forms in a given language, others be-
ing not. Thus, it is important to select wisely the
generated solutions, therefore Step 3. In practice,
the inference procedure involves the computation of
many analogical equations, and a statistic as simple
as the frequency of a solution often suffices to sepa-
rate good from spurious solutions.

2.2 Analogical Solver

Lepage (1998) proposed an algorithm for comput-
ing the solutions of a formal analogical equation
[A : B = C : ? ]. We implemented a variant of
this algorithm which requires to compute two edit-
distance tables, one betweenA andB and one be-
tweenA and C. Since we are looking for subse-
quences ofB andC not present inA, insertion cost
is null. Once this is done, the algorithm synchro-
nizes the alignments defined by the paths of min-
imum cost in each table. Intuitively, the synchro-
nization of two alignments (one betweenA andB,
and one betweenA andC) consists in composing in
the correct order subsequences of the stringsB and
C that are not inA. We refer the reader to (Lep-
age, 1998) for the intricacies of this process which
is illustrated in Figure 1 for the analogical equation
[even : usual = unevenly : ? ]. In this exam-
ple, there are 681 different paths that aligneven and
usual (with a cost of 4), and 1 path which alignseven
with unevenly (with a cost of 0). This results in 681
synchronizations which generate 15 different solu-
tions, among which onlyunusually is a legitimate
word-form.

In practice, since the number of minimum-cost
paths may be exponential in the size of the strings
being aligned, we consider the synchronization of
a maximum ofM best paths in each edit-distance
table. The worst-case complexity of our analogical
solver isO([|A| × (|B| + |C|)] + [M2 × (|A| +
ins(B,C))]), where the first term corresponds to
the computation of the two edit-distance tables,
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4 4 4 4 4 4 n 4 4 3 3 2 1 0 0 0
3 3 3 3 3 3 e 3 3 3 2 1 0 0 0 0
2 2 2 2 2 2 v 2 2 2 1 0 0 0 0 0
1 1 1 1 1 1 e 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l a u s u / . u n e v e n l y

e v e n e v e n
u s u a l u n e v e n l y

⇒usua-un-l-ly
e v e n e v e n

u s u a l u n e v e n l y
⇒un-usu-a-l-ly

Figure 1: The top table reports the edit-distance ta-
bles computed betweeneven and usual (left part),
and even and unevenly (right part). The bottom
part of the figure shows 2 of the 681 synchroniza-
tions computed while solving the equation[even :
usual = unevenly : ? ]. The first one corresponds to
the path marked in bold italics and leads to a spuri-
ous solution; the second leads to a legitimate solu-
tion and corresponds to the path shown as squares.

and the second one corresponds to the maximum
time needed to synchronize them.|X| denotes the
length, counted in characters of the stringX, whilst
ins(B,C) stands for the number of characters ofB
andC not belonging toA. Given the typical length
of the strings we consider in this study, our solver is
quite efficient.3

Stroppa and Yvon (2005) described a generaliza-
tion of this algorithm which can solve a formal ana-
logical equation by composing two finite-state trans-
ducers.

2.3 Application to Lexical Enrichment

Analogical inference can be applied to the task of
extending an existing bilingual lexicon (or transfer
table) with new entries. In this study, we focus on
a particular enrichment task: the one of translating
valid words or phrases that were not encountered at
training time.

A simple example of how our approach translates
unknown words is illustrated in Figure 2 for the (un-

3Several thousands of equations solved within one second.

Step 1 source (French) stems
[activités : activité = futilités : futilité]
[hostilités : hostilité = futilités : futilité] . . .
Step 2a projection by lexicon look-up
activités↔actions hostilité↔hostility
hostilités↔hostilities activité↔action
futilités↔trivialities,gimmicks . . .
Step 2b target (English) resolution
[actions : action = gimmicks : ? ] ⇒ gimmick
[hostilities : hostility = trivialities : ? ] ⇒ triviality
[hobbies : hobby = trivialities : ? ] ⇒ triviality
Step 3 selection of target candidates
〈triviality, 2〉, 〈gimmick , 1〉, . . .

Figure 2: Illustration of the analogical inference pro-
cedure applied to the translation of the unknown
French wordfutilité.

known) French wordfutilité. In this example, trans-
lations is inferred by commuting plural and singular
words. The inference process lazily captures the fact
that English plural nouns ending in-ies usually cor-
respond to singular nouns ending in-y.

Formally, we are given a training corpusL =
{〈S1, T1〉, . . . , 〈SN , TN 〉} which consists of a col-
lection ofN bilingual lexicon entries〈Si, Ti〉. The
input space is in our case the space of possible
source words, while the output space is the set of
possible target words. We define:

∀X ≡ 〈S , T〉, I(X) = S andO(X) = T

Given an unknown source word-formS, Step 1 of
the inference process consists in identifying source
stems which haveS as a solution:4

EI(S) = {〈i, j, k〉 ∈ [1, N ]3 | [Si : Sj = Sk : S]}.

During Step 2a, each source stem belonging to
EI(S) is projected form by form into (potentially
several) stems in the output space, thanks to an op-
eratorproj that will be defined shortly:

E〈i ,j ,k 〉(S) = {T | [U : V = W : T ]} where

(U, V,W ) ∈ (projL(Si)× projL(Sj)× projL(Sk)).

4All strings in a stem must be different, otherwise, it can be
shown that all source words would be considered.
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During Step 2b, each solution to those output
stems is collected inEO(S) along with its associated
frequency:

EO(S) =
⋃

〈i ,j ,k 〉∈EI(S)

E〈i ,j ,k 〉(S).

Step 3 selects fromEO(S) one or several solu-
tions. We use frequency as criteria to sort the gener-
ated solutions. The projection mechanism we resort
to in this study simply is a lexicon look-up:

projL(S) = {T | 〈S, T 〉 ∈ L}.

There are several situations where this inference
procedure will introduce noise. First, both source
and target analogical equations can lead to spuri-
ous solutions. For instance,[show : showing =
eating : ? ] will erroneously produceeatinging. Sec-
ond, an error in the original lexicon may introduce
as well erroneous target word-forms. For instance,
when translating the German wordproklamierung,
by making use of the analogy[formalisiert :
formalisierung = proklamiert : proklamierung],
the English equation[formalised : formalized =
sets : ? ] will be considered if it happens that
proklamiert↔sets belongs toL; in which case,zets
will be erroneously produced.

We control noise in several ways. The source
word-forms we generate are filtered by imposing
that they belong to the input space. We also use a
(large) target vocabulary to eliminate spurious tar-
get word-forms (see Section 3). More importantly,
since we consider many analogical equations when
translating a word-form, spurious analogical solu-
tions tend to appear less frequently than ones arising
from paradigmatic commutations.

2.4 Practical Considerations

Searching forEI(S) is an operation which requires
solving a number of (source) analogical equations
cubic in the size of the input space. In many settings
of interest, including ours, this is simply not practi-
cal. We therefore resort to two strategies to reduce
computation time. The first one consists in using the
analogical equations in a generative mode. Instead
of searching through the set of stems〈Si, Sj , Sk〉
that have for solution the unknown source word-
form S, we search for all pairs(Si, Sj) to the so-
lutions of[Si : Sj = S :?] that are valid word-forms

of the input space. Note that this is an exact method
which follows from the property (Lepage, 1998):

[A : B = C : D ] ≡ [B : A = D : C ]

This leaves us with a quadratic computation time
which is still intractable in our case. Therefore,
we apply a second strategy which consists in com-
puting the analogical equations[Si : Sj = S :?]
for the only wordsSi and Sj close enough toS.
More precisely, we enforce thatSi ∈ vδ(S) and that
Sj ∈ vβ(Si) for a neighborhood functionvγ(A) of
the form:

vγ(A) = {B | f(B,A) ≤ γ}

wheref is a distance; we used the edit-distance in
this study (Levenshtein, 1966). Note that the second
strategy we apply is only a heuristic.

3 Resources

In this work, we are concerned with one concrete
problem a machine translation system must face:
the one of translating unknown words. We are fur-
ther focusing on the shared task of the workshop
on Statistical Machine Translation, which took place
last year (Koehn and Monz, 2006) and consisted in
translating Spanish, German, and French texts from
and to English. For some reasons, we restricted our-
selves to translating only into English. The training
material available is coming from theEuroparl cor-
pus. The test material was divided into two parts.5

The first one (hereafter calledtest-in ) is com-
posed of 2 000 sentences from European parliament
debates. The second part (calledtest-out ) gath-
ers 1 064 sentences6 collected from editorials of the
Project Syndicate website.7 The main statistics per-
tinent to our study are summarized in Table 1.

A rough analysis of the 441 different unknown
words encountered in the French test sets reveals
that 54 (12%) of them contain at least one digit
(years, page numbers, law numbers, etc.), 83 (20%)
are proper names, 37 (8%) are compound words,
18 (4%) are foreign words (often Latin or Greek

5The participants were not aware of this.
6We removed 30 sentences which had encoding problems.
7http://www.project-syndicate.com
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French Spanish German
test- in out in out in out
|unknown| 180 265 233 292 469 599
oov% 0.26 1.22 0.38 1.37 0.84 2.87

Table 1: Number of different (source) test words not
seen at training time, and out-of-vocabulary rate ex-
pressed as a percentage (oov%).

words), 7 words are acronyms, and 4 are tokeniza-
tion problems. The 238 other words (54%) are ordi-
nary words.

We considered different lexicons for testing our
approach. These lexicons were derived from the
training material of the shared task by training with
GIZA ++ (Och and Ney, 2000) —default settings—
two transfer tables (source-to-target and the reverse)
that we intersected to remove some noise.

In order to investigate how sensitive our approach
is to the amount of training material available, we
varied the size of our lexiconLT by considering dif-
ferent portions of the training corpus (T = 5 000,
10 000, 100 000, 200 000, and 500 000 pairs of sen-
tences). The lexicon trained on the full training ma-
terial (688 000 pairs of sentences), calledLref here-
after, is used for validation purposes. We kept (at
most) the 20 best associations of each source word
in these lexicons. In practice, because we intersect
two models, the average number of translations kept
for each source word is lower (see Table 2).

Last, we collected from various target texts (En-
glish here) we had at our disposal, a vocabulary set
V gathering 466 439 words, that we used to filter out
spurious word-forms generated by our approach.

4 Experiments

4.1 Translating Unknown Words

For the three translation directions (from Span-
ish, German, and French into English), we ap-
plied the analogical reasoning to translate the (non-
numerical) source words of the test material, absent
fromLT . Examples of translations produced by ana-
logical inference are reported in Figure 3, sorted by
decreasing order of times they have been generated.

anti-agricole � (anti-farm,5) (anti-agricultural,3)
(anti-rural,3) (anti-farming,3) (anti-farmer,3)
fleurie � (flourishing,5) (flourished,4) (flourish,1)
futilité � (trivialities,27) (triviality,14) (futile,9)
(meaningless,9) (futility,4) (meaninglessness,4)
(superfluous,2) (unwieldy,2) (unnecessary,2)
(uselessness,2) (trivially,1) (tie,1) (trivial,1)
butoir � (deadline,42) (deadlines,33) (blows,1)
court-circuitant � (bypassing,13) (bypass,12)
(bypassed,5) (bypasses,1)
xviie � (xvii,18) (sixteenth,3) (eighteenth,1)

Figure 3: Candidate translations inferred from
L200 000 and their frequency. The candidates re-
ported are those that have been intersected withV.
Translations in bold are clearly erroneous.

4.1.1 Baselines

We devised two baselines against which we com-
pared our approach (hereafterANALOG). The first
one,BASE1, simply proposes as translations the tar-
get words in the lexiconLT which are the most simi-
lar (in the sense of the edit-distance) to the unknown
source word. Naturally, this approach is only appro-
priate for pairs of languages that share many cog-
nates (i.e., docteur→ doctor). The second base-
line, BASE2, is more sensible and more closely cor-
responds to our approach. We first collect a set of
source words that are close-enough (according to the
edit-distance) to the unknown word. Those source
words are then projected into the output space by
simple bilingual lexicon look-up. So for instance,
the French worddemandawill be translated into the
English wordrequestif the French worddemandeis
in LT and thatrequestis one of its sanctioned trans-
lations.

Each of these baselines is tested in two variants.
The first one (id), which allows a direct comparison,
proposes as many translations asANALOG does. The
second one (10) proposes the first 10 translations of
each unknown word.

4.1.2 Automatic Evaluation

Evaluating the quality of translations requires to
inspect lists of words each time we want to test a
variant of our approach. This cumbersome process
not only requires to understand the source language,
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LT 5 000 10 000 50 000 100 000 200 000 500 000
p% r% p% r% p% r% p% r% p% r% p% r%

test-in
ANALOG 51.4 30.7 55.3 44.4 58.8 64.3 58.2 65.1 59.4 65.2 30.4 67.6
BASE1id 31.6 30.7 32.3 44.4 24.7 64.3 20.3 65.1 20.9 65.2 8.7 67.6
BASE2id 34.5 30.7 37.1 44.4 39.0 64.3 37.8 65.1 34.4 65.2 56.5 67.6
BASE110 26.7 100.0 28.3 100.0 23.9 100.0 20.0 100.0 16.6 100.0 11.8 100.0
BASE210 26.3 100.0 30.8 100.0 29.3 100.0 27.6 100.0 24.9 100.0 55.9 100.0
unk [3 171 , 9.1] [2 245 , 7.7] [754 , 4.0] [456 , 2.9] [253 , 2.0] [34 , 1.2]

test-out
ANALOG 52.8 28.9 55.3 42.5 52.9 68.8 54.7 74.6 55.7 81.0 43.3 88.2
BASE1id 28.0 28.9 29.0 42.5 27.3 68.8 23.1 74.6 26.8 81.0 22.7 88.2
BASE2id 32.9 28.9 35.0 42.5 32.5 68.8 35.9 74.6 40.8 81.0 59.1 88.2
BASE110 24.7 100.0 25.9 100.0 25.1 100.0 20.9 100.0 25.2 100.0 25.0 100.0
BASE210 21.7 100.0 26.4 100.0 27.2 100.0 29.4 100.0 33.6 100.0 57.9 100.0
unk [2 270 , 8.2] [1 701 , 6.9] [621 , 3.4] [402 , 2.4] [226 , 1.8] [76 , 1.4]

Table 2: Performance of the different approaches on the French-to-English direction as a function of the
numberT of pairs of sentences used for trainingLT . A pair [n , t] in lines labeled byunk stands for the
number of words to translate, and the average number of their translations inLref .

but happens to be in practice a delicate task. We
therefore decided to resort to an automatic evalua-
tion procedure which relies onLref , a bilingual lex-
icon which entries are considered correct.

We translated all the words ofLref absent from
LT . We evaluated the different approaches by com-
puting responseandprecisionrates. The response
rate is measured as the percentage of words for
which we do have at least one translation produced
(correct or not). The precision is computed in our
case as the percentage of words for which at least
one translation is sanctioned byLref . Note that this
way of measuring response and precision is clearly
biased toward translation systems that can hypoth-
esize several candidate translations for each word,
as statistical systems usually do. The reason of this
choice was however guided by a lack of precision of
the reference we anticipated, a point we discuss in
Section 4.1.3.

The figures for the French-to-English direction
are reported in Table 2. We observe that the ratio
of unknown words that get a translation byANA -
LOG is clearly impacted by the size of the lexicon
LT we use for computing analogies: the larger the
better. This was expected since the larger a lexicon
is, the higher the number of source analogies that

can be made and consequently, the higher the num-
ber of analogies that can be projected onto the out-
put space. The precision ofANALOG is rather stable
across variants and ranges between 50% to 60%.

The second observation we make is that the base-
lines perform worse thanANALOG in all but the
L500 000 cases. Since our baselines propose trans-
lations to each source word, their response rate is
maximum. Their precision, however, is an issue.
Expectedly,BASE1 is the worst of the two baselines.
If we arbitrarily fix the response rate ofBASE2 to the
one of ANALOG, the former approach shows a far
lower precision (e.g., 34.4 against 59.4 forL200 000).
This not only indicates that analogical learning is
handling unknown words better thanBASE2, but as
well, that a combination of both approaches could
potentially yield further improvements.

A last observation concerns the fact thatANALOG

performs equally well on the out-domain material.
This is very important from a practical point of view
and contrasts with some related work we discuss in
Section 5.

At first glance, the fact thatBASE2 outperforms
ANALOG on the larger training size is disappoint-
ing. After investigations, we came to the conclusion
that this is mainly due to two facts. First, the num-
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ber of unknown words on which both systems were
tested is rather low in this particular case (e.g., 34
for the in-domain corpus). Second, we noticed a de-
ficiency of the reference lexiconLref for many of
those words. After all, this is not surprising since
the words unseen in the 500 000 pairs of training
sentences, but encountered in the full training cor-
pus (688 000 pairs) are likely to be observed only a
few times, therefore weakening the associations au-
tomatically acquired for these entries. We evaluate
that a third of the reference translations were wrong
in this setting, which clearly raises some doubts on
our automatic evaluation procedure in this case.

The performance ofANALOG across the three lan-
guage pairs are reported in Table 3. We observe a
drop of performance of roughly 10% (both in preci-
sion and response) for the German-to-English trans-
lation direction. This is likely due to the heuris-
tic procedure we apply during the search for stems,
which is not especially well suited for handling com-
pound words that are frequent in German.

We observe that for Spanish- and German-to-
English translation directions, the precision rate
tends to decrease for larger values ofT . One ex-
planation for that is that we consider all analogies
equally likely in this work, while we clearly noted
that some are spurious ones. With larger training
material, spurious analogies become more likely.

French Spanish German
T p% r% p% r% p% r%
5 51.4 30.7 52.8 30.3 49.3 23.1

10 55.3 44.4 52.0 45.2 47.6 33.3
50 58.8 64.3 54.0 66.5 44.6 53.2

100 58.2 65.1 53.9 69.1 45.8 55.6
200 59.4 65.2 46.4 71.8 43.0 59.2

Table 3: Performance across language pairs mea-
sured ontest-in . The numberT of pairs of sen-
tences used for trainingLT is reported in thousands.

We measured the impact the translations produced
by ANALOG have on a state-of-the-art phrase-based
translation engine, which is described in (Patry et
al., 2006). For that purpose, we extended a phrase-
table with the first translation proposed byANALOG

or BASE2 for each unknown word of the test ma-
terial. Results in terms of word-error-rate (WER)

andBLEU score (Papineni et al., 2002) are reported
in Table 4 for those sentences that contain at least
one unknown word. Small but consistent improve-
ments are observed for both metrics withANALOG.
This was expected, since the original system sim-
ply leaves the unknown words untranslated. What
is more surprising is that theBASE2 version slightly
underperforms the baseline. The reason is that some
unknown words that should appear unmodified in
a translation, often get an erroneous translation by
BASE2. Forcing BASE2 to propose a translation
for the same words for whichANALOG found one,
slightly improves the figures (BASE2id).

French Spanish German
WER BLEU WER BLEU WER BLEU

base 61.8 22.74 54.0 27.00 69.9 18.15
+BASE2 61.8 22.72 54.2 26.89 70.3 18.05
+BASE2id 61.7 22.81 54.1 27.01 70.1 18.14
+ANALOG 61.6 22.90 53.7 27.27 69.7 18.30
sentences 387 452 814

Table 4: Translation quality produced by our phrase-
based SMT engine (base) with and without the
first translation produced byANALOG, BASE2, or
BASE2id for each unknown word.

4.1.3 Manual Evaluation

As we already mentioned, the lexicon used as a
reference in our automatic evaluation procedure is
not perfect, especially for low frequency words. We
further noted that several words receive valid trans-
lations that are not sanctioned byLref . This is for
instance the case of the examples in Figure 4, where
circumventing and fellow are arguably legitimate
translations of the French wordscontournant and
concitoyen, respectively. Note that in the second ex-
ample, the reference translation is in the plural form
while the French word is not.

Therefore, we conducted a manual evaluation of
the translations produced fromL100 000 by ANA -
LOG and BASE2 on the 127 French words of the
corpus test-in 8 unknown ofLref . Those are
the non-numerical unknown words the participat-
ing systems in the shared task had to face in the

8We did not notice important differences betweentest-in
andtest-out .
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contournant (49 candidates)
ANALOG � (circumventing,55) (undermining,20)
(evading,19) (circumvented,17) (overturning,16)
(circumvent,15) (circumvention,15) (bypass,13)
(evade,13) (skirt,12)
Lref � skirting , bypassing, by-pass, overcoming

concitoyen (24 candidates)
ANALOG � (citizens,26) (fellow,26) (fellow-
citizens,26) (people,26) (citizen,23) (fellow-
citizen,21) (fellows,5) (peoples,3) (civils,3) (fel-
lowship,2)
Lref � fellow-citizens

Figure 4: 10 best ranked candidate translations pro-
duced byANALOG from L200 000 for two unknown
words and their sanctioned translations inLref .
Words in bold are present in both the candidate and
the reference lists.

in-domain part of the test material. 75 (60%) of
those words received at least one valid translation
by ANALOG while only 63 (50%) did byBASE2.
Among those words that received (at least) one valid
translation, 61 (81%) were ranked first byANA -
LOG against only 22 (35%) byBASE2. We fur-
ther observed that among the 52 words that did not
receive a valid translation byANALOG, 38 (73%)
did not receive a translation at all. Those untrans-
lated words are mainly proper names (bush), foreign
words (munere), and compound words (rhénanie-
du-nord-westphalie), for which our approach is not
especially well suited.

We conclude from this informal evaluation that
80% of ordinary unknown words received a valid
translation in our French-to-English experiment, and
that roughly the same percentage had a valid trans-
lation proposed in the first place byANALOG.

4.2 Translating Unknown Phrases

Our approach is not limited to translate solely un-
known words, but might serve as well to enrich
existing entries in a lexicon. For instance, low-
frequency words, often poorly handled by current
statistical methods, could receive useful translations.
This is illustrated in Figure 5 where we report the
best candidates produced byANALOG for the French
word invitées, which appears 7 times in the 200 000

invitée (61 candidates)
ANALOG � (invited,135) (requested,92) (cal-
led,77) (urged,75) (guest,72) (asked,47) (re-
quest,43) (invites,27) (invite,26) (urge,26)
L200 000 � asked, generate,urged

Figure 5: 10 best candidates produced byANALOG

for the low-frequency French wordinvitées and its
translations inL200 000.

first pairs of the training corpus. Interestingly,ANA -
LOG produced the candidateguest which corre-
sponds to a legitimate meaning of the French word
that was absent in the training data.

Because it can treat separators as any other char-
acter, ANALOG is not bounded to translate only
words. As a proof of concept, we applied analogical
reasoning to translate those source sequences of at
most 5 words in the test material that contain an un-
known word. Since there are many more sequences
than there are words, the input space in this exper-
iment is far larger, and we had to resort to a much
more aggressive pruning technique to find the stems
of the sequences to be translated.

expulsent � (expelling,36) (expel,31) (are ex-
pelling,23) (are expel,10)
focaliserai � (focus,10) (focus solely,9) (concen-
trate all,9) (will focus,9) (will placing,9)
dépasseront � (will exceed,4) (exceed,3) (will be
exceed,3) (we go beyond,2) (will be exceeding,2)
non-réussite de � (lack of success for,4) (lack of
success of,4) (lack of success,4)
que vous subissez � (you are experiencing,2)

Figure 6: Examples of translations produced by
ANALOG where the input (resp. output) space is
defined by the set of source (resp. target) word se-
quences. Words in bold are unknown.

We applied the automatic evaluation procedure
described in Section 4.1.2 for the French-to-English
translation direction, with a reference lexicon being
this time the phrase table acquired on the full train-
ing material.9 The response rate in this experiment is
particularly low since only a tenth of the sequences

9This model contains 1.5 millions pairs of phrases.
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received (at least) a translation byANALOG. Those
are short sequences that contain at most three words,
which clearly indicates the limitation of our prun-
ing strategy. Among those sequences that received
at least one translation, the precision rate is 55%,
which is consistent with the rate we measured while
translating words.

Examples of translations are reported in Figure 6.
We observe that single words are not contrived any-
more to be translated by a single word. This allows
to capture1:n relations such asdépasseront↔will
exceed, where the future tense of the French word is
adequately rendered by the modalwill in English.

5 Related Work

We are not the first to consider the translation of un-
known words or phrases. Several authors have for
instance proposed approaches for translating proper
names and named entities (Chen et al., 1998; Al-
Onaizan and Knight, 2002). Our approach is com-
plementary to those ones.

Recently and more closely related to the approach
we described, Callison-Burch et al. (2006) proposed
to replace an unknown phrase in a source sentence
by a paraphrase. Paraphrases in their work are ac-
quired thanks to a word alignment computed over
a large external set of bitexts. One important dif-
ference between their work and ours is that our ap-
proach does not require additional material.10 In-
deed, they used a rather idealistic set of large, ho-
mogeneous bitexts (European parliament debates) to
acquire paraphrases from. Therefore we feel our ap-
proach is more suited for translating “low density”
languages and languages with a rich morphology.

Several authors considered as well the translation
of new words by relying on distributional colloca-
tional properties computed from a huge non-parallel
corpus (Rapp, 1999; Fung and Yee, 1998; Takaaki
and Matsuo, 1999; Koehn and Knight, 2002). Even
if admittedly non-parallel corpora are easier to ac-
quire than bitexts, this line of work is still heavily
dependent on huge external resources.

Most of the analogies made at the word level in
our study are capturing morphological information.

10We do use a target vocabulary list to filter out spurious
analogies, but we believe we could do without. The frequency
with which we generate a string could serve to decide upon its
legitimacy.

The use of morphological analysis in (statistical)
machine translation has been the focus of several
studies, (Nießen, 2002) among the first. Depend-
ing on the pairs of languages considered, gains have
been reported when the training material is of mod-
est size (Lee, 2004; Popovic and Ney, 2004; Gold-
water and McClosky, 2005). Our approach does not
require any morphological knowledge of the source,
the target, or both languages. Admittedly, several
unsupervised morphological induction methodolo-
gies have been proposed,e.g., the recent approach
in Freitag (2005). In any case, as we have shown,
ANALOG is not bounded to treat only words, which
we believe to be at our advantage.

6 Discussion and Future Work

In this paper, we have investigated the appropri-
ateness of analogical learning to handle unknown
words in machine translation. On the contrary to
several lines of work, our approach does not rely on
massive additional resources but capitalizes instead
on an information which is inherently pertaining to
the language. We measured that roughly 80% of or-
dinary unknown French words can receive a valid
translation into English with our approach.

This work is currently being developed in several
directions. First, we are investigating why our ap-
proach remains silent for some words or phrases.
This will allow us to better characterize the limita-
tions of ANALOG and will hopefully lead us to de-
sign a better strategy for identifying the stems of a
given word or phrase. Second, we are investigat-
ing how a systematic enrichment of a phrase-transfer
table will impact a phrase-based statistical machine
translation engine. Last, we want to investigate the
training of a model that can learn regularities from
the analogies we are making. This would relieve us
from requiring the training material while translat-
ing, and would allow us to compare our approach
with other methods proposed for unsupervised mor-
phology acquisition.
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Abstract

We present a probabilistic model of di-
achronic phonology in which individual
word forms undergo stochastic edits along
the branches of a phylogenetic tree. Our ap-
proach allows us to achieve three goals with
a single unified model: (1) reconstruction
of both ancient and modern word forms, (2)
discovery of general phonological changes,
and (3) selection among different phyloge-
nies. We learn our model using a Monte
Carlo EM algorithm and present quantitative
results validating the model.

1 Introduction

Modeling how languages change phonologically
over time (diachronic phonology) is a central topic
in historical linguistics (Campbell, 1998). The ques-
tions involved range from reconstruction of ancient
word forms, to the elucidation of phonological drift
processes, to the determination of phylogenetic re-
lationships between languages. However, this prob-
lem has received relatively little attention from the
computational community. What work there is has
focused on the reconstruction of phylogenies on the
basis of a Boolean matrix indicating the properties
of words in different languages (Gray and Atkinson,
2003; Evans et al., 2004; Ringe et al., 2002; Nakhleh
et al., 2005).

In this paper, we present a novel framework, along
with a concrete model and experiments, for the prob-
abilistic modeling of diachronic phonology. We fo-
cus on the case where the words are etymological

cognates across languages, e.g. French faire and
Spanish hacer from Latin facere (to do). Given
this information as input, we learn a model acting
at the level of individual phoneme sequences, which
can be used for reconstruction and prediction, Our
model is fully generative, and can be used to reason
about a variety of types of information. For exam-
ple, we can observe a word in one or more modern
languages, say French and Spanish, and query the
corresponding word form in another language, say
Italian. This kind of lexicon-filling has applications
in machine translation. Alternatively, we can also
reconstruct ancestral word forms or inspect the rules
learned along each branch of a phylogeny to identify
salient patterns. Finally, the model can be used as a
building block in a system for inferring the topology
of phylogenetic trees. We discuss all of these cases
further in Section 4.

The contributions of this paper are threefold.
First, the approach to modeling language change at
the phoneme sequence level is new, as is the spe-
cific model we present. Second, we compiled a new
corpus1 and developed a methodology for quantita-
tively evaluating such approaches. Finally, we de-
scribe an efficient inference algorithm for our model
and empirically study its performance.

1.1 Previous work
While our word-level model of phonological change
is new, there have been several computational inves-
tigations into diachronic linguistics which are rele-
vant to the present work.

The task of reconstructing phylogenetic trees
1nlp.cs.berkeley.edu/pages/historical.html

887



for languages has been studied by several authors.
These approaches descend from glottochronology
(Swadesh, 1955), which views a language as a col-
lection of shared cognates but ignores the structure
of those cognates. This information is obtained from
manually curated cognate lists such as the data of
Dyen et al. (1997).

As an example of a cognate set encoding, consider
the meaning “eat”. There would be one column for
the cognate set which appears in French as manger
and Italian as mangiare since both descend from the
Latin mandere (to chew). There would be another
column for the cognate set which appears in both
Spanish and Portuguese as comer, descending from
the Latin comedere (to consume). If this were the
only data, algorithms based on this data would tend
to conclude that French and Italian were closely re-
lated and that Spanish and Portuguese were equally
related. However, the cognate set representation has
several disadvantages: it does not capture the fact
that the cognate is closer between Spanish and Por-
tuguese than between French and Spanish, nor do
the resulting models let us conclude anything about
the regular processes which caused these languages
to diverge. Also, the existing cognate data has been
curated at a relatively high cost. In our work, we
track each word using an automatically obtained
cognate list. While our cognates may be noisier,
we compensate by modeling phonological changes
rather than boolean mutations in cognate sets.

There has been other computational work in this
broad domain. Venkataraman et al. (1997) describe
an information theoretic measure of the distance be-
tween two dialects of Chinese. Like our approach,
they use a probabilistic edit model as a formaliza-
tion of the phonological process. However, they do
not consider the question of reconstruction or infer-
ence in multi-node phylogenies, nor do they present
a learning algorithm for such models.

Finally, for the specific application of cog-
nate prediction in machine translation, essentially
transliteration, there have been several approaches,
including Kondrak (2002). However, the phenom-
ena of interest, and therefore the models, are ex-
tremely different. Kondrak (2002) presents a model
for learning “sound laws,” general phonological
changes governing two completely observed aligned
cognate lists. His model can be viewed as a special

la

es it

la

vl

ib

es pt

it

la

it pt

es

la

it es

pt

Topology 1 Topology 2 *Topology 3 *Topology 4

Figure 1: Tree topologies used in our experiments. *Topology
3 and *Topology 4 are incorrect evolutionary tree used for our
experiments on the selection of phylogenies (Section 4.4).

case of ours using a simple two-node topology.
There is also a rich literature (Huelsenbeck et al.,

2001) on the related problems of evolutionary biol-
ogy. A good reference on the subject is Felsenstein
(2003). In particular, Yang and Rannala (1997), Mau
and Newton (1997) and Li et al. (2000) each inde-
pendently presented a Bayesian model for comput-
ing posteriors over evolutionary trees. A key dif-
ference with our model is that independence across
evolutionary sites is assumed in their work, while
the evolution of the phonemes in our model depends
on the environment in which the change occurs.

2 A model of phonological change

Assume we have a fixed set of word types (cog-
nate sets) in our vocabulary V and a set of languages
L. Each word type i has a word form wil in each lan-
guage l ∈ L, which is represented as a sequence of
phonemes and might or might not be observed. The
languages are arranged according to some tree topol-
ogy T (see Figure 1 for examples). One might con-
sider models that simultaneously induce the topol-
ogy and cognate set assignments, but let us fix both
for now. We discuss one way to relax this assump-
tion and present experimental results in Section 4.4.

Our generative model (Figure 3) specifies a dis-
tribution over the word forms {wil} for each word
type i ∈ V and each language l ∈ L. The genera-
tive process starts at the root language and generates
all the word forms in each language in a top-down
manner. One appealing aspect about our model is
that, at a high-level, it reflects the actual phonolog-
ical process that languages undergo. However, im-
portant phenomena like lexical drift, borrowing, and
other non-phonological changes are not modeled.
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Our generative model can be summarized as fol-
lows:

For each word i ∈ V :
−wiROOT ∼ LanguageModel
For each branch (k → l) ∈ T :
−θk→l ∼ Dirichlet(α) [choose edit params.]
−For each word i ∈ V :
−−wil ∼ Edit(wik, θk→l) [sample word form]

In the remainder of this section, we describe each
of the steps in the model.

2.1 Language model
For the distribution w ∼ LanguageModel, we used a
simple bigram phoneme model. The phonemes were
partitioned into natural classes (see Section 4 for de-
tails). A root word form consisting of n phonemes
x1 · · ·xn is generated with probability

plm(x1)
n∏

j=2

plm(xj | NaturalClass(xj−1)),

where plm is the distribution of the language model.

2.2 Edit model
The stochastic edit model y ∼ Edit(x, θ) describes
how a single old word form x = x1 · · ·xn changes
along one branch of the phylogeny with parameters
θ to produce a new word form y. This process is
parameterized by rule probabilities θk→l, which are
specific to branch (k → l).

The generative process is as follows: for each
phoneme xi in the old word form, walking from
left to right, choose a rule to apply. There are
three types of rules: (1) deletion of the phoneme,
(2) substitution with another phoneme (possibly the
same one), or (3) insertion of another phoneme, ei-
ther before or after the existing one. The prob-
ability of applying a rule depends on a context
(NaturalClass(xi−1), NaturalClass(xi+1)). Figure 2
illustrates the edits on an example. The context-
dependence allows us to represent phenomena such
as the fact that s is likely to be deleted only in word-
final contexts.

The edit model we have presented approximately
encodes a limited form of classic rewrite-driven seg-
mental phonology (Chomsky and Halle, 1968). One

# C V C V C #

# f o k u s #

# f w O k o #

# C V V C V #

f → f / # V
o → w O / C C
k → k / V V
u → o / C C
s → / V #

Edits applied Rules used

Figure 2: An example of edits that were used to transform
the Latin word FOCUS (/fokus/) into the Italian word fuoco
(/fwOko/) (fire) along with the context-specific rules that were
applied.

could imagine basing our model on more modern
phonological theory, but the computational proper-
ties of the edit model are compelling, and it is ade-
quate for many kinds of phonological change.

In addition to simple edits, we can model some
classical changes that appear to be too complex to be
captured by a single left-to-right edit model of this
kind. For instance, bleeding and feeding arrange-
ments occur when one phonological change intro-
duces a new context, which triggers another phono-
logical change, but the two cannot occur simultane-
ously. For example, vowel raising e → i / c might
be needed before palatalization t → c / i. Instead
of capturing such an interaction directly, we can
break up a branch into two segments joined at an in-
termediate language node, conflating the concept of
historically intermediate languages with the concept
of intermediate stages in the application of sequen-
tial rules.

However, many complex processes are not well-
represented by our basic model. One problem-
atic case is chained shifts such as Grimm’s law in
Proto-Germanic or the Great Vowel Shift in English.
To model such dependent rules, we would need
to use a more complex prior distributions over the
edit parameters. Another difficult case is prosodic
changes, such as unstressed vowel neutralizations,
which would require a representation of supraseg-
mental features. While our basic model does not
account for these phenomena, extensions within the
generative framework could capture such richness.

3 Learning and inference

We use a Monte Carlo EM algorithm to fit the pa-
rameters of our model. The algorithm iterates be-
tween a stochastic E-step, which computes recon-
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...

wiA

wiB

wiC wiD

...
...

word type i = 1 . . . |V |

eiA→BθA→B

eiB→CθB→C eiB→D θB→D

Figure 3: The graphical model representation of our model: θ
are the parameters specifying the stochastic edits e, which gov-
ern how the words w evolve. The plate notation indicates the
replication of the nodes corresponding to the evolving words.

structions based on the current edit parameters, and
an M-step, which updates the edit parameters based
on the reconstructions.

3.1 Monte Carlo E-step: sampling the edits

The E-step needs to produce expected counts of how
many times each edit (such as o → O) was used in
each context. An exact E-step would require sum-
ming over all possible edits involving all languages
in the phylogeny (all unobserved {e}, {w} variables
in Figure 3). Unfortunately, unlike in the case of
HMMs and PCFGs, our model permits no tractable
dynamic program to compute these counts exactly.

Therefore, we resort to a Monte Carlo E-step,
where many samples of the edit variables are col-
lected, and counts are computed based on these sam-
ples. Samples are drawn using Gibbs sampling (Ge-
man and Geman, 1984): for each word form of a
particular language wil, we fix all other variables in
the model and sample wil along with its correspond-
ing edits.

In the E-step, we fix the parameters, which ren-
ders the word types conditionally independent, just
as in an HMM. Therefore, we can process each word
type in turn without approximation.

First consider the simple 4-language topology in

Figure 3. Suppose that the words in languages A,
C and D are fixed, and we wish to infer the word
at language B along with the three corresponding
sets of edits (remember the edits fully determine the
words). There are an exponential number of possi-
ble words/edits, but it turns out that we can exploit
the Markov structure in the edit model to consider all
such words/edits using dynamic programming, in a
way broadly similar to the forward-backward algo-
rithm for HMMs.

Figure 4 shows the lattice for the dynamic pro-
gram. Each path connecting the two shaded end-
point states represents a particular word form for
language B and a corresponding set of edits. Each
node in the lattice is a state of the dynamic pro-
gram, which is a 5-tuple (iA, iC , iD, c1, c2), where
iA, iC and iD are the cursor positions (represented
by dots in Figure 4) in each of the word forms of
A,C and D, respectively; c1 is the natural class of
the phoneme in the word form for B that was last
generated; and c2 corresponds to the phoneme that
will be generated next.

Each state transition involves applying a rule
to A’s current phoneme (which produces 0–2
phonemes in B) and applying rules to B’s new 0–2
phonemes. There are three types of rules (deletion,
substitution, insertion), resulting in 30+32+34 = 91
types of state transitions. For illustration, Figure 4
shows the simpler case where B only has one child
C. Given these rules, the new state is computed by
advancing the appropriate cursors and updating the
natural classes c1 and c2. The weight of each tran-
sition w(s → t) is a product of the language model
probability and the rule probabilities that were cho-
sen.

For each state s, the dynamic program computes
W (s), the sum of the weights of all paths leaving s,

W (s) =
∑
s→t

w(s → t)W (t).

To sample a path, we start at the leftmost state,
choose the transition with probability proportional
to its contribution in the sum for computing W (s),
and repeat until we reach the rightmost state.

We applied a few approximations to speed up the
sampling of words, which reduced the running time
by several orders of magnitude. For example, we
pruned rules with low probability and restricted the
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An example of a dynamic programming lattice

...

...

... ... ... ... ... ... ...

...

patr • ia

# C V C C
# p a t r

• V #
a #

patr • ja

x [T1] p1
ed(i → /C V) x

x [T3] plm(j | C) p1
ed(i → j/C V) p2

ed(j → j/C V) x

x [T11] plm(j | C) plm(i | C) p1
ed(i → j i/C V) p2

ed(j → j/C V) p2
ed(i → /C V) x

. . .

patri • a

# C V C C
# p a t r

• V #
a #

patr • ja

patri • a

# C V C C C
# p a t r j

• V #
a #

patrj • a

patri • a

# C V C C C V
# p a t r j i

• V #
a #

patrj • a

. . .

Types of state transitions (x: ancient phoneme, y: intermediate, z: modern)
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z z

x

y

z z
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z

x

y

z z
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z

x

y

z z

y

z z
[T1] [T2] [T3] [T4] [T5] [T6] [T7] [T8] [T9] [T10] [T11] [T12] [T13]

Figure 4: The dynamic program involved in sampling an intermediate word form given one ancient and one modern word form.
One lattice node is expanded to show the dynamic program state (represented by the part not grayed out) and three of the many
possible transitions leaving the state. Each transition is labeled with the weight of the transition, which is the product of the relevant
model probabilities. At the bottom, the 13 types of state transitions are shown.

state space of the dynamic program by limiting the
deviation in cursor positions.

3.2 M-step: updating the parameters

The M-step is standard once we have computed
the expected counts of edits in the E-step. For
each branch (k → l) ∈ T in the phylogeny,
we compute the maximum likelihood estimate
of the edit parameters {θk→l(x → β / c1 c2)}.
For example, the parameter corresponding to
x = /e/, β = /e s/, c1 = ALVEOLAR, c2 = # is
the probability of inserting a final /s/ after an /e/
which is itself preceded by an alveolar phoneme.
The probability of each rule is estimated as follows:

θk→l(x → β / c1 c2) =
#(x → β / c1 c2) + α(x → β / c1 c2)− 1∑
β′ #(x → β′ / c1 c2) + α(x → β′ / c1 c2)− 1

,

where α is the concentration hyperparameter of the
Dirichlet prior. The value α − 1 can be interpreted
as the number of pseudocounts for a rule.

4 Experiments

In this section we show the results of our experi-
ments with our model. The experimental conditions
are summarized in Table 1, with additional informa-

Experiment Topology Heldout
Latin reconstruction (4.2) 1 la:293
Italian reconstruction (4.2) 1 it:117
Sound changes (4.3) 2 None
Phylogeny selection (4.4) 2, 3, 4 None

Table 1: Conditions under which each of the experiments pre-
sented in this section were performed. The topology indices
correspond to those displayed in Figure 1. Note that by condi-
tional independence, the topology used for Spanish reconstruc-
tion reduces to a chain. The heldout column indicates how many
words, if any, were heldout for edit distance evaluation, and
from which language.

tion on the specifics of the experiments presented in
Section 4.5. We start with a description of the corpus
we created for these experiments.

4.1 Corpus

In order to train and evaluate our system, we
compiled a corpus of Romance cognate words.
The raw data was taken from three sources: the
wiktionary.org website, a Bible parallel cor-
pus (Resnik et al., 1999) and the Europarl corpus
(Koehn, 2002). From an XML dump of the Wik-
tionary data, we extracted multilingual translations,
which provide a list of word tuples in a large num-
ber of languages, including a few ancient languages.
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The Europarl and the biblical data were processed
and aligned in the standard way, using combined
GIZA++ alignments (Och and Ney, 2003).

We performed our experiments with four lan-
guages from the Romance family (Latin, Italian,
Spanish, and Portuguese). For each of these lan-
guages, we used a simple in-house rule-based sys-
tem to convert the words into their IPA represen-
tations.2 After augmenting our alignments with
the transitive closure3 of the Europarl, Bible and
Wiktionary data, we filtered out non-cognate words
by thresholding the ratio of edit distance to word
length.4 The preprocessing is constraining in that we
require that all the elements of a tuple to be cognates,
which leaves out a significant portion of the data be-
hind (see the row Full entries in Table 2). However,
our approach relies on this assumption, as there is no
explicit model of non-cognate words. An interest-
ing direction for future work is the joint modeling of
phonology with the determination of the cognates,
but our simpler setting lets us focus on the proper-
ties of the edit model. Moreover, the restriction to
full entries has the side advantage that the Latin bot-
tleneck prevents the introduction of too many neol-
ogisms, which are numerous in the Europarl data, to
the final corpus.

Since we used automatic tools for preparing our
corpus rather than careful linguistic analysis, our
cognate list is much noiser in terms of the pres-
ence of borrowed words and phonemeic transcrip-
tion errors compared to the ones used by previous
approaches (Swadesh, 1955; Dyen et al., 1997). The
benefit of our mechanical preprocessing is that more
cognate data can easily be made available, allowing
us to effectively train richer models. We show in the
rest of this section that our phonological model can
indeed overcome this noise and recover meaningful
patterns from the data.

2The tool and the rules we used are available at
nlp.cs.berkeley.edu/pages/historical.html.

3For example, we would infer from an la-es bible align-
ment confessionem-confesión (confession) and an es-it Eu-
roparl alignment confesión-confessione that the Latin word con-
fessionem and the Italian word confessione are related.

4To be more precise we keep a tuple (w1, w2, . . . , wp) iff
d(wi,wj)

l̄(wi,wj)
≤ 0.7 for all i, j ∈ {1, 2, . . . , p}, where l̄ is the mean

length |wi|+|wj |
2

and d is the Levenshtein distance.

Name Languages Tuples Word forms
Raw sources of data used to create the corpus
Wiktionary es,pt,la,it 5840 11724
Bible la,es 2391 4782
Europarl es,pt 36905 73773

it,es 39506 78982
Main stages of preprocessing of the corpus
Closure es,pt,la,it 40944 106090
Cognates es,pt,la,it 27996 69637
Full entries es,pt,la,it 586 2344

Table 2: Statistics of the dataset we compiled for the evaluation
of our model. We show the languages represented, the number
of tuples and the number of word forms found in each of the
source of data and pre-processing steps involved in the creation
of the dataset we used to test our model. By full entry, we mean
the number of tuples that are jointly considered cognate by our
preprocessing system and that have a word form known for each
of the languages of interest. These last row forms the dataset
used for our experiments.

Language Baseline Model Improvement
Latin 2.84 2.34 9%
Spanish 3.59 3.21 11%

Table 3: Results of the edit distance experiment. The language
column corresponds to the language held-out for evaluation. We
show the mean edit distance across the evaluation examples.

4.2 Reconstruction of word forms

We ran the system using Topology 1 in Figure 1 to
demonstrate the the system can propose reasonable
reconstructions of Latin word forms on the basis of
modern observations. Half of the Latin words at the
root of the tree were held out, and the (uniform cost)
Levenshtein edit distance from the predicted recon-
struction to the truth was computed. Our baseline is
to pick randomly, for each heldout node in the tree,
an observed neighboring word (i.e. copy one of the
modern forms). We stopped EM after 15 iterations,
and reported the result on a Viterbi derivation using
the parameters obtained. Our model outperformed
this baseline by a 9% relative reduction in average
edit distance. Similarly, reconstruction of modern
forms was also demonstrated, with an improvement
of 11% (see Table 3).

To give a qualitative feel for the operation of the
system (good and bad), consider the example in Fig-
ure 5, taken from this experiment. The Latin dentis
/dEntis/ (teeth) is nearly correctly reconstructed as
/dEntes/, reconciling the appearance of the /j/ in the
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/dEntis/

/djEntes/ /dEnti/

i → E
E→ j E

s→

Figure 5: An example of a Latin reconstruction given the Span-
ish and Italian word forms.

Spanish and the disappearance of the final /s/ in the
Italian. Note that the /is/ vs. /es/ ending is difficult
to predict in this context (indeed, it was one of the
early distinctions to be eroded in vulgar Latin).

While the uniform-cost edit distance misses im-
portant aspects of phonology (all phoneme substitu-
tions are not equal, for instance), it is parameter-free
and still seems to correlate to a large extent with lin-
guistic quality of reconstruction. It is also superior
to held-out log-likelihood, which fails to penalize er-
rors in the modeling assumptions, and to measuring
the percentage of perfect reconstructions, which ig-
nores the degree of correctness of each reconstructed
word.

4.3 Inference of phonological changes

Another use of our model is to automatically recover
the phonological drift processes between known or
partially known languages. To facilitate evaluation,
we continued in the well-studied Romance evolu-
tionary tree. Again, the root is Latin, but we now add
an additional modern language, Portuguese, and two
additional hidden nodes. One of the nodes charac-
terizes the least common ancestor of modern Span-
ish and Portuguese; the other, the least common an-
cestor of all three modern languages. In Figure 1,
Topology 2, these two nodes are labelled vl (Vulgar
Latin) and ib (Proto-Ibero Romance) respectively.
Since we are omitting many other branches, these
names should not be understood as referring to ac-
tual historical proto-languages, but, at best, to col-
lapsed points representing several centuries of evo-
lution. Nonetheless, the major reconstructed rules
still correspond to well known phenomena and the
learned model generally places them on reasonable
branches.

Figure 6 shows the top four general rules for
each of the evolutionary branches in this experiment,

ranked by the number of times they were used in the
derivations during the last iteration of EM. The la,
es, pt, and it forms are fully observed while the
vl and ib forms are automatically reconstructed.
Figure 6 also shows a specific example of the evolu-
tion of the Latin VERBUM (word/verb), along with
the specific edits employed by the model.

While quantitative evaluation such as measuring
edit distance is helpful for comparing results, it is
also illuminating to consider the plausibility of the
learned parameters in a historical light, which we
do here briefly. In particular, we consider rules on
the branch between la and vl, for which we have
historical evidence. For example, documents such
as the Appendix Probi (Baehrens, 1922) provide in-
dications of orthographic confusions which resulted
from the growing gap between Classical Latin and
Vulgar Latin phonology around the 3rd and 4th cen-
turies AD. The Appendix lists common misspellings
of Latin words, from which phonological changes
can be inferred.

On the la to vl branch, rules for word-final dele-
tion of classical case markers dominate the list (rules
ranks 1 and 3 for deletion of final /s/, ranks 2 and
4 for deletion of final /m/). It is indeed likely that
these were generally eliminated in Vulgar Latin. For
the deletion of the /m/, the Appendix Probi contains
pairs such as PASSIM NON PASSI and OLIM NON
OLI. For the deletion of final /s/, this was observed
in early inscriptions, e.g. CORNELIO for CORNE-
LIOS (Allen, 1989). The frequent leveling of the
distinction between /o/ and /u/ (rules ranked 5 and 6)
can be also be found in the Appendix Probi: COLU-
BER NON COLOBER. Note that in the specific ex-
ample shown, the model lowers the orignal /u/ and
then re-raises it in the pt branch due to a latter pro-
cess along that branch.

Similarily, major canonical rules were discovered
in other branches as well, for example, /v/ to /b/
fortition in Spanish, /s/ to /z/ voicing in Italian,
palatalization along several branches, and so on. Of
course, the recovered words and rules are not per-
fect. For example, reconstructed Ibero /tRinta/ to
Spanish /tReinta/ (thirty) is generated in an odd fash-
ion using rules /e/ to /i/ and /n/ to /in/. Moreover,
even when otherwise reasonable systematic sound
changes are captured, the crudeness of our fixed-
granularity contexts can prevent the true context
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r → R / many environments

e → / #

i → / #

t → d / UNROUNDED UNROUNDED

u → o / many environments

v → b / initial or intervocalic

t → t e / ALVEOLAR #

z → s / ROUNDED UNROUNDED

/werbum/ (la)

/verbo/ (vl)

/veRbo/ (ib)

/beRbo/ (es) /veRbu/ (pt)

/vErbo/ (it)

s → / #

m → /
u → o / many environments

w → v / # UNROUNDED

u → o / ALVEOLAR #

e → E / many environments

i → / many environments

i → e / ALVEOLAR #

a → 5 / ALVEOLAR #

n → m / UNROUNDED ALVEOLAR

o → u / ALVEOLAR #

e → 1 / BILABIAL ALVEOLAR

m →
u → o
w → v

r → R

v → b o → u

e → E

Figure 6: The tree shows the system’s hypothesised derivation of a selected Latin word form, VERBUM (word/verb) into the modern
Spanish, Italian and Portuguese pronunciations. The Latin root and modern leaves were observed while the hidden nodes as well as
all the derivations were obtained using the parameters computed by our model after 15 iterations of EM. Nontrivial rules (i.e. rules
that are not identities) used at each stage are shown along the corresponding edge. The boxes display the top four nontrivial rules
corresponding to each of these evolutionary branches, ordered by the number of time they were applied during the last E round of
sampling. Note that since our natural classes are of fixed granularity, some rules must be redundantly discovered, which tends to
flood the top of the rule lists with duplicates of the top few rules. We summarized such redundancies in the above tables.

from being captured, resulting in either rules apply-
ing with low probability in overly coarse environ-
ments or rules being learned redundantly in overly
fine environments.

4.4 Selection of phylogenies

In this experiment, we show that our model can be
used to select between various topologies of phylo-
genies. We first presented to the algorithm the uni-
versally accepted evolutionary tree corresponding to
the evolution of Latin into Spanish, Portuguese and
Italian (Topology 2 in Figure 1). We estimated the
log-likelihood L∗ of the data under this topology.
Next, we estimated the log-likelihood L′ under two
defective topologies (*Topology 3 and *Topology
4). We recorded the log-likelihood ratio L∗ − L′

after the last iteration of EM. Note that the two like-
lihoods are comparable since the complexity of the
two models is the same.5

We obtained a ratio of L∗ − L′ = −4458 −
(−4766) = 307 for Topology 2 versus *Topology
3, and −4877− (−5125) = 248 for Topology 2 ver-
sus *Topology 4 (the experimental setup is described
in Table 1). As one would hope, this log-likelihood
ratio is positive in both cases, indicating that the sys-
tem prefers the true topology over the wrong ones.

While it may seem, at the first glance, that this re-
sult is limited in scope, knowing the relative arrange-

5If a word was not reachable in one of the topology, it was
ignored in both models for the computation of the likelihoods.

ment of all groups of four nodes is actually sufficient
for constructing a full-fledged phylogenetic tree. In-
deed, quartet-based methods, which have been very
popular in the computational biology community,
are precisely based on this fact (Erdos et al., 1996).
There is a rich literature on this subject and approxi-
mate algorithms exist which are robust to misclassi-
fication of a subset of quartets (Wu et al., 2007).

4.5 More experimental details

This section summarizes the values of the parame-
ters we used in these experiments, their interpreta-
tion, and the effect of setting them to other values.

The Dirichlet prior on the parameters can be in-
terpreted as adding pseudocounts to the correspond-
ing edits. It is an important way of infusing par-
simony into the model by setting the prior of the
self-substitution parameters much higher than that
of the other parameters. We used 6.0 as the prior on
the self-substitution parameters, and for all environ-
ments, 1.1 was divided uniformly across the other
edits. As long as the prior on self-substitution is
kept within this rough order of magnitude, varying
them has a limited effect on our results. We also ini-
tialized the parameters with values that encourage
self-substitutions. Again, the results were robust to
perturbation of initialization as long as the value for
self-substitution dominates the other parameters.

The experiments used two natural classes for
vowels (rounded and unrounded), and six natural
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classes for consonants, based on the place of ar-
ticulation (alveolar, bilabial, labiodental, palatal,
postalveolar, and velar). We conducted experi-
ments to evaluate the effect of using different natural
classes and found that finer ones can help if enough
data is used for training. We defer the meticulous
study of the optimal granularity to future work, as it
would be a more interesting experiment under a log-
linear model. In such a model, contexts of different
granularities can coexist, whereas such coexistence
is not recognized by the current model, giving rise
to many duplicate rules.

We estimated the bigram phoneme model on the
words in the root languages that were not heldout.
Just as in machine translation, the language model
was found to contribute significantly to reconstruc-
tion performance. We tried to increase the weight of
the language model by exponentiating it to a power,
as is often done in NLP applications, but we did
not find that it had any significant impact on per-
formance.

In the reconstruction experiments, when the data
was not reachable by the model, the word used in
the initialization was used as the prediction, and
the evolution of these words were ignored when re-
estimating the parameters. Words were initialized
by picking at random, for each unobserved node, an
observed node’s corresponding word.

5 Conclusion

We have presented a novel probabilistic model of
diachronic phonology and an associated inference
procedure. Our experiments indicate that our model
is able to both produce accurate reconstructions as
measured by edit distance and identify linguisti-
cally plausible rules that account for the phonologi-
cal changes. We believe that the probabilistic frame-
work we have introduced for diachronic phonology
is promising, and scaling it up to richer phylogenetic
may indeed reveal something insightful about lan-
guage change.
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Abstract

We present a maximally streamlined approach to
learning HMM-based acoustic models for automatic
speech recognition. In our approach, an initial mono-
phone HMM is iteratively refined using a split-merge
EM procedure which makes no assumptions about
subphone structure or context-dependent structure,
and which uses only a single Gaussian per HMM
state. Despite the much simplified training process,
our acoustic model achieves state-of-the-art results
on phone classification (where it outperforms almost
all other methods) and competitive performance on
phone recognition (where it outperforms standard CD
triphone / subphone / GMM approaches). We also
present an analysis of what is and is not learned by
our system.

1 Introduction

Continuous density hidden Markov models (HMMs)
underlie most automatic speech recognition (ASR)
systems in some form. While the basic algorithms
for HMM learning and inference are quite general,
acoustic models of speech standardly employ rich
speech-specific structures to improve performance.
For example, it is well known that a monophone
HMM with one state per phone is too coarse an
approximation to the true articulatory and acoustic
process. The HMM state space is therefore refined
in several ways. To model phone-internal dynam-
ics, phones are split into beginning, middle, and end
subphones (Jelinek, 1976). To model cross-phone
coarticulation, the states of the HMM are refined
by splitting the phones into context-dependent tri-
phones. These states are then re-clustered (Odell,
1995) and the parameters of their observation dis-
tributions are tied back together (Young and Wood-
land, 1994). Finally, to model complex emission

densities, states emit mixtures of multivariate Gaus-
sians. This standard structure is shown schemati-
cally in Figure 1. While this rich structure is pho-
netically well-motivated and empirically success-
ful, so much structural bias may be unnecessary, or
even harmful. For example in the domain of syn-
tactic parsing with probabilistic context-free gram-
mars (PCFGs), a surprising recent result is that au-
tomatically induced grammar refinements can out-
perform sophisticated methods which exploit sub-
stantial manually articulated structure (Petrov et al.,
2006).

In this paper, we consider a much more automatic,
data-driven approach to learning HMM structure for
acoustic modeling, analagous to the approach taken
by Petrov et al. (2006) for learning PCFGs. We start
with a minimal monophone HMM in which there is
a single state for each (context-independent) phone.
Moreover, the emission model for each state is a sin-
gle multivariate Gaussian (over the standard MFCC
acoustic features). We then iteratively refine this
minimal HMM through state splitting, adding com-
plexity as needed. States in the refined HMMs are
always substates of the original HMM and are there-
fore each identified with a unique base phone. States
are split, estimated, and (perhaps) merged, based on
a likelihood criterion. Our model never allows ex-
plicit Gaussian mixtures, though substates may de-
velop similar distributions and thereby emulate such
mixtures.

In principle, discarding the traditional structure
can either help or hurt the model. Incorrect prior
splits can needlessly fragment training data and in-
correct prior tying can limit the model’s expressiv-
ity. On the other hand, correct assumptions can
increase the efficiency of the learner. Empirically,
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Start begin end Endmid begin endmid

d7 = c(#-d-ae)

begin endmid begin endmid

ae3 = c(d-ae-d) d13 = c(ae-d-#)

Start
a d

End
a d a d

d ae d

b c b c b c

Figure 1: Comparison of the standard model to our model (here
shown with k = 4 subphones per phone) for the word dad.
The dependence of subphones across phones in our model is
not shown, while the context clustering in the standard model is
shown only schematically.

we show that our automatic approach outperforms
classic systems on the task of phone recognition on
the TIMIT data set. In particular, it outperforms
standard state-tied triphone models like Young and
Woodland (1994), achieving a phone error rate of
26.4% versus 27.7%. In addition, our approach
gives state-of-the-art performance on the task of
phone classification on the TIMIT data set, suggest-
ing that our learned structure is particularly effec-
tive at modeling phone-internal structure. Indeed,
our error rate of 21.4% is outperformed only by the
recent structured margin approach of Sha and Saul
(2006). It remains to be seen whether these posi-
tive results on acoustic modeling will facilitate better
word recognition rates in a large vocabulary speech
recognition system.

We also consider the structures learned by the
model. Subphone structure is learned, similar to,
but richer than, standard begin-middle-end struc-
tures. Cross-phone coarticulation is also learned,
with classic phonological classes often emerging
naturally.

Many aspects of this work are intended to sim-
plify rather than further articulate the acoustic pro-
cess. It should therefore be clear that the basic tech-
niques of splitting, merging, and learning using EM
are not in themselves new for ASR. Nor is the basic
latent induction method new (Matsuzaki et al., 2005;
Petrov et al., 2006). What is novel in this paper is (1)
the construction of an automatic system for acous-
tic modeling, with substantially streamlined struc-
ture, (2) the investigation of variational inference for
such a task, (3) the analysis of the kinds of struc-
tures learned by such a system, and (4) the empirical

demonstration that such a system is not only com-
petitive with the traditional approach, but can indeed
outperform even very recent work on some prelimi-
nary measures.

2 Learning

In the following, we propose a greatly simplified
model that does not impose any manually specified
structural constraints. Instead of specifying struc-
ture a priori, we use the Expectation-Maximization
(EM) algorithm for HMMs (Baum-Welch) to auto-
matically induce the structure in a way that maxi-
mizes data likelihood.

In general, our training data consists of sets
of acoustic observation sequences and phone level
transcriptions r which specify a sequence of phones
from a set of phones Y , but does not label each
time frame with a phone. We refer to an observa-
tion sequence as x = x1, . . . , xT where xi ∈ R39

are standard MFCC features (Davis and Mermel-
stein, 1980). We wish to induce an HMM over a
set of states S for which we also have a function
π : S → Y that maps every state in S to a phone
in Y . Note that in the usual formulation of the EM
algorithm for HMMs, one is interested in learning
HMM parameters θ that maximize the likelihood of
the observations P(x|θ); in contrast, we aim to max-
imize the joint probability of our observations and
phone transcriptions P(x, r|θ) or observations and
phone sequences P(x,y|θ) (see below). We now de-
scribe this relatively straightforward modification of
the EM algorithm.

2.1 The Hand-Aligned Case

For clarity of exposition we first consider a simpli-
fied scenario in which we are given hand-aligned
phone labels y = y1, . . . , yT for each time t, as is
the case for the TIMIT dataset. Our procedure does
not require such extensive annotation of the training
data and in fact gives better performance when the
exact transition point between phones are not pre-
specified but learned.

We define forward and backward probabilities
(Rabiner, 1989) in the following way: the forward
probability is the probability of observing the se-
quence x1, . . . , xt with transcription y1, . . . , yt and
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Figure 2: Iterative refinement of the /ih/ phone with 1, 2, 4, 8 substates.

ending in state s at time t:

αt(s) = P(x1, . . . , xt, y1, . . . yt, st = s|λ),

and the backward probability is the probability of
observing the sequence xt+1, . . . , xT with transcrip-
tion yt+1, . . . , yT , given that we start in state s at
time t:

βt(s) = P(xt+1, . . . , xT , yt+1, . . . , yT |st = s, λ),

where λ are the model parameters. As usual, we
parameterize our HMMs with ass′ , the probability
of transitioning from state s to s′, and bs(x) ∼
N (µs,Σs), the probability emitting the observation
x when in state s.

These probabilities can be computed using the
standard forward and backward recursions (Rabiner,
1989), except that at each time t, we only con-
sider states st for which π(st) = yt, because we
have hand-aligned labels for the observations. These
quantities also allow us to compute the posterior
counts necessary for the E-step of the EM algorithm.

2.2 Splitting
One way of inducing arbitrary structural annota-
tions would be to split each HMM state in into
m substates, and re-estimate the parameters for the
split HMM using EM. This approach has two ma-
jor drawbacks: for larger m it is likely to converge
to poor local optima, and it allocates substates uni-
formly across all states, regardless of how much an-
notation is required for good performance.

To avoid these problems, we apply a hierarchical
parameter estimation strategy similar in spirit to the
work of Sankar (1998) and Ueda et al. (2000), but
here applied to HMMs rather than to GMMs. Be-
ginning with the baseline model, where each state
corresponds to one phone, we repeatedly split and
re-train the HMM. This strategy ensures that each
split HMM is initialized “close” to some reasonable
maximum.

Concretely, each state s in the HMM is split in
two new states s1, s2 with π(s1) = π(s2) = π(s).
We initialize EM with the parameters of the previ-
ous HMM, splitting every previous state s in two
and adding a small amount of randomness ε ≤ 1%
to its transition and emission probabilities to break
symmetry:

as1s′ ∝ ass′ + ε,

bs1(o) ∼ N (µs + ε,Σs),

and similarly for s2. The incoming transitions are
split evenly.

We then apply the EM algorithm described above
to re-estimate these parameters before performing
subsequent split operations.

2.3 Merging

Since adding substates divides HMM statistics into
many bins, the HMM parameters are effectively es-
timated from less data, which can lead to overfitting.
Therefore, it would be to our advantage to split sub-

899



states only where needed, rather than splitting them
all.

We realize this goal by merging back those splits
s → s1s2 for which, if the split were reversed, the
loss in data likelihood would be smallest. We ap-
proximate the loss in data likelihood for a merge
s1s2 → s with the following likelihood ratio (Petrov
et al., 2006):

∆(s1 s2 → s) =
∏

sequences

∏
t

Pt(x,y)
P(x,y)

.

Here P(x,y) is the joint likelihood of an emission
sequence x and associated state sequence y. This
quantity can be recovered from the forward and
backward probabilities using

P(x,y) =
∑

s:π(s)=yt

αt(s) · βt(s).

Pt(x,y) is an approximation to the same joint like-
lihood where states s1 and s2 are merged. We ap-
proximate the true loss by only considering merging
states s1 and s2 at time t, a value which can be ef-
ficiently computed from the forward and backward
probabilities. The forward score for the merged state
s at time t is just the sum of the two split scores:

α̂t(s) = αt(s1) + αt(s2),

while the backward score is a weighted sum of the
split scores:

β̂t(s) = p1βt(s1) + p2βt(s2),

where p1 and p2 are the relative (posterior) frequen-
cies of the states s1 and s2.

Thus, the likelihood after merging s1 and s2 at
time t can be computed from these merged forward
and backward scores as:

P t(x,y) = α̂t(s) · β̂t(s) +
∑
s′

αt(s′) · βt(s′)

where the second sum is over the other substates of
xt, i.e. {s′ : π(s′) = xt, s

′ /∈ {s1, s2}}. This
expression is an approximation because it neglects
interactions between instances of the same states at
multiple places in the same sequence. In particular,

since phones frequently occur with multiple consec-
utive repetitions, this criterion may vastly overesti-
mate the actual likelihood loss. As such, we also im-
plemented the exact criterion, that is, for each split,
we formed a new HMM with s1 and s2 merged and
calculated the total data likelihood. This method
is much more computationally expensive, requiring
a full forward-backward pass through the data for
each potential merge, and was not found to produce
noticeably better performance. Therefore, all exper-
iments use the approximate criterion.

2.4 The Automatically-Aligned Case

It is straightforward to generalize the hand-aligned
case to the case where the phone transcription is
known, but no frame level labeling is available. The
main difference is that the phone boundaries are not
known in advance, which means that there is now
additional uncertainty over the phone states. The
forward and backward recursions must thus be ex-
panded to consider all state sequences that yield the
given phone transcription. We can accomplish this
with standard Baum-Welch training.

3 Inference

An HMM over refined subphone states s ∈ S nat-
urally gives posterior distributions P(s|x) over se-
quences of states s. We would ideally like to ex-
tract the transcription r of underlying phones which
is most probable according to this posterior1. The
transcription is two stages removed from s. First,
it collapses the distinctions between states s which
correspond to the same phone y = π(s). Second,
it collapses the distinctions between where phone
transitions exactly occur. Viterbi state sequences can
easily be extracted using the basic Viterbi algorithm.
On the other hand, finding the best phone sequence
or transcription is intractable.

As a compromise, we extract the phone sequence
(not transcription) which has highest probability in
a variational approximation to the true distribution
(Jordan et al., 1999). Let the true posterior distri-
bution over phone sequences be P(y|x). We form
an approximation Q(y) ≈ P(y|x), where Q is an
approximation specific to the sequence x and factor-

1Remember that by “transcription” we mean a sequence of
phones with duplicates removed.

900



izes as:
Q(y) =

∏
t

q(t, xt, yt+1).

We would like to fit the values q, one for each time
step and state-state pair, so as to make Q as close to
P as possible:

min
q

KL(P(y|x)||Q(y)).

The solution can be found analytically using La-
grange multipliers:

q(t, y, y′) =
P(Yt = y, Yt+1 = y′|x)

P(Yt = y|x)
.

where we have made the position-specific random
variables Yt explicit for clarity. This approximation
depends only on our ability to calculate posteriors
over phones or phone-phone pairs at individual po-
sitions t, which is easy to obtain from the state pos-
teriors, for example:

P(Yt = y,Yt+1 = y′|x) =∑
s:π(s)=y

∑
s′:π(s′)=y′

αt(s)ass′bs′(xt)βt+1(s′)

P(x)

Finding the Viterbi phone sequence in the approxi-
mate distribution Q, can be done with the Forward-
Backward algorithm over the lattice of q values.

4 Experiments

We tested our model on the TIMIT database, using
the standard setups for phone recognition and phone
classification. We partitioned the TIMIT data into
training, development, and (core) test sets according
to standard practice (Lee and Hon, 1989; Gunawar-
dana et al., 2005; Sha and Saul, 2006). In particu-
lar, we excluded all sa sentences and mapped the 61
phonetic labels in TIMIT down to 48 classes before
training our HMMs. At evaluation, these 48 classes
were further mapped down to 39 classes, again in
the standard way.

MFCC coefficients were extracted from the
TIMIT source as in Sha and Saul (2006), includ-
ing delta and delta-delta components. For all experi-
ments, our system and all baselines we implemented
used full covariance when parameterizing emission
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Figure 3: Phone recognition error for models of increasing size

models.2 All Gaussians were endowed with weak
inverse Wishart priors with zero mean and identity
covariance.3

4.1 Phone Recognition

In the task of phone recognition, we fit an HMM
whose output, with subsequent states collapsed, cor-
responds to the training transcriptions. In the TIMIT
data set, each frame is manually phone-annotated, so
the only uncertainty in the basic setup is the identity
of the (sub)states at each frame.

We therefore began with a single state for each
phone, in a fully connected HMM (except for spe-
cial treatment of dedicated start and end states). We
incrementally trained our model as described in Sec-
tion 2, with up to 6 split-merge rounds. We found
that reversing 25% of the splits yielded good overall
performance while maintaining compactness of the
model.

We decoded using the variational decoder de-
scribed in Section 3. The output was then scored
against the reference phone transcription using the
standard string edit distance.

During both training and decoding, we used “flat-
tened” emission probabilities by exponentiating to
some 0 < γ < 1. We found the best setting for γ
to be 0.2, as determined by tuning on the develop-
ment set. This flattening compensates for the non-

2Most of our findings also hold for diagonal covariance
Gaussians, albeit the final error rates are 2-3% higher.

3Following previous work with PCFGs (Petrov et al., 2006),
we experimented with smoothing the substates towards each
other to prevent overfitting, but we were unable to achieve any
performance gains.
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Method Error Rate
State-Tied Triphone HMM

27.7%1

(Young and Woodland, 1994)
Gender Dependent Triphone HMM

27.1%1

(Lamel and Gauvain, 1993)
This Paper 26.4%
Bayesian Triphone HMM

25.6%
(Ming and Smith, 1998)

Heterogeneous classifiers
24.4%

(Halberstadt and Glass, 1998)

Table 1: Phone recognition error rates on the TIMIT core test
from Glass (2003).
1These results are on a slightly easier test set.

independence of the frames, partially due to over-
lapping source samples and partially due to other
unmodeled correlations.

Figure 3 shows the recognition error as the model
grows in size. In addition to the basic setup de-
scribed so far (split and merge), we also show a
model in which merging was not performed (split
only). As can be seen, the merging phase not only
decreases the number of HMM states at each round,
but also improves phone recognition error at each
round.

We also compared our hierarchical split only
model with a model where we directly split all states
into 2k substates, so that these models had the same
number of states as a a hierarchical model after k
split and merge cycles. While for small k, the dif-
ference was negligible, we found that the error in-
creased by 1% absolute for k = 5. This trend is to
be expected, as the possible interactions between the
substates grows with the number of substates.

Also shown in Figure 3, and perhaps unsurprising,
is that the error rate can be further reduced by allow-
ing the phone boundaries to drift from the manual
alignments provided in the TIMIT training data. The
split and merge, automatic alignment line shows the
result of allowing the EM fitting phase to reposition
each phone boundary, giving absolute improvements
of up to 0.6%.

We investigated how much improvement in accu-
racy one can gain by computing the variational ap-
proximation introduced in Section 3 versus extract-
ing the Viterbi state sequence and projecting that se-
quence to its phone transcription. The gap varies,

Method Error Rate
GMM Baseline (Sha and Saul, 2006) 26.0%
HMM Baseline (Gunawardana et al., 2005) 25.1%
SVM (Clarkson and Moreno, 1999) 22.4%
Hidden CRF (Gunawardana et al., 2005) 21.7%
This Paper 21.4%
Large Margin GMM (Sha and Saul, 2006) 21.1%

Table 2: Phone classification error rates on the TIMIT core test.

but on a model with roughly 1000 states (5 split-
merge rounds), the variational decoder decreases er-
ror from 26.5% to 25.6%. The gain in accuracy
comes at a cost in time: we must run a (possibly
pruned) Forward-Backward pass over the full state
space S, then another over the smaller phone space
Y . In our experiments, the cost of variational decod-
ing was a factor of about 3, which may or may not
justify a relative error reduction of around 4%.

The performance of our best model (split and
merge, automatic alignment, and variational decod-
ing) on the test set is 26.4%. A comparison of our
performance with other methods in the literature is
shown in Table 1. Despite our structural simplic-
ity, we outperform state-tied triphone systems like
Young and Woodland (1994), a standard baseline for
this task, by nearly 2% absolute. However, we fall
short of the best current systems.

4.2 Phone Classification

Phone classification is the fairly constrained task of
classifying in isolation a sequence of frames which
is known to span exactly one phone. In order to
quantify how much of our gains over the triphone
baseline stem from modeling context-dependencies
and how much from modeling the inner structure of
the phones, we fit separate HMM models for each
phone, using the same split and merge procedure as
above (though in this case only manual alignments
are reasonable because we test on manual segmen-
tations). For each test frame sequence, we com-
pute the likelihood of the sequence from the forward
probabilities of each individual phone HMM. The
phone giving highest likelihood to the input was se-
lected. The error rate is a simple fraction of test
phones classified correctly.

Table 2 shows a comparison of our performance
with that of some other methods in the literature.
A minimal comparison is to a GMM with the same
number of mixtures per phone as our model’s maxi-
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Figure 4: Phone confusion matrix. 76% of the substitutions fall
within the shown classes.

mum substates per phone. While these models have
the same number of total Gaussians, in our model
the Gaussians are correlated temporally, while in
the GMM they are independent. Enforcing begin-
middle-end HMM structure (see HMM Baseline) in-
creases accuracy somewhat, but our more general
model clearly makes better use of the available pa-
rameters than those baselines.

Indeed, our best model achieves a surpris-
ing performance of 21.4%, greatly outperform-
ing other generative methods and achieving perfor-
mance competitive with state-of-the-art discrimina-
tive methods. Only the recent structured margin ap-
proach of Sha and Saul (2006) gives a better perfor-
mance than our model. The strength of our system
on the classification task suggests that perhaps it is
modeling phone-internal structure more effectively
than cross-phone context.

5 Analysis

While the overall phone recognition and classifi-
cation numbers suggest that our system is broadly
comparable to and perhaps in certain ways superior
to classical approaches, it is illuminating to investi-
gate what is and is not learned by the model.

Figure 4 gives a confusion matrix over the substi-
tution errors made by our model. The majority of the
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Figure 5: Phone contexts and subphone structure. The /l/ phone
after 3 split-merge iterations is shown.

confusions are within natural classes. Some partic-
ularly frequent and reasonable confusions arise be-
tween the consonantal /r/ and the vocalic /er/ (the
same confusion arises between /l/ and /el/, but the
standard evaluation already collapses this distinc-
tion), the reduced vowels /ax/ and /ix/, the voiced
and voiceless alveolar sibilants /z/ and /s/, and the
voiced and voiceless stop pairs. Other vocalic con-
fusions are generally between vowels and their cor-
responding reduced forms. Overall, 76% of the sub-
stitutions are within the broad classes shown in the
figure.

We can also examine the substructure learned for
the various phones. Figure 2 shows the evolution
of the phone /ih/ from a single state to 8 substates
during split/merge (no merges were chosen for this
phone), using hand-alignment of phones to frames.
These figures were simplified from the complete
state transition matrices as follows: (1) adjacent
phones’ substates are collapsed, (2) adjacent phones
are selected based on frequency and inbound prob-
ability (and forced to be the same across figures),
(3) infrequent arcs are suppressed. In the first split,
(b), a sonorant / non-sonorant distinction is learned
over adjacent phones, along with a state chain which
captures basic duration (a self-looping state gives
an exponential model of duration; the sum of two
such states is more expressive). Note that the nat-
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ural classes interact with the chain in a way which
allows duration to depend on context. In further re-
finements, more structure is added, including a two-
track path in (d) where one track captures the distinct
effects on higher formants of r-coloring and nasal-
ization. Figure 5 shows the corresponding diagram
for /l/, where some merging has also occurred. Dif-
ferent natural classes emerge in this case, with, for
example, preceding states partitioned into front/high
vowels vs. rounded vowels vs. other vowels vs. con-
sonants. Following states show a front/back dis-
tinction and a consonant distinction, and the phone
/m/ is treated specially, largely because the /lm/ se-
quence tends to shorten the /l/ substantially. Note
again how context, internal structure, and duration
are simultaneously modeled. Of course, it should
be emphasized that post hoc analysis of such struc-
ture is a simplification and prone to seeing what one
expects; we present these examples to illustrate the
broad kinds of patterns which are detected.

As a final illustration of the nature of the learned
models, Table 3 shows the number of substates allo-
cated to each phone by the split/merge process (the
maximum is 32 for this stage) for the case of hand-
aligned (left) as well as automatically-aligned (right)
phone boundaries. Interestingly, in the hand-aligned
case, the vowels absorb most of the complexity since
many consonantal cues are heavily evidenced on
adjacent vowels. However, in the automatically-
aligned case, many vowel frames with substantial
consontant coloring are re-allocated to those adja-
cent consonants, giving more complex consonants,
but comparatively less complex vowels.

6 Conclusions

We have presented a minimalist, automatic approach
for building an accurate acoustic model for phonetic
classification and recognition. Our model does not
require any a priori phonetic bias or manual spec-
ification of structure, but rather induces the struc-
ture in an automatic and streamlined fashion. Start-
ing from a minimal monophone HMM, we auto-
matically learn models that achieve highly compet-
itive performance. On the TIMIT phone recogni-
tion task our model clearly outperforms standard
state-tied triphone models like Young and Wood-
land (1994). For phone classification, our model

Vowels
aa 31 32
ae 32 17
ah 31 8
ao 32 23
aw 18 6
ax 18 3
ay 32 28
eh 32 16
el 6 4
en 4 3
er 32 31
ey 32 30
ih 32 11
ix 31 16
iy 31 32
ow 26 10

oy 4 4
uh 5 2
uw 21 8

Consonants
b 2 32
ch 13 30
d 2 14
dh 6 31
dx 2 3
f 32 32
g 2 15
hh 3 5
jh 3 16
k 30 32
l 25 32
m 25 25
n 29 32

ng 3 4
p 5 24
r 32 32
s 32 32
sh 30 32
t 24 32
th 8 11
v 23 11
w 10 21
y 3 7
z 31 32
zh 2 2

Other
epi 2 4
sil 32 32
vcl 29 30
cl 31 32

Table 3: Number of substates allocated per phone. The left
column gives the number of substates allocated when training
on manually aligned training sequences, while the right column
gives the number allocated when we automatically determine
phone boundaries.

achieves performance competitive with the state-of-
the-art discriminative methods (Sha and Saul, 2006),
despite being generative in nature. This result to-
gether with our analysis of the context-dependencies
and substructures that are being learned, suggests
that our model is particularly well suited for mod-
eling phone-internal structure. It does, of course
remain to be seen if and how these benefits can be
scaled to larger systems.
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Abstract

This paper describes ETK (Ensemble of
Transformation-based Keys) a new algo-
rithm for inducing search keys for name
filtering. ETK has the low computational
cost and ability to filter by phonetic sim-
ilarity characteristic of phonetic keys such
as Soundex, but is adaptable to alternative
similarity models. The accuracy of ETK in
a preliminary empirical evaluation suggests
that it is well-suited for phonetic filtering
applications such as recognizing alternative
cross-lingual transliterations.

1 Introduction

The task ofname matching—recognizing when two
orthographically distinct strings are likely to denote
the same individual—occurs in a wide variety of im-
portant applications, including law enforcement, na-
tional security, and maintenance of government and
commercial records. Coreference resolution, speech
understanding, and detection of aliases and duplicate
names all require name matching.

The orthographic variations that give rise to the
name-matching task can result from a variety of fac-
tors, including transcription and OCR errors, and
spelling variations. In many applications, cross-
lingual transliterations are a particularly important
source of variation. For example, romanized Ara-
bic names are phonetic transcriptions of sounds that
have no direct equivalent in English,e.g., “Mo-
hamed” or “Muhammet” are two of many possible
transliterations for the same Arabic name.

Name matching can be viewed as a type of range
query in which the input is a set of patterns (such

as names on an immigration-control watch list), a
collection of text strings (such as a passenger list), a
distance metric for calculating the degree of relevant
dissimilarity between pairs of strings, and a match
threshold expressing the maximum allowable dis-
tance between matching names. The goal is to find
all text/pattern pairs whose distance under the metric
is less than or equal to the threshold. In the simplest
case, patterns and the text strings with which they
are matched are both individual words. In the gen-
eral case, the text may not be segmented into strings
corresponding to possible names.

Distance metrics for name matching are typically
computationally expensive. For example, determin-
ing the edit distance between two strings of lengthn

andm requires, in the general case,nm steps. Met-
rics based on algorithms that learn from examples
of strings that should match (Bilenko et al., 2003;
Ristad and Yianilos, 1998) and metrics that use pho-
netic similarity criterion, e.g., (Kondrak, 2000) are
no less expensive than edit distance.

The computational expense of distance metrics
means that tractable name matching on large texts
typically requires an inexpensive, high-recallfilter-
ing step to find a subset of the original text to
which the expensive similarity metric will be ap-
plied. Desiderata for filtering include the following:

1. High recall. The recall of the entire name-
matching process is bounded by the recall of
the filtering step, so high filtering recall is es-
sential.

2. Efficiency. Filtering is useful only to the ex-
tend that it requires less computational expense
than applying the similarity metric to each pat-
tern/text pair. The computational expense of
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a filtering algorithm itself must therefore be
less than the cost of the metric calls eliminated
through the filtering process. Typically, the cost
of the metric is so much higher than the filter-
ing cost that the latter can be neglected. Under
these circumstances, precision is a satisfactory
proxy for efficiency.

3. Adaptability to specific distance metrics.
High precision and recall are achievable in fil-
tering only if the filtering criterion corresponds
to the distance metric. For example, if a dis-
tance metric is based on phonetic differences
between strings, a filtering algorithm that se-
lects candidate text strings based on ortho-
graphic differences may perform poorly. Sim-
ilarly, poor performance may result from use
of a filtering algorithm based on phonetic dif-
ferences if the distance metric is based on or-
thographic differences. For example,“LAYTON”

and “LEIGHTON” differ by a large edit distance
but are phonetically identical (in most dialects),
whereas“BOUGH” and“ROUGH” are orthograph-
ically similar but phonetically dissimilar. An
ideal filtering algorithm should be adaptable to
any particular distance metric.

This paper describes ETK (Ensemble of
Transformation-based Keys) a new algorithm
for inducing filters that satisfy the three criteria
above. ETK is similar to phonetic search key
algorithms such as Soundex and shares phonetic
search key algorithms’ low computational expense
and ability to filter by phonetic similarity. However,
ETK has the advantage that it is adaptable to alter-
native distance metrics and is therefore applicable
to a wider range of circumstances than static key
algorithms.

The next section describes previous work in name
filtering. Section 3 describes the ETK algorithm in
detail, and a preliminary evaluation on English and
German surnames is set forth in Section 4.

2 Previous Work

The division of the retrieval task into an inexpensive,
high-recall filtering stage followed by a more expen-
sive high-precision stage emerged independently in
a variety of different areas of computer science. This

approach is termedtwo-stage retrievalin the Infor-
mation Retrieval literature (Shin and Zhang, 1998),
MAC/FAC by some researchers in analogy (Gen-
tner and Forbus, 1991),blocking in the statistical
record linkage literature (Cohen et al., 2003), andfil-
tering in the approximate string matching literature
(Navarro, 2001).

The two most common approaches to filtering
that have been applied to name matching are in-
dexing byphonetic keysand indexing byngrams.
Two less well known filtering algorithms that often
have higher recall than filtering by phonetic keys or
ngrams arepivot-based retrievalandpartition filter-
ing.

Phonetic Key Indexing. In phonetic key index-
ing, names are indexed by a phonetic representa-
tion created by a key function that maps sequences
of characters to phonetic categories. Such key
functions partition the name space into equivalence
classes of names having identical phonetic represen-
tations. Each member of a partition is indexed by the
shared phonetic representation.

The oldest phonetic key function is apparently
Soundex, which was patented in 1918 and 1922
by Russell and Odell (U.S. Patents 1,261,167 and
1,435,663) and described in (Knuth, 1975). Despite
Soundex’s has many well-known limitations, includ-
ing inability to handle different first letters with
identical pronunciations (e.g., Soundex of “Kris”
is K620, but Soundex of “Chris” is C620), trun-
cation of long names, and bias towards English
pronunciations, Soundex is still in use in many
law enforcement and national security applications
(Dizard, 2004). A number of alternative phonetic
encodings have been developed in response to the
limitations of Soundex,e.g., (Taft, 1970; Gadd,
1990; Zobel and Dart, 1996; Philips, 1990; Philips,
2000; Hodge and Austin, 2001; Christen, 2006).
While each of these alternatives has some advan-
tages over Soundex, none is adaptable to alterna-
tive distance metrics. For purposes of comparison,
Phonex (Gadd, 1990) was included in the evalua-
tion below because it was found to be the most ac-
curate phonetic key for last names in an evaluation
by (Christen, 2006).

Ngram Filtering. The second common filtering
algorithm for names is ngram indexing, under which
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each pattern string is indexed by every n-element
substring,i.e., every sequence of n contiguous char-
acters occurring in the pattern string (typically, the
original string is padded with special leading and
trailing characters to distinguish the start and end of
the name). The candidates for each target string are
retrieved using the ngrams in the target as indices
(Cohen et al., 2003). Typical values for n are 3 or 4.

Pivot-Based Retrieval. Pivot-based retrieval
techniques are applicable to domains, such as name
matching, in which entities are not amenable to
vector representation but for which the distance
metric satisfies the triangle inequality (Chavez et
al., 2001).1

The key idea is to organize the index around a
small group of elements, calledpivots. In retrieval,
the distance between the query probeq and any ele-
mente can be estimated based on the distances of
each to one or more pivots. There are numerous
pivot-based metric space indexing algorithms. An
instructive survey of these algorithms is set forth in
(Chavez et al., 2001).

One of the oldest, and often best-performing,
pivot-based indices is Burkhart-Keller Trees (BKT)
(Burkhard and Keller, 1973; Baeza-Yates and
Navarro, 1998). BKT is suitable for discrete-valued
distance metrics. Construction of a BKT starts with
selection of an arbitrary element as the root of the
tree. Theith child of the root consists of all ele-
ments of distancei from the root. A new BKT is
recursively constructed for each child until the num-
ber of elements in a child falls below a predefined
bucket size.

A range query on a BKT with distance metric
d, probe q, rangek, and pivotp is performed as
follows. If the BKT is a leaf node, then the dis-
tance metricd is applied betweenq and each element
of the leaf node, and those elementse for which
d(q, e) < k are returned. Otherwise, all subtrees
with index i for which |d(q, e) − i| ≤ k are recur-
sively searched.

While all names withink of a query are guaran-

1Edit distance satisfies the triangle inequality because any
string A can be transformed into another string C by first
transforming A to any other string B, then transforming B
into C. Thus, edit-distance(A,C) cannot be greater than edit-
distance(A,B)+ edit-distance(B,C) for any strings A, B, and
C.

teed to be retrieved by a BKT (i.e., recall is 100%),
there are no guarantees on precision. During search,
one application of the distance metric is required at
each internal node traversed, and a distance-metric
application is required for each candidate element in
leaf nodes reached during the traversal. The number
of nodes searched is exponential ink (Chavez et al.,
2001).

Partition Filtering. Partition filtering (Wu and
Manber, 1991; Navarro and Baeza-Yates, 1999), is
an improvement over ngram filtering that relies on
the observation that if a pattern stringP of length
m is divided into segments of length⌊ m

(k+1)⌋, then
any string that matchesP with at mostk errors must
contain an exact match for at least one of the seg-
ments (intuitively, it would take at leastk + 1 er-
rors, e.g., edit operations, to alter all of these seg-
ments). Strings indexed by⌊ m

(k+1)⌋-length segments
can be retrieved by an efficient exact string match-
ing algorithm, such as suffix trees or Aho-Corasick
trees. This is necessary because partitions, unlike
ngrams, vary in length.

Partition filtering differs from ngram filtering in
two respects. First, ngrams overlap, whereas par-
tition filtering involves partitioning each string into
non-overlapping segments. Second, the choice of
n in ngram filtering is typically independent ofk,
whereas the size of the segments in filtering is cho-
sen based onk. Since in most applicationsn is in-
dependent ofk, ngram retrieval, like phonetic key
indexing, lacks any guaranteed lower bound on re-
call, whereas partition filtering guarantees 100% re-
call when the distance metric is edit distance.

3 The ETK algorithm

3.1 Motivation

Any key function partitions the universe of strings
into equivalence classes of strings that share a com-
mon key. If a key function is to serve as a fil-
ter, matching names must be members of the same
equivalence class. However, no single partition can
produce equivalence classes that both include all
matching pairs and exclude all non-matching pairs.2

2For example, suppose that for strings A, B, and C and dis-
tance metric d, d(A,B) = .9, d(B,C) = .9, d(A,C) = 1.7, and
suppose that 1.0 is the match threshold. A query on A would re-
quire a partition that puts A and B in the same equivalence class
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A search key that creates partitions in which there
is a low probability that non-matching pairs share a
common equivalence class will have high precision,
although possibly low recall. However, the recall of
an ensemble of search keys, each having non-zero
recall and each being independent of the others, can
be expected to be greater than the recall of any in-
dividual key. A high-precision and high-recall index
can therefore be constructed if one can find, for a
given similarity metric and match threshold, a suf-
ficiently large set of key functions that (1) are in-
dependent, (2) each have high-precision under the
metric and threshold, and (3) have non-zero recall.

The objective of ETK is to learn a set of inde-
pendent, high-precision key functions from training
data consisting of equivalence classes of names that
satisfy the matching criteria. The similarity metric
and threshold are implicit in the training data. Thus,
under this approach a key function can be learned
even if the similarity model is unknown, provided
that sufficient equivalence classes are available.

For each equivalence class, ETK attempts to find
the shortest transformation rules capable of con-
verting all members of the equivalence class into
an identical orthographic representation. The entire
collection of transformation rules for all equivalence
classes, which in general has many inconsistencies,
is then partitioned into separate consistent subsets.
Each subset of transformation rules constitutes an
independent key function. Each pattern name is in-
dexed by each key produced by applying a key func-
tion to it, and the candidate matches for a new name
consist of all pattern names that share at least one
key.

The equivalence classes of matching names can
be obtained either through somea priori source
(such as alias lists or manual construction) or by ap-
plying the similarity metric to pairs in a training set,
e.g., repeated leave-one-out retrievals with a known
distance metric. In the former case, the keys are
purely empirical; in the later the key functions are
in effect a way of compiling the distance metric to
speed retrieval.

and C into a different equivalence class, a query on C would re-
quire a partition that puts B and C in the same equivalence class
and A in a different equivalence class, and a query on B would
require a partition in which all three were in the same equiva-
lence class. Thus, three independent keys would be needed to
satisfy all three queries while excluding non-matching names.

3.2 Procedure

Inducing Transformation Rules. The inductive
process starts with a collection of equivalence
classes under a given distance metric and match
thresholdk. A collection of transformation rules are
derived from these equivalence classes as follows.
For each equivalence classEC:

• The element ofEC with the least mean pair-
wise edit distance to the other class members
(breaking ties by preferring shorter elements)
is selected as the centroid. For example, if
EC is {LEIGHTON LAYTON SLEIGHTON}, then
LEIGHTON would be the centroid because it has
a smaller edit distance to the other elements
than they do to each other.

• For each elementE other than the centroid, dy-
namic programming is used to find an align-
ment ofE with the centroid that maximizes the
number of corresponding identical characters.3

For example, the alignment ofLEIGHTON and
LAYTON would be:

LAY--TON
LEIGHTON

• For each characterc of the centroid, all win-
dows of characters inE of length from 1 to
some constant maxWindow centered on the
character in the source corresponding toc are
found, skipping blank characters. Each map-
ping from a window toc constitutes a rule.
For example, for maxWindow 7 and the align-
ment above, the transformation rules for theE

in LEIGHTON would be:

$$LAYTO→ E

$LAYT → E

LAY → E

A → E

3See (Damper et al., 2004) for details on alignment by dy-
namic programming. The approach taken here assigns a slightly
higher association weight for aligned identical consonants than
for aligned identical vowels so that,ceteris paribus, consonant
alignment is preferred to vowel alignment and assigns a slightly
higher association weight to non-identical letters that are both
vowels or both consonants than to vowel/consonant alignments.
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Transformation rules derived from multiple
equivalence classes typically have many incon-
sistencies,i.e., rules with identical left-hand
sides (LHSs) but different right hand sides
(RHSs). All RHSs for a given LHS are grouped
together and ranked by frequency of occurrence
in the training data. For example, the frequency
of alternative rules for the middle characters
LAN and LEI for the U.S. name pronunciation
set withk = 1 discussed below is:

LAY → E 5 LEI → A 2
LAY → A 4 LEI → E 1
LAY → AN 3 LEI → - 1

Key Formation. The transformation rules are sub-
divided two different ways: by LHS,e.g., separating
rules for LAY from those forLEI, and by RHS fre-
quency,e.g., separatingLAY → E (the most frequent
rule for LAY) from LAY→ A (the next most frequent).
The highest frequency RHS rules from the example
above are:

LAY → E

LEI → A

and the next most frequent are:

LAY → A

LEI → E

If rules are divided intol LHS subsets, and each
subset is further subdivided by taking ther highest
ranked RHSs (with RHSs ranked lower thanr ig-
nored), the result is a total oflr subsets. Each of
theselr subsets defines a key function. For each po-
sition in a word to which the key function is to be
applied (padded with leading and training markers),
the rule with the longest (i.e., most specific) LHS
that matches the window centered at that position is
used to determine the corresponding character in the
key. If no rules apply, the character in the key is the
same as that in the original word.

For example, suppose that the word to which the
key is to be applied isCREIGHTON and transforma-
tions includeLEIGHTO → -, EIGHT → - andIGH → G.
The character in the key corresponding to theG in
CREIGHTON would be- (i.e., a deletion) because the
EIGHT is the longest LHS matching at that position.
The key consists of the concatenation of the RHSs
produced by successively applying the key function
to each position in the orginal word.

This procedure is similar to window-based
pronunciation-learning algorithms,e.g., (Sejnowski
and Rosenberg, 1987; Bakiri and Dietterich, 1999),
but differs in that the objective is not determining
a correct pronunciation, but is instead transforming
words that are similar under a given metric into a
single, consistent orthographic representation.

3.3 Filtering with ETK

Thelr subsets of transformation rules induced from
a given set of equivalence classes define an ensem-
ble of key functions. To filter potential matches with
this ensemble, each pattern is added to a hash table
indexed by each key generated by a key function.
Candidate matches to a text string consist of all pat-
terns indexed by the keys generated from the text by
the ensemble of key functions. For example, sup-
pose that (as is the case with the rule sets for Amer-
ican names, pronunciation distance, andk = 0)
patternsROLLINS andROWLAND have keys that in-
clude{ROWLINS ROLINS} and{RONLLAND ROLAN},
respectively, and that textRAWLINS has keys that in-
clude {ROWLINS RALINS}. Then ROLLINS but not
ROWLAND would be retrieved because it is indexed
by a key shared withROWLINS.4

4 Evaluation

The retrieval accuracy of ETK was compared to
that of BKT, filtering by partition, ngram filtering,
Phonex, and Soundex on sets of U.S. and German
names. The U.S. name set consisted of the 5,000
most common last names identified during the most
recent U.S. Census5 which have pronunciations in
cmudict, the CMU pronouncing dictionary.6 The
German name set consisted of the first 5963 en-
tries in the HADI-BOMP collection7 whose part of
speech isNAM.

The filtering algorithms were compared with re-
spect to two alternative distance metrics. The first
waspronunciation distance, which consists of edit

4In the evaluation below, the original string itself is added
as an additional index key. This addition slightly increases both
recall and precision.

5The names were taken from the 1990
U.S. Census collection of 88,799 last names at
http://www.census.gov/genealogy/names/names files.html.

6http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
7http://www.ikp.uni-bonn.de/dt/forsch/phonetik/bomp.

910



distance between pronunciations represented us-
ing the cmudict phoneme set for U.S. names and
the HADI-BOMP phoneme set for German names.
Stress values were removed from cmudict pronun-
ciations, and syllable divisions were removed from
HADI-BOMP pronunciations. When there were
multiple pronunciations for a name in cmudict, the
first was used. In cmudict, for example,MEUSE

and MEWES have pronunciation distance of 0 be-
cause both have pronunciationM Y UW Z. In HADI-
BOMP,HELGARD andHERBART have pronunciation
distance 2 because their pronunciations areh E l g a r

t andh E r b a r t. The second distance metric was edit
distance with unit weights for insertions, deletions,
and substitutions. In practice, appropriate distance
metrics might be Jaro (Jaro, 1995), Winkler (Win-
kler, 1999), or some metric specialized to a particu-
lar phonetic or error model. Pronunciation and edit
distance were chosen as representative of phonetic
and non-phonetic metrics.

Training data for ETK for a given language,
match thresholdk, and similarity metric consisted of
all sets of at least 2 names containing only elements
were withink of some element of the set under the
metric. These training sets were created by perform-
ing a retrieval on every name in each collection us-
ing BKT, which has 100% recall. For each retrieval,
the true positives from BKT’s return set were de-
termined by applying the similarity metric between
each return set element and the query. If there were
at least 2 true positives (including the query itself),
the set of true positives was included in the training
set.8

ETK was tested using cross validation, so that
names in the training set and those in the testing set
were disjoint. Specifically, all names in the testing
set were removed from each collection in the train-
ing set. If at least 2 names remained, the collection
was retained. ETK’s maxWindow size was 7, as in
the examples above.

In BKT, the bucket size (maximum number of el-
ements in any leaf node) was 2, and the longest el-
ement (rather than a random element) was selected

8Note that each set of true positives is a cluster having the
query as its centroid and radiusk under the distance metric.
The triangle inequality guarantees that the maximum distance
between any pair of names in the collection is no greater than
2k.

as the root of each subtree. The rationale for this
choice is that there is typically more variance in dis-
tance from a longer word than from a shorter word,
and greater variance increases the branching factor
in BKT, reducing tree depth and therefore the num-
ber of nodes visited during search.

Since the importance of precision in filtering is
that it determines the number of calls to the sim-
ilarity metric required for a given level of recall,
precision figures for BKT includeinternal calls to
the similarity metric, that is, calls during indexing.
Thus, precision of BKT is the number of true posi-
tives divided by the number of all positives plus the
number of internal metric calls.

In Soundex and Phonex indexing, each name was
indexed by its Soundex (Phonex) key. Similarly,
in ngram filtering each name was indexed by all
its ngrams, with special leading and trailing char-
acters added. Retrieval was performed by finding
the Soundex or Phonex encoding or the ngrams of
each query and retrieving every name indexed by the
Soundex or Phonex encoding or any ngram. Preci-
sion was measured with duplicates removed.

In partition filtering, each name was indexed by
each of itsk + 1 partitions, and the partitions them-
selves were organized in an Aho-Curasick tree (Gus-
field, 1999). Retrieval was performed by apply-
ing the Aho-Curasick tree to the query to determine
all partitions occurring in the query and retrieving
the names corresponding to each partition, remov-
ing duplicates.

4.1 Optimizing LHS and RHS Subdivisions

The first experiment was performed to clarify the op-
timal sizes ofl, the number of LHS subdivisions,
andr, the number of RHS ranks. ETK was tested
on the U.S. name set withk = 1, pronunciation dis-
tance as similarity metric, and 10-fold cross valida-
tion for l ∈ {1, 2, 4, 8, 16, 32} andr ∈ {1, 2}.

As shown in Table 1, whenl = 1, r = 2 has
higher f-measure thanr = 1, but whenl is 2 or
greater, the best value forr is 1. Overall, the highest
f-measure is obtained withl = 8 andr = 1. In the
experiments below, the value of 16 was used forl

because this leads to slightly higher recall at a small
cost in decreased f-measure.
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Table 1: F-measure forl ∈ {1, 2, 4, 8, 16, 32} and
r ∈ {1, 2, } on U.S. names with pronunciation dis-
tance andk = 1 in 10-fold cross validation.

1 2 4 8 16 32
1 0.1431 0.2112 0.3039 0.3550 0.3428 0.2928
2 0.1469 0.1858 0.1520 0.0729 0.0264 0.0108

4.2 Comparison of ETK to Other Filter
Algorithms

The retrieval accuracy of ETK was compared to that
of BKT, partition, ngram, Phonex, and Soundex on
the U.S. and German name sets for pronunciation
distance withk ∈ {0, 1, 2} and for edit distance
with k ∈ {1, 2}. In tests involving pronuncia-
tion distance BKT was tested under two conditions:
with the pronunciation distance function available
to BKT during indexing and retrieval; and the dis-
tance function unavailable, so that BKT indexing
and retrieval was performed on the surface form
even though the actual similarity metric was pro-
nunciation distance. This is intended to simulate
the situation in which examples of matching names
are available but the underlying similarity metric is
unknown. Ngram and partition filtering were per-
formed on letters only.

Tables 2 and 3 show recall, precision, and f-
measure for pronunciation distance on U.S. and Ger-
man names, respectively, withk ∈ {0, 1, 2}, l =
16, and r = 1. ETK has the highest f-measure
under all conditions because its precision is con-
sistently higher than that of the other algorithms.
This is because each key function in ETK applies
only transformations representing orthographic dif-
ferences between names in the same equivalence
class. Thus, the transformations are very conserva-
tive. BKT always has recall of 1.0 when the pronun-
ciation model is available, but in many cases a model
may be unavailable. When no model is available, no
single algorithm consistently has the highest recall.
Ngrams, partition, Phonex, and BKT each had the
highest recall in at least one language/error thresh-
old combination.

Tables 4 and 5 show recall, precision, and f-
measure for edit distance on U.S. and German
names, respectively, withk ∈ {1, 2}, l = 16, and
r = 1 (k = 0 would be an exact match on the
surface form, for which all algorithms would have

Table 2: Recall, precision, and f-measure for pro-
nunciation distance on U.S. surnames. K is maxi-
mum permitted error. BKT-NM is BKT without the
pronunciation model. Best results are shown in bold,
including highest recall in addition to BKT.

recall precision f-measure
BKT 1.0000 0.0152 0.0299
BKT-NM 0.0510 0.0003 0.0006
partition 0.1298 0.0168 0.0298

k=0 soundex 0.8350 0.0331 0.0637
phonex 0.8811 0.0173 0.0339
ngrams 0.7457 0.0034 0.0068
ETK 0.5642 0.3314 0.4175
BKT 1.0000 0.0039 0.0078
BKT-NM 0.5704 0.0019 0.0038
partition 0.6157 0.0092 0.0181

k=1 soundex 0.4422 0.1803 0.2562
phonex 0.4969 0.1008 0.1676
ngrams 0.4453 0.0213 0.0406
ETK 0.4862 0.2647 0.3428
BKT 1.0000 0.0088 0.0174
BKT-NM 0.7588 0.0050 0.0099
partition 0.6948 0.0122 0.0240

k=2 soundex 0.1298 0.4350 0.2000
phonex 0.1708 0.2860 0.2139
ngrams 0.2063 0.0825 0.1178
ETK 0.4502 0.1953 0.2724

recall 1.0). Again, ETK has the highest f-measure
because of its consistently high precision.

4.3 Training Set Size

The sensitivity of ETK to training set size was tested
by performing 50-fold cross-validation with train-
ing sets for pronunciation distance on U.S. names of
sizes in{48, 96, 191, 381, 762, 1524, 3047} drawn
from the 3047 equivalence classes in the 5000 U.S.
names with pronunciation distance andk = 1. As
shown in Figure 1, the learning curve rises steeply
for the entire range of training set sizes considered
in this experiment.

5 Conclusion

The experimental results demonstrate the feasibil-
ity of basing search keys on transformation rules
acquired from examples. If sufficient examples of
names that match under a given distance metric and
error threshold are available, keys can be induced
that lead to good performance in comparison to al-
ternative filtering algorithms. Moreover, the results
involving pronunciation distance illustrate how pho-
netic keys can be learned that are specific to indi-
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Table 3: Recall, precision, and f-measure for pro-
nunciation distance on German names. K is maxi-
mum permitted error. Best results are shown in bold.

recall precision f-measure
BKT 1.0000 0.0056 0.0110
BKT-NM 0.1600 0.0003 0.0007
partition 0.1223 0.0059 0.0112

k=0 soundex 0.7059 0.0125 0.0235
phonex 0.8997 0.0061 0.0122
ngrams 0.9348 0.0016 0.0031
ETK 0.7715 0.3606 0.4915
BKT 1.0000 0.0013 0.0026
BKT-NM 0.7923 0.0006 0.0013
partition 0.7865 0.0031 0.0062

k=1 soundex 0.3969 0.0533 0.0940
phonex 0.5048 0.0270 0.0512
ngrams 0.6866 0.0090 0.0178
ETK 0.5503 0.3820 0.4510
BKT 1.0000 0.0018 0.0037
BKT-NM 0.8533 0.0010 0.0021
partition 0.8384 0.0029 0.0058

k=2 soundex 0.1311 0.1209 0.1258
phonex 0.1693 0.0640 0.0929
ngrams 0.2801 0.0255 0.0468
ETK 0.3496 0.1687 0.2276

Table 4: Recall, precision, and f-measure for edit
distance on U.S. surnames.

recall precision f-measure
BKT 1.0000 0.0024 0.0048
partition 1.0000 0.0106 0.0210

k=0 soundex 0.3537 0.1010 0.1572
phonex 0.3937 0.0564 0.0986
ngrams 0.8408 0.0288 0.0557
ETK 0.6768 0.3244 0.4386
BKT 1.0000 0.0052 0.0103
partition 1.0000 0.0139 0.0275

k=1 soundex 0.1038 0.2692 0.1498
phonex 0.1288 0.1696 0.1464
ngrams 0.4112 0.1300 0.1976
ETK 0.4001 0.3565 0.3770

Table 5: Recall, precision, and f-measure for edit
distance on German names.

recall precision f-measure
BKT 1.0000 0.0009 0.0018
partition 1.0000 0.0045 0.0091

k=0 soundex 0.5266 0.0826 0.1429
phonex 0.6101 0.0374 0.0704
ngrams 0.8880 0.0134 0.0264
ETK 0.6647 0.4957 0.5679
BKT 1.0000 0.0017 0.0034
partition 1.0000 0.0048 0.0096

k=1 soundex 0.1592 0.2052 0.1793
phonex 0.2019 0.1063 0.1392
ngrams 0.4036 0.0516 0.0915
ETK 0.3986 0.3466 0.3708

Figure 1: F-measure for U.S. names for training sets
containing varying numbers of collections, withk =
1, l = 16, andr = 1. Each training instance consists
of all names withink of some centriod under the
metric.

vidual match criteria. In filtering under pronunci-
ation distance, ETK’s f-measure for German names
was similar to its f-measure for U.S. names (actually
higher fork ∈ {0, 1}) whereas Soundex and Phonex
were approximately an order of magnitude lower.

Although ETK consistently had the highest f-
measure in this experiment, it does not follow that
ETK is necessarily the most desirable name filter for
any particular application. In many applications re-
call may be much more important than precision. In
such cases, it may be essential to choose the highest
recall algorithm notwithstanding a lower f-measure.
However, the highest recall algorthms can lead to a
very large number of distance-metric applications.
For example, in some data sets the number of nodes
examined by BKT during retrieval is a significant
proportion of the entire pattern set.

ETK has the disadvantage of requiring a large set
of training examples consisting of equivalence sets
of strings that match under the metric and maximum
allowable error. Where such large numbers of equiv-
alence sets are unavailable, it may be better to use
simpler and less-informed filters.

A number of variations of ETK are possible. For
example, keys could consist of finite-state trans-
ducers trained from consistent subsets of mappings
rather than transformation rules. There are also
many possible alternatives to ETK’s window-based
approach to deriving mappings from examples.
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In summary, this work has demonstrated that en-
sembles of keys induced from equivalence classes
of names under a specific distance metric and max-
imum allowable error can filter names with high f-
measure. The experimental results illustrate the ben-
efits both of acquiring keys that are adapted to spe-
cific similarity criteria and of indexing with multiple
independent keys.
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Abstract

The Conference on Computational Natural
Language Learning features a shared task, in
which participants train and test their learn-
ing systems on the same data sets. In 2007,
as in 2006, the shared task has been devoted
to dependency parsing, this year with both a
multilingual track and a domain adaptation
track. In this paper, we define the tasks of the
different tracks and describe how the data
sets were created from existing treebanks for
ten languages. In addition, we characterize
the different approaches of the participating
systems, report the test results, and provide
a first analysis of these results.

1 Introduction

Previous shared tasks of the Conference on Compu-
tational Natural Language Learning (CoNLL) have
been devoted to chunking (1999, 2000), clause iden-
tification (2001), named entity recognition (2002,
2003), and semantic role labeling (2004, 2005). In
2006 the shared task was multilingual dependency
parsing, where participants had to train a single
parser on data from thirteen different languages,
which enabled a comparison not only of parsing and
learning methods, but also of the performance that
can be achieved for different languages (Buchholz
and Marsi, 2006).

In dependency-based syntactic parsing, the task is
to derive a syntactic structure for an input sentence
by identifying the syntactic head of each word in the
sentence. This defines a dependency graph, where

the nodes are the words of the input sentence and the
arcs are the binary relations from head to dependent.
Often, but not always, it is assumed that all words
except one have a syntactic head, which means that
the graph will be a tree with the single independent
word as the root. In labeled dependency parsing, we
additionally require the parser to assign a specific
type (or label) to each dependency relation holding
between a head word and a dependent word.

In this year’s shared task, we continue to explore
data-driven methods for multilingual dependency
parsing, but we add a new dimension by also intro-
ducing the problem of domain adaptation. The way
this was done was by having two separate tracks: a
multilingual track using essentially the same setup
as last year, but with partly different languages, and
a domain adaptation track, where the task was to use
machine learning to adapt a parser for a single lan-
guage to a new domain. In total, test results were
submitted for twenty-three systems in the multilin-
gual track, and ten systems in the domain adaptation
track (six of which also participated in the multilin-
gual track). Not everyone submitted papers describ-
ing their system, and some papers describe more
than one system (or the same system in both tracks),
which explains why there are only (!) twenty-one
papers in the proceedings.

In this paper, we provide task definitions for the
two tracks (section 2), describe data sets extracted
from available treebanks (section 3), report results
for all systems in both tracks (section 4), give an
overview of approaches used (section 5), provide a
first analysis of the results (section 6), and conclude
with some future directions (section 7).
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2 Task Definition

In this section, we provide the task definitions that
were used in the two tracks of the CoNLL 2007
Shard Task, the multilingual track and the domain
adaptation track, together with some background
and motivation for the design choices made. First
of all, we give a brief description of the data format
and evaluation metrics, which were common to the
two tracks.

2.1 Data Format and Evaluation Metrics

The data sets derived from the original treebanks
(section 3) were in the same column-based format
as for the 2006 shared task (Buchholz and Marsi,
2006). In this format, sentences are separated by a
blank line; a sentence consists of one or more to-
kens, each one starting on a new line; and a token
consists of the following ten fields, separated by a
single tab character:

1. ID: Token counter, starting at 1 for each new
sentence.

2. FORM: Word form or punctuation symbol.

3. LEMMA: Lemma or stem of word form, or an
underscore if not available.

4. CPOSTAG: Coarse-grained part-of-speech tag,
where the tagset depends on the language.

5. POSTAG: Fine-grained part-of-speech tag,
where the tagset depends on the language, or
identical to the coarse-grained part-of-speech
tag if not available.

6. FEATS: Unordered set of syntactic and/or mor-
phological features (depending on the particu-
lar language), separated by a vertical bar (|), or
an underscore if not available.

7. HEAD: Head of the current token, which is
either a value of ID or zero (0). Note that,
depending on the original treebank annotation,
there may be multiple tokens with HEAD=0.

8. DEPREL: Dependency relation to the HEAD.
The set of dependency relations depends on
the particular language. Note that, depending

on the original treebank annotation, the depen-
dency relation when HEAD=0 may be mean-
ingful or simply ROOT.

9. PHEAD: Projective head of current token,
which is either a value of ID or zero (0), or an
underscore if not available.

10. PDEPREL: Dependency relation to the
PHEAD, or an underscore if not available.

The PHEAD and PDEPREL were not used at all
in this year’s data sets (i.e., they always contained
underscores) but were maintained for compatibility
with last year’s data sets. This means that, in prac-
tice, the first six columns can be considered as input
to the parser, while the HEAD and DEPREL fields
are the output to be produced by the parser. Labeled
training sets contained all ten columns; blind test
sets only contained the first six columns; and gold
standard test sets (released only after the end of the
test period) again contained all ten columns. All data
files were encoded in UTF-8.

The official evaluation metric in both tracks was
the labeled attachment score (LAS), i.e., the per-
centage of tokens for which a system has predicted
the correct HEAD and DEPREL, but results were
also reported for unlabeled attachment score (UAS),
i.e., the percentage of tokens with correct HEAD,
and the label accuracy (LA), i.e., the percentage of
tokens with correct DEPREL. One important differ-
ence compared to the 2006 shared task is that all to-
kens were counted as “scoring tokens”, including in
particular all punctuation tokens. The official eval-
uation script, eval07.pl, is available from the shared
task website.1

2.2 Multilingual Track
The multilingual track of the shared task was orga-
nized in the same way as the 2006 task, with an-
notated training and test data from a wide range of
languages to be processed with one and the same
parsing system. This system must therefore be able
to learn from training data, to generalize to unseen
test data, and to handle multiple languages, possi-
bly by adjusting a number of hyper-parameters. Par-
ticipants in the multilingual track were expected to
submit parsing results for all languages involved.

1http://depparse.uvt.nl/depparse-wiki/SoftwarePage
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One of the claimed advantages of dependency
parsing, as opposed to parsing based on constituent
analysis, is that it extends naturally to languages
with free or flexible word order. This explains the
interest in recent years for multilingual evaluation
of dependency parsers. Even before the 2006 shared
task, the parsers of Collins (1997) and Charniak
(2000), originally developed for English, had been
adapted for dependency parsing of Czech, and the
parsing methodology proposed by Kudo and Mat-
sumoto (2002) and Yamada and Matsumoto (2003)
had been evaluated on both Japanese and English.
The parser of McDonald and Pereira (2006) had
been applied to English, Czech and Danish, and the
parser of Nivre et al. (2007) to ten different lan-
guages. But by far the largest evaluation of mul-
tilingual dependency parsing systems so far was the
2006 shared task, where nineteen systems were eval-
uated on data from thirteen languages (Buchholz and
Marsi, 2006).

One of the conclusions from the 2006 shared task
was that parsing accuracy differed greatly between
languages and that a deeper analysis of the factors
involved in this variation was an important problem
for future research. In order to provide an extended
empirical foundation for such research, we tried to
select the languages and data sets for this year’s task
based on the following desiderata:

• The selection of languages should be typolog-
ically varied and include both new languages
and old languages (compared to 2006).

• The creation of the data sets should involve as
little conversion as possible from the original
treebank annotation, meaning that preference
should be given to treebanks with dependency
annotation.

• The training data sets should include at least
50,000 tokens and at most 500,000 tokens.2

The final selection included data from Arabic,
Basque, Catalan, Chinese, Czech, English, Greek,
Hungarian, Italian, and Turkish. The treebanks from

2The reason for having an upper bound on the training set
size was the fact that, in 2006, some participants could not train
on all the data for some languages because of time limitations.
Similar considerations also led to the decision to have a smaller
number of languages this year (ten, as opposed to thirteen).

which the data sets were extracted are described in
section 3.

2.3 Domain Adaptation Track
One well known characteristic of data-driven pars-
ing systems is that they typically perform much
worse on data that does not come from the train-
ing domain (Gildea, 2001). Due to the large over-
head in annotating text with deep syntactic parse
trees, the need to adapt parsers from domains with
plentiful resources (e.g., news) to domains with lit-
tle resources is an important problem. This prob-
lem is commonly referred to as domain adaptation,
where the goal is to adapt annotated resources from
a source domain to a target domain of interest.

Almost all prior work on domain adaptation as-
sumes one of two scenarios. In the first scenario,
there are limited annotated resources available in the
target domain, and many studies have shown that
this may lead to substantial improvements. This in-
cludes the work of Roark and Bacchiani (2003), Flo-
rian et al. (2004), Chelba and Acero (2004), Daumé
and Marcu (2006), and Titov and Henderson (2006).
Of these, Roark and Bacchiani (2003) and Titov and
Henderson (2006) deal specifically with syntactic
parsing. The second scenario assumes that there are
no annotated resources in the target domain. This is
a more realistic situation and is considerably more
difficult. Recent work by McClosky et al. (2006)
and Blitzer et al. (2006) have shown that the exis-
tence of a large unlabeled corpus in the new domain
can be leveraged in adaptation. For this shared-task,
we are assuming the latter setting – no annotated re-
sources in the target domain.

Obtaining adequate annotated syntactic resources
for multiple languages is already a challenging prob-
lem, which is only exacerbated when these resources
must be drawn from multiple and diverse domains.
As a result, the only language that could be feasibly
tested in the domain adaptation track was English.

The setup for the domain adaptation track was as
follows. Participants were provided with a large an-
notated corpus from the source domain, in this case
sentences from the Wall Street Journal. Participants
were also provided with data from three different
target domains: biomedical abstracts (development
data), chemical abstracts (test data 1), and parent-
child dialogues (test data 2). Additionally, a large
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unlabeled corpus for each data set (training, devel-
opment, test) was provided. The goal of the task was
to use the annotated source data, plus any unlabeled
data, to produce a parser that is accurate for each of
the test sets from the target domains.3

Participants could submit systems in either the
“open” or “closed” class (or both). The closed class
requires a system to use only those resources pro-
vided as part of the shared task. The open class al-
lows a system to use additional resources provided
those resources are not drawn from the same domain
as the development or test sets. An example might
be a part-of-speech tagger trained on the entire Penn
Treebank and not just the subset provided as train-
ing data, or a parser that has been hand-crafted or
trained on a different training set.

3 Treebanks

In this section, we describe the treebanks used in the
shared task and give relevant information about the
data sets created from them.

3.1 Multilingual Track

Arabic The analytical syntactic annotation
of the Prague Arabic Dependency Treebank
(PADT) (Hajič et al., 2004) can be considered a
pure dependency annotation. The conversion, done
by Otakar Smrz, from the original format to the
column-based format described in section 2.1 was
therefore relatively straightforward, although not all
the information in the original annotation could be
transfered to the new format. PADT was one of the
treebanks used in the 2006 shared task but then only
contained about 54,000 tokens. Since then, the size
of the treebank has more than doubled, with around
112,000 tokens. In addition, the morphological
annotation has been made more informative. It
is also worth noting that the parsing units in this
treebank are in many cases larger than conventional
sentences, which partly explains the high average
number of tokens per “sentence” (Buchholz and
Marsi, 2006).

3Note that annotated development data for the target domain
was only provided for the development domain, biomedical ab-
stracts. For the two test domains, chemical abstracts and parent-
child dialogues, the only annotated data sets were the gold stan-
dard test sets, released only after test runs had been submitted.

Basque For Basque, we used the 3LB Basque
treebank (Aduriz et al., 2003). At present, the tree-
bank consists of approximately 3,700 sentences, 334
of which were used as test data. The treebank com-
prises literary and newspaper texts. It is annotated
in a dependency format and was converted to the
CoNLL format by a team led by Koldo Gojenola.

Catalan The Catalan section of the CESS-ECE
Syntactically and Semantically Annotated Cor-
pora (Martı́ et al., 2007) is annotated with, among
other things, constituent structure and grammatical
functions. A head percolation table was used for
automatically converting the constituent trees into
dependency trees. The original data only contains
functions related to the verb, and a function table
was used for deriving the remaining syntactic func-
tions. The conversion was performed by a team led
by Lluı́s Màrquez and Antònia Martı́.

Chinese The Chinese data are taken from the
Sinica treebank (Chen et al., 2003), which con-
tains both syntactic functions and semantic func-
tions. The syntactic head was used in the conversion
to the CoNLL format, carried out by Yu-Ming Hsieh
and the organizers of the 2006 shared task, and the
syntactic functions were used wherever it was pos-
sible. The training data used is basically the same
as for the 2006 shared task, except for a few correc-
tions, but the test data is new for this year’s shared
task. It is worth noting that the parsing units in this
treebank are sometimes smaller than conventional
sentence units, which partly explains the low aver-
age number of tokens per “sentence” (Buchholz and
Marsi, 2006).

Czech The analytical syntactic annotation of the
Prague Dependency Treebank (PDT) (Böhmová et
al., 2003) is a pure dependency annotation, just as
for PADT. It was also used in the shared task 2006,
but there are two important changes compared to
last year. First, version 2.0 of PDT was used in-
stead of version 1.0, and a conversion script was
created by Zdenek Zabokrtsky, using the new XML-
based format of PDT 2.0. Secondly, due to the upper
bound on training set size, only sections 1–3 of PDT
constitute the training data, which amounts to some
450,000 tokens. The test data is a small subset of the
development test set of PDT.
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English For English we used the Wall Street Jour-
nal section of the Penn Treebank (Marcus et al.,
1993). In particular, we used sections 2-11 for train-
ing and a subset of section 23 for testing. As a pre-
processing stage we removed many functions tags
from the non-terminals in the phrase structure repre-
sentation to make the representations more uniform
with out-of-domain test sets for the domain adapta-
tion track (see section 3.2). The resulting data set
was then converted to dependency structures using
the procedure described in Johansson and Nugues
(2007a). This work was done by Ryan McDonald.

Greek The Greek Dependency Treebank
(GDT) (Prokopidis et al., 2005) adopts a de-
pendency structure annotation very similar to those
of PDT and PADT, which means that the conversion
by Prokopis Prokopidis was relatively straightfor-
ward. GDT is one of the smallest treebanks in
this year’s shared task (about 65,000 tokens) and
contains sentences of Modern Greek. Just like PDT
and PADT, the treebank contains more than one
level of annotation, but we only used the analytical
level of GDT.

Hungarian For the Hungarian data, the Szeged
treebank (Csendes et al., 2005) was used. The tree-
bank is based on texts from six different genres,
ranging from legal newspaper texts to fiction. The
original annotation scheme is constituent-based, fol-
lowing generative principles. It was converted into
dependencies by Zóltan Alexin based on heuristics.

Italian The data set used for Italian is a subset
of the balanced section of the Italian Syntactic-
Semantic Treebank (ISST) (Montemagni et al.,
2003) and consists of texts from the newspaper Cor-
riere della Sera and from periodicals. A team led
by Giuseppe Attardi, Simonetta Montemagni, and
Maria Simi converted the annotation to the CoNLL
format, using information from two different anno-
tation levels, the constituent structure level and the
dependency structure level.

Turkish For Turkish we used the METU-Sabancı
Turkish Treebank (Oflazer et al., 2003), which was
also used in the 2006 shared task. A new test set of
about 9,000 tokens was provided by Gülşen Eryiğit
(Eryiğit, 2007), who also handled the conversion to
the CoNLL format, which means that we could use

all the approximately 65,000 tokens of the original
treebank for training. The rich morphology of Turk-
ish requires the basic tokens in parsing to be inflec-
tional groups (IGs) rather than words. IGs of a single
word are connected to each other deterministically
using dependency links labeled DERIV, referred to
as word-internal dependencies in the following, and
the FORM and the LEMMA fields may be empty
(they contain underscore characters in the data files).
Sentences do not necessarily have a unique root;
most internal punctuation and a few foreign words
also have HEAD=0.

3.2 Domain Adaptation Track

As mentioned previously, the source data is drawn
from a corpus of news, specifically the Wall Street
Journal section of the Penn Treebank (Marcus et al.,
1993). This data set is identical to the English train-
ing set from the multilingual track (see section 3.1).

For the target domains we used three different
labeled data sets. The first two were annotated
as part of the PennBioIE project (Kulick et al.,
2004) and consist of sentences drawn from either
biomedical or chemical research abstracts. Like the
source WSJ corpus, this data is annotated using the
Penn Treebank phrase structure scheme. To con-
vert these sets to dependency structures we used the
same procedure as before (Johansson and Nugues,
2007a). Additional care was taken to remove sen-
tences that contained non-WSJ part-of-speech tags
or non-terminals (e.g., HYPH part-of-speech tag in-
dicating a hyphen). Furthermore, the annotation
scheme for gaps and traces was made consistent with
the Penn Treebank wherever possible. As already
mentioned, the biomedical data set was distributed
as a development set for the training phase, while
the chemical data set was only used for final testing.

The third target data set was taken from the
CHILDES database (MacWhinney, 2000), in partic-
ular the EVE corpus (Brown, 1973), which has been
annotated with dependency structures. Unfortu-
nately the dependency labels of the CHILDES data
were inconsistent with those of the WSJ, biomedi-
cal and chemical data sets, and we therefore opted
to only evaluate unlabeled accuracy for this data
set. Furthermore, there was an inconsistency in how
main and auxiliary verbs were annotated for this data
set relative to others. As a result of this, submitting
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Multilingual Domain adaptation
Ar Ba Ca Ch Cz En Gr Hu It Tu PCHEM CHILDES

Language family Sem. Isol. Rom. Sin. Sla. Ger. Hel. F.-U. Rom. Tur. Ger.
Annotation d d c+f c+f d c+f d c+f c+f d c+f d

Training data Development data
Tokens (k) 112 51 431 337 432 447 65 132 71 65 5
Sentences (k) 2.9 3.2 15.0 57.0 25.4 18.6 2.7 6.0 3.1 5.6 0.2
Tokens/sentence 38.3 15.8 28.8 5.9 17.0 24.0 24.2 21.8 22.9 11.6 25.1
LEMMA Yes Yes Yes No Yes No Yes Yes Yes Yes No
No. CPOSTAG 15 25 17 13 12 31 18 16 14 14 25
No. POSTAG 21 64 54 294 59 45 38 43 28 31 37
No. FEATS 21 359 33 0 71 0 31 50 21 78 0
No. DEPREL 29 35 42 69 46 20 46 49 22 25 18
No. DEPREL H=0 18 17 1 1 8 1 22 1 1 1 1
% HEAD=0 8.7 9.7 3.5 16.9 11.6 4.2 8.3 4.6 5.4 12.8 4.0
% HEAD left 79.2 44.5 60.0 24.7 46.9 49.0 44.8 27.4 65.0 3.8 50.0
% HEAD right 12.1 45.8 36.5 58.4 41.5 46.9 46.9 68.0 29.6 83.4 46.0
HEAD=0/sentence 3.3 1.5 1.0 1.0 2.0 1.0 2.0 1.0 1.2 1.5 1.0
% Non-proj. arcs 0.4 2.9 0.1 0.0 1.9 0.3 1.1 2.9 0.5 5.5 0.4
% Non-proj. sent. 10.1 26.2 2.9 0.0 23.2 6.7 20.3 26.4 7.4 33.3 8.0
Punc. attached S S A S S A S A A S A
DEPRELS for punc. 10 13 6 29 16 13 15 1 10 12 8

Test data PCHEM CHILDES
Tokens 5124 5390 5016 5161 4724 5003 4804 7344 5096 4513 5001 4999
Sentences 131 334 167 690 286 214 197 390 249 300 195 666
Tokens/sentence 39.1 16.1 30.0 7.5 16.5 23.4 24.4 18.8 20.5 15.0 25.6 12.9
% New words 12.44 24.98 4.35 9.70 12.58 3.13 12.43 26.10 15.07 36.29 31.33 6.10
% New lemmas 2.82 11.13 3.36 n/a 5.28 n/a 5.82 14.80 8.24 9.95 n/a n/a

Table 1: Characteristics of the data sets for the 10 languages of the multilingual track and the development
set and the two test sets of the domain adaptation track.
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results for the CHILDES data was considered op-
tional. Like the chemical data set, this data set was
only used for final testing.

Finally, a large corpus of unlabeled in-domain
data was provided for each data set and made avail-
able for training. This data was drawn from the WSJ,
PubMed.com (specific to biomedical and chemical
research literature), and the CHILDES data base.
The data was tokenized to be as consistent as pos-
sible with the WSJ training set.

3.3 Overview

Table 1 describes the characteristics of the data sets.
For the multilingual track, we provide statistics over
the training and test sets; for the domain adaptation
track, the statistics were extracted from the develop-
ment set. Following last year’s shared task practice
(Buchholz and Marsi, 2006), we use the following
definition of projectivity: An arc (i, j) is projective
iff all nodes occurring between i and j are dominated
by i (where dominates is the transitive closure of the
arc relation).

In the table, the languages are abbreviated to their
first two letters. Language families are: Semitic,
Isolate, Romance, Sino-Tibetan, Slavic, Germanic,
Hellenic, Finno-Ugric, and Turkic. The type of the
original annotation is either constituents plus (some)
functions (c+f) or dependencies (d). For the train-
ing data, the number of words and sentences are
given in multiples of thousands, and the average
length of a sentence in words (including punctua-
tion tokens). The following rows contain informa-
tion about whether lemmas are available, the num-
ber of coarse- and fine-grained part-of-speech tags,
the number of feature components, and the number
of dependency labels. Then information is given on
how many different dependency labels can co-occur
with HEAD=0, the percentage of HEAD=0 depen-
dencies, and the percentage of heads preceding (left)
or succeeding (right) a token (giving an indication of
whether a language is predominantly head-initial or
head-final). This is followed by the average number
of HEAD=0 dependencies per sentence and the per-
centage of non-projective arcs and sentences. The
last two rows show whether punctuation tokens are
attached as dependents of other tokens (A=Always,
S=Sometimes) and specify the number of depen-
dency labels that exist for punctuation tokens. Note

that punctuation is defined as any token belonging to
the UTF-8 category of punctuation. This means, for
example, that any token having an underscore in the
FORM field (which happens for word-internal IGs
in Turkish) is also counted as punctuation here.

For the test sets, the number of words and sen-
tences as well as the ratio of words per sentence are
listed, followed by the percentage of new words and
lemmas (if applicable). For the domain adaptation
sets, the percentage of new words is computed with
regard to the training set (Penn Treebank).

4 Submissions and Results

As already stated in the introduction, test runs were
submitted for twenty-three systems in the multilin-
gual track, and ten systems in the domain adaptation
track (six of which also participated in the multilin-
gual track). In the result tables below, systems are
identified by the last name of the team member listed
first when test runs were uploaded for evaluation. In
general, this name is also the first author of a paper
describing the system in the proceedings, but there
are a few exceptions and complications. First of all,
for four out of twenty-seven systems, no paper was
submitted to the proceedings. This is the case for the
systems of Jia, Maes et al., Nash, and Zeman, which
is indicated by the fact that these names appear in
italics in all result tables. Secondly, two teams sub-
mitted two systems each, which are described in a
single paper by each team. Thus, the systems called
“Nilsson” and “Hall, J.” are both described in Hall et
al. (2007a), while the systems called “Duan (1)” and
“Duan (2)” are both described in Duan et al. (2007).
Finally, please pay attention to the fact that there
are two teams, where the first author’s last name is
Hall. Therefore, we use “Hall, J.” and “Hall, K.”,
to disambiguate between the teams involving Johan
Hall (Hall et al., 2007a) and Keith Hall (Hall et al.,
2007b), respectively.

Tables 2 and 3 give the scores for the multilingual
track in the CoNLL 2007 shared task. The Average
column contains the average score for all ten lan-
guages, which determines the ranking in this track.
Table 4 presents the results for the domain adapta-
tion track, where the ranking is determined based on
the PCHEM results only, since the CHILDES data
set was optional. Note also that there are no labeled
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Team Average Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish
Nilsson 80.32(1) 76.52(1) 76.94(1) 88.70(1) 75.82(15) 77.98(3) 88.11(5) 74.65(2) 80.27(1) 84.40(1) 79.79(2)
Nakagawa 80.29(2) 75.08(2) 72.56(7) 87.90(3) 83.84(2) 80.19(1) 88.41(3) 76.31(1) 76.74(8) 83.61(3) 78.22(5)
Titov 79.90(3) 74.12(6) 75.49(3) 87.40(6) 82.14(7) 77.94(4) 88.39(4) 73.52(10) 77.94(4) 82.26(6) 79.81(1)
Sagae 79.90(4) 74.71(4) 74.64(6) 88.16(2) 84.69(1) 74.83(8) 89.01(2) 73.58(8) 79.53(2) 83.91(2) 75.91(10)
Hall, J. 79.80(5)* 74.75(3) 74.99(5) 87.74(4) 83.51(3) 77.22(6) 85.81(12) 74.21(6) 78.09(3) 82.48(5) 79.24(3)
Carreras 79.09(6)* 70.20(11) 75.75(2) 87.60(5) 80.86(10) 78.60(2) 89.61(1) 73.56(9) 75.42(9) 83.46(4) 75.85(11)
Attardi 78.27(7) 72.66(8) 69.48(12) 86.86(7) 81.50(8) 77.37(5) 85.85(10) 73.92(7) 76.81(7) 81.34(8) 76.87(7)
Chen 78.06(8) 74.65(5) 72.39(8) 86.66(8) 81.24(9) 73.69(10) 83.81(13) 74.42(3) 75.34(10) 82.04(7) 76.31(9)
Duan (1) 77.70(9)* 69.91(13) 71.26(9) 84.95(10) 82.58(6) 75.34(7) 85.83(11) 74.29(4) 77.06(5) 80.75(9) 75.03(12)
Hall, K. 76.91(10)* 73.40(7) 69.81(11) 82.38(14) 82.77(4) 72.27(12) 81.93(15) 74.21(5) 74.20(11) 80.69(10) 77.42(6)
Schiehlen 76.18(11) 70.08(12) 66.77(14) 85.75(9) 80.04(11) 73.86(9) 86.21(9) 72.29(12) 73.90(12) 80.46(11) 72.48(15)
Johansson 75.78(12)* 71.76(9) 75.08(4) 83.33(12) 76.30(14) 70.98(13) 80.29(17) 72.77(11) 71.31(13) 77.55(14) 78.46(4)
Mannem 74.54(13)* 71.55(10) 65.64(15) 84.47(11) 73.76(17) 70.68(14) 81.55(16) 71.69(13) 70.94(14) 78.67(13) 76.42(8)
Wu 73.02(14)* 66.16(14) 70.71(10) 81.44(15) 74.69(16) 66.72(16) 79.49(18) 70.63(14) 69.08(15) 78.79(12) 72.52(14)
Nguyen 72.53(15)* 63.58(16) 58.18(17) 83.23(13) 79.77(12) 72.54(11) 86.73(6) 70.42(15) 68.12(17) 75.06(16) 67.63(17)
Maes 70.66(16)* 65.12(15) 69.05(13) 79.21(16) 70.97(18) 67.38(15) 69.68(21) 68.59(16) 68.93(16) 73.63(18) 74.03(13)
Canisius 66.99(17)* 59.13(18) 63.17(16) 75.44(17) 70.45(19) 56.14(17) 77.27(19) 60.35(18) 64.31(19) 75.57(15) 68.09(16)
Jia 63.00(18)* 63.37(17) 57.61(18) 23.35(20) 76.36(13) 54.95(18) 82.93(14) 65.45(17) 66.61(18) 74.65(17) 64.68(18)
Zeman 54.87(19) 46.06(20) 50.61(20) 62.94(19) 54.49(20) 50.21(20) 53.59(22) 55.29(19) 55.24(20) 62.13(19) 58.10(19)
Marinov 54.55(20)* 54.00(19) 51.24(19) 69.42(18) 49.87(21) 53.47(19) 52.11(23) 54.33(20) 44.47(21) 59.75(20) 56.88(20)
Duan (2) 24.62(21)* 82.64(5) 86.69(7) 76.89(6)
Nash 8.65(22)* 86.49(8)
Shimizu 7.20(23) 72.02(20)

Table 2: Labeled attachment score (LAS) for the multilingual track in the CoNLL 2007 shared task. Teams
are denoted by the last name of their first member, with italics indicating that there is no corresponding
paper in the proceedings. The number in parentheses next to each score gives the rank. A star next to a score
in the Average column indicates a statistically significant difference with the next lower rank.

Team Average Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish
Nakagawa 86.55(1)* 86.09(1) 81.04(5) 92.86(4) 88.88(2) 86.28(1) 90.13(2) 84.08(1) 82.49(3) 87.91(1) 85.77(3)
Nilsson 85.71(2) 85.81(2) 82.84(1) 93.12(3) 84.52(12) 83.59(4) 88.93(5) 81.22(4) 83.55(1) 87.77(2) 85.77(2)
Titov 85.62(3) 83.18(7) 81.93(2) 93.40(1) 87.91(4) 84.19(3) 89.73(4) 81.20(5) 82.18(4) 86.26(6) 86.22(1)
Sagae 85.29(4)* 84.04(4) 81.19(3) 93.34(2) 88.94(1) 81.27(8) 89.87(3) 80.37(11) 83.51(2) 87.68(3) 82.72(9)
Carreras 84.79(5) 81.48(10) 81.11(4) 92.46(5) 86.20(9) 85.16(2) 90.63(1) 81.37(3) 79.92(9) 87.19(4) 82.41(10)
Hall, J. 84.74(6)* 84.21(3) 80.61(6) 92.20(6) 87.60(5) 82.35(6) 86.77(12) 80.66(9) 81.71(6) 86.26(5) 85.04(5)
Attardi 83.96(7)* 82.53(8) 76.88(11) 91.41(7) 86.73(8) 83.40(5) 86.99(10) 80.75(8) 81.81(5) 85.54(8) 83.56(7)
Chen 83.22(8) 83.49(5) 78.65(8) 90.87(8) 85.91(10) 80.14(11) 84.91(13) 81.16(6) 79.25(11) 85.91(7) 81.92(12)
Hall, K. 83.08(9) 83.45(6) 78.55(9) 87.80(15) 87.91(3) 78.47(12) 83.21(15) 82.04(2) 79.34(10) 84.81(9) 85.18(4)
Duan (1) 82.77(10) 79.04(13) 77.59(10) 89.71(12) 86.88(7) 80.82(10) 86.97(11) 80.77(7) 80.66(7) 84.20(11) 81.03(13)
Schiehlen 82.42(11)* 81.07(11) 73.30(14) 90.79(10) 85.45(11) 81.73(7) 88.91(6) 80.47(10) 78.61(12) 84.54(10) 79.33(15)
Johansson 81.13(12)* 80.91(12) 80.43(7) 88.34(13) 81.30(15) 77.39(13) 81.43(18) 79.58(12) 75.53(15) 81.55(15) 84.80(6)
Mannem 80.30(13) 81.56(9) 72.88(15) 89.81(11) 78.84(17) 77.20(14) 82.81(16) 78.89(13) 75.39(16) 82.91(12) 82.74(8)
Nguyen 80.00(14)* 73.46(18) 69.15(18) 88.12(14) 84.05(13) 80.91(9) 88.01(7) 77.56(15) 78.13(13) 80.40(16) 80.19(14)
Jia 78.46(15) 74.20(17) 70.24(16) 90.83(9) 83.39(14) 70.41(18) 84.37(14) 75.65(16) 77.19(14) 82.36(14) 75.96(17)
Wu 78.44(16)* 77.05(14) 75.77(12) 85.85(16) 79.71(16) 73.07(16) 81.69(17) 78.12(14) 72.39(18) 82.57(13) 78.15(16)
Maes 76.60(17)* 75.47(16) 75.27(13) 84.35(17) 76.57(18) 74.03(15) 71.62(21) 75.19(17) 72.93(17) 78.32(18) 82.21(11)
Canisius 74.83(18)* 76.89(15) 70.17(17) 81.64(18) 74.81(19) 72.12(17) 78.23(19) 72.46(18) 67.80(19) 79.08(17) 75.14(18)
Zeman 62.02(19)* 58.55(20) 57.42(20) 68.50(20) 62.93(20) 59.19(20) 58.33(22) 62.89(19) 59.78(20) 68.27(19) 64.30(19)
Marinov 60.83(20)* 64.27(19) 58.55(19) 74.22(19) 56.09(21) 59.57(19) 54.33(23) 61.18(20) 50.39(21) 65.52(20) 64.13(20)
Duan (2) 25.53(21)* 86.94(6) 87.87(8) 80.53(8)
Nash 8.77(22)* 87.71(9)
Shimizu 7.79(23) 77.91(20)

Table 3: Unlabeled attachment scores (UAS) for the multilingual track in the CoNLL 2007 shared task.
Teams are denoted by the last name of their first member, with italics indicating that there is no correspond-
ing paper in the proceedings. The number in parentheses next to each score gives the rank. A star next to a
score in the Average column indicates a statistically significant difference with the next lower rank.
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LAS UAS
Team PCHEM-c PCHEM-o PCHEM-c PCHEM-o CHILDES-c CHILDES-o
Sagae 81.06(1) 83.42(1)
Attardi 80.40(2) 83.08(3) 58.67(3)
Dredze 80.22(3) 83.38(2) 61.37(1)
Nguyen 79.50(4)* 82.04(4)*
Jia 76.48(5)* 78.92(5)* 57.43(5)
Bick 71.81(6)* 78.48(1)* 74.71(6)* 81.62(1)* 58.07(4) 62.49(1)
Shimizu 64.15(7)* 63.49(2) 71.25(7)* 70.01(2)*
Zeman 50.61(8) 54.57(8) 58.89(2)
Schneider 63.01(3)* 66.53(3)* 60.27(2)
Watson 55.47(4) 62.79(4) 45.61(3)
Wu 52.89(6)

Table 4: Labeled (LAS) and unlabeled (UAS) attachment scores for the closed (-c) and open (-o) classes of
the domain adaptation track in the CoNLL 2007 shared task. Teams are denoted by the last name of their
first member, with italics indicating that there is no corresponding paper in the proceedings. The number
in parentheses next to each score gives the rank. A star next to a score in the PCHEM columns indicates a
statistically significant difference with the next lower rank.

attachment scores for the CHILDES data set, for rea-
sons explained in section 3.2. The number in paren-
theses next to each score gives the rank. A star next
to a score indicates that the difference with the next
lower rank is significant at the 5% level using a z-
test for proportions. A more complete presentation
of the results, including the significance results for
all the tasks and their p-values, can be found on the
shared task website.4

Looking first at the results in the multilingual
track, we note that there are a number of systems
performing at almost the same level at the top of the
ranking. For the average labeled attachment score,
the difference between the top score (Nilsson) and
the fifth score (Hall, J.) is no more than half a per-
centage point, and there are generally very few sig-
nificant differences among the five or six best sys-
tems, regardless of whether we consider labeled or
unlabeled attachment score. For the closed class of
the domain adaptation track, we see a very similar
pattern, with the top system (Sagae) being followed
very closely by two other systems. For the open
class, the results are more spread out, but then there
are very few results in this class. It is also worth not-
ing that the top scores in the closed class, somewhat
unexpectedly, are higher than the top scores in the

4http://nextens.uvt.nl/depparse-wiki/AllScores

open class. But before we proceed to a more detailed
analysis of the results (section 6), we will make an
attempt to characterize the approaches represented
by the different systems.

5 Approaches

In this section we give an overview of the models,
inference methods, and learning methods used in the
participating systems. For obvious reasons the dis-
cussion is limited to systems that are described by
a paper in the proceedings. But instead of describ-
ing the systems one by one, we focus on the basic
methodological building blocks that are often found
in several systems although in different combina-
tions. For descriptions of the individual systems, we
refer to the respective papers in the proceedings.

Section 5.1 is devoted to system architectures. We
then describe the two main paradigms for learning
and inference, in this year’s shared task as well as in
last year’s, which we call transition-based parsers
(section 5.2) and graph-based parsers (section 5.3),
adopting the terminology of McDonald and Nivre
(2007).5 Finally, we give an overview of the domain
adaptation methods that were used (section 5.4).

5This distinction roughly corresponds to the distinction
made by Buchholz and Marsi (2006) between ”stepwise” and
“all-pairs” approaches.
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5.1 Architectures

Most systems perform some amount of pre- and
post-processing, making the actual parsing compo-
nent part of a sequential workflow of varying length
and complexity. For example, most transition-
based parsers can only build projective dependency
graphs. For languages with non-projective depen-
dencies, graphs therefore need to be projectivized
for training and deprojectivized for testing (Hall et
al., 2007a; Johansson and Nugues, 2007b; Titov and
Henderson, 2007).

Instead of assigning HEAD and DEPREL in a
single step, some systems use a two-stage approach
for attaching and labeling dependencies (Chen et al.,
2007; Dredze et al., 2007). In the first step unlabeled
dependencies are generated, in the second step these
are labeled. This is particularly helpful for factored
parsing models, in which label decisions cannot be
easily conditioned on larger parts of the structure
due to the increased complexity of inference. One
system (Hall et al., 2007b) extends this two-stage ap-
proach to a three-stage architecture where the parser
and labeler generate an n-best list of parses which in
turn is reranked.6

In ensemble-based systems several base parsers
provide parsing decisions, which are added together
for a combined score for each potential dependency
arc. The tree that maximizes the sum of these com-
bined scores is taken as the final output parse. This
technique is used by Sagae and Tsujii (2007) and in
the Nilsson system (Hall et al., 2007a). It is worth
noting that both these systems combine transition-
based base parsers with a graph-based method for
parser combination, as first described by Sagae and
Lavie (2006).

Data-driven grammar-based parsers, such as Bick
(2007), Schneider et al. (2007), and Watson and
Briscoe (2007), need pre- and post-processing in or-
der to map the dependency graphs provided as train-
ing data to a format compatible with the grammar
used, and vice versa.

5.2 Transition-Based Parsers

Transition-based parsers build dependency graphs
by performing sequences of actions, or transitions.
Both learning and inference is conceptualized in

6They also flip the order of the labeler and the reranker.

terms of predicting the correct transition based on
the current parser state and/or history. We can fur-
ther subclassify parsers with respect to the model (or
transition system) they adopt, the inference method
they use, and the learning method they employ.

5.2.1 Models
The most common model for transition-based
parsers is one inspired by shift-reduce parsing,
where a parser state contains a stack of partially
processed tokens and a queue of remaining input
tokens, and where transitions add dependency arcs
and perform stack and queue operations. This type
of model is used by the majority of transition-based
parsers (Attardi et al., 2007; Duan et al., 2007; Hall
et al., 2007a; Johansson and Nugues, 2007b; Man-
nem, 2007; Titov and Henderson, 2007; Wu et al.,
2007). Sometimes it is combined with an explicit
probability model for transition sequences, which
may be conditional (Duan et al., 2007) or generative
(Titov and Henderson, 2007).

An alternative model is based on the list-based
parsing algorithm described by Covington (2001),
which iterates over the input tokens in a sequen-
tial manner and evaluates for each preceding token
whether it can be linked to the current token or not.
This model is used by Marinov (2007) and in com-
ponent parsers of the Nilsson ensemble system (Hall
et al., 2007a). Finally, two systems use models based
on LR parsing (Sagae and Tsujii, 2007; Watson and
Briscoe, 2007).

5.2.2 Inference
The most common inference technique in transition-
based dependency parsing is greedy deterministic
search, guided by a classifier for predicting the next
transition given the current parser state and history,
processing the tokens of the sentence in sequen-
tial left-to-right order7 (Hall et al., 2007a; Mannem,
2007; Marinov, 2007; Wu et al., 2007). Optionally
multiple passes over the input are conducted until no
tokens are left unattached (Attardi et al., 2007).

As an alternative to deterministic parsing, several
parsers use probabilistic models and maintain a heap
or beam of partial transition sequences in order to
pick the most probable one at the end of the sentence

7For diversity in parser ensembles, right-to-left parsers are
also used.
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(Duan et al., 2007; Johansson and Nugues, 2007b;
Sagae and Tsujii, 2007; Titov and Henderson, 2007).

One system uses as part of their parsing pipeline a
“neighbor-parser” that attaches adjacent words and
a “root-parser” that identifies the root word(s) of a
sentence (Wu et al., 2007). In the case of grammar-
based parsers, a classifier is used to disambiguate
in cases where the grammar leaves some ambiguity
(Schneider et al., 2007; Watson and Briscoe, 2007)

5.2.3 Learning
Transition-based parsers either maintain a classifier
that predicts the next transition or a global proba-
bilistic model that scores a complete parse. To train
these classifiers and probabilitistic models several
approaches were used: SVMs (Duan et al., 2007;
Hall et al., 2007a; Sagae and Tsujii, 2007), modified
finite Newton SVMs (Wu et al., 2007), maximum
entropy models (Sagae and Tsujii, 2007), multiclass
averaged perceptron (Attardi et al., 2007) and max-
imum likelihood estimation (Watson and Briscoe,
2007).

In order to calculate a global score or probabil-
ity for a transition sequence, two systems used a
Markov chain approach (Duan et al., 2007; Sagae
and Tsujii, 2007). Here probabilities from the output
of a classifier are multiplied over the whole sequence
of actions. This results in a locally normalized
model. Two other entries used MIRA (Mannem,
2007) or online passive-aggressive learning (Johans-
son and Nugues, 2007b) to train a globally normal-
ized model. Titov and Henderson (2007) used an in-
cremental sigmoid Bayesian network to model the
probability of a transition sequence and estimated
model parameters using neural network learning.

5.3 Graph-Based Parsers

While transition-based parsers use training data to
learn a process for deriving dependency graphs,
graph-based parsers learn a model of what it means
to be a good dependency graph given an input sen-
tence. They define a scoring or probability function
over the set of possible parses. At learning time
they estimate parameters of this function; at pars-
ing time they search for the graph that maximizes
this function. These parsers mainly differ in the
type and structure of the scoring function (model),
the search algorithm that finds the best parse (infer-

ence), and the method to estimate the function’s pa-
rameters (learning).

5.3.1 Models
The simplest type of model is based on a sum of
local attachment scores, which themselves are cal-
culated based on the dot product of a weight vector
and a feature representation of the attachment. This
type of scoring function is often referred to as a first-
order model.8 Several systems participating in this
year’s shared task used first-order models (Schiehlen
and Spranger, 2007; Nguyen et al., 2007; Shimizu
and Nakagawa, 2007; Hall et al., 2007b). Canisius
and Tjong Kim Sang (2007) cast the same type of
arc-based factorization as a weighted constraint sat-
isfaction problem.

Carreras (2007) extends the first-order model to
incorporate a sum over scores for pairs of adjacent
arcs in the tree, yielding a second-order model. In
contrast to previous work where this was constrained
to sibling relations of the dependent (McDonald and
Pereira, 2006), here head-grandchild relations can
be taken into account.

In all of the above cases the scoring function is
decomposed into functions that score local proper-
ties (arcs, pairs of adjacent arcs) of the graph. By
contrast, the model of Nakagawa (2007) considers
global properties of the graph that can take multi-
ple arcs into account, such as multiple siblings and
children of a node.

5.3.2 Inference
Searching for the highest scoring graph (usually a
tree) in a model depends on the factorization cho-
sen and whether we are looking for projective or
non-projective trees. Maximum spanning tree al-
gorithms can be used for finding the highest scor-
ing non-projective tree in a first-order model (Hall
et al., 2007b; Nguyen et al., 2007; Canisius and
Tjong Kim Sang, 2007; Shimizu and Nakagawa,
2007), while Eisner’s dynamic programming algo-
rithm solves the problem for a first-order factoriza-
tion in the projective case (Schiehlen and Spranger,
2007). Carreras (2007) employs his own exten-
sion of Eisner’s algorithm for the case of projective
trees and second-order models that include head-
grandparent relations.

8It is also known as an edge-factored model.
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The methods presented above are mostly efficient
and always exact. However, for models that take
global properties of the tree into account, they can-
not be applied. Instead Nakagawa (2007) uses Gibbs
sampling to obtain marginal probabilities of arcs be-
ing included in the tree using his global model and
then applies a maximum spanning tree algorithm to
maximize the sum of the logs of these marginals and
return a valid cycle-free parse.

5.3.3 Learning

Most of the graph-based parsers were trained using
an online inference-based method such as passive-
aggressive learning (Nguyen et al., 2007; Schiehlen
and Spranger, 2007), averaged perceptron (Carreras,
2007), or MIRA (Shimizu and Nakagawa, 2007),
while some systems instead used methods based on
maximum conditional likelihood (Nakagawa, 2007;
Hall et al., 2007b).

5.4 Domain Adaptation

5.4.1 Feature-Based Approaches

One way of adapting a learner to a new domain with-
out using any unlabeled data is to only include fea-
tures that are expected to transfer well (Dredze et
al., 2007). In structural correspondence learning a
transformation from features in the source domain
to features of the target domain is learnt (Shimizu
and Nakagawa, 2007). The original source features
along with their transformed versions are then used
to train a discriminative parser.

5.4.2 Ensemble-Based Approaches

Dredze et al. (2007) trained a diverse set of parsers
in order to improve cross-domain performance by
incorporating their predictions as features for an-
other classifier. Similarly, two parsers trained with
different learners and search directions were used
in the co-learning approach of Sagae and Tsujii
(2007). Unlabeled target data was processed with
both parsers. Sentences that both parsers agreed on
were then added to the original training data. This
combined data set served as training data for one of
the original parsers to produce the final system. In
a similar fashion, Watson and Briscoe (2007) used a
variant of self-training to make use of the unlabeled
target data.

5.4.3 Other Approaches

Attardi et al. (2007) learnt tree revision rules for the
target domain by first parsing unlabeled target data
using a strong parser; this data was then combined
with labeled source data; a weak parser was applied
to this new dataset; finally tree correction rules are
collected based on the mistakes of the weak parser
with respect to the gold data and the output of the
strong parser.

Another technique used was to filter sentences of
the out-of-domain corpus based on their similarity
to the target domain, as predicted by a classifier
(Dredze et al., 2007). Only if a sentence was judged
similar to target domain sentences was it included in
the training set.

Bick (2007) used a hybrid approach, where a data-
driven parser trained on the labeled training data was
given access to the output of a Constraint Grammar
parser for English run on the same data. Finally,
Schneider et al. (2007) learnt collocations and rela-
tional nouns from the unlabeled target data and used
these in their parsing algorithm.

6 Analysis

Having discussed the major approaches taken in the
two tracks of the shared task, we will now return to
the test results. For the multilingual track, we com-
pare results across data sets and across systems, and
report results from a parser combination experiment
involving all the participating systems (section 6.1).
For the domain adaptation track, we sum up the most
important findings from the test results (section 6.2).

6.1 Multilingual Track

6.1.1 Across Data Sets

The average LAS over all systems varies from 68.07
for Basque to 80.95 for English. Top scores vary
from 76.31 for Greek to 89.61 for English. In gen-
eral, there is a good correlation between the top
scores and the average scores. For Greek, Italian,
and Turkish, the top score is closer to the average
score than the average distance, while for Czech, the
distance is higher. The languages that produced the
most stable results in terms of system ranks with re-
spect to LAS are Hungarian and Italian. For UAS,
Catalan also falls into this group. The language that

926



Setup Arabic Chinese Czech Turkish
2006 without punctuation 66.9 90.0 80.2 65.7
2007 without punctuation 75.5 84.9 80.0 71.6
2006 with punctuation 67.0 90.0 80.2 73.8
2007 with punctuation 76.5 84.7 80.2 79.8

Table 5: A comparison of the LAS top scores from 2006 and 2007. Official scoring conditions in boldface.
For Turkish, scores with punctuation also include word-internal dependencies.

produced the most unstable results with respect to
LAS is Turkish.

In comparison to last year’s languages, the lan-
guages involved in the multilingual track this year
can be more easily separated into three classes with
respect to top scores:

• Low (76.31–76.94):
Arabic, Basque, Greek

• Medium (79.19–80.21):
Czech, Hungarian, Turkish

• High (84.40–89.61):
Catalan, Chinese, English, Italian

It is interesting to see that the classes are more easily
definable via language characteristics than via char-
acteristics of the data sets. The split goes across
training set size, original data format (constituent
vs. dependency), sentence length, percentage of un-
known words, number of dependency labels, and ra-
tio of (C)POSTAGS and dependency labels. The
class with the highest top scores contains languages
with a rather impoverished morphology. Medium
scores are reached by the two agglutinative lan-
guages, Hungarian and Turkish, as well as by Czech.
The most difficult languages are those that combine
a relatively free word order with a high degree of in-
flection. Based on these characteristics, one would
expect to find Czech in the last class. However, the
Czech training set is four times the size of the train-
ing set for Arabic, which is the language with the
largest training set of the difficult languages.

However, it would be wrong to assume that train-
ing set size alone is the deciding factor. A closer
look at table 1 shows that while Basque and Greek
in fact have small training data sets, so do Turk-
ish and Italian. Another factor that may be asso-
ciated with the above classification is the percent-
age of new words (PNW) in the test set. Thus, the

expectation would be that the highly inflecting lan-
guages have a high PNW while the languages with
little morphology have a low PNW. But again, there
is no direct correspondence. Arabic, Basque, Cata-
lan, English, and Greek agree with this assumption:
Catalan and English have the smallest PNW, and
Arabic, Basque, and Greek have a high PNW. But
the PNW for Italian is higher than for Arabic and
Greek, and this is also true for the percentage of
new lemmas. Additionally, the highest PNW can be
found in Hungarian and Turkish, which reach higher
scores than Arabic, Basque, and Greek. These con-
siderations suggest that highly inflected languages
with (relatively) free word order need more training
data, a hypothesis that will have to be investigated
further.

There are four languages which were included in
the shared tasks on multilingual dependency pars-
ing both at CoNLL 2006 and at CoNLL 2007: Ara-
bic, Chinese, Czech, and Turkish. For all four lan-
guages, the same treebanks were used, which allows
a comparison of the results. However, in some cases
the size of the training set changed, and at least one
treebank, Turkish, underwent a thorough correction
phase. Table 5 shows the top scores for LAS. Since
the official scores excluded punctuation in 2006 but
includes it in 2007, we give results both with and
without punctuation for both years.

For Arabic and Turkish, we see a great improve-
ment of approximately 9 and 6 percentage points.
For Arabic, the number of tokens in the training
set doubled, and the morphological annotation was
made more informative. The combined effect of
these changes can probably account for the substan-
tial improvement in parsing accuracy. For Turkish,
the training set grew in size as well, although only by
600 sentences, but part of the improvement for Turk-
ish may also be due to continuing efforts in error cor-
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rection and consistency checking. We see that the
choice to include punctuation or not makes a large
difference for the Turkish scores, since non-final IGs
of a word are counted as punctuation (because they
have the underscore character as their FORM value),
which means that word-internal dependency links
are included if punctuation is included.9 However,
regardless of whether we compare scores with or
without punctuation, we see a genuine improvement
of approximately 6 percentage points.

For Chinese, the same training set was used.
Therefore, the drop from last year’s top score to this
year’s is surprising. However, last year’s top scor-
ing system for Chinese (Riedel et al., 2006), which
did not participate this year, had a score that was
more than 3 percentage points higher than the sec-
ond best system for Chinese. Thus, if we compare
this year’s results to the second best system, the dif-
ference is approximately 2 percentage points. This
final difference may be attributed to the properties of
the test sets. While last year’s test set was taken from
the treebank, this year’s test set contains texts from
other sources. The selection of the textual basis also
significantly changed average sentence length: The
Chinese training set has an average sentence length
of 5.9. Last year’s test set also had an average sen-
tence length of 5.9. However, this year, the average
sentence length is 7.5 tokens, which is a significant
increase. Longer sentences are typically harder to
parse due to the increased likelihood of ambiguous
constructions.

Finally, we note that the performance for Czech
is almost exactly the same as last year, despite the
fact that the size of the training set has been reduced
to approximately one third of last year’s training set.
It is likely that this in fact represents a relative im-
provement compared to last year’s results.

6.1.2 Across Systems
The LAS over all languages ranges from 80.32 to
54.55. The comparison of the system ranks aver-
aged over all languages with the ranks for single lan-

9The decision to include word-internal dependencies in this
way can be debated on the grounds that they can be parsed de-
terministically. On the other hand, they typically correspond to
regular dependencies captured by function words in other lan-
guages, which are often easy to parse as well. It is therefore
unclear whether scores are more inflated by including word-
internal dependencies or deflated by excluding them.

guages show considerably more variation than last
year’s systems. Buchholz and Marsi (2006) report
that “[f]or most parsers, their ranking differs at most
a few places from their overall ranking”. This year,
for all of the ten best performing systems with re-
spect to LAS, there is at least one language for which
their rank is at least 5 places different from their
overall rank. The most extreme case is the top per-
forming Nilsson system (Hall et al., 2007a), which
reached rank 1 for five languages and rank 2 for
two more languages. Their only outlier is for Chi-
nese, where the system occupies rank 14, with a
LAS approximately 9 percentage points below the
top scoring system for Chinese (Sagae and Tsujii,
2007). However, Hall et al. (2007a) point out that
the official results for Chinese contained a bug, and
the true performance of their system was actually
much higher. The greatest improvement of a sys-
tem with respect to its average rank occurs for En-
glish, for which the system by Nguyen et al. (2007)
improved from the average rank 15 to rank 6. Two
more outliers can be observed in the system of Jo-
hansson and Nugues (2007b), which improves from
its average rank 12 to rank 4 for Basque and Turkish.
The authors attribute this high performance to their
parser’s good performance on small training sets.
However, this hypothesis is contradicted by their re-
sults for Greek and Italian, the other two languages
with small training sets. For these two languages,
the system’s rank is very close to its average rank.

6.1.3 An Experiment in System Combination
Having the outputs of many diverse dependency
parsers for standard data sets opens up the interest-
ing possibility of parser combination. To combine
the outputs of each parser we used the method of
Sagae and Lavie (2006). This technique assigns to
each possible labeled dependency a weight that is
equal to the number of systems that included the de-
pendency in their output. This can be viewed as
an arc-based voting scheme. Using these weights
it is possible to search the space of possible depen-
dency trees using directed maximum spanning tree
algorithms (McDonald et al., 2005). The maximum
spanning tree in this case is equal to the tree that on
average contains the labeled dependencies that most
systems voted for. It is worth noting that variants
of this scheme were used in two of the participating
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systems, the Nilsson system (Hall et al., 2007a) and
the system of Sagae and Tsujii (2007).

Figure 1 plots the labeled and unlabeled accura-
cies when combining an increasing number of sys-
tems. The data used in the plot was the output of all
competing systems for every language in the mul-
tilingual track. The plot was constructed by sort-
ing the systems based on their average labeled accu-
racy scores over all languages, and then incremen-
tally adding each system in descending order.10 We
can see that both labeled and unlabeled accuracy are
significantly increased, even when just the top three
systems are included. Accuracy begins to degrade
gracefully after about ten different parsers have been
added. Furthermore, the accuracy never falls below
the performance of the top three systems.

6.2 Domain Adaptation Track

For this task, the results are rather surprising. A look
at the LAS and UAS for the chemical research ab-
stracts shows that there are four closed systems that
outperform the best scoring open system. The best
system (Sagae and Tsujii, 2007) reaches an LAS of
81.06 (in comparison to their LAS of 89.01 for the
English data set in the multilingual track). Consider-
ing that approximately one third of the words of the
chemical test set are new, the results are noteworthy.

The next surprise is to be found in the relatively
low UAS for the CHILDES data. At a first glance,
this data set has all the characteristics of an easy

10The reason that there is no data point for two parsers is
that the simple voting scheme adopted only makes sense with at
least three parsers voting.

set; the average sentence is short (12.9 words), and
the percentage of new words is also small (6.10%).
Despite these characteristics, the top UAS reaches
62.49 and is thus more than 10 percentage points
below the top UAS for the chemical data set. One
major reason for this is that auxiliary and main
verb dependencies are annotated differently in the
CHILDES data than in the WSJ training set. As a
result of this discrepancy, participants were not re-
quired to submit results for the CHILDES data. The
best performing system on the CHILDES corpus is
an open system (Bick, 2007), but the distance to
the top closed system is approximately 1 percent-
age point. In this domain, it seems more feasible to
use general language resources than for the chemi-
cal domain. However, the results prove that the extra
effort may be unnecessary.

7 Conclusion

Two years of dependency parsing in the CoNLL
shared task has brought an enormous boost to the
development of dependency parsers for multiple lan-
guages (and to some extent for multiple domains).
But even though nineteen languages have been cov-
ered by almost as many different parsing and learn-
ing approaches, we still have only vague ideas about
the strengths and weaknesses of different methods
for languages with different typological characteris-
tics. Increasing our knowledge of the multi-causal
relationship between language structure, annotation
scheme, and parsing and learning methods probably
remains the most important direction for future re-
search in this area. The outputs of all systems for all
data sets from the two shared tasks are freely avail-
able for research and constitute a potential gold mine
for comparative error analysis across languages and
systems.

For domain adaptation we have barely scratched
the surface so far. But overcoming the bottleneck
of limited annotated resources for specialized do-
mains will be as important for the deployment of
human language technology as being able to handle
multiple languages in the future. One result from
the domain adaptation track that may seem surpris-
ing at first is the fact that closed class systems out-
performed open class systems on the chemical ab-
stracts. However, it seems that the major problem in
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adapting pre-existing parsers to the new domain was
not the domain as such but the mapping from the
native output of the parser to the kind of annotation
provided in the shared task data sets. Thus, find-
ing ways of reusing already invested development
efforts by adapting the outputs of existing systems
to new requirements, without substantial loss in ac-
curacy, seems to be another line of research that may
be worth pursuing.
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Oflazer, and Ruket Çakıcı (Turkish).
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2007. CESS-ECE: A multilingual and multilevel
annotated corpus. Available for download from:
http://www.lsi.upc.edu/∼mbertran/cess-ece/.

931



D. McClosky, E. Charniak, and M. Johnson. 2006.
Reranking and self-training for parser adaptation. In
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting
of the Association for Computational Linguistics.

R. McDonald and J. Nivre. 2007. Characterizing the
errors of data-driven dependency parsing models. In
Proc. of the Joint Conf. on Empirical Methods in Nat-
ural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL).

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In Proc.
of the 11th Conf. of the European Chapter of the Asso-
ciation for Computational Linguistics (EACL).

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
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chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. In Proc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT).
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Abstract

We describe a two-stage optimization of the
MaltParser system for the ten languages in
the multilingual track of the CoNLL 2007
shared task on dependency parsing. The
first stage consists in tuning a single-parser
system for each language by optimizing pa-
rameters of the parsing algorithm, the fea-
ture model, and the learning algorithm. The
second stage consists in building an ensem-
ble system that combines six different pars-
ing strategies, extrapolating from the opti-
mal parameters settings for each language.
When evaluated on the official test sets, the
ensemble system significantly outperforms
the single-parser system and achieves the
highest average labeled attachment score.

1 Introduction

In the multilingual track of the CoNLL 2007 shared
task on dependency parsing, a single parser must be
trained to handle data from ten different languages:
Arabic (Hajič et al., 2004), Basque (Aduriz et al.,
2003), Catalan, (Martı́ et al., 2007), Chinese (Chen
et al., 2003), Czech (Böhmová et al., 2003), English
(Marcus et al., 1993; Johansson and Nugues, 2007),
Greek (Prokopidis et al., 2005), Hungarian (Csendes
et al., 2005), Italian (Montemagni et al., 2003), and
Turkish (Oflazer et al., 2003).1 Our contribution is
a study in multilingual parser optimization using the
freely available MaltParser system, which performs

1For more information about the task and the data sets, see
Nivre et al. (2007).

deterministic, classifier-based parsing with history-
based feature models and discriminative learning,
and which was one of the top performing systems
in the CoNLL 2006 shared task (Nivre et al., 2006).

In order to maximize parsing accuracy, optimiza-
tion has been carried out in two stages, leading to
two different, but related parsers. The first of these is
a single-parser system, similar to the one described
in Nivre et al. (2006), which parses a sentence deter-
ministically in a single left-to-right pass, with post-
processing to recover non-projective dependencies,
and where the parameters of the MaltParser system
have been tuned for each language separately. We
call this system Single Malt, to emphasize the fact
that it consists of a single instance of MaltParser.
The second parser is an ensemble system, which
combines the output of six deterministic parsers,
each of which is a variation of the Single Malt parser
with parameter settings extrapolated from the first
stage of optimization. It seems very natural to call
this system Blended.

Section 2 summarizes the work done to optimize
the Single Malt parser, while section 3 explains how
the Blended parser was constructed from the Single
Malt parser. Section 4 gives a brief analysis of the
experimental results, and section 5 concludes.

2 The Single Malt Parser

The parameters available in the MaltParser system
can be divided into three groups: parsing algorithm
parameters, feature model parameters, and learn-
ing algorithm parameters.2 Our overall optimization

2For a complete documentation of these parameters, see
http://w3.msi.vxu.se/users/nivre/research/MaltParser.html.
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strategy for the Single Malt parser was as follows:

1. Define a good baseline system with the same
parameter settings for all languages.

2. Tune parsing algorithm parameters once and
for all for each language (with baseline settings
for feature model and learning algorithm pa-
rameters).

3. Optimize feature model and learning algorithm
parameters in an interleaved fashion for each
language.

We used nine-fold cross-validation on 90% of the
training data for all languages with a training set size
smaller than 300,000 tokens and an 80%–10% train-
devtest split for the remaining languages (Catalan,
Chinese, Czech, English). The remaining 10% of
the data was in both cases saved for a final dry run,
where the parser was trained on 90% of the data for
each language and tested on the remaining (fresh)
10%. We consistently used the labeled attachment
score (LAS) as the single optimization criterion.

Below we describe the most important parameters
in each group, define baseline settings, and report
notable improvements for different languages during
development. The improvements for each language
from step 1 (baseline) to step 2 (parsing algorithm)
and step 3 (feature model and learning algorithm)
can be tracked in table 1.3

2.1 Parsing Algorithm
MaltParser implements several parsing algorithms,
but for the Single Malt system we stick to the one
used by Nivre et al. (2006), which performs labeled
projective dependency parsing in linear time, using a
stack to store partially processed tokens and an input
queue of remaining tokens. There are three basic
parameters that can be varied for this algorithm:

1. Arc order: The baseline algorithm is arc-
eager, in the sense that right dependents are
attached to their head as soon as possible, but
there is also an arc-standard version, where the
attachment of right dependents has to be post-
poned until they have found all their own de-
pendents. The arc-standard order was found

3Complete specifications of all parameter settings for all
languages, for both Single Malt and Blended, are available at
http://w3.msi.vxu.se/users/jha/conll07/.

to improve parsing accuracy for Chinese, while
the arc-eager order was maintained for all other
languages.

2. Stack initialization: In the baseline version
the parser is initialized with an artificial root
node (with token id 0) on the stack, so that arcs
originating from the root can be added explic-
itly during parsing. But it is also possible to ini-
tialize the parser with an empty stack, in which
case arcs from the root are only added implic-
itly (to any token that remains a root after pars-
ing is completed). Empty stack initialization
(which reduces the amount of nondeterminism
in parsing) led to improved accuracy for Cata-
lan, Chinese, Hungarian, Italian and Turkish.4

3. Post-processing: The baseline parser performs
a single left-to-right pass over the input, but it
is possible to allow a second pass where only
unattached tokens are processed.5 Such post-
processing was found to improve results for
Basque, Catalan, Czech, Greek and Hungarian.

Since the parsing algorithm only produces projective
dependency graphs, we may use pseudo-projective
parsing to recover non-projective dependencies, i.e.,
projectivize training data and encode information
about these transformations in extended arc labels
to support deprojectivization of the parser output
(Nivre and Nilsson, 2005). Pseudo-projective pars-
ing was found to have a positive effect on over-
all parsing accuracy only for Basque, Czech, Greek
and Turkish. This result can probably be explained
in terms of the frequency of non-projective depen-
dencies in the different languages. For Basque,
Czech, Greek and Turkish, more than 20% of the
sentences have non-projective dependency graphs;
for all the remaining languages the corresponding

4For Arabic, Basque, Czech, and Greek, the lack of im-
provement can be explained by the fact that these data sets allow
more than one label for dependencies from the artificial root.
With empty stack initialization all such dependencies are as-
signed a default label, which leads to a drop in labeled attach-
ment score. For English, however, empty stack initialization did
not improve accuracy despite the fact that dependencies from
the artificial root have a unique label.

5This technique is similar to the one used by Yamada and
Matsumoto (2003), but with only a single post-processing pass
parsing complexity remains linear in string length.
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Attributes
Tokens FORM LEMMA CPOSTAG POSTAG FEATS DEPREL
S: Top + + + + + +
S: Top−1 +
I: Next + + + + +
I: Next+1 + +
I: Next+2 +
I: Next+3 +
G: Head of Top +
G: Leftmost dependent of Top +
G: Rightmost dependent of Top +
G: Leftmost dependent of Next +

Figure 1: Baseline feature model (S = Stack, I = Input, G = Graph).

figure is 10% or less.6

The cumulative improvement after optimization
of parsing algorithm parameters was a modest 0.32
percentage points on average over all ten languages,
with a minimum of 0.00 (Arabic, English) and a
maximum of 0.83 (Czech) (cf. table 1).

2.2 Feature Model
MaltParser uses a history-based feature model for
predicting the next parsing action. Each feature of
this model is an attribute of a token defined relative
to the current stack S, input queue I, or partially built
dependency graph G, where the attribute can be any
of the symbolic input attributes in the CoNLL for-
mat: FORM, LEMMA, CPOSTAG, POSTAG and
FEATS (split into atomic attributes), as well as the
DEPREL attribute of tokens in the graph G. The
baseline feature model is depicted in figure 1, where
rows denote tokens, columns denote attributes, and
each cell containing a plus sign represents a model
feature.7 This model is an extrapolation from many
previous experiments on different languages and
usually represents a good starting point for further
optimization.

The baseline model was tuned for each of the ten
languages using both forward and backward feature

6In fact, for Arabic, which has about 10% sentences with
non-projective dependencies, it was later found that, with an
optimized feature model, it is beneficial to projectivize the train-
ing data without trying to recover non-projective dependencies
in the parser output. This was also the setting that was used for
Arabic in the dry run and final test.

7The names Top and Next refer to the token on top of the
stack S and the first token in the remaining input I, respectively.

selection. The total number of features in the tuned
models varies from 18 (Turkish) to 56 (Hungarian)
but is typically between 20 and 30. This feature se-
lection process constituted the major development
effort for the Single Malt parser and also gave the
greatest improvements in parsing accuracy, but since
feature selection was to some extent interleaved with
learning algorithm optimization, we only report the
cumulative effect of both together in table 1.

2.3 Learning Algorithm
MaltParser supports several learning algorithms but
the best results have so far been obtained with sup-
port vector machines, using the LIBSVM package
(Chang and Lin, 2001). We use a quadratic kernel
K(xi, xj) = (γxTi xj + r)2 and LIBSVM’s built-
in one-versus-one strategy for multi-class classifica-
tion, converting symbolic features to numerical ones
using the standard technique of binarization. As our
baseline settings, we used γ = 0.2 and r = 0 for
the kernel parameters, C = 0.5 for the penalty para-
meter, and ε = 1.0 for the termination criterion. In
order to reduce training times during development,
we also split the training data for each language into
smaller sets and trained separate multi-class classi-
fiers for each set, using the POSTAG of Next as the
defining feature for the split.

The time spent on optimizing learning algorithm
parameters varies between languages, mainly due
to lack of time. For Arabic, Basque, and Catalan,
the baseline settings were used also in the dry run
and final test. For Chinese, Greek and Hungarian,
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Development Dry Run Test Test: UAS
Language Base PA F+L SM B SM B SM B
Arabic 70.31 70.31 71.67 70.93 73.09 74.75 76.52 84.21 85.81
Basque 73.86 74.44 76.99 77.18 80.12 74.97 76.92 80.61 82.84
Catalan 85.43 85.51 86.88 86.65 88.00 87.74 88.70 92.20 93.12
Chinese 83.85 84.39 87.64 87.61 88.61 83.51 84.67 87.60 88.70
Czech 75.00 75.83 77.74 77.91 82.17 77.22 77.98 82.35 83.59
English 85.44 85.44 86.35 86.35 88.74 85.81 88.11 86.77 88.93
Greek 72.67 73.04 74.42 74.89 78.17 74.21 74.65 80.66 81.22
Hungarian 74.62 74.64 77.40 77.81 80.04 78.09 80.27 81.71 83.55
Italian 81.42 81.64 82.50 83.37 85.16 82.48 84.40 86.26 87.77
Turkish 75.12 75.80 76.49 75.87 77.09 79.24 79.79 85.04 85.77
Average 77.78 78.10 79.81 79.86 82.12 79.80 81.20 84.74 86.13

Table 1: Development results for Single Malt (Base = baseline, PA = parsing algorithm, F+L = feature model
and learning algorithm); dry run and test results for Single Malt (SM) and Blended (B) (with corrected test
scores for Blended on Chinese). All scores are labeled attachment scores (LAS) except the last two columns,
which report unlabeled attachment scores (UAS) on the test sets.

slightly better results were obtained by not splitting
the training data into smaller sets; for the remain-
ing languages, accuracy was improved by using the
CPOSTAG of Next as the defining feature for the
split (instead of POSTAG). With respect to the SVM
parameters (γ, r, C, and ε), Arabic, Basque, Cata-
lan, Greek and Hungarian retain the baseline set-
tings, while the other languages have slightly dif-
ferent values for some parameters.

The cumulative improvement after optimization
of feature model and learning algorithm parameters
was 1.71 percentage points on average over all ten
languages, with a minimum of 0.69 (Turkish) and a
maximum of 3.25 (Chinese) (cf. table 1).

3 The Blended Parser

The Blended parser is an ensemble system based
on the methodology proposed by Sagae and Lavie
(2006). Given the output dependency graphs Gi
(1 ≤ i ≤ m) of m different parsers for an input sen-
tence x, we construct a new graph containing all the
labeled dependency arcs proposed by some parser
and weight each arc a by a score s(a) reflecting its
popularity among the m parsers. The output of the
ensemble system for x is the maximum spanning
tree of this graph (rooted at the node 0), which can
be extracted using the Chu-Liu-Edmonds algorithm,
as shown by McDonald et al. (2005). Following

Sagae and Lavie (2006), we let s(a) =
∑m
i=1w

c
iai,

where wci is the average labeled attachment score of
parser i for the word class c8 of the dependent of a,
and ai is 1 if a ∈ Gi and 0 otherwise.

The Blended parser uses six component parsers,
with three different parsing algorithms, each of
which is used to construct one left-to-right parser
and one right-to-left parser. The parsing algorithms
used are the arc-eager baseline algorithm, the arc-
standard variant of the baseline algorithm, and the
incremental, non-projective parsing algorithm first
described by Covington (2001) and recently used
for deterministic classifier-based parsing by Nivre
(2007), all of which are available in MaltParser.
Thus, the six component parsers for each language
were instances of the following:

1. Arc-eager projective left-to-right

2. Arc-eager projective right-to-left

3. Arc-standard projective left-to-right

4. Arc-standard projective right-to-left

5. Covington non-projective left-to-right

6. Covington non-projective right-to-left
8We use CPOSTAG to determine the part of speech.
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root 1 2 3–6 7+
Parser R P R P R P R P R P
Single Malt 87.01 80.36 95.08 94.87 86.28 86.67 77.97 80.23 68.98 71.06
Blended 92.09 74.20 95.71 94.92 87.55 88.12 78.66 83.02 65.29 78.14

Table 2: Recall (R) and precision (P) of Single Malt and Blended for dependencies of different length,
averaged over all languages (root = dependents of root node, regardless of length).

The final Blended parser was constructed by reusing
the tuned Single Malt parser for each language (arc-
standard left-to-right for Chinese, arc-eager left-to-
right for the remaining languages) and training five
additional parsers with the same parameter settings
except for the following mechanical adjustments:

1. Pseudo-projective parsing was not used for the
two non-projective parsers.

2. Feature models were adjusted with respect to
the most obvious differences in parsing strategy
(e.g., by deleting features that could never be
informative for a given parser).

3. Learning algorithm parameters were adjusted
to speed up training (e.g., by always splitting
the training data into smaller sets).

Having trained all parsers on 90% of the training
data for each language, the weights wci for each
parser i and coarse part of speech c was determined
by the labeled attachment score on the remaining
10% of the data. This means that the results obtained
in the dry run were bound to be overly optimistic for
the Blended parser, since it was then evaluated on
the same data set that was used to tune the weights.

Finally, we want to emphasize that the time for
developing the Blended parser was severely limited,
which means that several shortcuts had to be taken,
such as optimizing learning algorithm parameters
for speed rather than accuracy and using extrapo-
lation, rather than proper tuning, for other impor-
tant parameters. This probably means that the per-
formance of the Blended system can be improved
considerably by optimizing parameters for all six
parsers separately.

4 Results and Discussion

Table 1 shows the labeled attachment score results
from our internal dry run (training on 90% of the

training data, testing on the remaining 10%) and the
official test runs for both of our systems. It should
be pointed out that the test score for the Blended
parser on Chinese is different from the official one
(75.82), which was much lower than expected due
to a corrupted specification file required by Malt-
Parser. Restoring this file and rerunning the parser
on the Chinese test set, without retraining the parser
or changing any parameter settings, resulted in the
score reported here. This also improved the aver-
age score from 80.32 to 81.20, the former being the
highest reported official score.

For the Single Malt parser, the test results are on
average very close to the dry run results, indicating
that models have not been overfitted (although there
is considerably variation between languages). For
the Blended parser, there is a drop of almost one
percentage point, which can be explained by the fact
that weights could not be tuned on held-out data for
the dry run (as explained in section 3).

Comparing the results for different languages, we
see a tendency that languages with rich morphology,
usually accompanied by flexible word order, get
lower scores. Thus, the labeled attachment score is
below 80% for Arabic, Basque, Czech, Greek, Hun-
garian, and Turkish. By comparison, the more con-
figurational languages (Catalan, Chinese, English,
and Italian) all have scores above 80%. Linguis-
tic properties thus seem to be more important than,
for example, training set size, which can be seen by
comparing the results for Italian, with one of the
smallest training sets, and Czech, with one of the
largest. The development of parsing methods that
are better suited for morphologically rich languages
with flexible word order appears as one of the most
important goals for future research in this area.

Comparing the results of our two systems, we
see that the Blended parser outperforms the Single
Malt parser for all languages, with an average im-
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provement of 1.40 percentage points, a minimum of
0.44 (Greek) and a maximum of 2.40 (English). As
shown by McDonald and Nivre (2007), the Single
Malt parser tends to suffer from two problems: error
propagation due to the deterministic parsing strat-
egy, typically affecting long dependencies more than
short ones, and low precision on dependencies orig-
inating in the artificial root node due to fragmented
parses.9 The question is which of these problems is
alleviated by the multiple views given by the compo-
nent parsers in the Blended system. Table 2 throws
some light on this by giving the precision and re-
call for dependencies of different length, treating de-
pendents of the artificial root node as a special case.
As expected, the Single Malt parser has lower preci-
sion than recall for root dependents, but the Blended
parser has even lower precision (and somewhat bet-
ter recall), indicating that the fragmentation is even
more severe in this case.10 By contrast, we see that
precision and recall for other dependencies improve
across the board, especially for longer dependencies,
which probably means that the effect of error propa-
gation is mitigated by the use of an ensemble system,
even if each of the component parsers is determinis-
tic in itself.

5 Conclusion

We have shown that deterministic, classifier-based
dependency parsing, with careful optimization, can
give highly accurate dependency parsing for a wide
range of languages, as illustrated by the performance
of the Single Malt parser. We have also demon-
strated that an ensemble of deterministic, classifier-
based dependency parsers, built on top of a tuned
single-parser system, can give even higher accuracy,
as shown by the results of the Blended parser, which
has the highest labeled attachment score for five lan-
guages (Arabic, Basque, Catalan, Hungarian, and

9A fragmented parse is a dependency forest, rather than a
tree, and is automatically converted to a tree by attaching all
(other) roots to the artificial root node. Hence, children of the
root node in the final output may not have been predicted as
such by the treebank-induced classifier.

10This conclusion is further supported by the observation
that the single most frequent “frame confusion” of the Blended
parser, over all languages, is to attach two dependents with the
label ROOT to the root node, instead of only one. The frequency
of this error is more than twice as high for the Blended parser
(180) as for the Single Malt parser (83).

Italian), as well as the highest multilingual average
score.
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Abstract 

Deterministic dependency parsers use pars-
ing actions to construct dependencies. 
These parsers do not compute the probabil-
ity of the whole dependency tree. They 
only determine parsing actions stepwisely 
by a trained classifier. To globally model 
parsing actions of all steps that are taken on 
the input sentence, we propose two kinds 
of probabilistic parsing action models that 
can compute the probability of the whole 
dependency tree. The tree with the maxi-
mal probability is outputted. The experi-
ments are carried on 10 languages, and the 
results show that our probabilistic parsing 
action models outperform the original de-
terministic dependency parser. 

1 Introduction 

The target of CoNLL 2007 shared task (Nivre et al., 
2007) is to parse texts in multiple languages by 
using a single dependency parser that has the ca-
pacity to learn from treebank data. Among parsers 
participating in CoNLL 2006 shared task 
(Buchholz et al., 2006), deterministic dependency 
parser shows great efficiency in time and compa-
rable performances for multi-lingual dependency 
parsing (Nivre et al., 2006). Deterministic parser 
regards parsing as a sequence of parsing actions 
that are taken step by step on the input sentence. 
Parsing actions construct dependency relations be-
tween words. 

Deterministic dependency parser does not score 
the entire dependency tree as most of state-of-the-
art parsers. They only stepwisely choose the most 
probable parsing action. In this paper, to globally 

model parsing actions of all steps that are taken on 
the input sentence, we propose two kinds of prob-
abilistic parsing action models that can compute 
the entire dependency tree’s probability. Experi-
ments are evaluated on diverse data set of 10 lan-
guages provided by CoNLL 2007 shared-task 
(Nivre et al., 2007). Results show that our prob-
abilistic parsing action models outperform the 
original deterministic dependency parser. We also 
present a general error analysis across a wide set of 
languages plus a detailed error analysis of Chinese. 

Next we briefly introduce the original determi-
nistic dependency parsing algorithm that is a basic 
component of our models. 

2 Introduction of Deterministic Depend-
ency Parsing 

There are mainly two representative deterministic 
dependency parsing algorithms proposed respec-
tively by Nivre (2003), Yamada and Matsumoto 
(2003). Here we briefly introduce Yamada and 
Matsumoto’s algorithm, which is adopted by our 
models, to illustrate deterministic dependency 
parsing. The other representative method of Nivre 
also parses sentences in a similar deterministic 
manner except different data structure and parsing 
actions. 

Yamada’s method originally focuses on unla-
beled dependency parsing. Three kinds of parsing 
actions are applied to construct the dependency 
between two focus words. The two focus words are 
the current sub tree’s root and the succeeding (right) 
sub tree’s root given the current parsing state. 
Every parsing step results in a new parsing state, 
which includes all elements of the current partially 
built tree. Features are extracted about these two 
focus words. In the training phase, features and the 
corresponding parsing action compose the training

940



 
 
 
 
 
 
 
 
 
 
 
 

 

He provides confirming evidence RIGHT

He

provides confirming evidence

SHIFT

LEFT

RIGHTconfirming 

He 

provides evidence provides evidence 

He confirming 

provides 

He evidence 

confirming 

Figure 1. The example of the parsing process of Yamada and Matsumoto’s method. The input sentence 
is “He provides confirming evidence.” 

 
data. In the testing phase, the classifier determines 
which parsing action should be taken based on the 
features. The parsing algorithm ends when there is 
no further dependency relation can be made on the 
whole sentence. The details of the three parsing 
actions are as follows: 

LEFT: it constructs the dependency that the 
right focus word depends on the left focus word. 

RIGHT: it constructs the dependency that the 
left focus word depends on the right focus word. 

SHIFT: it does not construct dependency, just 
moves the parsing focus. That is, the new left focus 
word is the previous right focus word, whose suc-
ceeding sub tree’s root is the new right focus word. 

The illustration of these three actions and the 
parsing process is presented in figure 1. Note that 
the focus words are shown as bold black box. 

We extend the set of parsing actions to do la-
beled dependency parsing. LEFT and RIGHT are 
concatenated by dependency labels, while SHIFT 
remains the same. For example in figure 1, the 
original action sequence “RIGHT -> SHIFT -> 
RIGHT -> LEFT” becomes “RIGHT-SBJ -> 
SHIFT -> RIGHT-NMOD -> LEFT-OBJ”. 

3 Probabilistic Parsing Action Models 

Deterministic dependency parsing algorithms are 
greedy. They choose the most probable parsing 
action at every parsing step given the current pars-
ing state, and do not score the entire dependency 
tree. To compute the probability of whole depend-
ency tree, we propose two kinds of probabilistic 
models that are defined on parsing actins: parsing 

action chain model (PACM) and parsing action 
phrase model (PAPM). 

3.1 Parsing Action Chain Model (PACM) 

The parsing process can be viewed as a Markov 
Chain. At every parsing step, there are several can-
didate parsing actions. The objective of this model 
is to find the most probable sequence of parsing 
actions by taking the Markov assumption. As 
shown in figure 1, the action sequence “RIGHT-
SBJ -> SHIFT -> RIGHT-NMOD -> LEFT-
OBJ” constructs the right dependency tree of the 
example sentence. Choosing this action sequence 
among all candidate sequences is the objective of 
this model.  

Firstly, we should define the probability of the 
dependency tree conditioned on the input sentence. 

)1(),...|()|(
...1

10∏
=

−=
ni

ii SdddPSTP  

Where T denotes the dependency tree, S denotes 
the original input sentence,  denotes the parsing 
action at time step i. We add an artificial parsing 
action  as initial action. 

id

0d
We introduce a variable  to denote the 

resulting parsing state when the action  is taken 
on .  is the original input sen-
tence. 

idcontext

id

1−idcontext
0dcontext

Suppose  are taken sequentially on the 
input sentence S, and result in a sequence of pars-
ing states , then P(T|S) de-
fined in equation (1) becomes as below: 

ndd ...0

ndd contextcontext ...
0
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Formula (3) comes from formula (2) by obeying 
the Markov assumption. Note that formula (4) is 
about the classifier of parsing actions. It denotes 
the probability of the parsing action given the 
parsing state . If we train a classifier 
that can predict with probability output, then we 
can compute P(T|S) by computing the product of 
the probabilities of parsing actions. The classifier 
we use throughout this paper is SVM (Vapnik, 
1995). We adopt Libsvm (Chang and Lin, 2005), 
which can train multi-class classifier and support 
training and predicting with probability output 
(Chang and Lin, 2005). 

id

1−idcontext

For this model, the objective is to choose the 
parsing action sequence that constructs the de-
pendency tree with the maximal probability. 

)5()|(max)|(max
...1... 1

1
∏
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n

contextdPSTP  

Because this model chooses the most probable 
sequence, not the most probable parsing action at 
only one step, it avoids the greedy property of the 
original deterministic parsers. 

We use beam search for the decoding of this 
model. We use m to denote the beam size. Then 
beam search is carried out as follows. At every 
parsing step, all parsing states are ordered (or par-
tially m ordered) according to their probabilities. 
Probability of a parsing state is determined by 
multiplying the probabilities of actions that gener-
ate that state. Then we choose m best parsing 
states for this step, and next parsing step only con-
sider these m best parsing states. Parsing termi-
nates when the first entire dependency tree is con-
structed. To obtain a list of n-best parses, we sim-
ply continue parsing until either n trees are found, 
or no further parsing can be fulfilled. 

3.2 Parsing Action Phrase Model (PAPM) 

In the Parsing Action Chain Model (PACM), ac-
tions are competing at every parsing step. Only m 
best parsing states resulted by the corresponding 
actions are kept for every step. But for the parsing 
problem, it is reasonable that actions are competing 
for which phrase should be built. For dependency 

syntax, one phrase consists of the head word and 
all its children. Based on this motivation, we pro-
pose Parsing Action Phrase Model (PAPM), which 
divides parsing actions into two classes: construct-
ing action and shifting action. 

If a phrase is built after an action is performed, 
the action is called constructing action. In original 
Yamada’s algorithm, constructing actions are 
LEFT and RIGHT. For example, if LEFT is taken, 
it indicates that the right focus word has found all 
its children and becomes the head of this new 
phrase. Note that one word with no children can 
also be viewed as a phrase if its dependency on 
other word is constructed. In the extended set of 
parsing actions for labeled parsing, compound ac-
tions, which consist of LEFT and RIGHT con-
catenated by dependency labels, are constructing 
actions. 

If no phrase is built after an action is performed, 
the action is called shifting action. Such action is 
SHIFT. 

We denote  as constructing action and  as 
shifting action. j indexes the time step. Then we 
introduce a new concept: parsing action phrase. 
We use  to denote the ith parsing action phrase. 

It can be expanded as . That is, 

parsing action phrase  is a sequence of parsing 
actions that constructs the next syntactic phrase. 

ja jb

iA

jjkji abbA 1... −−→

iA

For example, consider the parsing process in 
figure 1,  is “RIGHT-SBJ”,  is “SHIFT, 
RIGHT-NMOD”,  is “LEFT-OBJ”. Note that 

 consists of a constructing action,  consists 
of a shifting action and a constructing action,  
consists of a constructing action. 

1A 2A

3A

1A 2A

3A

The indexes are different for both sides of the 
expansion ,  is the ith parsing 
action phrase corresponding to both constructing 
action  at time step j and all its preceding shift-
ing actions. Note that on the right side of the ex-
pansion, only one constructing action is allowed 
and is always at the last position, while shifting 
action can occur several times or does not occur at 
all. It is parsing action phrases, i.e. sequences of 
parsing actions, that are competing for which next 
phrase should be built. 

jjkji abbA 1... −−→ iA

ja
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The probability of the dependency tree given the 
input sentence is redefined as: 
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Where k represents the number of steps that shift-
ing action can be taken.  is the parsing 
state resulting from a sequence of actions 

 taken on . 

iAcontext

jjkj abb 1... −− 1−iAcontext
The objective in this model is to find the most 

probable sequence of parsing action phrases. 
)7()|(max)|(max

...1... 1
1
∏
=

−
=

ni
AiAA i

n

contextAPSTP  

Similar with parsing action chain model 
(PACM), we use beam search for the decoding of 
parsing action phrase model (PAPM). The differ-
ence is that PAPM do not keep m best parsing 
states at every parsing step. Instead, PAPM keep m 
best states which are corresponding to m best cur-
rent parsing action phrases (several steps of 
SHIFT and the last step of a constructing action). 

4 Experiments and Results 

Experiments are carried on 10 languages provided 
by CoNLL 2007 shared-task organizers (Nivre et 
al., 2007). Among these languages, Chinese (Chen 
et al., 2003), Catalan (Martí et al., 2007) and Eng-
lish (Johansson and Nugues, 2007) have low per-

centage of non-projective relations, which are 
0.0%, 0.1% and 0.3% respectively. Except these 
three languages, we use software of projectiviza-
tion/deprojectivization provided by Nivre and 
Nilsson (2005) for other languages. Because our 
algorithm only deals with projective parsing, we 
should projectivize training data at first to prepare 
for the following training of our algorithm. During 
testing, deprojectivization is applied to the output 
of the parser. 

Considering the classifier of Libsvm (Chang and 
Lin, 2005), the features are extracted from the fol-
lowing fields of the data representation: FORM, 
LEMMA, CPOSTAG, POSTAG, FEATS and DE-
PREL. We split values of FEATS field into its 
atomic components. We only use available features 
of DEPREL field during deterministic parsing. We 
use similar feature context window as used in Ya-
mada’s algorithm (Yamada and Matsumoto, 2003). 
In detail, the size of feature context window is six, 
which consists of left two sub trees, two focus 
words related sub trees and right two sub trees. 
This feature template is used for all 10 languages. 

4.1 Results of PACM and Yamada’s Method 

After submitting the testing results of Parsing Ac-
tion Chain Model (PACM), we also perform origi-
nal deterministic parsing proposed by Yamada and 
Matsumoto (2003). The total results are shown in 
table 1. The experimental results are mainly evalu-
ated by labeled attachment score (LAS), unlabeled 
attachment score (UAS) and labeled accuracy (LA). 

Table 1 shows that Parsing Action Chain Model 
(PACM) outperform original Yamada’s parsing 
method for all languages. The LAS improvements 
range from 0.60 percentage points to 1.71 percent-
age points. Note that the original Yamada’s 
method still gives testing results above the official 
reported average performance of all languages. 

 Ara Bas Cat Chi Cze Eng Gre Hun Ita Tur 

YamLAS  69.31 69.67 83.26 81.88 74.63 84.81 72.75 76.24 80.08 73.94

YamUAS  78.93 75.86 88.53 86.17 80.11 85.83 79.45 79.97 83.69 79.79

YamLA  81.13 75.71 88.36 84.56 82.10 89.71 82.58 88.37 86.93 80.81

PACMLAS  69.91 71.26 84.95 82.58 75.34 85.83 74.29 77.06 80.75 75.03

PACMUAS  79.04 77.57 89.71 86.88 80.82 86.97 80.77 80.66 84.20 81.03

PACMLA  81.40 77.35 89.55 85.35 83.17 90.57 83.87 88.92 87.32 81.17

Table 1. The performances of Yamada’s method (Yam) and Parsing Action Chain Model (PACM). 
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4.2 Results of PAPM 

Not all languages have only one root node of a 
sentence. Since Parsing Action Phrase Model 
(PAPM) only builds dependencies, and shifting 
action is not the ending action of a parsing action 
phrase, PAPM always ends with one root word. 
This property makes PAPM only suitable for 
Catalan, Chinese, English and Hungarian, which 
are unary root languages. PAPM result of Catalan 
was not submitted before deadline due to the    
shortage of time and computing resources. We 
report Catalan’s PAPM result together with that of 
other three languages in table 2.  

 
 Cat Chi Eng Hun 

PAPMLAS  87.26 82.64 86.69 76.89 

PAPMUAS  92.07 86.94 87.87 80.53 

PAPMLA  91.89 85.41 92.04 89.73 

Table 2. The performance of Parsing Action 
Phrase Model (PAPM) for Catalan, Chinese, Eng-
lish and Hungarian. 

 
Compared with the results of PACM shown in 

table 1, the performance of PAPM differs among 
different languages. Catalan and English show 
that PAPM improves 2.31% and 0.86% respec-
tively over PACM, while the improvement of Chi-
nese is marginal, and there is a little decrease of 
Hungarian. Hungarian has relatively high percent-
age of non-projective relations. If phrase consists 
of head word and its non-projective children, the 
constructing actions that are main actions in 
PAPM will be very difficult to be learned because 
some non-projective children together with their 
heads have no chance to be simultaneously as fo-
cus words. Although projectivization is also per-
formed for Hungarian, the built-in non-projective 
property still has negative influence on the per-
formance. 

5 Error Analysis 

In the following we provide a general error analy-
sis across a wide set of languages plus a detailed 
analysis of Chinese. 

5.1 General Error Analysis 

One of the main difficulties in dependency parsing 
is the determination of long distance dependencies. 
Although all kinds of evaluation scores differ 

dramatically among different languages, 69.91% 
to 85.83% regarding LAS, there are some general 
observations reflecting the difficulty of long dis-
tance dependency parsing. We study this difficulty 
from two aspects about our full submission of 
PACM: precision of dependencies of different arc 
lengths and precision of root nodes. 

For arcs of length 1, all languages give high 
performances with lowest 91.62% of Czech 
(Böhmova et al., 2003) to highest 96.8% of Cata-
lan (Martí et al., 2007). As arcs lengths grow 
longer, various degradations are caused. For Cata-
lan, score of arc length 2 is similar with that of arc 
length 1, but there are dramatic degradations for 
longer arc lengths, from 94.94% of arc length 2 to 
85.22% of length 3-6. For English (Johansson and 
Nugues, 2007) and Italian (Montemagni et al., 
2003), there are graceful degradation for arcs of 
length 1,2 and 3-6, with 96-91-85 of English and 
95-85-75 of Italian. For other languages, long arcs 
also give remarkable degradations that pull down 
the performance. 

Precision of root nodes also reflects the per-
formance of long arc dependencies because the 
arc between the root and its children are often 
long arcs. In fact, it is the precision of roots and 
arcs longer than 7 that mainly pull down the over-
all performance. Yamada’s method is a bottom-up 
parsing algorithm that builds short distance de-
pendencies at first. The difficulty of building long 
arc dependencies may partially be resulted from 
the errors of short distance dependencies. The de-
terministic manner causes error propagation, and 
it indirectly indicates that the errors of roots are 
the final results of error propagation of short dis-
tance dependencies. But there is an exception oc-
curred in Chinese. The root precision is 90.48%, 
only below the precision of arcs of length 1. This 
phenomenon exists because the sentences in Chi-
nese data set (Chen et al., 2003) are in fact clauses 
with average length of 5.9 rather than entire sen-
tences. The root words are heads of clauses. 

Both Parsing Action Chain Model (PACM) and 
Parsing Action Phrase Model (PAPM) avoid 
greedy property of original Yamada’s method. It 
can be expected that there will be a precision im-
provement of long distance dependencies over 
original Yamada’s method. For PACM, the results 
of Basque (Aduriz et al., 2003), Catalan (Martí et 
al., 2007), Chinese (Chen et al., 2003), English 
(Johansson and Nugues, 2007) and Greek (Pro-
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kopidis et al., 2005) show that the root precision 
improvement over Yamada’s method is more con-
spicuous than that of other long distance depend-
encies. The largest improvement of roots precision 
is 10.7% of Greek. While for Arabic (Hajic et al., 
2004), Czech (Böhmova et al., 2003), Hungarian 
(Csendes et al., 2005), Italian (Montemagni et al., 
2003) and Turkish (Oflazer et al., 2003), the im-
provement of root precision is small, but depend-
encies of arcs longer than 1 give better scores. For 
PAPM, good performances of Catalan and English 
also give significant improvements of root preci-
sion over PACM. For Catalan, the root precision 
improvement is from 63.86% to 95.21%; for Eng-
lish, the root precision improvement is from 
62.03% to 89.25%. 

5.2 Error Analysis of Chinese 

There are mainly two sources of errors regarding 
LAS in Chinese dependency parsing. 

One is from conjunction words (C) that have a 
relatively high percentage of wrong heads (about 
20%), and therefore 19% wrong dependency la-
bels. In Chinese, conjunction words often con-
catenate clauses. Long distance dependencies be-
tween clauses are bridged by conjunction words. 
It is difficult for conjunction words to find their 
heads. 

The other source of errors comes from auxiliary 
words (DE) and preposition words (P). Unlike 
conjunction words, auxiliary words and preposi-
tion words have high performance of finding right 
head, but label accuracy (LA) decrease signifi-
cantly. The reason may lie in the large depend-
ency label set consisting of 57 kinds of depend-
ency labels in Chinese. Moreover, auxiliary words 
(DE) and preposition words (P) have more possi-
ble dependency labels than other coarse POS have. 
This introduces ambiguity for parsers. 

Most common POS including noun and verb 
contribute much to the overall performance of 
83% Labeled Attachment Scores (LAS). Adverbs 
obtain top score while adjectives give the worst. 

6 Conclusion 

We propose two kinds of probabilistic models 
defined on parsing actions to compute the prob-
ability of entire sentence. Compared with original 
Yamada and Matsumoto’s deterministic depend-
ency method which stepwisely chooses most 

probable parsing action, the two probabilistic 
models improve the performance regarding all 10 
languages in CoNLL 2007 shared task. Through 
the study of parsing results, we find that long dis-
tance dependencies are hard to be determined for 
all 10 languages. Further analysis about this diffi-
culty is needed to guide the research direction. 
Feature exploration is also necessary to provide 
more informative features for hard problems. 
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Abstract

We use a generative history-based model to
predict the most likely derivation of a de-
pendency parse. Our probabilistic model is
based on Incremental Sigmoid Belief Net-
works, a recently proposed class of la-
tent variable models for structure predic-
tion. Their ability to automatically in-
duce features results in multilingual pars-
ing which is robust enough to achieve accu-
racy well above the average for each indi-
vidual language in the multilingual track of
the CoNLL-2007 shared task. This robust-
ness led to the third best overall average la-
beled attachment score in the task, despite
using no discriminative methods. We also
demonstrate that the parser is quite fast, and
can provide even faster parsing times with-
out much loss of accuracy.

1 Introduction

The multilingual track of the CoNLL-2007 shared
task (Nivre et al., 2007) considers dependency pars-
ing of texts written in different languages. It re-
quires use of a single dependency parsing model
for the entire set of languages; model parameters
are estimated individually for each language on the
basis of provided training sets. We use a recently
proposed dependency parser (Titov and Hender-
son, 2007b)1 which has demonstrated state-of-the-
art performance on a selection of languages from the

1The ISBN parser will be soon made downloadable from the
authors’ web-page.

CoNLL-X shared task (Buchholz and Marsi, 2006).
This parser employs a latent variable model, Incre-
mental Sigmoid Belief Networks (ISBNs), to de-
fine a generative history-based model of projective
parsing. We used the pseudo-projective transforma-
tion introduced in (Nivre and Nilsson, 2005) to cast
non-projective parsing tasks as projective. Follow-
ing (Nivre et al., 2006), the encoding scheme called
HEAD in (Nivre and Nilsson, 2005) was used to en-
code the original non-projective dependencies in the
labels of the projectivized dependency tree. In the
following sections we will briefly discuss our modi-
fications to the ISBN parser, experimental setup, and
achieved results.

2 The Probability Model

Our probability model uses the parsing order pro-
posed in (Nivre et al., 2004), but instead of perform-
ing deterministic parsing as in (Nivre et al., 2004),
this ordering is used to define a generative history-
based model, by adding word prediction to the Shift
parser action. We also decomposed some parser ac-
tions into sub-sequences of decisions. We split arc
prediction decisions (Left-Arcr and Right-Arcr) each
into two elementary decisions: first the parser cre-
ates the corresponding arc, then it assigns a relation
r to the arc. Similarly, we decompose the decision
to shift a word into a decision to shift and a pre-
diction of the word. We used part-of-speech tags
and fine-grain word features, which are given in the
data, to further decompose word predictions. First
we predict the fine-grain part-of-speech tag for the
word, then the set of word features (treating each
set as an atomic value), and only then the particu-
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lar word form. This approach allows us to both de-
crease the effect of sparsity and to avoid normaliza-
tion across all the words in the vocabulary, signifi-
cantly reducing the computational expense of word
prediction. When conditioning on words, we treated
each word feature individually, as this proved to be
useful in (Titov and Henderson, 2007b).

The probability of each parser decision, condi-
tioned on the complete parse history, is modeled
using a form a graphical model called Incremental
Sigmoid Belief Networks. ISBNs, originally pro-
posed for constituent parsing in (Titov and Hender-
son, 2007a), use vectors of binary latent variables to
encode information about the parse history. These
history variables are similar to the hidden state of
a Hidden Markov Model. But unlike the graphi-
cal model for an HMM, which would specify con-
ditional dependency edges only between adjacent
states in the parse history, the ISBN graphical model
can specify conditional dependency edges between
latent variables which are arbitrarily far apart in the
parse history. The source state of such an edge is
determined by the partial parse structure built at the
time of the destination state, thereby allowing the
conditional dependency edges to be appropriate for
the structural nature of the parsing problem. In par-
ticular, they allow conditional dependencies to be
local in the parse structure, not just local in the his-
tory sequence. In this they are similar to the class
of neural networks proposed in (Henderson, 2003)
for constituent parsing. In fact, in (Titov and Hen-
derson, 2007a) it was shown that this neural network
can be viewed as a coarse approximation to the cor-
responding ISBN model.

Traditional statistical parsing models also condi-
tion on features which are local in the parse struc-
ture, but these features need to be explicitly defined
before learning, and require careful feature selec-
tion. This is especially difficult for languages un-
known to the parser developer, since the number of
possible features grows exponentially with the struc-
tural distance considered.

The ISBN model uses an alternative approach,
where latent variables are used to induce features
during learning. The most important problem in de-
signing an ISBN is to define an appropriate struc-
tural locality for each parser decision. This is done
by choosing a fixed set of relationships between

parser states, where the information which is needed
to make the decision at the earlier state is also use-
ful in making the decision at the later state. The la-
tent variables for these related states are then con-
nected with conditional dependency edges in the
ISBN graphical model. Longer conditional depen-
dencies are then possible through chains of these im-
mediate conditional dependencies, but there is an in-
ductive bias toward shorter chains. This bias makes
it important that the set of chosen relationships de-
fines an appropriate notion of locality. However,
as long as there exists some chain of relationships
between any two states, then any statistical depen-
dency which is clearly manifested in the data can be
learned, even if it was not foreseen by the designer.
This provides a potentially powerful form of feature
induction, which is nonetheless biased toward a no-
tion of locality appropriate for the nature of the prob-
lem.

In our experiments we use the same definition of
structural locality as was proposed for the ISBN de-
pendency parser in (Titov and Henderson, 2007b).
The current state is connected to previous states us-
ing a set of 7 distinct relationships defined in terms
of each state’s parser configuration, which includes
of a stack and a queue. Specifically, the current state
is related to the last previous state whose parser con-
figuration has: the same queue, the same stack, a
stack top which is the rightmost right child of the
current stack top, a stack top which is the leftmost
left child of the current stack top, a front of the queue
which is the leftmost child of the front of the cur-
rent queue, a stack top which is the head word of
the current stack top, a front of the queue which is
the current stack top. Different model parameters
are trained for each of these 7 types of relationship,
but the same parameters are used everywhere in the
graphical model where the relationship holds.

Each latent variable in the ISBN parser is also
conditionally dependent on a set of explicit features
of the parsing history. As long as these explicit fea-
tures include all the new information from the last
parser decision, the performance of the model is not
very sensitive to this design choice. We used the
base feature model defined in (Nivre et al., 2006)
for all the languages but Arabic, Chinese, Czech,
and Turkish. For Arabic, Chinese, and Czech, we
used the same feature models used in the CoNLL-X
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shared task by (Nivre et al., 2006), and for Turkish
we used again the base feature model but extended
it with a single feature: the part-of-speech tag of the
token preceding the current top of the stack.

3 Parsing

Exact inference in ISBN models is not tractable, but
effective approximations were proposed in (Titov
and Henderson, 2007a). Unlike (Titov and Hender-
son, 2007b), in the shared task we used only the
simplest feed-forward approximation, which repli-
cates the computation of a neural network of the type
proposed in (Henderson, 2003). We would expect
better performance with the more accurate approxi-
mation based on variational inference proposed and
evaluated in (Titov and Henderson, 2007a). We did
not try this because, on larger treebanks it would
have taken too long to tune the model with this bet-
ter approximation, and using different approxima-
tion methods for different languages would not be
compatible with the shared task rules.

To search for the most probable parse, we use the
heuristic search algorithm described in (Titov and
Henderson, 2007b), which is a form of beam search.
In section 4 we show that this search leads to quite
efficient parsing.

To overcome a minor shortcoming of the pars-
ing algorithm of (Nivre et al., 2004) we introduce a
simple language independent post-processing step.
Nivre’s parsing algorithm allows unattached nodes
to stay on the stack at the end of parsing, which is
reasonable for treebanks with unlabeled attachment
to root. However, this sometimes happens with lan-
guages where only labeled attachment to root is al-
lowed. In these cases (only 35 tokens in Greek, 17
in Czech, 1 in Arabic, on the final testing set) we
attached them using a simple rule: if there are no
tokens in the sentence attached to root, then the con-
sidered token is attached to root with the most fre-
quent root-attachment relation used for its part-of-
speech tag. If there are other root-attached tokens in
the sentence, it is attached to the next root-attached
token with the most frequent relation. Preference is
given to the most frequent attachment direction for
its part-of-speech tag. This rule guarantees that no
loops are introduced by the post-processing.

4 Experiments

We evaluated the ISBN parser on all the languages
considered in the shared task (Hajič et al., 2004;
Aduriz et al., 2003; Martı́ et al., 2007; Chen et
al., 2003; Böhmová et al., 2003; Marcus et al.,
1993; Johansson and Nugues, 2007; Prokopidis et
al., 2005; Csendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003). ISBN models were
trained using a small development set taken out from
the training set, which was used for tuning learn-
ing and decoding parameters, for early stopping and
very coarse feature engineering.2 The sizes of the
development sets were different: starting from less
than 2,000 tokens for smaller treebanks to 5,000 to-
kens for the largest one. The relatively small sizes
of the development sets limited our ability to per-
form careful feature selection, but this should not
have significantly affected the model performance,
as discussed in section 2.3 We used frequency cut-
offs: we ignored any property (word form, lemma,
feature) which occurs in the training set less than
a given threshold. We used a threshold of 20 for
Greek and Chinese and a threshold of 5 for the rest.
Because cardinalities of each of these sets (sets of
word forms, lemmas and features) effect the model
efficiency, we selected the larger threshold when val-
idation results with the smaller threshold were com-
parable. For the ISBN latent variables, we used vec-
tors of length 80, based on our previous experience.

Results on the final testing set are presented in ta-
ble 1. The model achieves relatively high scores on
each individual language, significantly better than
each average result in the shared task. This leads
to the third best overall average results in the shared
task, both in average labeled attachment score and
in average unlabeled attachment score. The absolute
error increase in labeled attachment score over the
best system is only 0.4%. We attribute ISBN’s suc-
cess mainly to its ability to automatically induce fea-
tures, as this significantly reduces the risk of omit-
ting any important highly predictive features. This
makes an ISBN parser a particularly good baseline
when considering a new treebank or language, be-

2We plan to make all the learning and decoding parameters
available on our web-page.

3Use of cross-validation with our model is relatively time-
consuming and, thus, not quite feasible for the shared task.
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Ara Bas Cat Chi Cze Eng Gre Hun Ita Tur Ave
LAS 74.1 75.5 87.4 82.1 77.9 88.4 73.5 77.9 82.3 79.8 79.90
UAS 83.2 81.9 93.4 87.9 84.2 89.7 81.2 82.2 86.3 86.2 85.62

Table 1: Labeled attachment score (LAS) and unlabeled attachment score (UAS) on the final testing sets
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Figure 1: Average labeled attachment score on
Basque, Chinese, English, and Turkish development
sets as a function of parsing time per token

cause it does not require much effort in feature en-
gineering. As was demonstrated in (Titov and Hen-
derson, 2007b), even a minimal set of local explicit
features achieves results which are non-significantly
different from a carefully chosen set of explicit fea-
tures, given the language independent definition of
locality described in section 2.

It is also important to note that the model is
quite efficient. Figure 1 shows the tradeoff be-
tween accuracy and parsing time as the width of the
search beam is varied, on the development set. This
curve plots the average labeled attachment score
over Basque, Chinese, English, and Turkish as a
function of parsing time per token.4 Accuracy of
only 1% below the maximum can be achieved with
average processing time of 17 ms per token, or 60
tokens per second.5

We also refer the reader to (Titov and Henderson,
2007b) for more detailed analysis of the ISBN de-
pendency parser results, where, among other things,
it was shown that the ISBN model is especially ac-
curate at modeling long dependencies.

4A piecewise-linear approximation for each individual lan-
guage was used to compute the average. Experiments were run
on a standard 2.4 GHz desktop PC.

5For Basque, Chinese, and Turkish this time is below 7 ms,
but for English it is 38 ms. English, along with Catalan, required
the largest beam across all 10 languages. Note that accuracy in
the lowest part of the curve can probably be improved by vary-
ing latent vector size and frequency cut-offs. Also, efficiency
was not the main goal during the implementation of the parser,
and it is likely that a much faster implementation is possible.

5 Conclusion

We evaluated the ISBN dependency parser in the
multilingual shared task setup and achieved com-
petitive accuracy on every language, and the third
best average score overall. The proposed model re-
quires minimal design effort because it relies mostly
on automatic feature induction, which is highly de-
sirable when using new treebanks or languages. The
parsing time needed to achieve high accuracy is also
quite small, making this model a good candidate for
use in practical applications.

The fact that our model defines a probability
model over parse trees, unlike the previous state-
of-the-art methods (Nivre et al., 2006; McDonald et
al., 2006), makes it easier to use this model in ap-
plications which require probability estimates, such
as in language processing pipelines or for language
modeling. Also, as with any generative model,
it should be easy to improve the parser’s accu-
racy with discriminative reranking, such as discrim-
inative retraining techniques (Henderson, 2004) or
data-defined kernels (Henderson and Titov, 2005),
with or even without the introduction of any addi-
tional linguistic features.
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ter 11, pages 189–210.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proc. 43rd Meeting of Asso-
ciation for Computational Linguistics, pages 99–106,
Ann Arbor, MI.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proc. of the
Eighth Conference on Computational Natural Lan-
guage Learning, pages 49–56, Boston, USA.

Joakim Nivre, Johan Hall, Jens Nilsson, Gulsen Eryigit,
and Svetoslav Marinov. 2006. Pseudo-projective de-
pendency parsing with support vector machines. In
Proc. of the Tenth Conference on Computational Nat-
ural Language Learning, pages 221–225, New York,
USA.
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Abstract

In this paper, we describe a two-stage multi-
lingual dependency parser used for the mul-
tilingual track of the CoNLL 2007 shared
task. The system consists of two compo-
nents: an unlabeled dependency parser us-
ing Gibbs sampling which can incorporate
sentence-level (global) features as well as
token-level (local) features, and a depen-
dency relation labeling module based on
Support Vector Machines. Experimental re-
sults show that the global features are useful
in all the languages.

1 Introduction

Making use of as many informative features as pos-
sible is crucial to obtain high performance in ma-
chine learning based NLP. Recently, several meth-
ods for incorporating non-local features have been
investigated, though such features often make mod-
els complex and thus complicate inference. Collins
and Koo (2005) proposed a reranking method for
phrase structure parsing with which any type of
global features in a parse tree can be used. For
dependency parsing, McDonald and Pereira (2006)
proposed a method which can incorporate some
types of global features, and Riedel and Clarke
(2006) studied a method using integer linear pro-
gramming which can incorporate global linguistic
constraints. In this paper, we study dependency
parsing using Gibbs sampling which can incorpo-
rate any type of global feature in a sentence. The
parser determines unlabeled dependency structures
only, and we attach dependency relation labels us-
ing Support Vector Machines afterwards.

We participated in the multilingual track of the
CoNLL 2007 shared task (Nivre et al., 2007), and
evaluated the system on data sets of 10 languages
(Hajič et al., 2004; Aduriz et al., 2003; Martı́ et
al., 2007; Chen et al., 2003; Böhmov́a et al., 2003;
Marcus et al., 1993; Johansson and Nugues, 2007;
Prokopidis et al., 2005; Csendes et al., 2005; Mon-
temagni et al., 2003; Oflazer et al., 2003).

The rest of the paper describes the specification of
the system and the evaluation results.

2 Unlabeled Dependency Parsing using
Global Features

2.1 Probabilistic Model

Rosenfeld et al. (2001) proposed whole-sentence ex-
ponential language models which can incorporate
arbitrary features in a sentence, and we consider here
a similar probabilistic model for dependency pars-
ing which can incorporate any sentence-level fea-
ture. Letw = w1 · · ·w|w| denote an input sentence
consisting of|w| tokens, andh = h1 · · ·h|w| denote
the sequence of the indices of each token’s head.
Root nodes of a sentence do not have heads, and we
regard the index of a root node’s head as zero, i.e.,
hi ∈ {0, 1, · · · , |w|} \ {i}. We define the probabil-
ity distribution of the dependency structureh given
a sentencew using exponential models as follows:

PΛ,M(h|w)=
1

ZΛ,M(w)
QM(h|w)exp

{
K∑

k=1

λkfk(w,h)

}
,(1)

ZΛ,M(w)=
∑

h′∈H(w)

QM(h′|w) exp

{
K∑

k=1

λkfk(w,h′)

}
, (2)

whereQM(h|w) is an initial distribution,fk(w,h)
is thek-th feature function,K is the number of fea-
ture functions, andλk is the weight of thek-th fea-
ture. H(w) is the set of possible configurations of
heads for a given sentencew. Although it is ap-
propriate thatH(w) is the set of projective trees for
projective languages, and is the set of non-projective
trees (which is a superset of the set of projective
trees) for non-projective languages, in this study, we
defineH(w) to be the set of all the possible graphs,
which contains|w||w| elements. PΛ,M(h|w) and
QM(h|w) are defined overH(w)1. The probabil-
ity distributionPΛ,M(h|w) is a joint distribution of
all the heads conditioned by a sentence, therefore
we call this modelsentence-level model. The fea-
ture functionfk(w,h) is defined on a sentencew
with headsh, and we can use any information in the
sentence without the independence assumption for
the heads of the tokens, therefore we callfk(w,h)

1H(w) is a superset of the set of non-projective trees, and
is an unnecessarily large set which contains ill-formed depen-
dency trees such as trees with cycles. This issue may cause
reduction of parsing performance, but we adopt this approach
for computational efficiency.
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sentence-level (global) feature. We define initial
distributionQM(h|w) as the product ofqM(h|w, t)
which is the probability distribution of the headh of
eacht-th token calculated with maximum entropy
models:

QM(h|w)=

|w|∏
t=1

qM(ht|w, t), (3)

qM(h|w, t)=
1

YM(w, t)
exp

{
L∑

l=1

µlgl(w, t, h)

}
, (4)

YM(w, t)=

|w|∑
h′=0
h′ 6=t

exp

{
L∑

l=1

µlgl(w, t, h′)

}
, (5)

wheregl(w, t, h) is thel-th feature function,L is the
number of feature functions, andµl is the weight of
the l-th feature.qM(h|w, t) is a model of the head
of a single token, calculated independently from
other tokens, therefore we callqM(h|w, t) token-
level model, andgl(w, t, h) token-level (local) fea-
ture.
2.2 Decoding and Parameter Estimation

Let us consider how to find the optimal solution
ĥ, given a sentencew, parameters of the sentence-
level modelΛ = {λ1, · · · , λK}, and parameters of
the token-level modelM = {µ1, · · · , µL}. Since
the probabilistic model contains global features and
efficient algorithms such as dynamic programming
cannot be used, we use Gibbs sampling to obtain
an approximated solution. Gibbs sampling can ef-
ficiently generate samples from high-dimensional
probability distributions with complex dependencies
among variables (Andrieu et al., 2003), and we as-
sume thatR samples{h(1), · · · ,h(R)} are generated
from PΛ,M(h|w) using Gibbs sampling. Then, the
marginal distribution of the head of thet-th token
given w, Pt(h|w), is approximately calculated as
follows:

Pt(h|w) =
∑

h1,···,ht−1,ht+1,···,h|w|
ht=h

PΛ,M(h|w),

=
∑
h

PΛ,M(h|w)δ(h, ht) ' 1

R

R∑
r=1

δ(h, h
(r)
t ), (6)

where δ(i, j) is the Kronecker delta. In order to
find a solution using the marginal distribution, we
adopt the maximum spanning tree (MST) frame-
work proposed by McDonald et al. (2005a). In this
framework, scores for possible edges in dependency
graphs are defined, and the optimal dependency tree
is found as the MST in which the summation of the
edge scores is maximized. Lets(i, j) denote the
score of the edge from a parent node (head)i to a
child node (dependent)j. We defines(i, j) as fol-
lows:

s(i, j)=log Pj(i|w). (7)

We use the logarithm of the marginal distribution be-
cause the summation of edge scores is maximized
by the MST search algorithms but the product of the
marginal distributions should be maximized. The
best projective parse tree is obtained using the Eis-
ner algorithm (Eisner, 1996) with the scores, and the
best non-projective one is obtained using the Chu-
Liu-Edmonds (CLE) algorithm (McDonald et al.,
2005b).

Although in this method, the factored scores(i, j)
is used to measure likelihood of dependency trees,
the score is calculated taking a whole sentence into
consideration using Gibbs sampling.

Next, we explain how to estimate the parame-
ters of our models, given training data consisting of
N examples{〈w1,h1〉, · · · , 〈wN ,hN 〉}. In order
to estimate the parameters of the token-level model
M = {µ1, · · · , µL}, we use maximum a posteriori
estimation with Gaussian priors. We define the fol-
lowing objective functionM:

M=log

N∏
n=1

QM(hn|wn)− 1

2σ2

L∑
l=1

µ2
l , (8)

whereσ is a hyper parameter of Gaussian priors.
The optimal parametersM which maximizeM can
be obtained by quasi-Newton methods such as the
L-BFGS algorithm with aboveM and its partial
derivatives. The parameters of the sentence-level
modelΛ = {λ1, · · · , λK} can also be estimated in
a similar way with the following objective function
L after the parameters of the token-level model are
estimated.

L=log

N∏
n=1

PΛ,M(hn|wn)− 1

2σ′2

K∑
k=1

λ2
k. (9)

This objective function and its partial derivative con-
tain summations over all the possible configura-
tions which are difficult to calculate. We approx-
imately calculate these values using static Monte
Carlo (not MCMC) methods with fixedS samples
{hn(1), · · · ,hn(S)} generated fromQM(h|wn)2:

log ZΛ,M(wn)'log
1

S

S∑
s=1

exp

{
K∑

k=1

λkfk(wn,hn(s))

}
,(10)

∑
h′∈H(wn)

PΛ,M(h′|wn)fk(wn,h′)

' 1

S

S∑
s=1

fk(wn,hn(s))

ZΛ,M(wn)
exp

{
K∑

k′=1

λk′fk′(w
n,hn(s))

}
. (11)

2Static Monte Carlo methods become inefficient when the
dimension of the probabilistic distribution is high, and more so-
phisticated methods would be used for accurate parameter esti-
mation.
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2.3 Local Features

The token-level features used in the system are the
same as those used in MSTParser version 0.4.23.
The features include lexical forms and (coarse and
fine) POS tags of parent tokens, child tokens, their
surrounding tokens, and tokens between the child
and the parent. The direction and the distance from a
parent to its child, and the FEATS fields of the parent
and the child which are split into elements and then
combined are also included. Features that appeared
less than 5 times in training data are ignored.

2.4 Global Features

Global features can capture any information in de-
pendency trees, and the following nine types of
global features are used (In the following,parent
nodemeans a head token, andchild nodemeans a
dependent token):

Child Unigram+Parent+Grandparent This fea-
ture template is a 4-tuple consisting of (1) a
child node, (2) its parent node, (3) the direc-
tion from the parent node to the child node, and
(4) the grandparent node.

Each node in the feature template is expanded
to its lexical form and coarse POS tag in or-
der to obtain actual features. Features that ap-
peared in four or less sentences are ignored.
The same procedure is applied to the following
other features.

Child Bigram+Parent This feature template is a 4-
tuple consisting of (1) a child node, (2) its par-
ent node, (3) the direction from the parent node
to the child node, and (4) the nearest outer sib-
ling node (the nearest sibling node which exists
on the opposite side of the parent node) of the
child node. This feature template is almost the
same as the one used by McDonald and Pereira
(2006).

Child Bigram+Parent+Grandparent This feature
template is a 5-tuple. The first four ele-
ments (1)–(4) are the same as theChild Bi-
gram+Parent feature template, and the addi-
tional element (5) is the grandparent node.

Child Trigram+Parent This feature template is a
5-tuple. The first four elements (1)–(4) are the
same as theChild Bigram+Parentfeature tem-
plate, and the additional element (5) is the next
nearest outer sibling node of the child node.

3http://sourceforge.net/projects/mstparser

Parent+All Children This feature template is a tu-
ple with more than one element. The first ele-
ment is a parent node, and the other elements
are all of its child nodes.

Parent+All Children+Grandparent This feature
template is a tuple with more than two ele-
ments. The elements other than the last one
are the same as theParent+All Childrenfeature
template, and the last element is the grandpar-
ent node.

Child+Ancestor This feature template is a 2-tuple
consisting of (1) a child node, and (2) one of its
ancestor nodes.

Acyclic This feature type has one of two values,
true if the dependency tree is acyclic, orfalse
otherwise.

Projective This feature type has one of two val-
ues, true if the dependency tree is projective,
or falseotherwise.

3 Dependency Relation Labeling

3.1 Model

Dependency relation labeling can be handled as a
multi-class classification problem, and we use Sup-
port Vector Machines (SVMs) which have been suc-
cessfully applied to many NLP tasks. Solving large-
scale multi-class classification problem with SVMs
requires substantial computational resources, so we
use the revision learning method (Nakagawa et al.,
2002). The revision learning method combines
a probabilistic model which has smaller computa-
tional cost with a binary classifier which has higher
generalization capacity. In the method, the latter
classifier revises the output of the former model to
conduct multi-class classification with higher ac-
curacy and reasonable computational cost. In this
study, we use maximum entropy (ME) models as
the probabilistic model and SVMs with the second
order polynomial kernel as the binary classifier. The
dependency label of each node is determined inde-
pendently of the labeling of other nodes.

3.2 Features

As the features for SVMs to predict the dependency
relation label of thei-th token, we use the lexical
forms, coarse and fine POS tags, and FEATS fields
of the i-th and thehi-th tokens. We also use lex-
ical forms and POS tags of the tokens surround-
ing and in between them (i.e. thej-th token where
j ∈ {j|min{i, hi} − 1 ≤ j ≤ max{i, hi} + 1}),
the grandparent (hhi-th) token, the sibling tokens of
i (thej′-th token wherej′ ∈ {j′|hj′ = hi, j

′ 6= i}),
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Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish Average
LAS 75.08 72.56 87.90 83.84 80.19 88.41 76.31 76.74 83.61 78.22 80.29
UAS 86.09 81.04 92.86 88.88 86.28 90.13 84.08 82.49 87.91 85.77 86.55

Table 1: Results of Multilingual Dependency Parsing
Algorithm Features Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish
Eisner local 85.15 80.20 91.75 86.75 84.19 88.65 83.31 80.27 86.72 84.82
(proj.) +global 86.09 81.00 92.86 88.88 85.99 90.13 84.08 81.55 87.91 84.82
CLE local 84.80 80.39 91.23 86.71 84.21 88.07 83.03 81.15 86.85 85.35
(non-proj.) +global 85.83 81.04 92.64 88.84 86.28 90.05 83.87 82.49 87.97 85.77

Table 2: Unlabeled Attachment Scores in Different Settings (underlined values indicate submitted results,
and bold values indicate the highest scores)

and the child tokens ofi (the j′′-th token where
j′′ ∈ {j′′|hj′′ = i})4. As the features for ME mod-
els, a subset of them is used since ME models are
used just for reducing the search space, and do not
need so many features.

4 Results and Analysis

In order to tune the system, we split each training
data set into two parts, and used the first half for
training and the remaining half for testing in devel-
opment. The CLE algorithm was used for Basque,
Czech, Hungarian and Turkish, and the Eisner algo-
rithm was used for the others. We used lemmas for
Catalan, Czech, Greek and Italian, and word forms
for all others. The values of the parameters to be
fixed were chosen asR = 500, S = 200, σ = 0.25,
andσ′ = 0.25. With these parameter settings, train-
ing took 247 hours, and testing took 343 minutes on
an Opteron 250 processor.

Table 1 shows the evaluation results on the test
sets. Accuracy was measured with the labeled at-
tachment score (LAS) and the unlabeled attachment
score (UAS). Among the participating systems in the
shared task, we obtained the second best average
accuracy in the labeled attachment score, and the
best average accuracy in the unlabeled attachment
score. Compared with other systems, the gap be-
tween our labeled and unlabeled scores is relatively
big. In this study, labeling of dependency relations
was performed in a separate post-processing step,
and each label was predicted independently. The la-
beled scores may be improved if the parsing process
and the labeling process are performed at the same
time, and dependencies among labels are taken into
account.

We conducted experiments with different settings.
Table 2 shows the results measured with the unla-
beled attachment score. In the table,Eisner and

4Although polynomial kernels of SVMs can implicitly han-
dle combined features, some of combined features were also in-
cluded explicitly because using unnecessarily high order poly-
nomial kernels decreases performance.

CLE indicate that the Eisner algorithm and the
CLE algorithm are used in decoding, andlocal and
+global indicate that local features alone, and local
and global features together are used. The CLE al-
gorithm performed better than the Eisner algorithm
for Basque, Czech, Hungarian, Italian and Turkish.
All of these data sets except Italian contain relatively
a large number of non-projective sentences (the per-
centage of sentences with at least one non-projective
relation in the training data is over 20% (Nivre et al.,
2007)), though the Greek data set, on which the Eis-
ner algorithm performed better, also contains many
non-projective sentences (20.3%).

By using the global features, the accuracy was
improved in all the cases except for Turkish with
the Eisner algorithm (Table 2). The increase was
rather large in Chinese and Czech. When the global
features were used in these languages, the depen-
dency accuracy for tokens whose heads had con-
junctions as parts-of-speech was notably improved;
from 80.5% to 86.0% in Chinese (Eisner), and from
73.2% to 77.6% in Czech (CLE). We investigated
the trained global models, and found thatParent+All
Children features, whose parents were conjunctions
and whose children had compatible classes, had
large positive weights, and those whose children had
incompatible classes had large negative weights. A
feature with a larger weight is generally more influ-
ential. Riedel and Clarke (2006) suggested to use
linguistic constraints such as “arguments of a coor-
dination must have compatible word classes,” and
such constraint seemed to be represented by the fea-
tures in our models.

5 Conclusion

In this study, we applied a dependency parser us-
ing global features to multilingual dependency pars-
ing. Evaluation results showed that the use of global
features was effective to obtain higher accuracy in
multilingual dependency parsing. Improving depen-
dency relation labeling is left for future work.
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Abstract

We present experiments with a dependency
parsing model defined on rich factors. Our
model represents dependency trees with fac-
tors that include three types of relations be-
tween the tokens of a dependency and their
children. We extend the projective pars-
ing algorithm of Eisner (1996) for our case,
and train models using the averaged percep-
tron. Our experiments show that consider-
ing higher-order information yields signifi-
cant improvements in parsing accuracy, but
comes at a high cost in terms of both time
and memory consumption. In the multi-
lingual exercise of the CoNLL-2007 shared
task (Nivre et al., 2007), our system obtains
the best accuracy for English, and the second
best accuracies for Basque and Czech.

1 Introduction

Structured prediction problems usually involve
models that work with factored representations of
structures. The information included in the factors
determines the type of features that the model can
exploit. However, richer representations translate
into higher complexity of the inference algorithms
associated with the model.

In dependency parsing, the basic first-order model
is defined by a decomposition of a tree into head-
modifier dependencies. Previous work extended this
basic model to include second-order relations—i.e.
dependencies that are adjacent to the main depen-
dency of the factor. Specifically, these approaches

considered sibling relations of the modifier token
(Eisner, 1996; McDonald and Pereira, 2006). In this
paper we extend the parsing model with other types
of second-order relations. In particular, we incorpo-
rate relations between the head and modifier tokens
and the children of the modifier.

One paradigmatic case where the relations we
consider are relevant is PP-attachment. For example,
in “They sold 1,210 cars in the U.S.”, the ambigu-
ity problem is to determine whether the preposition
“in” (which governs “the U.S.”) is modifying “sold”
or “cars”, the former being correct in this case. It is
generally accepted that to solve the attachment deci-
sion it is necessary to look at the head noun within
the prepositional phrase (i.e., “U.S.” in the exam-
ple), which has a grand-parental relation with the
two candidate tokens that the phrase may attach—
see e.g. (Ratnaparkhi et al., 1994). Other ambigu-
ities in language may also require consideration of
grand-parental relations in the dependency structure.

We present experiments with higher-order models
trained with averaged perceptron. The second-order
relations that we incorporate in the model yield sig-
nificant improvements in accuracy. However, the in-
ference algorithms for our factorization are very ex-
pensive in terms of time and memory consumption,
and become impractical when dealing with many la-
bels or long sentences.

2 Higher-Order Projective Models

A dependency parser receives a sentence x of n to-
kens, and outputs a labeled dependency tree y. In
the tree, a labeled dependency is a triple 〈h, m, l〉,
where h ∈ [0 . . . n] is the index of the head token,
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Figure 1: A factor in the higher-order parsing model.

m ∈ [1 . . . n] is the index of the modifier token, and
l ∈ [1 . . . L] is the label of the dependency. The
value h = 0 is used for dependencies where the
head is a special root-symbol of the sentence. We
denote by T (x) the set of all possible dependency
structures for a sentence x. In this paper, we restrict
to projective dependency trees. The dependency tree
computed by the parser for a given sentence is:

y∗(x) = arg max
y∈T (x)

∑

f∈y

score(w,x, f)

The parsing model represents a structure y as a set of
factors, f ∈ y, and scores each factor using param-
eters w. In a first-order model a factor corresponds
to a single labeled dependency, i.e. f = 〈h, m, l〉.
The features of the model are defined through a fea-
ture function φ1(x, h, m) which maps a sentence to-
gether with an unlabeled dependency to a feature
vector in R

d1 . The parameters of the model are a
collection of vectors w

l
1 ∈ R

d1 , one for each pos-
sible label. The first-order model scores a factor as
score1(w,x, 〈h, m, l〉) = φ1(x, h, m) · wl

1.
The higher-order model defined in this paper de-

composes a dependency structure into factors that
include children of the head and the modifier. In
particular, a factor in our model is represented by
the signature f = 〈h, m, l, ch, cmi, cmo〉 where, as
in the first-order model, h, m and l are respectively
the head, modifier and label of the main dependency
of the factor; ch is the child of h in [h . . .m] that
is closest to m; cmi is child of m inside [h . . .m]
that is furthest from m; cmo is the child of m out-
side [h . . . m] that is furthest from m. Figure 1 de-
picts a factor of the higher-order model, and Table 1
lists the factors of an example sentence. Note that a
factor involves a main labeled dependency and three
adjacent unlabeled dependencies that attach to chil-
dren of h and m. Special values are used when either
of these children are null.

The higher-order model defines additional

m h ch cmi cmo

They 1 2 - - -
sold 2 0 - 1 5
1,200 3 4 - - -
cars 4 2 - 3 -
in 5 2 4 - 7
the 6 7 - - -
U.S. 7 5 - 6 -

Table 1: Higher-order factors for an example sentence. For
simplicity, labels of the factors have been omitted. A first-order
model considers only 〈h, m〉. The second-order model of Mc-
Donald and Pereira (2006) considers 〈h, m, ch〉. For the PP-
attachment decision (factor in row 5), the higher-order model
allows us to define features that relate the verb (“sold”) with the
content word of the prepositional phrase (“U.S.”).

second-order features through a function
φ2(x, h, m, c) which maps a head, a modifier
and a child in a feature vector in R

d2 . The param-
eters of the model are a collection of four vectors
for each dependency label: w

l
1 ∈ R

d1 as in the
first-order model; and w

l
h,w

l
mi and w

l
mo, all three

in R
d2 and each associated to one of the adjacent

dependencies in the factor. The score of a factor is:

score2(w,x, 〈h, m, l, ch, cmi, cmo〉) =
φ1(x, h, m) · wl

1 + φ2(x, h, m, ch) · wl
h +

φ2(x, h, m, cmi) · w
l
mi + φ2(x, h, m, cmo) · w

l
mo

Note that the model uses a common feature func-
tion for second-order relations, but features could
be defined specifically for each type of relation.
Note also that while the higher-order factors include
four dependencies, our modelling choice only ex-
ploits relations between the main dependency and
secondary dependencies. Considering relations be-
tween secondary dependencies would greatly in-
crease the cost of the associated algorithms.

2.1 Parsing Algorithm

In this section we sketch an extension of the pro-
jective dynamic programming algorithm of Eis-
ner (1996; 2000) for the higher-order model de-
fined above. The time complexity of the algo-
rithm is O(n4L), and the memory requirements are
O(n2L + n3). As in the Eisner approach, our algo-
rithm visits sentence spans in a bottom up fashion,
and constructs a chart with two types of dynamic
programming structures, namely open and closed
structures—see Figure 2 for a diagram. The dy-
namic programming structures are:
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Figure 2: Dynamic programming structures used in the pars-
ing algorithm. The variables in boldface constitute the index of
the chart entry for a structure; the other variables constitute the
back-pointer stored in the chart entry. Left: an open structure
for the chart entry [h, m, l]O ; the algorithm looks for the r, ch

and cmi that yield the optimal score for this structure. Right:
a closed structure for the chart entry [h, e, m]C ; the algorithm
looks for the l and cmo that yield the optimal score.

• Open structures: For each span from s to e and
each label l, the algorithm maintains a chart
entry [s, e, l]O associated to the dependency
〈s, e, l〉. For each entry, the algorithm looks
for the optimal splitting point r, sibling ch and
grand-child cmi using parameters w

l
1, w

l
h and

w
l
mi. This can be done in O(n2) because our

features do not consider interactions between
ch and cmi. Similar entries [e, s, l]O are main-
tained for dependencies headed at e.

• Closed structures: For each span from s to e

and each token m ∈ [s . . . e], the algorithm
maintains an entry [s, e, m]C associated to a
partial dependency tree rooted at s in which m

is the last modifier of s. The algorithm chooses
the optimal dependency label l and grand-child
cmo in O(nL), using parameters w

l
mo. Similar

entries [e, s, m]C are maintained for dependen-
cies headed at e.

We implemented two variants of the algorithm.
The first forces the root token to participate in ex-
actly one dependency. The second allows many de-
pendencies involving the root token. For the single-
root case, it is necessary to treat the root token dif-
ferently than other tokens. In the experiments, we
used the single-root variant if sentences in the train-
ing set satisfy this property. Otherwise we used the
multi-root variant.

2.2 Features

The first-order features φ1(x, h, m) are the exact
same implementation as in previous CoNLL sys-
tem (Carreras et al., 2006). In turn, those features

were inspired by successful previous work in first-
order dependency parsing (McDonald et al., 2005).
The most basic feature patterns consider the sur-
face form, part-of-speech, lemma and other morpho-
syntactic attributes of the head or the modifier of a
dependency. The representation also considers com-
plex features that exploit a variety of conjunctions
of the forms and part-of-speech tags of the follow-
ing items: the head and modifier; the head, modifier,
and any token in between them; the head, modifier,
and the two tokens following or preceding them.

As for the second-order features, we again
base our features with those of McDonald and
Pereira (2006), who reported successful experiments
with second-order models. We add some patterns to
their features. Let dir be “right” if h < m, and
“left” otherwise; let form(xi) and cpos(xi) return
the surface form and coarse part-of-speech of token
xi, respectively. The definition of φ2(x, h, m, c) is:

• dir · cpos(xh) · cpos(xm) · cpos(xc)

• dir · cpos(xh) · cpos(xc)

• dir · cpos(xm) · cpos(xc)

• dir · form(xh) · form(xc)

• dir · form(xm) · form(xc)

• dir · cpos(xh) · form(xc)

• dir · cpos(xm) · form(xc)

• dir · form(xh) · cpos(xc)

• dir · form(xm) · cpos(xc)

3 Experiments and Results

We report experiments with higher-order models for
the ten languages in the multilingual track of the
CoNLL-2007 shared task (Nivre et al., 2007).1

In all experiments, we trained our models us-
ing the averaged perceptron (Freund and Schapire,
1999), following the extension of Collins (2002) for
structured prediction problems. To train models, we
used “projectivized” versions of the training depen-
dency trees.2

1We are grateful to the providers of the treebanks that con-
stituted the data for the shared task (Hajič et al., 2004; Aduriz
et al., 2003; Martı́ et al., 2007; Chen et al., 2003; Böhmová et
al., 2003; Marcus et al., 1993; Johansson and Nugues, 2007;
Prokopidis et al., 2005; Csendes et al., 2005; Montemagni et
al., 2003; Oflazer et al., 2003).

2We obtained projective trees for training sentences by run-
ning the projective parser with an oracle model (that assigns a
score of +1 to correct dependencies and -1 otherwise).
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Catalan Czech English
First-Order, no averaging 82.07 68.98 83.75
First-Order 86.15 75.96 87.54
Higher-Order, ch 87.50 77.15 88.70
Higher-Order, ch cmo 87.68 77.62 89.28
Higher-Order, ch cmi cmo 88.04 78.09 89.59

Table 2: Labeled attachment scores on validation data
(∼10,000 tokens per language), for different models that ex-
ploit increasing orders of factorizations.

3.1 Impact of Higher-Order Factorization

Our first set of experiments looks at the performance
of different factorizations. We selected three lan-
guages with a large number of training sentences,
namely Catalan, Czech and English. To evaluate
models, we held out the training sentences that cover
the first 10,000 tokens; the rest was used for training.

We compared four models at increasing orders of
factorizations. The first is a first-order model. The
second model is similar to that of McDonald and
Pereira (2006): a factor consists of a main labeled
dependency and the head child closest to the mod-
ifier (ch). The third model incorporates the modi-
fier child outside the main dependency in the fac-
torization (cmo). Finally, the last model incorpo-
rates the modifier child inside the dependency span
(cmi), thus corresponding to the complete higher-
order model presented in the previous section.

Table 2 shows the accuracies of the models on
validation data. Each model was trained for up to
10 epochs, and evaluated at the end of each epoch;
we report the best accuracy of these evaluations.
Clearly, the accuracy increases as the factors in-
clude richer information in terms of second-order
relations. The richest model obtains the best accu-
racy in the three languages, being much better than
that of the first-order model. The table also reports
the accuracy of an unaveraged first-order model, il-
lustrating the benefits of parameter averaging.

3.2 Results on the Multilingual Track

We trained a higher-order model for each language,
using the averaged perceptron. In the experiments
presented above we observed that the algorithm
does not over-fit, and that after two or three train-
ing epochs only small variations in accuracy occur.
Based on this fact, we designed a criterion to train
models: we ran the training algorithm for up to three

training test
sent./min. mem. UAS LAS

Arabic 1.21 1.8GB 81.48 70.20
Basque 33.15 1.2GB 81.08 75.73
Catalan 5.50 1.7GB 92.46 87.60
Chinese 1461.66 60MB 86.20 80.86
Czech 18.19 1.8GB 85.16 78.60
English 15.57 1.0GB 90.63 89.61
Greek 8.10 250MB 81.37 73.56
Hungarian 5.65 1.6GB 79.92 75.42
Italian 12.44 900MB 87.19 83.46
Turkish 116.55 600MB 82.41 75.85
Average - - 84.79 79.09

Table 3: Performance of the higher-order projective models
on the multilingual track of the CoNLL-2007 task. The first two
columns report the speed (in sentences per minute) and mem-
ory requirements of the training algorithm—these evaluations
were made on the first 1,000 training sentences with a Dual-
Core AMD OpteronTM Processor 256 at 1.8GHz with 4GB of
memory. The last two columns report unlabelled (UAS) and
labelled (LAS) attachment scores on test data.

days of computation, or a maximum of 15 epochs.
For Basque, Chinese and Turkish we could complete
the 15 epochs. For Arabic and Catalan, we could
only complete 2 epochs. Table 3 reports the perfor-
mance of the higher-order projective models on the
ten languages of the multilingual track.

4 Conclusion

We have presented dependency parsing models that
exploit higher-order factorizations of trees. Such
factorizations allow the definition of second-order
features associated with sibling and grand-parental
relations. For some languages, our models obtain
state-of-the-art results.

One drawback of our approach is that the infer-
ence algorithms for higher-order models are very ex-
pensive. For languages with many dependency la-
bels or long sentences, training and parsing becomes
impractical for current machines. Thus, a promising
line of research is the investigation of methods to
efficiently incorporate higher-order relations in dis-
criminative parsing.
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Abstract

We present our system used in the CoNLL
2007 shared task on multilingual parsing.
The system is composed of three compo-
nents: a k-best maximum spanning tree
(MST) parser, a tree labeler, and a reranker
that orders the k-best labeled trees. We
present two techniques for training the
MST parser: tree-normalized and graph-
normalized conditional training. The tree-
based reranking model allows us to explic-
itly model global syntactic phenomena. We
describe the reranker features which include
non-projective edge attributes. We provide
an analysis of the errors made by our system
and suggest changes to the models and fea-
tures that might rectify the current system.

1 Introduction

Reranking the output of a k-best parser has been
shown to improve upon the best results of a state-
of-the-art constituency parser (Charniak and John-
son, 2005). This is primarily due to the ability to
incorporate complex structural features that cannot
be modeled under a CFG. Recent work shows that
k-best maximum spanning tree (MST) parsing and
reranking is also viable (Hall, 2007). In the current
work, we explore the k-best MST parsing paradigm
along with a tree-based reranker. A system using
the parsing techniques presented in this paper was
entered in the CoNLL 2007 shared task competi-
tion (Nivre et al., 2007). This task evaluated pars-
ing performance on 10 languages: Arabic, Basque,

Catalan, Chinese, Czech, English, Greek, Hungar-
ian, Italian, and Turkish using data originating from
a wide variety of dependency treebanks, and trans-
formations of constituency-based treebanks (Hajič
et al., 2004; Aduriz et al., 2003; Martı́ et al., 2007;
Chen et al., 2003; Böhmová et al., 2003; Marcus et
al., 1993; Johansson and Nugues, 2007; Prokopidis
et al., 2005; Csendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003).

We show that oracle parse accuracy1 of the out-
put of our k-best parser is generally higher than the
best reported results. We also present the results
of a reranker based on a rich set of structural fea-
tures, including features explicitly targeted at mod-
eling non-projective configurations. Labeling of the
dependency edges is accomplished by an edge la-
beler based on the same feature set as used in train-
ing the k-best MST parser.

2 Parser Description

Our parser is composed of three components: a k-
best MST parser, a tree-labeler, and a tree-reranker.
Log-linear models are used for each of the com-
ponents independently. In this section we give an
overview of the models, the training techniques, and
the decoders.

2.1 MST Parsing, Reranking, and Labeling
The connection between the maximum spanning
tree problem and dependency parsing stems from
the observation that a dependency parse is simply an
oriented spanning tree on the graph of all possible

1The oracle accuracy for a set of hypotheses is the maximal
accuracy for any of the hypotheses.
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dependency links (the fully connected dependency
graph). Unfortunately, by mapping the problem to
a graph, we assume that the scores associated with
edges are independent, and thus, are limited to edge-
factored models.

Edge-factored models are severely limited in their
capacity to predict structure. In fact, they can only
directly model parent-child links. In order to allevi-
ate this, we use a k-best MST parser to generate a
set of candidate hypotheses. Then, we rerank these
trees using a model based on rich structural features
that model features such as valency, subcategoriza-
tion, ancestry relationships, and sibling interactions,
as well as features capturing the global structure of
dependency trees, aimed primarily at modeling lan-
guage specific non-projective configurations.

We assign dependency labels to entire trees, rather
than predicting the labels during tree construction.
Given that we have a reranking process, we can la-
bel the k-best tree hypotheses output from our MST
parser, and rerank the labeled trees. We have ex-
plored both labeled and unlabeled reranking. In the
latter case, we simply label the maximal unlabeled
tree.

2.1.1 MST Training
McDonald et al. (2005) present a technique for

training discriminative models for dependency pars-
ing. The edge-factored models we use for MST
parsing are closely related to those described in the
previous work, but allow for the efficient compu-
tation of normalization factors which are required
for first and second-order (gradient-based) training
techniques.

We consider two estimation procedures for
parent-prediction models. A parent-prediction
model assigns a conditional score s(g|d) for ev-
ery parent-child pair (we denote the parent/governor
g, and the child/dependent d), where s(g|d) =
s(g, d)/

∑
g′ s(g′, d). In our work, we compute

probabilities p(g|d) based on conditional log-linear
models. This is an approximation to a generative
model that predicts each node once (i.e.,

∏
d p(d|g)).

In the graph-normalized model, we assume that
the conditional distributions are independent of one
another. In particular, we find the model parameters
that maximize the likelihood of p(g∗|d), where g∗

is the correct parent in the training data. We per-

form the optimization over the entire training set,
tying the feature parameters. In particular, we per-
form maximum entropy (MaxEnt) estimation over
the conditional distribution using second-order gra-
dient descent optimization techniques.2 An advan-
tage of the parent-prediction model is that we can
frame the estimation problem as that of minimum-
error training with a zero-one loss term:

p(e, g|d) =
exp(

∑
i λifi(e, g, d))

Zd
(1)

where e ∈ {0, 1} is the error term (e is 1 for
the correct parent and 0 for all other nodes) and
Zd =

∑
j exp(

∑
i λifi(ej , gj , d)) is the normaliza-

tion constant for node d. Note that the normaliza-
tion factor considers all graphs with in-degree zero
for the root node and in-degree one for other nodes.

At parsing time, of course, our parent predictions
are constrained to produce a (non-projective) tree
structure. We can sum over all non-projective span-
ning trees by taking the determinant of the Kirchhoff
matrix of the graph defined above, minus the row
and column corresponding to the root node (Smith
and Smith, 2007). Training graph-normalized and
tree-normalized models under identical conditions,
we find tree normalization wins by 0.5% to 1% ab-
solute dependency accuracy. Although tree normal-
ization also shows a (smaller) advantage in k-best
oracle accuracy, we do not believe it would have a
large effect on our reranking results.

2.1.2 Reranker Training
The reranker is based on a conditional log-linear

model subject to the MaxEnt constraints using the
same second-order optimization procedures as the
graph-normalized MST models. The primary dif-
ference here is that there is no single correct tree in
the set of k candidate parse trees. Instead, we have
k trees that are generated by our k-best parser, each
with a score assigned by the parser. If we are per-
forming labeled reranking, we label each of these
hypotheses with l possible labelings, each with a
score assigned by the labeler.

As with the parent-prediction, graph-normalized
model, we perform minimum-error training. The

2For the graph-normalized models, we use L-BFGS opti-
mization provided through the TAO/PETSC optimization li-
brary (Benson et al., 2005; Balay et al., 2004).
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optimization is achieved by assuming the oracle-best
parse(s) are correct and the remaining hypotheses
are incorrect. Furthermore, the feature values are
scaled according to the relative difference between
the oracle-best score and the score assigned to the
non-oracle-best hypothesis.

Note that any reranker could be used in place of
our current model. We have chosen to keep the
reranker model closely related to the MST parsing
model so that we can share feature representations
and training procedures.

2.1.3 Labeler Training
We used the same edge features to train a sep-

arate log-linear labeling model. Each edge feature
was conjoined with a potential label, and we then
maximized the likelihood of the labeling in the train-
ing data. Since this model is also edge-factored, we
can store the labeler scores for each of the n2 po-
tential edges in the dependency tree. In the submit-
ted system, we simply extracted the Viterbi predic-
tions of the labeler for the unlabeled trees selected
by the reranker. We also (see below) ran experiments
where each entry in the k-best lists input as training
data to the reranker was augmented by its l-best la-
belings. We hoped thereby to inject more diversity
into the resulting structures.

2.1.4 Model Features
Our MST models are based on the features de-

scribed in (Hall, 2007); specifically, we use features
based on a dependency nodes’ form, lemma, coarse
and fine part-of-speech tag, and morphological-
string attributes. Additionally, we use surface-string
distance between the parent and child, buckets of
features indicating if a particular form/lemma/tag
occurred between or next to the parent and child, and
a branching feature indicating whether the child is
to the left or right of the parent. Composite features,
combining the above features are also included (e.g.,
a single feature combining branching, parent & child
form, parent & child tag).

The tree-based reranker includes the features de-
scribed in (Hall, 2007) as well as features based on
non-projective edge attributes explored in (Havelka,
2007a; Havelka, 2007b). One set of features mod-
els relationships of nodes with their siblings, in-
cluding valency and subcategorization. A second

set of features models global tree structure and in-
cludes features based on a node’s ancestors and the
depth and size of its subtree. A third set of fea-
tures models the interaction of word order and tree
structure as manifested on individual edges, i.e., the
features model language specific projective and non-
projective configurations. They include edge-based
features corresponding to the global constraints of
projectivity, planarity and well-nestedness, and for
non-projective edges, they furthermore include level
type, level signature and ancestor-in-gap features.
All features allow for an arbitrary degree of lexical-
ization; in the reported results, the first two sets of
features use coarse and fine part-of-speech lexical-
izations, while the features in the third set are used
in their unlexicalized form due to time limitations.

3 Results and Analysis

Hall (2007) shows that the oracle parsing accuracy
of a k-best edge-factored MST parser is consid-
erably higher than the one-best score of the same
parser, even when k is small. We have verified that
this is true for the CoNLL shared-task data by evalu-
ating the oracle rates on a randomly sampled devel-
opment set for each language.

In order to select optimal model parameters for
the MST parser, the labeler, and reranker, we sam-
pled approximately 200 sentences from each train-
ing set to use as a development test set. Training the
reranker requires a jackknife n-fold training proce-
dure where n−1 partitions are used to train a model
that parses the remaining partition. This is done n
times to generate k-best parses for the entire training
set without using models trained on the data they are
run on.

For lack of space, we report only results on the
CoNLL evaluation data set here, but note that the
trends observed on the evaluation data are identical
to those observed on our development sets.

In Table 1 we present results for labeled (and un-
labeled) dependency accuracy on the CoNLL 2007
evaluation data set. We report the oracle accu-
racy for different sized k-best hypothesis sets. The
columns are labeled by the number of trees output
from the MST parser, k;3 and by the number of al-

3All results are reported for the graph-normalized training
technique.
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Language Oracle Accuracy New CoNLL07 CoNLL07
k = 1, l = 1 k = 10, l = 5 k = 50, l = 1 k = 50, l = 2 Reranked Reported Best

Arabic (83.10) (85.56) (86.96) (83.67) 73.40 (83.45) 76.52 (86.09)
Basque 67.92 (76.88) 76.25 (82.19) 69.93 (84.99) 76.81 (77.76) 69.80 (78.52) 76.92 (82.80)
Catalan 82.28 (87.82) 85.11 (90.87) 86.82 (92.68) 86.82 (89.43) 82.38 (87.80) 88.70 (93.40)
Chinese 73.86 (85.58) 91.32 (93.39) 82.39 (95.80) 92.21 (87.87) 82.77 (87.91) 84.69 (88.94)
Czech 74.05 (80.21) 78.58 (85.08) 80.97 (87.60) 80.97 (82.20) 72.27 (78.47) 80.19 (86.28)
English 82.21 (83.63) 85.95 (87.59) 87.99 (89.75) 87.99 (85.31) 81.93 (83.21) 89.61 (90.63)
Greek 72.21 (81.16) 78.58 (84.89) 74.13 (86.95) 79.48 (81.81) 74.21 (82.04) 76.31 (84.08)
Hungarian 71.68 (78.57) 79.70 (83.03) 74.32 (85.12) 80.75 (80.05) 74.20 (79.34) 80.27 (83.55)
Italian 77.92 (83.16) 85.05 (87.54) 80.30 (89.66) 86.42 (84.71) 80.69 (84.81) 84.40 (87.91)
Turkish 75.34 (83.63) 83.96 (89.65) 77.78 (92.40) 84.98 (84.13) 77.42 (85.18) 79.81 (86.22)

Table 1: Labeled (unlabeled) attachment accuracy for k-best MST oracle results and reranked data on the evaluation set. The
1-best results (k = 1, l = 1) represent the performance of the MST parser without reranking. The New Reranked field shows recent
unlabeled reranking results of 50-best trees using a modified feature set. For arabic, we only report unlabeled accuracy for different
k and l.

ternative labelings for each tree, l. When k = 1,
the score is the best achievable by the edge-factored
MST parser using our models. As k increases, the
oracle parsing accuracy increases. The most ex-
treme difference between the one-best accuracy and
the 50-best oracle accuracy can be seen for Turkish
where there is a difference of 9.64 points of accu-
racy (8.77 for the unlabeled trees). This means that
the reranker need only select the correct tree from
a set of 50 to increase the score by 9.64%. As our
reranking results show, this is not as simple as it may
appear.

We report the results for our CoNLL submission
as well as recent results based on alternative param-
eters optimization on the development set. We re-
port the latest results only for unlabeled accuracy of
reranking 50-best MST output.

4 Conclusion

Our submission to the CoNLL 2007 shared task
on multilingual parsing supports the hypothesis that
edge-factored MST parsing is viable given an effec-
tive reranker. The reranker used in our submission
was unable to achieve the oracle rates. We believe
this is primarily related to a relatively impoverished
feature set. Due to time constraints, we have not
been able to train lexicalized reranking models. The
introduction of lexicalized features in the reranker
should influence the selection of better trees, which
we know exist in the k-best hypothesis sets.
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Abstract

It is possible to reduce the bulk of phrase-
tables for Statistical Machine Translation us-
ing a technique based on the significance
testing of phrase pair co-occurrence in the
parallel corpus. The savings can be quite
substantial (up to 90%) and cause no reduc-
tion in BLEU score. In some cases, an im-
provement in BLEU is obtained at the same
time although the effect is less pronounced
if state-of-the-art phrasetable smoothing is
employed.

1 Introduction

An important part of the process of Statistical Ma-
chine Translation (SMT) involves inferring a large
table of phrase pairs that are translations of each
other from a large corpus of aligned sentences.
These phrase pairs together with estimates of con-
ditional probabilities and useful feature weights,
called collectively a phrasetable, are used to match
a source sentence to produce candidate translations.
The choice of the best translation is made based
on the combination of the probabilities and feature
weights, and much discussion has been made of how
to make the estimates of probabilites, how to smooth
these estimates, and what features are most useful
for discriminating among the translations.

However, a cursory glance at phrasetables pro-
duced often suggests that many of the translations
are wrong or will never be used in any translation.
On the other hand, most obvious ways of reducing
the bulk usually lead to a reduction in translation

quality as measured by BLEU score. This has led to
an impression that these pairs must contribute some-
thing in the grand scheme of things and, certainly,
more data is better than less.

Nonetheless, this bulk comes at a cost. Large ta-
bles lead to large data structures that require more
resources and more time to process and, more im-
portantly, effort directed in handling large tables
could likely be more usefully employed in more fea-
tures or more sophisticated search.

In this paper, we show that it is possible to prune
phrasetables using a straightforward approach based
on significance testing, that this approach does not
adversely affect the quality of translation as mea-
sured by BLEU score, and that savings in terms of
number of discarded phrase pairs can be quite sub-
stantial. Even more surprising, pruning can actu-
ally raise the BLEU score although this phenomenon
is less prominent if state of the art smoothing of
phrasetable probabilities is employed.

Section 2 reviews the basic ideas of Statistical
Machine Translation as well as those of testing sig-
nificance of associations in two by two contingency
tables departing from independence. From this, a
filtering algorithm will be described that keeps only
phrase pairs that pass a significance test. Section 3
outlines a number of experiments that demonstrate
the phenomenon and measure its magnitude. Sec-
tion 4 presents the results of these experiments. The
paper concludes with a summary of what has been
learned and a discussion of continuing work that
builds on these ideas.
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2 Background Theory

2.1 Our Approach to Statistical Machine
Translation

We define a phrasetable as a set of source phrases (n-
grams) s̃ and their translations (m-grams) t̃, along
with associated translation probabilities p(s̃|t̃) and
p(t̃|s̃). These conditional distributions are derived
from the joint frequencies c(s̃, t̃) of source / tar-
get n, m-grams observed in a word-aligned parallel
corpus. These joint counts are estimated using the
phrase induction algorithm described in (Koehn et
al., 2003), with symmetrized word alignments gen-
erated using IBM model 2 (Brown et al., 1993).
Phrases are limited to 8 tokens in length (n, m ≤ 8).

Given a source sentence s, our phrase-based SMT
system tries to find the target sentence t̂ that is the
most likely translation of s. To make search more
efficient, we use the Viterbi approximation and seek
the most likely combination of t and its alignment a
with s, rather than just the most likely t:

t̂ = argmax
t

p(t|s) ≈ argmax
t,a

p(t,a|s),

where a = (s̃1, t̃1, j1), ..., (s̃K , t̃K , jK); t̃k are tar-
get phrases such that t = t̃1...t̃K ; s̃k are source
phrases such that s = s̃j1 ...s̃jK ; and s̃k is the trans-
lation of the kth target phrase t̃k.

To model p(t,a|s), we use a standard loglinear
approach:

p(t,a|s) ∝ exp

[∑
i

λifi(s, t,a)

]
where each fi(s, t,a) is a feature function, and
weights λi are set using Och’s algorithm (Och,
2003) to maximize the system’s BLEU score (Pa-
pineni et al. , 2001) on a development corpus. The
features used are: the length of t; a single-parameter
distortion penalty on phrase reordering in a, as de-
scribed in (Koehn et al., 2003); phrase translation
model probabilities; and 4-gram language model
probabilities log p(t), using Kneser-Ney smooth-
ing as implemented in the SRILM toolkit (Stolcke,
2002).

Phrase translation model probabilities are features
of the form:

log p(s|t,a) ≈
K∑

k=1

log p(s̃k|t̃k)

i.e., we assume that the phrases s̃k specified by a are
conditionally independent, and depend only on their
aligned phrases t̃k.

The “forward” phrase probabilities p(t̃|s̃) are not
used as features, but only as a filter on the set of
possible translations: for each source phrase s̃ that
matches some ngram in s, only the 30 top-ranked
translations t̃ according to p(t̃|s̃) are retained. One
of the reviewers has pointed out correctly that tak-
ing only the top 30 translations will interact with the
subject under study; however, this pruning technique
has been used as a way of controlling the width of
our beam search and rebalancing search parameters
would have complicated this study and taken it away
from our standard practice.

The phrase translation model probabilities are
smoothed according to one of several techniques as
described in (Foster et al., 2006) and identified in the
discussion below.

2.2 Significance testing using two by two
contingency tables

Each phrase pair can be thought of as am n, m-gram
(s̃, t̃) where s̃ is an n-gram from the source side of
the corpus and t̃ is an m-gram from the target side
of the corpus.

We then define: C(s̃, t̃) as the number of parallel
sentences that contain one or more occurrences of
s̃ on the source side and t̃ on the target side; C(s̃)
the number of parallel sentences that contain one or
more occurrences of s̃ on the source side; and C(t̃)
the number of parallel sentences that contain one or
more occurrences of t̃ on the target side. Together
with N , the number of parallel sentences, we have
enough information to draw up a two by two contin-
gency table representing the unconditional relation-
ship between s̃ and t̃. This table is shown in Table
1.

A standard statistical technique used to assess the
importance of an association represented by a con-
tingency table involves calculating the probability
that the observed table or one that is more extreme
could occur by chance assuming a model of inde-
pendence. This is called a significance test. Intro-
ductory statistics texts describe one such test called
the Chi-squared test.

There are other tests that more accurately apply
to our small tables with only two rows and columns.
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Table 1: Two by two contingency table for s̃ and t̃

C(s̃, t̃) C(s̃)− C(s̃, t̃) C(s̃)

C(t̃)− C(s̃, t̃) N − C(s̃)− C(t̃) + C(s̃, t̃) N − C(s̃)

C(t̃) N − C(t̃) N

In particular, Fisher’s exact test calculates probabil-
ity of the observed table using the hypergeometric
distibution.

ph(C(s̃, t̃)) =

(
C(s̃)

C(s̃, t̃)

)(
N − C(s̃)

C(t̃)− C(s̃, t̃)

)
(

N

C(t̃)

)
The p-value associated with our observed table is

then calculated by summing probabilities for tables
that have a larger C(s̃, t̃)).

p-value(C(s̃, t̃)) =
∞∑

k=C(s̃,t̃)

ph(k)

This probability is interpreted as the probability
of observing by chance an association that is at least
as strong as the given one and hence its significance.
Agresti (1996) provides an excellent introduction to
this topic and the general ideas of significance test-
ing in contingency tables.

Fisher’s exact test of significance is considered a
gold standard since it represents the precise proba-
bilities under realistic assumptions. Tests such as the
Chi-squared test or the log-likelihood-ratio test (yet
another approximate test of significance) depend on
asymptotic assumptions that are often not valid for
small counts.

Note that the count C(s̃, t̃) can be larger or
smaller than c(s̃, t̃) discussed above. In most cases,
it will be larger, because it counts all co-occurrences
of s̃ with t̃ rather than just those that respect the
word alignment. It can be smaller though because
multiple co-occurrences can occur within a single
aligned sentence pair and be counted multiple times
in c(s̃, t̃). On the other hand, C(s̃, t̃) will not count

all of the possible ways that an n, m-gram match can
occur within a single sentence pair; it will count the
match only once per sentence pair in which it occurs.

Moore (2004) discusses the use of signifi-
cance testing of word associations using the log-
likelihood-ratio test and Fisher’s exact test. He
shows that Fisher’s exact test is often a practical
method if a number of techniques are followed:

1. approximating the logarithms of factorials us-
ing commonly available numerical approxima-
tions to the log gamma function,

2. using a well-known recurrence for the hyperge-
ometic distribution,

3. noting that few terms usually need to be
summed, and

4. observing that convergence is usually rapid.

2.3 Significance pruning
The idea behind significance pruning of phrasetables
is that not all of the phrase pairs in a phrasetable are
equally supported by the data and that many of the
weakly supported pairs could be removed because:

1. the chance of them occurring again might be
low, and

2. their occurrence in the given corpus may be the
result of an artifact (a combination of effects
where several estimates artificially compensate
for one another). This concept is usually re-
ferred to as overfit since the model fits aspects
of the training data that do not lead to improved
prediction.

Phrase pairs that cannot stand on their own by
demonstrating a certain level of significance are sus-
pect and removing them from the phrasetable may
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be beneficial in terms of reducing the size of data
structures. This will be shown to be the case in rather
general terms.

Note that this pruning may and quite often will
remove all of the candidate translations for a source
phrase. This might seem to be a bad idea but it must
be remembered that deleting longer phrases will al-
low combinations of shorter phrases to be used and
these might have more and better translations from
the corpus. Here is part of the intuition about how
phrasetable smoothing may interact with phrasetable
pruning: both are discouraging longer but infrequent
phrases from the corpus in favour of combinations of
more frequent, shorter phrases.

Because the probabilities involved below will be
so incredibly tiny, we will work instead with the neg-
ative of the natural logs of the probabilities. Thus
instead of selecting phrase pairs with a p-value less
than exp(−20), we will select phrase pairs with a
negative-log-p-value greater than 20. This has the
advantage of working with ordinary-sized numbers
and the happy convention that bigger means more
pruning.

2.4 C(s̃, t̃) = 1, 1-1-1 Tables and the α
Threshold

An important special case of a table occurs when a
phrase pair occurs exactly once in the corpus, and
each of the component phrases occurs exactly once
in its side of the parallel corpus.

These phrase pairs will be referred to as 1-1-1
phrase pairs and the corresponding tables will be
called 1-1-1 contingency tables because C(s̃) = 1,
C(t̃) = 1, and C(s̃, t̃) = 1.

Moore (2004) comments that the p-value for these
tables under Fisher’s exact test is 1/N . Since we are
using thresholds of the negative logarithm of the p-
value, the value α = log(N) is a useful threshold to
consider.

In particular, α + ε (where ε is an appropriately
small positive number) is the smallest threshold that
results in none of the 1-1-1 phrase pairs being in-
cluded. Similarly, α − ε is the largest threshold that
results in all of the 1-1-1 phrase pairs being included.
Because 1-1-1 phrase pairs can make up a large part
of the phrase table, this is important observation for
its own sake.

Since the contingency table with C(s̃, t̃) = 1 hav-

ing the greatest significance (lowest p-value) is the
1-1-1 table, using the threshold of α + ε can be used
to exclude all of the phrase pairs occurring exactly
once (C(s̃, t̃) = 1).

The common strategy of deleting all of the 1-
count phrase pairs is very similar in effect to the use
of the α + ε threshold.

3 Experiments

3.1 WMT06

The corpora used for most of these experiments are
publicly available and have been used for a num-
ber of comparative studies (Workshop on Statisti-
cal Machine Translation, 2006). Provided as part of
the materials for the shared task are parallel corpora
for French–English, Spanish–English, and German–
English as well as language models for English,
French, Spanish, and German. These are all based
on the Europarl resources (Europarl, 2003).

The only change made to these corpora was to
convert them to lowercase and to Unicode UTF-8.
Phrasetables were produced by symmetrizing IBM2
conditional probabilities as described above.

The phrasetables were then used as a list of
n, m-grams for which counts C(s̃, t̃), C(s̃), and
C(t̃) were obtained. Negative-log-p-values under
Fisher’s exact test were computed for each of the
phrase pairs in the phrasetable and the entry was
censored if the negative-log-p-value for the test was
below the pruning threshold. The entries that are
kept are ones that are highly significant.

A number of combinations involving many differ-
ent pruning thresholds were considered: no pruning,
10, α−ε, α+ε, 15, 20, 25, 50, 100, and 1000. In ad-
dition, a number of different phrasetable smoothing
algorithms were used: no smoothing, Good-Turing
smoothing, Kneser-Ney 3 parameter smoothing and
the loglinear mixture involving two features called
Zens-Ney (Foster et al., 2006).

3.2 Chinese

To test the effects of significance pruning on larger
corpora, a series of experiments was run on a much
larger corpus based on that distributed for MT06
Chinese–English (NIST MT, 2006). Since the ob-
jective was to assess how the method scaled we used
our preferred phrasetable smoothing technique of
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Figure 1: WMT06: Results for French −→ English.
[to separate the curves, graphs for smoothed meth-
ods are shifted by +1, +2, or +3 BLEU points]

Table 2: Corpus Sizes and α Values

number of
parallel sentences α

WMT06: fr←→ en 688,031 13.4415892
WMT06: es←→ en 730,740 13.501813
WMT06: de←→ en 751,088 13.5292781
Chinese–English: best 3,164,228 14.9674197
Chinese–English: UN-v2 4,979,345 15.4208089

Zens-Ney and separated our corpus into two phrase-
tables, one based on the UN corpus and the other
based on the best of the remaining parallel corpora
available to us.

Different pruning thresholds were considered: no
pruning, 14, 16, 18, 20, and 25. In addition, another
more aggressive method of pruning was attempted.
Moore points out, correctly, that phrase pairs that oc-
cur in only one sentence pair, ( C(s̃, t̃) = 1 ), are less
reliable and might require more special treatment.
These are all pruned automatically at thresholds of
16 and above but not at threshold of 14. A spe-
cial series of runs was done for threshold 14 with all
of these singletons removed to see whether at these
thresholds it was the significance level or the prun-
ing of phrase pairs with ( C(s̃, t̃) = 1 ) that was more
important. This is identified as 14′ in the results.

4 Results

The results of the experiments are described in Ta-
bles 2 through 6.

Table 2 presents the sizes of the various parallel
corpora showing the number of parallel sentences,
N , for each of the experiments, together with the α
thresholds (α = log(N)).

Table 3 shows the sizes of the phrasetables that
result from the various pruning thresholds described
for the WMT06 data. It is clear that this is extremely
aggressive pruning at the given levels.

Table 4 shows the corresponding phrasetable sizes
for the large corpus Chinese–English data. The
pruning is not as aggressive as for the WMT06 data
but still quite sizeable.

Tables 5 and 6 show the main results for the
WMT06 and the Chinese–English large corpus ex-
periments. To make these results more graphic, Fig-
ure 1 shows the French −→ English data from the
WMT06 results in the form of three graphs. Note

971



Table 3: WMT06: Distinct phrase pairs by pruning threshold

threshold fr←→ en es←→ en de←→ en

none 9,314,165 100% 11,591,013 100% 6,954,243 100%
10 7,999,081 85.9% 10,212,019 88.1% 5,849,593 84.1%

α− ε 6,014,294 64.6% 7,865,072 67.9% 4,357,620 62.7%
α + ε 1,435,576 15.4% 1,592,655 13.7% 1,163,296 16.7%

15 1,377,375 14.8% 1,533,610 13.2% 1,115,559 16.0%
20 1,152,780 12.4% 1,291,113 11.1% 928,855 13.4%
25 905,201 9.7% 1,000,264 8.6% 732,230 10.5%
50 446,757 4.8% 481,737 4.2% 365,118 5.3%

100 235,132 2.5% 251,999 2.2% 189,655 2.7%
1000 22,873 0.2% 24,070 0.2% 16,467 0.2%

Table 4: Chinese–English: Distinct phrase pairs by pruning threshold

threshold best UN-v2

none 18,858,589 100% 20,228,273 100%
14 7,666,063 40.7% 13,276,885 65.6%
16 4,280,845 22.7% 7,691,660 38.0%
18 4,084,167 21.7% 7,434,939 36.8%
20 3,887,397 20.6% 7,145,827 35.3%
25 3,403,674 18.0% 6,316,795 31.2%

also pruning C(s̃, t̃) = 1

14′ 4,477,920 23.7% 7,917,062 39.1%

that an artificial separation of 1 BLEU point has
been introduced into these graphs to separate them.
Without this, they lie on top of each other and hide
the essential point. In compensation, the scale for
the BLEU co-ordinate has been removed.

These results are summarized in the following
subsections.

4.1 BLEU as a function of threshold

In tables 5 and 6, the largest BLEU score for each
set of runs has been marked in bold font. In addition,
to highlight that there are many near ties for largest
BLEU, all BLEU scores that are within 0.1 of the
best are also marked in bold.

When this is done it becomes clear that pruning
at a level of 20 for the WMT06 runs would not re-
duce BLEU in most cases and in many cases would
actually increase it. A pruning threshold of 20 cor-
responds to discarding roughly 90% of the phrase-
table.

For the Chinese–English large corpus runs, a level
of 16 seems to be about the best with a small in-
crease in BLEU and a 60% − 70% reduction in the
size of the phrasetable.

4.2 BLEU as a function of depth of pruning

Another view of this can be taken from Tables 5
and 6. The fraction of the phrasetable retained is
a more or less simple function of pruning threshold
as shown in Tables 3 and 4. By including the per-
centages in Tables 5 and 6, we can see that BLEU
goes up as the fraction approaches between 20% and
30%.

This seems to be a relatively stable observation
across the experiments. It is also easily explained by
its strong relationship to pruning threshold.

4.3 Large corpora

Table 6 shows that this is not just a small corpus phe-
nomenon. There is a sizeable benefit both in phrase-
table reduction and a modest improvement to BLEU
even in this case.

4.4 Is this just the same as phrasetable
smoothing?

One question that occurred early on was whether this
improvement in BLEU is somehow related to the
improvement in BLEU that occurs with phrasetable
smoothing.

972



It appears that the answer is, in the main, yes, al-
though there is definitely something else going on.
It is true that the benefit in terms of BLEU is less-
ened for better types of phrasetable smoothing but
the benefit in terms of the reduction in bulk holds. It
is reassuring to see that no harm to BLEU is done by
removing even 80% of the phrasetable.

4.5 Comment about C(s̃, t̃) = 1

Another question that came up is the role of phrase
pairs that occur only once: C(s̃, t̃) = 1. In particu-
lar as discussed above, the most significant of these
are the 1-1-1 phrase pairs whose components also
only occur once: C(s̃) = 1, and C(t̃) = 1. These
phrase pairs are amazingly frequent in the phrase-
tables and are pruned in all of the experiments ex-
cept when pruning threshold is equal to 14.

The Chinese–English large corpus experiments
give us a good opportunity to show that significance
level seems to be more an issue than the case that
C(s̃, t̃) = 1.

Note that we could have kept the phrase pairs
whose marginal counts were greater than one but
most of these are of lower significance and likely
are pruned already by the threshold. The given con-
figuration was considered the most likely to yield a
benefit and its poor performance led to the whole
idea being put aside.

5 Conclusions and Continuing Work

To sum up, the main conclusions are five in number:

1. Phrasetables produced by the standard Diag-
And method (Koehn et al., 2003) can be aggres-
sively pruned using significance pruning with-
out worsening BLEU.

2. If phrasetable smoothing is not done, the BLEU
score will improve under aggressive signifi-
cance pruning.

3. If phrasetable smoothing is done, the improve-
ment is small or negligible but there is still no
loss on aggressive pruning.

4. The preservation of BLEU score in the pres-
ence of large-scale pruning is a strong effect in
small and moderate size phrasetables, but oc-
curs also in much larger phrasetables.

5. In larger phrasetables based on larger corpora,
the percentage of the table that can be dis-
carded appears to decrease. This is plausible
since a similar effect (a decrease in the benefit
of smoothing) has been noted with phrasetable
smoothing (Foster et al., 2006). Together these
results suggest that, for these corpus sizes, the
increase in the number of strongly supported
phrase pairs is greater than the increase in the
number of poorly supported pairs, which agrees
with intuition.

Although there may be other approaches to prun-
ing that achieve a similar effect, the use of Fisher’s
exact test is mathematically and conceptually one of
the simplest since it asks a question separately for
each phrase pair: “Considering this phase pair in
isolation of any other analysis on the corpus, could it
have occurred plausibly by purely random processes
inherent in the corpus construction?” If the answer
is “Yes”, then it is hard to argue that the phrase pair
is an association of general applicability from the
evidence in this corpus alone.

Note that the removal of 1-count phrase pairs is
subsumed by significance pruning with a threshold
greater than α and many of the other simple ap-
proaches (from an implementation point of view)
are more difficult to justify as simply as the above
significance test. Nonetheless, there remains work
to do in determining if computationally simpler ap-
proaches do as well. Moore’s work suggests that
log-likelihood-ratio would be a cheaper and accurate
enough alternative, for example.

We will now return to the interaction of the se-
lection in our beam search of the top 30 candidates
based on forward conditional probabilities. This will
affect our results but most likely in the following
manner:

1. For very small thresholds, the beam will be-
come much wider and the search will take
much longer. In order to allow the experiments
to complete in a reasonable time, other means
will need to be employed to reduce the choices.
This reduction will also interact with the sig-
nificance pruning but in a less understandable
manner.

2. For large thresholds, there will not be 30
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choices and so there will be no effect.

3. For intermediate thresholds, the extra prun-
ing might reduce BLEU score but by a small
amount because most of the best choices are
included in the search.

Using thresholds that remove most of the phrase-
table would no doubt qualify as large thresholds so
the question is addressing the true shape of the curve
for smaller thresholds and not at the expected operat-
ing levels. Nonetheless, this is a subject for further
study, especially as we consider alternatives to our
“filter 30” approach for managing beam width.

There are a number of important ways that this
work can and will be continued. The code base for
taking a list of n, m-grams and computing the re-
quired frequencies for signifance evaluation can be
applied to related problems. For example, skip-n-
grams (n-grams that allow for gaps of fixed or vari-
able size) may be studied better using this approach
leading to insight about methods that weakly ap-
proximate patterns.

The original goal of this work was to better un-
derstand the character of phrasetables, and it re-
mains a useful diagnostic technique. It will hope-
fully lead to more understanding of what it takes
to make a good phrasetable especially for languages
that require morphological analysis or segmentation
to produce good tables using standard methods.

The negative-log-p-value promises to be a useful
feature and we are currently evaluating its merits.
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Table 5: WMT06 Results: BLEU by type of smoothing and pruning threshold

threshold phrasetable % fr −→ en es −→ en de −→ en en −→ fr en −→ es en −→ de

relative frequency: no smoothing
none 100% 25.39 27.26 20.74 27.29 27.17 14.71

10 84–88% 25.97 27.81 21.08 27.82 27.71 15.09
α− ε 63–68% 26.32 28.00 21.27 28.11 28.09 15.19
α + ε 14–17% 26.34 28.27 21.22 28.16 28.08 15.24

15 13–15% 26.36 28.50 21.14 28.20 28.18 15.29
20 11–13% 26.51 28.45 21.36 28.28 28.06 15.28
25 8–10% 26.50 28.38 21.28 28.32 27.97 15.25
50 4–5% 26.26 27.88 20.87 28.05 27.90 15.08

100 2% 25.66 27.07 20.07 27.38 27.11 14.66
1000 0.2% 20.49 21.66 15.23 22.51 22.31 11.36

Good-Turing
none 100% 25.96 28.14 21.17 27.84 27.95 15.13

10 84–88% 26.33 28.33 21.38 28.18 28.27 15.22
α− ε 63–68% 26.54 28.63 21.50 28.36 28.39 15.31
α + ε 14–17% 26.24 28.49 21.15 28.22 28.16 15.28

15 13–15% 26.48 28.03 21.21 28.27 28.21 15.31
20 11–13% 26.65 28.45 21.41 28.36 28.14 15.25
25 8–10% 26.54 28.56 21.31 28.35 28.04 15.28
50 4–5% 26.26 27.78 20.94 28.07 27.95 15.08

100 2% 25.70 27.07 20.12 27.41 27.13 14.66
1000 0.2% 20.49 21.66 15.52 22.53 22.31 11.37

Kneser-Ney (3 parameter)
none 100% 26.89 28.70 21.78 28.64 28.71 15.50

10 84–88% 26.79 28.78 21.71 28.63 28.41 15.35
15 13–15% 26.49 28.69 21.34 28.60 28.57 15.52
20 11–13% 26.73 28.67 21.54 28.56 28.44 15.41
25 8–10% 26.84 28.70 21.29 28.54 28.21 15.42
50 4–5% 26.44 28.16 20.93 28.17 28.05 15.17

100 2% 25.72 27.27 20.11 27.50 27.26 14.58
1000 0.2% 20.48 21.70 15.28 22.58 22.36 11.33

Zens-Ney
none 100% 26.87 29.07 21.55 28.75 28.54 15.50

10 84–88% 26.81 29.00 21.65 28.72 28.52 15.54
15 13–15% 26.92 28.67 21.74 28.79 28.32 15.44
20 11–13% 26.93 28.47 21.72 28.69 28.42 15.45
25 8–10% 26.85 28.79 21.58 28.59 28.27 15.37
50 4–5% 26.51 27.96 20.96 28.30 27.96 15.27

100 2% 25.82 27.34 20.02 27.57 27.30 14.51
1000 0.2% 20.50 21.76 15.46 22.68 22.33 11.56

Table 6: Chinese Results: BLEU by pruning threshold

threshold phrasetable % nist04 nist05 nist06-GALE nist06-NIST

Zens-Ney Smoothing applied to all phrasetables
none 100% 32.14 30.69 13.06 27.97

14 40–65% 32.66 31.14 13.11 28.35
16 22–38% 32.73 30.97 13.14 28.00
18 21–36% 31.56 30.45 12.49 27.03
20 20–35% 32.00 30.73 12.50 27.33
25 18–31% 30.54 29.58 11.68 26.12

also pruning C(s̃, t̃) = 1

14′ 23–39% 32.08 30.99 12.75 27.66
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Abstract

A major engineering challenge in statistical
machine translation systems is the efficient
representation of extremely large translation
rulesets. In phrase-based models, this prob-
lem can be addressed by storing the training
data in memory and using a suffix array as
an efficient index to quickly lookup and ex-
tract rules on the fly. Hierarchical phrase-
based translation introduces the added wrin-
kle of source phrases with gaps. Lookup
algorithms used for contiguous phrases no
longer apply and the best approximate pat-
tern matching algorithms are much too slow,
taking several minutes per sentence. We
describe new lookup algorithms for hierar-
chical phrase-based translation that reduce
the empirical computation time by nearly
two orders of magnitude, making on-the-fly
lookup feasible for source phrases with gaps.

1 Introduction

Current statistical machine translation systems rely
on very large rule sets. In phrase-based systems,
rules are extracted from parallel corpora containing
tens or hundreds of millions of words. This can re-
sult in millions of rules using even the most conser-
vative extraction heuristics. Efficient algorithms for
rule storage and access are necessary for practical
decoding algorithms. They are crucial to keeping up
with the ever-increasing size of parallel corpora, as
well as the introduction of new data sources such as
web-mined and comparable corpora.

Until recently, most approaches to this problem
involved substantial tradeoffs. The common prac-
tice of test set filtering renders systems impracti-
cal for all but batch processing. Tight restrictions
on phrase length curtail the power of phrase-based
models. However, some promising engineering so-
lutions are emerging. Zens and Ney (2007) use a
disk-based prefix tree, enabling efficient access to
phrase tables much too large to fit in main memory.
An alternative approach introduced independently
by both Callison-Burch et al. (2005) and Zhang and
Vogel (2005) is to store the training data itself in
memory, and use a suffix array as an efficient in-
dex to look up, extract, and score phrase pairs on the
fly. We believe that the latter approach has several
important applications (§7).

So far, these techniques have focused on phrase-
based models using contiguous phrases (Koehn et
al., 2003; Och and Ney, 2004). Some recent models
permit discontiguous phrases (Chiang, 2007; Quirk
et al., 2005; Simard et al., 2005). Of particular in-
terest to us is the hierarchical phrase-based model of
Chiang (2007), which has been shown to be supe-
rior to phrase-based models. The ruleset extracted
by this model is a superset of the ruleset in an equiv-
alent phrase-based model, and it is an order of mag-
nitude larger. This makes efficient rule representa-
tion even more critical. We tackle the problem using
the online rule extraction method of Callison-Burch
et al. (2005) and Zhang and Vogel (2005).

The problem statement for our work is: Given
an input sentence, efficiently find all hierarchical
phrase-based translation rules for that sentence in
the training corpus.
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We first review suffix arrays (§2) and hierarchical
phrase-based translation (§3). We show that the ob-
vious approach using state-of-the-art pattern match-
ing algorithms is hopelessly inefficient (§4). We
then describe a series of algorithms to address this
inefficiency (§5). Our algorithms reduce computa-
tion time by two orders of magnitude, making the
approach feasible (§6). We close with a discussion
that describes several applications of our work (§7).

2 Suffix Arrays

A suffix array is a data structure representing all suf-
fixes of a corpus in lexicographical order (Manber
and Myers, 1993). Formally, for a text T , the ith
suffix of T is the substring of the text beginning at
position i and continuing to the end of T . This suf-
fix can be uniquely identified by the index i of its
first word. The suffix array SAT of T is a permuta-
tion of [1, |T |] arranged by the lexicographical order
of the corresponding suffixes. This representation
enables fast lookup of any contiguous substring us-
ing binary search. Specifically, all occurrences of a
length-m substring can be found in O(m + log |T |)
time (Manber and Myers, 1993). 1

Callison-Burch et al. (2005) and Zhang and Vogel
(2005) use suffix arrays as follows.

1. Load the source training text F , the suffix array
SAF , the target training text E, and the align-
ment A into memory.

2. For each input sentence, look up each substring
(phrase) f̄ of the sentence in the suffix array.

3. For each instance of f̄ found in F , find its
aligned phrase ē using the phrase extraction
method of Koehn et al. (2003).

4. Compute the relative frequency score p(ē|f̄) of
each pair using the count of the extracted pair
and the marginal count of f̄ .

5. Compute the lexical weighting score of the
phrase pair using the alignment that gives the
best score.

1Abouelhoda et al. (2004) show that lookup can be done in
optimal O(m) time using some auxiliaray data structures. For
our purposes O(m + log |T |) is practical, since for the 27M-
word corpus used to carry out our experiments, log |T | ∼ 25.

6. Use the scored rules to translate the input sen-
tence with a standard decoding algorithm.

A difficulty with this approach is step 3, which can
be quite slow. Its complexity is linear in the num-
ber of occurrences of the source phrase f̄ . Both
Callison-Burch et al. (2005) and Zhang and Vogel
(2005) solve this with sampling. If a source phrase
appears more than k times, they sample only k oc-
currences for rule extraction. Both papers report
that translation performance is nearly identical to ex-
tracting all possible phrases when k = 100. 2

3 Hierarchical Phrase-Based Translation

We consider the hierarchical translation model of
Chiang (2007). Formally, this model is a syn-
chronous context-free grammar. The lexicalized
translation rules of the grammar may contain a sin-
gle nonterminal symbol, denoted X . We will use a,
b, c and d to denote terminal symbols, and u, v, and
w to denote (possibly empty) sequences of these ter-
minals. We will additionally use α and β to denote
(possibly empty) sequences containing both termi-
nals and nonterminals.

A translation rule is written X → α/β. This rule
states that a span of the input matching α is replaced
by β in translation. We require that α and β con-
tain an equal number (possibly zero) of coindexed
nonterminals. An example rule with coindexes is
X → uX 1 vX 2 w/u′X 2 v′X 1 w′. When discussing
only the source side of such rules, we will leave out
the coindexes. For instance, the source side of the
above rule will be written uXvXw. 3

For the purposes of this paper, we adhere to the
restrictions described by Chiang (2007) for rules ex-
tracted from the training data.

• Rules can contain at most two nonterminals.

• Rules can contain at most five terminals.

• Rules can span at most ten words.
2A sample size of 100 is actually quite small for many

phrases, some of which occur tens or hundreds of thousands
of times. It is perhaps surprising that such a small sample size
works as well as the full data. However, recent work by Och
(2005) and Federico and Bertoldi (2006) has shown that the
statistics used by phrase-based systems are not very precise.

3In the canonical representation of the grammar, source-side
coindexes are always in sorted order, making them unambigu-
ous.
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• Nonterminals must span at least two words.

• Adjacent nonterminals are disallowed in the
source side of a rule.

Expressed more economically, we say that our goal
is to search for source phrases in the form u, uXv,
or uXvXw, where 1 ≤ |uvw| ≤ 5, and |v| > 0 in
the final case. Note that the model also allows rules
in the form Xu, uX , XuX , XuXv, and uXvX .
However, these rules are lexically identical to other
rules, and thus will match the same locations in the
source text.

4 The Collocation Problem

On-the-fly lookup using suffix arrays involves an
added complication when the rules are in form uXv
or uXvXw. Binary search enables fast lookup
of contiguous substrings. However, it cannot be
used for discontiguous substrings. Consider the rule
aXbXc. If we search for this rule in the following
logical suffix array fragment, we will find the bold-
faced matches.
...
a c a c b a d c a d ...
a c a d b a a d b d ...
a d d b a a d a b c ...
a d d b d a a b b a ...
a d d b d d c a a a ...
...

Even though these suffixes are in lexicographical
order, matching suffixes are interspersed with non-
matching suffixes. We will need another algorithm
to find the source rules containing at least one X sur-
rounded by nonempty sequences of terminal sym-
bols.

4.1 Baseline Approach
In the pattern-matching literature, words spanned by
the nonterminal symbols of Chiang’s grammar are
called don’t cares and a nonterminal symbol in a
query pattern that matches a sequence of don’t cares
is called a variable length gap. The search prob-
lem for patterns containing these gaps is a variant of
approximate pattern matching, which has received
substantial attention (Navarro, 2001). The best algo-
rithm for pattern matching with variable-length gaps
in a suffix array is a recent algorithm by Rahman

et al. (2006). It works on a pattern w1Xw2X...wI

consisting of I contiguous substrings w1, w2, ...wI ,
each separated by a gap. The algorithm is straight-
forward. After identifying all ni occurrences of
each wi in O(|wi| + log |T |) time, collocations that
meet the gap constraints are computed using an ef-
ficient data structure called a stratified tree (van
Emde Boas et al., 1977). 4 Although we refer the
reader to the source text for a full description of
this data structure, its salient characteristic is that
it implements priority queue operations insert and
next-element in O(log log |T |) time. Therefore, the
total running time for an algorithm to find all con-
tiguous subpatterns and compute their collocations
is O(

∑I
i=1 [|wi|+ log|T |+ ni log log |T |]).

We can improve on the algorithm of Rahman et
al. (2006) using a variation on the idea of hashing.
We exploit the fact that our large text is actually a
collection of relatively short sentences, and that col-
located patterns must occur in the same sentence in
order to be considered a rule. Therefore, we can
use the sentence id of each subpattern occurrence
as a kind of hash key. We create a hash table whose
size is exactly the number of sentences in our train-
ing corpus. Each location of the partially matched
pattern w1X...Xwi is inserted into the hash bucket
with the matching sentence id. To find collocated
patterns wi+1, we probe the hash table with each
of the ni+1 locations for that subpattern. When a
match is found, we compare the element with all el-
ements in the bucket to see if it is within the window
imposed by the phrase length constraints. Theoreti-
cally, the worst case for this algorithm occurs when
all elements of both sets resolve to the same hash
bucket, and we must compare all elements of one
set with all elements of the other set. This leads to a
worst case complexity of O(

∑I
i=1 [|wi|+ log|T |] +∏I

i=1 ni). However, for real language data the per-
formance for sets of any significant size will be
O(

∑I
i=1 [|wi|+ log|T |+ ni]), since most patterns

will occur once in any given sentence.

4.2 Analysis
It is instructive to compare this with the complex-
ity for contiguous phrases. In that case, total lookup
time is O(|w| + log|T |) for a contiguous pattern w.

4Often known in the literature as a van Emde Boas tree or
van Emde Boas priority queue.
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The crucial difference between the contiguous and
discontiguous case is the added term

∑I
i=1 ni. For

even moderately frequent subpatterns this term dom-
inates complexity.

To make matters concrete, consider the training
corpus used in our experiments (§6), which contains
27M source words. The three most frequent uni-
grams occur 1.48M, 1.16M and 688K times – the
first two occur on average more than once per sen-
tence. In the worst case, looking up a contiguous
phrase containing any number and combination of
these unigrams requires no more than 25 compari-
son operations. In contrast, the worst case scenario
for a pattern with a single gap, bookended on either
side by the most frequent word, requires over two
million operations using our baseline algorithm and
over thirteen million using the algorithm of Rahman
et al. (2006). A single frequent word in an input
sentence is enough to cause noticeable slowdowns,
since it can appear in up to 530 hierarchical rules.

To analyze the cost empirically, we ran our base-
line algorithm on the first 50 sentences of the NIST
Chinese-English 2003 test set and measured the
CPU time taken to compute collocations. We found
that, on average, it took 2241.25 seconds (∼37 min-
utes) per sentence just to compute all of the needed
collocations. By comparison, decoding time per
sentence is roughly 10 seconds with moderately ag-
gressive pruning, using the Python implementation
of Chiang (2007).

5 Solving the Collocation Problem

Clearly, looking up patterns in this way is not prac-
tical. To analyze the problem, we measured the
amount of CPU time per computation. Cumulative
lookup time was dominated by a very small fraction
of the computations (Fig. 1). As expected, further
analysis showed that these expensive computations
all involved one or more very frequent subpatterns.
In the worst cases a single collocation took several
seconds to compute. However, there is a silver lin-
ing. Patterns follow a Zipf distribution, so the num-
ber of pattern types that cause the problem is actu-
ally quite small. The vast majority of patterns are
rare. Therefore, our solution focuses on computa-
tions where one or more of the component patterns
is frequent. Assume that we are computing a collo-

Computations (ranked by time)
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Figure 1: Ranked computations vs. cumulative time.
A small fraction of all computations account for
most of the computational time.

cation of pattern w1X...Xwi and pattern wi+1, and
we know all locations of each. There are three cases.

• If both patterns are frequent, we resort to a
precomputed intersection (§5.1). We were not
aware of any algorithms to substantially im-
prove the efficiency of this computation when it
is requested on the fly, but precomputation can
be done in a single pass over the text at decoder
startup.

• If one pattern is frequent and the other is rare,
we use an algorithm whose complexity is de-
pendent mainly on the frequency of the rare
pattern (§5.2). It can also be used for pairs
of rare patterns when one pattern is much rarer
than the other.

• If both patterns are rare, no special algorithms
are needed. Any linear algorithm will suffice.
However, for reasons described in §5.3, our
other collocation algorithms depend on sorted
sets, so we use a merge algorithm.

Finally, in order to cut down on the number of un-
necessary computations, we use an efficient method
to enumerate the phrases to lookup (§5.4). This
method also forms the basis of various caching
strategies for additional speedups. We analyze the
memory use of our algorithms in §5.5.

5.1 Precomputation
Precomputation of the most expensive collocations
can be done in a single pass over the text. As in-
put, our algorithm requires the identities of the k
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most frequent contiguous patterns. 5 It then iterates
over the corpus. Whenever a pattern from the list is
seen, we push a tuple consisting of its identity and
current location onto a queue. Whenever the oldest
item on the queue falls outside the maximum phrase
length window with respect to the current position,
we compute that item’s collocation with all succeed-
ing patterns (subject to pattern length constraints)
and pop it from the queue. We repeat this step for
every item that falls outside the window. At the end
of each sentence, we compute collocations for any
remaining items in the queue and then empty it.

Our precomputation includes the most frequent
n-gram subpatterns. Most of these are unigrams,
but in our experiments we found 5-grams among
the 1000 most frequent patterns. We precompute
the locations of source phrase uXv for any pair u
and v that both appear on this list. There is also
a small number of patterns uXv that are very fre-
quent. We cannot easily obtain a list of these in ad-
vance, but we observe that they always consist of a
pair u and v of patterns from near the top of the fre-
quency list. Therefore we also precompute the loca-
tions uXvXw of patterns in which both u and v are
among these super-frequent patterns (all unigrams),
treating this as the collocation of the frequent pattern
uXv and frequent pattern w. We also compute the
analagous case for u and vXw.

5.2 Fast Intersection

For collocations of frequent and rare patterns, we
use a fast set intersection method for sorted sets
called double binary search (Baeza-Yates, 2004). 6

It is based on the intuition that if one set in a pair
of sorted sets is much smaller than the other, then
we can compute their intersection efficiently by per-
forming a binary search in the larger data set D for
each element of the smaller query set Q.

Double binary search takes this idea a step further.
It performs a binary search in D for the median ele-
ment of Q. Whether or not the element is found, the

5These can be identified using a single traversal over a
longest common prefix (LCP) array, an auxiliary data struc-
ture of the suffix array, described by Manber and Myers (1993).
Since we don’t need the LCP array at runtime, we chose to do
this computation once offline.

6Minor modifications are required since we are computing
collocation rather than intersection. Due to space constraints,
details and proof of correctness are available in Lopez (2007a).

search divides both sets into two pairs of smaller sets
that can be processed recursively. Detailed analysis
and empirical results on an information retrieval task
are reported in Baeza-Yates (2004) and Baeza-Yates
and Salinger (2005). If |Q| log |D| < |D| then the
performance is guaranteed to be sublinear. In prac-
tice it is often sublinear even if |Q| log |D| is some-
what larger than |D|. In our implementation we sim-
ply check for the condition λ|Q| log |D| < |D| to
decide whether we should use double binary search
or the merge algorithm. This check is applied in the
recursive cases as well as for the initial inputs. The
variable λ can be adjusted for performance. We de-
termined experimentally that a good value for this
parameter is 0.3.

5.3 Obtaining Sorted Sets

Double binary search requires that its input sets be
in sorted order. However, the suffix array returns
matchings in lexicographical order, not numeric or-
der. The algorithm of Rahman et al. (2006) deals
with this problem by inserting the unordered items
into a stratified tree. This requires O(n log log |T |)
time for n items. If we used the same strategy, our
algorithm would no longer be sublinear.

An alternative is to precompute all n-gram occur-
rences in order and store them in an inverted index.
This can be done in one pass over the data. 7 This
approach requires a separate inverted index for each
n, up to the maximum n used by the model. The
memory cost is one length-|T | array per index.

In order to avoid the full n|T | cost in memory,
our implementation uses a mixed strategy. We keep
a precomputed inverted index only for unigrams.
For bigrams and larger n-grams, we generate the in-
dex on the fly using stratified trees. This results in
a superlinear algorithm for intersection. However,
we can exploit the fact that we must compute col-
locations multiple times for each input n-gram by
caching the sorted set after we create it (The caching
strategy is described in §5.4). Subsequent computa-
tions involving this n-gram can then be done in lin-
ear or sublinear time. Therefore, the cost of building
the inverted index on the fly is amortized over a large
number of computations.

7We combine this step with the other precomputations that
require a pass over the data, thereby removing a redundant
O(|T |) term from the startup cost.
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5.4 Efficient Enumeration

A major difference between contiguous phrase-
based models and hierarchical phrase-based models
is the number of rules that potentially apply to an
input sentence. To make this concrete, on our data,
with an average of 29 words per sentence, there were
on average 133 contiguous phrases of length 5 or
less that applied. By comparison, there were on av-
erage 7557 hierarchical phrases containing up to 5
words. These patterns are obviously highly overlap-
ping and we employ an algorithm to exploit this fact.
We first describe a baseline algorithm used for con-
tiguous phrases (§5.4.1). We then introduce some
improvements (§5.4.2) and describe a data structure
used by the algorithm (§5.4.3). Finally, we dis-
cuss some special cases for discontiguous phrases
(§5.4.4).

5.4.1 The Zhang-Vogel Algorithm
Zhang and Vogel (2005) present a clever algo-

rithm for contiguous phrase searches in a suffix ar-
ray. It exploits the fact that for each m-length source
phrase that we want to look up, we will also want to
look up its (m− 1)-length prefix. They observe that
the region of the suffix array containing all suffixes
prefixed by ua is a subset of the region containing
the suffixes prefixed by u. Therefore, if we enumer-
ate the phrases of our sentence in such a way that
we always search for u before searching for ua, we
can restrict the binary search for ua to the range con-
taining the suffixes prefixed by u. If the search for
u fails, we do not need to search for ua at all. They
show that this approach leads to some time savings
for phrase search, although the gains are relatively
modest since the search for contiguous phrases is not
very expensive to begin with. However, the potential
savings in the discontiguous case are much greater.

5.4.2 Improvements and Extensions
We can improve on the Zhang-Vogel algorithm.

An m-length contiguous phrase aub depends not
only on the existence of its prefix au, but also on
the existence of its suffix ub. In the contiguous case,
we cannot use this information to restrict the starting
range of the binary search, but we can check for the
existence of ub to decide whether we even need to
search for aub at all. This can help us avoid searches
that are guaranteed to be fruitless.

Now consider the discontiguous case. As in the
analogous contiguous case, a phrase aαb will only
exist in the text if its maximal prefix aα and maxi-
mal suffix αb both exist in the corpus and overlap at
specific positions. 8 Searching for aαb is potentially
very expensive, so we put all available information
to work. Before searching, we require that both aα
and αb exist. Additionally, we compute the loca-
tion of aαb using the locations of both maximal sub-
phrases. To see why the latter optimization is useful,
consider a phrase abXcd. In our baseline algorithm,
we would search for ab and cd, and then perform a
computation to see whether these subphrases were
collocated within an elastic window. However, if we
instead use abXc and bXcd as the basis of the com-
putation, we gain two advantages. First, the number
elements of each set is likely to be smaller then in
the former case. Second, the computation becomes
simpler, because we now only need to check to see
whether the patterns exactly overlap with a starting
offset of one, rather than checking within a window
of locations.

We can improve efficiency even further if we con-
sider cases where the same substring occurs more
than once within the same sentence, or even in mul-
tiple sentences. If the computation required to look
up a phrase is expensive, we would like to perform
the lookup only once. This requires some mecha-
nism for caching. Depending on the situation, we
might want to cache only certain subsets of phrases,
based on their frequency or difficulty to compute.
We would also like the flexibility to combine on-
the-fly lookups with a partially precomputed phrase
table, as in the online/offline mixture of Zhang and
Vogel (2005).

We need a data structure that provides this flex-
ibility, in addition to providing fast access to both
the maximal prefix and maximal suffix of any phrase
that we might consider.

5.4.3 Prefix Trees and Suffix Links
Our search optimizations are easily captured in a

prefix tree data structure augmented with suffix links.
Formally, a prefix tree is an unminimized determin-
istic finite-state automaton that recognizes all of the
patterns in some set. Each node in the tree repre-

8Except when α = X , in which case a and b must be collo-
cated within a window defined by the phrase length constraints.

981



a
b

b

c

cX

X (1)(2)

(3)

d

(4)d

a
b

b

c

cX

X (1)(2)

(3)

d

(4)d

a
b

b

c

cX

X (1)(2)

(3)

d

(4)
d

a
b

b

c

cX

X (1)(2)

(3)

d

(4)
d

X

e
a

c

d

Case 1 Case 2

Figure 2: Illustration of prefix tree construction showing a partial prefix tree, including suffix links. Suppose
we are interested in pattern abXcd, represented by node (1). Its prefix is represented by node (2), and node
(2)’s suffix is represented by node (3). Therefore, node (1)’s suffix is represented by the node pointed to by
the d-edge from node (3), which is node (4). There are two cases. In case 1, node (4) is inactive, so we
can mark node (1) inactive and stop. In case 2, node (4) is active, so we compute the collocation of abXc
and bXcd with information stored at nodes (2) and (4), using either a precomputed intersection, double
binary search, or merge, depending on the size of the sets. If the result is empty, we mark the node inactive.
Otherwise, we store the results at node (1) and add its successor patterns to the frontier for the next iteration.
This includes all patterns containing exactly one more terminal symbol than the current pattern.

sents the prefix of a unique pattern from the set that
is specified by the concatenation of the edge labels
along the path from the root to that node. A suffix
link is a pointer from a node representing path aα to
the node representing path α. We will use this data
structure to record the set of patterns that we have
searched for and to cache information for those that
were found successfully.

Our algorithm generates the tree breadth-search
along a frontier. In the mth iteration we only search
for patterns containing m terminal symbols. Regard-
less of whether we find a particular pattern, we cre-
ate a node for it in the tree. If the pattern was found
in the corpus, its node is marked active. Otherwise,
it is marked inactive. For found patterns, we store
either the endpoints of the suffix array range con-
taining the phrase (if it is contiguous), or the list of
locations at which the phrase is found (if it is dis-
contiguous). We can also store the extracted rules. 9

Whenever a pattern is successfully found, we add all
patterns with m + 1 terminals that are prefixed by it

9Conveniently, the implementation of Chiang (2007) uses a
prefix tree grammar encoding, as described in Klein and Man-
ning (2001). Our implementation decorates this tree with addi-
tional information required by our algorithms.

to the frontier for processing in the next iteration.
To search for a pattern, we use location infor-

mation from its parent node, which represents its
maximal prefix. Assuming that the node represents
phrase αb, we find the node representing its max-
imal suffix by following the b-edge from the node
pointed to by its parent node’s suffix link. If the node
pointed to by this suffix link is inactive, we can mark
the node inactive without running a search. When a
node is marked inactive, we discontinue search for
phrases that are prefixed by the path it represents.
The algorithm is illustrated in Figure 2.

5.4.4 Special Cases for Phrases with Gaps
A few subtleties arise in the extraction of hierar-

chical patterns. Gaps are allowed to occur at the be-
ginning or end of a phrase. For instance, we may
have a source phrase Xu or uX or even XuX . Al-
though each of these phrases requires its own path in
the prefix tree, they are lexically identical to phrase
u. An analogous situation occurs with the patterns
XuXv, uXvX , and uXv. There are two cases that
we are concerned with.

The first case consists of all patterns prefixed with
X . The paths to nodes representing these patterns
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will all contain the X-edge originating at the root
node. All of these paths form the shadow sub-
tree. Path construction in this subtree proceeds dif-
ferently. Because they are lexically identical to their
suffixes, they are automatically extended if their suf-
fix paths are active, and they inherit location infor-
mation of their suffixes.

The second case consists of all patterns suffixed
with X . Whenever we successfully find a new pat-
tern α, we automatically extend it with an X edge,
provided that αX is allowed by the model con-
straints. The node pointed to by this edge inherits
its location information from its parent node (repre-
senting the maximal prefix α).

Note that both special cases occur for patterns in
the form XuX .

5.5 Memory Requirements

As shown in Callison-Burch et al. (2005), we must
keep an array for the source text F , its suffix array,
the target text E, and alignment A in memory. As-
suming that A and E are roughly the size of F , the
cost is 4|T |. If we assume that all data use vocabu-
laries that can be represented using 32-bit integers,
then our 27M word corpus can easily be represented
in around 500MB of memory. Adding the inverted
index for unigrams increases this by 20%. The main
additional cost in memory comes from the storage
of the precomputed collocations. This is dependent
both on the corpus size and the number of colloca-
tions that we choose to precompute. Using detailed
timing data from our experiments we were able to
simulate the memory-speed tradeoff (Fig. 3). If we
include a trigram model trained on our bitext and the
Chinese Gigaword corpus, the overall storage costs
for our system are approximately 2GB.

6 Experiments

All of our experiments were performed on Chinese-
English in the news domain. We used a large train-
ing set consisting of over 1 million sentences from
various newswire corpora. This corpus is roughly
the same as the one used for large-scale experiments
by Chiang et al. (2005). To generate alignments,
we used GIZA++ (Och and Ney, 2003). We sym-
metrized bidirectional alignments using the grow-
diag-final heuristic (Koehn et al., 2003).

0

0

0

1000

0

Number of frequent subpatterns

Insert text here

41 sec/sent

41 seconds

405 sec/sent

0 MB

725MB

Figure 3: Effect of precomputation on memory use
and processing time. Here we show only the mem-
ory requirements of the precomputed collocations.

We used the first 50 sentences of the NIST 2003
test set to compute timing results. All of our algo-
rithms were implemented in Python 2.4. 10 Timing
results are reported for machines with 8GB of mem-
ory and 4 3GHz Xeon processors running Red Hat
linux 2.6.9. In order to understand the contributions
of various improvements, we also ran the system
with with various ablations. In the default setting,
the prefix tree is constructed for each sentence to
guide phrase lookup, and then discarded. To show
the effect of caching we also ran the algorithm with-
out discarding the prefix tree between sentences, re-
sulting in full inter-sentence caching. The results are
shown in Table 1. 11

It is clear from the results that each of the op-
timizations is needed to sufficiently reduce lookup
time to practical levels. Although this is still rela-
tively slow, it is much closer to the decoding time of
10 seconds per sentence than the baseline.

10Python is an interpreted language and our implementations
do not use any optimization features. It is therefore reasonable
to think that a more efficient reimplementation would result in
across-the-board speedups.

11The results shown here do not include the startup time re-
quired to load the data structures into memory. In our Python
implementation this takes several minutes, which in principle
should be amortized over the cost for each sentence. However,
just as Zens and Ney (2007) do for phrase tables, we could com-
pile our data structures into binary memory-mapped files, which
can be read into memory in a matter of seconds. We are cur-
rently investigating this option in a C reimplementation.
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Algorithms Secs/Sent Collocations
Baseline 2241.25 325548
Prefix Tree 1578.77 69994
Prefix Tree + precomputation 696.35 69994
Prefix Tree + double binary 405.02 69994
Prefix Tree + precomputation + double binary 40.77 69994
Prefix Tree with full caching + precomputation + double binary 30.70 67712

Table 1: Timing results and number of collocations computed for various combinations of algorithms. The
runs using precomputation use the 1000 most frequent patterns.

7 Conclusions and Future Work

Our work solves a seemingly intractable problem
and opens up a number of intriguing potential ap-
plications. Both Callison-Burch et al. (2005) and
Zhang and Vogel (2005) use suffix arrays to relax
the length constraints on phrase-based models. Our
work enables this in hierarchical phrase-based mod-
els. However, we are interested in additional appli-
cations.

Recent work in discriminative learning for many
natural language tasks, such as part-of-speech tag-
ging and information extraction, has shown that fea-
ture engineering plays a critical role in these ap-
proaches. However, in machine translation most fea-
tures can still be traced back to the IBM Models of
15 years ago (Lopez, 2007b). Recently, Lopez and
Resnik (2006) showed that most of the features used
in standard phrase-based models do not help very
much. Our algorithms enable us to look up phrase
pairs in context, which will allow us to compute in-
teresting contextual features that can be used in dis-
criminative learning algorithms to improve transla-
tion accuracy. Essentially, we can use the training
data itself as an indirect representation of whatever
features we might want to compute. This is not pos-
sible with table-based architectures.

Most of the data structures and algorithms dis-
cussed in this paper are widely used in bioinformat-
ics, including suffix arrays, prefix trees, and suf-
fix links (Gusfield, 1997). As discussed in §4.1,
our problem is a variant of the approximate pattern
matching problem. A major application of approx-
imate pattern matching in bioinformatics is query
processing in protein databases for purposes of se-
quencing, phylogeny, and motif identification.

Current MT models, including hierarchical mod-

els, translate by breaking the input sentence into
small pieces and translating them largely indepen-
dently. Using approximate pattern matching algo-
rithms, we imagine that machine translation could
be treated very much like search in a protein
database. In this scenario, the goal is to select
training sentences that match the input sentence as
closely as possible, under some evaluation function
that accounts for both matching and mismatched
sequences, as well as possibly other data features.
Once we have found the closest sentences we can
translate the matched portions in their entirety, re-
placing mismatches with appropriate word, phrase,
or hierarchical phrase translations as needed. This
model would bring statistical machine translation
closer to convergence with so-called example-based
translation, following current trends (Marcu, 2001;
Och, 2002). We intend to explore these ideas in fu-
ture work.
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Abstract

This paper presents an empirical study on
how different selections of input translation
systems affect translation quality in system
combination. We give empirical evidence
that the systems to be combined should be
of similar quality and need to be almost
uncorrelated in order to be beneficial for sys-
tem combination. Experimental results are
presented for composite translations com-
puted from large numbers of different re-
search systems as well as a set of transla-
tion systems derived from one of the best-
ranked machine translation engines in the
2006 NIST machine translation evaluation.

1 Introduction

Computing consensus translations from the outputs
of multiple machine translation engines has become
a powerful means to improve translation quality in
many machine translation tasks. Analogous to the
ROVER approach in automatic speech recognition
(Fiscus, 1997), a composite translation is computed
by voting on the translation outputs of multiple
machine translation systems. Depending on how
the translations are combined and how the voting
scheme is implemented, the composite translation
may differ from any of the original hypotheses.
While elementary approaches simply select for each
sentence one of the original translations, more so-
phisticated methods allow for combining transla-
tions on a word or a phrase level.

Although system combination could be shown
to result in substantial improvements in terms of
translation quality (Matusov et al., 2006; Sim et al.,
2007), not every possible ensemble of translation
outputs has the potential to outperform the primary

translation system. In fact, an adverse combina-
tion of translation systems may even deteriorate
translation quality. This holds to a greater extent,
when the ensemble of translation outputs contains a
significant number of translations produced by low
performing but highly correlated systems.

In this paper we present an empirical study on
how different ensembles of translation outputs affect
performance in system combination. In particular,
we will address the following questions:

• To what extent can translation quality benefit
from combining systems developed by multiple
research labs?
Despite an increasing number of translation
engines, most state-of-the-art systems in statis-
tical machine translation are nowadays based
on implementations of the same techniques.
For instance, word alignment models are often
trained using the GIZA++ toolkit (Och and
Ney, 2003); error minimizing training criteria
such as theMinimum Error Rate Training
(Och, 2003) are employed in order to learn
feature function weights for log-linear models;
and translation candidates are produced using
phrase-based decoders (Koehn et al., 2003)
in combination withn-gram language models
(Brants et al., 2007).

All these methods are established asde facto
standards and form an integral part of most
statistical machine translation systems. This,
however, raises the question as to what ex-
tent translation quality can be expected to
improve when similarly designed systems are
combined.

• How can a set of diverse translation systems be
built from a single translation engine?
Without having access to different translation
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engines, it is desirable to build a large number
of diverse translation systems from asingle
translation engine that are useful in system
combination. The mere use ofN -best lists
and word lattices is often not effective, because
N -best candidates may be highly correlated,
thus resulting in small diversity compared to
the first best hypothesis. Therefore, we need a
canonical way to build a large pool of diverse
translation systems from asingle translation
engine.

• How can an ensemble of translation outputs
be selected from a large pool of translation
systems?
Once a large pool of translation systems is
available, we need an effective means to select
a small ensemble of translation outputs for
which the combined system outperforms the
best individual system.

These questions will be investigated on the basis
of three approaches to system combination: (i) an
MBR-like candidate selection method based on
BLEU correlation matrices, (ii) confusion networks
built from word sausages, and (iii) a novel two-
pass search algorithm that aims at finding consensus
translations by reordering bags of words constituting
the consensus hypothesis.

Experiments were performed on two Chinese-
English text translation corpora under the conditions
of the large data track as defined for the 2006 NIST
machine translation evaluation (MT06). Results
are reported for consensus translations built from
system outputs provided by MT06 participants as
well as systems derived from one of the best-ranked
translation engines.

The remainder of this paper is organized as fol-
lows: in Section 2, we describe three combina-
tion methods for computing consensus translations.
In Sections 3.1 and 3.2, we present experimental
results on combining system outputs provided by
MT06 participants. Section 3.3 shows how correla-
tion among translation systems affects performance
in system combination. In Section 3.4, we discuss
how a single translation engine can be modified
in order to produce a large number of diverse
translation systems. First experimental results us-
ing a greedy search algorithm to select a small
ensemble of translation outputs from a large pool
of canonically built translation systems are reported.
A summary presented in Section 4 concludes the
paper.

2 Methods for System Combination

System combination in machine translation aims to
build a composite translation from system outputs
of multiple machine translation engines. Depending
on how the systems are combined and which voting
scheme is implemented, the consensus translation
may differ from any of the original candidate trans-
lations. In this section, we discuss three approaches
to system combination.

2.1 System Combination via Candidate
Selection

The easiest and most straightforward approach to
system combination simply returns one of the orig-
inal candidate translations. Typically, this selection
is made based on translation scores, confidence esti-
mations, language and other models (Nomoto, 2004;
Paul et al., 2005). For many machine translation
systems, however, the scores are often not normal-
ized or may even not be available, which makes
it difficult to apply this technique. We therefore
propose an alternative method based on “correlation
matrices” computed from the BLEU performance
measure (Papineni et al., 2001).

Lete1, ..., eM denote the outputs ofM translation
systems, each given as a sequence of words in
the target language. An element of the BLEU
correlation matrixB � pbijq is defined as the
sentence-based BLEU score between a candidate
translationei and a pseudo-reference translationejpi, j � 1, ...,Mq:

bij � BPpei, ejq � exp
$''%1

4

4̧

n�1

log ρnpei, ejq
,//-.

(1)

Here,BP denotes the brevity penalty factor withρn

designating then-gram precisions.
Because the BLEU score is computed on a sen-

tence rather than a corpus-level,n-gram precisions
are capped by the maximum over12�|ei|

and ρn in
order to avoid singularities, where|ei| is the length
of the candidate translation1.

Due to the following properties,B can be inter-
preted as a correlation matrix, although the term
does not hold in a strict mathematical sense: (i)
bij P r0, 1s; (ii) bij � 1.0 ðñ ei � ej ; (iii) bij �
0.0 ðñ eiXej � H, i.e.,bij is zero if and only if
none of the words which constituteei can be found

1 Note that for non-zeron-gram precisions,ρn is always
larger than 1

2�|e| .
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in ej and vice versa. The BLEU correlation matrix
is in general, however, not symmetric, although in
practice,||bij � bji|| is typically negligible.

Each translation systemm is assigned to asystem
prior weightωm P r0, 1s, which reflects the perfor-
mance of systemm relatively to all other translation
systems. If no prior knowledge is available,ωm is
set to1{M .

Now, let ω � pω1, ..., ωM qJ denote a vector of
system prior weights and letb1, ...,bM denote the
row vectors of the matrixB. Then the translation
system with the highest consensus is given by:

e� � em� with

m� � argmax
em

!
ωJ � bm

) (2)

The candidate selection rule in Eq. (2) has two useful
properties:

• The selection does not depend on scored trans-
lation outputs; the mere target word sequence
is sufficient. Hence, this technique is also
applicable to rule-based translation systems2.

• Using the components of the row-vectorbm

as feature function values for the candidate
translationem (m � 1, ...,M ), the system
prior weightsω can easily be trained using
the Minimum Error Rate Training described in
(Och, 2003).

Note that the candidate selection rule in Eq. (2)
is equivalent to re-ranking candidate translations
according to theMinimum Bayes Risk(MBR) deci-
sion rule (Kumar and Byrne, 2004), provided that
the system prior weights are used as estimations
of the posterior probabilitiesppe|fq for a source
sentencef . Due to the proximity of this method
to the MBR selection rule, we call this combination
schemeMBR-like system combination.

2.2 ROVER-Like Combination Schemes

ROVER-like combination schemes aim at comput-
ing a composite translation by voting on confusion
networks that are built from translation outputs
of multiple machine translation engines via an it-
erative application of alignments (Fiscus, 1997).
To accomplish this, one of the original candidate
translations, e.g.em, is chosen as the primary
translation hypothesis, while all other candidatesenpn � mq are aligned with the word sequence of

2 This property is not exclusive to this combination scheme
but also holds for the methods discussed in Sections 2.2 and 2.3.

the primary translation. To limit the costs when
aligning a permutation of the primary translation,
the alignment metric should allow for small shifts
of contiguous word sequences in addition to the
standard edit operationsdeletions, insertions, and
substitutions. These requirements are met by the
Translation Edit Rate(TER) (Snover et al., 2006):

TERpei, ejq� Del� Ins� Sub� Shift
|ej | (3)

The outcome of the iterated alignments is a word
transition network which is also known asword
sausagebecause of the linear sequence of corre-
spondence sets that constitute the network. Since
both the order and the elements of a correspondence
set depend on the choice of the primary transla-
tion, each candidate translation is chosen in turn
as the primary system. This results in a total of
M word sausages that are combined into a single
super network. The word sequence along the cost-
minimizing path defines the composite translation.

To further optimize the word sausages, we replace
each system prior weightωm with the lp-norm over
the normalized scalar product between the weight
vectorω and the row vectorbm:

ω1
m �

pωJ � bmq`¸
m̃

pωJ � bm̃q` , ` P r0,�8q (4)

As ` approaches�8, ω1
m � 1 if and only if

systemm has the highest consensus among all input
systems; otherwise,ω1

m � 0. Thus, the word
sausages are able to emulate the candidate selection
rule described in Section 2.1. Setting` � 0 yields
uniform system prior weights, and settingB to
the unity matrix provides the original prior weights
vector. Word sausages which take advantage of the
refined system prior weights are denoted byword
sausages+.

2.3 A Two-Pass Search Algorithm

The basic idea of the two-pass search algorithm is
to compute a consensus translation by reordering
words that are considered to be constituents of the
final consensus translation.

Initially, the two-pass search is given a repository
of candidate translations which serve as pseudo
references together with a vector of system prior
weights. In the first pass, the algorithm uses
a greedy strategy to determine abag of words
which minimizes theposition-independent word er-
ror rate (PER). These words are considered to be
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constituents of the final consensus translation. The
greedy strategy implicitly ranks the constituents,
i.e., words selected at the beginning of the first
phase reduce the PER the most and are considered
to be more important than constituents selected in
the end. The first pass finishes when putting further
constituents into the bag of words does not improve
the PER.

The list of constituents is then passed to a sec-
ond search algorithm, which starts with the empty
string and then expands all active hypotheses by
systematically inserting the next unused word from
the list of constituents at different positions in the
current hypothesis. For instance, a partial consensus
hypothesis of lengthl expands intol � 1 new
hypotheses of lengthl�1. The resulting hypotheses
are scored with respect to the TER measure based on
the repository of weighted pseudo references. Low-
scoring hypotheses are pruned to keep the space of
active hypotheses small. The algorithm will finish
if either no constituents are left or if expanding the
set of active hypotheses does not further decrease
the TER score. Optionally, the best consensus hy-
pothesis found by the two-pass search is combined
with all input translation systems via the MBR-like
combination scheme described in Section 2.1. This
refinement is calledtwo-pass+.

2.4 Related Work

Research on multi-engine machine translation goes
back to the early nineties. In (Robert and Nirenburg,
1994), a semi-automatic approach is described that
combines outputs from three translation systems to
build a consensus translation. (Nomoto, 2004) and
(Paul et al., 2005) used translation scores, language
and other models to select one of the original
translations as consensus translation. (Bangalore et
al., 2001) used a multiple string alignment algorithm
in order to compute a single confusion network,
on which a consensus hypothesis was computed
through majority voting. Because the alignment
procedure was based on the Levenshtein distance,
it was unable to align translations with significantly
different word orders. (Jayaraman and Lavie, 2005)
tried to overcome this problem by using confi-
dence scores and language models in order to rank
a collection of synthetic combinations of words
extracted from the original translation hypotheses.
Experimental results were only reported for the
METEOR metric (Banerjee and Lavie, 2005). In
(Matusov et al., 2006), pairwise word alignments
of the original translation hypotheses were estimated
for an enhanced statistical alignment model in order

Table 1: Corpus statistics for two Chinese-English
text translation sets: ZHEN-05 is a random
selection of test data used in NIST evaluations prior
to 2006; ZHEN-06 comprises the NIST portion of
the Chinese-English evaluation data used in the
2006 NIST machine translation evaluation.

corpus Chinese English
ZHEN-05 sentences 2390

chars / words 110647 67737
ZHEN-06 sentences 1664

chars / words 64292 41845

to explicitly capture word re-ordering. Although
the proposed method was not compared with other
approaches to system combination, it resulted in
substantial gains and provided new insights into
system combination.

3 Experimental Results

Experiments were conducted on two corpora for
Chinese-English text translations, the first of which
is compiled from a random selected subset of eval-
uation data used in the NIST MT evaluations up to
the year 2005. The second data set consists of the
NIST portion of the Chinese-English data used in
the MT06 evaluation and comprises 1664 Chinese
sentences collected from broadcast news articles
(565 sentences), newswire texts (616 sentences), and
news group texts (483 sentences). Both corpora
provide 4 reference translations per source sentence.
Table 1 summarizes some corpus statistics.

For all experiments, system performance was
measured in terms of the IBM-BLEU score (Pap-
ineni et al., 2001). Compared to the NIST imple-
mentation of the BLEU score, IBM-BLEU follows
the original definition of the brevity penalty (BP)
factor: while in the NIST implementation the BP is
always based on the length of the shortest reference
translation, the BP in the IBM-BLEU score is based
on the length of the reference translation which is
closest to the candidate translation length. Typically,
IBM-BLEU scores tend to be smaller than NIST-
BLEU scores. In the following, BLEU always refers
to the IBM-BLEU score.

Except for the results reported in Section 3.2, we
used uniform system prior weights throughout all
experiments. This turned out to be more stable when
combining different sets of translation systems and
helped to improve generalization.
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Table 2: BLEU scores and brevity penalty (BP) factors determined on the ZHEN-06 test set for primary
systems together with consensus systems for the MBR-like candidate selection method obtained by
combining each three adjacent systems with uniform system prior weights. Primary systems are sorted in
descending order with respect to their BLEU score. The 95% confidence intervals are computed using the
bootstrap re-sampling normal approximation method (Noreen, 1989).

combination primary system consensus oracle
BLEU CI 95% BP BLEU ∆ BP pair-CI 95% BLEU BP

01, 02, 03 32.10 (�0.88) 0.93 32.97 (+0.87) 0.92 [+0.29, +1.46] 38.54 0.94
01, 15, 16� 32.10 (�0.88) 0.93 23.55 ( -8.54) 0.92 [ -9.29, -7.80] 33.55 0.95
02, 03, 04 31.71 (�0.90) 0.96 31.55 ( -0.16) 0.92 [ -0.65, +0.29] 37.23 0.95
03, 04, 05 29.59 (�0.88) 0.87 29.55 ( -0.04) 0.88 [ -0.53, +0.41] 35.55 0.92
03, 04, 06� 29.59 (�0.88) 0.87 29.83 (+0.24) 0.90 [ -0.29, +0.71] 35.69 0.93
04, 05, 06 27.70 (�0.87) 0.94 28.52 (+0.82) 0.91 [+0.15, +1.49] 34.67 0.94
05, 06, 07 27.05 (�0.81) 0.88 28.21 (+1.16) 0.92 [+0.63, +1.66] 33.89 0.94
05, 06, 08� 27.05 (�0.81) 0.88 28.47 (+1.42) 0.91 [+0.95, +1.95] 34.18 0.93
06, 07, 08 27.02 (�0.76) 0.92 28.12 (+1.10) 0.94 [+0.59, +1.59] 33.87 0.95
07, 08, 09 26.75 (�0.79) 0.97 27.79 (+1.04) 0.94 [+0.52, +1.51] 33.54 0.95
08, 09, 10 26.41 (�0.81) 0.92 26.78 (+0.37) 0.94 [ -0.07, +0.86] 32.47 0.96
09, 10, 11 25.05 (�0.84) 0.90 24.96 ( -0.09) 0.94 [ -0.59, +0.46] 30.92 0.97
10, 11, 12 23.48 (�0.68) 1.00 24.24 (+0.76) 0.94 [+0.27, +1.30] 30.08 0.96
11, 12, 13 23.26 (�0.74) 0.95 24.05 (+0.79) 0.92 [+0.40, +1.23] 29.56 0.93
12, 13, 14 22.38 (�0.78) 0.87 22.68 (+0.30) 0.89 [ -0.28, +0.95] 28.58 0.91
13, 14, 15 22.13 (�0.72) 0.89 21.29 ( -0.84) 0.90 [ -1.33, -0.33] 26.61 0.92
14, 15, 16 17.42 (�0.66) 0.93 18.45 (+1.03) 0.92 [+0.45, +1.56] 23.30 0.95
15 17.20 (�0.64) 0.91 — — — — — —
16 15.21 (�0.63) 0.96 — — — — — —

3.1 Combining Multiple Research Systems

In a first experiment, we investigated the effect
of combining translation outputs provided from
different research labs. Each translation system
corresponds to a primary system submitted to the
NIST MT06 evaluation3. Table 2 shows the BLEU
scores together with their corresponding BP factors
for the primary systems of 16 research labs (site
names were anonymized). Primary systems are
sorted in descending order with respect to their
BLEU score. Table 2 also shows the consensus
translation results for the MBR-like candidate selec-
tion method. Except where marked with an asterisk,
all consensus systems are built from the outputs
of three adjacent systems. While only few com-
bined systems show a degradation, the majority of
all consensus translations achieve substantial gains
between 0.2% and 1.4% absolute in terms of BLEU
score on top of the best individual (primary) system.
The column CI provides 95% confidence intervals
for BLEU scores with respect to the primary system
baseline using the bootstrap re-sampling normal

3 For more information seehttp://www.nist.gov/
speech/tests/mt/mt06eval_official_results.
html

approximation method (Noreen, 1989). The column
“pair-CI” shows 95% confidence intervals relative
to the primary system using the paired bootstrap
re-sampling method (Koehn, 2004). The princi-
ple of the paired bootstrap method is to create a
large number of corresponding virtual test sets by
consistently selecting candidate translations with re-
placement from both the consensus and the primary
system. The confidence interval is then estimated
over the differences between the BLEU scores of
corresponding virtual test sets. Improvements are
considered to be significant if the left boundary of
the confidence interval is larger than zero.

Oracle BLEU scores shown in Table 2 are com-
puted by selecting the best translation among the
three candidates. The oracle scores might indicate a
larger potential of the MBR-like selection rule, and
further gains could be expected if the candidate se-
lection rule is combined with confidence measures.

Table 2 shows that it is important that all trans-
lation systems achieve nearly equal quality; com-
bining high-performing systems with low-quality
translations typically results in clear performance
losses compared to the primary system, which is the
case when combining, e.g., systems 01, 15, and 16.
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Table 3: BLEU scores and brevity penalty (BP) factors determined on the ZHEN-06 test set for the
combination of multiple research systems using the MBR-like selection method with uniform and trained
system prior weights. Prior weights are trained using 5-fold cross validation. The 95% confidence intervals
realtive to uniform weights are computed using the paired bootstrap re-sampling method (Koehn, 2004).

# systems combination uniform ω opt. on dev. ω opt. on test
BLEU BP BLEU BP pair-CI 95% BLEU BP

3 01 – 03 32.98 0.92 33.03 0.93 [ -0.23, +0.34] 33.60 0.93
4 01 – 04 33.44 0.93 33.46 0.93 [ -0.26, +0.29] 34.97 0.94
5 01 – 05 33.07 0.92 33.14 0.93 [ -0.29, +0.43] 34.33 0.93
6 01 – 06 32.86 0.92 33.53 0.93 [+0.26, +1.08] 34.43 0.93
7 01 – 07 33.08 0.93 33.51 0.93 [+0.04, +0.82] 34.49 0.93
8 01 – 08 33.12 0.93 33.47 0.93 [ -0.06, +0.75] 34.50 0.94
9 01 – 09 33.15 0.93 33.22 0.93 [ -0.35, +0.51] 34.68 0.93

10 01 – 10 33.01 0.93 33.59 0.94 [+0.18, +0.96] 34.79 0.94
11 01 – 11 32.84 0.94 33.40 0.94 [+0.13, +0.98] 34.76 0.94
12 01 – 12 32.73 0.93 33.49 0.94 [+0.34, +1.18] 34.83 0.94
13 01 – 13 32.71 0.93 33.54 0.94 [+0.39, +1.26] 34.91 0.94
14 01 – 14 32.66 0.93 33.69 0.94 [+0.58, +1.47] 34.97 0.94
15 01 – 15 32.47 0.93 33.57 0.94 [+0.63, +1.57] 34.99 0.94
16 01 – 16 32.51 0.93 33.62 0.94 [+0.62, +1.59] 35.00 0.94

3.2 Non-Uniform System Prior Weights

As pointed out in Section 2.1, a useful property
of the MBR-like system selection method is that
system prior weights can easily be trained using
the Minimum Error Rate Training (Och, 2003).
In this section, we investigate the effect of using
non-uniform system weights for the combination of
multiple research systems. Since for each research
system, only the first best translation candidate
was provided, we used a five-fold cross validation
scheme in order to train and evaluate the system
prior weights. For this purpose, all research systems
were consistently split into five random partitions of
almost equal size. The partitioning procedure was
document preserving, i.e., sentences belonging to
the same document were guaranteed to be assigned
to the same partition. Each of the five partitions
played once the role of the evaluation set while
the other four partitions were used as development
data to train the system prior weights. Consensus
systems were computed for each held out set using
the system prior weights estimated on the respec-
tive development sets. The combination results
determined on all held out sets were then concate-
nated and evaluated with respect to the ZHEN-06
reference translations. Table 3 shows the results
for the combinations of up to 16 research systems
using either uniform or trained system prior weights.
System 01 achieved the highest BLEU score on all

five constellations of development partitions and is
therefore the primary system to which all results in
Table 3 compare. In comparison to uniform weights,
consensus translations using trained weights are
more robust toward the integration of low perform-
ing systems into the combination scheme. The
best combined system obtained with trained system
prior weights (01-14) is, however, not significantly
better than the best combined system using uniform
weights (01-04), for which the 95% confidence
interval yieldsr�0.17, 0.66s according to the paired
bootstrap re-sampling method.

Table 3 also shows the theoretically achievable
BLEU scores when optimizing the system prior
weights on the held out data. This provides an upper
bound to what extent system combination might
benefit if an ideal set of system prior weights were
used.

3.3 Effect of Correlation on System
Combination

The degree of correlation among input translation
systems is a key factor which decides whether
translation outputs can be combined such a way that
the overall system performance improves. Correla-
tion can be considered as a reciprocal measure of
diversity: if the correlation is too large (¡ 90%),
there will be insufficient diversity among the input
systems and the consensus system will at most be
able to only marginally outperform the best indi-
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Table 4:BLEU scores obtained on ZHEN-05 with uniform prior weights and a 10-way system combination
using the MBR-like candidate selection rule, word sausages, and the two-pass search algorithm together
with their improved versions “sausages+” and “two-pass+”, respectively for different sample sizes of the
FBIS training corpus.

sampling primary mbr-like sausages sausages+ two-pass two-pass+r%s BLEU CI 95% BP BLEU BP BLEU BP BLEU BP BLEU BP BLEU BP
5 27.82 (�0.65) 1.00 29.51 1.00 29.00 0.97 30.25 0.99 29.58 0.94 29.93 0.96
10 29.70 (�0.69) 1.00 31.42 1.00 30.74 0.98 31.99 0.99 31.30 0.95 31.75 0.97
20 31.37 (�0.69) 1.00 32.56 1.00 32.64 1.00 33.17 0.99 32.60 0.96 32.76 0.98
40 32.66 (�0.66) 1.00 33.52 1.00 33.23 0.99 33.98 1.00 33.65 0.97 33.88 0.99
80 33.67 (�0.66) 1.00 34.17 1.00 33.93 0.9934.38 1.00 34.20 0.99 34.35 1.00
100 33.90 (�0.67) 1.00 34.03 1.0033.98 1.00 34.02 1.00 33.90 1.00 34.08 1.00

vidual translation system. If the correlation is too
low (  5%), there might be no consensus among the
input systems and the quality of the consensus trans-
lations will hardly differ from a random selection of
the candidates.

To study how correlation affects performance in
system combination, we built a large number of
systems trained on randomly sampled portions of the
FBIS4 training data collection. Sample sizes ranged
between 5% and 100% with each larger data set dou-
bling the size of the next smaller collection. For each
sample size, we created 10 data sets, thus resulting in
a total of6�10 training corpora. On each data set, a
new translation system was trained from scratch and

4 LDC catalog number: LDC2003E14
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Figure 1: Incremental system combination on
ZHEN-05 using the MBR-like candidate selection
rule and uniform prior weights. Systems were
trained with different sample sizes of the FBIS data.

used for decoding the ZHEN-05 test sentences. All
60 systems applied the MBR decision rule (Kumar
and Byrne, 2004), which gave an additional 0.5%
gain on average on top of using themaximum a-
posteriori (MAP) decision rule. Systems trained on
equally amounts of training data were incrementally
combined. Figure 1 shows the evolution of the
BLEU scores as a function of the number of sys-
tems as the sample size is increased from 5–100%.
Table 4 shows the BLEU scores obtained with a 10-
way system combination using the MBR-like can-
didate selection rule, word sausages, and the two-
pass search algorithm together with their improved
versions “sausages+” and “two-pass+”, respectively.
In order to measure the correlation between the in-
dividual translation systems, we computed the inter-
system BLEU score matrix as shown exemplary
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Figure 2:Evolution of the correlation on ZHEN-05
averaged over 10 systems in the course of the sample
size.
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Table 5: Minimum, maximum, and average inter-system BLEU score correlations for (i) the primary
systems of the 2006 NIST machine translation evaluation on the ZHEN-06 test data, (ii) different training
corpus sizes (FBIS), and (iii) a greedy strategy which chooses 15 systems out of a pool of 200 translation
systems.

ZHEN-6 ZHEN-5 ZHEN-5 ZHEN-6
16 primary FBIS sampling, 10 systems 15 systems 15 systems
systems 5% 10% 20% 40% 80% 100% greedy selection ZHEN-5 selection

min 0.08 0.38 0.44 0.47 0.53 0.60 0.72 0.55 0.50
mean 0.18 0.40 0.45 0.50 0.56 0.66 0.79 0.65 0.61
median 0.19 0.40 0.45 0.49 0.56 0.64 0.78 0.63 0.58
max 0.28 0.42 0.47 0.53 0.58 0.70 0.88 0.85 0.83

in Table 6 for the 16 MT06 primary submissions.
Figure 2 shows the evolution of the correlation
averaged over 10 systems as the sample size is
increased from 5–100%. Note that all systems were
optimized using a non-deterministic implementation
of the Minimum Error Rate Trainingdescribed in
(Och, 2003). Hence, using all of the FBIS corpus
data does not necessarily result in fully correlated
systems, since the training procedure may pick a
different solution for same training data in order
to increase diversity. Both Table 4 and Figure 1
clearly indicate that increasing the correlation (and
thus reducing the diversity) substantially reduces the
potential of a consensus system to outperform the
primary translation system. Ideally, the correlation
should not be larger than30%.

Especially for low inter-system correlations and
reduced translation quality, both the enhanced ver-
sions of the word sausage combination method
and the two-pass search outperform the MBR-like
candidate selection scheme. This advantage, how-
ever, diminishes as soon as the correlation increases
and translations produced by the individual systems
become more similar.

3.4 Toward Automatic System Generation and
Selection

Sampling the training data is an effective means
to investigate the effect of system correlation on
consensus performance. However, this is done at the
expense of the overall system quality. What we need
instead is a method to reduce correlation without
sacrificing system performance.

A simple, though computationally very expensive
way to build an ensemble of low-correlated sta-
tistical machine translation systems from a single
translation engine is to train a large pool of sys-
tems, in which each of the systems is trained with
a slightly different set of parameters. Changing

only few parameters at a time typically results in
only small changes in system performance but may
have a strong impact on system correlation. In
our experiments we observed that changing pa-
rameters which affect the training procedure at a
very early stage, are most effective and introduce
larger diversity. For instance, changing the training
procedure for word alignment models turned out to
be most beneficial; for details see (Och and Ney,
2003). Other parameters that were changed include
the maximum jump width in word re-ordering, the
choice of feature function weights for the log-linear
translation models, and the set of language models
used in decoding.

Once a large pool of translation systems has
been generated, we need a method to select a
small ensemble of diverse translation outputs that
are beneficial for computing consensus translations.
Here, we used a greedy strategy to rank the systems
with respect to their ability to improve system

Table 6: Inter-system BLEU score matrix for
primary systems of the NIST 2006 TIDES machine
translation evaluation on the ZHEN-06 test data.

Id 01 02 03 04 05 � � � 14 15 16
01 1.00 0.27 0.26 0.23 0.26� � � 0.15 0.15 0.12
02 0.27 1.00 0.27 0.22 0.25� � � 0.15 0.15 0.12
03 0.26 0.27 1.00 0.21 0.28� � � 0.15 0.15 0.10
04 0.23 0.22 0.21 1.00 0.19� � � 0.14 0.12 0.12
05 0.26 0.25 0.28 0.19 1.00� � � 0.16 0.17 0.11
06 0.27 0.24 0.25 0.21 0.26� � � 0.16 0.18 0.13
...

...
...

14 0.15 0.15 0.15 0.14 0.16� � � 1.00 0.12 0.08
15 0.15 0.15 0.15 0.12 0.17� � � 0.12 1.00 0.09
16 0.12 0.12 0.10 0.12 0.11� � � 0.08 0.09 1.00
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Figure 3:BLEU score of the consensus translation as a function of the number of systems on the ZHEN-05
sentences (left) and ZHEN-06 sentences (right). The middle curve (right) shows the variation of the BLEU
score on the ZHEN-06 data when the greedy selection of the ZHEN-05 is used.

combination. Initially, the greedy strategy selected
the best individual system and then continued by
adding those systems to the ensemble, which gave
the highest gain in terms of BLEU score according
to the MBR-like system combination method. Note
that the greedy strategy is not guaranteed to increase
the BLEU score of the combined system when a
new system is added to the ensemble of translation
systems.

In a first experiment, we trained approximately
200 systems using different parameter settings in
training. Each system was then used to decode both
the ZHEN-05 and the ZHEN-06 test sentences using
the MBR decision rule. The upper curve in Figure 3
(left) shows the evolution of the BLEU score on
the ZHEN-05 sentences in the course of the number
of selected systems. The upper curve in Figure 3
(right) shows the BLEU score of the consensus
translation as a function of the number of systems
when the selection is done on the ZHEN-06 set. This
serves as an oracle. The middle curve (right) shows
the function of the BLEU score when the system
selection made on the ZHEN-05 set is used in order
to combine the translation outputs for the ZHEN-06
data. Although system combination gave moderate
improvements on top of the primary system, the
greedy strategy still needs further refinements in or-
der to improve generalization. While the correlation
statistics shown in Table 5 indicate that changing the
training parameters helps to substantially decrease
system correlation, there is still need for additional
methods in order to reduce the level of inter-system

BLEU scores such that they fall within the range ofr0.2, 0.3s.
4 Conclusions

In this paper, we presented an empirical study
on how different selections of translation outputs
affect translation quality in system combination.
Composite translations were computed using (i) a
candidate selection method based on inter-system
BLEU score matrices, (ii) an enhanced version of
word sausage networks, and (iii) a novel two-pass
search algorithm which determines and re-orders
bags of words that build the constituents of the final
consensus hypothesis. All methods gave statistically
significant improvements.

We showed that both a high diversity among the
original translation systems and a similar translation
quality among the translation systems are essential
in order to gain substantial improvements on top of
the best individual translation systems.

Experiments were conducted on the NIST portion
of the Chinese English text translation corpus used
for the 2006 NIST machine translation evaluation.
Combined systems were built from primary systems
of up to 16 different research labs as well as systems
derived from one of the best-ranked translation
engines.

We trained a large pool of translation systems
from a single translation engine and presented first
experimental results for a greedy search to select an
ensemble of translation systems for system combi-
nation.
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Abstract 

We present a method for learning to find 
English to Chinese transliterations on the 
Web. In our approach, proper nouns are 
expanded into new queries aimed at maxi-
mizing the probability of retrieving trans-
literations from existing search engines. 
The method involves learning the sublexi-
cal relationships between names and their 
transliterations. At run-time, a given name 
is automatically extended into queries with 
relevant morphemes, and transliterations in 
the returned search snippets are extracted 
and ranked. We present a new system, 
TermMine, that applies the method to find 
transliterations of a given name. Evaluation 
on a list of 500 proper names shows that 
the method achieves high precision and re-
call, and outperforms commercial machine 
translation systems. 

1 Introduction 

Increasingly, short passages or web pages are be-
ing translated by desktop machine translation soft-
ware or are submitted to machine translation ser-
vices on the Web every day. These texts usually 
contain some proportion of proper names (e.g., 
place and people names in “The cities of Mesopo-
tamia prospered under Parthian and Sassanian 
rule.”), which may not be handled properly by a 
machine translation system. Online machine trans-
lation services such as Google Translate1 or Yahoo! 
Babelfish2 typically use a bilingual dictionary that 
is either manually compiled or learned from a par-

                                                 
1 Google Translate: translate.google.com/translate_t 
2 Yahoo! Babelfish: babelfish.yahoo.com 

allel corpus. However, such dictionaries often have 
insufficient coverage of proper names and techni-
cal terms, leading to poor translation performance 
due to out of vocabulary (OOV) problem.  

Handling name transliteration is also important 
for cross language information retrieval (CLIR) 
and terminology translation (Quah 2006). There 
are also services on the Web specifically targeting 
transliteration aimed at improving CLIR, including 
CHINET (Kwok et al. 2005) and LiveTrans (Lu, 
Chien, and Lee 2004). 

The OOV problems of machine translation (MT) 
or CLIR can be handled more effectively by learn-
ing to find transliteration on the Web. Consider the 
sentence in Example (1), containing three proper 
names. Google Translate produces the sentence in 
Example (2) and leaves “Parthian” and “Sas-
sanian” not translated. A good response might be a 
translation like Example (3) with appropriate 
transliterations (underlined). 
(1) The cities of Mesopotamia prospered under 

Parthian and Sassanian rule. 
(2) 城市繁榮下 parthian 達米亞、sassanian 統

治。 
(3) 美索不達米亞3城市在巴底亞4和薩珊5統治下

繁榮起來。 
These transliterations can be more effectively 

retrieved from mixed-code Web pages by extend-
ing each of the proper names into a query. Intui-
tively, by requiring one of likely transliteration 
morphemes (e.g., “巴”(Ba) or “帕”(Pa) for names 
beginning with the prefix “par-”), we can bias the 
search engine towards retrieving the correct trans-  

                                                 
3 美索不達米亞(Meisuobudamiya) is the transliteration of 
“Mesopotamia.” 
4 巴底亞(Badiya) is the transliteration of “Parthian.” 
5 薩珊(Sashan) is the transliteration of “Sassanian.” 
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Figure 1. An example of TermMine search for transliterations of the name “Parthian” 
 
literations (e.g., “ 巴 底 亞 ”(Badiya) and “ 帕 提

亞”(Patiya)) in snippets of many top-ranked docu-
ments.  

This approach to terminology translation by 
searching is a strategy increasingly adopted by 
human translators. Quah (2006) described a mod-
ern day translator would search for the translation 
of a difficult technical term such as “異方性導電

樹脂フィルム” by expanding the query with the 
word “film” (back transliteration of the component 
“フィルム” of the term in question). This kind of 
query expansion (QE) indeed increases the chance 
of finding the correct translation “anisotropic con-
ductive film” in top-ranked snippets. However, the 
manual process of expanding query, sending 
search request, and extracting transliteration is te-
dious and time consuming. Furthermore, unless the 
query expansion is done properly, snippets con-
taining answers might not be ranked high enough 
for this strategy to be the most effective.  

We present a new system, TermMine, that auto-
matically learns to extend a given name into a 
query expected to retrieve and extract translitera-
tions of the proper name. An example of machine 
transliteration of “Parthian” is shown in Figure 1. 
TermMine has determined the best 10 query ex-
pansions (e.g., “Parthian 巴 ,” “Parthian 帕 ”). 
TermMine learns these effective expansions auto-

matically during training by analyzing a collection 
of place names and their transliterations, and deriv-
ing cross-language relationships of prefix and post-
fix morphemes. For instance, TermMine learns that 
a name that begins with the prefix “par-” is likely 
to have a transliteration beginning with “巴” or 
“帕”). We describe the learning process in Section 
3. 

This prototype demonstrates a novel method for 
learning to find transliterations of proper nouns on 
the Web based on query expansion aimed at 
maximizing the probability of retrieving translit-
erations from existing search engines. Since the 
method involves learning the morphological rela-
tionships between names and their transliterations, 
we refer to this IR-based approach as morphologi-
cal query expansion approach to machine translit-
eration. This novel approach is general in scope 
and can also be applied to back transliteration and 
to translation with slight modifications, even 
though we focus on transliteration in this paper. 

The remainder of the paper is organized as fol-
lows. First, we give a formal statement for the 
problem (Section 2). Then, we present a solution to 
the problem by proposing new transliteration prob-
ability functions, describing the procedure for es-
timating parameters for these functions (Section 3) 
and the run-time procedure for searching and ex-
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tracting transliteration via a search engine (Section 
4). As part of our evaluation, we carry out two sets 
of experiments, with or without query expansion, 
and compare the results. We also evaluate the re-
sults against two commercial machine translation 
online services (Section 5). 

2 Problem Statement 

Using online machine translation services for name 
transliteration does not work very well. Searching 
in the vicinity of the name in mixed-code Web 
pages is a good strategy. However, query expan-
sion is needed for this strategy to be effective. 
Therefore, to find transliterations of a name, a 
promising approach is to automatically expand the 
given name into a query with the additional re-
quirement of some morpheme expected to be part 
of relevant transliterations that might appear on the 
Web. 
 
Table 1. Sample name-transliteration pairs from the 
training collection. 
Name Transliteration Name Transliteration
Aabenraa 阿本洛   Aarberg 阿爾柏 

Aabybro 阿比布洛 Aarburg 亞爾堡 

Aachen 亞琛 Aardenburg 亞丁堡 

Aalesund 奧勒孫 Aargau 亞高 

Aaley 阿利 Aars 阿爾斯 

Aalten 阿爾廷 Aba 阿巴 

Aarau 亞牢 Abacaxis 阿巴卡克斯 

 
Now, we formally state the problem we are deal-

ing with: 
 

While a proper name N is given. Our goal 
is to search and extract the transliteration 
T of N from Web pages via a general-
purpose search engine SE. For that, we 
expand N into a set of queries q1, q2, …, 
qm, such that the top n document snippets 
returned by SE for the queries are likely to 
contain some transliterations T of the 
given name N. 

 
In the next section, we propose using a probabil-

ity function to model the relationships between 
names and transliterations and describe how the 
parameters in this function can be estimated.  

3 Learning Relationships for QE  

We attempt to derive cross-language morpho-
logical relationships between names and translit-
erations and use them to expand a name into an 
effective query for searching and extracting trans-
literations. For the purpose of expanding the given 
name, N, into effective queries to search and ex-
tract transliterations T, we define a probabilistic 
function for mapping prefix syllable from the 
source to the target languages. The prefix translit-
eration function P(TP | NP) is the probability of T 
has a prefix TP under the condition that the name N 
has a prefix NP. 

P (TP | NP) = Count (TP,NP) / Count (NP)       (1) 

where  Count (TP,NP) is the number of TP and NP 
co-occurring in the pairs of training set 
(see Table 1), and Count(NP) is the num-
ber of NP occurring in training set.  

 
Similarly, we define the function P (TS | NS) for 

postfixes TS and NS: 

P (TS | NS) = Count (TS,NS) / Count (NS)        (2) 

The prefixes and postfixes are intended as a syl-
lable in the two languages involved, so the two 
prefixes correspond to each other (See Table 2&3). 
Due to the differences in the sound inventory, the 
Roman prefix corresponding to a syllabic prefix in 
Chinese may vary, ranging from a consonant, a 
vowel, or a consonant followed by a vowel (but not 
a vowel followed by a consonant). So, it is likely 
such a Roman prefix has from one to four letters. 
On the contrary, the prefix syllable for a name 
written in Chinese is readily identifiable. 
 
Table 2. Sample cross-language morphological relation-
ships between prefixes. 

Name 
Prefix (NP)

Transliteration
Prefix (TP) 

NP 
Count 

TP 
Count

Co-occ.
Count

a- 阿(A) 1,456 854 854
a- 亞(Ya) 1,456 267 264
ab- 阿(A) 77 854 45
ab- 亞(Ya) 77 267 32
b- 布(Bu) 2,319 574 566
b- 巴(Ba) 2,319 539 521
ba- 巴(Ba) 650 574 452
bu- 布(Bu) 299 539 182
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Table 3. Sample cross-language morphological relation-
ships between postfixes. 

Name 
Postfix (Ns) 

Transliteration
Postfix (Ts) 

Ns 
Count 

Ts 
Count

Co-occ.
Count 

-a 拉(La) 4,774 1,044 941
-a 亞(Ya) 4,774 606 568
-la 拉(La) 461 1,044 422
-ra 拉(La) 534 1,044 516
-ia 亞(Ya) 456 606 391
-nia 亞(Ya) 81 606 77
-burg 堡(Bao) 183 230 175
 

We also observe that a preferred prefix (e.g., 
“艾”(Ai)) is often used for a Roman prefix (e.g., 
“a-” or “ir-”), while occasionally other homo-
phonic characters are used (e.g., “埃”(Ai)). The 
skew distribution creates problems for reliable es-
timation of transliteration functions. To cope with 
this data sparseness problem, we use homophone 
classes and a function CL that maps homophonic 
characters to the same class number. For instance, 
“艾” and “埃” are homophonic, and both are as-
signed the same class identifier(see Table 4 for 
more samples). 

Therefore, we have  

CL (“艾”) = CL (“埃”) = 275. 

Table 4. Some examples of classes of homophonic 
characters. The class ID of each class is assigned arbi-
trarily. 
Class 
ID 

Transl. 
char 

Pronun- 
ciation 

Class 
ID 

Transl.
char  

Pronun-
ciation 

1 八 Ba  2 波 Bo 

1 巴 Ba 275 艾 Ai 
1 拔 Ba 275 埃 Ai 
1 把 Ba 275 愛 Ai 
1 罷 Ba 276 敖 Ao 
1 霸 Ba 276 奧 Ao 
2 白 Bo 276 澳 Ao 
2 伯 Bo … … … 

 
With homophonic classes of transliteration mor-

phemes, we define class-based transliteration prob-
ability as follows 

PCL(C | NP) = Count(TP,NP) / Count(NP)       (3) 
where CL(TP) = C            

PCL(C | NS) = Count(TS,NS) / Count(NS)       (4) 

where CL(TS) = C              
and then we rewrite P (TP | NP) and P (TS | NS) as  

  

P (TP | NP) = PCL(CL(TP ) | NP)                        (5) 

P (TS | NS) = PCL(CL(TS ) | NS)                        (6) 

With class-based transliteration probabilities, we 
are able to cope with difficulty in estimating pa-
rameters for rare events which are under repre-
sented in the training set. Table 5 shows that “埃” 
belongs to a homophonic class co-occurring with 
“a-” for 46 times, even when only one instance of 
(“埃”, “a-”). 

After cross-language relationships for prefixes 
and postfixes are automatically trained, the prefix 
relationships are stored as prioritized query expan-
sion rules. In addition to that, we also need a trans-
literation probability function to rank candidate 
transliterations at run-time (Section 4). To cope 
with data sparseness, we consider names (or trans-
literations) with the same prefix (or postfix) as a 
class. With that in mind, we use both prefix and 
postfix to formulate an interpolation-based estima-
tor for name transliteration probability:  

P(T | N)=max λ1P(TP | NP)+λ2P(TS | NS)        (7) 
               NP, NS  
where λ1 + λ2 = 1 and NP, NS, TP, and TS are the 

prefix and postfix of the given name N 
and transliteration T. 

 
For instance, the probability of “美索不達米

亞 ”(Meisuobudamiya) as a transliteration of 
“Mesopotamia” is estimated as follows 

 
 P (美索不達米亞 | “Mesopotamia”)  
= λ1P (“美” | “me-”)+ λ2 P (“亞” | “-a”) 
 

(1) For each entry in the bilingual name list, pair 
up prefixes and postfixes in names and trans-
literations. 

(2) Calculate counts of these affixes and their co-
occurrences. 

(3) Estimate the prefix and postfix transliteration 
functions 

(4) Estimate class-based prefix and postfix trans-
literation functions  

Figure 2. Outline of the process used to train the 
TermMine system. 

 
The system follows the procedure shown in Fig-

ure 2 to estimate these probabilities. In Step (1), 
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the system generates all possible prefix pairs for 
each name-transliteration pair. For instance, con-
sider the pair, (“Aabenraa,” “阿本洛”), the system 
will generate eight pairs: 

(a-, 阿-), (aa-, 阿-), (aab-, 阿-), (aabe-, 阿-), 
(-a, -洛), (-aa, -洛), (-raa, -洛), and (-nraa, -洛). 

Finally, the transliteration probabilities are esti-
mated based on the counts of prefixes, postfixes, 
and their co-occurrences. The derived probabilities 
embody a number of relationships:  
(a) Phoneme to syllable relationships (e.g., “b” vs. 

“ 布 ” as in “Brooklyn” and “ 布 魯 克

林”(Bulukelin)),  
(b) Syllable to syllable relationships (e.g., “bu” vs. 

“布”),  
(c) Phonics rules  (e.g., “br-“ vs. “布” and “克” vs. 

“cl-”). The high probability of P(“克” | “cl-”) 
amounts to the phonics rule that stipulates “c” 
be pronounced with a “k” sound in the context 
of “l.” 

4 Transliteration Search and Extraction 

At run-time, the system follows the procedure in 
Figure 3 to process the given name. In Step (1), the 
system looks up in the prefix relationship table to 
find the n best relationships (n = MaxExpQueries) 
for query expansion with preference for relation-
ships with higher probabilistic value. For instance, 
to search for transliterations of “Acton,” the system 
looks at all possible prefixes and postfixes of “Ac-
ton,” including a-, ac-, act-, acto-, -n, -on, -ton, 
and -cton, and determines the best query expan-
sions: “Acton 阿,” “Acton 亞,” “Acton 艾,” “Ac-
ton 頓,” “Acton 騰,” etc. These effective expan-
sions are automatically derived during the training 
stage described in Section 3 by analyzing a large 
collection of name-transliteration pairs.  

In Step (2), the system sends off each of these 
queries to a search engine to retrieve up to 
MaxDocRetrieved document snippets. In Step (3), 
the system discards snippets that have too little 
proportion of target-language text. See Example (4) 
for a snippet that has high portion of English text 
and therefore is less likely to contain a translitera-
tion. In Step (4), the system considers the sub-
strings in the remaining snippets. 

 
 

(1) Look up the table for top MaxExpQueries 
prefix and posfix relationships relevant to 
the given name and use the target mor-
phemes in the relationship to form ex-
panded queries  

(2) Search for Web pages with the queries and 
filter out snippets containing at less than 
MinTargetRate portion of target language 
text 

(3) Evaluate candidates based on class-based 
transliteration probability (Equation 5) 

(4) Output top one candidate for evaluation 
Figure 3. Outline of the steps used to search, extract, 
and rank transliterations. 
 
Table 5. Sample data for class-based morphological 
transliteration probability of prefixes, where # of NP 
denotes the number of the name prefix NP; # of C, NP 
denotes the number of all TP belonging to the class C 
co-occurring with the NP; # TP, NP denotes the number 
of transliteration prefix TP co-occurs with the NP; P(C|NP) 
denotes the probability of all TP belonging to C co-
occurring with the NP; P(TP|NP) denotes the probability 
of the Tp co-occurs with the NP. 
NP Class

ID 
TP # of NP # of 

C,NP 
# of 

TP,NP 
P(C|NP) P(TP|NP)

a- 275 艾 1456 46 28 0.032 0.019
a- 275 愛 1456 46 17 0.032 0.012
a- 275 埃 1456 46 1 0.032 0.000
a- 276 奧 1456 103 100 0.071 0.069
a- 276 澳 1456 103 2 0.071 0.001
a- 276 敖 1456 103 1 0.071 0.000
ba- 2 波 652 5 3 0.008 0.005
ba- 2 百 652 5 1 0.008 0.002
ba- 2 柏 652 5 1 0.008 0.002

 
Table 6. Sample data for class-based morphological 
transliteration probability of postfixes. Notations are 
similar to those for Table 5. 

Ns Class 
ID 

Ts # of Ns # of  
C,Ns 

# of 
Ts,Ns 

P(C|Ns) P(Ts|Ns)

-li 103 利 142 140 85 0.986 0.599
-li 103 里 142 140 52 0.986 0.366
-li 103 力 142 140 2 0.986 0.014
-li 103 立 142 140 1 0.986 0.007
-li 103 李 142 140 0 0.986 0.000
-raa 112 洛 4 1 1 0.250 0.250
-raa 112 珞 4 1 0 0.250 0.000
-raa 112 絡 4 1 0 0.250 0.000
-raa 112 落 4 1 0 0.250 0.000
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For instance, Examples (5-7) shows remaining 
snippets that have high proportion of Chinese text. 
The strings “阿克頓”(Akedun) is a transliteration 
found in snippet shown in Example (5), a candi-
date beginning with the prefix “阿” and ending 
with the postfix  “頓” and is within the distance of 
1 of the instance “Acton,” separated by a punctua-
tion token. The string “埃克頓” (Aikedun) found 
in Example (6) is also a legitimate transliteration 
beginning with a different prefix “埃,” while “艾

科騰”(Aiketeng) in Example (7) is a transliteration 
beginning with yet another prefix “艾.” Translit-
eration “埃克頓” appears at a distance of 3 from 
“Acton,” while two instances of “艾科騰” appear 
at the distances of 1 and 20 from the nearest in-
stances of “Acton.”  

 
(4) Acton moive feel pics!! - 攝影 

目前位置: 文藝線 > 遊藝支線 > 攝影 > Acton 
moive feel pics!! Hop Hero - Acton moive feel 
pics!! 
http://www.hkmassive.com/forum/viewthread.php?
tid=2368&fpage=1 Watch the slide show! ... 

(5) New Home Alert - Sing Tao New Homes 
Please select, Acton 阿克頓, Ajax 亞積士, Allis-
ton 阿里斯頓, Ancaster 安卡斯特, Arthur 阿瑟, 
Aurora 奧羅拉, Ayr 艾爾, Barrie 巴里, Beamsville, 
Belleville ... 

(6) STS-51-F – Wikipedia 
前排左起：英格蘭、海因茲、福勒頓、布里奇

斯 ... 卡爾·海因茲 (Karl Henize ，曾執行 STS-51-
F 任務)，任務專家; 羅倫·埃克頓 (Loren Acton，

曾執行 STS-51-F 任務)，有效載荷專家; 約翰-大
衛·巴托 (John-David F. ... 

(7) 澳洲艾科騰-00-Acton-Australia.htm 
Acton Systems is a world leading manufacturer 
supplying stuctured cabling systems suited to the 
Australian and New Zealand marketplace. 澳洲艾

科騰乃專業之整合式配線系統製造商, 產品銷售

於澳洲及紐西蘭。 Custom made leads are now 
available ... 

 
The occurrence counts and average distance 

from instances of the given name are tallied for 
each of these candidates. Candidates with a low 
occurrence count and long average distance are 
excluded from further consideration.  Finally, all 
candidates are evaluated and ranked using Equa-
tion (7) given in Section 3. 

5 Evaluation 

In the experiment carried out to assess the feasibil-
ity to the proposed method, a data set of 23,615 
names and transliterations was used. This set of 
place name data is available from NICT, Taiwan 
for training and testing. There are 967 distinct Chi-
nese characters presented in the data, and more 
details of training data are available in Table 7. 
The English part consists of Romanized versions 
of names originated from many languages, includ-
ing Western and Asian languages. Most of the time, 
the names come with a Chinese counterpart based 
solely on transliteration. But occasionally, the Chi-
nese counterpart is part translation and part trans-
literation. For instance, the city of “Southampton” 
has a Chinese counterpart consisting of “ 南 ” 
(translation of “south”) and “漢普頓” (translitera-
tion of “ampton”). 
 
Table 7. Training data and statistics  

Type of Data Used in Experiment Number
Name-transliteration pairs 23,615
Training data 23,115
Test data 500
Distinct transliteration morphemes 967
Distinct transliteration morphemes  
(80% coverage) 100

Names with part translation and 
 part transliteration (estimated) 300 

Cross-language prefix relationships 21,016 
Cross-language postfix relationships 26,564 

 
We used the set of parameters shown in Table 8 

to train and run System TermMine. A set of 500 
randomly selected were set aside for testing. We 
paired up the prefixes and postfixes in the remain-
ing 23,116 pairs, by taking one to four leading or 
trailing letters of each Romanized place names and 
the first and last Chinese transliteration character 
to estimate P (TP | NP) and P (TS | NS). 
 
Table 8. Parameters for training and testing 

Parameter Value Description 

MaxPrefixLetters 4 Max number of let-
ters in a prefix 

MaxPostfixLetters 4 Max number of let-
ters in a postfix 

MaxExpQueries 10 Max number of ex-
panded queries 

MaxDocRetrieved 1000 Max number of 
document retrieved
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MinTargetRate 0.5 Min rate of target 
text in a snippet 

MinOccCount 1 

Min number of co-
occurrence of query 
and transliteration 
candidate in snippets

MaxAvgDistance 4 Max distance be-
tween N and T 

WeightPrefixProb 0.5 Weight of Prefix 
probability (λ1) 

WeightPostfixProb 0.5 Weight of Postfix 
probability (λ2) 

 
We carried out two kinds of evaluation on Sys-

tem TermMine, with and without query expansion. 
With QE option off, the name itself was sent off as 
a query to the search engine, while with QE option 
turned on, up to 10 expanded queries were sent for 
each name. We also evaluated the system against 
Google Translate and Yahoo! Babelfish. We dis-
carded the results when the names are returned un-
translated. After that, we checked the correctness 
of all remaining results by hand. Table 9 shows a 
sample of the results produced by the three systems. 

In Table 10, we show performance differences 
of system TermMine in query expansion option. 
Without QE, the system returns transliterations 
(applicability) less than 50% of the time. Neverthe-
less, there are enough snippets for extracting and 
ranking of transliterations. The precision rate of the 
top-ranking transliterations is 88%.  With QE 
turned on, the applicability rate increases signifi-
cantly to 60%. The precision rate also improved 
slightly to 0.89. 

The performance evaluation of three systems is 
shown in Table 11. For the test set of 500 place 
names, Google Translate returned 146 translitera-
tions and Yahoo! Babelfish returned only 44, while 
TermMine returned 300. Of the returned translit-
erations, Google Translate and Yahoo! Babelfish 
achieved a precision rate around 50%, while 
TermMine achieved a precision rate almost as high 
as 90%. The results show that System TermMine 
outperforms both commercial MT systems by a 
wide margin, in the area of machine transliteration 
of proper names.  
 
Table 9. Sample output by three systems evaluated. The 
stared transliterations are incorrect. 

Name TermMine Google 
Translate 

Yahoo! 
Babelfish

Arlington  雅靈頓  阿靈頓  阿靈頓 

Toledo  托雷多  托萊多 - 

Palmerston  帕默斯頓  帕麥斯頓 - 

Cootamundra  庫塔曼德拉  庫塔曼德拉 - 

Bangui  班基  班吉 - 

Australasia  澳大拉西亞 *大洋洲  澳大利西亞 

Wilson  威爾森  威爾遜  威爾遜 

Mao *馬寅卯  毛  毛 

Inverness  因弗內斯 *禮士  因弗內斯 

Cyprus  賽普勒斯  賽普勒斯  塞浦路斯 

Rostock  羅斯托克  羅斯托克  羅斯托克 

Bethel  貝瑟爾  貝瑟爾 *聖地 

Arcade  阿凱德 *商場 *拱廊 

Lomonosov  羅蒙諾索夫  羅蒙諾索夫 - 

Oskaloosa  奧斯卡盧薩  奧斯卡羅薩 - 

 
Table 10. Performance evaluation of TermMine 

 Method
Evaluation 

TermMine 
QE- 

TermMine 
QE+ 

# of cases performed 238  300
Applicability  0.48  0.60
# Correct Answers    209    263
Precision  0.88  0.89
Recall  0.42  0.53
F-measure 0.57 0.66

 
Table 11. Performance evaluation of three systems 

Method
Evaluation  

TermMine 
QE+ 

Google 
Translate 

Yahoo! 
Babelfish

# of cases done  300  146  44
# of correct  
answers 

  263  67  23

Applicability  0.60  0.29  0.09
Precision  0.89  0.46  0.52
Recall  0.53  0.13 0.05
F-measure 0.66    0.21 0.08

6 Comparison with Previous Work 

Machine transliteration has been an area of active 
research. Most of the machine transliteration 
method attempts to model the transliteration proc-
ess of mapping between graphemes and phonemes. 
Knight and Graehl (1998) proposed a multilayer 
model and a generate-and-test approach to perform 
back transliteration from Japanese to English based 
on the model. In our work we address an issue of 
producing transliteration by way of search.  

Goto et al. (2003), and Li et al. (2004) proposed 
a grapheme-based transliteration model. Hybrid 
transliteration models were described by Al-
Onaizan and Knight (2002), and Oh et al. (2005).  
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Recently, some of the machine transliteration study 
has begun to consider the problem of extracting 
names and their transliterations from parallel cor-
pora (Qu and Grefenstette 2004, Lin, Wu and 
Chang 2004; Lee and Chang 2003, Li and Grefen-
stette 2005).  

Cao and Li (2002) described a new method for 
base noun phrase translation by using Web data. 
Kwok, et al. (2001) described a system called 
CHINET for cross language name search. Nagata 
et al. (2001) described how to exploit proximity 
and redundancy to extract translation for a given 
term. Lu, Chien, and Lee (2002) describe a method 
for name translation based on mining of anchor 
texts. More recently, Zhang, Huang, and Vogel 
(2005) proposed to use occurring words to expand 
queries for searching and extracting transliterations. 
Oh and Isahara (2006) use phonetic-similarity to 
recognize transliteration pairs on the Web. 

In contrast to previous work, we propose a sim-
ple method for extracting transliterations based on 
a statistical model trained automatically on a bilin-
gual name list via unsupervised learning. We also 
carried out experiments and evaluation of training 
and applying the proposed model to extract trans-
literations by using web as corpus.  

7 Conclusion and Future Work 

Morphological query expansion represents an in-
novative way to capture cross-language relations in 
name transliteration. The method is independent of 
the bilingual lexicon content making it easy to 
adopt to other proper names such person, product, 
or organization names. This approach is useful in a 
number of machine translation subtasks, including 
name transliteration, back transliteration, named 
entity translation, and terminology translation.  

Many opportunities exist for future research and 
improvement of the proposed approach. First, the 
method explored here can be extended as an alter-
ative way to support such MT subtasks as back 
transliteration (Knight and Graehl 1998) and noun 
phrase translation (Koehn and Knight 2003). Fi-
nally, for more challenging MT tasks, such as han-
dling sentences, the improvement of translation 
quality probably will also be achieved by combin-
ing this IR-based approach and statistical machine 
translation. For example, a pre-processing unit may 
replace the proper names in a sentence with trans-
literations (e.g., mixed code text “The cities of 美

索不達米亞 prospered under 巴底亞 and 薩珊 
rule.” before sending it off to MT for final transla-
tion. 
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Abstract

It has been widely observed that different NLP appli-
cations require different sense granularities in order to
best exploit word sense distinctions, and that for many
applications WordNet senses are too fine-grained. In
contrast to previously proposed automatic methods for
sense clustering, we formulate sense merging as a su-
pervised learning problem, exploiting human-labeled
sense clusterings as training data. We train a discrimi-
native classifier over a wide variety of features derived
from WordNet structure, corpus-based evidence, and
evidence from other lexical resources. Our learned
similarity measure outperforms previously proposed
automatic methods for sense clustering on the task of
predicting human sense merging judgments, yielding
an absolute F-score improvement of 4.1% on nouns,
13.6% on verbs, and 4.0% on adjectives. Finally, we
propose a model for clustering sense taxonomies us-
ing the outputs of our classifier, and we make avail-
able several automatically sense-clustered WordNets
of various sense granularities.

1 Introduction

Defining a discrete inventory of senses for a word is
extremely difficult (Kilgarriff, 1997; Hanks, 2000;
Palmer et al., 2005). Perhaps the greatest obstacle is
the dynamic nature of sense definition: the correct
granularity for word senses depends on the appli-
cation. For language learners, a fine-grained set of
word senses may help in learning subtle distinctions,
while coarsely-defined senses are probably more
useful in NLP tasks like information retrieval (Gon-
zalo et al., 1998), query expansion (Moldovan and
Mihalcea, 2000), and WSD (Resnik and Yarowsky,
1999; Palmer et al., 2005).

Lexical resources such as WordNet (Fellbaum,
1998) use extremely fine-grained notions of word
sense, which carefully capture even minor distinc-
tions between different possible word senses (e.g.,

the 8 noun senses ofbass shown in Figure 1). Pro-
ducing sense-clustered inventories of arbitrary sense
granularity is thus crucial for tasks which depend on
lexical resources like WordNet, and is also impor-
tant for the task of automatically constructing new
WordNet-like taxonomies. A solution to this prob-
lem must also deal with the constraints of the Word-
Net taxonomy itself; for example when clustering
two senses, we need to consider the transitive effects
of merging synsets.

The state of the art in sense clustering is insuffi-
cient to meet these needs. Current sense clustering
algorithms are generally unsupervised, each relying
on a different set of useful features or hand-built
rules. But hand-written rules have little flexibility
to produce clusterings of different granularities, and
previously proposed methods offer little in the di-
rection of intelligently combining and weighting the
many proposed features.

In response to these challenges, we propose a
new algorithm for clustering large-scale sense hier-
archies like WordNet. Our algorithm is based on a
supervised classifier that learns to make graduated
judgments corresponding to the estimated probabil-
ity that each particular sense pair should be merged.
This classifier is trained on gold standard sense clus-
tering judgments using a diverse feature space. We
are able to use the outputs of our classifier to produce
a ranked list of sense merge judgments by merge
probability, and from this create sense-clustered in-
ventories of arbitrary sense granularity.1

In Section 2 we discuss past work in sense cluster-

1We have made sense-clustered Wordnets using the al-
gorithms discussed in this paper available for download at
http://ai.stanford.edu/∼rion/swn.
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INSTRUMENT 7: ...the lowest range of a family of musical instruments

FISH

4: the lean flesh of a saltwater fish of the family Serranidae

5: any of various North American freshwater fish with lean flesh

8: nontechnical name for any of numerous... fishes

SINGER
3: an adult male singer with the lowest voice

6: the lowest adult male singing voice

PITCH
1: the lowest part of the musical range

2: the lowest part in polyphonic music

Figure 1: Sense clusters for the nounbass; the eight
WordNet senses as clustered into four groups in the
SENSEVAL-2 coarse-grained evaluation data

ing, and the gold standard datasets that we use in our
work. In Section 3 we introduce our battery of fea-
tures; in Section 4 we show how to extend our sense-
merging model to cluster full taxonomies like Word-
Net. In Section 5 we evaluate our classifier against
thirteen previously proposed methods.

2 Background

A wide number of manual and automatic techniques
have been proposed for clustering sense inventories
and mapping between sense inventories of different
granularities. Much work has gone into methods for
measuring synset similarity; early work in this direc-
tion includes (Dolan, 1994), which attempted to dis-
cover sense similarities between dictionary senses.
A variety of synset similarity measures based on
properties of WordNet itself have been proposed;
nine such measures are discussed in (Pedersen et al.,
2004), including gloss-based heuristics (Lesk, 1986;
Banerjee and Pedersen, 2003), information-content
based measures (Resnik, 1995; Lin, 1998; Jiang and
Conrath, 1997), and others. Other approaches have
used specific cues from WordNet structure to inform
the construction of semantic rules; for example, (Pe-
ters et al., 1998) suggest clustering two senses based
on a wide variety of structural cues from Word-
Net, including if they aretwins (if two synsets share
more than one word in their synonym list) or if
they represent an example ofautohyponymy (if one
sense is the direct descendant of the other). (Mihal-
cea and Moldovan, 2001) implements six semantic
rules, usingtwin andautohyponym features, in addi-
tion to other WordNet-structure-based rules such as
whether two synsets share apertainym, antonym, or
are clustered together in the sameverb group.

A large body of work has attempted to capture
corpus-based estimates of word similarity (Pereira
et al., 1993; Lin, 1998); however, the lack of
large sense-tagged corpora prevent most such tech-
niques from being used effectively to compare dif-
ferent senses of the same word. Some corpus-based
attempts that are capable of estimating similarity
between word senses include thetopic signatures
method; here, (Agirre and Lopez, 2003) collect con-
texts for a polysemous word based either on sense-
tagged corpora or by using a weighted agglomera-
tion of contexts of a polysemous word’s monose-
mous relatives (i.e., single-sense synsets related by
hypernym, hyponym, or other relations) from some
large untagged corpus. Other corpus-based tech-
niques developed specifically for sense clustering
include (McCarthy, 2006), which uses a combina-
tion of word-to-word distributional similarity com-
bined with theJCN WordNet-based similarity mea-
sure, and work by (Chugur et al., 2002) in find-
ing co-occurrences of senses within documents in
sense-tagged corpora. Other attempts have exploited
disagreements between WSD systems (Agirre and
Lopez, 2003) or between human labelers (Chklovski
and Mihalcea, 2003) to create synset similarity
measures; while promising, these techniques are
severely limited by the performance of the WSD
systems or the amount of available labeled data.

Some approaches for clustering have made use of
regular patterns of polysemy among words. (Pe-
ters et al., 1998) uses the COUSIN relation defined
in WordNet 1.5 to cluster hyponyms of categorically
related noun synsets, e.g., “container/quantity” (e.g.,
for clustering senses of “cup” or “barrel”) or ”or-
ganization/construction” (e.g., for the building and
institution senses of “hospital” or “school”); other
approaches based on systematic polysemy include
the hand-constructed CORELEX database (Buite-
laar, 1998), and automatic attempts to extract pat-
terns of systematic polysemy based on minimal de-
scription length principles (Tomuro, 2001).

Another family of approaches has been to
use either manually-annotated or automatically-
constructed mappings to coarser-grained sense in-
ventories; an attempt at providing coarse-grained
sense distinctions for the SENSEVAL-1 exercise in-
cluded a mapping between WordNet and the Hec-
tor lexicon (Palmer et al., 2005). Other attempts in
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this vein include mappings between WordNet and
PropBank (Palmer et al., 2004) and mappings to
Levin classes (Levin, 1993; Palmer et al., 2005).
(Navigli, 2006) presents an automatic approach for
mapping between sense inventories; here similari-
ties in gloss definition and structured relations be-
tween the two sense inventories are exploited in or-
der to map between WordNet senses and distinc-
tions made within the coarser-grained Oxford En-
glish Dictionary. Other work has attempted to ex-
ploit translational equivalences of WordNet senses
in other languages, for example using foreign lan-
guage WordNet interlingual indexes (Gonzalo et al.,
1998; Chugur et al., 2002).

2.1 Gold standard sense clustering data

Our approach for learning how to merge senses
relies upon the availability of labeled judgments
of sense relatedness. In this work we focus on
two datasets of hand-labeled sense groupings for
WordNet: first, a dataset of sense groupings over
nouns, verbs, and adjectives provided as part of
the SENSEVAL-2 English lexical sample WSD task
(Kilgarriff, 2001), and second, a corpus-driven map-
ping of nouns and verbs in WordNet 2.1 to the
Omega Ontology (Philpot et al., 2005), produced as
part of the ONTONOTESproject (Hovy et al., 2006).

A wide variety of semantic and syntactic criteria
were used to produce the SENSEVAL-2 groupings
(Palmer et al., 2004; Palmer et al., 2005); this data
covers all senses of 411 nouns, 519 verbs, and 257
adjectives, and has been used as gold standard sense
clustering data in previous work (Agirre and Lopez,
2003; McCarthy, 2006)2. The number of judgments
within this data (after mapping to WordNet 2.1) is
displayed in Table 1.

Due to a lack of interannotator agreement data for
this dataset, (McCarthy, 2006) performed an anno-
tation study using three labelers on a 20-noun sub-
set of the SENSEVAL-2 groupings; the three label-
ers were given the task of deciding whether the 351
potentially-related sense pairs were “Related”, “Un-
related”, or “Don’t Know”.3 In this task the pair-

2In order to facilitate future work in this area, we
have made cleaned versions of these groupings available at
http://ai.stanford.edu/∼rion/swn along with a “diff” with the
original files.

3McCarthy’s gold standard data is available at

SENSEVAL -2
POS Total Pairs Merged Pairs Proportion

Nouns 16403 2593 0.1581
Verbs 30688 3373 0.1099

Adjectives 8368 2209 0.2640

ONTONOTES
POS Total Pairs Merged Pairs Proportion

Nouns 3552 347 0.0977
Verbs 4663 1225 0.2627

Table 1: Gold standard datasets for sense merging;
only sense pairs that share a word in common are
included; proportion refers to the fraction of synsets
sharing a word that have been merged

POS Overlap ON-True ON-False F-Score
S-T S-F S-T S-F

Nouns 2116 121 55 181 1759 0.5063
Verbs 3297 351 503 179 2264 0.5072

Table 2: Agreement data for gold standard datasets

wise interannotator F-scores were (0.4874, 0.5454,
0.7926), for an average F-score of 0.6084.

The ONTONOTES dataset4 covers a smaller set
of nouns and verbs, but it has been created with a
more rigorous corpus-based iterative annotation pro-
cess. For each of the nouns and verbs in question, a
50-sentence sample of instances is annotated using
a preliminary set of sense distinctions; if the word
sense interannotator agreement for the sample is less
than 90%, then the sense distinctions are revised and
the sample is re-annotated, and so forth, until an in-
terannotator agreement of at least 90% is reached.

We construct a combined gold standard set from
these SENSEVAL-2 and ONTONOTES groupings,
removing disagreements. The overlap and agree-
ment/disagreement data between the two groupings
is given in Table 2; here, for example, the column
with ON-True andS-F indicates the count of senses
that ONTONOTES judged as positive examples of
sense merging, but that SENSEVAL-2 data did not
merge. We also calculate the F-score achieved by
considering only one of the datasets as a gold stan-
dard, and computing precision and recall for the
other. Since the two datasets were created indepen-
dently, with different annotation guidelines, we can-

ftp://ftp.informatics.susx.ac.uk/pub/users/dianam/relateGS/.
4The OntoNotes groupings will be available through the

LDC at http://www.ldc.upenn.edu.
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not consider this as a valid estimate of interannota-
tor agreement; nonetheless the F-score for the two
datasets on the overlapping set of sense judgments
(50.6% for nouns and 50.7% for verbs) is roughly
in the same range as those observed in (McCarthy,
2006).

3 Learning to merge word senses

3.1 WordNet-based features

Here we describe the feature space we construct for
classifying whether or not a pair of synsets should be
merged; first, we employ a wide variety of linguistic
features based on information derived from Word-
Net. We use eight similarity measures implemented
within the WordNet::Similarity package5, described
in (Pedersen et al., 2004); these include three mea-
sures derived from the paths between the synsets
in WordNet: HSO (Hirst and St-Onge, 1998),LCH

(Leacock and Chodorow, 1998), andWUP (Wu and
Palmer, 1994); three measures based on information
content: RES (Resnik, 1995),LIN (Lin, 1998), and
JCN (Jiang and Conrath, 1997); the gloss-based Ex-
tended Lesk MeasureLESK, (Banerjee and Peder-
sen, 2003), and finally the gloss vector similarity
measureVECTOR (Patwardan, 2003). We imple-
ment theTWIN feature (Peters et al., 1998), which
counts the number of shared synonyms between
the two synsets. Additionally we produce pair-
wise features indicating whether two senses share an
ANTONYM , PERTAINYM, or derivationally-related
forms (DERIV). We also create the verb-specific
features of whether two verb synsets are linked in
a VERBGROUP (indicating semantic similarity) or
share a VERBFRAME, indicating syntactic similar-
ity. Also, we encode a generalized notion of sib-
linghood in the MN features, recording the distance
of the synset pair’s nearest least common subsumer
(i.e., closest shared hypernym) from the two synsets,
and, separately, the maximum of those distances (in
the MAX MN feature.

Previous attempts at categorizing systematic pol-
ysemy patterns within WordNet has resulted in the
COUSIN feature6; we create binary features which

5We choose not to use thePATH measure due to its negligible
difference from theLCH measure.

6This data is included in the WordNet 1.6 distribution as the
“cousin.tops” file.

indicate whether a synset pair belong to hypernym
ancestries indicated by one or more of these COUSIN

features, and the specific cousin pair(s) involved.
Finally we create sense-specific features, including
SENSECOUNT, the total number of senses associ-
ated with the shared word between the two synsets
with the highest number of senses, and SENSENUM,
the specific pairing of senses for the shared word
with the highest number of senses (which might al-
low us to learn whether the most frequent sense of a
word has a higher chance of having similar deriva-
tive senses with lower frequency).

3.2 Features derived from corpora and other
lexical resources

In addition to WordNet-based features, we use
a number of features derived from corpora and
other lexical resources. We use the publicly avail-
able topic signature data7 described in (Agirre and
Lopez, 2004), yielding representative contexts for
all nominal synsets from WordNet 1.6. These topic
signatures were obtained by weighting the contexts
of monosemous relatives of each noun synset (i.e.,
single-sense synsets related by hypernym, hyponym,
or other relations); the text for these contexts were
extracted from snippets using the Google search en-
gine. We then create a sense similarity feature by
taking a thresholded cosine similarity between pairs
of topic signatures for these noun synsets.

Additionally, we use the WordNet domain dataset
described in (Magnini and Cavaglia, 2000; Ben-
tivogli et al., 2004). This dataset contains one or
more labels indicating of 164 hierarchically orga-
nized “domains” or “subject fields” for each noun,
verb, and adjective synset in WordNet; we derive a
set of binary features from this data, with a single
feature indicating whether or not two synsets share
a domain, and one indicator feature per pair of do-
mains indicating respective membership of the sense
pair within those domains.

Finally, we use as a feature the mappings pro-
duced in (Navigli, 2006) of WordNet senses to Ox-
ford English Dictionary senses. This OED dataset
was used as the coarse-grained sense inventory in the
Coarse-grained English all-words task of SemEval-

7The topic signature data is available for download at
http://ixa.si.ehu.es/Ixa/resources/sensecorpus.
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20078; we specify a single binary feature for each
pair of synsets from this data; this feature is true if
the words are clustered in the OED mapping, and
false otherwise.

3.3 Classifier, training, and feature selection

For each part of speech, we split the merged gold
standard data into a part-of-speech-specific train-
ing set (70%) and a held-out test set (30%). For
every synset pair we use the binary “merged” or
“not-merged” labels to train a support vector ma-
chine classifier9 (Joachims, 2002) for each POS-
specific training set. We perform feature selection
and regularization parameter optimization using 10-
fold cross-validation.

4 Clustering Senses in WordNet

The previous section describes a classifier which
predicts whether two synsets should be merged; we
would like to use the pairwise judgments of this
classifier to cluster the senses within a sense hierar-
chy. In this section we present the challenge implicit
in applying sense merging to full taxonomies, and
present our model for clustering within a taxonomy.

4.1 Challenges of clustering a sense taxonomy
The task of clustering a sense taxonomy presents
certain challenges not present in the problem of clus-
tering the senses of a word; in order to create a
consistent clustering of a sense hierarchy an algo-
rithm must consider the transitive effects of merging
synsets. This problem is compounded in sense tax-
onomies like WordNet, where each synset may have
additional structured relations, e.g., hypernym (IS-
A) or holonym (is-part-of) links. In order to consis-
tently merge two noun senses with different hyper-
nym ancestries within WordNet, for example, an al-
gorithm must decide whether to have the new sense
inherit both hypernym ancestries, or whether to in-
herit only one, and if so it must decide which ances-
try is more relevant for the merged sense.

Without strict checking, human labelers will
likely find it difficult to label a sense inventory with

8http://lcl.di.uniroma1.it/coarse-grained-aw/index.html
9We use theSV M

perf package, freely available for non-
commercial use fromhttp://svmlight.joachims.org; we use the
default settings in v2.00, except for the regularization parameter
(set in 10-fold cross-validation).

Clusering based on ‘‘need’’

Clustering based on ‘‘require’’

need#v#1
require#v#1

require as useful, just, or proper

need#v#2
require#v#4

have need of

need#v#3 have or feel a need for

require#v#1
need#v#1

require as useful, just, or proper

require#v#4
need#v#2

have need of

require#v#2 consider obligatory; request and expect

require#v#3 make someone do something

Figure 2: Inconsistent sense clusters for the verbs
require andneed from SENSEVAL-2 judgments

transitively-consistent judgments. As an example,
consider the SENSEVAL-2 clusterings of the verbs
require andneed, as shown in Figure 2. In WN 2.1
require has four verb senses, of which the first has
synonyms{necessitate, ask, postulate, need, take,
involve, call for, demand}, and gloss “require as use-
ful, just, or proper”; and the fourth has synonyms
{want, need}, and gloss “have need of.”

Within the wordrequire, the SENSEVAL-2 dataset
clusters senses 1 and 4, leaving the rest unclustered.
In order to make a consistent clustering with respect
to the sense inventory, however, we must enforce
the transitive closure by merging the synset corre-
sponding to the first sense (necessitate, ask, need
etc.), with the senses ofwant andneed in the fourth
sense. In particular, these two senses correspond
to WordNet 2.1 sensesneed#v#1 andneed#v#2, re-
spectively, which arenot clustered according to
the SENSEVAL-2 word-specific labeling forneed –
need#v#1 is listed as a singleton (i.e., unclustered)
sense, thoughneed#v#2 is clustered withneed#v#3,
“have or feel a need for.”

While one might hope that such disagreements
between sense clusterings are rare, we found
178 such transitive closure disagreements in the
SENSEVAL-2 data. The ONTONOTES data is much
cleaner in this respect, most likely due to the
stricter annotation standard (Hovy et al., 2006);
we found only one transitive closure disagreement
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in the OntoNotes data, specifically WordNet 2.1
synsets (head#n#2, lead#n#7: “be in charge of”) and
(head#n#3, lead#v#4: “travel in front of”) are clus-
tered underhead but not underlead.

4.2 Sense clustering within a taxonomy

As a solution to the previously mentioned chal-
lenges, in order to produce taxonomies of different
sense granularities with consistent sense distinctions
we propose to apply agglomerative clustering over
all synsets in WordNet 2.1. While one might con-
sider recalculating synset similarity features after
each synset merge operation, depending on the fea-
ture set this could be prohibitively expensive; for our
purposes we use average-link agglomerative cluster-
ing, in effect approximating the the pairwise similar-
ity score between a given synset and a merged sense
as the average of the similarity scores between the
given synset and the clustered sense’s component
synsets. Further, for the purpose of sense cluster-
ing we assume a zero sense similarity score between
synsets with no intersecting words.

Without exploiting additional hypernym or
coordinate-term evidence, our algorithm does
not distinguish between judgments about which
hypernym ancestry or other structured relationships
to keep or remove upon merging two synsets. In
lieu of additional evidence, for our experiments
we choose to retain only the hypernym ancestry of
the sense with the highest frequency in SEMCOR,
breaking frequency ties by choosing the first-listed
sense in WordNet. We add every other relationship
(meronyms, entailments, etc.) to the new merged
sense (except in the rare case where adding a
relation would cause a cycle in acyclic relations like
hypernymy or holonymy, in which case we omit
it). Using this clustering method we have produced
several sense-clustered WordNets of varying sense
granularity, which we evaluate in Section 5.3.

5 Evaluation

We evaluate our classifier in a comparison with thir-
teen previously proposed similarity measures and
automatic methods for sense clustering. We conduct
a feature ablation study to explore the relevance of
the different features in our system. Finally, we eval-
uate the sense-clustered taxonomies we create on

the problem of providing improved coarse-grained
sense distinctions for WSD evaluation.

5.1 Evaluation of automatic sense merging

We evaluate our classifier on two held-out test
sets; first, a 30% sample of the sense judgments
from the merged gold standard dataset consisting
of both the SENSEVAL-2 and ONTONOTES sense
judgments; and, second, a test set consisting of only
the ONTONOTESsubset of our first held-out test set.
For comparison we implement thirteen of the meth-
ods discussed in Section 2. First, we evaluate each
of the eight WordNet::Similarity measures individu-
ally. Next, we implement cosine similarity of topic
signatures (TOPSIG) built from monosemous rela-
tives (Agirre and Lopez, 2003), which provides a
real-valued similarity score for noun synset pairs.

Additionally, we implement the two methods
proposed in (Peters et al., 1998), namely using
metonymy clusters (MetClust) and generalization
clusters (GenClust) based on the COUSIN relation-
ship in WordNet. While (Peters et al., 1998) only
considers four cousin pairs, we re-implement their
method for general purpose sense clustering by us-
ing all 226 cousin pairs defined in WordNet 1.6,
mapped to WordNet 2.1 synsets. These methods
each provide a single clustering of noun synsets.

Next, we implement the set of semantic rules de-
scribed in (Mihalcea and Moldovan, 2001) (MIMO);
this algorithm for merging senses is based on 6 se-
mantic rules, in effect using a subset of the TWIN,
MAX MN, PERTAINYM , ANTONYM, and VERB-
GROUP features; in our implementation we set the
parameter for when to cluster based on number of
twins to K = 2; this results in a single clustering
for each of nouns, verbs, and adjectives. Finally, we
compare against the mapping from WordNet to the
Oxford English Dictionary constructed in (Navigli,
2006), equivalent to clustering based solely on the
OED feature.

Considering merging senses as a binary classifi-
cation task, Table 3 gives the F-score performance
of our classifier vs. the thirteen other classifiers and
an uninformed “merge all synsets” baseline on our
held-out gold standard test set. This table shows that
our SVM classifier outperforms all implemented
methods on the basis of F-score on both datasets
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SENSEVAL-2 + ONTONOTES
ONTONOTES

Method Nouns Verbs Adj Nouns Verbs
SVM 0.4228 0.4319 0.4727 0.3698 0.4545
RES 0.3817 0.2703 — 0.2807 0.3156
WUP 0.3763 0.2782 — 0.3036 0.3451
LCH 0.3700 0.2440 — 0.2857 0.3396
OED 0.3310 0.2878 0.3712 0.2183 0.3962
LESK 0.3174 0.2956 0.4323 0.2914 0.3774
HSO 0.3090 0.2784 0.4312 0.3025 0.3156

TOPSIG 0.3072 — — 0.2581 —
VEC 0.2960 0.2315 0.4321 0.2454 0.3420
JCN 0.2818 0.2292 — 0.2222 0.3156
L IN 0.2759 0.2464 — 0.2056 0.3471

Baseline 0.2587 0.2072 0.4312 0.1488 0.3156
M IMO 0.0989 0.2142 0.0759 0.1833 0.2157

GenClust 0.0973 — — 0.0264 —
MetClust 0.0876 — — 0.0377 —

Table 3: F-score sense merging evaluation on hand-
labeled testsets

for all parts of speech. In Figure 3 we give a pre-
cision/recall plot for noun sense merge judgments
for the SENSEVAL-2 + ONTONOTES dataset. For
sake of simplicity we plot only the two best mea-
sures (RES and WUP) of the eight WordNet-based
similarity measures; we see that our classifier, RES,
and WUP each have higher precision all levels of
recall compared to the other tested measures.

Of the methods we compare against, only the
WordNet-based similarity measures, (Mihalcea and
Moldovan, 2001), and (Navigli, 2006) provide a
method for predicting verb similarities; our learned
measure widely outperforms these methods, achiev-
ing a 13.6% F-score improvement over the LESK

similarity measure. In Figure 4 we give a pre-
cision/recall plot for verb sense merge judgments,
plotting the performance of the three best WordNet-
based similarity measures; here we see that our clas-
sifier has significantly higher precision than all other
tested measures at nearly every level of recall.

Only the measures provided by LESK, HSO,
VEC, (Mihalcea and Moldovan, 2001), and (Nav-
igli, 2006) provide a method for predicting adjective
similarities; of these, only LESK and VEC outper-
form the uninformed baseline on adjectives, while
our learned measure achieves a 4.0% improvement
over the LESK measure on adjectives.
5.2 Feature analysis

Next we analyze our feature space. Table 4 gives the
ablation analysis for all features used in our system
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Figure 3: Precision/Recall plot for noun sense merge
judgments

as evaluated on our held-out test set; here the quan-
tity listed in the table is the F-score loss obtained by
removing that single feature from our feature space,
and retraining and retesting our classifiers, keeping
everything else the same. Here negative scores cor-
respond to animprovement in classifier performance
with the removal of the feature.

For noun classification, the three features that
yield the highest gain in testset F-score are the
topic signature, OED, and derivational link features,
yielding a 4.0%, 3.6%, and 3.5% gain, respectively.

For verb classification, we find that three features
yield more than a 5% F-score gain; by far the largest
single-feature performance gain for verb classifica-
tion found in our ablation study was the DERIV fea-
ture, i.e., the count of shared derivational links be-
tween the two synsets; this single feature improves
our maximum F-score by 9.8% on the testset. This
is a particularly interesting discovery, as none of the
referenced automatic techniques for sense clustering
presently make use of this very useful feature. We
also achieve large gains with the LIN and LESK sim-
ilarity features, with F-score improvement of 7.4%
and 5.4% gain respectively.

For adjective classification again the DERIV fea-
ture proved very helpful, with a 3.5% gain on the
testset. Interestingly, only the DERIV feature and
the SENSECNT features helped across all parts of
speech; in many cases a feature which proved to be
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Figure 4: Precision/Recall plot for verb sense merge
judgments

very helpful for one part of speech actually hurt per-
formance on another part of speech (e.g., LIN on
nouns and OED on adjectives).

5.3 Evaluation of sense-clustered Wordnets
Our goal in clustering a sense taxonomy is to pro-
duce fully sense-clustered WordNets, and to be able
to produce coarse-grained Wordnets at many differ-
ent levels of resolution. In order to evaluate the en-
tire sense-clustered taxonomy, we have employed an
evaluation method inspired by Word Sense Disam-
biguation (this is similar to an evaluation used in
Navigli, 2006, however we do not remove monose-
mous clusters). Given past system responses in the
SENSEVAL-3 English all-words task, we can eval-
uate past systems on the same corpus, but using
the coarse-grained sense hierarchy provided by our
sense-clustered taxonomy. We may then compare
the scores of each system on the coarse-grained task
against their scores given a random clustering at the
same resolution. Our expectation is that, if our sense
clustering is much better than a random sense clus-
tering (and, of course, that the WSD algorithms per-
form better than random guessing), we will see a
marked improvement in the performance of WSD
algorithms using our coarse-grained sense hierarchy.

We consider the outputs of the top 3 all-
words WSD systems that participated in Senseval-3:
Gambl (Decadt et al., 2004), SenseLearner (Mihal-
cea and Faruque, 2004), and KOC University (Yuret,

Nouns Verbs Adjectives
F-SCORE 0.4228 0.4319 0.4727
Feature F-Score Ablation Difference
TOPSIG 0.0403 — —

OED 0.0355 0.0126 -0.0124
DERIV 0.0351 0.0977 0.0352
RES 0.0287 0.0147 —

TWIN 0.0285 0.0109 -0.0130
MN 0.0188 0.0358 —

LESK 0.0183 0.0541 -0.0250
SENSENUM 0.0155 0.0146 -0.0147
SENSECNT 0.0121 0.0160 0.0168
DOMAIN 0.0119 0.0082 -0.0265

LCH 0.0099 0.0068 —
WUP 0.0036 0.0168 —
JCN 0.0025 0.0190 —

ANTONYM 0.0000 0.0295 0.0000
MAX MN -0.0013 0.0179 —

VEC -0.0024 0.0371 -0.0062
HSO -0.0073 0.0112 -0.0246
LIN -0.0086 0.0742 —

COUSIN -0.0094 — —
VERBGRP — 0.0327 —
VERBFRM — 0.0102 —

PERTAINYM — — -0.0029

Table 4: Feature ablation study; F-score difference
obtained by removal of the single feature

2004). A guess by a system is given full credit if it
was either the correct answer or if it was in the same
cluster as the correct answer.

Clearly any amount of clustering will only in-
crease WSD performance. Therefore, to account for
this natural improvement and consider only the ef-
fect of our particular clustering, we also calculate
the expected score for a random clustering of the
same granularity, as follows: LetC represent the set
of clusters over the possibleN synsets containing a
given word; we then calculate the expectation that an
incorrectly-chosen sense and the actual correct sense
would be clustered together in the random clustering

as
P

c∈C |c|(|c|−1)

N(N−1) .

Our sense clustering algorithm provides little im-
provement over random clustering when too few or
too many clusters are chosen; however, with an ap-
propriate threshold for average-link clustering we
find a maximum of 3.55% F-score improvement in
WSD over random clustering (averaged over the de-
cisions of the top 3 WSD algorithms). Table 5 shows
the improvement of the three top WSD algorithms
given a sense clustering created by our algorithm vs.
a random clustering at the same granularity.
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Figure 5: WSD Improvement with coarse-grained
sense hierarchies

System F-score Avg-link Random Impr.
Gambl 0.6516 0.7702 0.7346 0.0356

SenseLearner 0.6458 0.7536 0.7195 0.0341
KOC Univ. 0.6414 0.7521 0.7153 0.0368

Table 5: Improvement in SENSEVAL-3 WSD perfor-
mance using our average-link agglomerative cluster-
ing vs. random clustering at the same granularity

6 Conclusion

We have presented a classifier for automatic sense
merging that significantly outperforms previously
proposed automatic methods. In addition to its novel
use of supervised learning and the integration of
many previously proposed features, it is interest-
ing that one of our new features, the DERIV count
of shared derivational links between two synsets,
proved an extraordinarily useful new cue for sense-
merging, particularly for verbs.

We also show how to integrate this sense-merging
algorithm into a model for sense clustering full sense
taxonomies like WordNet, incorporating taxonomic
constraints such as the transitive effects of merging
synsets. Using this model, we have produced several
WordNet taxonomies of various sense granularities;
we hope these new lexical resources will be useful
for NLP applications that require a coarser-grained
sense hierarchy than that already found in WordNet.
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Abstract

This paper presents a novel approach for ex-
ploiting the global context for the task of
word sense disambiguation (WSD). This is
done by using topic features constructed us-
ing the latent dirichlet allocation (LDA) al-
gorithm on unlabeled data. The features are
incorporated into a modified naı̈ve Bayes
network alongside other features such as
part-of-speech of neighboring words, single
words in the surrounding context, local col-
locations, and syntactic patterns. In both the
English all-words task and the English lex-
ical sample task, the method achieved sig-
nificant improvement over the simple naı̈ve
Bayes classifier and higher accuracy than the
best official scores on Senseval-3 for both
task.

1 Introduction

Natural language tends to be ambiguous. A word
often has more than one meanings depending on the
context. Word sense disambiguation (WSD) is a nat-
ural language processing (NLP) task in which the
correct meaning (sense) of a word in a given context
is to be determined.

Supervised corpus-based approach has been the
most successful in WSD to date. In such an ap-
proach, a corpus in which ambiguous words have
been annotated with correct senses is first collected.
Knowledge sources, or features, from the context of
the annotated word are extracted to form the training
data. A learning algorithm, like the support vector

machine (SVM) or näıve Bayes, is then applied on
the training data to learn the model. Finally, in test-
ing, the learnt model is applied on the test data to
assign the correct sense to any ambiguous word.

The features used in these systems usually in-
clude local features, such as part-of-speech (POS)
of neighboring words, local collocations , syntac-
tic patterns and global features such as single words
in the surrounding context (bag-of-words) (Lee and
Ng, 2002). However, due to the data scarcity prob-
lem, these features are usually very sparse in the
training data. There are, on average, 11 and 28
training cases per sense in Senseval 2 and 3 lexi-
cal sample task respectively, and 6.5 training cases
per sense in the SemCor corpus. This problem is
especially prominent for the bag-of-words feature;
more than hundreds of bag-of-words are usually ex-
tracted for each training instance and each feature
could be drawn from any English word. A direct
consequence is that the global context information,
which the bag-of-words feature is supposed to cap-
ture, may be poorly represented.

Our approach tries to address this problem by
clustering features to relieve the scarcity problem,
specifically on the bag-of-words feature. In the pro-
cess, we construct topic features, trained using the
latent dirichlet allocation (LDA) algorithm. We train
the topic model (Blei et al., 2003) on unlabeled data,
clustering the words occurring in the corpus to a pre-
defined number of topics. We then use the resulting
topic model to tag the bag-of-words in the labeled
corpus with topic distributions. We incorporate the
distributions, called the topic features, using a sim-
ple Bayesian network, modified from naı̈ve Bayes
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model, alongside other features and train the model
on the labeled corpus. The approach gives good per-
formance on both the lexical sample and all-words
tasks on Senseval data.

The paper makes mainly two contributions. First,
we are able to show that a feature that efficiently
captures the global context information using LDA
algorithm can significantly improve the WSD ac-
curacy. Second, we are able to obtain this feature
from unlabeled data, which spares us from any man-
ual labeling work. We also showcase the potential
strength of Bayesian network in the WSD task, ob-
taining performance that rivals state-of-arts meth-
ods.

2 Related Work

Many WSD systems try to tackle the data scarcity
problem. Unsupervised learning is introduced pri-
marily to deal with the problem, but with limited
success (Snyder and Palmer, 2004). In another ap-
proach, the learning algorithm borrows training in-
stances from other senses and effectively increases
the training data size. In (Kohomban and Lee,
2005), the classifier is trained using grouped senses
for verbs and nouns according to WordNet top-level
synsets and thus effectively pooling training cases
across senses within the same synset. Similarly,
(Ando, 2006) exploits data from related tasks, using
all labeled examples irrespective of target words for
learning each sense using the Alternating Structure
Optimization (ASO) algorithm (Ando and Zhang,
2005a; Ando and Zhang, 2005b). Parallel texts is
proposed in (Resnik and Yarowsky, 1997) as po-
tential training data and (Chan and Ng, 2005) has
shown that using automatically gathered parallel
texts for nouns could significantly increase WSD ac-
curacy, when tested on Senseval-2 English all-words
task.

Our approach is somewhat similar to that of us-
ing generic language features such as POS tags; the
words are tagged with its semantic topic that may be
trained from other corpuses.

3 Feature Construction

We first present the latent dirichlet allocation algo-
rithm and its inference procedures, adapted from the
original paper (Blei et al., 2003).

3.1 Latent Dirichlet Allocation

LDA is a probabilistic model for collections of dis-
crete data and has been used in document model-
ing and text classification. It can be represented
as a three level hierarchical Bayesian model, shown
graphically in Figure 1. Given a corpus consisting of
M documents, LDA models each document using a
mixture overK topics, which are in turn character-
ized as distributions over words.

β

wzθα

N

M

Figure 1: Graphical Model for LDA

In the generative process of LDA, for each doc-
umentd we first draw the mixing proportion over
topicsθd from a Dirichlet prior with parametersα.
Next, for each of theNd wordswdn in documentd, a
topic zdn is first drawn from a multinomial distribu-
tion with parametersθd. Finallywdn is drawn from
the topic specific distribution over words. The prob-
ability of a word tokenw taking on valuei given
that topicz = j was chosen is parameterized using
a matrixβ with βij = p(w = i|z = j). Integrating
out θd’s andzdn’s, the probabilityp(D|α, β) of the
corpus is thus:

M∏
d=1

∫
p(θd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd

3.1.1 Inference

Unfortunately, it is intractable to directly solve the
posterior distribution of the hidden variables given a
document, namelyp(θ, z|w, α, β). However, (Blei
et al., 2003) has shown that by introducing a set of
variational parameters,γ andφ, a tight lower bound
on the log likelihood of the probability can be found
using the following optimization procedure:

(γ∗, φ∗) = arg min
γ,φ

D(q(θ, z|γ, φ)‖p(θ, z|w, α, β))
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where

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn),

γ is the Dirichlet parameter forφ and the multino-
mial parameters(φ1 · · ·φN ) are the free variational
parameters. Note hereγ is document specific in-
stead of corpus specific likeα. Graphically, it is rep-
resented as Figure 2. The optimizing values ofγ and
φ can be found by minimizing the Kullback-Leibler
(KL) divergence between the variational distribution
and the true posterior.

γ

θ

φ

z

N

M

Figure 2: Graphical Model for Variational Inference

3.2 Baseline Features

For both the lexical sample and all-words tasks,
we use the following standardbaseline featuresfor
comparison.

POS Tags For each training or testing word,w,
we include POS tags forP words prior to as well as
afterw within the same sentence boundary. We also
include the POS tag ofw. If there are fewer than
P words prior or afterw in the same sentence, we
denote the corresponding feature as NIL.

Local Collocations CollocationCi,j refers to the
ordered sequence of tokens (words or punctuations)
surroundingw. The starting and ending position of
the sequence are denotedi andj respectively, where
a negative value refers to the token position prior to
w. We adopt the same 11 collocation features as
(Lee and Ng, 2002), namelyC−1,−1, C1,1, C−2,−2,
C2,2, C−2,−1, C−1,1, C1,2, C−3,−1, C−2,1, C−1,2,
andC1,3.

Bag-of-Words For each training or testing word,
w, we getG words prior to as well as afterw, within
the same document. These features are position in-
sensitive. The words we extract are converted back
to their morphological root forms.

Syntactic Relations We adopt the same syntactic
relations as (Lee and Ng, 2002). For easy reference,
we summarize the features into Table 1.

POS ofw Features
Noun Parent headwordh

POS ofh
Relative position ofh tow

Verb Left nearest child word ofw, l
Right nearest child word ofw, r
POS ofl
POS ofr
POS ofw
Voice ofw

Adjective Parent headwordh
POS ofh

Table 1: Syntactic Relations Features

The exact values ofP andG for each task are set
according to cross validation result.

3.3 Topic Features

We first select an unlabeled corpus, such as 20
Newsgroups, and extract individual words from it
(excluding stopwords). We choose the number of
topics,K, for the unlabeled corpus and we apply the
LDA algorithm to obtain theβ parameters, where
β represents the probability of a wordwi given a
topic zj , p(wi|zj) = βij . The model essentially
clusters words that occurred in the unlabeled cor-
pus according toK topics. The conditional prob-
ability p(wi|zj) = βij is later used to tag the words
in the unseen test example with the probability of
each topic.

For some variants of the classifiers that we con-
struct, we also use theγ parameter, which is doc-
ument specific. For these classifiers, we may need
to run the inference algorithm on the labeled corpus
and possibly on the test documents. Theγ param-
eter provides an approximation to the probability of
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selecting topici in the document:

p(zi|γ) =
γi∑
K γk

. (1)

4 Classifier Construction

4.1 Bayesian Network

We construct a variant of the naı̈ve Bayes network
as shown in Figure 3. Here,w refers to the word.
s refers to the sense of the word. In training,s is
observed while in testing, it is not. The featuresf1

to fn are baseline features mentioned in Section 3.2
(including bag-of-words) whilez refers to the la-
tent topic that we set for clustering unlabeled corpus.
The bag-of-wordsb are extracted from the neigh-
bours ofw and there areL of them. Note thatL can
be different fromG, which is the number of bag-of-
words in baseline features. Both will be determined
by the validation result.

· · ·

︸ ︷︷ ︸
baselinefeatures

w

s

fnf1

b

z

L

Figure 3: Graphical Model with LDA feature

The log-likelihood of an instance,̀(w, s, F, b)
whereF denotes the set of baseline features, can be
written as

= logp(w) + logp(s|w) +
∑
F

log(p(f |s))

+
∑
L

log

(∑
K

p(zk|s)p(bl|zk)

)
.

The log p(w) term is constant and thus can be ig-
nored. The first portion is normal naı̈ve Bayes. And
second portion represents the additional LDA plate.

We decouple the training process into three separate
stages. We first extract baseline features from the
task training data, and estimate, using normal naı̈ve
Bayes,p(s|w) andp(f |s) for all w, s andf . The
parameters associated withp(b|z) are estimated us-
ing LDA from unlabeled data. Finally we estimate
the parameters associated withp(z|s). We experi-
mented with three different ways of both doing the
estimation as well as using the resulting model and
chose one which performed best empirically.

4.1.1 Expectation Maximization Approach

For p(z|s), a reasonable estimation method is to
use maximum likelihood estimation. This can be
done using the expectation maximization (EM) algo-
rithm. In classification, we just chooses∗ that maxi-
mizes the log-likelihood of the test instance, where:

s∗ = arg max
s

`(w, s, F, b)

In this approach,γ is never used which means the
LDA inference procedure is not used on any labeled
data at all.

4.1.2 Soft Tagging Approach

Classification in this approach is done using the
full Bayesian network just as in the EM approach.
However we do the estimation ofp(z|s) differently.
Essentially, we perform LDA inference on the train-
ing corpus in order to obtainγ for each document.
We then use theγ andβ to obtainp(z|b) for each
word using

p(zi|bl, γ) =
p(bl|zi)p(zi|γ)∑
K p(bl|zk)p(zk|γ)

,

where equation [1] is used for estimation ofp(zi|γ).
This effectively transformsb to a topical distri-

bution which we call a soft tag where each soft
tag is probability distributiont1, . . . , tK on topics.
We then use this topical distribution for estimating
p(z|s). Let si be the observed sense of instancei
and tij1 , . . . , t

ij
K be the soft tag of thej-th bag-of-

word feature of instancei. We estimatep(z|s) as

p(zjk|s) =
∑

si=s t
ij
k∑

si=s

∑
k′ t

ij
k′

(2)

This approach requires us to do LDA inference on
the corpus formed by the labeled training data, but
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not the testing data. This is because we needγ to
get transformed topical distribution in order to learn
p(z|s) in the training. In the testing, we only apply
the learnt parameters to the model.

4.1.3 Hard Tagging Approach

Hard tagging approach no longer assumes thatz is
latent. Afterp(z|b) is obtained using the same pro-
cedure in Section 4.1.2, the topiczi with the high-
estp(zi|b) among allK topics is picked to represent
z. In this way,b is transformed into a single most
“prominent” topic. This topic label is used in the
same way as baseline features for both training and
testing in a simple naı̈ve Bayes model.

This approach requires us to perform the transfor-
mation both on the training as well as testing data,
sincez becomes an observed variable. LDA infer-
ence is done on two corpora, one formed by the
training data and the other by testing data, in order
to get the respective values ofγ.

4.2 Support Vector Machine Approach

In the SVM (Vapnik, 1995) approach, we first form a
training and a testing file using all standard features
for each sense following (Lee and Ng, 2002) (one
classifier per sense). To incorporate LDA feature,
we use the same approach as Section 4.1.2 to trans-
form b into soft tags,p(z|b). As SVM deals with
only observed features, we need to transformb both
in the training data and in the testing data. Compared
to (Lee and Ng, 2002), the only difference is that for
each training and testing case, we have additional
L ∗K LDA features, since there areL bag-of-words
and each has a topic distribution represented byK
values.

5 Experimental Setup

We describe here the experimental setup on the En-
glish lexical sample task and all-words task.

We use MXPOST tagger (Adwait, 1996) for POS
tagging, Charniak parser (Charniak, 2000) for ex-
tracting syntactic relations, SVMlight1 for SVM
classifier and David Blei’s version of LDA2 for LDA
training and inference. All default parameters are
used unless mentioned otherwise. For all standard

1http://svmlight.joachims.org
2http://www.cs.princeton.edu/˜blei/lda-c/

baseline features, we use Laplace smoothing but for
the soft tag (equation [2]), we use a smoothing pa-
rameter value of 2.

5.1 Development Process

5.1.1 Lexical Sample Task

We use the Senseval-2 lexical sample task for
preliminary investigation of different algorithms,
datasets and other parameters. As the dataset is used
extensively for this purpose, only the Senseval-3 lex-
ical sample task is used for evaluation.

Selecting Bayesian Network The best achievable
result, using the three different Bayesian network
approaches, when validating on Senseval-2 test data
is shown in Table 2. The parameters that are used
areP = 3 andG = 3.

EM 68.0
Hard Tagging 65.6
Soft Tagging 68.9

Table 2: Results on Senseval-2 English lexical sam-
ple using different Bayesian network approaches.

From the results, it appears that both the EM and
the Hard Tagging approaches did not yield as good
results as the Soft Tagging approach did. The EM
approach ignores the LDA inference result,γ, which
we use to get our topic prior. This information is
document specific and can be regarded as global
context information. The Hard Tagging approach
also uses less information, as the original topic dis-
tribution is now represented only by the topic with
the highest probability of occurring. Therefore, both
methods have information loss and are disadvan-
taged against the Soft Tagging approach. We use
the Soft Tagging approach for the Senseval-3 lexical
sample and the all-words tasks.

Unlabeled Corpus Selection The unlabeled cor-
pus we choose to train LDA include 20 News-
groups, Reuters, SemCor, Senseval-2 lexical sam-
ple data and Senseval-3 lexical sample data. Al-
though the last three are labeled corpora, we only
need the words from these corpora and thus they can
be regarded as unlabeled too. For Senseval-2 and
Senseval-3 data, we define the whole passage for
each training and testing instance as one document.
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The relative effect using different corpus and com-
binations of them is shown in Table 3, when validat-
ing on Senseval-2 test data using the Soft Tagging
approach.

Corpus |w| K L Senseval-2
20 Newsgroups 1.7M 40 60 67.9
Reuters 1.3M 30 60 65.5
SemCor 0.3M 30 60 66.9
Senseval-2 0.6M 30 40 66.9
Senseval-3 0.6M 50 60 67.6
All 4.5M 60 40 68.9

Table 3: Effect of using different corpus for LDA
training, |w| represents the corpus size in terms of
the number of words in the corpus

The 20 Newsgroups corpus yields the best result
if used individually. It has a relatively larger corpus
size at 1.7 million words in total and also a well bal-
anced topic distribution among its documents, rang-
ing across politics, finance, science, computing, etc.
The Reuters corpus, on the other hand, focuses heav-
ily on finance related articles and has a rather skewed
topic distribution. This probably contributed to its
inferior result. However, we found that the best re-
sult comes from combining all the corpora together
with K = 60 andL = 40.

Results for Optimized Configuration As base-
line for the Bayesian network approaches, we use
näıve Bayes with all baseline features. For the base-
line SVM approach, we chooseP = 3 and include
all the words occurring in the training and testing
passage as bag-of-words feature.

The F-measure result we achieve on Senseval-2
test data is shown in Table 4. Our four systems
are listed as the top four entries in the table. Soft
Tag refers to the soft tagging Bayesian network ap-
proach. Note that we used the Senseval-2 test data
for optimizing the configuration (as is done in the
ASO result). Hence, the result should not be taken
as reliable. Nevertheless, it is worth noting that the
improvement of Bayesian network approach over its
baseline is very significant (+5.5%). On the other
hand, SVM with topic features shows limited im-
provement over its baseline (+0.8%).

Bayes (Soft Tag) 68.9
SVM-Topic 66.0
SVM baseline 65.2
NB baseline 63.4
ASO(best configuration)(Ando, 2006)68.1
Classifier Combination(Florian, 2002)66.5
Polynomial KPCA(Wu et al., 2004) 65.8
SVM(Lee and Ng, 2002) 65.4
Senseval-2 Best System 64.2

Table 4: Results (best configuration) compared to
previous best systems on Senseval-2 English lexical
sample task.

5.1.2 All-words Task

In the all-words task, no official training data is
provided with Senseval. We follow the common
practice of using the SemCor corpus as our training
data. However, we did not use SVM approach in this
task as there are too few training instances per sense
for SVM to achieve a reasonably good accuracy.

As there are more training instances in SemCor,
230, 000 in total, we obtain the optimal configura-
tion using 10 fold cross validation on the SemCor
training data. With the optimal configuration, we
test our system on both Senseval-2 and Senseval-3
official test data.

For baseline features, we setP = 3 andB = 1. We
choose a LDA training corpus comprising 20 News-
groups and SemCor data, with number of topicsK
= 40 and number of LDA bag-of-wordsL = 14.

6 Results

We now present the results on both English lexical
sample task and all-words task.

6.1 Lexical Sample Task

With the optimal configurations from Senseval-2,
we tested the systems on Senseval-3 data. Table 5
shows our F-measure result compared to some of the
best reported systems. Although SVM with topic
features shows limited success with only a0.6%
improvement, the Bayesian network approach has
again demonstrated a good improvement of3.8%
over its baseline and is better than previous reported
best systems except ASO(Ando, 2006).
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Bayes (Soft Tag) 73.6
SVM-topic 73.0
SVM baseline 72.4
NB baseline 69.8
ASO(Ando, 2006) 74.1
SVM-LSA (Strapparava et al., 2004) 73.3
Senseval-3 Best System(Grozea, 2004)72.9

Table 5: Results compared to previous best systems
on Senseval-3 English lexical sample task.

6.2 All-words Task

The F-measure micro-averaged result for our sys-
tems as well as previous best systems for Senseval-2
and Senseval-3 all-words task are shown in Table 6
and Table 7 respectively. Bayesian network with soft
tagging achieved2.6% improvement over its base-
line in Senseval-2 and1.7% in Senseval-3. The re-
sults also rival some previous best systems, except
for SMUaw (Mihalcea, 2002) which used additional
labeled data.

Bayes (Soft Tag) 66.3
NB baseline 63.7
SMUaw (Mihalcea, 2002) 69.0
Simil-Prime (Kohomban and Lee, 2005)66.4
Senseval-2 Best System 63.6
(CNTS-Antwerp (Hoste et al., 2001))

Table 6: Results compared to previous best systems
on Senseval-2 English all-words task.

Bayes (Soft Tag) 66.1
NB baseline 64.6
Simil-Prime (Kohomban and Lee, 2005) 66.1
Senseval-3 Best System 65.2
(GAMBL-AW-S(Decadt et al., 2004))
Senseval-32nd Best System (SenseLearner64.6
(Mihalcea and Faruque, 2004))

Table 7: Results compared to previous best systems
on Senseval-3 English all-words task.

6.3 Significance of Results

We perform theχ2-test, using the Bayesian network
and its näıve Bayes baseline (NB baseline) as pairs,

to verify the significance of these results. The result
is reported in Table 8. The results are significant at
90% confidence level, except for the Senseval-3 all-
words task.

Senseval-2 Senseval-3
All-word 0.0527 0.2925
Lexical Sample <0.0001 0.0002

Table 8: P value forχ2-test significance levels of
results.

6.4 SVM with Topic Features

The results on lexical sample task show that SVM
benefits less from the topic feature than the Bayesian
approach. One possible reason is that SVM base-
line is able to use all bag-of-words from surround-
ing context while näıve Bayes baseline can only use
very few without decreasing its accuracy, due to the
sparse representation. In this sense, SVM baseline
already captures some of the topical information,
leaving a smaller room for improvement. In fact, if
we exclude the bag-of-words feature from the SVM
baseline and add in the topic features, we are able
to achieve almost the same accuracy as we did with
both features included, as shown in Table 9. This
further shows that the topic feature is a better rep-
resentation of global context than the bag-of-words
feature.

SVM baseline 72.4
SVM baseline - BAG + topic 73.5
SVM-topic 73.6

Table 9: Results on Senseval-3 English lexical sam-
ple task

6.5 Results on Different Parts-of-Speech

We analyse the result obtained on Senseval-3 En-
glish lexical sample task (using Senseval-2 optimal
configuration) according to the test instance’s part-
of-speech, which includes noun, verb and adjec-
tive, compared to the naı̈ve Bayes baseline. Ta-
ble 10 shows the relative improvement on each part-
of-speech. The second column shows the number
of testing instances belonging to the particular part-
of-speech. The third and fourth column shows the
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Figure 4: Accuracy with varing L and K on
Senseval-2 all-words task

accuracy achieved by naı̈ve Bayes baseline and the
Bayesian network. Adjectives show no improve-
ment while verbs show a moderate+2.2% improve-
ment. Nouns clearly benefit from topical informa-
tion much more than the other two parts-of-speech,
obtaining a+5.7% increase over its baseline.

POS Total NB baseline Bayes (Soft Tag)
Noun 1807 69.5 75.2
Verb 1978 71.1 73.5
Adj 159 57.2 57.2
Total 3944 69.8 73.6

Table 10: Improvement with different POS on
Senseval-3 lexical sample task

6.6 Sensitivity to L and K

We tested on Senseval-2 all-words task using differ-
ent L and K. Figure 4 is the result.

6.7 Results on SemEval-1

We participated in SemEval-1 English coarse-
grained all-words task (task 7), English fine-grained
all-words task (task 17, subtask 3) and English
coarse-grained lexical sample task (task 17, subtask
1), using the method described in this paper. For
all-words task, we use Senseval-2 and Senseval-3

all-words task data as our validation set to fine tune
the parameters. For lexical sample task, we use the
training data provided as the validation set.

We achieved 88.7%, 81.6% and 57.6% for coarse-
grained lexical sample task, coarse-grained all-
words task and fine-grained all-words task respec-
tively. The results ranked first, second and fourth in
the three tasks respectively.

7 Conclusion and Future Work

In this paper, we showed that by using LDA algo-
rithm on bag-of-words feature, one can utilise more
topical information and boost the classifiers accu-
racy on both English lexical sample and all-words
task. Only unlabeled data is needed for this improve-
ment. It would be interesting to see how the feature
can help on WSD of other languages and other nat-
ural language processing tasks such as named-entity
recognition.
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Abstract

We develop latent Dirichlet allocation with
WORDNET (LDAWN), an unsupervised
probabilistic topic model that includes word
sense as a hidden variable. We develop a
probabilistic posterior inference algorithm
for simultaneously disambiguating a corpus
and learning the domains in which to con-
sider each word. Using the WORDNET hi-
erarchy, we embed the construction of Ab-
ney and Light (1999) in the topic model and
show that automatically learned domains
improve WSD accuracy compared to alter-
native contexts.

1 Introduction

Word sense disambiguation (WSD) is the task of
determining the meaning of an ambiguous word in
its context. It is an important problem in natural
language processing (NLP) because effective WSD
can improve systems for tasks such as information
retrieval, machine translation, and summarization.
In this paper, we develop latent Dirichlet alloca-
tion with WORDNET (LDAWN), a generative prob-
abilistic topic model for WSD where the sense of
the word is a hidden random variable that is inferred
from data.

There are two central advantages to this approach.
First, with LDAWN we automatically learn the con-
text in which a word is disambiguated. Rather
than disambiguating at the sentence-level or the
document-level, our model uses the other words that
share the same hidden topic across many documents.

Second, LDAWN is a fully-fledged generative
model. Generative models are modular and can be
easily combined and composed to form more com-

plicated models. (As a canonical example, the ubiq-
uitous hidden Markov model is a series of mixture
models chained together.) Thus, developing a gen-
erative model for WSD gives other generative NLP
algorithms a natural way to take advantage of the
hidden senses of words.

In general, topic models are statistical models of
text that posit a hidden space of topics in which the
corpus is embedded (Blei et al., 2003). Given a
corpus, posterior inference in topic models amounts
to automatically discovering the underlying themes
that permeate the collection. Topic models have re-
cently been applied to information retrieval (Wei and
Croft, 2006), text classification (Blei et al., 2003),
and dialogue segmentation (Purver et al., 2006).

While topic models capture the polysemous use
of words, they do not carry the explicit notion of
sense that is necessary for WSD. LDAWN extends
the topic modeling framework to include a hidden
meaning in the word generation process. In this
case, posterior inference discovers both the topics
of the corpus and the meanings assigned to each of
its words.

After introducing a disambiguation scheme based
on probabilistic walks over the WORDNET hierar-
chy (Section 2), we embed the WORDNET-WALK

in a topic model, where each topic is associated with
walks that prefer different neighborhoods of WORD-
NET (Section 2.1). Then, we describe a Gibbs sam-
pling algorithm for approximate posterior inference
that learns the senses and topics that best explain a
corpus (Section 3). Finally, we evaluate our system
on real-world WSD data, discuss the properties of
the topics and disambiguation accuracy results, and
draw connections to other WSD algorithms from the
research literature.
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Figure 1: The possible paths to reach the word “colt”
in WORDNET. Dashed lines represent omitted links.
All words in the synset containing “revolver” are
shown, but only one word from other synsets is
shown. Edge labels are probabilities of transitioning
from synset i to synset j. Note how this favors fre-
quent terms, such as “revolver,” over ones like “six-
shooter.”

2 Topic models and WordNet

The WORDNET-WALK is a probabilistic process of
word generation that is based on the hyponomy re-
lationship in WORDNET (Miller, 1990). WORD-
NET, a lexical resource designed by psychologists
and lexicographers to mimic the semantic organiza-
tion in the human mind, links “synsets” (short for
synonym sets) with myriad connections. The spe-
cific relation we’re interested in, hyponomy, points
from general concepts to more specific ones and is
sometimes called the “is-a” relationship.

As first described by Abney and Light (1999), we
imagine an agent who starts at synset [entity],
which points to every noun in WORDNET 2.1 by
some sequence of hyponomy relations, and then
chooses the next node in its random walk from the
hyponyms of its current position. The agent repeats
this process until it reaches a leaf node, which corre-
sponds to a single word (each of the synset’s words
are unique leaves of a synset in our construction).
For an example of all the paths that might gener-
ate the word “colt” see Figure 1. The WORDNET-
WALK is parameterized by a set of distributions over
children for each synset s in WORDNET, βs.

Symbol Meaning
K number of topics

βk,s multinomial probability vector over
the successors of synset s in topic k

S scalar that, when multiplied by αs

gives the prior for βk,s

αs normalized vector whose ith entry,
when multiplied by S, gives the prior
probability for going from s to i

θd multinomial probability vector over
the topics that generate document d

τ prior for θ
z assignment of a word to a topic
Λ a path assignment through

WORDNET ending at a word.
λi,j one link in a path λ going from syn-

set i to synset j.

Table 1: A summary of the notation used in the pa-
per. Bold vectors correspond to collections of vari-
ables (i.e. zu refers to a topic of a single word, but
z1:D are the topics assignments of words in docu-
ment 1 through D).

2.1 A topic model for WSD

The WORDNET-WALK has two important proper-
ties. First, it describes a random process for word
generation. Thus, it is a distribution over words
and thus can be integrated into any generative model
of text, such as topic models. Second, the synset
that produces each word is a hidden random vari-
able. Given a word assumed to be generated by a
WORDNET-WALK, we can use posterior inference
to predict which synset produced the word.

These properties allow us to develop LDAWN,
which is a fusion of these WORDNET-WALKs and
latent Dirichlet allocation (LDA) (Blei et al., 2003),
a probabilistic model of documents that is an im-
provement to pLSI (Hofmann, 1999). LDA assumes
that there are K “topics,” multinomial distributions
over words, which describe a collection. Each docu-
ment exhibits multiple topics, and each word in each
document is associated with one of them.

Although the term “topic” evokes a collection of
ideas that share a common theme and although the
topics derived by LDA seem to possess semantic
coherence, there is no reason to believe this would
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be true of the most likely multinomial distributions
that could have created the corpus given the assumed
generative model. That semantically similar words
are likely to occur together is a byproduct of how
language is actually used.

In LDAWN, we replace the multinomial topic dis-
tributions with a WORDNET-WALK, as described
above. LDAWN assumes a corpus is generated by
the following process (for an overview of the nota-
tion used in this paper, see Table 1).

1. For each topic, k ∈ {1, . . . , K}

(a) For each synset s, randomly choose transition prob-
abilities βk,s ∼ Dir(Sαs).

2. For each document d ∈ {1, . . . , D}

(a) Select a topic distribution θd ∼ Dir(τ)

(b) For each word n ∈ {1, . . . , Nd}
i. Select a topic z ∼ Mult(1, θd)

ii. Create a path Λd,n starting with λ0 as the root
node.

iii. From children of λi:
A. Choose the next node in the walk λi+1 ∼

Mult(1, βz,λi)
B. If λi+1 is a leaf node, generate the associ-

ated word. Otherwise, repeat.

Every element of this process, including the
synsets, is hidden except for the words of the doc-
uments. Thus, given a collection of documents, our
goal is to perform posterior inference, which is the
task of determining the conditional distribution of
the hidden variables given the observations. In the
case of LDAWN, the hidden variables are the param-
eters of the K WORDNET-WALKs, the topic assign-
ments of each word in the collection, and the synset
path of each word. In a sense, posterior inference
reverses the process described above.

Specifically, given a document collection w1:D,
the full posterior is

p(β1:K ,z1:D,θ1:D,Λ1:D |w1:D, τ, Sα) ∝(∏K
k=1 p(βk |Sα)

∏D
d=1 p(θd | τ)∏Nd

n=1 p(Λd,n |β1:K)p(wd,n |Λd,n)
)

, (1)

where the constant of proportionality is the marginal
likelihood of the observed data.

Note that by encoding the synset paths as a hid-
den variable, we have posed the WSD problem as
a question of posterior probabilistic inference. Fur-
ther note that we have developed an unsupervised

model. No labeled data is needed to disambiguate a
corpus. Learning the posterior distribution amounts
to simultaneously decomposing a corpus into topics
and its words into their synsets.

The intuition behind LDAWN is that the words
in a topic will have similar meanings and thus share
paths within WORDNET. For example, WORDNET

has two senses for the word “colt;” one referring to a
young male horse and the other to a type of handgun
(see Figure 1).

Although we have no a priori way of know-
ing which of the two paths to favor for a
document, we assume that similar concepts
will also appear in the document. Documents
with unambiguous nouns such as “six-shooter”
and “smoothbore” would make paths that pass
through the synset [firearm, piece,
small-arm] more likely than those go-
ing through [animal, animate being,
beast, brute, creature, fauna]. In
practice, we hope to see a WORDNET-WALK that
looks like Figure 2, which points to the right sense
of cancer for a medical context.

LDAWN is a Bayesian framework, as each vari-
able has a prior distribution. In particular, the
Dirichlet prior for βs, specified by a scaling factor
S and a normalized vector αs fulfills two functions.
First, as the overall strength of S increases, we place
a greater emphasis on the prior. This is equivalent to
the need for balancing as noted by Abney and Light
(1999).

The other function that the Dirichlet prior serves
is to enable us to encode any information we have
about how we suspect the transitions to children
nodes will be distributed. For instance, we might ex-
pect that the words associated with a synset will be
produced in a way roughly similar to the token prob-
ability in a corpus. For example, even though “meal”
might refer to both ground cereals or food eaten at
a single sitting and “repast” exclusively to the lat-
ter, the synset [meal, repast, food eaten
at a single sitting] still prefers to transi-
tion to “meal” over “repast” given the overall corpus
counts (see Figure 1, which shows prior transition
probabilities for “revolver”).

By setting αs,i, the prior probability of transition-
ing from synset s to node i, proportional to the to-
tal number of observed tokens in the children of i,
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we introduce a probabilistic variation on informa-
tion content (Resnik, 1995). As in Resnik’s defini-
tion, this value for non-word nodes is equal to the
sum of all the frequencies of hyponym words. Un-
like Resnik, we do not divide frequency among all
senses of a word; each sense of a word contributes
its full frequency to α.

3 Posterior Inference with Gibbs Sampling

As described above, the problem of WSD corre-
sponds to posterior inference: determining the prob-
ability distribution of the hidden variables given ob-
served words and then selecting the synsets of the
most likely paths as the correct sense. Directly com-
puting this posterior distribution, however, is not
tractable because of the difficulty of calculating the
normalizing constant in Equation 1.

To approximate the posterior, we use Gibbs sam-
pling, which has proven to be a successful approx-
imate inference technique for LDA (Griffiths and
Steyvers, 2004). In Gibbs sampling, like all Markov
chain Monte Carlo methods, we repeatedly sample
from a Markov chain whose stationary distribution is
the posterior of interest (Robert and Casella, 2004).
Even though we don’t know the full posterior, the
samples can be used to form an empirical estimate
of the target distribution. In LDAWN, the samples
contain a configuration of the latent semantic states
of the system, revealing the hidden topics and paths
that likely led to the observed data.

Gibbs sampling reproduces the posterior distri-
bution by repeatedly sampling each hidden variable
conditioned on the current state of the other hidden
variables and observations. More precisely, the state
is given by a set of assignments where each word
is assigned to a path through one of K WORDNET-
WALK topics: uth word wu has a topic assignment
zu and a path assignment Λu. We use z−u and Λ−u

to represent the topic and path assignments of all
words except for u, respectively.

Sampling a new topic for the word wu requires
us to consider all of the paths that wu can take in
each topic and the topics of the other words in the
document u is in. The probability of wu taking on
topic i is proportional to

p(zu = i |z−u)
∑

λ p(λ |Λ−u)1[wu ∈ λ], (2)

which is the probability of selecting z from θd times
the probability of a path generating wu from a path
in the ith WORDNET-WALK.

The first term, the topic probability of the uth

word, is based on the assignments to the K topics
for words other than u in this document,

p(zu = i|z−u) =
n

(d)
−u,i + τi∑

j n
(d)
−u,j +

∑K
j=1 τj

, (3)

where n
(d)
−u,j is the number of words other than u in

topic j for the document d that u appears in.
The second term in Equation 2 is a sum over the

probabilities of every path that could have generated
the word wu. In practice, this sum can be com-
puted using a dynamic program for all nodes that
have unique parent (i.e. those that can’t be reached
by more than one path). Although the probability of
a path is specific to the topic, as the transition prob-
abilities for a synset are different across topics, we
will omit the topic index in the equation,

p(Λu = λ|Λ−u, ) =
∏l−1

i=1 β−u
λi,λi+1

. (4)

3.1 Transition Probabilities

Computing the probability of a path requires us to
take a product over our estimate of the probability
from transitioning from i to j for all nodes i and j in
the path λ. The other path assignments within this
topic, however, play an important role in shaping the
transition probabilities.

From the perspective of a single node i, only paths
that pass through that node affect the probability of
u also passing through that node. It’s convenient to
have an explicit count of all of the paths that tran-
sition from i to j in this topic’s WORDNET-WALK,
so we use T−u

i,j to represent all of the paths that go
from i to j in a topic other than the path currently
assigned to u.

Given the assignment of all other words to paths,
calculating the probability of transitioning from i to
j with word u requires us to consider the prior α and
the observations Ti,j in our estimate of the expected
value of the probability of transitioning from i to j,

β−u
i,j =

T−u
i,j + Siαi,j

Si +
∑

k T−u
i,k

. (5)
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As mentioned in Section 2.1, we paramaterize the
prior for synset i as a vector αi, which sums to one,
and a scale parameter S.

The next step, once we’ve selected a topic, is to
select a path within that topic. This requires the
computation of the path probabilities as specified in
Equation 4 for all of the paths wu can take in the
sampled topic and then sampling from the path prob-
abilities.

The Gibbs sampler is essentially a randomized
hill climbing algorithm on the posterior likelihood as
a function of the configuration of hidden variables.
The numerator of Equation 1 is proportional to that
posterior and thus allows us to track the sampler’s
progress. We assess convergence to a local mode of
the posterior by monitoring this quantity.

4 Experiments

In this section, we describe the properties of the
topics induced by running the previously described
Gibbs sampling method on corpora and how these
topics improve WSD accuracy.

Of the two data sets used during the course of
our evaluation, the primary dataset was SEMCOR

(Miller et al., 1993), which is a subset of the Brown
corpus with many nouns manually labeled with the
correct WORDNET sense. The words in this dataset
are lemmatized, and multi-word expressions that are
present in WORDNET are identified. Only the words
in SEMCOR were used in the Gibbs sampling pro-
cedure; the synset assignments were only used for
assessing the accuracy of the final predictions.

We also used the British National Corpus, which
is not lemmatized and which does not have multi-
word expressions. The text was first run through
a lemmatizer, and then sequences of words which
matched a multi-word expression in WORDNET

were joined together into a single word. We took
nouns that appeared in SEMCOR twice or in the
BNC at least 25 times and used the BNC to com-
pute the information-content analog α for individ-
ual nouns (For example, the probabilities in Figure 1
correspond to α).

4.1 Topics

Like the topics created by structures such as LDA,
the topics in Table 2 coalesce around reasonable

themes. The word list was compiled by summing
over all of the possible leaves that could have gen-
erated each of the words and sorting the words by
decreasing probability. In the vast majority of cases,
a single synset’s high probability is responsible for
the words’ positions on the list.

Reassuringly, many of the top senses for the
present words correspond to the most frequent sense
in SEMCOR. For example, in Topic 4, the senses for
“space” and “function” correspond to the top senses
in SEMCOR, and while the top sense for “set” corre-
sponds to “an abstract collection of numbers or sym-
bols” rather than “a group of the same kind that be-
long together and are so used,” it makes sense given
the math-based words in the topic. “Point,” however,
corresponds to the sense used in the phrase “I got to
the point of boiling the water,” which is neither the
top SEMCOR sense nor a sense which makes sense
given the other words in the topic.

While the topics presented in Table 2 resemble
the topics one would obtain through models like
LDA (Blei et al., 2003), they are not identical. Be-
cause of the lengthy process of Gibbs sampling, we
initially thought that using LDA assignments as an
initial state would converge faster than a random ini-
tial assignment. While this was the case, it con-
verged to a state that less probable than the randomly
initialized state and no better at sense disambigua-
tion (and sometimes worse). The topics presented
in 2 represent words both that co-occur together in
a corpus and co-occur on paths through WORDNET.
Because topics created through LDA only have the
first property, they usually do worse in terms of both
total probability and disambiguation accuracy (see
Figure 3).

Another interesting property of topics in LDAWN
is that, with higher levels of smoothing, words that
don’t appear in a corpus (or appear rarely) but are
in similar parts of WORDNET might have relatively
high probability in a topic. For example, “maturity”
in topic two in Table 2 is sandwiched between “foot”
and “center,” both of which occur about five times
more than “maturity.” This might improve LDA-
based information retrieval schemes (Wei and Croft,
2006) .
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Figure 2: The possible paths to reach the word “cancer” in WORDNET along with transition probabilities
from the medically-themed Topic 2 in Table 2, with the most probable path highlighted. The dashed lines
represent multiple links that have been consolidated, and synsets are represented by their offsets within
WORDNET 2.1. Some words for immediate hypernyms have also been included to give context. In all other
topics, the person, animal, or constellation senses were preferred.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
president growth material point water plant music

party age object number house change film
city treatment color value road month work

election feed form function area worker life
administration day subject set city report time

official period part square land mercer world
office head self space home requirement group
bill portion picture polynomial farm bank audience

yesterday length artist operator spring farmer play
court level art component bridge production thing
meet foot patient corner pool medium style
police maturity communication direction site petitioner year
service center movement curve interest relationship show

Table 2: The most probable words from six randomly chosen WORDNET-walks from a thirty-two topic
model trained on the words in SEMCOR. These are summed over all of the possible synsets that generate
the words. However, the vast majority of the contributions come from a single synset.
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Figure 3: Topics seeded with LDA initially have
a higher disambiguation accuracy, but are quickly
matched by unseeded topics. The probability for the
seeded topics starts lower and remains lower.

4.2 Topics and the Weight of the Prior

Because the Dirichlet smoothing factor in part
determines the topics, it also affects the disam-
biguation. Figure 4 shows the modal disambigua-
tion achieved for each of the settings of S =
{0.1, 1, 5, 10, 15, 20}. Each line is one setting of K
and each point on the line is a setting of S. Each
data point is a run for the Gibbs sampler for 10,000
iterations. The disambiguation, taken at the mode,
improved with moderate settings of S, which sug-
gests that the data are still sparse for many of the
walks, although the improvement vanishes if S dom-
inates with much larger values. This makes sense,
as each walk has over 100,000 parameters, there are
fewer than 100,000 words in SEMCOR, and each
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Figure 4: Each line represents experiments with a set
number of topics and variable amounts of smooth-
ing on the SEMCOR corpus. The random baseline
is at the bottom of the graph, and adding topics im-
proves accuracy. As smoothing increases, the prior
(based on token frequency) becomes stronger. Ac-
curacy is the percentage of correctly disambiguated
polysemous words in SEMCOR at the mode.

word only serves as evidence to at most 19 parame-
ters (the length of the longest path in WORDNET).

Generally, a greater number of topics increased
the accuracy of the mode, but after around sixteen
topics, gains became much smaller. The effect of α
is also related to the number of topics, as a value of S
for a very large number of topics might overwhelm
the observed data, while the same value of S might
be the perfect balance for a smaller number of topics.
For comparison, the method of using a WORDNET-
WALK applied to smaller contexts such as sentences
or documents achieves an accuracy of between 26%
and 30%, depending on the level of smoothing.

5 Error Analysis

This method works well in cases where the delin-
eation can be readily determined from the over-
all topic of the document. Words such as “kid,”
“may,” “shear,” “coach,” “incident,” “fence,” “bee,”
and (previously used as an example) “colt” were
all perfectly disambiguated by this method. Figure
2 shows the WORDNET-WALK corresponding to a
medical topic that correctly disambiguates “cancer.”

Problems arose, however, with highly frequent
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words, such as “man” and “time” that have many
senses and can occur in many types of documents.
For example, “man” can be associated with many
possible meanings: island, game equipment, ser-
vant, husband, a specific mammal, etc.

Although we know that the “adult male” sense
should be preferred, the alternative meanings will
also be likely if they can be assigned to a topic
that shares common paths in WORDNET; the doc-
uments contain, however, many other places, jobs,
and animals which are reasonable explanations (to
LDAWN) of how “man” was generated. Unfortu-
nately, “man” is such a ubiquitous term that top-
ics, which are derived from the frequency of words
within an entire document, are ultimately uninfor-
mative about its usage.

While mistakes on these highly frequent terms
significantly hurt our accuracy, errors associated
with less frequent terms reveal that WORDNET’s
structure is not easily transformed into a probabilis-
tic graph. For instance, there are two senses of
the word “quarterback,” a player in American foot-
ball. One is position itself and the other is a per-
son playing that position. While one would expect
co-occurrence in sentences such as “quarterback is a
easy position, so our quarterback is happy,” the paths
to both terms share only the root node, thus making
it highly unlikely a topic would cover both senses.

Because of WORDNET’s breadth, rare senses
also impact disambiguation. For example, the
metonymical use of “door” to represent a whole
building as in the phrase “girl next door” is un-
der the same parent as sixty other synsets contain-
ing “bridge,” “balcony,” “body,” “arch,” “floor,” and
“corner.” Surrounded by such common terms that
are also likely to co-occur with the more conven-
tional meanings of door, this very rare sense be-
comes the preferred disambiguation of “door.”

6 Related Work

Abney and Light’s initial probabilistic WSD ap-
proach (1999) was further developed into a Bayesian
network model by Ciaramita and Johnson (2000),
who likewise used the appearance of monosemous
terms close to ambiguous ones to “explain away” the
usage of ambiguous terms in selectional restrictions.
We have adapted these approaches and put them into

the context of a topic model.
Recently, other approaches have created ad hoc

connections between synsets in WORDNET and then
considered walks through the newly created graph.
Given the difficulties of using existing connections
in WORDNET, Mihalcea (2005) proposed creating
links between adjacent synsets that might comprise
a sentence, initially setting weights to be equal to
the Lesk overlap between the pairs, and then using
the PageRank algorithm to determine the stationary
distribution over synsets.

6.1 Topics and Domains
Yarowsky was one of the first to contend that “there
is one sense for discourse” (1992). This has lead
to the approaches like that of Magnini (Magnini et
al., 2001) that attempt to find the category of a text,
select the most appropriate synset, and then assign
the selected sense using domain annotation attached
to WORDNET.

LDAWN is different in that the categories are not
an a priori concept that must be painstakingly anno-
tated within WORDNET and require no augmenta-
tion of WORDNET. This technique could indeed be
used with any hierarchy. Our concepts are the ones
that best partition the space of documents and do the
best job of describing the distinctions of diction that
separate documents from different domains.

6.2 Similarity Measures
Our approach gives a probabilistic method of us-
ing information content (Resnik, 1995) as a start-
ing point that can be adjusted to cluster words in
a given topic together; this is similar to the Jiang-
Conrath similarity measure (1997), which has been
used in many applications in addition to disambigua-
tion. Patwardhan (2003) offers a broad evaluation of
similarity measures for WSD.

Our technique for combining the cues of topics
and distance in WORDNET is adjusted in a way sim-
ilar in spirit to Buitelaar and Sacaleanu (2001), but
we consider the appearance of a single term to be
evidence for not just that sense and its immediate
neighbors in the hyponomy tree but for all of the
sense’s children and ancestors.

Like McCarthy (2004), our unsupervised system
acquires a single predominant sense for a domain
based on a synthesis of information derived from a
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textual corpus, topics, and WORDNET-derived sim-
ilarity, a probabilistic information content measure.
By adding syntactic information from a thesaurus
derived from syntactic features (taken from Lin’s au-
tomatically generated thesaurus (1998)), McCarthy
achieved 48% accuracy in a similar evaluation on
SEMCOR; LDAWN is thus substantially less effec-
tive in disambiguation compared to state-of-the-art
methods. This suggests, however, that other meth-
ods might be improved by adding topics and that our
method might be improved by using more informa-
tion than word counts.

7 Conclusion and Future Work

The LDAWN model presented here makes two con-
tributions to research in automatic word sense dis-
ambiguation. First, we demonstrate a method for au-
tomatically partitioning a document into topics that
includes explicit semantic information. Second, we
show that, at least for one simple model of WSD,
embedding a document in probabilistic latent struc-
ture, i.e., a “topic,” can improve WSD.

There are two avenues of research with LDAWN
that we will explore. First, the statistical nature of
this approach allows LDAWN to be used as a com-
ponent in larger models for other language tasks.
Other probabilistic models of language could in-
sert the ability to query synsets or paths of WORD-
NET. Similarly, any topic based information re-
trieval scheme could employ topics that include se-
mantically relevant (but perhaps unobserved) terms.
Incorporating this model in a larger syntactically-
aware model, which could benefit from the local
context as well as the document level context, is an
important component of future research.

Second, the results presented here show a marked
improvement in accuracy as more topics are added
to the baseline model, although the final result is not
comparable to state-of-the-art techniques. As most
errors were attributable to the hyponomy structure
of WORDNET, incorporating the novel use of topic
modeling presented here with a more mature unsu-
pervised WSD algorithm to replace the underlying
WORDNET-WALK could lead to advances in state-
of-the-art unsupervised WSD accuracy.
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Abstract

This paper focuses on the evaluation of meth-
ods for the automatic acquisition of Multiword
Expressions (MWEs) for robust grammar engi-
neering. First we investigate the hypothesis that
MWEs can be detected by the distinct statistical
properties of their component words, regardless
of their type, comparing 3 statistical measures:
mutual information (MI), χ

2 and permutation
entropy (PE). Our overall conclusion is that at
least two measures, MI and PE, seem to differen-
tiate MWEs from non-MWEs. We then investi-
gate the influence of the size and quality of differ-
ent corpora, using the BNC and the Web search
engines Google and Yahoo. We conclude that, in
terms of language usage, web generated corpora
are fairly similar to more carefully built corpora,
like the BNC, indicating that the lack of con-
trol and balance of these corpora are probably
compensated by their size. Finally, we show a
qualitative evaluation of the results of automat-
ically adding extracted MWEs to existing lin-
guistic resources. We argue that such a process
improves qualitatively, if a more compositional
approach to grammar/lexicon automated exten-
sion is adopted.

1 Introduction

The task of automatically identifying Multiword
Expressions (MWEs) like phrasal verbs (break
down) and compound nouns (coffee machine)
using statistical measures has been the focus
of considerable investigative effort, (e.g. Pearce
(2002), Evert and Krenn (2005) and Zhang et
al. (2006)). Given the heterogeneousness of
the different phenomena that are considered to
be MWEs, there is no consensus about which
method is best suited for which type of MWE,
and if there is a single method that can be suc-
cessfully used for any kind of MWE.

Another difficulty for work on MWE identifi-
cation is that of the evaluation of the results ob-
tained (Pearce, 2002; Evert and Krenn, 2005),
starting from the lack of consensus about a pre-
cise definition for MWEs (Villavicencio et al.,
2005).

In this paper we investigate some of the is-
sues involved in the evaluation of automatically
extracted MWEs, from their extraction to their
subsequent use in an NLP task. In order to do
that, we present a discussion of different statisti-
cal measures, and the influence that the size and
quality of different data sources have. We then
perform a comparison of these measures and dis-
cuss whether there is a single measure that has
good overall performance for MWEs in general,
regardless of their type. Finally, we perform a
qualitative evaluation of the results of adding
automatically extracted MWEs to a linguistic
resource, taking as basis for the evaluation the
approach proposed by Zhang et al. (2006). We
argue that such results can improve in quality
if a more compositional approach to MWE en-
coding is adopted for the grammar extension.
Having more accurate means of deciding for an
appropriate method for identifying and incor-
porating MWEs is critical for maintaining the
quality of linguistic resources for precise NLP.

This paper starts with a discussion of MWEs
(§ 2), of their coverage in linguistic resources
(§ 3), and of some methods proposed for auto-
matically identifying them (§ 4). This is fol-
lowed by a detailed investigation and compar-
ison of measures for MWE identification (§ 5).
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After that we present an approach for predicting
appropriate lexico-syntactic categories for their
inclusion in a linguistic resource, and an evalu-
ation of the results in a parsing task(§ 7). We
finish with some conclusions and discussion of
future work.

2 Multiword Expressions

The term Multiword Expressions has been used
to describe expressions for which the syntactic or
semantic properties of the whole expression can-
not be derived from its parts (Sag et al., 2002),
including a large number of related but distinct
phenomena, such as phrasal verbs (e.g. come
along), nominal compounds (e.g. frying pan),
institutionalised phrases (e.g. bread and butter),
and many others. Jackendoff (1997) estimates
the number of MWEs in a speaker’s lexicon to
be comparable to the number of single words.
However, due to their heterogeneous character-
istics, MWEs present a tough challenge for both
linguistic and computational work (Sag et al.,
2002). For instance, some MWEs are fixed, and
do not present internal variation, such as ad hoc,
while others allow different degrees of internal
variability and modification, such as spill beans
(spill several/musical/mountains of beans).

Sag et al. (2002) discuss two main ap-
proaches commonly employed in NLP for treat-
ing MWEs: the words-with-spaces approach
models an MWE as a single lexical entry and it
can adequately capture fixed MWEs like by and
large. A compositional approach treats MWEs
by general and compositional methods of lin-
guistic analysis, being able to capture more syn-
tactically flexible MWEs, like rock boat, which
cannot be satisfactorily captured by a words-
with-spaces approach, since it would require lex-
ical entries to be added for all the possible
variations of an MWE (e.g. rock/rocks/rocking
this/that/his... boat). Therefore, to provide a
unified account for the detection and encoding
of these distinct but related phenomena is a real
challenge for NLP systems.

3 Grammar and Lexicon Coverage in

Deep Processing

Many NLP tasks and applications, like Parsing
and Machine Translation, depend on large-scale
linguistic resources, such as electronic dictionar-
ies and grammars for precise results. Several
substantial resources exist: e.g., hand-crafted
large-scale grammars like the English Resource
Grammar (ERG - Flickinger (2000)) and the
Dutch Alpino Grammar (Bouma et al., 2001).

Unfortunately, the construction of these re-
sources is the manual result of human efforts and
therefore likely to contain errors of omission and
commission (Briscoe and Carroll, 1997). Fur-
thermore, due to the open-ended and dynamic
nature of languages, such linguistic resources are
likely to be incomplete, and manual encoding of
new entries and constructions is labour-intensive
and costly.

Take, for instance, the coverage test results
for the ERG (a broad-coverage precision HPSG
grammar for English) on the British National
Corpus (BNC). Baldwin et al. (2004), among
many others, have investigated the main causes
of parse failure, parsing a random sample of
20,000 strings from the written component of
the BNC using the ERG. They have found that
the large majority of failures is caused by miss-
ing lexical entries, with 40% of the cases, and
missing constructions, with 39%, where missing
MWEs accounted for 8% of total errors. That is,
even by a margin, the lexical coverage is lower
than the grammar construction coverage.

This indicates the acute need for robust (semi-
)automated ways of acquiring lexical informa-
tion for MWEs, and this is the one of the goals
of this work. In the next section we discuss
some approaches that have been developed in re-
cent years to (semi-)automatically detect and/or
repair lexical and grammar errors in linguistic
grammars and/or extend their coverage.

4 Acquiring MWEs

The automatic acquisition of specific types of
MWE has attracted much interest (Pearce,
2002; Baldwin and Villavicencio, 2002; Evert
and Krenn, 2005; Villavicencio, 2005; van der
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Beek, 2005; Nicholson and Baldwin, 2006). For
instance, Baldwin and Villavicencio (2002) pro-
posed a combination of methods to extract Verb-
Particle Constructions (VPCs) from unanno-
tated corpora, that in an evaluation on the
Wall Street Journal achieved 85.9% precision
and 87.1% recall. Nicholson and Baldwin (2006)
investigated the prediction of the inherent se-
mantic relation of a given compound nominaliza-
tion using as statistical measure the confidence
interval.

On the other hand, Zhang et al. (2006) looked
at MWEs in general investigating the semi-
automated detection of MWE candidates in
texts using error mining techniques and vali-
dating them using a combination of the World
Wide Web as a corpus and some statistical mea-
sures. 6248 sentences were then extracted from
the BNC; these contained at least one of the 311
MWE candidates verified with World Wide Web
in the way described in Zhang et al. (2006). For
each occurrence of the MWE candidates in this
set of sentences, the lexical type predictor pro-
posed in Zhang and Kordoni (2006) predicted a
lexical entry candidate. This resulted in 373 ad-
ditional MWE lexical entries for the ERG gram-
mar using a words-with-spaces approach. As re-
ported in Zhang et al. (2006), this addition to
the grammar resulted in a significant increase in
grammar coverage of 14.4%. However, no fur-
ther evaluation was done of the results of the
measures used on the identification of MWEs or
of the resulting grammar, as not all MWEs can
be correctly handled by the simple words-with-
spaces approach (Sag et al., 2002). And these
are the starting points of the work we are re-
porting on here.

5 Evaluation of the Identification of

MWEs

One way of viewing the MWE identification task
is, given a list of sequences of words, to distin-
guish those that are genuine MWEs (e.g. in the
red), from those that are just sequences of words
that do not form any kind of meaningful unit
(e.g. of alcohol and). In order to do that, one
commonly used approach is to employ statisti-

cal measures (e.g. Pearce (2002) for collocations
and Zhang et al. (2006) for MWEs in general).
When dealing with statistical analysis there are
two important statistical questions that should
be addressed: How reliable is the corpus used?
and How precise is the chosen statistical measure
to distinguish the phenomena studied?.

In this section we look at these issues, for the
particular case of trigrams, by testing different
corpora and different statistical measures. For
that we use 1039 trigrams that are the output
of Zhang et al. (2006) error mining system, and
frequencies collected from the BNC and from
the World Wide Web. The former were col-
lected from two different portions of the BNC,
namely the fragment of the BNC (BNCf ) used
in the error-mining experiments, and the com-
plete BNC (from the site http://pie.usna.edu/),
to test whether a larger sample of a more ho-
mogeneous and well balanced corpus improves
results significantly. For the latter we used two
different search engines: Google and Yahoo, and
the frequencies collected reflect the number of
pages that had exact matches of the n-grams
searched, using the API tools for each engine.

5.1 Comparing Corpora

A corpus for NLP related work should be a re-
liable sample of the linguistic output of a given
language. For this work in particular, we expect
that the relative ordering in frequency for differ-
ent n-grams is preserved across corpora, in the
same domain (e.g. a corpus of chemistry arti-
cles). For, if this is not the case, different con-
clusions are certain to be drawn from different
corpora.

The first test we performed was a direct com-
parison of the rank plots of the relative fre-
quency of trigrams for the four corpora. We
ranked 1039 MWE-candidate trigrams accord-
ing to their occurrence in each corpus and we
normalised this value by the total number of
times any one of the 1039 trigrams appeared
for each corpus. These normalisation values
were: 66,101 times in BNCf , 322,325 in BNC,
224,479,065 in Google and 6,081,786,313 in Ya-
hoo. It is possible to have an estimate of the size
of each corpus from these numbers: the trigrams
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account for something like 0.3% of the BNC cor-
pora, while for Google and Yahoo nothing can
be said since their sizes are not reliable numbers.
Figure 1 displays the results. The overall rank-
ing distribution is very similar for these corpora
showing the expected Zipf like behaviour in spite
of their different sizes.
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Figure 1: Relative frequency rank for the 1039
trigrams analysed.

Of course, the information coming from Fig-
ure 1 is not sufficient for our purposes. The or-
der of the trigrams could be very different inside
each corpus. Therefore a second test is needed
to compare the rankings of the n-grams in each
corpus. In order to do that we measure the
Kendall’s τ scores between corpora. Kendall’s τ
is a non-parametric method for estimating cor-
relation between datasets (Press et al., 1992).
For the number of trigrams studied here the
Kendall’s scores obtained imply a significant cor-
relation between the corpora with p<0.000001.
The significance indicates that the data are cor-
related and the null hypothesis of statistical
independence is certainly disproved. Unfortu-
nately disproving the null hypothesis does not
give much information about the degree of cor-
relation; it only asserts that it exists. Thus, it
could be a very insignificant correlation. In ta-
ble 1, we display a more intuitive measure to
estimate the correlation, the probability Q that
any 2 trigrams chosen from two corpora have
the same relative ordering in frequency. This
probability is related to Kendall’s τ through the
expression Q = (1 + τ)/2 .

BNC Google Yahoo

BNCf 0.81 0.73 0.78
BNC 0.73 0.77
Google 0.86

Table 1: The probability Q of 2 trigrams hav-
ing the same frequency rank order for different
corpora.

The results show that the four corpora are
certainly correlated, and can probably be used
interchangeably to access most of the statisti-
cal properties of the trigrams. Interestingly, a
higher correlation was observed between Yahoo
and Google than between BNCf and BNC, even
though BNCf is a fragment of BNC, and there-
fore would be expected to have a very high cor-
relation. This suggests that as corpora sizes
increase, so do the correlations between them,
meaning that they are more likely to agree on
the ranking of a given MWE.

5.2 Comparing statistical measures -

are they equivalent?

Here we concentrate on a single corpus, BNCf ,
and compare the three statistical measures for
MWE identification: Mutual Information (MI),
χ2 and Permutation Entropy (PE)(Zhang et al.,
2006), to investigate if they order the trigrams
in the same fashion.

MI and χ2 are typical measures of associa-
tion that compare the joint probability of occur-
rence of a certain group of events p(abc) with
a prediction derived from the null hypothesis
of statistical independence between these events
p∅(abc) = p(a)p(b)p(c) (Press et al., 1992). In
our case the events are the occurrences of words
in a given position in an n-gram. For a trigram
with words w1w2w3, χ2 is calculated as:

χ2 =
∑

a,b,c

[ n(abc) − n∅(abc) ]2

n∅(abc)

where a corresponds either to the word w1 or to
¬w1 (all but the word w1) and so on. n(abc)
is the number of trigrams abc in the corpus,
n∅(abc) = n(a)n(b)n(c)/N2 is the predicted
number from the null hypothesis, n(a) is the
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number of unigrams a, and N the number of
words in the corpus. Mutual Information, in
terms of these numbers, is:

MI =
∑

a,b,c

n(abc)

N
log2

[

n(abc)

n∅(abc)

]

The third measure, permutation entropy, is a
measure of order association. Given the words
w1, w2, and w3, PE is calculated in this work as:

PE = −
∑

(i,j,k)

p(wiwjwk) ln [ p(wiwjwk) ]

where the sum runs over all the permutations
of the indexes and, therefore, over all possible
positions of the selected words in the trigram.
The probabilities are estimated from the number
of occurrences of each permutation of a trigram
(e.g. by and large, large by and, and large by,
and by large, large and by, and by large and) as:

p(w1w2w3) =
n(w1w2w3)

∑

(i,j,k)
n(wiwjwk)

PE was proposed by Zhang et al. (2006) as a
possible measure to detect MWEs, under the
hypothesis that MWEs are more rigid to per-
mutations and therefore present smaller PEs.
Even though it is quite different from MI and
χ2, PE can also be thought as an indirect mea-
sure of statistical independence, since the more
independent the words are the closer PE is from
its maximal value (ln 6, for trigrams). One pos-
sible advantage of this measure over the others
is that it does not rely on single word counts,
which are less accurate in Web based corpora.

Given the rankings produced for each one of
these three measures we again use Kendall’s τ
test to assess correlation and its significance.
Table 2 displays the Q probability of finding
the same ordering in these three measures. The
general conclusion from the table is that even
though there is statistical significance in the cor-
relations found (the p values are not displayed,
but they are very low as before) the differ-
ent measures order the trigrams very differently.
There is a 70% chance of getting the same order
from MI and χ2, but it is safe to say that these
measures are very different from the PE, since
their Q values are very close to pure chance.

MI×χ2 MI×PE χ2×PE

Q 0.71 0.55 0.45

Table 2: The probability Q of having 2 trigrams
with the same rank order for different statistical
measures.

5.3 Comparing Statistical Measures -

are they useful?

The use of statistical measures is widespread in
NLP but there is no consensus about how good
these measures are for describing natural lan-
guage phenomena. It is not clear what exactly
they capture when analysing the data.

In order to evaluate if they would make good
predictors for MWEs, we compare the measures
distributions for MWEs and non-MWEs. For
that we selected as gold standard a set of around
400 MWE candidates annotated by a native
speaker1 as MWEs or not. We then calculated
the histograms for the values of MI, χ2 and
PE for the two groups. MI and χ2 were cal-
culated only for BNCf . Table 3 displays the re-
sults of the Kolmogorov-Smirnof test (Press et
al., 1992) for these histograms, where the first
value is Kolmogorov-Smirnov D value (D∈[0,1]
and large D values indicate large differences be-
tween distributions) and the second is the signif-
icance probability (p) associated to D given the
sizes of the data sets, in this case 90 for MWEs
and 292 for non-MWEs.

MIBNCf
χ2

BNCf
PEY ahoo PEGoogle

D 0.27 0.13 0.27 0.24
p< 0.0001 0.154 0.0001 0.0005

Table 3: Comparison of MI, χ2 and PE

The surprising result is that there is no statis-
tical significance, at least using the Kolmogorov-
Smirnov test, that indicates that being or not
an MWE has some effect in the value of the tri-
gram’s χ2. The same does not happen for MI
or PE. They do seem to differentiate between
MWEs and non-MWEs. As discussed before the
statistical significance implies the existence of an

1The native speaker is a linguist expert in MWEs.
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effect but has very little to say about the inten-
sity of the effect. As in the case of this work our
interest is to use the effect to predict MWEs,
the intensity is very important. In the figures
that follow we show the normalised histograms
for MI, χ2(for the BNCf ) and PE (for the case
of Yahoo) for MWEs and non-MWEs. The ideal
scenario would be to have non overlapping dis-
tributions for the two cases, so a simple thresh-
old operation would be enough to distinguish
MWEs. This is not the case in any of the plots.
Starting from Figure 3 it clearly illustrates the
negative result for χ2 in table 3. The other two
distributions show a visible effect in the form of
a slight displacement of the distributions to the
left for MWEs. In particular for the distribution
of PE, the large peak on the right, representing
the n-grams whose word order is irrelevant with
respect to its occurrence, has an important re-
duction for MWEs.

The statistical measures discussed here are
all different forms of measuring correlations be-
tween the component words of MWEs. There-
fore, as some types of MWEs may have stronger
constraints on word order, we believe that more
visible effects can be seen in these measures if we
look at their application for individual types of
MWEs, which is planned for future work. This
will bring an improvement to the power of MWE
prediction of these measures.
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Figure 2: Normalised histograms of MI values
for MWEs and non-MWEs in BNCf .
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Figure 3: Normalised histograms of χ2 values
for MWEs and non-MWEs in BNCf .
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Figure 4: Normalised histograms of PE values
for MWEs and non-MWEs in Yahoo.

6 Evaluation of the Extensions to

the Grammar

Our ultimate goal is to maximally automate
the process of discovering and handling MWEs.
With good statistical measures, we are able
to distinguish genuine MWE from non-MWEs
among the n-gram candidates. However, from
the perspective of grammar engineering, even
with a good candidate list of MWEs, great ef-
fort is still required in order to incorporate such
word units into a given grammar automatically
and in a precise way.

Zhang et al. (2006) tried a simple “word with
spaces” approach. By acquiring new lexical en-
tries for the MWEs candidates validated by the
statistical measures, the grammar coverage was
shown to improve significantly. However, no fur-
ther investigation on the parser accuracy was re-
ported there.

Taking a closer look at the MWE candidates

1039



proposed, we find that only a small proportion of
them can be handled appropriately by the“word
with spaces” approach of Zhang et al. (2006).
Simply adding new lexical entries for all MWEs
can be a workaround for enhancing the parser
coverage, but the quality of the parser output is
clearly linguistically less interesting.

On the other hand, we also find that a large
proportion of MWEs that cannot be correctly
handled by the grammar can be covered prop-
erly in a constructional way by adding one lex-
ical entry for the head (governing) word of the
MWE. For example, the expression foot the bill
will be correctly handled with a standard head-
complement rule, if there is a transitive verb
reading for the word foot in the lexicon. Some
other examples are: to put forward, the good of,
in combination with, . . . , where lexical exten-
sion to the words in bold will allow the gram-
mar to cover these MWEs. In this paper, we
employ a constructional approach for the acqui-
sition of new lexical entries for the head words
of the MWEs.2

It is arguable that such an approach may lead
to some potential grammar overgeneration, as
there is no selectional restriction expressed in
the new lexical entry. However, as far as the
parsing task is concerned, such overgeneration
is not likely to reduce the accuracy of the gram-
mar significantly as we show later in this paper
through a thorough evaluation.

6.1 Experimental Setup

With the complete list of 1039 MWE candidates
discussed in section 5, we rank each n-gram
according to each of the three statistical mea-
sures. The average of all the rankings is used
as the combined measure of the MWE candi-
dates. Since we are only interested in acquiring
new lexical entries for MWEs which are not cov-
ered by the grammar, we used the error mining
results (Zhang et al., 2006; van Noord, 2004)
to only keep those candidates with parsability
≤ 0.1. The top 30 MWE candidates are used in

2The combination of the “word with space” approach
of Zhang et al. (2006) with the constructional approach
we propose here is an interesting topic that we want to
investigate in future research.

this experiment.

We used simple heuristics in order to extract
the head words from these MWEs:

• the n-grams are POS-tagged with an auto-
matic tagger;

• finite verbs in the n-grams are extracted as
head words;

• nouns are also extracted if there is no verb
in the n-gram.

Occasionally, the tagger errors might introduce
wrong head words. However, the lexical type
predictor of Zhang and Kordoni (2006) that we
used in our experiments did not generate inter-
esting new entries for them in the subsequent
steps, and they were thus discarded, as discussed
below.

With the 30 MWE candidates, we extracted
a sub-corpus from the BNC with 674 sentences
which included at least one of these MWEs. The
lexical acquisition technique described in Zhang
and Kordoni (2006) was used with this sub-
corpus in order to acquire new lexical entries for
the head words. The lexical acquisition model
was trained with the Redwoods treebank (Oepen
et al., 2002), following Zhang et al. (2006).

The lexical prediction model predicted for
each occurrence of the head words a most plau-
sible lexical type in that context. Only those
predictions that occurred 5 times or more were
taken into consideration for the generation of the
new lexical entries. As a result, we obtained 21
new lexical entries.

These new lexical entries were later merged
into the ERG lexicon. To evaluate the grammar
performance with and without these new lexical
entries, we

1. parsed the sub-corpus with/without new
lexical entries and compared the grammar
coverage;

2. inspected the parser output manually and
evaluated the grammar accuracy.

In parsing the sub-corpus, we used the PET
parser (Callmeier, 2001). For the manual eval-
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uation of the parser output, we used the tree-
banking tools of the [incr tsdb()] system (Oepen,
2001).

6.2 Grammar Performance

Table 4 shows that the grammar coverage im-
proved significantly (from 7.1% to 22.7%) with
the acquired lexical entries for the head words
of the MWEs. This improvement in coverage
is largely comparable to the result reported in
(Zhang et al., 2006), where the coverage was re-
ported to raise from 5% to 18% with the “word
with spaces” approach (see also section 4).

It is also worth mentioning that Zhang et al.
(2006) added 373 new lexical entries for a to-
tal of 311 MWE candidates, with an average
of 1.2 entries per MWE. In our experiment, we
achieved a similar coverage improvement with
only 21 new entries for 30 different MWE candi-
dates, with an average of 0.7 entries per MWE.
This suggests that the lexical entries acquired
in our experiment are of much higher linguistic
generality.

To evaluate the grammar accuracy, we man-
ually checked the parser outputs for the sen-
tences in the sub-corpus which received at least
one analysis from the grammar before and af-
ter the lexical extension. Before the lexical ex-
tension, 48 sentences are parsed, among which
32 (66.7%) sentences contain at least one cor-
rect reading (table 4). After adding the 21 new
lexical entries, 153 sentences are parsed, out of
which 124 (81.0%) sentences contain at least one
correct reading.

Baldwin et al. (2004) reported in an earlier
study that for BNC data, about 83% of the sen-
tences covered by the ERG have a correct parse.
In our experiment, we observed a much lower
accuracy on the sub-corpus of BNC which con-
tains a lot of MWEs. However, after the lexical
extension, the accuracy of the grammar recovers
to the normal level.

It is also worth noticing that we did not re-
ceive a larger average number of analyses per
sentence (table 4), as it was largely balanced
by the significant increase of sentences covered
by the new lexical entries. We also found
that the disambiguation model as described by

Toutanova et al. (2002) performed reasonably
well, and the best analysis is ranked among top-
5 for 66% of the cases, and top-10 for 75%.

All of these indicate that our approach of lexi-
cal acquisition for head words of MWEs achieves
a significant improvement in grammar coverage
without damaging the grammar accuracy. Op-
tionally, the grammar developers can check the
validity of the lexical entries before they are
added into the lexicon. Nonetheless, even a
semi-automatic procedure like this can largely
reduce the manual work of grammar writers.

7 Conclusions

In this paper we looked at some of the issues
involved in the evaluation of the identification
of MWEs. In particular we evaluated the use
of three statistical measures for automatically
identifying MWEs. The results suggest that at
least two of them (MI and PE) can distinguish
MWEs. In terms of the corpora used, a sur-
prisingly higher level of agreement was found
between different corpora (Google and Yahoo)
than between two fragments of the same one.
This tells us two lessons. First that even though
Google and Yahoo were not carefully built to be
language corpora their sizes compensate for that
making them fairly good samples of language
usage. Second, a fraction of a smaller well bal-
anced corpus may not necessarily be as balanced
as the whole.

Furthermore, we argued that for precise gram-
mar engineering it is important to perform a
careful evaluation of the effects of including au-
tomatically acquired MWEs to a grammar. We
looked at the evaluation of the effects in cover-
age, size of the grammar and accuracy of the
parses after adding the MWE-candidates. We
adopted a compositional approach to the en-
coding of MWEs, using some heuristics to de-
tect the head of an MWE, and this resulted in
a smaller grammar than that by Zhang et al.
(2006), still achieving a similar increase in cov-
erage and maintaining a high level of accuracy of
parses, comparable to that reported by Baldwin
et al. (2004).

The statistical measures are currently only
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item # parsed # avg. analysis # coverage %

ERG 674 48 335.08 7.1%
ERG + MWE 674 153 285.01 22.7%

Table 4: ERG coverage with/without lexical acquisition for the head words of MWEs

used in a preprocessing step to filter the non-
MWEs for the lexical type predictor. Alterna-
tively, the statistical outcomes can be incorpo-
rated more tightly, i.e. to combine with the lex-
ical type predictor and give confidence scores on
the resulting lexical entries. These possibilities
will be explored in future work.
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Abstract 

We present a data-driven variant of the LR 
algorithm for dependency parsing, and ex-
tend it with a best-first search for probabil-
istic generalized LR dependency parsing.  
Parser actions are determined by a classifi-
er, based on features that represent the cur-
rent state of the parser.  We apply this pars-
ing framework to both tracks of the CoNLL 
2007 shared task, in each case taking ad-
vantage of multiple models trained with 
different learners.  In the multilingual track, 
we train three LR models for each of the 
ten languages, and combine the analyses 
obtained with each individual model with a 
maximum spanning tree voting scheme.  In 
the domain adaptation track, we use two 
models to parse unlabeled data in the target 
domain to supplement the labeled out-of-
domain training set, in a scheme similar to 
one iteration of co-training. 

1 Introduction 

There are now several approaches for multilingual 
dependency parsing, as demonstrated in the 
CoNLL 2006 shared task (Buchholz and Marsi, 
2006).  The dependency parsing approach pre-
sented here extends the existing body of work 
mainly in four ways:  
1. Although stepwise1  dependency parsing has 

commonly been performed using parsing algo-

                                                
1 Stepwise parsing considers each step in a parsing algo-
rithm separately, while all-pairs parsing considers entire 

rithms designed specifically for this task, such 
as those described by Nivre (2003) and Yamada 
and Matsumoto (2003), we show that this can 
also be done using the well known LR parsing 
algorithm (Knuth, 1965), providing a connec-
tion between current research on shift-reduce 
dependency parsing and previous parsing work 
using LR and GLR models;  

2. We generalize the standard deterministic step-
wise framework to probabilistic parsing, with 
the use of a best-first search strategy similar to 
the one employed in constituent parsing by Rat-
naparkhi (1997) and later by Sagae and Lavie 
(2006);  

3. We provide additional evidence that the parser 
ensemble approach proposed by Sagae and La-
vie (2006a) can be used to improve parsing ac-
curacy, even when only a single parsing algo-
rithm is used, as long as variation can be ob-
tained, for example, by using different learning 
techniques or changing parsing direction from 
forward to backward (of course, even greater 
gains may be achieved when different algo-
rithms are used, although this is not pursued 
here); and, finally, 

4. We present a straightforward way to perform 
parser domain adaptation using unlabeled data 
in the target domain. 

 
We entered a system based on the approach de-

scribed in this paper in the CoNLL 2007 shared 

                                                                          
trees.  For a more complete definition, see the CoNLL-
X shared task description paper (Buchholz and Marsi, 
2006). 
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task (Nivre et al., 2007), which differed from the 
2006 edition by featuring two separate tracks, one 
in multilingual parsing, and a new track on domain 
adaptation for dependency parsers.  In the multi-
lingual parsing track, participants train dependency 
parsers using treebanks provided for ten languages: 
Arabic (Hajic et al., 2004), Basque (Aduriz et al. 
2003), Catalan (Martí et al., 2007), Chinese (Chen 
et al., 2003), Czech (Böhmova et al., 2003), Eng-
lish (Marcus et al., 1993; Johansson and Nugues, 
2007), Greek (Prokopidis et al., 2005), Hungarian 
(Czendes et al., 2005), Italian (Montemagni et al., 
2003), and Turkish (Oflazer et al.,  2003).  In the 
domain adaptation track, participants were pro-
vided with English training data from the Wall 
Street Journal portion of the Penn Treebank (Mar-
cus et al., 1993) converted to dependencies (Jo-
hansson and Nugues, 2007) to train parsers to be 
evaluated on material in the biological (develop-
ment set) and chemical (test set) domains (Kulick 
et al., 2004), and optionally on text from the 
CHILDES database (MacWhinney, 2000; Brown, 
1973). 

 Our system’s accuracy was the highest in the 
domain adaptation track (with labeled attachment 
score of 81.06%), and only 0.43% below the top 
scoring system in the multilingual parsing track 
(our average labeled attachment score over the ten 
languages was 79.89%).  We first describe our ap-
proach to multilingual dependency parsing, fol-
lowed by our approach for domain adaptation.  We 
then provide an analysis of the results obtained 
with our system, and discuss possible improve-
ments. 

2 A Probabilistic LR Approach for De-
pendency Parsing 

Our overall parsing approach uses a best-first 
probabilistic shift-reduce algorithm based on the 
LR algorithm (Knuth, 1965).  As such, it follows a 
bottom-up strategy, or bottom-up-trees, as defined 
in Buchholz and Marsi (2006), in contrast to the 
shift-reduce dependency parsing algorithm de-
scribed by Nivre (2003), which is a bottom-up/top-
down hybrid, or bottom-up-spans.  It is unclear 
whether the use of a bottom-up-trees algorithm has 
any advantage over the use of a bottom-up-spans 
algorithm (or vice-versa) in practice, but the avail-
ability of different algorithms that perform the 
same parsing task could be advantageous in parser 

ensembles.  The main difference between our pars-
er and a traditional LR parser is that we do not use 
an LR table derived from an explicit grammar to 
determine shift/reduce actions.  Instead, we use a 
classifier with features derived from much of the 
same information contained in an LR table: the top 
few items on the stack, and the next few items of 
lookahead in the remaining input string.  Addition-
ally, following Sagae and Lavie (2006), we extend 
the basic deterministic LR algorithm with a best-
first search, which results in a parsing strategy sim-
ilar to generalized LR parsing (Tomita, 1987; 
1990), except that we do not perform Tomita’s 
stack-merging operations.   

The resulting algorithm is projective, and non-
projectivity is handled by pseudo-projective trans-
formations as described in (Nivre and Nilsson, 
2005).  We use Nivre and Nilsson’s PATH 
scheme2. 

For clarity, we first describe the basic variant of 
the LR algorithm for dependency parsing, which is 
a deterministic stepwise algorithm.  We then show 
how we extend the deterministic parser into a best-
first probabilistic parser. 

2.1 Dependency Parsing with a Data-Driven 
Variant of the LR Algorithm 

The two main data structures in the algorithm are a 
stack S and a queue Q.  S holds subtrees of the fi-
nal dependency tree for an input sentence, and Q 
holds the words in an input sentence.  S is initia-
lized to be empty, and Q is initialized to hold every 
word in the input in order, so that the first word in 
the input is in the front of the queue.3 

The parser performs two main types of actions: 
shift and reduce.  When a shift action is taken, a 
word is shifted from the front of Q, and placed on 
the top of S (as a tree containing only one node, the 
word itself).  When a reduce action is taken, the 

                                                
2 The PATH scheme was chosen (even though Nivre and 
Nilsson report slightly better results with the HEAD 
scheme) because it does not result in a potentially qua-
dratic increase in the number of dependency label types, 
as observed with the HEAD and HEAD+PATH 
schemes.  Unfortunately, experiments comparing the 
use of the different pseudo-projectivity schemes were 
not performed due to time constraints. 
3 We append a “virtual root” word to the beginning of 
every sentence, which is used as the head of every word 
in the dependency structure that does not have a head in 
the sentence. 
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two top items in S (s1 and s2) are popped, and a 
new item is pushed onto S.  This new item is a tree 
formed by making the root s1 of a dependent of the 
root of s2, or the root of s2 a dependent of the root 
of s1.  Depending on which of these two cases oc-
cur, we call the action reduce-left or reduce-right, 
according to whether the head of the new tree is to 
the left or to the right its new dependent.  In addi-
tion to deciding the direction of a reduce action, 
the label of the newly formed dependency arc must 
also be decided.  

Parsing terminates successfully when Q is emp-
ty (all words in the input have been processed) and 
S contains only a single tree (the final dependency 
tree for the input sentence).  If Q is empty, S con-
tains two or more items, and no further reduce ac-
tions can be taken, parsing terminates and the input 
is rejected.  In such cases, the remaining items in S 
contain partial analyses for contiguous segments of 
the input. 

2.2 A Probabilistic LR Model for Dependen-
cy Parsing 

In the traditional LR algorithm, parser states are 
placed onto the stack, and an LR table is consulted 
to determine the next parser action.  In our case, 
the parser state is encoded as a set of features de-
rived from the contents of the stack S and queue Q, 
and the next parser action is determined according 
to that set of features.  In the deterministic case 
described above, the procedure used for determin-
ing parser actions (a classifier, in our case) returns 
a single action.  If, instead, this procedure returns a 
list of several possible actions with corresponding 
probabilities, we can then parse with a model simi-
lar to the probabilistic LR models described by 
Briscoe and Carroll (1993), where the probability 
of a parse tree is the product of the probabilities of 
each of the actions taken in its derivation. 

To find the most probable parse tree according 
to the probabilistic LR model, we use a best-first 
strategy.  This involves an extension of the deter-
ministic shift-reduce into a best-first shift-reduce 
algorithm.  To describe this extension, we first in-
troduce a new data structure Ti that represents a 
parser state, which includes a stack Si, a queue Qi, 
and a probability Pi.  The deterministic algorithm 
is a special case of the probabilistic algorithm 
where we have a single parser state T0 that contains 
S0 and Q0, and the probability of the parser state is 
1.  The best-first algorithm, on the other hand, 

keeps a heap H containing multiple parser states 
T0... Tm.  These states are ordered in the heap ac-
cording to their probabilities, which are determined 
by multiplying the probabilities of each of the 
parser actions that resulted in that parser state.  The 
heap H is initialized to contain a single parser state 
T0, which contains a stack S0, a queue Q0 and prob-
ability P0 = 1.0.  S0 and Q0 are initialized in the 
same way as S and Q in the deterministic algo-
rithm.  The best-first algorithm then loops while H 
is non-empty.  At each iteration, first a state Tcurrent 
is popped from the top of H.  If Tcurrent corresponds 
to a final state (Qcurrent is empty and Scurrent contains 
a single item), we return the single item in Scurrent 
as the dependency structure corresponding to the 
input sentence.  Otherwise, we get a list of parser 
actions act0...actn (with associated probabilities 
Pact0...Pactn) corresponding to state Tcurrent.  For 
each of these parser actions actj, we create a new 
parser state Tnew by applying actj to Tcurrent, and set 
the probability Tnew to be Pnew = Pcurrnet * Pactj.  
Then, Tnew is inserted into the heap H.  Once new 
states have been inserted onto H for each of the n 
parser actions, we move on to the next iteration of 
the algorithm. 

3 Multilingual Parsing Experiments 

For each of the ten languages for which training 
data was provided in the multilingual track of the 
CoNLL 2007 shared task, we trained three LR 
models as follows.  The first LR model for each 
language uses maximum entropy classification 
(Berger et al., 1996) to determine possible parser 
actions and their probabilities4.  To control overfit-
ting in the MaxEnt models, we used box-type in-
equality constraints (Kazama and Tsujii, 2003). 
The second LR model for each language also uses 
MaxEnt classification, but parsing is performed 
backwards, which is accomplished simply by re-
versing the input string before parsing starts.  Sa-
gae and Lavie (2006a) and Zeman and Žabokrtský 
(2005) have observed that reversing the direction 
of stepwise parsers can be beneficial in parser 
combinations. The third model uses support vector 
machines5  (Vapnik, 1995) using the polynomial 
                                                
4 Implementation by Yoshimasa Tsuruoka, available at 
http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/ 
5 Implementation by Taku Kudo, available at 
http://chasen.org/~taku/software/TinySVM/ and all vs. 
all was used for multi-class classification. 
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kernel with degree 2. Probabilities were estimated 
for SVM outputs using the method described in 
(Platt, 1999), but accuracy improvements were not 
observed during development when these esti-
mated probabilities were used instead of simply the 
single best action given by the classifier (with 
probability 1.0), so in practice the SVM parsing 
models we used were deterministic. 

At test time, each input sentence is parsed using 
each of the three LR models, and the three result-
ing dependency structures are combined according 
to the maximum-spanning-tree parser combination 
scheme6 (Sagae and Lavie, 2006a) where each de-
pendency proposed by each of the models has the 
same weight (it is possible that one of the more 
sophisticated weighting schemes proposed by Sa-
gae and Lavie may be more effective, but these 
were not attempted).  The combined dependency 
tree is the final analysis for the input sentence. 

Although it is clear that fine-tuning could pro-
vide accuracy improvements for each of the mod-
els in each language, the same set of meta-
parameters and features were used for all of the ten 
languages, due to time constraints during system 
development.  The features used were7:  

 
• For the subtrees in S(1) and S(2) 

• the number of children of the root word of 
the subtrees; 

• the number of children of the root word of 
the subtree to the right of the root word; 

• the number of children of the root word of 
the subtree to the left of the root word; 

• the POS tag and DEPREL of the rightmost 
and leftmost children;  

• The POS tag of the word immediately to the 
right of the root word of S(2); 

• The POS tag of the word immediately to the 
left of S(1); 

                                                
6 Each dependency tree is deprojectivized before the 
combination occurs. 
7 S(n) denotes the nth item from the top of the stack 
(where S(1) is the item on top of the stack), and Q(n) 
denotes the nth item in the queue.  For a description of 
the features names in capital letters, see the shared task 
description (Nivre et al., 2007). 

• The previous parser action; 

• The features listed for the root words of the 
subtrees in table 1.   

In addition, the MaxEnt models also used selected 
combinations of these features.  The classes used 
to represent parser actions were designed to encode 
all aspects of an action (shift vs. reduce, right vs. 
left, and dependency label) simultaneously. 

Results for each of the ten languages are shown 
in table 2 as labeled and unlabeled attachment 
scores, along with the average labeled attachment 
score and highest labeled attachment score for all 
participants in the shared task.  Our results shown 
in boldface were among the top three scores for 
those particular languages (five out of the ten lan-
guages). 
 

 
 S(1) S(2) S(3) Q(0) Q(1) Q(3) 
WORD x x x x x  
LEMMA  x x  x   
POS x x x x x x 
CPOS x x  x   
FEATS x x  x   

Table 1: Additional features. 
 

 
 

Language LAS UAS Avg 
LAS 

Top 
LAS 

Arabic 74.71 84.04 68.34 76.52 
Basque 74.64 81.19 68.06 76.94 
Catalan 88.16 93.34 79.85 88.70 
Chinese 84.69 88.94 76.59 84.69 
Czech 74.83 81.27 70.12 80.19 
English 89.01 89.87 80.95 89.61 
Greek 73.58 80.37 70.22 76.31 
Hungarian 79.53 83.51 71.49 80.27 
Italian 83.91 87.68 78.06 84.40 
Turkish 75.91 82.72 70.06 79.81 
ALL  79.90 85.29 65.50 80.32 

Table 2: Multilingual results. 
 
 

4 Domain Adaptation Experiments 

In a similar way as we used multiple LR models in 
the multilingual track, in the domain adaptation 
track we first trained two LR models on the out-of-
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domain labeled training data.  The first was a for-
ward MaxEnt model, and the second was a back-
ward SVM model.  We used these two models to 
perform a procedure similar to a single iteration of 
co-training, except that selection of the newly (au-
tomatically) produced training instances was done 
by selecting sentences for which the two models 
produced identical analyses.  On the development 
data we verified that sentences for which there was 
perfect agreement between the two models had 
labeled attachment score just above 90 on average, 
even though each of the models had accuracy be-
tween 78 and 79 over the entire development set. 

Our approach was as follows:  
 

1. We trained the forward MaxEnt and backward 
SVM models using the out-of-domain labeled 
training data;  

2. We then used each of the models to parse the 
first two of the three sets of domain-specific 
unlabeled data that were provided (we did not 
use the larger third set) 

3. We compared the output for the two models, 
and selected only identical analyses that were 
produced by each of the two separate models;  

4. We added those analyses (about 200k words in 
the test domain) to the original (out-of-
domain) labeled training set;  

5. We retrained the forward MaxEnt model with 
the new larger training set; and finally  

6. We used this model to parse the test data. 

Following this procedure we obtained a labeled 
attachment score of 81.06, and unlabeled attach-
ment score of 83.42, both the highest scores for 
this track.  This was done without the use of any 
additional resources (closed track), but these re-
sults are also higher than the top score for the open 
track, where the use of certain additional resources 
was allowed.  See (Nivre et al., 2007). 

5 Analysis and Discussion 

One of the main assumptions in our use of differ-
ent models based on the same algorithm is that 
while the output generated by those models may 
often differ, agreement between the models is an 
indication of correctness.  In our domain adapta-
tion approach, this was clearly true.  In fact, the 

approach would not have worked if this assump-
tion was false.  Experiments on the development 
set were encouraging.  As stated before, when the 
parsers agreed, labeled attachment score was over 
90, even though the score of each model alone was 
lower than 79.  The domain-adapted parser had a 
score of 82.1, a significant improvement.  Interes-
tingly, the ensemble used in the multilingual track 
also produced good results on the development set 
for the domain adaptation data, without the use of 
the unlabeled data at all, with a score of 81.9 (al-
though the ensemble is more expensive to run). 

The different models used in each track were 
distinct in a few ways: (1) direction (forward or 
backward); (2) learner (MaxEnt or SVM); and (3) 
search strategy (best-first or deterministic).  Of 
those differences, the first one is particularly inter-
esting in single-stack shift-reduce models, as ours.  
In these models, the context to each side of a (po-
tential) dependency differs in a fundamental way.  
To one side, we have tokens that have already been 
processed and are already in subtrees, and to the 
other side we simply have a look-ahead of the re-
maining input sentence.  This way, the context of 
the same dependency in a forward parser may dif-
fer significantly from the context of the same de-
pendency in a backward parser.  Interestingly, the 
accuracy scores of the MaxEnt backward models 
were found to be generally just below the accuracy 
of their corresponding forward models when tested 
on development data, with two exceptions: Hunga-
rian and Turkish.  In Hungarian, the accuracy 
scores produced by the forward and backward 
MaxEnt LR models were not significantly differ-
ent, with both labeled attachment scores at about 
77.3 (the SVM model score was 76.1, and the final 
combination score on development data was 79.3).  
In Turkish, however, the backward score was sig-
nificantly higher than the forward score, 75.0 and 
72.3, respectively. The forward SVM score was 
73.1, and the combined score was 75.8.   In expe-
riments performed after the official submission of 
results, we evaluated a backward SVM model 
(which was trained after submission) on the same 
development set, and found it to be significantly 
more accurate than the forward model, with a score 
of 75.7.  Adding that score to the combination 
raised the combination score to 77.9 (a large im-
provement from 75.8).  The likely reason for this 
difference is that over 80% of the dependencies in 
the Turkish data set have the head to the right of 
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the dependent, while only less than 4% have the 
head to the left.  This means that the backward 
model builds much more partial structure in the 
stack as it consumes input tokens, while the for-
ward model must consume most tokens before it 
starts making attachments.  In other words, context 
in general in the backward model has more struc-
ture, and attachments are made while there are still 
look-ahead tokens, while the opposite is generally 
true in the forward model. 

6 Conclusion  

Our results demonstrate the effectiveness of even 
small ensembles of parsers that are relatively 
similar (using the same features and the same 
algorithm).  There are several possible extensions 
and improvements to the approach we have 
described.  For example, in section 3 we mention 
the use of different weighting schemes in 
dependency voting.  We list additional ideas that 
were not attempted due to time constraints, but that 
are likely to produce improved results. 

One of the simplest improvements to our ap-
proach is simply to train more models with no oth-
er changes to our set-up.  As mentioned in section 
5, the addition of a backward SVM model did im-
prove accuracy on the Turkish set significantly, 
and it is likely that improvements would also be 
obtained in other languages.  In addition, other 
learning approaches, such as memory-based lan-
guage processing (Daelemans and Van den Bosch, 
2005), could be used.  A drawback of adding more 
models that became obvious in our experiments 
was the increased cost of both training (for exam-
ple, the SVM parsers we used required significant-
ly longer to train than the MaxEnt parsers) and 
run-time (parsing with MBL models can be several 
times slower than with MaxEnt, or even SVM).  A 
similar idea that may be more effective, but re-
quires more effort, is to add parsers based on dif-
ferent approaches.  For example, using MSTParser 
(McDonald and Pereira, 2005), a large-margin all-
pairs parser, in our domain adaptation procedure 
results in significantly improved accuracy (83.2 
LAS).  Of course, the use of different approaches 
used by different groups in the CoNLL 2006 and 
2007 shared tasks represents great opportunity for 
parser ensembles. 
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Abstract

We describe some challenges of adaptation
in the 2007 CoNLL Shared Task on Domain
Adaptation. Our error analysis for this task
suggests that a primary source of error is
differences in annotation guidelines between
treebanks. Our suspicions are supported by
the observation that no team was able to im-
prove target domain performance substan-
tially over a state of the art baseline.

1 Introduction

Dependency parsing, an important NLP task, can be
done with high levels of accuracy. However, adapt-
ing parsers to new domains without target domain
labeled training data remains an open problem. This
paper outlines our participation in the 2007 CoNLL
Shared Task on Domain Adaptation (Nivre et al.,
2007). The goal was to adapt a parser trained on
a single source domain to a new target domain us-
ing only unlabeled data. We were given around
15K sentences of labeled text from the Wall Street
Journal (WSJ) (Marcus et al., 1993; Johansson and
Nugues, 2007) as well as 200K unlabeled sentences.
The development data was 200 sentences of labeled
biomedical oncology text (BIO, the ONCO portion
of the Penn Biomedical Treebank), as well as 200K
unlabeled sentences (Kulick et al., 2004). The two
test domains were a collection of medline chem-
istry abstracts (pchem, the CYP portion of the Penn
Biomedical Treebank) and the Child Language Data
Exchange System corpus (CHILDES) (MacWhin-
ney, 2000; Brown, 1973). We used the second or-
der two stage parser and edge labeler of McDonald
et al. (2006), which achieved top results in the 2006

CoNLL-X shared task. Preliminary experiments in-
dicated that the edge labeler was fairly robust to do-
main adaptation, lowering accuracy by 3% in the de-
velopment domain as opposed to 2% in the source,
so we focused on unlabeled dependency parsing.

Our system did well, officially coming in 3rd
place out of 12 teams and within 1% of the top sys-
tem (Table 1). 1 In unlabeled parsing, we scored
1st and 2nd on CHILDES and pchem respectively.
However, our results were obtained without adap-
tation. Given our position in the ranking, this sug-
gests that no team was able to significantly improve
performance on either test domain beyond that of a
state-of-the-art parser.

After much effort in developing adaptation meth-
ods, it is critical to understand the causes of these
negative results. In what follows, we provide an er-
ror analysis that attributes domain loss for this task
to a difference in annotation guidelines between do-
mains. We then overview our attempts to improve
adaptation. While we were able to show limited
adaptation on reduced training data or with first-
order features, no modifications improved parsing
with all the training data and second-order features.

2 Parsing Challenges

We begin with an error analysis for adaptation be-
tween WSJ and BIO. We divided the available WSJ
data into a train and test set, trained a parser on
the train set and compared errors on the test set
and BIO. Accuracy dropped from 90% on WSJ to
84% on BIO. We then computed the fraction of er-
rors involving each POS tag. For the most common

1While only 8 teams participated in the closed track with us,
our score beat all of the teams in the open track.
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pchem l pchem ul childes ul bio ul
Ours 80.22 83.38 61.37 83.93
Best 81.06 83.42 61.37 -
Mean 73.03 76.42 57.89 -
Rank 3rd 2nd 1st -

Table 1: Official labeled (l) and other unlabeled (ul)
submitted results for the two test domains (pchem
and childes) and development data accuracy (bio).
The parser was trained on the provided WSJ data.

POS types, the loss (difference in source and tar-
get error) was: verbs (2%), conjunctions (5%), dig-
its (23%), prepositions (4%), adjectives (3%), de-
terminers (4%) and nouns (9%). 2 Two POS types
stand out: digits and nouns. Digits are less than
4% of the tokens in BIO. Errors result from the BIO
annotations for long sequences of digits which do
not appear in WSJ. Since these annotations are new
with respect to the WSJ guidelines, it is impossi-
ble to parse these without injecting knowledge of
the annotation guidelines. 3 Nouns are far more
common, comprising 33% of BIO and 30% of WSJ
tokens, the most popular POS tag by far. Addi-
tionally, other POS types listed above (adjectives,
prepositions, determiners, conjunctions) often attach
to nouns. To confirm that nouns were problem-
atic, we modified a first-order parser (no second or-
der features) by adding a feature indicating correct
noun-noun edges, forcing the parser to predict these
edges correctly. Adaptation performance rose on
BIO from 78% without the feature to 87% with the
feature. This indicates that most of the loss comes
from missing these edges.

The primary problem for nouns is the difference
between structures in each domain. The annota-
tion guidelines for the Penn Treebank flattened noun
phrases to simplify annotation (Marcus et al., 1993),
so there is no complex structure to NPs. Kübler
(2006) showed that it is difficult to compare the
Penn Treebank to other treebanks with more com-
plex noun structures, such as BIO. Consider the WSJ
phrase “the New York State Insurance Department”.
The annotation indicates a flat structure, where ev-

2We measured these drops on several other dependency
parsers and found similar results.

3For example, the phrase “(R = 28% (10/26); K=10% (3/29);
chi2 test: p=0.014).”

ery token is headed by “Department”. In contrast,
a similar BIO phrase has a very different structure,
pursuant to the BIO guidelines. For “the detoxi-
cation enzyme glutathione transferase P1-1”, “en-
zyme” is the head of the NP, “P1-1” is the head of
“transferase”, and “transferase” is the head of “glu-
tathione”. Since the guidelines differ, we observe no
corresponding structure in the WSJ. It is telling that
the parser labels this BIO example by attaching ev-
ery token to the final proper noun “P1-1”, exactly as
the WSJ guidelines indicate. Unlabeled data cannot
indicate that BIO uses a different standard.

Another problem concerns appositives. For ex-
ample, the phrase “Howard Mosher, president and
chief executive officer,” has “Mosher” as the head
of “Howard” and of the appositive NP delimited by
commas. While similar constructions occur in BIO,
there are no commas to indicate this. An example is
the above BIO NP, in which the phrase “glutathione
transferase P1-1” is an appositive indicating which
“enzyme” is meant. However, since there are no
commas, the parser thinks “P1-1” is the head. How-
ever, there are not many right to left attaching nouns.

In addition to a change in the annotation guide-
lines for NPs, we observed an important difference
in the distribution of POS tags. NN tags were almost
twice as likely in the BIO domain (14% in WSJ and
25% in BIO). NNP tags, which are close to 10% of
the tags in WSJ, are nonexistent in BIO (.24%). The
cause for this is clear when the annotation guide-
lines are considered. The proper nouns in WSJ are
names of companies, people and places, while in
BIO they are names of genes, proteins and chemi-
cals. However, for BIO these nouns are labeled NN
instead of NNP. This decision effectively removes
NNP from the BIO domain and renders all features
that depend on the NNP tag ineffective. In our above
BIO NP example, all nouns are labeled NN, whereas
the WSJ example contains NNP tags. The largest
tri-gram differences involve nouns, such as NN-NN-
NN, NNP-NNP-NNP, NN-IN-NN, and IN-NN-NN.
However, when we examine the coarse POS tags,
which do not distinguish between nouns, these dif-
ferences disappear. This indicates that while the
overall distribution of POS tags is similar between
the domains, the fine grained tags differ. These fine
grained tags provide more information than coarse
tags; experiments that removed fine grained tags
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hurt WSJ performance but did not affect BIO.

Finally, we examined the effect of unknown
words. Not surprisingly, the most significant dif-
ferences in error rates concerned dependencies be-
tween words of which one or both were unknown
to the parser. For two words that were seen in the
training data loss was 4%, for a single unknown
word loss was 15%, and 26% when both words were
unknown. Both words were unknown only 5% of
the time in BIO, while one of the words being un-
known was more common, reflecting 27% of deci-
sions. Upon further investigation, the majority of
unknown words were nouns, which indicates that
unknown word errors were caused by the problems
discussed above.

Recent theoretical work on domain adapta-
tion (Ben-David et al., 2006) attributes adaptation
loss to two sources: the difference in the distribu-
tion between domains and the difference in label-
ing functions. Adaptation techniques focus on the
former since it is impossible to determine the lat-
ter without knowledge of the labeling function. In
parsing adaptation, the former corresponds to a dif-
ference between the features seen in each domain,
such as new words in the target domain. The de-
cision function corresponds to differences between
annotation guidelines between two domains. Our er-
ror analysis suggests that the primary cause of loss
from adaptation is from differences in the annotation
guidelines themselves. Therefore, significant im-
provements cannot be made without specific knowl-
edge of the target domain’s annotation standards. No
amount of source training data can help if no rele-
vant structure exists in the data. Given the results
for the domain adaptation track, it appears no team
successfully adapted a state-of-the-art parser.

3 Adaptation Approaches

We survey the main approaches we explored for this
task. While some of these approaches provided a
modest performance boost to a simple parser (lim-
ited data and first-order features), no method added
any performance to our best parser (all data and
second-order features).

3.1 Features

A natural approach to improving parsing is to mod-
ify the feature set, both by removing features less
likely to transfer and by adding features that are
more likely to transfer. We began with the first ap-
proach and removed a large number of features that
we believed transfered poorly, such as most features
for noun-noun edges. We obtained a small improve-
ment in BIO performance on limited data only. We
then added several different types of features, specif-
ically designed to improve noun phrase construc-
tions, such as features based on the lexical position
of nouns (common position in NPs), frequency of
occurrence, and NP chunking information. For ex-
ample, trained on in-domain data, nouns that occur
more often tend to be heads. However, none of these
features transfered between domains.

A final type of feature we added was based on
the behavior of nouns, adjectives and verbs in each
domain. We constructed a feature representation
of words based on adjacent POS and words and
clustered words using an algorithm similar to that
of Saul and Pereira (1997). For example, our clus-
tering algorithm grouped first names in one group
and measurements in another. We then added the
cluster membership as a lexical feature to the parser.
None of the resulting features helped adaptation.

3.2 Diversity

Training diversity may be an effective source for
adaptation. We began by adding information from
multiple different parsers, which has been shown
to improve in-domain parsing. We added features
indicating when an edge was predicted by another
parser and if an edge crossed a predicted edge, as
well as conjunctions with edge types. This failed
to improve BIO accuracy since these features were
less reliable at test time. Next, we tried instance
bagging (Breiman, 1996) to generate some diversity
among parsers. We selected with replacement 2000
training examples from the training data and trained
three parsers. Each parser then tagged the remain-
ing 13K sentences, yielding 39K parsed sentences.
We then shuffled these sentences and trained a final
parser. This failed to improve performance, possibly
because of conflicting annotations or because of lack
of sufficient diversity. To address conflicting annota-
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tions, we added slack variables to the MIRA learn-
ing algorithm (Crammer et al., 2006) used to train
the parsers, without success. We measured diversity
by comparing the parses of each model. The dif-
ference in annotation agreement between the three
instance bagging parsers was about half the differ-
ence between these parsers and the gold annotations.
While we believe this is not enough diversity, it was
not feasible to repeat our experiment with a large
number of parsers.

3.3 Target Focused Learning

Another approach to adaptation is to favor training
examples that are similar to the target. We first mod-
ified the weight given by the parser to each training
sentence based on the similarity of the sentence to
target domain sentences. This can be done by mod-
ifying the loss to limit updates in cases where the
sentence does not reflect the target domain. We tried
a number of criteria to weigh sentences without suc-
cess, including sentence length and number of verbs.
Next, we trained a discriminative model on the pro-
vided unlabeled data to predict the domain of each
sentence based on POS n-grams in the sentence.
Training sentences with a higher probability of be-
ing in the target domain received higher weights,
also without success. Further experiments showed
that any decrease in training data hurt parser perfor-
mance. It would seem that the parser has no dif-
ficulty learning important training sentences in the
presence of unimportant training examples.

A related idea focused on words, weighing highly
tokens that appeared frequently in the target domain.
We scaled the loss associated with a token by a fac-
tor proportional to its frequency in the target do-
main. We found certain scaling techniques obtained
tiny improvements on the target domain that, while
significant compared to competition results, are not
statistically significant. We also attempted a sim-
ilar approach on the feature level. A very predic-
tive source domain feature is not useful if it does
not appear in the target domain. However, limiting
the feature space to target domain features had no
effect. Instead, we scaled each feature’s value by a
factor proportional to its frequency in the target do-
main and trained the parser on these scaled feature
values. We obtained small improvements on small
amounts of training data.

4 Future Directions

Given our pessimistic analysis and the long list of
failed methods, one may wonder if parser adapta-
tion is possible at all. We believe that it is. First,
there may be room for adaptation with our domains
if a common annotation scheme is used. Second,
we have stressed that typical adaptation, modifying
a model trained on the source domain, will fail but
there may be unsupervised parsing techniques that
improve performance after adaptation, such as a rule
based NP parser for BIO based on knowledge of the
annotations. However, this approach is unsatisfying
as it does not allow general purpose adaptation.

5 Acknowledgments

We thank Joel Wallenberg and Nikhil Dinesh for
their informative and helpful linguistic expertise,
Kevin Lerman for his edge labeler code, and Koby
Crammer for helpful conversations. Dredze is sup-
ported by a NDSEG fellowship; Ganchev and Taluk-
dar by NSF ITR EIA-0205448; and Blitzer by
DARPA under Contract No. NBCHD03001. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
author(s) and do not necessarily reflect the views of
the DARPA or the Department of Interior-National
Business Center (DOI-NBC).

References
Shai Ben-David, John Blitzer, Koby Crammer, and Fer-

nando Pereira. 2006. Analysis of representations for
domain adaptation. In NIPS.

Leo Breiman. 1996. Bagging predictors. Machine
Learning, 24(2):123–140.

R. Brown. 1973. A First Language: The Early Stages.
Harvard University Press.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 7:551–585, Mar.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA).
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Abstract 

In this paper, we present an election predic-
tion system (Crystal) based on web users’ 
opinions posted on an election prediction 
website. Given a prediction message, Crys-
tal first identifies which party the message 
predicts to win and then aggregates predic-
tion analysis results of a large amount of 
opinions to project the election results. We 
collect past election prediction messages 
from the Web and automatically build a 
gold standard. We focus on capturing lexi-
cal patterns that people frequently use 
when they express their predictive opinions 
about a coming election. To predict elec-
tion results, we apply SVM-based super-
vised learning. To improve performance, 
we propose a novel technique which gener-
alizes n-gram feature patterns. Experimen-
tal results show that Crystal significantly 
outperforms several baselines as well as a 
non-generalized n-gram approach. Crystal 
predicts future elections with 81.68% accu-
racy. 

1 Introduction 

As a growing number of people use the Web as a 
medium for expressing their opinions, the Web is 
becoming a rich source of various opinions in the 
form of product reviews, travel advice, social issue 
discussions, consumer complaints, stock market 
predictions, real estate market predictions, etc. 

At least two categories of opinions can be iden-
tified. One consists of opinions such as “I 
like/dislike it”, and the other consists of opinions 
like “It is likely/unlikely to happen.” We call the 

first category Judgment Opinions and the second 
(those discussing the future) Predictive Opinions. 
Judgment opinions express positive or negative 
sentiment about a topic such as, for example, re-
views about cameras, movies, books, or hotels, and 
discussions about topics like abortion and war. In 
contrast, predictive opinions express a person's 
opinion about the future of a topic or event such as 
the housing market, a popular sports match, and 
national election, based on his or her belief and 
knowledge. 

Due to the different nature of these two catego-
ries of opinion, each has different valences. Judg-
ment opinions have core valences of positive and 
negative. For example, “liking a product” and 
“supporting abortion” have the valence “positive” 
toward each topic (namely “a product” and “abor-
tion”). Predictive opinions have the core valence of 
likely or unlikely predicated on the event. For ex-
ample, a sentence “Housing prices will go down 
soon” carries the valence of “likely” for the event 
of “housing prices go down”.  

The two types of opinions can co-appear. The 
sentence “I like Democrats but I think they are not 
likely to win considering the war issue” contains 
both types of opinion: “positive” valence towards 
Democrats and “unlikely” valence towards the 
event of “Democrats wins”. In order to accurately 
identify and analyze each type of opinion, different 
approaches are desirable. 

Note that our work is different from predictive 
data mining which models a data mining system 
using statistical approaches in order to forecast the 
future or trace a pattern of interest (Rickel and Por-
ter, 1997; Rodionov and Martin, 1996). Example 
domains of predictive data mining include earth-
quake prediction, air temperature prediction, for-
eign exchange prediction, and energy price predic-
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tion. However, predictive data mining is only fea-
sible when a large amount of structured numerical 
data (e.g., in a database) is available. Unlike this 
research area which analyzes numeric values, our 
study mines unstructured text using NLP tech-
niques and it can potentially extend the reach of 
numeric techniques.  

Despite the vast amount of predictive opinions 
and their potential applications such as identifica-
tion and analysis of people's opinions about the 
real estate market or a specific country's economic 
future, studies on predictive opinions have been 
neglected in Computational Linguistics, where 
most previous work focuses on judgment opinions 
(see Section 2). In this paper, we concentrate on 
identifying predictive opinion with its valence.  

Among many prediction domains on the Web, 
we focus on election prediction and introduce 
Crystal, a system to predict election results using 
the public's written viewpoints. To build our sys-
tem, we collect opinions about past elections 
posted on an election prediction project website 
before the election day, and build a corpus1. We 
then use this corpus to train our system for analyz-
ing predictive opinion messages and, using this, to 
predict the election outcome. Due to the availabil-
ity of actual results of the past elections, we can 
not only evaluate how accurately Crystal analyzes 
prediction messages (by checking agreement with 
the gold standard), but also objectively measure the 
prediction accuracy of our system. 

The main contributions of this work are as fol-
lows: 
• an NLP technique for analyzing predictive 

opinions in the electoral domain; 
• a method of automatically building a corpus 

of predictive opinions for a supervised 
learning approach; and 

• a feature generalization technique that out-
performs all the baselines on the task of 
identifying a predicted winning party given 
a predictive opinion. 

The rest of this paper is structured as follows. 
Section 2 surveys previous work. Section 3 for-
mally defines our task and describes our data set. 
Section 4 describes our system Crystal with pro-
posed feature generalization algorithm. Section 5 

                                                 
1 The resulting corpus is available at  
http://www.isi.edu/ ~skim/Download/Data/predictive.htm 

reports empirical evidence that Crystal outper-
forms several baseline systems. Finally, Section 6 
concludes with a description of the impact of this 
work. 

2 Related Work 

This work is closely related to opinion analysis and 
text classification. Most research on opinion analy-
sis in computational linguistics has focused on sen-
timent analysis, subjectivity detection, and review 
mining. Pang et al. (2002) and Turney (2002) clas-
sified sentiment polarity of reviews at the docu-
ment level. Wiebe et al. (1999) classified sentence 
level subjectivity using syntactic classes such as 
adjectives, pronouns and modal verbs as features. 
Riloff and Wiebe (2003) extracted subjective ex-
pressions from sentences using a bootstrapping 
pattern learning process. Wiebe et. al (2004) and 
Riloff et. al (2005) adopted pattern learning with 
lexical feature generalization for subjective expres-
sion detection. Dave et. al (2003) and Jindal and 
Liu (2006) also learned patterns of opinion expres-
sion in product reviews. Yu and Hatzivassiloglou 
(2003) identified the polarity of opinion sentences 
using semantically oriented words. These tech-
niques were applied and examined in different do-
mains, such as customer reviews (Hu and Liu 
2004; Popescu et al., 2005) and news articles (Kim 
and Hovy, 2004; Wilson et al., 2005). 

In text classification, systems typically use bag-
of-words models, mostly with supervised learning 
algorithms using Naive Bayes or Support Vector 
Machines (Joachims, 1998) to classify documents 
into several categories such as sports, art, politics, 
and religion. Liu et al. (2004) and Gliozzo et al. 
(2005) address the difficulty of obtaining training 
corpora for supervised learning and propose unsu-
pervised learning approaches. Another recent re-
lated classification task focuses on academic and 
commercial efforts to detect email spam messages. 
For an SVM-based approach, see (Drucker et al., 
1999). In our study, we explore the use of general-
ized lexical features for predictive opinion analysis 
and compare it with the bag-of-words approach. 

3 Modeling Prediction 

In this section, we define the task of analyzing pre-
dictive opinions in the electoral domain. 
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3.1 Task Definition 

We model predictive opinions in an election as 
follows: 

Valence) (Party,inionedictionOpElectionPr =  
where Party is a political party running for an elec-
tion (e.g., Democrats and Republicans) and Va-
lence is the valence of a predictive opinion which 
can be either “likely to win” (WIN) or “unlikely to 
win” (LOSE). Values for Party vary depending on 
in which year (e.g., 1996 and 2006) and where an 
election takes place (e.g., United States, France, or 
Japan). The unit of a predictive opinion is an un-
structured textual document such as an article in a 
personal blog or a message posted on a news group 
discussion board about the topic of “Which party 
do you think will win/lose in this election?”. 

Figure 1 illustrates an overview of our election 
prediction system Crystal in action. Given each 
document posted on blogs or message boards (e.g., 
www.election prediction.org) as seen in Figure 1.a, 
a system can determine a Party that the author of a 
document thinks to win or lose (Valence), Figure 
1.b. For the example document starting with the 
sentence “I think this riding will stay NDP as it has 
for the past 11 years.” in Figure 1.a, our predictive 
opinion analysis system aims to recognize NDP as 
Party and WIN as Valence. After aggregating the 
predictive opinion analysis results of all docu-
ments, we project the election results in Figure 1.c. 
The following section describes how we obtain our 
data set and the subsequent sections describe Crys-
tal. 

3.2 Automatically Labeled Data 

We collected messages posted on an election pre-
diction project page, www.electionprediction. org. 
The website contains various election prediction 
projects (e.g., provincial election, federal election, 
and general election) of different countries (e.g., 
Canada and United Kingdom) from 1999 to 2006. 
For our data set, we downloaded Canadian federal 
election prediction data for 2004 and 2006. The 
Canadian federal electoral system is based on 308 

Figure 1. Our election prediction system. Public
opinions are collected from message boards (a)
and our system determines for each the election
prediction ‘Party’ and ‘Valence’ (b). The output
of the system is a prediction of the election out-
come (c). 

Message text Predicted  
winning party Riding Year

··· ··· ··· ··· 
Message_1457 Party_3 Riding_206 2004
Message_1458 Party_2 Riding_206 2004

Message_1459 Party_2 Riding_189 2006
Message_1460 Party_1 Riding_189 2006
Message_1461 Party_2 Riding_189 2006

Message_1462 Party_1 Riding_46 2006
··· ··· ··· ··· 

Table 1. A snapshot of the processed data 

Riding name Party Candidate name 

 NDP Noreen Johns 
Blackstrap Liberal J. Wayne Zimmer

 PC Lynne Yelich 
Table 2. An example of our Party-Candidate 
listing for a riding (PC: Progressive Conserva-
tive) 
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ridings (electoral districts). The website contains 
308 separate html files of messages corresponding 
to the 308 ridings for different years. In total, we 
collected 4858 and 4680 messages for the 2004 
and 2006 federal elections respectively. On aver-
age, a message consists of 98.8 words. 

To train and evaluate our system, we require a 
gold standard for each message (i.e., which party 
does an author of a message predict to win?). One 
option is to hire human annotators to build the gold 
standard. Instead, we used an online party logo 
image file that the author of each message already 
labeled for the message. Note that authors only 
select parties they think will win, which means our 
gold standard only contains a party with WIN va-
lence of each message. However, we leverage this 
information to build a system which is able to de-
termine a party even with LOSE valence. We de-
scribe this idea in detail in Section 4. 

Finally, we pre-processed the data by converting 
the downloaded html source files into a structured 
format with the following fields: message, party, 
riding, and year, where message is a text, party is a 
winning party predicted in the text, riding is one of 
the 308 ridings, and year is either 2004 or 2006. 
Table 1 shows a snapshot of the processed data set 
that we used for our system training and evalua-
tion. An additional piece of information consisting 
of a candidate's name for each party for each riding 
was also stored in our data set. With this informa-
tion, the system can infer opinions about a party 
based on opinions about candidates who run for the 
party. Table 2 shows an example of a riding. 

4 Analyzing Predictions 

In this section we describe Crystal. One simple 
approach could be a system (see NGR system in 
Section 5) trained by a machine learning technique 
using n-gram features and classifying a message 
into multiple classes (e.g., NDP, Liberal, or Pro-
gressive). However, we develop a more sophisti-
cated algorithm and compare its result with several 
baselines, including the simple n-gram method2. 
Experimental results in Section 5 show that Crystal 
outperforms all the baselines. 

Our approach consists of three steps: feature 
generalization, classification using SVMs, and 

                                                 
2 N-gram approach is often unbeatable (and therefore great) in 
many text classification tasks. 

SVM result integration3. Crystal generates general-
ized sentences in the feature generalization step. 
Then it classifies each sentence using generalized 
lexical features in order to determine Valence of 
Party in a sentence. Finally, it combines results of 
sentences to determine Valence and Party of a 
message. Note that the classification using SVM is 
an intermediate step conducting a binary classifica-
tion (i.e., WIN or LOSE) for the final multi-class 
classification in result integration. The following 
sections describe each step. 

4.1 Feature Generalization 

In the feature generalization step, we generalize 
patterns of words used in predictive opinions. For 
example, instead of using three different trigrams 
like “Liberals will win”, “NDP will win”, and 
“Conservatives will win”, we generalize these to 
“PARTY will win”. The assumption is that the 
generalized patterns can represent better the rela-
tionship among Party, Valence, and words sur-
rounding Party (e.g., will win) than pure lexical 
patterns. For this algorithm, we first substitute a 
candidate's name (both the first name and the last 
name) with the political party name that the candi-
date belongs to (see Table 2). We then break each 
message into sentences4.   

Table 3 outlines the feature generalization algo-
rithm. Here, our approach is that if a message pre-

                                                 
3 “feature” indicates n-grams in our corpus that we use in the 
SVM classification step. 
4 The sentence breaker that we used is available at 
http://search.cpan.org/ ~shlomoy/Lingua-EN-sentence -
0.25/lib/Lingua/EN/Sentence.pm. 

1 for each message M with a party that M 
predicts to win, Pw 

2   for each sentence Si in a message M 

3      for each party Pj in Si 

4         valence Vj = +1 if Pj = Pw 

5         valence Vj = -1  Otherwise 

6         Generate S'ij by substituting Pj with  
PARTY 

7         and all other parties in Si with OTHER

8          Return (Pj, Vj, S'ij) 

Table 3. Feature generalization algorithm 
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dicts a particular party to win, sentences which 
mention that party in the message also imply that it 
will win. Conversely all other parties are assumed 
to be in sentences that imply they will lose. As 
shown in Section 3.2, a message (M) in our corpus 
has a label of a party (Pw) that the author of M pre-
dicts to win. After breaking sentences in M, we 
duplicate a sentence by the number of unique par-
ties in the sentence and modify the duplicated sen-
tences by substituting the party names with 
PARTY and OTHER in order to generalize fea-
tures. 

Consider the following sentence: 
 “Dockrill will barely take this riding from 

Rodger Cuzner”  
which gets re-written as: 

“NDP will barely take this riding from Liberal”  
because Dockrill is an NDP candidate and Rodger 
Cuzner is a Liberal candidate. Since the sentence 
contains two parties (i.e., NDP and Liberal), the 
algorithm duplicates the sentence twice, once for 
each party (see Lines 4–8 in Table 3)5. For NDP, 
the algorithm determines its Valence as -1 because 
NDP is not equal to the predicted winning party 
(i.e., Liberal) of the message (see Lines 4–5 in Ta-
                                                 
5 In the feature generalization algorithm, we represent 
WIN and LOSE valence as +1 and -1. 

ble 3). Then it generates a generalized sentence by 
substituting NDP with PARTY and Liberal with 
OTHER (Lines 6–7). It returns (NDP, -1, “PARTY 
will barely take this riding from OTHER”). For 
Liberal, on the other hand, the algorithm deter-
mines its Valence as +1 since Liberal is the same 
as the predicted winning party of the message. Af-
ter similar generalization, it returns (Liberal, +1, 
“OTHER will barely take this riding from 
PARTY”).  

Note that the final result of the feature generali-
zation algorithm is a set of triplets: (Party, Va-
lence, Generalized Sentence). Among a triplet, we 
use (Valence, Generalized Sentence) to produce 
feature vectors for a machine learning algorithm 
(see Section 4.2) and (Party, Valence) to integrate 
system results of each sentence for the final deci-
sion of Party and Valence of a message (see Sec-
tion 4.3). Figure 2 shows an example of the algo-
rithm. 

4.2 Classification Using SVMs 

In this step, we use Support Vector Machines 
(SVMs) to train our system using the generalized 
features described in Section 4.1. After we ob-
tained examples of (Valence, Generalized Sen-
tence) in the feature generalization step, we mod-
eled a subtask of classifying a Generalized Sen-
tence into Valence towards our final goal of deter-
mining (Valence, Party) of a message. This subtask 
is a binary classification since Valence has only 2 
classes: +1 and -16. Given a generalized sentence 
“OTHER will barely take this riding from 
PARTY” in Figure 2, for example, the goal of our 
system is to learn WIN valence for PARTY. Fea-
tures for SVMs are extracted from generalized sen-
tences. We implemented our SVM learning model 
using the SVMlight package7. 

4.3 SVM Result Integration 

In this step, we combine the valence of each sen-
tence predicted by SVMs to determine the final 
valence and predicted party of a message. For each 
party mentioned in a message, we calculate the 
sum of the party's valences of each sentence and 

                                                 
6 However, the final evaluation of the system and all the base-
lines is equally performed on the multi-classification results of 
messages. 
7 SVMlight is available from http://svmlight.joachims. 
org/ 

Figure 2. An example of feature generalization 
of a message 
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pick a party that has the maximum value. This in-
tegration algorithm can be represented as follows: 

∑
=

m

k
k

p
pValence

0
)(max arg

 
where p is one of parties mentioned in a message, 
m is the number of sentences that contains party p 
in a message, and Valencek(p) is the valence of p in 
the kth sentence that contains p. Given the example 
in Figure 2, the Liberal party appears twice in sen-
tence S0 and S1 and its total valence score is +2, 
whereas the NDP party appears once in sentence 
S1 and its valence sum is -1. As a result, our algo-
rithm picks liberal as the winning party that the 
message predicts. 

5 Experiments and Results 

This section reports our experimental results show-
ing empirical evidence that Crystal outperforms 
several baseline systems. 

5.1 Experimental Setup 

Our corpus consists of 4858 and 4680 messages 
from 2004 and 2006 Canadian federal election pre-
diction data respectively described in detail in Sec-
tion 3.2. We split our pre-processed corpus into 10 
folds for cross-validation. We implemented the 
following five systems to compare with Crystal 8. 

● NGR: In this algorithm, we train the system us-
ing SVM with n-gram features without the gener-
alization step described in Section 4.19. The re-
placement of each candidate's first and last name 
by his or her party name was still applied. 
● FRQ: This system picks the most frequently 
mentioned party in a message as the predicted 
winning party. Party name substitution is also ap-
plied. For example, given a message “This riding 
will go liberal. Dockrill will barely take this riding 
from Rodger Cuzner.”, all candidates' names are 
replaced by party names (i.e., “This riding will go 
Liberal. NDP will barely take this riding from Lib-
eral.”). After name replacement, the system picks 
Liberal as an answer because Liberal appears twice 
whereas NDP appears only once. Note that, unlike 
Crystal, this system does not consider the valence 
of each party (as done in our sentence duplication 
                                                 
8 In our experiments using SVM, we used the linear kernel for 
all Crystal, NGR, and JDG. 
9 This system is exactly like Crystal without the feature gener-
alization and result integration steps. 

step of the feature generalization algorithm). In-
stead, it blindly picks the party that appeared most 
in a message. 
● MJR: This system marks all messages with the 
most dominant predicted party in the entire data 
set. In our corpus, Conservatives was the majority 
party (3480 messages) followed closely by Liberal 
(3473 messages). 
● INC: This system chooses the incumbent party 
as the predicted winning party of a message. (This 
is a strong baseline since incumbents often win in 
Canadian politics). For example, since the incum-
bent party of the riding “Blackstrap” in 2004 was 
Conservative, all the messages about Blackstrap in 
2004 were marked Conservative as their predicted 
winning party by this system.  
● JDG: This system uses judgment opinion words 
as its features for SVM. For our list of judgment 
opinion words, we use General Inquirer which is a 
publicly available list of 1635 positive and nega-
tive sentiment words (e.g., love, hate, wise, dumb, 
etc.)10. 

5.2 Experimental Results 

We measure the system performance with its accu-
racy in two different ways: accuracy per message 
(Accmessage) and accuracy per riding (Accriding). Both 
accuracies are represented as follows: 

set test ain  messages of # Total
labledcorrectly  system  themessages of #

=messageAcc
 

set test ain  ridings of # Total
predictedcorrectly  system  theridings of #

=ridingAcc
 

We first report the results with Accmessage in 
Evaluation1 and then report with Accriding in 
Evaluation2. 

Evaluation1: Table 4 shows accuracies of base-
lines and Crystal. We calculated accuracy for each 
test set in 10-fold data sets and averaged it. Among 
the baselines, MJR performed worst (36.48%). 
Both FRQ and INC performed around 50% 
(54.82% and 53.29% respectively). NGR achieved 
its best score (62.02%) when using unigram, bi-
gram, and trigram features together (uni+bi+tri). 
We also experimented with other feature combina-
tions (see Table 5). Our system achieved 73.07% 
which is 11% higher than NGR and around 20% 

                                                 
10 Available at http://www.wjh.harvard.edu/~inquirer 
/homecat.htm 
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higher than FRQ and INC. The best accuracy of 
our system was also obtained with the combination 
of unigram, bigram, and trigram features. 

The JDG system, which uses positive and nega-
tive sentiment word features, had 66.23% accu-
racy. This is about 7% lower than Crystal. Since 
the lower performance of JDG might be related to 
the number of features it uses, we also experi-
mented with the reduced number of features of 
Crystal based on the tfidf scores11. With the same 
number of features (i.e., 1635), Crystal performed 
70.62% which is 4.4% higher than JDG. An inter-
esting finding was that NGR with 1635 features 
performed only 54.60% which is significantly 

                                                 
11 The total number of all features of Crystal is 689,642. 

lower than both systems. This indicates that the 
1635 pure n-gram features are not as good as the 
same number of sentiment words carefully chosen 
from a dictionary but the generalized features of 
Crystal represent the predictive opinions better 
than JDG features. 

Table 5 illustrates the comparison of NGR 
(without feature generalization) and Crystal (with 
feature generalization) in different feature combi-
nations. uni, bi, tri, and four correspond to uni-
gram, bigram, trigram, and fourgram. Our pro-
posed technique Crystal performed always better 
than the pure n-gram system (NGR). Both systems 
performed best (62.02% and 73.07%) with the 
combination of unigram, bigram, and trigram 
(uni+bi+tri). The second best scores (61.96% and 
73.01%) are achieved with the combinations of all 
grams (uni+bi+tri+four) in both systems. Using 
fourgrams alone performed worst since the system 
overfitted to the training examples. 

Table 6 presents several examples of frequent n-
gram features in both WIN and LOSE classes. As 
shown in Table 6, lexical patterns in the WIN class 
express optimistic sentiments about PARTY (e.g., 
PARTY_will_win and go_ PARTY_again) 
whereas patterns in the LOSE class express pessi-
mistic sentiments (e.g., PARTY_don't_have) and 
optimistic ones about OTHER (e.g., 
want_OTHER). 

Evaluation2: In this evaluation, we use Accriding 
computed as the number of ridings that a system 
correctly predicted, divided by the total number of 
ridings. For each riding R, systems pick a party 
that obtains the majority prediction votes from 
messages in R as the winning party of R. For ex-

Patterns in WIN class Patterns in LOSE class 

PARTY_will_win want_OTHER 
PARTY_hold PARTY_don’t_have 
PARTY_will_win_this OTHER_and 
PARTY_win the_PARTY 
will_go_PARTY OTHER_will_win 
PARTY_will_take OTHER_is 
PARTY_will_take_this to_the_OTHER 
PARTY_is and_OTHER 
safest_PARTY results_OTHER 
PARTY_has OTHER_has 
go_PARTY_again to_OTHER 
Table 6. Examples of frequent features in 
WIN and LOSE classes. 

system Accmessage (%) Accriding (%) 
FRQ 54.82 63.14 
MJR 36.48 36.63 
INC 53.29 78.03 

NGR (uni+bi+tri) 62.02 79.65 
JDG 66.23 78.68 

Crystal (uni+bi+tri) 73.07 81.68 

Table 4. System performance with accuracy 
per message (Accmessage ) and accuracy per 
riding (Accriding): FRQ, MJR, INC, NGR, 
JDG, and Crystal. 

Accmessage (%) Features NGR Crystal 
uni 60.49 72.03 
bi 58.79 71.81 
tri 54.04 69.57 
four 47.25 67.64 
uni + bi 61.54 72.93 
uni + tri 61.36 72.20 
uni + four 60.70 72.84 
bi + tri 58.68 72.26 
bi + four 58.54 72.17 
uni + bi + tri 62.02 73.07 
uni + bi + four 61.75 72.30 
uni + tri + four 61.34 72.30 
bi + tri + four 58.42 72.62 
uni + bi + tri + four 61.96 73.01 

Table 5. System performance with different 
features: Pure n-gram (NGR) and General-
ized n-gram Crystal. 
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ample, if Crystal identified 9 messages predicting 
for Conservative Party, 3 messages for NDP, and 1 
message for Liberal among 13 messages in the rid-
ing “Blackstrap”, the system will predict that the 
Conservative Party would win in “Blackstrap”. 

Table 4 shows the system performance with Ac-
criding. Note that people who write messages on a 
particular web site are not a random sample for 
prediction. So we introduce a measure of confi-
dence (ConfidenceScore) of each system and use 
the prediction results when the ConfidenceScore is 
higher than a threshold. Otherwise, we use a de-
fault party (i.e., the incumbent party) as the win-
ning party. ConfidenceScore of a riding R is calcu-
lated as follows: 

ConfidenceScore =  countmessage(Pfirst) –  countmes-

sage(Psecond) 

where countmessage(Px) is the number of messages 
that predict a party Px to win, Pfirst is the party that 
the most number of messages predict to win, and 
Psecond is the party that the second most number of 
messages predict to win. 

We used 62 ridings to tune the ConfidenceScore 
parameter arriving at the value of 4. As shown in 
Table 4, the system which just considers the in-
cumbent party (INC) performed fairly well 
(78.03% accuracy) because incumbents are often 
re-elected in Canadian elections. The upper bound 
of this prediction task is 88.85% accuracy which is 
the prediction result using numerical values of a 
prediction survey. FRQ and MJR performed 
63.14% and 36.63% respectively. Similarly to 
Evaluation1, JDG which only uses judgment word 
features performed worse than both Crystal and 
NGR. Also, Crystal with our feature generalization 
algorithm performed better than NGR with non-
generalized n-gram features. The accuracy of Crys-
tal (81.68%) is comparable to the upper bound 
88.85%. 

6 Discussion 

In this section, we discuss possible extensions and 
improvements of this work. 

Our experiment focuses on investigating aspects 
of predictive opinions by learning lexical patterns 
and comparing them with judgment opinions. 
However, this work can be extended to investigat-
ing how those two types of opinions are related to 
each other and whether lexical features of one 

(e.g., judgment opinion) can help identify the other 
(e.g., predictive opinion). Combining two types of 
opinion features and testing on each domain can 
examine this issue. 

In our experiment, we used General Inquirer 
words as judgment opinion indicators for JDG 
baseline system. It might be interesting to employ 
different resources for judgment words such as the 
polarity lexicon by Wilson et al. (2005) and the 
recently released SentiWordNet12. 

 Our work is an initial step towards analyzing a 
new type of opinion. In the future, we plan to in-
corporate more features such as priors like incum-
bent party in addition to the lexical features to im-
prove the system performance. 

7 Conclusions 

In this paper, we proposed a framework for work-
ing with predictive opinion. Previously, research-
ers in opinion analysis mostly focused on judgment 
opinions which express positive or negative senti-
ment about a topic, as in product reviews and pol-
icy discussions. Unlike judgment opinions, predic-
tive opinions express a person's opinion about the 
future of a topic or event such as the housing mar-
ket, a popular sports match, and election results, 
based on his or her belief and knowledge. Among 
these many kinds of predictive opinions, we fo-
cused on election prediction. 

We collected past election prediction data from 
an election prediction project site and automati-
cally built a gold standard. Using this data, we 
modeled the election prediction task using a super-
vised learning approach, SVM. We proposed a 
novel technique which generalized n-gram feature 
patterns. Experimental results showed that this ap-
proach outperforms several baselines as well as a 
non-generalized n-gram approach. This is signifi-
cant because an n-gram model without generaliza-
tion is often extremely competitive in many text 
classification tasks.  

This work adopts NLP techniques for predictive 
opinions and it sets the foundation for exploring a 
whole new subclass of the opinion analysis prob-
lems. Potential applications of this work are sys-
tems that analyze various kinds of election predic-
tions by monitoring texts in discussion boards and 
personal blogs. In the future, we would like to 

                                                 
12 http://sentiwordnet.isti.cnr.it/ 
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model predictive opinions in other domains such as 
the real estate market and the stock market which 
would require further exploration of system design 
and data collection.  
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Abstract

The technology of opinion extraction allows
users to retrieve and analyze people’s opin-
ions scattered over Web documents. We de-
fine an opinion unit as a quadruple consist-
ing of the opinion holder, the subject being
evaluated, the part or the attribute in which
the subject is evaluated, and the value of the
evaluation that expresses a positive or neg-
ative assessment. We use this definition as
the basis for our opinion extraction task. We
focus on two important subtasks of opinion
extraction: (a) extracting aspect-evaluation
relations, and (b) extracting aspect-of re-
lations, and we approach each task using
methods which combine contextual and sta-
tistical clues. Our experiments on Japanese
weblog posts show that the use of contex-
tual clues improve the performance for both
tasks.

1 Introduction

The explosive increase in Web communication has
attracted increasing interest in technologies for auto-
matically mining personal opinions from Web doc-
uments such as product reviews and weblogs. Such
technologies would benefit users who seek reviews
on certain consumer products of interest.

Previous approaches to the task of mining a large-
scale document collection of customer opinions (or

∗ Currently, NTT Cyber Space Laboratories,
1-1, Hikarinooka, Yokosuka, Kanagawa, 239-0847 Japan

reviews) can be classified into two approaches: Doc-
ument classification and information extraction. The
former is the task of classifying documents or pas-
sages according to their semantic orientation such as
positive vs. negative. This direction has been form-
ing the mainstream of research on opinion-sensitive
text processing (Pang et al., 2002; Turney, 2002,
etc.). The latter, on the other hand, focuses on the
task of extracting opinions consisting of information
about, for example,〈who feelshowaboutwhich as-
pect of what product〉 from unstructured text data.
In this paper, we refer to this information extraction-
oriented task asopinion extraction. In contrast to
sentiment classification, opinion extraction aims at
producing richer information and requires an in-
depth analysis of opinions, which has only recently
been attempted by a growing but still relatively small
research community (Yi et al., 2003; Hu and Liu,
2004; Popescu and Etzioni, 2005, etc.).

Most previous work on customer opinion ex-
traction assumes the source of information to be
customer reviews collected from customer review
sites (Popescu and Etzioni, 2005; Hu and Liu, 2004;
Liu et al., 2005). In contrast, in this paper, we con-
sider the task of extracting customer opinions from
unstructured weblog posts. Compared with extrac-
tion from review articles, extraction from weblogs
is more challenging because weblog posts tend to
exhibit greater diversity in topics, goals, vocabu-
lary, style, etc. and are much more likely to in-
clude descriptions irrelevant to the subject in ques-
tion. In this paper, we first describe our task set-
ting of opinion extraction. We conducted a corpus
study and investigated the feasibility of the task def-
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inition by showing the statistics and inter-annotator
agreement of our corpus annotation. Next, we show
that the crucial body of the above opinion extrac-
tion task can be decomposed into two kinds of re-
lation extraction, i.e. aspect-evaluation relation ex-
traction and aspect-of relation extraction. For exam-
ple, the passage “I went out for lunch at the Deli
and ordered a curry with chicken. It was pretty
good” has an aspect-evaluation relation〈curry with
chicken, was good〉 and an aspect-of relation〈The
Deli, curry with the chicken〉. The former task can
be regarded as a special type of predicate-argument
structure analysis or semantic role labeling. The
latter, on the other hand, can be regarded as bridg-
ing reference resolution (Clark, 1977), which is the
task of identifying relations between definite noun
phrases and discourse-new entities implicitly related
to some previously mentioned entities.

Most of the previous work on customer opinion
extraction, however, does not adopt the state-of-the-
art techniques in those fields, relying only on sim-
ple proximity-based or pattern-based methods. In
this context, this paper empirically shows that incor-
porating machine learning-based techniques devised
for predicate-argument structure analysis and bridg-
ing reference resolution improve the performance
of both aspect-evaluation and aspect-of relation ex-
traction. Furthermore, we also show that combin-
ing contextual clues with a common co-occurrence
statistics-based technique for bridging reference res-
olution makes a significant improvement on aspect-
of relation extraction.

2 Opinion extraction: Task design

Our present goal is to build a computational model
to extract opinions from Web documents in such a
form as:Whofeelshowon which aspectsof which
subjects. Given the passage presented in Figure 1,
for example, the opinion we want to extract is: “the
writer feels thatthe colorsof pictures taken with
Powershot(product) arebeautiful.” As suggested
by this example, we consider it reasonable to start
with an assumption that most evaluative opinions
can be structured as a frame composed of the fol-
lowing constituents:

Opinion holder The person who is making an eval-
uation. An opinion holder is typically the first
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Figure 1: Extraction of opinion units

person (the author). We say the opinion holder
is unspecified if the opinion is mentioned as a
rumor.

Subject A named entity (product or company) of
a given particular class of interest (e.g. a car
model name in the automobile domain).

Aspect A part, member or related object, or an at-
tribute (of a part) of the subject on which the
evaluation is made (engine, size, etc.)

Evaluation An evaluative or subjective phrase used
to express an evaluation or the opinion holder’s
mental/emotional attitude (good, poor, power-
ful, stylish, (I) like, (I) am satisfied, etc.)

According to this typology, the example in Figure 1
has six constituents,the writer (opinion holder),
Powershot(subject),pictures (aspect),colors (as-
pect), beautiful (evaluation),easy to grip(evalua-
tion), and constitute two units of opinions as pre-
sented in the right half of the figure. We call such
a unit anopinion unit. In this paper, we only con-
sider explicitly mentioned evaluative opinions as our
targets of extraction, excluding opinions indirectly
expressed through, for example, style or language
choice from our scope.

Under this assumption, opinion extraction can be
defined as a task of filling a fixed number of slots
as above for each of the evaluations expressed in a
given text collection. Two issues then immediately
arise. First, it is necessary to make sure that the def-
inition of the opinion units is clear enough for hu-
man annotators to be able to carry out the task with
sufficient accuracy. Second, all the slots might not
consist of simple expressions in that the filler of an
aspect slot may have a hierarchical structure in it-
self. For example, “the leather cover of the seats (of
a car)” refers to a part of a part of a car. In theory,
such a hierarchical chain can be of any length, which
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may affect the feasibility of the task. For tackling
these issues, we built a corpus annotated with the
above sort of information and investigated the feasi-
bility of the task.

2.1 Corpus study

We first collected 116 Japanese weblog posts in the
restaurant domain by randomly sampling from a col-
lection of posts classified under the “gourmet” cate-
gory on a major blog site:http://blog.livedoor.com/.

We asked two annotators to annotate them inde-
pendently of each other following the above spec-
ification. The annotators first identified evaluative
phrases, and then for each evaluative phrase judged
whether it was concerning a particular subject (i.e.
a restaurant) in the given domain. If judged yes,
the annotators filled the opinion holder and subject
slots obligatorily. The annotators filled the aspect
slot only when its filler appeared in the document
and identified the hierarchical relations between as-
pects if any (e.g.noodleand itsvolume). Note that,
if a sentence has two or more evaluations, they have
to make one opinion unit for each.

2.1.1 Inter-annotator agreement

We investigated the degree of inter-annotator
agreement. In the task of identifying evaluations,
one annotatorA1 identified 450 evaluations while
the otherA2 identified 392, and 329 cases of them
coincided. The two annotators did not identify the
same number of evaluations, so instead of using
kappa statistics, we use the following metric for
measuring agreement as Wiebe et al. (2005) do:

agr(A1||A2) =
# of tags agreed byA1 andA2

# of tags annotated byA1

agr(A1||A2) was 0.73 andagr(A2||A1) was 0.83.
The F1 measure of the agreement between the two
was therefore 0.79, which indicate that humans can
identify evaluation at a reasonable level.

Next, we investigated the inter-annotator agree-
ment of the aspect-evaluation and subject-evaluation
relations. AnnotatorA1 identified 328 relations, and
A2 identified 346 relations. 295 cases coincided, and
agr(A2||A1) was 0.90 andagr(A1||A2) was 0.86
(F1 measure was 0.88). This shows that we obtained
high consistency. Finally, for the subject-aspect
and aspect-aspect relations, annotatorA1 identified
296 relations, whileA2 identified 293, 233 cases
of which got agreement.agr(A2||A1) was 0.79

Table 1: Statistics of opinion-annotated corpus
(Restaurant, Automobile, cellular phoneand video game)

Rest Auto Phone Game
articles 1,356 564 481 361

sentences 21,666 14,005 11,638 6,448
# of opinion units 4,267 1,519 1,518 775

Asp-Eval 3,692 943 965 521
I Asp-Asp 1,426 280 296 221

Subj-Asp 2,632 877 850 451

II

Subj-Eval 575 576 553 243
Subj-Asp-Eval 2,314 736 768 351

Subj-Asp-Asp-Eval 1,065 175 172 127
other 313 32 25 54

Non-writer op. holder 95 17 22 2

andagr(A1||A2) was 0.80 (F1 measure was 0.79),
which show that the human annotators can carry out
the task at a reasonable accuracy. Based on this cor-
pus study, we believe that our definitions of two re-
lations are clear enough for constructing annotated
corpus.

2.1.2 Opinion-annotated corpus

Based on these results, we collected a larger set of
weblog posts in four domains: restaurant, automo-
bile, cellular phone and video game. We then asked
annotatorA1 to annotate them in the same annota-
tion scheme as above. The results are summarized in
Table 1.I in the table shows the number of the iden-
tified opinion units and relations, andII shows the
number of hierarchical chains of aspects. For exam-
ple, “Nokia 6800has a nicecolor screen” is counted
as “Subj-Asp-Eval” since this example includes a
subject “Nokia 6800”, an aspect “color screen” and
an evaluation “nice”. “Other” indicates the number
of the case where the length of hierarchical chains of
aspects is three or more. One observation is that, for
all the domains, 90 % of all the opinion units have
a hierarchical chain of aspects whose length is two
or less. From this, we can conclude that hierarchical
chains longer than two are rare, and the problem is
not so complicated, though they can be of any length
in theory.

The row of “Non-writer op(inion) holder” at the
bottom of Table 1 shows the number of opinion units
whose opinion holder isnot the writer of the weblog.
This result indicates that when an evaluative expres-
sion is found, its opinion holder is highly likely to be
the writer of the blogs. Therefore, we put aside the
task of filling the opinion holder slot in this paper.
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2.2 Related work on task settings of opinion
extraction

There are several researches on customer opinion
extraction. Hu and Liu (2004) considered the task of
extracting〈Aspect, Sentence, Semantic-orientation〉
triples in our terminology, whereSentenceis the one
that includes theAspect, andSemantic-orientationis
either positive or negative.

The notion of Evaluation in our term has also
been introduced by previous work (Popescu and Et-
zioni, 2005; Tateishi et al., 2004; Suzuki et al., 2006;
Kobayashi et al., 2005, etc.). For example, our
previous paper (Kobayashi et al., 2005) addresses
the task of extracting〈Subject,Aspect,Evaluation〉.
However, none of those papers reports on such an
extensive corpus study as what we report in this
paper. In addition, in this paper, we consider not
only aspect-evaluation relations but also hierarchical
chains of subject-aspect and aspect-aspect relations,
which has never been addressed in previous work.

Open-domain opinion extraction is another trend
of research on opinion extraction, which aims to ex-
tract a wider range of opinions from such texts as
newspaper articles (Yu and Hatzivassiloglou, 2003;
Kim and Hovy, 2004; Wiebe et al., 2005; Choi et
al., 2006). To the best of our knowledge, one of
the most extensive corpus studies in this field has
been conducted in the MPQA project (Wiebe et al.,
2005); while their concerns include the types of
opinions we consider, they annotate newspaper arti-
cles, which presumably exhibit considerably differ-
ent characteristics from customer-generated texts.

Though we do not discuss the problem of deter-
mining semantic orientation, we assume availabil-
ity of state-of-the-art methods that perform this task
(Suzuki et al., 2006; Takamura et al., 2006, etc.).
The problem of determining semantic orientation
will be solved by using these techniques, so we fo-
cus on the main issue: Extracting opinion units from
given texts.

3 Method for opinion extraction

Before designing a model for our opinion extrac-
tion task, it is important to note that aspect phrases
are open-class expressions and tend to be heavily
domain-dependent. In fact, according to our investi-
gation on our opinion-annotated corpus, the number
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Figure 2: The distributions of evaluation and aspect
expressions in the four domains

of aspect types is nearly 3,200, and only 3% of them
appear in two or more domains as shown in Figure 2.
For evaluation expressions, on the other hand, the
number of types is much smaller than that of aspect
expressions, and 27% of them appear in multiple do-
mains. This indicates that evaluation expressions are
more likely to be used commonly across different
domains compared with aspects.

To prove this assumption, we created a dictionary
of evaluation expressions from customer reviews of
automobiles (230,000 sentences in total) using the
semi-automatic method proposed by Kobayashi et
al. (2004). We expanded the dictionary by hand with
external resources including publicly available or-
dinal thesauri. As a result, we collected 5,550 en-
tries. According to our investigation of the coverage
by the dictionary, 0.84 (restaurant), 0.88 (cellular
phone), 0.91 (automobile), and 0.93 (video game) of
the evaluations annotated in our corpus are covered
by the dictionary. From this observation, we con-
sider that it is reasonable to start opinion extraction
with the identification of evaluation expressions. We
therefore design the process of extracting〈Subject,
Aspect, Evaluation〉 as follows:
1. Aspect-evaluation relation extraction: For

each of the candidate evaluations that are se-
lected from a given document by dictionary
look-up, identify the target of the evaluation.
Here the identified target may be a subject (e.g.
IXY (is well-designed)) or an aspect of a sub-
ject (e.g. the quality (is amazing)). Hereafter,
we use the termaspectto refer to both an as-
pect and a subject itself, since the subject can
be regarded as the top element in the hierarchi-
cal chain of aspects.

2. Opinion-hood determination: Judge whether or
not the obtained pair〈aspect, evaluation〉 is an
expression of an opinion by considering the
given context. If it is judged yes, go to step3;
otherwise, return to step 1 with a new candidate
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evaluation expression.
3. Aspect-of relation extraction: If the identified

aspect is not a subject, search for its antecedent,
i.e. an expression that is a higher aspect or a
subject of the current aspect. Repeat step 3 un-
til reaching a subject or no parent is found.

3.1 Related work on opinion extraction

A common approach to the customer opinion extrac-
tion task mainly uses simple proximity- or pattern-
based techniques. For example, Tateishi et al. (2004)
implement five syntactic patterns and Popescu et
al. (2005) use ten syntactic patterns. Such an ap-
proach is limited in two respects. First, it assumes
the availability of a list of potential aspect expres-
sions as well as evaluation expressions; however cre-
ating such a list of aspects for a variety of domains
can be prohibitively expensive because of the do-
main dependency of aspect expressions. In contrast,
our method does not require any aspect lexicon.

Second, their approach lacks the perspective of
viewing aspect-evaluation extraction as a specific
type of predicate-argument structure analysis, i.e.
the task of identifying the arguments of a given
predicate in a given text, and fails to benefit from
the state-of-the-art techniques of this rapidly grow-
ing field. The syntactic patterns used in their re-
search are analyzed by a dependency parser, how-
ever, aspect-evaluation relations appear in diverse
syntactic patterns, which cannot be easily captured
by a handful of manually devised rules.

An exception is the model reported by Kanayama
et al.(2004), which uses a component of an exist-
ing MT system to identify the “aspect” argument of
a given “evaluation” predicate. However, the MT
component they use is not publicly available, and
even if it were, it would be difficult to apply it to
tasks in hand due of the opaqueness of its mecha-
nism. Our approach aims to develop a more gen-
erally applicable model of aspect-evaluation extrac-
tion.

In open-domain opinion extraction, some ap-
proaches use syntactic features obtained from parsed
input sentences (Choi et al., 2006; Kim and Hovy,
2006), as is commonly done in semantic role label-
ing. Choi et al. (2006) address the task of extract-
ing opinion entities and their relations, and incor-
porate syntactic features to their relation extraction

model. Kim and Hovy (2006) proposed a method
for extracting opinion holders, topics and opinion
words, in which they use semantic role labeling as
an intermediate step to label opinion holders and
topics. However, these approaches do not address
the task of extracting aspect-of relations and make
use of syntactic features only for labeling opinion
holders and topics. In contrast, as we describe be-
low, we find the significant overlap between aspect-
evaluation relation extraction and aspect-of relation
extraction and apply the same approach to both
tasks, gaining the generality of the model.

Aspect-of relations can be regarded as a sub-type
of bridging reference (Clark, 1977), which is a com-
mon linguistic phenomenon where the referent of a
definite noun phrase refers to a discourse-new entity
implicitly related to some previously mentioned en-
tity. For example, we can see a relation of bridg-
ing reference between “the door” and “the room”
in “She entered the room. The door closed au-
tomatically.” A common approach is to use co-
occurrence statistics between the referring expres-
sion (e.g. “the door” in the above example) and the
related entity (“the room”) (Bunescu, 2003; Poesio
et al., 2004). Our approach newly incorporates au-
tomatically induced syntactic patterns as contextual
clues into such a co-occurrence model, producing
significant improvements of accuracy.

3.2 Our approach

Now we describe our approach to aspect-evaluation
and aspect-of relation extraction. The key idea is
to combine the following two kinds of information
using a machine learning technique for both tasks.

Contextual clues: Syntactic patterns such as
〈Aspect〉-ga VP-te, 〈Evaluation〉
〈Aspect〉-NOM VP-CONJ 〈Evaluation〉

which matches such a sentence as
〈sekkyaku〉-ga kunrens-aretei-te〈kimochiyoi〉
〈service〉-NOM be trained-CONJ 〈feel comfortable〉
(The waiters were well-trained, so I felt comfort-
able.)

are considered to be useful for extracting rela-
tions between slot fillers when they appear in a
single sentence (Here,〈〉 indicates a slot filler).
We employ a supervised learning technique to
search for such useful syntactic patterns.

Context-independent statistical clues:Statistics
such as aspect-aspect and aspect-evaluation
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Figure 3: Representation of input data

co-occurrences are expected to be useful. We
obtain such statistical clues automatically from
a large collection of raw documents.

In what follows, we describe our method for
aspect-evaluation. The aspect-of relation extraction
is done in an an analogous way.

3.2.1 Supervised learning of contextual clues

Let us consider the problem of searching for the
aspect of a given evaluation expressiont. This prob-
lem can be decomposed into binary classification
problems of deciding whether each pair of candidate
aspectc and targett is in an aspect-evaluation rela-
tion or not. Our goal is to learn a discrimination
function for this classification problem. If such a
function is obtained, we can identify the most likely
candidate aspect simply by selecting the best scored
c-t pair and, if its score is negative for all possible
candidates, we conclude thatt has no corresponding
aspect in the candidate set.

For finding syntactic patterns that extract an as-
pectc starting with an evaluationt, we first repre-
sent all the sentences in the annotated corpus that
has both an aspect and its evaluation, as shown in
Figure 3. A sentence is analyzed by a dependency
parser, then the dependency tree is converted so
as to represent the relation between content words
clearly and to attach other information (such as POS
labels and other morphological features of content
words and the functional words attached to the con-
tent words) as shown in the lower part of Figure 3.
Among various classifier induction algorithms for
tree-structured data, in our experiments, we have so
far examined Kudo and Matsumoto (2004)’s algo-
rithm, packaged as a free software namedBACT.

Given a set of training examples represented as or-
dered trees labeled either positive or negative class,
this algorithm learns a list of weighted decision
stumps as a discrimination function with the Boost-
ing algorithm. Each decision stump is associated
with tuple 〈s, l, w〉, wheres is a subtree appearing
in the training set,l a label, andw a weight of this
pattern. The strength of this algorithm is that it auto-
matically acquires structured features and allows us
to analyze the utility of features.

Given ac-t pair in an annotated sentence, tree en-
coding of this sentence is done as follows: First, we
use a dependency parser to obtain a dependency tree
as in Figure 3 (a). We assume “kêki (cake)” as the
candidate aspectc and “oishii (delicious)” as the tar-
get evaluationt. We then find the path betweent
andc together with their daughter nodes. For exam-
ple, the node “Darling-no (Darling’s)” is kept since
it is a daughter ofc. Then, all the content words are
abstracted to either of the class types, evaluation, as-
pect or node, that is,c is renamed as ”aspect”,t as
”evaluation” and all other content words as ”node”.
Other information of a content word and the infor-
mation of functional words attaching to the content
word are represented as the leaf nodes as shown in
Figure 3 (b). The features used in our experiments
are summarized in Table 2.

We apply the same method to the aspect-of rela-
tion extraction by replacing the ”evaluation” label as
the second ”aspect” label.

3.3 Context-independent statistical clues

We also introduce the following two kinds of statis-
tical clues.
i. Co-occurrences of aspect-evaluation/aspect-
aspect: Among various ways to estimate the
strength of association (e.g. the number of hits re-
turned from a search engine), in our experiments,
we extracted aspect-aspect and aspect-evaluation
co-occurrences in 1.7 million weblog posts us-
ing the patterns “〈aspect〉 ga/wa/mo 〈evaluation〉
(〈aspect〉 is (subject-marker)〈evaluation〉)” and
“〈aspectA〉 no 〈aspectB〉 ga/wa (〈aspectB〉 of
〈aspectA〉 is)”. To avoid the data sparseness
problem, we use Probabilistic Latent Semantic In-
dexing (PLSI) (Hofmann, 1999) to estimate con-
ditional probabilitiesP (Aspect|Evaluation) and
P (Aspect A|Aspect B). We then incorporate the
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information of these probability scores into the
learning model described in 3.2 by encoding them
as a feature that indicates the relative score rank of
each candidate in a given candidate set (see Table 2).
ii. Aspect-hood of candidate aspects:Aspect-hood
is an index of the degree that measures how plausible
a term is used as an aspect within a given domain.
We consider that a phrase directly co-occurred with
a subject often is likely to be an aspect of the sub-
ject, and extract the expressionX which appears in
the form “Subject no X(X of Subject)” and the ex-
pressionY which appears in the form “XnoY”. We
calculate the aspect-hood of the expressionsX and
Y by the pointwise mutual information. This score
is also used as a features (see Table 2).

3.4 Intra-/inter-sentential relation extraction

Syntactic pattern induction as described in 3.2.1 can
apply only when an aspect-evaluation (or aspect-of)
relation appears in a single sentence. We therefore
build a separate model for inter-sentential relation
extraction, which is carried out after intra-sentential
relation extraction.

1) Intra-sentential relation identification: Given a
target evaluation (or aspect), select the most likely
candidate aspectc∗ within the target sentence with
the intra-sentential model described in 3.2.1. If the
score ofc∗ is positive, returnc∗; otherwise, go to the
inter-sentential relation extraction phase.

2) Inter-sentential relation identification: Search
for the most likely candidate aspect in the sentences
preceding the target evaluation (or aspect). This
task can be regarded as a zero-anaphora resolution
problem. For this purpose, we employ the super-
vised learning model for zero-anaphora resolution
proposed by (Iida et al., 2003).

3.5 Opinion-hood determination

Evaluation phrases do not always extract correct
opinion units in a given domain. Consider an exam-
ple from the digital camera domain, “The weather
was good. so I went to the park to take some pic-
tures”. “ good” expresses the evaluation for “the
weather”, but “the weather” is not an aspect of digi-
tal cameras. Therefore,〈the weather, good〉 is not an
opinion in the digital camera domain. We can con-
sider a binary classification task of judging whether
the obtained opinion unit is a real opinion or not in

a given domain. In this paper, we conduct a prelim-
inary experiment which uses the opinion-hood de-
termination model learned by Support Vector Ma-
chines. We conduct the model using our opinion-
annotated corpus. The positive examples are aspect-
evaluation pairs annotated in the corpus. The neg-
ative examples are artificially generated as follows:
We first identify the expression in the evaluation dic-
tionary that appear in our annotated corpus. We then
apply the above aspect-evaluation extraction method
and get the most plausible candidate aspect. The re-
sult is regarded as a negative example if the extracted
aspect is not the true aspect. The features we used in
our experiments are summarized in Table 2.

4 Experiments

We conducted experiments with our Japanese
opinion-annotated corpus to empirically evaluate the
performance of our approach. In these experi-
ments, we separately evaluated the models of aspect-
evaluation relation extraction, aspect-of relation ex-
traction, and opinion-hood determination.

4.1 Common settings

We chose 395 weblog posts in the restaurant do-
main from our opinion-annotated corpus described
in 2.1, and conducted 5-fold cross validation on
that dataset. As preprocessing, we analyzed this
corpus using the Japanese morphological analyzer
ChaSen1 and the Japanese dependency structure an-
alyzerCaboCha2.

4.2 Models

The results are summarized in Tables 3 and 4. We
evaluated the results by recallR and precisionP de-
fined as follows

R =
correctly extracted relations

total number of relations
,

P =
correctly extracted relations

total number of relations found by the system
.

Note that, in aspect-of relations, we permit〈A,C〉
to be correct when the data includes the chain of
aspect-of relations〈A,B〉 and 〈B,C〉. Therefore,
we merged the intra- and inter-sentential results as
shown in Table 4.

1http://chasen.naist.jp/
2http://chasen.org/˜taku/software/cabocha/
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Table 2: Feature list:t denotes a given target (eval-
uation or aspect) andc a candidate

Features for contextual clues
• Position ofc / t in the sentence (beginning, end, other)
• Base phrase distance betweenc andt (1, 2, 3, 4, other)
•Whetherc andt has a immediate dependency relation
•Whetherc precedest
•Whetherc appears in a quoted sentence
• Part-of-speech ofc / t
• Suffix of c (-sei, -sa(-ty), etc.)
• Character type ofc (English, Chinese, Katakana, etc.)
• Semantic class ofc derived fromNihongo Goi Taikei(Ike-
hara et al., 1997).
Features for statistical clues
• Co-occurrence score rank ofc (1st, 2nd, 3rd, 4th, other)
• Aspect-hood score rank ofc (1st, 2nd, 3rd, 4th, other)

TheContextualandContextual+statisticsmodels
are our proposed models where the former uses only
contextual clues (3.2.1) and the latter uses both con-
textual and statistical clues. We prepared two base-
line models, one for each of the above tasks. The
Pattern model (in Table 3) simulates the pattern-
based method proposed by Tateishi at al. (2004),
which uses the following patterns: “〈Aspect〉 case-
particle 〈Evaluation〉” and “〈Evaluation〉 syntacti-
cally depends on〈Aspect〉”. The Co-occurrence
model (in Table 4) simulates the co-occurrence
statistics-based model used in bridging reference
resolution (Bunescu, 2003): For an aspect expres-
sion, we select the nearest candidate that has the
highest positive score of the pointwise mutual in-
formation regardless of its occurrence (i.e. inter-
or intra-sentential). Comparing thePattern (Co-
occurrence) model with theContextualmodel shows
the effects of the supervised learning with contex-
tual clues, while comparison of theContextualand
Contextual+statisticsmodels shows the joint effect
of combining contextual and statistical clues.

4.3 Results and discussions

As for the aspect-evaluation relation extraction, con-
cerning the intra-sentential cases, we can see that
the models using the contextual clues show nearly
10% improvement in both precision and recall. This
indicates that the machine learning-based method
has a great advantage over the pattern-based ap-
proach. Similar results are seen in aspect-of rela-
tion extraction. The models using the contextual
clues achieved more than 10% improvement in pre-

Table 3: The results of aspect-evaluation relation
intra-sent. inter-sent.

Patterns P 0.56 (432/774) -
R 0.53 (432/809) -

Contextual P 0.70 (504/723) 0.13 (46/360)
R 0.62 (504/809) 0.17 (46/274)

Contextual P 0.72 (502/694) 0.14 (53/389)
+statistics R 0.62 (502/809) 0.19 (53/274)

Table 4: The results of aspect-of relation
precision recall

Co-occurrence 0.27 (175/ 682) 0.17 (175/1048)
Contextual 0.44 (458/1047) 0.44 (458/1048)

Contextual+statistics 0.45 (474/1047) 0.45 (474/1048)

cision and 20% improvement in recall over the co-
occurrence statistics-based model. We can say that
contextual clues are also useful in aspect-of rela-
tion extraction. In comparing the Contextual and
Contextual+statistics models, on the other hand, we
could get only a slight improvement, which indicates
that we need to estimate the statistical clues more
precisely. We found that the unsophisticated esti-
mation of the statistical clues was a major source of
errors in aspect-of relation extraction, however, this
estimation is not so easy since the correct expres-
sions are appeared only once in large data. We are
seeking efficient ways to avoid data sparseness prob-
lem (e.g. categorize the aspects).

In the aspect-evaluation relation extraction, we
evaluated the results against the human annotated
gold-standard in a strict manner. However, accord-
ing to our error analysis, some of the errors can be
regarded as correct for some real applications. In
the following example, a relation annotated by the
human is “aji (taste), koi-me (strong)”.

misoshiru-wa 〈aji〉-ga 〈koi-me〉
miso soup-TOP 〈taste〉-NOM 〈strong〉
(The taste of the miso soup is strong.)

However, there is no harm to consider that “mis-
oshiru (miso soup), koi-me (strong)” is also correct.
If we judge these cases as correct, the Proposed
models achieve nearly 0.8 precision and 0.7 recall,
and the baseline model also get 7 % improvement
(precision 0.63 and recall 0.6). Based on this re-
sult, we consider that we achieved reasonable per-
formance in intra-sentential aspect-evaluation rela-
tion extraction.

As Table 3 shows, inter-sentential relation ex-
traction achieved very poorly. In the case of inter-
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sentential relations, our model tends to rely heavily
on the statistical clues, because syntactic pattern fea-
tures cannot be used. However, our current method
for estimating co-occurrence distributions is not so-
phisticated as we discussed above. We need to seek
for more effective use of large scale domain depen-
dent data to obtain better statistics.

We also conducted a preliminary test of the
opinion-hood determination model using the fea-
tures used in aspect-evaluation relation extraction.
As a result, we got 0.5 precision and 0.45 recall.
Opinion-hood determination problem includes two
decisions: whether the evaluation candidate is an
opinion or not, and whether the opinion is related
to the given domain if the evaluation candidate is
an opinion. We plan to use various features known
to be effective in the sentence subjectivity recogni-
tion task. This task involves challenging problems.
For example, sentence (1) includes the writer’s eval-
uation onshrimpsserved at a particular restaurant.
In contrast, very similar sentence (2) does not ex-
press evaluation since it is a generic description of
the writer’s taste.

(1) watashi-wa konomise-no ebi-ga suki-desu
I the restaurant shrimp like
(I like shrimps of the restaurant.)

(2) watashi-wa ebi-ga suki-desu
I shrimps like
(I like shrimps.)

Thus we need to conduct further investigation in or-
der to resolve this kind of problems.

4.4 Portability of intra-sentential model

We next evaluated effectiveness of the contextual
clues learned in the domains to other domains by
testing a model trained on the certain domains to
other domain. We selected two new domains, cel-
lular phone and automobile, and annotated 290 we-
blog posts in each domain. For the restaurant do-
main, we randomly selected 290 posts from the pre-
viously mentioned our annotated corpus. We then
divide each data set to a training set and a test set
so that we had the same amount of training data for
each domain. Then we trained a model on the data
for each domain, and applied it to each of the three
set of data. Table 5 shows the results of the experi-
ment. Compared with the model trained on the same
domain, the models trained on different domains ex-
hibited almost comparable performance. This in-

Table 5: Comparing intra-sentential models among
three domains (upper: aspect-eval, lower: aspect-of)

test restaurant cellular phone automobile
same P 0.72 (502/694) 0.75 (522/693) 0.76 (562/738)
dom. R 0.62 (502/809) 0.63 (522/833) 0.65 (562/870)
other P 0.73 (468/638) 0.72 (517/710) 0.74 (565/768)
dom R 0.58 (468/809) 0.62 (517/833) 0.65 (565/870)
same P 0.43 (139/321) 0.62 (139/224) 0.66 (185/280)
dom. R 0.59 (139/234) 0.60 (139/230) 0.66 (185/279)
other P 0.42 (124/293) 0.53 (138/260) 0.59 (195/329)
dom R 0.52 (124/234) 0.60 (138/230) 0.70 (195/279)

dicates that the contextual clues learned in other
domains are effective in another domain, showing
the cross-domain portability of our intra-sentential
model.

5 Conclusion

In this paper, we described our opinion extrac-
tion task, which extract opinion units consisting
of four constituents. We showed the feasibility of
the task definition based on our corpus study. We
consider the task as two kinds of relation extrac-
tion tasks, aspect-evaluation relation extraction and
aspect-of relation extraction, and proposed a ma-
chine learning-based method which combines con-
textual clues and statistical clues. Our experimental
results show that the model using contextual clues
improved the performance for both tasks. We also
showed domain portability of the contextual clues.
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Abstract

Recognizing polarity requires a list of po-
lar words and phrases. For the purpose of
building such lexicon automatically, a lot of
studies have investigated (semi-) unsuper-
vised method of learning polarity of words
and phrases. In this paper, we explore to
use structural clues that can extract polar
sentences from Japanese HTML documents,
and build lexicon from the extracted po-
lar sentences. The key idea is to develop
the structural clues so that it achieves ex-
tremely high precision at the cost of recall.
In order to compensate for the low recall,
we used massive collection of HTML docu-
ments. Thus, we could prepare enough polar
sentence corpus.

1 Introduction

Sentiment analysis is a recent attempt to deal with
evaluative aspects of text. In sentiment analysis, one
fundamental problem is to recognize whether given
text expresses positive or negative evaluation. Such
property of text is called polarity. Recognizing po-
larity requires a list of polar words and phrases such
as ’good’, ’bad’ and ’high performance’ etc. For
the purpose of building such lexicon automatically, a
lot of studies have investigated (semi-) unsupervised
approach.

So far, two kinds of approaches have been pro-
posed to this problem. One is based on a the-
saurus. This method utilizes synonyms or glosses of
a thesaurus in order to determine polarity of words

(Kamps et al., 2004; Hu and Liu, 2004; Kim and
Hovy, 2004; Esuli and Sebastiani, 2005). The sec-
ond approach exploits raw corpus. Polarity is de-
cided by using co-occurrence in a corpus. This is
based on a hypothesis that polar phrases conveying
the same polarity co-occur with each other. Typ-
ically, a small set of seed polar phrases are pre-
pared, and new polar phrases are detected based on
the strength of co-occurrence with the seeds (Hatzi-
vassiloglous and McKeown, 1997; Turney, 2002;
Kanayama and Nasukawa, 2006).

As for the second approach, it depends on the
definition of co-occurrence whether the hypothe-
sis is appropriate or not. In Turney’s work, the
co-occurrence is considered as the appearance in
the same window (Turney, 2002). Although this
idea is simple and feasible, there is a room for im-
provement. According to Kanayama’s investiga-
tion, the hypothesis is appropriate in only 60% of
cases if co-occurrence is defined as the appearance
in the same window1. In Kanayama’s method, the
co-occurrence is considered as the appearance in
intra- or inter-sentential context (Kanayama and Na-
sukawa, 2006). They reported that the precision was
boosted to 72.2%, but it is still not enough. There-
fore, we think that the above hypothesis is often in-
appropriate in practice, and this fact is the biggest
obstacle to learning lexicon from corpus.

In this paper, we explore to use structural clues
that can extract polar sentences from Japanese
HTML documents, and build lexicon from the ex-

1To be exact, the precision depends on window size and
ranges from 59.7 to 64.1%. See Table 4 in (Kanayama and Na-
sukawa, 2006) for the detail.

1075



Figure 1: Overview of the proposed method.

kono
this

software-no
software-POST

riten-ha
advantage-POST

hayaku

quickly

ugoku

run

koto-desu
to-POST

The advantage of this software is to run quickly.

Figure 2: Language structure.

tracted polar sentences. An overview of the pro-
posed method is represented in Figure 1. First, po-
lar sentences are extracted from HTML documents
by using structural clues (step 1). The set of po-
lar sentences is called polar sentence corpus. Next,
from the polar sentence corpus, candidates of po-
lar phrases are extracted together with their counts
in positive and negative sentences (step 2). Finally,
polar phrases are selected from the candidates and
added to our lexicon (step 3).

The key idea is to develop the structural clues so
that it achieves extremely high precision at the cost
of recall. As we will see in Section 2.3, the precision
was extremely high. It was around 92% even if am-
biguous cases were considered as incorrect. In order
to compensate for the low recall, we used massive
collection of HTML documents. Thus, we could
build enough polar sentence corpus. To be specific,
we extracted 500,000 polar sentences from one bil-
lion HTML documents.

The contribution of this paper is to empirically
show the effectiveness of an approach that makes
use of the strength of massive data. Nowadays, ter-
abyte is not surprisingly large, and larger corpus
would be obtained in the future. Therefore, we think
this kind of research direction is important.

2 Extracting Polar Sentences

Our method begins by automatically constructing
polar sentence corpus with structural clues (step 1).

The basic idea is exploiting certain language and
layout structures as clues to extract polar sentences.
The clues were carefully chosen so that it achieves
high precision. The original idea was represented in
our previous paper (Kaji and Kitsuregawa, 2006).

2.1 Language structure

Some polar sentences are described by using char-
acteristic language structures. Figure 2 illustrates
such Japanese polar sentence attached with English
translations. Japanese are written in italics and ’-
’ denotes that the word is followed by postposi-
tional particles. For example, ’software-no’ means
that ’software’ is followed by postpositional particle
’no’. The arrow represents dependency relationship.
Translations are shown below the Japanese sentence.
’-POST’ means postpositional particle.

What characterizes this sentence is the singly un-
derlined phrase. In this phrase, ’riten (advantage)’
is followed by postpositional particle ’-ha’, which is
Japanese topic marker. And hence, we can recognize
that something positive is the topic of the sentence.
This kind of linguistic structure can be recognized
by lexico-syntactic pattern. Hereafter, such words
like ’riten (advantage)’ are called cue words.
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In order to handle the language structures, we uti-
lized lexico-syntactic patterns as illustrated below.

riten-ha
advantage-POST

(polar) koto-desu
to-POST

A sub-tree that matches (polar) is extracted as po-
lar sentence. It is obvious whether the polar sen-
tence is positive or negative one. In case of Figure
2, the doubly underlined part is extracted as polar

sentence2.
Besides ’riten (advantage)’, other cue words were

also used. A list of cue words (and phrases) were
manually created. For example, we used ’pros’ or
’good point’ for positive sentences, and ’cons’, ’bad
point’ or ’disadvantage’ for negative ones. This list
is also used when dealing with layout structures.

2.2 Layout structure

Two kinds of layout structures are utilized as clues.
The first clue is the itemization. In Figure 3, the
itemizations have headers and they are cue words
(’pros’ and ’cons’). Note that we illustrated trans-
lations for the sake of readability. By using the cue
words, we can recognize that polar sentences are de-
scribed in these itemizations.

The other clue is table structure. In Figure 4, a
car review is summarized in the table format. The
left column acts as a header and there are cue words
(’plus’ and ’minus’) in that column.

Pros:
� The sound is natural.

� Music is easy to find.

� Can enjoy creating my favorite play-lists.

Cons:

� The remote controller does not have an LCD dis-
play.

� The body gets scratched and fingerprinted easily.

� The battery drains quickly when using the back-
light.

Figure 3: Itemization structure.

2To be exact, the doubly underlined part is polar clause.
However, it is called polar sentence because of the consistency
with polar sentences extracted by using layout structures.

Mileage(urban) 7.0km/litter
Mileage(highway) 9.0km/litter
Plus This is a four door car, but it’s

so cool.
Minus The seat is ragged and the light

is dark.

Figure 4: Table structure.

It is easy to extract polar sentences from the item-
ization. Such itemizations as illustrated in Figure 3
can be detected by using the list of cue words and
HTML tags such as �h1� and �ul� etc. Three
positive and negative sentences are extracted respec-
tively from Figure 3.

As for table structures, two kinds of tables are
considered (Figure 5). In the Figure, � and � rep-
resent positive and negative polar sentences, and ��
and �� represent cue words. Type A is a table in
which the leftmost column acts as a header. Figure
4 is categorized into this type. Type B is a table in
which the first row acts as a header.

Type A

�� �
�
�

�

Type B
�� �

�

� �

Figure 5: Two types of table structures.

In order to extract polar sentences, first of all, it
is necessary to determine the type of the table. The
table is categorized into type A if there are cue words
in the leftmost column. The table is categorized into
type B if it is not type A and there are cue words in
the first row. After the type of the table is decided,
we can extract polar sentences from the cells that
correspond to � and � in the Figure 5.

2.3 Result of corpus construction

The method was applied to one billion HTML doc-
uments. In order to get dependency tree, we used
KNP3. As the result, 509,471 unique polar sentences
were obtained. 220,716 are positive and the others
are negative4. Table 1 illustrates some translations
of the polar sentences.

3http://nlp.kuee.kyoto-u.ac.jp/nl-resource/knp.html
4The polar sentence corpus is available from

http://www.tkl.iis.u-tokyo.ac.jp/˜kaji/acp/.
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Table 1: Examples of polar sentences.
Polarity Polar sentence

It becomes easy to compute cost.
positive It’s easy and can save time.

The soup is rich and flavorful.
Cannot use mails in HTML format.

negative The lecture is really boring.
There is no impressive music.

In order to investigate the quality of the corpus,
two human judges (judge A/B) assessed 500 polar
sentences in the corpus. According to the judge
A, the precision was 91.4%. 459 out of 500 polar
sentences were regarded as valid ones. According
to the judge B, the precision was 92.0% (460/500).
The agreement between the two judges was 93.5%
(Kappa value was 0.90), and thus we can conclude
that the polar sentence corpus has enough quality
(Kaji and Kitsuregawa, 2006).

After error analysis, we found that most of the er-
rors are caused by the lack of context. The following
is a typical example.

There is much information.

This sentence is categorized into positive one in the
corpus, and it was regarded as invalid by both judges
because the polarity of this sentence is ambiguous
without context.

As we described in Section 1, the hypothesis of
co-occurrence based method is often inappropriate.
(Kanayama and Nasukawa, 2006) reported that it
was appropriate in 72.2% of cases. On the other
hand, by using extremely precise clues, we could
build polar sentence corpus that have high preci-
sion (around 92%). Although the recall of structural
clues is low, we could build large corpus by using
massive collection of HTML documents. Of course,
we cannot directly compare these two percentages.
We think, however, the high precision of 92% im-
plies the strength of our approach.

3 Acquisition of Polar Phrases

The next step is to acquire polar phrases from the
polar sentence corpus (step 2 and 3 in Figure 1).

3.1 Counting candidates

From the corpus, candidates of polar phrases are ex-
tracted together with their counts (step 2).

As is often pointed out, adjectives are often used
to express evaluative content. Considering that po-
larity of isolate adjective is sometimes ambiguous
(e.g. high), not only adjectives but also adjective
phrases (noun + postpositional particle + adjective)
are treated as candidates. Adjective phrases are ex-
tracted by the dependency parser. To handle nega-
tion, an adjective with negation words such as ’not’
is annotated by �NEGATION� tag. For the sake of
readability, we simply represent adjective phrases in
the form of ’noun-adjective’ by omiting postposi-
tional particle, as in the Figure 1.

For each candidate, we count the frequency in
positive and negative sentences separately. Intu-
itively, we can expect that positive phrases often ap-
pear in positive sentences, and vice versa. However,
there are exceptional cases as follows.

Although the price is high, its shape is
beautiful.

Although this sentence as a whole expresses posi-
tive evaluation and it is positive sentence, negative
phrase ’price is high’ appears in it. To handle this,
we hypothesized that positive/negative phrases tend
to appear in main clause of positive/negative sen-
tences, and we exploited only main clauses to count
the frequency.

3.2 Selecting polar phrases

For each candidate, we determine numerical value
indicating the strength of polarity, which is referred
as polarity value. On the basis of this value, we se-
lect polar phrases from the candidates and add them
to our lexicon (step 3).

For each candidate �, we can create a contingency
table as follows.

Table 2: Contingency table
��� ���

� 	��
 ���� 	��
 ����
�� 	���
 ���� 	���
 ����

���� ��	� is the frequency of � in positive sentences.
����� ��	� is that of all candidates but �. ���� 
���
and ����� 
��� are similarly decided.

From this contingency table, �’s polarity value is
determined. Two ideas are examined for compari-
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son. One is based on chi-square value and the other
is based on Pointwise Mutual Information (PMI).

Chi-square based polarity value The chi-square
value is a statistical measure used to test the null hy-
pothesis that, in our case, the probability of a candi-
date in positive sentences is equal to the probability
in negative sentences. Given Table 2, the chi-square
value is calculated as follows.


���� �
�

��������

�
��������	
�

����� ��� ����� ����

����� ��

Here, ����� �� is the expected value of ���� �� under
the null hypothesis.

Although 
������ �� indicates the strength of
bias toward positive or negative sentences, its di-
rection is not clear. We determined polarity value
so that it is greater than zero if � appears in posi-
tive sentences more frequently than in negative sen-
tences and otherwise it is less than zero.

������� �

�

���� ��� ���
��� � � �����	�
�
���� 	
��
����

� �����	� is �’s probability in positive sentences, and
� ���
��� is that in negative sentences. They are es-
timated by using Table 2.

� �����	� �
���� ��	�

���� ��	� � ����� ��	�

� ���
��� �
���� 
���

���� 
��� � ����� 
���

PMI based polarity value Using PMI, the
strength of association between � and positive sen-
tences (and negative sentences) is defined as follows
(Church and Hanks, 1989).

������ ��	� � �	��
� ��� ��	�

� ���� ���	�

������ 
��� � �	��
� ��� 
���

� ���� �
���

PMI based polarity value is defined as their differ-
ence. This idea is the same as (Turney, 2002).

���
���� � ������ ��	�� ������ 
���

� �	��
� ��� ��	��� ���	�

� ��� 
����� �
���

� �	��
� �����	�

� ���
���

� �����	� and � ���
��� are estimated in the same
way as shown above. ���
���� is (log of) the ra-
tio of �’s probability in positive sentences to that in
negative sentences. This formalization follows our
intuition. Similar to �������, ���
���� is greater
than zero if � ���
��� � � �����	�, otherwise it is
less than zero.

Selecting polar phrases By using polarity value
and threshold ��� ��, it is decided whether a can-
didate � is polar phrase or not. If � � �� ���, the
candidate is regarded as positive phrase. Similarly, if
�� ��� � ��, it is regarded as negative phrase. Oth-
erwise, it is regarded as neutral. Only positive and
negative phrases are added to our lexicon. By chang-
ing �, the trade-off between precision and recall can
be adjusted. In order to avoid data sparseness prob-
lem, if both ���� ��	� and ���� 
��� are less than
three, such candidates were ignored.

4 Related Work

As described in Section 1, there have been two ap-
proaches to (semi-) unsupervised learning of polar-
ity. This Section introduces the two approaches and
other related work.

4.1 Thesaurus based approach

Kamps et al. built lexical network by linking syn-
onyms provided by a thesaurus, and polarity was de-
fined by the distance from seed words (’good’ and
’bad’) in the network (Kamps et al., 2004). This
method relies on a hypothesis that synonyms have
the same polarity. Hu and Liu used similar lexi-
cal network, but they considered not only synonyms
but antonyms (Hu and Liu, 2004). Kim and Hovy
proposed two probabilistic models to estimate the
strength of polarity (Kim and Hovy, 2004). In their
models, synonyms are used as features. Esuli et al.
utilized glosses of words to determine polarity (Esuli
and Sebastiani, 2005; Esuli and Sebastiani, 2006).

Compared with our approach, the drawback of us-
ing thesaurus is the lack of scalability. It is diffi-
cult to handle such words that are not contained in
a thesaurus (e.g. newly-coined words or colloquial
words). In addition, phrases cannot be handled be-
cause the entry of usual thesaurus is not phrase but
word.
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4.2 Corpus based approach

Another approach is based on an idea that polar
phrases conveying the same polarity co-occur with
each other in corpus.

(Turney, 2002) is one of the most famous work
that discussed learning polarity from corpus. Turney
determined polarity value5 based on co-occurrence
with seed words (’excellent’ and ’poor’). The co-
occurrence is measured by the number of hits re-
turned by a search engine. The polarity value pro-
posed by (Turney, 2002) is as follows.

�	��
��
������� ��������
���
���		
�

��
������� �		
���
����������
�

��
���� means the number of hits returned by a
search engine when query � is issued. ����

means NEAR operator, which enables to retrieve
only such documents that contain two queries within
ten words.

Hatzivassiloglou and McKeown constructed lex-
ical network and determine polarity of adjectives
(Hatzivassiloglous and McKeown, 1997). Although
this is similar to thesaurus based approach, they built
the network from intra-sentential co-occurrence.
Takamura et al. built lexical network from not only
such co-occurrence but other resources including
thesaurus (Takamura et al., 2005). They used spin
model to predict polarity of words.

Popescu and Etzioni applied relaxation labeling to
polarity identification (Popescu and Etzioni, 2005).
This method iteratively assigns polarity to words by
using various features including intra-sentential co-
occurrence and synonyms of a thesaurus.

Kanayama and Nasukawa used both intra- and
inter-sentential co-occurrence to learn polarity of
words and phrases (Kanayama and Nasukawa,
2006). Their method covers wider range of co-
occurrence than other work such as (Hatzivas-
siloglous and McKeown, 1997). An interesting
point of this work is that they discussed building do-
main oriented lexicon. This is contrastive to other
work including ours that addresses to build domain
independent lexicon.

In summary, the strength of our approach is to ex-
ploit extremely precise structural clues, and to use

5Semantic Orientation in (Turney, 2002).

massive collection of HTML documents to compen-
sate for the low recall. Although Turney’s method
also uses massive collection of HTML documents,
his method does not make much of precision com-
pared with our method. As we will see in Section
5, our experimental result revealed that our method
overwhelms Turney’s method.

4.3 Other related work

In some review sites, pros and cons are stated using
such layout that we introduced in Section 2. Some
work examined the importance of such layout (Liu et
al., 2005; Kim and Hovy, 2006). However, they re-
garded layout structures as clues specific to a certain
review site. They did not propose to use layout struc-
ture to extract polar sentences from arbitrary HTML
documents.

Some studies addressed supervised approach to
learning polarity of phrases (Wilson et al., 2005;
Takamura et al., 2006). These are different from
ours in a sense that they require manually tagged
data.

Kobayashi et al. proposed a framework to reduce
the cost of manually building lexicon (Kobayashi et
al., 2004). In the experiment, they compared the
framework with fully manual method and investi-
gated the effectiveness.

5 Experiment

A test set consisting of 405 adjective phrases were
created. From the test set, we extract polar phrases
by looking up our lexicon. The result was evaluated
through precision and recall6.

5.1 Setting

The test set was created in the following manner.
500 adjective phrases were randomly extracted from
the Web text. Note that there is no overlap between
our polar sentence corpus and this text. After remov-
ing parsing error and duplicates, 405 unique adjec-
tive phrases were obtained. Each phase was man-
ually annotated with polarity tag (positive, negative
and neutral), and we obtained 158 positive phrases,
150 negative phrases and 97 neutral phrases. In or-
der to check the reliability of annotation, another

6The lexicon is available from http://www.tkl.iis.u-
tokyo.ac.jp/˜kaji/polardic/.
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Table 3: The experimental result (chi-square).
� 0 10 20 30 40 50 60

Precision/Recall Positive 76.4/92.4 84.0/86.7 84.1/83.5 86.2/79.1 88.7/74.7 86.7/65.8 86.7/65.8
Negative 68.5/84.0 65.5/63.3 64.3/60.0 62.7/57.3 81.1/51.3 80.0/48.0 80.0/48.0

# of polar words and phrases 9,670 2,056 1,047 698 533 423 335

Table 4: The experimental result (PMI).
� 0 0.5 1.0 1.5 2.0 2.5 3.0

Precision/Recall Positive 76.4/92.4 79.6/91.1 86.1/89.9 87.2/86.1 90.9/82.3 92.4/76.6 92.9/65.8
Negative 68.5/84.0 75.8/81.3 82.3/77.3 84.8/74.7 85.8/72.7 86.8/70.0 87.9/62.7

# of polar words and phrases 9,670 9,320 9,039 8,804 8,570 8,398 8,166

Table 5: The effect of data size (PMI, �=1.0).
size 1/20 1/15 1/10 1/5 1

Precision/Recall Positive 87.0/63.9 84.6/65.8 85.1/75.9 85.4/84.8 86.1/89.9
Negative 76.9/55.8 86.2/50.0 82.1/58.0 80.3/62.7 82.3/77.3

human judge annotated the same data. The Kappa
value between the two judges was 0.73, and we think
the annotation is reliable.

From the test set, we extracted polar phrases by
looking up our lexicon. As for adjectives in the lex-
icon, partial match is allowed. For example, if the
lexicon contains an adjective ’excellent’, it matches
every adjective phrase that includes ’excellent’ such
as ’view-excellent’ etc.

As a baseline, we built lexicon similarly by using
polarity value of (Turney, 2002). As seed words, we
used ’saikou (best)’ and ’saitei (worst)’. Some seeds
were tested and these words achieved the best result.
As a search engine, we tested Google and our local
engine, which indexes 150 millions Japanese docu-
ments. Its size is compatible to (Turney and Littman,
2002). Since Google does not support NEAR, we
used AND. Our local engine supports NEAR.

5.2 Results and discussion

We evaluated the result of polar phrase extraction.
By changing the threshold �, we investigated recall-
precision curve (Figure 6 and 7). The detail is rep-
resented in Table 3 and 4. The second/third row
represents precision and recall of positive/negative
phrases. The fourth row is the size of the lexicon.

The Figures show that both of the proposed meth-
ods outperform the baselines. The best F-measure
was achieved by PMI (�=1.0). Although Turney’s
method may be improved with minor configurations
(e.g. using other seeds etc.), we think this results
indicate the feasibility of the proposed method. Al-

Figure 6: Recall-precision curve (positive phrases)

though the size of lexicon is not surprisingly large, it
would be possible to make the lexicon larger by us-
ing more HTML documents. In addition, notice that
we focus on only adjectives and adjective phrases.

Comparing the two proposed methods, PMI is al-
ways better than chi-square. Especially, chi-square
suffers from low recall, because the size of lexicon
is extremely small. For example, when the thresh-
old is 60, the precision is 80% and the recall is 48%
for negative phrases. On the other hand, PMI would
achieve the same precision when recall is around
80% (� is between 0.5 and 1.0).

Turney’s method did not work well although they
reported 80% accuracy in (Turney and Littman,
2002). This is probably because our experimental
setting is different. Turney examined binary classi-
fication of positive and negative words, and we dis-
cussed extracting positive and negative phrases from
the set of positive, negative and neutral phrases.
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Figure 7: Recall-precision curve (negative phrases)

Error analysis revealed that most of the errors are
related to neutral phrases. For example, PMI (�=1.0)
extracted 48 incorrect polar phrases, and 37 of them
were neutral phrases. We think one reason is that
we did not use neutral corpus. It is one future work
to exploit neutral corpus. The importance of neutral
category is also discussed in other literatures (Esuli
and Sebastiani, 2006).

To further assess our method, we did two addi-
tional experiments. In the first experiment, to inves-
tigate the effect of data size, the same experiment
was conducted using 1/n (n=1,5,10,15,20) of the en-
tire polar sentence corpus (Table 5). PMI (�=1.0)
was also used. As the size of corpus increases, the
performance becomes higher. Especially, the re-
call is improved dramatically. Therefore, the recall
would be further improved using more corpus.

In the other experiment, the lexicon was evalu-
ated directly so that we can examine polar words and
phrases that are not in the test set. We think it is diffi-
cult to fully assess low frequency words in the previ-
ous setting. Two human judges assessed 200 unique
polar words and phrases in the lexicon (PMI, �=1.0).
The average precision was 71.3% (Kappa value was
0.66). The precision is lower than the result in Table
4. This result indicates that it is difficult to handle
low frequency words.

The Table 6 illustrates examples of polar phrases
and their polarity values. We can see that both
phrases and colloquial words such as ’uncool’ are
appropriately learned. They are difficult to handle
for thesaurus based approach, because such words
are not usually in thesaurus.

It is important to discuss how general our frame-

Table 6: Examples
polar phrase �
�� ��� �
������

kenkyoda (modest) 38.3 12.1
exiting (exiting) 13.5 10.4

more-sukunai (leak-small) 9.2 9.8
dasai (uncool) -2.9 -3.3

yakkaida (annoying) -11.9 -3.9
shomo-hayai (consumption-quick) -17.7 -4.4

work is. Although the lexico-syntactic patterns
shown in Section 2 are specific to Japanese, we
think that the idea of exploiting language structure
is applicable to other languages including English.
Roughly speaking, the pattern we exploited can be
translated into ’the advantage/weakness of some-
thing is to ...’ in English. It is worth pointing out
that lexico-syntactic patterns have been widely used
in English lexical acquisition (Hearst, 1992). Obvi-
ously, other parts of the proposed method does not
depend on Japanese.

6 Conclusion

In this paper, we explore to use structural clues that
can extract polar sentences from Japanese HTML
documents, and build lexicon from the extracted po-
lar sentences. The key idea is to develop the struc-
tural clues so that it achieves extremely high preci-
sion at the cost of recall. In order to compensate for
the low recall, we used massive collection of HTML
documents. Thus, we could prepare enough polar
sentence corpus. Experimental result demonstrated
the feasibility of our approach.
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Abstract

This paper discusses automatic determina-
tion of case in Arabic. This task is a ma-
jor source of errors in full diacritization of
Arabic. We use a gold-standard syntac-
tic tree, and obtain an error rate of about
4.2%, with a machine learning based system
outperforming a system using hand-written
rules. A careful error analysis suggests that
when we account for annotation errors in the
gold standard, the error rate drops to 0.8%,
with the hand-written rules outperforming
the machine learning-based system.

1 Introduction

In Modern Standard Arabic (MSA), all nouns and
adjectives have one of three cases: nominative
(NOM), accusative (ACC), or genitive (GEN). What
sets case in MSA apart from case in other languages
is most saliently the fact that it is usually not marked
in the orthography, as it is written using diacrit-
ics which are normally omitted. In fact, in a re-
cent paper on diacritization, Habash and Rambow
(2007) report that word error rate drops 9.4% ab-
solute (to 5.5%) if the word-final diacritics (which
include case) need not be predicted. Similar drops
have been observed by other researchers (Nelken
and Shieber, 2005; Zitouni et al., 2006). Thus, we
can deduce that tagging-based approaches to case
identification are limited in their usefulness, and if
we need full diacritization for subsequent process-
ing in a natural language processing (NLP) applica-
tion (say, language modeling for automatic speech

recognition (Vergyri and Kirchhoff, 2004)), we need
to perform more complex syntactic processing to re-
store case diacritics. Options include using the out-
put of a parser in determining case.

An additional motivation for investigating case in
Arabic comes from treebanking. Native speakers
of Arabic in fact are native speakers of one of the
Arabic dialects, all of which have lost case (Holes,
2004). They learn MSA in school, and have no
native-speaker intuition about case. Thus, determin-
ing case in MSA is a hard problem for everyone,
including treebank annotators. A tool to catch case-
related errors in treebanking would be useful.

In this paper, we investigate the problem of de-
termining case of nouns and adjectives in syntactic
trees. We use gold standard trees from the Arabic
Treebank (ATB). We see our work using gold stan-
dard trees as a first step towards developing a sys-
tem for restoring case to the output of a parser. The
complexity of the task justifies an initial investiga-
tion based on gold standard trees. And of course, the
use of gold standard trees is justified for our other
objective, helping quality control for treebanking.

The study presented in this paper shows the im-
portance of what has been called “feature engineer-
ing” and the issue of representation for machine
learning. Our initial machine learning experiments
use features that can be read off the ATB phrase
structure trees in a straightforward manner. The lit-
erature on case in MSA (prescriptive and descrip-
tive sources) reveals that case assignment in Ara-
bic does not always follow standard assumptions
about predicate-argument structure, which is what
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the ATB annotation is based on. Therefore, we
transform the ATB so that the new representation
is based entirely on case assignment, not predicate-
argument structure. The features for machine learn-
ing that can now be read off from the new represen-
tation yield much better results. Our results show
that we can determine case with an error rate of
4.2%. However, our results would have been impos-
sible without a deeper understanding of the linguis-
tic phenomenon of case and a transformation of the
representation oriented towards this phenomenon.

Using either underlying representation, machine
learning performs better than hand-written rules.
However, a closer look at the errors made by the
machine learning-derived classifier and the hand-
written rules reveals that most errors are in fact
treebank errors (between 69% and 86% of all er-
rors for the machine learning-derived classifier and
the hand-written rules, respectively). Furthermore,
the machine learning classifier agrees more often
with treebank errors than the hand-written rules do.
This fact highlights the problem of machine learning
(garbage in, garbage out), but holds out the prospect
for improvement in the machine learning based clas-
sifier as the treebank is checked for errors and re-
released.

In the next section, we describe all relevant lin-
guistic facts of case in Arabic. Section 3 details the
resources used in this research. Section 4 describes
the preprocessing done to extract the relevant lin-
guistic features from the ATB. Sections 5 and 6 de-
tail the two systems we compare. Sections 7 and 8
present results and an error analysis of the two sys-
tems. And we conclude with a discussion of our
findings in Section 9.

2 Linguistic Facts

All Arabic nominals (common nouns, proper nouns,
adjectives and adverbs) are inflected for case, which
has three values in Arabic: nominative (NOM), ac-
cusative (ACC) or genitive (GEN). We know this
from case agreement facts, even though the mor-
phology and/or orthography do not necessarily al-
ways make the case realization overt. We discuss
morphological and syntactic aspects of case in MSA
in turn.

2.1 Morphological Realization of Case

The realization of nominal case in Arabic is com-
plicated by its orthography, which uses optional dia-
critics to indicate short vowel case morphemes, and
by its morphology, which does not always distin-
guish between all cases. Additionally, case realiza-
tion in Arabic interacts heavily with the realization
of definiteness, leading to different realizations de-
pending on whether the nominal is indefinite, i.e., re-
ceiving nunation ( ���� ��� ��	�� ), definite through the deter-

miner Al+ ( 
���
) or definite through being the gover-

nor of an idafa possessive construction ( �� ���� �� 
� ). Most
details of this interaction are outside the scope of this
paper, but we discuss it as much as it helps clarify is-
sues of case.

Buckley (2004) describes eight different classes
of nominal case expression, which we briefly review.
We first discuss the realization of case in morpholog-
ically singular nouns (including broken, i.e., irregu-
lar, plurals). Triptotes are the basic class which ex-
presses the three cases in the singular using the three
short vowels of Arabic: NOM is �� +u,1 ACC is �� +a,

and GEN is � � +i. The corresponding nunated forms

for these three diacritics are: �� +ũ for NOM, �� +ã for

ACC, and � � +ı̃ for GEN. Nominals not ending with

Ta Marbuta ( �� h̄) or Alif Hamza ( ��
 A’) receive an

extra Alif in the accusative indefinite case (e.g, � �� � � ���� �
kitAbAã ‘book’ versus ��� �� � � �� � � kitAbah̄ã ‘writing’).

Diptotes are like triptotes except that when they
are indefinite, they do not express nunation and they
use the �� +a suffix for both ACC and GEN. The class
of diptotes is lexically specific. It includes nomi-
nals with specific meanings or morphological pat-
terns (colors, elatives, specific broken plurals, some
proper names with Ta Marbuta ending or location
names devoid of the definite article). Examples

include �!#"%$'& � � � bayruwt ‘Beirut’ and �(*) �) �

 Âazraq

1All Arabic transliterations are provided in the Habash-
Soudi-Buckwalter transliteration scheme (Habash et al., 2007).
This scheme extends Buckwalter’s transliteration scheme
(Buckwalter, 2002) to increase its readability while maintaining
the 1-to-1 correspondence with Arabic orthography as repre-
sented in standard encodings of Arabic, i.e., Unicode, CP-1256,
etc. The following are the only differences from Buckwalter’s

scheme (which is indicated in parentheses): Ā + , (|), Â - , (>),

ŵ -. (&), Ǎ ,- (<), ŷ /10 (}), h̄ 23 (p), θ 45 (v), ð 67 (∗), š 48 ($),

Ď 69 (Z), ς : (E), γ 6: (g), ý 0 (Y), ã ;< (F), ũ =< (N), ı̃ < ; (K).
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‘blue’.
The next three classes are less common. The in-

variables show no case in the singular (e.g. nomi-
nals ending in long vowels: � � � ) ��� suwryA ‘Syria’ or
� $ � �� ðikraý ‘memoir’). The indeclinables always

use the �� +a suffix to express case in the singular and

allow for nunation ( �� ����	� maςnaýã ‘meaning’). The
defective nominals, which are derived from roots
with a final radical glide (y or w), look like triptotes
except that they collapse NOM and GEN into the
GEN form, which also includes loosing their final
glide: �


�
� �� qADı̃ (NOM,GEN) versus � �� � �� � �� qADiyAã

(ACC) ‘a judge’.
For the dual and sound plural, the situa-

tion is simpler, as there are no lexical excep-
tions. The duals and masculine sound plurals
express number, case and gender jointly in sin-
gle morphemes that are identifiable even if undia-
critized: � �� � �� � �� � � � kAtib+uwna ‘writersmasc,pl’ (NOM),��
�

� �� � �� �
� � kAtib+Ani ‘writersmasc,du’ (NOM), ��

�
� ����
 � �� �

� �
kAtib+atAni ‘writersfem,du’ (NOM). The ACC and
GEN forms are identical, e.g., � �� & � � �� �� �

� � kAtib+iyna
‘writersmasc,pl’ (ACC,GEN). Finally, the dual and
masculine sound plural do not express nunation.
On the other hand, the feminine sound plural
marks nunation explicitly, and all of its case mor-
phemes are written only as diacritics, e.g., ��! � � � �� �

� �
kAtib+At+u ‘writersfem,pl’ (NOM).

2.2 Syntax of Case

Traditional Arabic grammar makes a distinction
between verbal clauses ( �� � ��� � �������� � ) and nominal

clauses ( �� � ��� ����� 
 ����� � ). Verbal clauses are verb-initial
sentences, and we (counter to the Arabic grammat-
ical tradition) include copula-initial clauses in this
group. The copula is �� � � kAn ‘to be’ or one of her
sisters. Nominal clauses begin with a topic (which is
always a nominal), and continue with a complement
which is either a verbal clause, a nominal predicate,
or a prepositional predicate. If the complement of a
topic is a verbal clause, an inflectional subject mor-
pheme or a resumptive object clitic pronoun replace
the argument which has become the topic.

Arabic case system falls within the class of
nominative-accusative languages (as opposed to
ergative-absolutive languages). Some of the com-
mon behavior of case in Arabic with other languages

includes:2

• NOM is assigned to subjects of verbal clauses,
as well as other nominals in headings, titles and
quotes.

• ACC is assigned to (direct and indirect) objects
of verbal clauses, verbal nouns, or active par-
ticiples; to subjects of small clauses governed
by other verbs (i.e., “exceptional case marking”
or “raising to object” contexts; we remain ag-
nostic on the proper analysis); adverbs; and cer-
tain interjections, such as 
 �$�� �� šukrAã ‘Thank
you’.

• GEN is assigned to objects of prepositions and
to possessors in idafa (possessive) construction.

• There is a distinction between case-by-
assignment and case-by-agreement. In case-
by-assignment, a specific case is assigned to
a nominal by its case assigner; whereas in
case-by-agreement, the modifying or conjoined
nominal copies the case of its governor.

Arabic case differs from case in other languages
in the following conditions, which relate to nominal
clauses and numbers.

• The topic (independently of its grammatical
function) is ACC if it follows the subordinating
conjunction ! �� 
� Ǎin∼a (or any of her “sisters”:

! ��
� � " liÂan∼a, ! ��

� � � kaÂan∼a, ! �� � " lakin∼a, etc.).
Otherwise, the topic is NOM.

• Nominal predicates are ACC if they are gov-
erned by the overt copula. They are also ACC if
they are objects of verbs that take small clause
complements (such as ‘to consider’), unless the
predicate is introduced by a subordinating con-
junction. In all other cases, they are NOM.

• In constructions involving a nominal and
a number ( � �� � �� � � � � �� " �$$#�� %'& � Eišruwna kAtibAã
‘twenty writers’), the head of the phrase for
case assignment is the number, which receives
whichever case the context assigns. The case
of the nominal depends on the number. If the
number is between 11 and 99, the nominal is

2Buckley (2004) describes in detail the conditions for each
of the three cases in Arabic. He considers NOM to be the de-
fault case. He specifies seven conditions for NOM, 25 for ACC
and two for GEN. Our summary covers the same ground as his
description except that we omit the vocative use of nominals.
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ACC by tamiyz (
�$ & � � ��� �� – lit. “specification”).

Otherwise, the nominal is GEN by idafa.

3 The Data

We use the third section of the current version of
the Arabic Treebank released by the Linguistic Data
Consortium (LDC) (Maamouri et al., 2004). We use
the division into training and devtest corpora pro-
posed by Zitouni et al. (2006), further dividing their
devtest set into two equal parts to give us a devel-
opment and a test set. The training set has approxi-
mately 367,000 words, and the development and test
sets each have about 33,000 words. In our training
data, of 133,250 case-marked nominals, 66.4% are
GEN, 18.5% ACC, and 15.1% NOM.

The ATB annotation in principle indicates for
each nominal its case and the corresponding realiza-
tion (including diacritics). The only systematic ex-
ception is that invariables are not marked at all with
their unrealized case, and are marked as having NO-
CASE. We exclude all nominals marked NOCASE
from our evaluations, as we believe that these nom-
inals actually do have case, it is just not marked in
the treebank, and we do not wish to predict the mor-
phological realization, only the underlying case. In
reporting results, we use accuracy on the number of
nominals whose case is given in the treebank.

While the ATB does not contain explicit infor-
mation about headedness in its phrase structure, we
can say that the syntactic annotations in the ATB
are roughly based on predicate-argument structure.
For example, for the structure shown in Figure 1,

the “natural” interpretation is that the head is ��( 
$ �& � 

AHtrAqu ‘burning’, with a modifier

� � �$ �& � mnzlAã
‘house’, which in turn is modified by a QP whose
head is (presumably) the number 20, which is modi-
fied by $ � �& � 
 Akθri ‘more’ and �� � mn ‘than’. This de-
pendency structure is shown on the left in Figure 2.
Another annotation detail relevant to this paper is
that the ATB marks the topic of a nominal clause as
“SBJ” (i.e., as a subject) except when the predicate
is a verbal clause; then it is marked as TPC. We con-
sider these two cases to be the same case and relabel
all such cases as TPC.

NP

Noun
NOM

��( 
 $ �& � 

AHtrAqu
‘burning’

NP

QP

Adj
Comp
GEN

$ � �& � 

Akθri
‘more’

Prep

�� �
mn

‘than’

Num
GEN

20

Noun
ACC

� � �$ �& �
mnzlAã
‘house’

Figure 1: The representation of numbers in the Ara-
bic Treebank, for a subject NP meaning ‘the burning
of more than 20 houses’

4 Determining the Case Assigner

Case assignment is a relationship between two
words: one word (the case governor or assigner)
assigns case to the other word (the case assignee).
Because case assignment is a relationship between
words, we switch to a dependency-based version
of the treebank. There are many possible ways to
transform a phrase structure representation into a de-
pendency representation; we explore two such con-
versions in the context of this paper. Note that if
we had used the Prague Arabic Dependency Tree-
bank (Smrž and Hajič, 2006) instead of the ATB, we
would not have had to convert to dependency, but we
still would have had to analyze whether the depen-
dencies are the ones we need for modeling case as-
signment, possibly having to restructure the depen-
dencies.

For determining the dependency relations that de-
termine case assignment, we start out by using a
standard head percolation algorithm with the fol-
lowing parameters: Verbs head all the arguments in
VPs; prepositions head the PP arguments; and the
first nominal in an NP or ADJP heads those struc-
tures. Non-verbal predicates (NPs, ADJPs or PPs)
head their subjects (topics). The subordinating con-
junction ! �� 
� Ǎin∼a is governed by what follows it.

The overt copula �� � � kAn governs both topic and
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predicate. Conjunctions are headed by what they
follow and head what they precede (with the excep-
tion of the common sentence initial conjunction 
 "
w+ ‘and’, which is headed by the sentence it intro-
duces). We will call the result of this algorithm the
Basic Case Assigner Identification Algorithm, or
Basic Representation for short.

After initial experiments with both hand-written
rules and machine learning, we extend the Basic
Representation in order to account for the special
case assigning properties of numbers in Arabic by
adding additional head percolation parameters and
restructuring rules to handle the structure of NPs in
the ATB. This is because the current ATB represen-
tation is not useful in some cases for representing
case assignment. Consider the structure in Figure 1.

Here, the head of the NP is the noun ��( 
$ �& � 
 AHtrAqu
‘burning’, which has NOM because the NP is a sub-
ject (the verb is not shown). The QP’s first member,$ � �& � 
 Akθri ‘more’ is GEN because it is in an idafa

construction with the noun ��( 
$��& � 
 AHtrAqu. $ � �& � 

Akθri is modified by the preposition �� � mn ‘than’
which assigns GEN to the number 20 (which is writ-
ten in Arabic numerals and thus does not show any

case at all). The noun
� � �$ �& � mnzlAã ‘house’ is in a

tamyiz relation with the number 20 which governs it,
and thus it is ACC. It is clear that the phrase structure
chosen for the ATB does not represent these case-
assignment relations in a direct manner.

To create the appropriate head relations for case
determination, we flatten all QPs and use a set of
simple deterministic rules to create the more appro-
priate structure which expresses the chain of case as-
signments. In our development set, 5.8% of words
get a new head using this new head assignment. We
call this new representation the Revised Represen-
tation. Figure 2 shows the dependency represen-
tation corresponding to the phrase structure in Fig-
ure 1.

We make use of all dash-tags provided by the ATB
as arc labels and we extend the label set to explic-
itly mark objects of prepositions (POBJ), possessors
in idafa construction (IDAFA), conjuncts (CONJ)
and conjunctions (CC), and the accusative specifier,
tamyiz (TMZ). All other modifications receive the
label (MOD).

5 Hand Written Rules

Our first system is based on hand-written rules
(henceforth, we refer to this system as the rule-based
system). We add two features to nominals in the
tree: (1) we identify if a word governs a subordinat-
ing conjunction ! �� 
� Ǎin∼a or any of its sisters; and
(2) we also identify if a topic of a nominal sentence
has an Ǎin∼a sibling.

The following are the simple hand written rules
we use:

• RULE 1: The default case assigned is ACC for
all words.

• RULE 2: Assign NOM to nominals heading the
tree and those labeled HLN (headline) or TTL
(title).

• RULE 3: Assign GEN to nominals with the la-
bels POBJ or IDAFA.

• RULE 4: Assign NOM to nominals with the la-
bel PRD if NOT headed by a verbal (verb or
deverbal noun) or if it has an Ǎin∼a child.

• RULE 5: Assign NOM to nominal topics that
do not have an Ǎin∼a sibling.

• RULE 6: All case-unassigned children of nom-
inal parents (and conjunctions), whose label is
MOD, CONJ or CC, copy the case of their par-
ent. Conjunctions carry the case temporarily to
pass on agreement. Verbs do not pass on agree-
ment.

The first rule is applied to all nodes. The second
to fifth rules are case-by-assignment rules applied in
an if-else fashion (no overwriting is done). The last
rule is a case-by-agreement rule. All non-nominals
receive the case NA.

6 Machine Learning Experiments: The
Statistical System

Our second system uses statistical machine learn-
ing. This system consists of a core model and an
agreement model, both of which are linear classifiers
trained using the maximum entropy technique. We
implement this system using the MALLET toolbox
(McCallum, 2002). The core model is used to clas-
sify all words whose label in the dependency repre-
sentation is not MOD (case-by-assignment); whereas,
the agreement model is used to classify all words
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VERB

��( 
$ �& � 
 AHtrAqu ‘burning’ NOM

� � �$ �& � mnzlAã ‘house’ ACC

20 GEN

$ � �& � 
 Akθri ‘more’ GEN �� � mn ‘than’

VERB

��( 
$ �& � 
 AHtrAqu ‘burning’ NOM

$ � �& � 
 Akθri ‘more’ GEN

�� � mn ‘than’

20 GEN

� � �$ �& � mnzlAã ‘house’ ACC

Figure 2: Two possible dependency trees for the phrase structure tree in Figure 1, meaning ‘burning of more
than 20 houses’; the tree on the left, our Basic Representation, represents a standard predicate-argument-
modification style tree, while the tree on the right represents the chain of case assignment and is our Revised
Representation

whose label is MOD (case-by-agreement). We han-
dle conjunctions in the statistical system differently
from the rule-based system: we resolve conjunc-
tions so that conjoined words are labeled exactly the
same. For example, in John and Mary went to the
store, both John and Mary would have the subject
label, even though Mary has a conjunction label in
the raw dependency tree. Both models are trained
only on those words which are marked for case in
the treebank.

6.1 The Core Model

The core model uses the following features of a
word:

• the word’s POS tag;

• the conjunction of the word’s POS tag and its
arc label;

• the word’s last length-one and length-two suf-
fixes (to model written case morphemes);

• the conjunction of the word’s arc label, its POS
tag, and its parent’s POS tag;

• if the word is the object of a preposition, the
preposition it is the object of;

• whether the word is a PRD child of a verb (with
the identity of that verb conjoined if so);

• if the word has a sister which is a subordinating
conjunction, and if so, that conjunction con-
joined with its arc label;

• whether the word is in an embedded clause con-
joined with its arc label under the verb of the
embedded clause;

• if the word is a PRD child of a verb, the verb;

• the word’s left sister’s POS tag conjoined with
this word’s arc label and its sister’s arc label;

• whether the word’s sister depends on the word
or something else;

• and the left sister’s terminal symbol.

Arabic words which do not overtly show case
are still determined for purposes of resolving agree-
ment. The classifier is applied to these cases at run-
time anyway.

6.2 The Agreement Model

The agreement model uses the following features of
a word:

• the word itself;

• the word’s last length-one and length-two suf-
fixes;

• and the conjunction of the word’s POS tag and
the case of what it agrees with.

Since words may get their case by agreement with
other words which themselves get their case by
agreement, the agreement model is applied repeat-
edly until case has been determined for all words.
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System Basic Revised
Rule-based 93.5 94.4

Statistical 94.0 95.8

Table 1: Accuracies of various approaches on the
test set in both basic and revised dependency repre-
sentations.

7 Results

The performance of our two systems on the test
data set is shown in table 1. There are three points
to note: first, even in the basic representation, the
statistical system reduces error over the rule-based
system by 7.7%. Second, the revised representa-
tion helps tremendously, resulting in a 13.8% reduc-
tion in error for the rule-based system and 30% for
the statistical system. Finally, the statistical system
gains much more than the rule-based system from
the improved representation, increasing the gap be-
tween them to a 25% reduction in error.

8 Error Analysis

We took a sample of 105 sentences (around 10%)
from our development data prepared in the revised
representation. Our rule-based system accuracy for
the sample is about 94.1% and our statistical system
accuracy is 96.2%. Table 2 classifies the different
types of errors found. The first and second rows list
the errors made by the statistical and rule-based sys-
tems, respectively. The third row lists errors made
by the statistical system only. The fourth row lists
errors made by the rule-based system only. And the
fifth row lists errors made by both. The second col-
umn indicates the count of all errors. The rest of the
columns specify the error types as: system errors,
gold POS errors or gold tree errors. The gold POS
and tree errors are treebank errors that misguide our
systems. They represent 69% of all statistical system
errors and 86% of all rule-based system errors. Gold
POS errors represent around 35-40% of all gold er-
rors. They most commonly include the wrong POS
tag or the wrong case. One example of such errors
is the mis-annotation of the ACC case to a GEN for
a diptote nominal (which are indistinguishable out
of context). Gold tree errors are primarily errors in
the dash-tags used (or missing) in the treebank or at-
tachment errors that are inconsistent with the gold

POS tag.
The rule-based system errors involve various con-

structions that were not addressed in our study, e.g.
flat adjectival phrases or non S constructions at the
highest level in a tree (e.g. FRAG or NP). The ma-
jority of the statistical system errors involve agree-
ment decisions and incorrect choice of case despite
the presence of the dash-tags. The ratio of system er-
rors for the statistical system is 31% (twice as much
as those of the rule-based system’s 14%). Thus, it
seems that the statistical system manages to learn
some of the erroneous noise in the treebank.

9 Discussion

9.1 Accomplishments

We have developed a system that determines case
for nominals in MSA. This task is a major source of
errors in full diacritization of Arabic. We use a gold-
standard syntactic tree, and obtain an error rate of
about 4.2%, with a machine learning based system
outperforming a system using hand-written rules. A
careful error analysis suggests that when we account
for annotation errors in the gold standard, the error
rate drops to 0.8%, with the hand-written rules out-
performing the machine learning-based system.

9.2 Lessons Learned

We can draw several general conclusions from our
experiments.

• The features relevant for the prediction of com-
plex linguistic phenomena cannot necessarily
be easily read off from the given represen-
tation of the data. Sometimes, due to data
sparseness and/or limitations in the machine
learning paradigm used, we need to extract
features from the available representation in a
manner that profoundly changes the represen-
tation (as is done in bilexical parsing (Collins,
1997)). Such transformations require a deep
understanding of the linguistic phenomena on
the part of the researchers.

• Researchers developing hand-written rules may
follow an empirical methodology in natural
language processing if they use data sets to
develop and test the rules — the only true
methodological difference between machine
learning and this kind of hand-writing of rules

1090



ERRORS COUNT SYSTEM GOLD POS GOLD TREE

All Statistical 45 14 11 20
All Rule-based 70 10 24 36
Statistical only 13 11 0 2
Rule-based only 38 7 13 18
Statistical

⋂
Rule-based 32 3 11 18

Table 2: Results of Error Analysis

is the type of learning (human or machine). For
certain phenomena, machine learning may re-
sult in only a small or no improvement in per-
formance over hand-written rules.

• Error analysis remains a crucial part of any
empirical work in natural language processing.
Not only does it contribute insight into how the
system can be improved, it also reveals prob-
lems with the underlying data. Sometimes the
problems are just part of the noise in the data,
but sometimes the problems can be fixed. An-
notations on data are not themselves naturally
occurring data and thus may be subject to cri-
tique. Note that an error analysis requires a
good understanding of the linguistic phenom-
ena and of the data.

9.3 Outlook

Our work was motivated in two ways: to help tree-
banking, and to develop tools for automatic case
determination from unannotated text. For the first
goal, our error analysis has shown that 86% of the
errors found by our hand-written rules are in fact
treebank errors. Furthermore, we suspect that the
hand-written rules have very few false positives (i.e.,
cases in which the treebank has been annotated in er-
ror but our rules predict exactly that error). Thus we
believe that our tool can serve an important function
in improving the treebank annotation.

For our second motivation, the next step will be
to adapt our feature extraction to work on the output
of parsers, which typically exclude dash-tags. We
note that for many contexts, we do not currently rely
on dash-tags but rather identify the relevant struc-
tures on our own (such as idafa, tamyiz, and so
on). We suspect that the machine learning-based ap-
proach will outperform the hand-written rules, as it
can learn typical errors the parser makes. As the

treebank will soon be revised and hand-checked, we
will postpone this work until the new release of the
treebank, which will allow us to train better parsers
as the data will be more consistent.
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Abstract

We present in this paper methods to improve
HMM-based part-of-speech (POS) tagging
of Mandarin. We model the emission prob-
ability of an unknown word using all the
characters in the word, and enrich the stan-
dard left-to-right trigram estimation of word
emission probabilities with a right-to-left
prediction of the word by making use of the
current and next tags. In addition, we utilize
the RankBoost-based reranking algorithm
to rerank the N-best outputs of the HMM-
based tagger using various n-gram, mor-
phological, and dependency features. Two
methods are proposed to improve the gen-
eralization performance of the reranking al-
gorithm. Our reranking model achieves an
accuracy of 94.68% using n-gram and mor-
phological features on the Penn Chinese
Treebank 5.2, and is able to further improve
the accuracy to 95.11% with the addition of
dependency features.

1 Introduction

Part-of-speech (POS) tagging is potentially help-
ful for many advanced natural language processing
tasks, for example, named entity recognition, pars-
ing, and sentence boundary detection. Much re-
search has been done to improve tagging perfor-
mance for a variety of languages. The state-of-the-
art systems have achieved an accuracy of 97% for
English on the Wall Street Journal (WSJ) corpus
(which contains 4.5M words) using various mod-
els (Brants, 2000; Ratnaparkhi, 1996; Thede and
Harper, 1999). Lower accuracies have been reported

in the literature for Mandarin POS tagging (Tseng et
al., 2005; Xue et al., 2002). This is, in part, due to
the relatively small size and the different annotation
guidelines (e.g., granularity of the tag set) for the an-
notated corpus of Mandarin. Xue at el. (2002) and
Tseng at el. (2005) reported accuracies of 93% and
93.74% on CTB-I (Xue et al., 2002) (100K words)
and CTB 5.0 (500K words), respectively, each us-
ing a Maximum Entropy approach. The character-
istics of Mandarin make it harder to tag than En-
glish. Chinese words tend to have greater POS tag
ambiguity than English. Tseng at el. (2005) reported
that 29.9% of the words in CTB have more than one
POS assignment compared to 19.8% of the English
words in WSJ. Moreover, the morphological prop-
erties of Chinese words complicate the prediction of
POS type for unknown words.

These challenges for Mandarin POS tagging
suggest the need to develop more sophisticated
methods. In this paper, we investigate the use
of a discriminative reranking approach to in-
crease Mandarin tagging accuracy. Reranking ap-
proaches (Charniak and Johnson, 2005; Chen et al.,
2002; Collins and Koo, 2005; Ji et al., 2006; Roark
et al., 2006) have been successfully applied to many
NLP applications, including parsing, named entity
recognition, sentence boundary detection, etc. To
the best of our knowledge, reranking approaches
have not been used for POS tagging, possibly due
to the already high levels of accuracy for English,
which leave little room for further improvement.
However, the relatively poorer performance of ex-
isting methods on Mandarin POS tagging makes
reranking a much more compelling technique to
evaluate. In this paper, we use reranking to improve
tagging performance of an HMM tagger adapted to
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Mandarin. Hidden Markov models are simple and
effective, but unlike discriminative models, such as
Maximum Entropy models (Ratnaparkhi, 1996) and
Conditional Random Fields (John Lafferty, 2001),
they have more difficulty utilizing a rich set of con-
ditionally dependent features. This limitation can be
overcome by utilizing reranking approaches, which
are able to make use of the features extracted from
the tagging hypotheses produced by the HMM tag-
ger. Reranking also has advantages over MaxEnt
and CRF models. It is able to use any features
extracted from entire labeled sentences, including
those that cannot be incorporated into MaxEnt and
CRF models due to inference difficulties. In addi-
tion, reranking methods are able to utilize the infor-
mation provided by N-best lists. Finally, the decod-
ing phase of reranking is much simpler.

The rest of the paper is organized as follows. We
describe the HMM tagger in Section 2. We discuss
the modifications to better handle unknown words in
Mandarin and to enrich the word emission probabil-
ities through the combination of bi-directional esti-
mations. In Section 3, we first describe the reranking
algorithm and then propose two methods to improve
its performance. We also describe the features that
will be used for Mandarin POS reranking in Sec-
tion 3. Experimental results are given in Section 4.
Conclusions and future work appear in Section 5.

2 The HMM Model
2.1 Porting English Tagger to Mandarin
The HMM tagger used in this work is a second-
order HMM tagger initially developed for English
by Thede and Harper (1999). This state-of-the-art
second-order HMM tagger uses trigram transition
probability estimations, P (ti|ti−2ti−1), and trigram
emission probability estimations, P (wi|ti−1ti). Let
ti1 denote the tag sequence t1, · · · , ti, and wi1 denote
the word sequencew1, · · · , wi. The tagging problem
can be formally defined as finding the best tag se-
quence τ(wN1 ) for the word sequence wN1 of length
N as follows1:

τ(wN1 ) = arg max
tN1

P (tN1 |wN1 ) = arg max
tN1

P (tN1 w
N
1 )

P (wN1 )

= arg max
tN1

P (tN1 w
N
1 ) (1)

= arg max
tN1

∏
i

P (ti|ti−1
1 wi−1

1 )P (wi|ti1wi−1
1 )

1We assume that symbols exist implicitly for boundary con-
ditions.

≈ arg max
tN1

∏
i

P (ti|ti−2ti−1)P (wi|ti−1ti) (2)

The best tag sequence τ(wN1 ) can be determined ef-
ficiently using the Viterbi algorithm.

For estimating emission probabilities of unknown
words (i.e., words that do not appear in the train-
ing data) in English (and similarly for other inflected
languages), a weighted sum of P (ski |ti−1ti) (with
k up to four) was used as an approximation, where
ski is the suffix of length k of word wi (e.g., s1i is
the last character of word wi). The suffix informa-
tion and three binary features (i.e., whether the word
is capitalized, whether the word is hyphenated, and
whether the word contains numbers) are combined
to estimate the emission probabilities of unknown
words.

The interpolation weights for smoothing tran-
sition, emission, and suffix probabilities were
estimated using the log-based Thede smoothing
method (Thede and Harper, 1999) as follows:

PThede(n-gram)

= λ(n-gram)PML(n-gram) +

(1− λ(n-gram))PThede((n-1)-gram)

where:

PML(n-gram) = the ML estimation
λ(n-gram) = f(n-gram count)

f(x) =
loga(x+ 1) + b

loga(x+ 1) + (b+ 1)

While porting the HMM-based English POS tag-
ger to Mandarin is fairly straightforward for words
seen in the training data, some thought is required to
handle unknown words due to the morphology dif-
ferences between the two languages. First, in Man-
darin, there is no capitalization and no hyphenation.
Second, although Chinese has morphology, it is not
the same as in English; words tend to contain far
fewer characters than inflected words in English, so
word endings will tend to be short, say one or two
characters long. Hence, in our baseline model (de-
noted HMM baseline), we simply utilize word end-
ings of up to two characters in length along with a
binary feature of whether the word contains num-
bers or not. In the next two subsections, we describe
two ways in which we enhance this simple HMM
baseline model.
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2.2 Improving the Mandarin Unknown Word
Model

Chinese words are quite different from English
words, and the word formation process for Chinese
words can be quite complex (Packard, 2000). In-
deed, the last characters in a Chinese word are, in
some cases, most informative of the POS type, while
for others, it is the characters at the beginning. Fur-
thermore, it is not uncommon for a character in the
middle of a word to provide some evidence for the
POS type of the word. Hence, we chose to employ
a rather simple but effective method to estimate the
emission probability, P (wi|ti−1, ti), of an unknown
word, wi. We use the geometric average2 of the
emission probability of the characters in the word,
i.e., P (ck|ti−1, ti) with ck being the k-th character
in the word. Since some of the characters in wi may
not have appeared in any word tagged as ti in that
context in the training data, only characters that are
observed in this context are used in the computation
of the geometric average, as shown below:

P (wi|ti−1, ti) = n

√ ∏
ck∈wi,P (ck|ti−1,ti)6=0

P (ck|ti−1, ti) (3)

where

n = |{ck ∈ wi|P (ck|ti−1, ti) 6= 0}|

2.3 Bi-directional Word Probability Estimation
In Equation 2, the word emission probability
P (wi|ti−1ti) is a left-to-right prediction that de-
pends on the current tag ti associated with wi, as
well as its previous tag ti−1. Although the interac-
tion between wi and the next tag ti+1 is captured to
some extent when ti+1 is generated by the model,
this implicit interaction may not be as effective as
adding the information more directly to the model.
Hence, we chose to apply the constraint explicitly in
our HMM framework by replacing P (wi|ti−1ti) in
Equation 2 with P λ(wi|ti−1ti)P 1−λ(wi|titi+1) for
both known and unknown words, with τ(wN1 ) deter-
mined by:

τ(wN1 ) = arg max
tN1

∏
i

(P (ti|ti−2ti−1)×

Pλ(wi|ti−1ti)P
1−λ(wi|titi+1)) (4)

2Based on preliminary testing, the geometric average pro-
vided greater tag accuracy than the arithmetic average.

This corresponds to a mixture model of two genera-
tion paths, one from the left and one from the right,
to approximate τ(wN1 ) in Equation 1 in a different
way.

τ(wN1 ) = arg max
tN1

P (tN1 w
N
1 )

= arg max
tN1

P (tN1 )P (wN1 |tN1 )

P (tN1 ) ≈
∏
i

P (ti|ti−1ti−2)

P (wN1 |tN1 ) = Pλ(wN1 |tN1 )P 1−λ(wN1 |tN1 )

≈
∏
i

Pλ(wi|ti−1ti)P
1−λ(wi|titi+1)

In this case, the decoding process involves the
computation of three local probabilities, i.e.,
P (ti|ti−2ti−1), P (wi|ti−1ti), and P (wi|titi+1).
By using a simple manipulation that shifts the
time index of P (wi|titi+1) in Equation 4 by two
time slices3 (i.e., by replacing P (wi|titi+1) with
P (wi−2|ti−2ti−1)), we are able to compute τ(wN1 )
in Equation 4 with the same asymptotic time com-
plexity of decoding as in Equation 2.

3 Discriminative Reranking

In this section, we describe our use of the
RankBoost-based (Freund and Schapire, 1997; Fre-
und et al., 1998) discriminative reranking approach
that was originally developed by Collins and Koo
(2005) for parsing. It provides an additional avenue
for improving tagging accuracy, and also allows us
to investigate the impact of various features on Man-
darin tagging performance. The reranking algorithm
takes as input a list of candidates produced by some
probabilistic model, in our case the HMM tagger,
and reranks these candidates based on a set of fea-
tures. We first introduce Collins’ reranking algo-
rithm in Subsection 3.1, and then describe two mod-
ifications in Subsections 3.2 and 3.3 that were de-
signed to improve the generalization performance of
the reranking algorithm for our POS tagging task.
The reranking features that are used for POS tagging
are then described in Subsection 3.4.

3.1 Collins’ Reranking Algorithm
For training the reranker for the POS tagging task,
there are n sentences {si : i = 1, · · · , n} each with
ni candidates {xi,j : j = 1, · · · , ni} along with

3Replacing P (wi|titi+1) with P (wi−1|ti−1ti) also gives
the same solution.
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the log-probability L(xi,j) produced by the HMM
tagger. Each tagging candidate xi,j in the training
data has a “goodness” score Score(xi,j) that mea-
sures the similarity between the candidate and the
gold reference. For tagging, we use tag accuracy
as the similarity measure. Without loss of general-
ity, we assume that xi,1 has the highest score, i.e.,
Score(xi,1) ≥ Score(xi,j) for j = 2, · · · , ni. To
summarize, the training data consists of a set of ex-
amples {xi,j : i = 1, · · · , n; j = 1, · · · , ni}, each
along with a “goodness” score Score(xi,j) and a
log-probability L(xi,j).

A set of indicator functions {hk : k = 1, · · · ,m}
are used to extract binary features {hk(xi,j) : k =
1, · · · ,m} on each example xi,j . An example of an
indicator function for POS tagging is given below:

h2143(x) = 1 ifx contains n-gram “go/VV to”
0 otherwise

Each indicator function hk is associated with a
weight parameter αk which is real valued. In ad-
dition, a weight parameter α0 is associated with
the log-probability L(xi,j). The ranking func-
tion of candidate xi,j is defined as α0L(xi,j) +
m∑
k=1

αkhk(xi,j).

The objective of the training process is to set the
parameters ᾱ = {α0, α1, · · · , αm} to minimize the
following loss function Loss(ᾱ) (which is an upper
bound on the training error):

Loss(ᾱ) =
∑
i

ni∑
j=2

Si,je
−Mi,j(ᾱ)

where Si,j is the weight function that gives the im-
portance of each example, and Mi,j(ᾱ) is the mar-
gin:

Si,j = Score(xi,1)− Score(xi,j)
Mi,j(ᾱ) = α0(L(xi,1)− L(xi,j)) +

m∑
k=1

αk(hk(xi,1)− hk(xi,j))

All of the αi’s are initially set to zero. The value
of α0 is determined first to minimize the loss func-
tion and is kept fixed afterwards. Then a greedy se-
quential 4 optimization method is used in each itera-
tion (i.e., a boosting round) to select the feature that

4Parallel optimization algorithms exist and have comparable
performance according to (Collins et al., 2002).

has the most impact on reducing the loss function
and then update its weight parameter accordingly.
For each k ∈ {1, · · · ,m}, (hk(xi,1)− hk(xi,j)) can
only take one of the three values: +1, -1, or 0. Thus
the training examples can be divided into three sub-
sets with respect to k:

A+
k = {(i, j) : (hk(xi,1)− hk(xi,j)) = +1}

A−k = {(i, j) : (hk(xi,1)− hk(xi,j)) = −1}
A0
k = {(i, j) : (hk(xi,1)− hk(xi,j)) = 0}

The new loss after adding the update parameter δ
to the parameter αk is shown below:

Loss(ᾱ, k, δ) =
∑

(i,j)∈A+
k

Si,je
−Mi,j(ᾱ)−δ +

∑
(i,j)∈A−

k

Si,je
−Mi,j(ᾱ)+δ +

∑
(i,j)∈A0

k

Si,je
−Mi,j(ᾱ)

= e−δW+
k + eδW−k +W 0

k

The best feature/update pair (k∗, δ∗) that minimizes
Loss(ᾱ, k, δ) is determined using the following for-
mulas:

k∗ = arg max
k

∣∣∣∣√W+
k −

√
W−k

∣∣∣∣ (5)

δ∗ =
1

2
log

W+
k∗

W−k∗
(6)

The update formula in Equation 6 is problematic
when either W+

k∗ or W−
k∗ is zero. W+

k is zero if hk
never takes on a value 1 for any xi,1 with value 0 on
a corresponding xi,j for j = 2, · · · , ni (and similarly
for W−

k ). Collins introduced a smoothing parameter
ε to address this problem, resulting in a slight modi-
fication to the update formula:

δ∗ =
1

2
log

W+
k∗ + εZ

W−k∗ + εZ
(7)

The value of ε plays an important role in this for-
mula. If ε is set too small, the smoothing factor εZ
would not prevent setting δ∗ to a potentially overly
large absolute value, resulting in over-fitting. If ε is
set too large, then the opposite condition of under-
training could result. The value of ε is determined
based on a development set.
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3.2 Update Once
Collins’ method allows multiple updates to the
weight of a feature based on Equations 5 and 7. We
found that for those features for which either W+

k or
W−
k equals zero, the update formula in Equation 7

can only increase their weight (in absolute value) in
one direction. Although these features are strong
and useful, setting their weights too large can be un-
desirable in that it limits the use of other features for
reducing the loss.

Based on this analysis, we have developed and
evaluated an update-once method, in which we use
the update formula in Equation 7 but limit weight
updates so that once a feature is selected on a cer-
tain iteration and its weight parameter is updated,
it cannot be updated again. Using this method, the
weights of the strong features are not allowed to pre-
vent additional features from being considered dur-
ing the training phase.

3.3 Regularized Reranking
Although the update-once method may attenuate
over-fitting to some extent, it also prevents adjust-
ing the value of any weight parameter that is initially
set too high or too low in an earlier boosting round.
In order to design a more sophisticated weight up-
date method that allows multiple updates in both di-
rections while penalizing overly large weights, we
have also investigated the addition of a regulariza-
tion term R(ᾱ), an exponential function of ᾱ, to the
loss function:

RegLoss(ᾱ) =
∑
i

ni∑
j=2

Si,je
−Mi,j(ᾱ) +R(ᾱ)

R(ᾱ) =

m∑
k=1

pk · (e−αk + eαk − 2)

where pk is the penalty weight of parameter αk. The
reason that we chose this form of regularization is
that (e−αk +eαk−2) is a symmetric, monotonically
decreasing function of |αk|, and more importantly it
provides a closed analytical expression of the weight
update formula similar to Equations 5 and 6. Hence,
the best feature/update pair for the regularized loss
function is defined as follows:

k∗ = arg max
k

∣∣∣∣√W+
k + pke−αk −

√
W−k + pke+αk

∣∣∣∣
δ∗ =

1

2
log

W+
k∗ + pk∗e

−αk∗

W−k∗ + pk∗e+αk∗

There are many ways of choosing pk, the penalty
weight of αk. In this paper, we use the values of
β ·(W+

k +W−
k ) at the beginning of the first iteration

(after α0 is determined) for pk, where β is a weight-
ing parameter to be tuned on the development set.
The regularized weight update formula has many ad-
vantages. It is always well defined no matter what
value W+

k and W−
k take, in contrast to Equation 6.

For all features, even in the case when either W+
k or

W−
k equals zero, the regularized update formula al-

lows weight updates in two directions. If the weight
is small, W+

k and W−
k have more impact on deter-

mining the weight update direction, however, when
the weight becomes large, the regularization factors
pke

−α and pke+α favor reducing the weight.

3.4 Reranking Features
A reranking model has the flexibility of incorporat-
ing any type of feature extracted from N-best can-
didates. For the work presented in this paper, we
examine three types of features. For each window
of three word/tag pairs, we extract all the n-grams,
except those that are comprised of only one word/tag
pair, or only tags, or only words, or do not include
either the word or tag in the center word/tag pair.
These constitute the n-gram feature set.

In order to better handle unknown words, we also
extract the two most important types of morpho-
logical features5 that were utilized in (Tseng et al.,
2005) for those words that appear no more than
seven times (following their convention) in the train-
ing set:

Affixation features: we use character n-gram pre-
fixes and suffixes for n up to 4. For example,
for word/tag pair D��/NN (Information-
Bag, i.e., folder), we add the following fea-
tures: (prefix1, D, NN), (prefix2, D�, NN),
(prefix3, D��, NN), (suffix1, �, NN), (suf-
fix2, ��, NN), (suffix3, D��, NN).

AffixPOS features6: we used the training set to
build a prefix/POS and suffix/POS dictionary
associating possible tags with each prefix and

5Tseng at el. also used other morphological features that
require additional resources to which we do not have access.

6AffixPOS features are somewhat different from the CTB-
Morph features used in (Tseng et al., 2005), where a mor-
pheme/POS dictionary with the possible tags for all morphemes
in the training set was used instead of two separate dictionaries
for prefix and suffix. AffixPOS features perform slightly better
in our task than the CTB-morph features.
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suffix in the training set. The AffixPOS fea-
tures indicate the set of tags a given affix could
have. For the same example D��/NN, D
occurred as prefix in both NN and VV words in
the training data. So we add the following fea-
tures based on the prefix D: (prefix, D, NN,
1, NN), (prefix, D, VV, 1, NN), and (prefix,
D, X, 0, NN) for every tag X not in {NN, VV},
where 1 and 0 are indicator values. Features are
extracted in the similar way for the suffix �.

The n-gram and morphological features are easy
to compute, however, they have difficulty in captur-
ing the long distance information related to syntac-
tic relationships that might help POS tagging ac-
curacy. In order to examine the effectiveness of
utilizing syntactic information in tagging, we have
also experimented with dependency features that are
extracted based on automatic parse trees. First a
bracketing parser (the Charniak parser (Charniak,
2000) in our case) is used to generate the parse
tree of a sentence, then the const2dep tool devel-
oped by Hwa was utilized to convert the bracket-
ing tree to a dependency tree based on the head
percolation table developed by the second author.
The dependency tree is comprised of a set of de-
pendency relations among word pairs. A depen-
dency relation is a triple 〈word-a, word-b, relation〉,
in which word-a is governed by word-b with gram-
matical relation denoted as relation. For example,
in the sentence “�Ï(Tibet) ÏN(economy) ú
¾(construction) Ö�(achieves) >W(significant)
�é(accomplishments)”, one example dependency
relation is 〈Ö�, �é, mod〉. Given these depen-
dency relations, we then extract dependency features
(in total 36 features for each relation) by examining
the POS tags of the words for each tagging candi-
date of a sentence. The relative positions of the word
pairs are also taken into account for some features.
For example, if Ö� and �é in the above sentence
are tagged as VV and NN respectively in one can-
didate, then two example dependency features are
(dep-1, Ö�, VV, �é, NN, mod), (dep-14, Ö�,
VV, NN, right, mod), in which dep-1 and dep-14 are
feature types and right indicates that word-b (Ö�)
is to the right of word-a (�é).

4 Experiments
4.1 Data
The most recently released Penn Chinese Treebank
5.2 (denoted CTB, released by LDC) is used in our

experiments. It contains 500K words, 800K char-
acters, 18K sentences, and 900 data files, includ-
ing articles from the Xinhua news agency (China-
Mainland), Information Services Department of
HKSAR (Hongkong), and Sinorama magazine (Tai-
wan). Its format is similar to the English WSJ Penn
Treebank, and it was carefully annotated. There are
33 POS tags used, to which we add tags to discrim-
inate among punctuation types. The original POS
tag for punctuation was PU; we created new POS
tags for each distinct punctuation type (e.g., PU-?).

The CTB corpus was collected during different
time periods from different sources with a diversity
of articles. In order to obtain a representative split
of training, development, and test sets, we divide
the whole corpus into blocks of 10 files by sorted
order. For each block, the first file is used for de-
velopment, the second file is used for test, and the
remaining 8 files are used for training. Table 1 gives
the basic statistics on the data. The development
set is used to determine the parameter λ in Equa-
tion 4, the smoothing parameter ε in Equation 7, the
weight parameter β described in Section 3.3, and the
number of boosting rounds in the reranking model.
In order to train the reranking model, the method
in (Collins and Koo, 2005) is used to prepare the
N-best training examples. We divided the training
set into 20 chunks, with each chunk N-best tagged
by the HMM model trained on the combination of
the other 19 chunks. The development set is N-best
tagged by the HMM model trained on the training
set, and the test set is N-best tagged by the HMM
model trained on the combination of the training set
and the development set.

Train Dev Test
#Sentences 14925 1904 1975
#Words 404844 51243 52900

Table 1: The basic statistics on the data.

In the following subsections, we will first exam-
ine the HMM models alone to determine the best
HMM configuration to use to generate the N-best
candidates, and then evaluate the reranking mod-
els. Finally, we compare our performance with pre-
vious work. In this paper, we use the sign test
with p ≤ 0.01 to evaluate the statistical significance
of the difference between the performances of two
models.
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4.2 Results of the HMM taggers

The baseline HMM model ported directly from the
English tagger, as described in Subsection 2.1, has
an overall tag accuracy of 93.12% on the test set,
which is fairly low compared to the 97% accuracy
of many state-of-the-art taggers on WSJ for English.

By approximating the unknown word emission
probability using the characters in the word as in
Equation 3, the performance of the HMM tagger im-
proves significantly to 93.43%, suggesting that char-
acters in different positions of a Chinese word help
to disambiguate the word class of the entire word, in
contrast to English for which suffixes are most help-
ful.

Figure 1 depicts the impact of combining the left-
to-right and right-to-left word emission models us-
ing different weighting values (i.e., λ) on the devel-
opment set. Note that emission probabilities of un-
known words are estimated based on characters us-
ing the same λ for combination. When λ = 1.0, the
model uses only the standard left-to-right prediction
of words, while when λ = 0 it uses only the right-to-
left estimation. It is interesting to note that the right-
to-left estimation results in greater accuracy than the
left-to-right estimation. This might be because there
is stronger interaction between a word and its next
tag. Also as shown in Figure 1, the estimations in
the two directions are complementary to each other,
with λ = 0.5 performing best. The performance of
the HMM taggers on the test set is given in Table 2
for the best operating point, as well as the two other
extreme operating points to compare the left-to-right
and right-to-left constraints. Our best HMM tagger
further improves the tag accuracy significantly from
93.43% (λ = 1.0) to 94.01% (λ = 0.5).

Figure 1: The accuracy of the HMM tagger on the
development set with various λ values for combin-
ing the word emission probabilities.

Overall Known Unknown
HMM baseline 93.12% 94.65% 69.08%
HMM, λ=1.0 93.43% 94.71% 73.41%
HMM, λ=0.0 93.65% 94.88% 74.23%
HMM, λ=0.5 94.01% 95.21% 75.15%

Table 2: The performance of various HMM taggers
on the test set.

4.3 Results of the Reranking Models

The HMM tagger with the best accuracy (i.e., the
one with λ = 0.5 in Table 2) is used to generate
the N-Best tagging candidates, with a maximum of
100 candidates. As shown in Table 3, a maximum of
100-Best provides a reasonable margin for improve-
ment in the reranking task.

We first test the performance of the reranking
methods using only the n-gram feature set, which
contains around 18 million features. Later, we
will investigate the addition of morphological fea-
tures and dependency features. The smoothing
parameter ε (for Collins’ method and the update-
once method) and the weight parameter β (for
the regularization method) both have great im-
pact on reranking performance. We trained vari-
ous reranking models with ε values of 0.0001 ×
{1, 2.5, 5, 7.5, 10, 25, 50, 75, 100}, and β values of
{0.1, 0.25, 0.5, 0.75, 1}. For all these parameter val-
ues, 600,000 rounds of iterations were executed on
the training set. The development set was used to
determine the early stopping point in training. If
not mentioned explicitly, all the results reported are
based on the best parameters tuned on the develop-
ment set.

1-Best 50-Best 100-Best
train 93.48% 96.96% 97.13%
dev 93.75% 97.68% 97.84%
test 93.19% 97.19% 97.35%

Table 3: The oracle tag accuracies of the 1-Best, 50-
Best, and 100-Best candidates in the training, devel-
opment, and test sets for the reranking experiments.
Note that the tagging candidates are prepared using
the method described in Subsection 4.1.

Table 4 reports the performance of the best HMM
tagger and the three reranking taggers on the test set.
All three reranking methods improve the HMM tag-
ger significantly. Also, the update-once and regu-
larization methods both outperform Collins’ original
training method significantly.
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Overall Known Unknown
HMM, λ=0.5 94.01% 95.21% 75.15%
Collins 94.38% 95.56% 75.85%
Update-once 94.50% 95.67% 76.13%
Regularized 94.54% 95.70% 76.48%

Table 4: The performance on the test set of the
HMM tagger, and the reranking methods using the
n-gram features.

We observed that no matter which value the
smoothing parameter ε takes, there are only about
10,000 non-zero features finally selected by Collins’
original method. In contrast, the two new methods
select substantially more features, as shown in Ta-
ble 5. As mentioned before, there are some strong
features that only appear in positive or negative sam-
ples, i.e., either W+

k or W−
k equals zero. Although

introducing the smoothing parameter ε in Equation 7
prevents infinite weight values, the update to the
feature weights is no longer optimal (in terms of
minimizing the error function). Since the update
is not optimal, subsequent iterations may still fo-
cus on these features (and thus ignore other weaker
but informative features) and always increase their
weights in one direction, leading to biased training.

The update-once method at each iteration selects
a new feature that has the most impact in reduc-
ing the training loss function. It has the advantage
of preventing increasingly large weights from being
assigned to the strong features, enabling the update
of other features. The regularization method allows
multiple updates and also penalizes large weights.
Once a feature is selected and has its weight updated,
no matter how strong the feature is, the weight value
is optimal in terms of the current weights of other
features, so that the training algorithm would choose
another feature to update. A previously selected fea-
ture may be selected again if it becomes suboptimal
due to a change in the weights of other features.

#iterations #features percent
Collins 115400 10020 8.68%
Update-once 545100 545100 100%
Regularized 92500 70131 75.82%

Table 5: The number of iterations (for the best
performance), the number of selected features, and
the percentage of selected features, by Collins’
method, the update-once method, and the regular-
ization method on the development set.

Overall Known Unknown
HMM, λ=0.5 94.01% 95.21% 75.15%
Collins 94.44% 95.55% 77.05%
Update-once 94.68% 95.68% 78.91%
Regularized 94.64% 95.71% 77.84%

Table 6: The performance on the test set of the
HMM tagger and the reranking methods using n-
gram and morphological features.

We next add morphological features to the n-gram
features selected by the reranking methods7. As
can be seen by comparing Table 6 to Table 4, mor-
phological features improve the tagging accuracy of
unknown words. It should be noted that the im-
provement made by both update-one and regulariza-
tion methods is statistically significant over using n-
gram features alone; however, the improvement by
Collins’ original method is not significant. This sug-
gests that the two new methods are able to utilize a
greater variety of features than the original method.

We trained several Charniak parsers using the
same method for the HMM taggers to generate auto-
matic parse trees for training, development, and test
data. The update-once method is used to evaluate
the effectiveness of dependency features for rerank-
ing, as shown in Table 7. The parser has an overall
tagging accuracy that is greater than that of the best
HMM tagger, but worse than that of the reranking
models using n-gram and morphological features. It
is interesting to note that reranking with the depen-
dency features alone improves the tagging accuracy
significantly, outperforming reranking models using
n-gram and morphological features. This suggests
that the long distance features based on the syntactic
structure of the sentence are very beneficial for POS
tagging of Mandarin. Moreover, n-gram and mor-
phological features are complementary to the depen-
dency features, with their combination performing
the best. The n-gram features improve the accuracy
on known words, while the morphological features
improve the accuracy on unknown words. The best
accuracy of 95.11% is an 18% relative reduction in
error compared to the best HMM tagger.

7Because the size of the combined feature set of all n-gram
features and morphological features is too large to be handled
by our server, we chose to add morphological features to the
n-gram features selected by the reranking methods, and then
retrain the reranking model.
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Overall Known Unknown
Parser 94.31% 95.57% 74.52%

dep 94.93% 96.01% 77.87%
dep+ngram 95.00% 96.11% 77.49%
dep+morph 94.98% 96.01% 78.79%

dep+ngram+morph 95.11% 96.12% 79.32%

Table 7: The tagging performance of the parser
and the update-once reranking models with depen-
dency features and their combination with n-gram
and morphological features.

4.4 Comparison to Previous Work

So how is our performance compared to previous
work? When working on the same training/test data
(CTB5.0 with the same pre-processing procedures)
as in (Tseng et al., 2005), our HMM model ob-
tained an accuracy of 93.72%, as compared to their
93.74% accuracy. Our reranking model8 using n-
gram and morphological features improves the ac-
curacy to 94.16%. Note that we did not use all the
morphological features as in (Tseng et al., 2005),
which would probably provide additional improve-
ment. The dependency features are expected to fur-
ther improve the performance, although they are not
included here in order to provide a relatively fair
comparison.

5 Conclusions and Future Work

We have shown that the characters in a word are
informative of the POS type of the entire word in
Mandarin, reflecting the fact that the individual Chi-
nese characters carry POS information to some de-
gree. The syntactic relationship among characters
may provide further information, which we leave
as future work. We have also shown that the ad-
ditional right-to-left estimation of word emission
probabilities is useful for HMM tagging of Man-
darin. This suggests that explicit modeling of bi-
directional interactions captures more sequential in-
formation. This could possibly help in other sequen-
tial modeling tasks.

We have also investigated using the reranking al-
gorithm in (Collins and Koo, 2005) for the Man-
darin POS tagging task, and found it quite effective

8Tseng at el.’s training/test split uses up the entire CTB cor-
pus, leaving no development data for tuning parameters. In
order to roughly measure reranking performance, we use the
update-once method to train the reranking model for 600,000
rounds with the other parameters tuned in Section 4. This sac-
rifices performance to some extent.

in improving tagging accuracy. The original algo-
rithm has a tendency to focus on a small subset of
strong features and ignore some of the other useful
features. We were able to improve the performance
of the reranking algorithm by utilizing two different
methods that make better use of more features. Both
are simple and yet effective. The effectiveness of de-
pendency features suggests that syntax-based long
distance features are important for improving part-
of-speech tagging performance in Mandarin. Al-
though parsing is computationally more demanding
than tagging, we hope to identify related features
that can be extracted more efficiently.

In future efforts, we plan to extract additional
reranking features utilizing more explicitly the char-
acteristics of Mandarin. We also plan to extend our
work to speech transcripts for Broadcast News and
Broadcast Conversation corpora, and explore semi-
supervised training methods for reranking.

Acknowledgments

This material is based upon work supported by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR0011-06-C-0023.
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the authors and do not necessarily reflect the views
of DARPA. We gratefully acknowledge the com-
ments from the anonymous reviewers.

References
Thorsten Brants. 2000. TnT a statistical part-of-speech

tagger. In ANLP, pages 224–231.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In ACL.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the first conference on North
American chapter of the Association for Computa-
tional Linguistics, pages 132–139, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

John Chen, Srinivas Bangalore, Michael Collins, and
Owen Rambow. 2002. Reranking an n-gram supertag-
ger. In the Sixth International Workshop on Tree Ad-
joining Grammars and Related Frameworks.

Michael Collins and Terry Koo. 2005. Discrimina-
tive reranking for natural language parsing. Compu-
tational Linguistics, 31(1):25–70.

1101



Michael Collins, Robert E. Schapire, and Yoram Singer.
2002. Logistic regression, adaboost and bregman dis-
tances. Machine Learning, 48(1):253–285.

Yoav Freund and Robert E. Schapire. 1997. A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and System
Sciences, 1(55):119–139.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram
Singer. 1998. An efficient boosting algorithm for
combining preferences. In the Fifteenth International
Conference on Machine Learning.

Heng Ji, Cynthia Rudin, and Ralph Grishman. 2006. Re-
ranking algorithms for name tagging. In HLT/NAACL
06 Workshop on Computationally Hard Problems and
Joint Inference in Speech and Language Processing.

Fernando Pereira John Lafferty, Andrew McCallum.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In ICML.

Jerome Packard. 2000. The Morphology of Chinese.
Cambridge University Press.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In EMNLP.

Brian Roark, Yang Liu, Mary Harper, Robin Stewart,
Matthew Lease, Matthew Snover, Izhak Shafran, Bon-
nie Dorr, John Hale, Anna Krasnyanskaya, and Lisa
Yung. 2006. Reranking for sentence boundary detec-
tion in conversational speech. In ICASSP.

Scott M. Thede and Mary P. Harper. 1999. A second-
order hidden Markov model for part-of-speech tag-
ging. In ACL, pages 175–182.

Huihsin Tseng, Daniel Jurafsky, and Christopher Man-
ning. 2005. Morphological features help pos tagging
of unknown words across language varieties. In the
Fourth SIGHAN Workshop on Chinese Language Pro-
cessing.

Nianwen Xue, Fu dong Chiou, and Martha Palmer. 2002.
Building a large-scale annotated chinese corpus. In
COLING.

1102



Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 1103–1111, Prague, June 2007. c©2007 Association for Computational Linguistics

Building Domain-Specific Taggers without Annotated (Domain) Data 

John E. Miller1 Manabu Torii2 K. Vijay-Shanker1 

1Computer & Information Sciences 
University of Delaware 

Newark, DE 19716 
{jmiller,vijay}@cis.udel.edu 

2Biostatistics, Bioinformatics and Biomathematics  
Georgetown University Medical Center  

Washington, DC 20057 
mt352@georgetown.edu 

 

Abstract 

Part of speech tagging is a fundamental 
component in many NLP systems. When 
taggers developed in one domain are used 
in another domain, the performance can 
degrade considerably. We present a method 
for developing taggers for new domains 
without requiring POS annotated text in the 
new domain. Our method involves using 
raw domain text and identifying related 
words to form a domain specific lexicon. 
This lexicon provides the initial lexical 
probabilities for EM training of an HMM 
model. We evaluate the method by apply-
ing it in the Biology domain and show that 
we achieve results that are comparable with 
some taggers developed for this domain.  

1 Introduction 

As Natural Language Processing (NLP) technol-
ogy advances and more text becomes available, it 
is being applied more and often in specialized do-
mains. Part of Speech (POS) tagging is often a 
fundamental component to these NLP applications 
and hence its accuracy can have a significant im-
pact on the application’s success. The success that 
the taggers have attained is often not replicated 
when the domain is changed. Degradation of accu-
racy in a new domain can be overcome by devel-
oping an annotated corpus for that specific domain, 
e.g., as in the Biology domain. However, this solu-
tion is feasible only if there is sufficient interest in 
the use of NLP technology in that domain, and 
there are sufficient funding and resources. In con-
trast, our approach is to use existing resources, and 

rapidly develop taggers for new domains without 
using the time and effort to develop annotated data. 

In this work, we use the Wall Street Journal 
(WSJ) corpus (Marcus et al, 1993) and large 
amounts of domain-specific raw text to develop 
taggers. We evaluate our methodology in the Biol-
ogy domain and show the resulting performance is 
competitive with some taggers built with super-
vised learning for that domain. Also, we note that 
the accuracy of taggers trained on the WSJ corpus 
drops off considerably when applied to this domain. 
Smith et al. (2005) report that the Brill tagger 
(1995) has an accuracy of 86.8% on 1000 sen-
tences taken from Medline, and that the Xerox tag-
ger (Cutting et al .1992) has an accuracy of 93.1% 
on the same sentences. They attribute this drop off 
to the fact that only 57.8% of the 10,000 most fre-
quent words can be found in WSJ corpus. This ob-
servation provides further impetus to developing 
lexicon for taggers in the new domains.  

In the next section, we discuss our general ap-
proach. The details of the EM training of the HMM 
tagger are given in Section 3. Section 4 provides 
details of how a domain specific lexicon is created. 
Next, we discuss the evaluation of our models and 
analysis based on the results. Section 6 discusses 
related work and those works from which we have 
taken some ideas. Section 7 has some concluding 
remarks.  

2 Basic Methodology 

Inadequate treatment of domain-specific vocabu-
lary is often the primary cause in the degradation 
of performance when a tagger trained in one genre 
of text is ported to a new domain. The significance 
of out-of-vocabulary words has been noted in re-
duced accuracy of NLP components in the Biology 
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domain (e.g., Lease and Charniak, 2005; Smith et 
al. 2004). The handling of domain-specific vocabu-
lary is the focus of our approach.  

It is quite common to use suffix information in 
the prediction of POS tags for occurrences of new 
words. However, its effectiveness may be limited 
in English, which is not a highly inflected language. 
However, even for English, we find that not only 
can suffix information be used online during tag-
ging, but also the presence or absence of morpho-
logically related words can provide considerable 
information to pre-build a lexicon that associates 
possible tags with words.  

Consider the example of the word “broaden”. 
While the suffix “en” may be utilized to predict the 
likelihood of verbal tags (VB and VBP) for the 
word during tagging, if we were to build a lexicon 
offline, the existence of the words “broadened”, 
“broadening”, “broadens” and “broad” give further 
evidence to treat “broaden” as a verb. This type of 
information has been used before in (Cucerzan and 
Yarowsky, 2000).  

In the above example, the presence or absence 
of words with the suffix morphemes suggests POS 
tag information in two ways: 1) The presence of a 
suffix morpheme in a word suggests a POS tag or a 
small set of POS tags for the word. This is the type 
of information most taggers use to predict tags for 
unknown words during the tagging process; 2) The 
presence of the morpheme can also indicate possi-
ble tags for the words it attaches to. For example, 
the derivational morpheme “ment” indicates “gov-
ernment” is likely to be an NN and also that the 
word it attaches to, “govern” is likely to be a verb. 
Inflectional and derivational morphemes don’t at-
tach to words of just any POS category; they are 
particular. Thus, we can propose the possibility of 
JJ (adjective) to “broad” and VB or VBP to “gov-
ern” (based on the fact the derivational morphemes 
“en” and “ment” attach to them) even though by 
themselves they don’t have any suffix information 
that might be indicative of JJ and VB or VBP.  

Additional suffixes (that may or may not be 
taken from a standard list of English inflectional 
and derivational morphemes) can also be used. As 
an example, the suffix “ate” can be associated with 
a small set of tags: VB or VBP (“educate”, “cre-
ate”), JJ (“adequate”, “appropriate”), and NN 
(“candidate”, “climate”). Note the possibility or 
impossibility of the addition of “tion” and “ly” can 
help distinguish between the verbal and adjectival 

situations. In contrast, most taggers that use just 
suffix information during the tagging process will 
need strong contextual information (i.e., tags of 
nearby words) in making their prediction for each 
occurrence, as such suffixes can be associated with 
multiple tags. 

To utilize such information, we need a diction-
ary of words in the domain for which we are inter-
ested in building a tagger. Such a dictionary will 
allow us to propose possible tags for a domain 
word such as “phosphorylate”. If we can verify 
whether words like “phosphorylation”, “phos-
phorylates”, and “phosphorylately,” are available 
in the domain then we can obtain considerable in-
formation regarding the possible tags that can be 
associated with “phosphorylate”. But we cannot 
assume the availability of a dictionary of words in 
the domain. However, it would suffice to have a 
large text corpus, which we call Text-Lex. We use 
it as a proxy for a domain dictionary by obtaining a 
list of words and their relative frequency of ap-
pearance in the domain.  

Rather than using manually developed rules that 
assign possible tags for words based on the pres-
ence or absence of related words, we wish to apply 
a more empirical methodology. Since this sort of 
information is specific to a language rather than a 
domain, we can use an annotated corpus in another 
domain to provide exemplars. We use the WSJ 
(Marcus et al. 1993) corpus, a POS annotated cor-
pus, for this purpose.  For example, we can see that 
“phosphorylate” in the Biology domain and “cre-
ate” in the WSJ corpus are similar in the sense both 
take on “tion”, “ed”, and “ing” suffixes but not 
“ly” for instance. Since the WSJ corpus would 
provide POS tag information for “create”, we can 
use it to inform us for “phosphorylate”. 

The above method forms the basis for our de-
termination of the set of tags that are to be associ-
ated with the domain words. However, the actual 
tag to be assigned for an occurrence in text de-
pends on the context of use. We capture this in-
formation by using a first-order HMM tagger 
model. For the transitional probabilities, we begin 
by using WSJ-based probabilities as a starting 
point and then adjust to the new domain by using a 
domain specific text and using EM training. EM 
also allows for adjusting lexical probabilities de-
rived using WSJ words as exemplars. We call the 
domain specific text used for training of our HMM 
tagger as Text-EM. While this could be the same 
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as Text-Lex, we distinguish the two since Text-EM 
could be smaller than Text-Lex. From Text-Lex, 
we only extract a list of words and their frequency 
of occurrences. In contrast, we use Text-EM as a 
text and hence as a sequence of words.  

In this work, the set of suffixes that we use is 
adapted those found in a GRE preparation web-
page (DeForest, 2000). A few additional suffixes 
were obtained from the online English Dictionary 
AllWords.com (2005). In the future we expect to 
consider automatic mining of useful suffixes from 
a domain. Furthermore, prefixes are also useful for 
our purposes. However apart from a few prefixes 
used in hyphenated words, we haven’t yet incorpo-
rated prefix information in a systematic way into 
our framework.  

In this paper, our evaluation domain is molecu-
lar biology. Large amounts of text are easily avail-
able in the form of Medline abstracts. We use only 
about 1% of the Medline text database for Text-
Lex. Another reason for selecting this evaluation 
domain is that we have a considerable amount 
POS-annotated text in this domain, and the most 
recent techniques of supervised POS tag learning 
have been used in developing taggers for this do-
main. This allows us to evaluate our tagger using 
the annotated text for evaluation as well as to com-
pare our tagger with others developed for this do-
main. The POS-annotated text we use is the well-
known GENIA (Tateisi et al, 2003) corpus that 
was developed at University of Tokyo.  

3 Expectation Maximization Training 

Our tagger is a first-order Hidden Markov Model 
(HMM) tagger that is trained using Expectation 
Maximization (EM) since we do not assume exis-
tence of annotated data in the new domain.1 Al-
though we use the GENIA corpus, we take only the 
raw text and strip off the annotated information for 
obtaining the Text-EM. Our HMM is based on bi-
gram modeling and hence our transitional prob-
abilities correspond to P(t | t’) where t and t’ are 
POS tags. The emissions that label the transition 
edges will be discussed in the next section and in-
clude domain words as well as certain types of 
“coded words”.  

                                                 
1 We considered a 2nd order model as well, but early work 
showed negligible advantage predicting to the same training 
set. Following Wang and Schuurmans (2005) we chose to 
focus on quality of estimation over model complexity. 

The initial transitional probabilities are not ran-
domly chosen but rather taken from the WSJ cor-
pus. If we take the transitional probabilities as a 
representation of syntactic preferences, then EM 
learning using Text-EM may be taken as adjust-
ment of the grammatical preferences in the WSJ 
corpus to those in the new domain. In order to ad-
just the grammatical preference to the new domain, 
we start from smoothed WSJ bigram probabilities. 
If we started from unsmoothed WSJ bigram prob-
abilities, then EM would not allow us to account 
for transitions that are not observed in the WSJ 
corpus. For example, in scientific text, transition 
from RRB (the right round bracket) to VBG may 
be possible, while it does not occur in the WSJ 
corpus. Hence, we smooth the WSJ bigram prob-
abilities with WSJ unigram probabilities.  

We compute smoothed initial bigram probabili-
ties as 

P(t | t’) = λ PWSJ(t | t’) + (1-λ) PWSJ(t), 
where λ=0.9. We felt employing techniques sug-
gested in (Brants, 2000) gave too high a preference 
for unigram probabilities.  

The initial emit probability is obtained from the 
domain text Text-Lex. The process is described in 
the next section. This information is derived purely 
from suffix and suffix distribution, or from ortho-
graphic information and does not account for the 
actual context of occurrences in the domain text. 
We take this suffix-based (and orthographic-based) 
emit probabilities as reasonable initial lexical 
probabilities. EM training will adjust them as nec-
essary.  

We made one minor modification to the stan-
dard forward-backward EM algorithm. We dampen 
the change in transitional and emit probabilities for 
each iteration. Significant differences in lexical 
probabilities between the new domain and WSJ 
can make undue changes in transitional probabili-
ties and this in turn can further lead the lexical 
probabilities to head in the wrong direction. By 
adding a damping factor, we can prevent the unsu-
pervised training to spiral out of control. Hence we 
let the new transitional probability be given by  

P(t | t’) = λ PNEW(t | t’) + (1-λ) POLD(t | t’)  
where POLD represents the transitional probability 
in the previous iteration and PNEW represents the 
probability by standard use of forward-backward 
algorithm. We use a damping factor of 0.5 for both 
transitional and emit probabilities. For the emit 
probabilities, this has the effect of moderating POS 
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preferences derived from the training data and pre-
serving words and POSes from the lexicon for use 
in the test set. 

Even with the damping factor, EM learning fol-
lowed the pattern of ‘Early Maximum’ described 
by Elworthy (1994), where with good initial esti-
mates EM learning only improves accuracy for a 
few iterations.  For our EM training, we fixed it-
eration 2 as our ‘best’ EM trained model. 

4 Development of the Lexicon and Initial 
Probabilities 

As noted earlier, we use a domain text, Text-Lex, 
to develop the initial lexical probabilities for the 
HMM. The essential process is as follows. Let a 
word w appear a sufficient number of times in 
Text-Lex (at least 5 times). We look in Text-Lex 
for related words in order to assign a feature vector 
with this word. Each feature is written as –x+y, 
where x and y represent suffixes or the empty 
string (here represented as _).  

Features: The feature –x+y represents the word 
formed by replacing some suffix x in w by some 
suffix y. Consider the word “creation”. “–ion+_” 
corresponds to the stem word “create” and “–
ion+ion” corresponds to the word “creation” itself. 
The feature “–ion+ed” captures information about 
the word “created” whereas the feature “-_+s” cor-
responds to word “creations”. 

Now consider a word like “history”. While this 
might have non-zero values for “-y+ic” (historic) 
or “-_+s” (histories), we are likely to set zero value 
for “–ory+_” (unless “hist” or “histe” is found in 
Text-Lex). This zero value represents the fact that 
although “history” has “ory” as a suffix, it has no 
stem. Such a distinction (whether or not there is a 
stem) bears much information for suffixes like 
“ate” and “ory”.  

We use suffix classes rather than actual suffixes 
as we believe this provides a more appropriate 
level of abstraction. Given a word w with a suffix 
x (for a word with no suffix from our list of suf-
fixes, x is taken to be _. i.e., empty string), we ex-
amine whether removal of x from w leads to an-
other word by using a few basic variations that can 
be found in any rudimentary exposition on English 
morphology. For example, for the suffix “ed”, we 
attempt to replace “ied” with “y” which relates 
“purified” with “purify” and recognizes the spell-
ing alternation of i/y. Thus for the word “purify” 

the feature “-+ed” represents the presence of “pu-
rified” since “+ed” represents the suffix class 
rather than the actual suffix. Similarly, we also 
consider removal of a suffix and, if necessary, add-
ing an “e” to see if such a word exists. This allows 
us to relate “creation” with “create” or “activate” 
with “active”. Also doubling of a few consonants 
is attempted to relate “occurrence” and “occur”. 
Finally, when a word could have two suffixes, the 
word is considered to always have the longer func-
tional suffix. Hence, we consider “government” to 
have “ment” suffix rather than “ent” suffix.  

Feature Vectors: There are two different types 
of vectors we use for any word, one called Bin (for 
binary count) and other called RFreq (for relative 
frequency). In the Bin vector associated with 
“creation”, all these four features will get the 
value one, assuming that the four corresponding 
words are found in Text-Lex. On the other hand, 
assuming “creatory” is not found in Text-Lex, the 
feature “-ion+ory” would get a zero value.  

For RFreq vector, instead of ones and zeros, we 
first start with the frequency of occurrences of each 
word and then normalize so that the sum of all fea-
ture values is one. Thus, for example, a word with 
4 features having non-zero frequencies of 10, 20, 
30 and 40 will have the respective values set to 0.1, 
0.2, 0.3 and 0.4. A word with four features having 
non-zero frequency, which are 1, 2, 3 and 4, will 
also have same 4 relative frequency values.  

Our intuition is that the Bin vector is helpful in 
determining the set of tags that can be associated 
with a word and that the RFreq vector can aug-
ment this information regarding the likelihood of 
these tags. For example, a one for the “-ing+_” 
feature in a Bin vector (thus disqualifying a word 
like “during”) may be sufficient to predict VBG, JJ 
and NN tags. However, this may not suffice to 
provide the ordering of likelihood among these 
tags for this word. On the other hand, it seems to 
be the case that when the “ing” form appears far 
more often than the “ed” form, then the NN tag is 
most likely. But if the “ed” form is more frequent, 
then VBG is most likely. Examples in the WSJ 
corpus include “smoking”, “marketing”, “index-
ing”, and “restructuring” for the first kind, and 
“calling”, “counting”, “advising”, and “noting” for 
the second kind.  

Exemplars in WSJ: Given a word w from Text-
Lex, we look for similar words from the WSJ cor-
pus. Even though the set of words used in this cor-
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pus may differ substantially from the domain text, 
our hypothesis is that words with similar suffix 
distribution will have similar POS tag assignments 
regardless of the domain. We follow Cucerzan and 
Yarowsky (2000) in using the kNN method for 
finding similar words, but we differ in details of 
the construction of the feature vectors and distance 
computation. For the word w we create the Bin and 
RFreq vectors based on distribution of words in 
Text-Lex. Following the same method, we create 
the Bin and RFreq vectors for a word v in the WSJ 
corpus by using the distributions in the WSJ cor-
pus. Then we compute BinDist(w,v) as the number 
of features in which the two Bin vectors  differ. A 
similar RFDist is defined as a weighted sum of 
two distances: the first distance is L1-norm dis-
tance based on values of features for which both 
words have non-zero values for and the second 
distance is based on values of features for which 
one word has a zero value and other does not. 
Thus, if the two words’ RFreq vectors are 

! 
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1
,...,w

n
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! 

< v
1
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and,  
 

! 

RFDist(w,v) = RFsame(w,v) + "RFdiff (w,v)

 
For RFDist(.), we used δ =2. Given a word w, 

we find the 5 nearest neighbors from the WSJ cor-
pus and use their average lexical probabilities to 
obtain the lexical probabilities for w. We investi-
gate the use of Bin vector information and RFreq 
vector information for computing the distances 
(i.e., BinDist(.) and RFDist(.)) as well as a hybrid 
measure that combines these two distances.  

We also considered smoothing the lexical prob-
abilities obtained in the above fashion. Let w be a 
word for which the above method suggests tags 
t1,…,tn in order of likelihood (t1 is most probable).  
Then we consider sqrt-score(ti)= 

! 

n +1" i . We 
then assign probabilities based on this score after 
normalizing them so that the probabilities for the n 
tags will sum to 1. Thus, for example, if a word w 
has three possible tags, no matter what the original 
lexical probabilities were determined to be, if t1 is 

determined to be most probable, then P(t1|w) will 
be 0.418 by this method. The second most prob-
able tag will be assigned 0.341.   

The intuition behind this square root smoothing 
method is that this smoothing may be appropriate 
for low frequency words, where empirical prob-
abilities based purely on a kNN basis may not be 
entirely appropriate if the new domain is very dif-
ferent. The drawback of course is that if there is 
sufficient information, we lose useful information 
by such flattening. And when a tag is significantly 
more probable for a word then we lose this vital 
information. For example, the word “high” is 
mostly annotated as JJ in WSJ corpus but RB and 
NN are also possible. Square root smoothing will 
flatten this distribution considerably. Nevertheless, 
we wish to investigate whether this method of 
smoothing the distribution is enough in conjunc-
tion with EM. EM adjusts the probability from 
observing the number and context of occurrences 
in the domain text.2  

Coded Words: No matter how large Text-Lex 
is, there will be words that do not appear a suffi-
cient number of times (we take this number to be 
5). We aggregate such words according to their 
suffixes, if they correspond to one of the prede-
fined suffixes. Then each word with suffix x is 
considered to be an instance of a “coded” word 
SFX-x. If a word does not have any of these suf-
fixes then they fall into the coded class unknown. 
For each such coded word, we assign the tags and 
probabilities based on similarly aggregated words 
in the WSJ corpus. 

We have two other broad classes of words that 
we treat differently. Coded words are formed based 
on orthographic characteristics, which include but 
are not limited to Greek letters, Roman numerals, 
digits, upper or lower case single letters, upper 
case letter sequences, cardinals, certain prefix 
words, and their combinations.  Since they are rela-
tively easy to tag, we do not use the WSJ corpus 
for them but handle it programmatically. Finally, if 
a word occurs often in WSJ or is assigned tags 
such as CD, FW, MD, PRP, DT, WDT, etc. (tags 
which can’t be predicted by means of suffix or suf-
fix-related words), we add this word together with 
the tags and probability into the domain lexicon 
that we are building.  

                                                 
2 We also considered linear and square functions for smooth-
ing while reporting only the sqrt results in section 5. 
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5 Evaluation and Analysis 

As noted earlier, our evaluation is on molecular 
biology text. For Text-Lex, we used 133,666 ti-
tles/abstracts of research papers, a small fraction of 
the Medline database available from the National 
Library of Medicine. These abstracts were con-
tained in just five of the 500 compressed data files 
in the 2006 version of the Medline database. These 
abstracts cover topics more broadly in Biomedicine 
and not just molecular biology.  On the other hand, 
we use for Text-EM, text which can be regarded to 
be in a subfield of molecular biology.  

Text-EM is the text from the GENIA corpus 
(version 3.02) described in (Tateisi et al. 2003). 
This corresponds to about 2000 abstracts, which 
are annotated with POS tag information (using the 
same tags used in the WSJ corpus). We use a 5-
fold cross-validation, i.e., 5 partitions are formed 
and experiments conducted 5 times and results av-
eraged. For each test partition, the remainder parti-
tions are used for “training”. In our case, this is 
unsupervised since we use EM and hence we to-
tally disregard the POS tag information that is as-
sociated with the words. We note that both the text 
for EM training as well as for testing come from 
the same domain.   

We first evaluate the process of building the 
lexicon. This time we consider the entire GENIA 
corpus and not any partition. We first considered 
all words in the GENIA corpus for which we can 
expect our kNN method to assign a tag. Hence all 
words that would be treated as coded words are 
ignored. For each such word, we consider the tags 
assigned to them in the GENIA corpus and form 
pairs <w,t>.  We are interested in the word type 
and not token and hence we will not have any mul-
tiple occurrences of a pair <w,t>. Our kNN method 
identifies 96.3% of these pairs; we can think of this 
as recall. This makes our approach effective, espe-
cially given the fact that the kNN method only as-
signs 1.92 tags on an average to these words in the 
GENIA corpus. Next considering all words appear-
ing in the GENIA corpus, our lexicon includes a 
correct tag in 99.0% of the cases on a word-token 
basis. These results are summarized below. 
 

Characteristic Statistic 
kNN Recall (word-type) 96.3% 
Average Number Tags/Word 1.92 tags 
Lexicon Recall (word-token) 99.0% 

We now turn to the evaluation of the accuracy of 
our HMM. As mentioned earlier, these results are 
based on 5-fold cross-validation experiments. The 
best results (95.77%) were obtained for the case 
where we took the lexical probabilities directly 
from kNN using only RFDist and by discarding all 
tags assigned with probability less than 0.02.3  

These results compare favorably to other taggers 
developed for the Biology domain. The MedPost 
tagger (see Section 6) achieved an accuracy of 
94.1% when we applied it to the GENIA abstracts. 
The PennBioIE tagger (see Section 6) achieved an 
accuracy of 95.1%. Note that output from the 
PennBioIE tagger is not fully compatible with 
GENIA annotation due to some differences in its 
tokenization.  Even if the differences in accuracies 
can be discounted due to tokenization or even sys-
tematic differences in annotation between the train-
ing and test corpora, our main point is that our re-
sults compare favorably (our tagger competitive) 
with taggers that were developed for the Biomedi-
cine domain using supervised training.   

These results are summarized in the table below. 
 
POS Tagger %Accuracy 
Our HMM (5-fold) 95.77% 
MedPost 94.1% 
PennBioIE 95.1% 
GENIA supervised 98.26% 
 
MedPost seems intended to cover all of Bio-

medicine, since its lexicon is based on the 10,000 
most frequently occurring words from Medline and 
for which the set of possible tags were manually 
specified. The PennBioIE tagger was developed 
using 315 Medline abstracts using another subfield 
of molecular biology. 

None of these accuracies however are as high as 
those of the GENIA tagger (Tsuruoka et al. 2005) 
which was trained (supervised) using GENIA cor-
pus and uses a machine learning model more so-
phisticated than the simple first-order HMM tagger 
we use. This model considers more features includ-
ing words to the right. The best results (98.26%) 
were obtained when lexicon from three different 
sources were aggregated.   

                                                 
3 Banko and Moore (2004) showed only slight improvement in 
tag accuracy between .01 and .1 cutoffs with a lexicon built 
from annotated data. We opted for the .02 cutoff because of 
our ‘noisier’ lexicon. 
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Returning to the results for our taggers, we also 
tried BinDist in the kNN method, with and without 
square root smoothing. These results were typi-
cally less than the above-mentioned result. We also 
compared using a square root smooth on RFDist 
obtaining results approximately 1% lower than 
without the square root smooth. 

We next present some examples that illustrate 
strengths and weaknesses of the current model. An 
example that shows that EM training makes good 
adjustment to the domain is the improvement in 
tagging of verbal categories. We conducted a de-
tailed error analysis on one of the cross-validation 
partitions and noted that the accuracy on all verbal 
POS tags improved after EM training. A notewor-
thy case is the improvement in tagging of VBP 
originally misclassified as VB. Since most English 
words that are VB can also be VBP, and since they 
are annotated more frequently in WSJ as VB, the 
initial lexicon usually has a higher probability as-
signed to VB for most words. As EM training pro-
gresses, we noted that the frequency of VBP 
mistagged as VB decreases. Similarly, misclassifi-
cations of VBG as NN also drops in the final 
model (by 40.3% on Text-EM) as compared to the 
initial model based on WSJ transitional probabili-
ties and initial lexicon derived using WSJ words as 
exemplars. 

Previously, in the context of parsing Biomedical 
text, Lease and Charniak (2004) mention the oc-
currences of sequences of multiple NN is more 
frequent in the GENIA corpus than in the WSJ 
corpus and that it could lead to parsing errors. We 
didn’t observe this problem here, but rather the 
contrary situation where many JJs were initially 
mistagged as NN.  About 22% of these misclassifi-
cations are corrected after EM training.  

While our model adjusts well in these cases to 
the new domain, sometimes the drift leads to worse 
performance. An example is in the misclassifica-
tion of VBN as JJ. The most frequent word for 
which this misclassification occurs in the word 
“activated”. These misclassifications occur in the 
context such as “the activated cells”. The use of 
VBN rather than JJ is hard to determine on basis of 
just surface features and perhaps has to do more 
with the meaning of the word. In supervised set-
ting, if sufficient such cases were annotated then 
this would be learned. But in an unsupervised set-
ting this turns out to be a problem case. Despite the 
fact that RFDist predicted VBN as most probable 

tag for “activated”, EM training makes this situa-
tion worse.  

Analysis of words with most frequent errors re-
vealed many cases from orthographic coded words. 
Many occurrences of single lower case letters 
(which could have LS, SYM or NN tags) were la-
beled as LS whereas the GENIA tagging used NN. 
Our model tagged “+/-” always as SYM whereas 
because of the context of use, GENIA annotations 
were CC. (In fact, GENIA does not appear to use 
the SYM tag.) Similarly, “<” and “>” were often 
mistagged as SYM by our model whereas based on 
context they are annotated as JJR.  

6 Related Work 

The impact of out-of-vocabulary words on NLP 
applications has been noted before. The degrada-
tion in performance of components, which were 
trained on the WSJ corpus, but used on biomedical 
text has been noted (Lease and Charniak, 2004, 
Smith et al, 2005). Smith et al. (2005) use this ob-
servation in the design of their POS tagger, Med-
Post, by building a Markov model with a lexicon 
containing the 10,000 most frequent words from 
Medline, and using annotated text from the Bio-
medical text for supervised training.  

There are many unsupervised approaches to 
POS tagging. We focus now on those that are most 
closely related to our work and contain ideas that 
have influenced this work. There have been many 
uses of EM training to build HMM taggers 
(Kupiec, 1992; Elworthy, 1994; Banko and Moore, 
2004; Wang and Schuurmans, 2005). Banko and 
Moore (2004) achieved better accuracy by restrict-
ing the set of possible tags that are associated with 
words. By eliminating possibilities that may appear 
rarely with a word, they reduce the chances of un-
supervised training spiraling along an unlikely 
path.  We believe by using our approach we con-
siderably reduce the set of tags to what is appropri-
ate for each word. Further, we too remove any tag 
associated with low probability by kNN method.  
Usually these tags are noise introduced by some 
inappropriate exemplar.  

Wang and Schuurman (2005) suggest that EM 
algorithm be modified such that at any iteration the 
unigram tag probability be held constant to the true 
probability for each tag. Again, this might serve to 
stop a drift in unsupervised methods towards mak-
ing a tag’s probability become larger than it should 
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be. However, the true probability cannot be known 
ahead of time and certainly not in a new domain. 
While a WSJ bigram probability need not reflect 
the corresponding preferences in the new domain, 
our use of starting from WSJ probabilities and then 
damping changes to transition probabilities was 
motivated by a similar concern of not letting a drift 
towards making some (bigram) tags too frequent 
during EM iterations.  

Using suffixation patterns for purposes of pre-
dicting POS tags has been considered before. Al-
though as far as we know, we are the first to apply 
it for domain adaptation purposes. Schone and Ju-
rafsky (2001) consider clusters of words (obtained 
by some “perfect” clustering algorithm) and then 
compute a measure of how “affixy” a cluster is. 
For example, a cluster containing words “climb” 
and “jump” may be related by suffixing operation 
+s to a cluster that contains words “climbs” and 
“jumps”. The percentage of words in a cluster that 
are so related provides a measure of how “affixy” a 
cluster. This together with five other attributes of 
clusters (such as whether words in a cluster pre-
cede those of another cluster, optionality) and lan-
guage universals induce POS tags for these clusters 
from corpora. This method does not use POS 
tagged corpora (although in the reported experi-
ment the initial “perfect” clusters were obtained 
from the Brown corpus using the POS tag informa-
tion). In contrast, we use the POS tagged WSJ cor-
pus to assist in the induction of tag information for 
our lexicon. In this respect, our method is closer to 
the approach of Cucerzan and Yarowsky (2000). 
Our use of the kNN method to identify tags and 
their probabilities for words was inspired by this 
work.  However, their use of kNN method was in 
the context of supervised learning. The method 
was applied for handling words unseen in the train-
ing data. The estimated probabilities were used 
during the tagging process. Instead of just applying 
the method for unknown words, i.e., words not 
present in the training data, our approach is to cre-
ate the entire lexicon in the new domain. As Lease 
and Charniak (2004), among others, have noted, 
the distribution of NN tag sequences as well as tag 
distributions in the Biomedical domain could differ 
from WSJ text. Since our aim is to adjust to the 
new domain, we employed unsupervised learning 
in the form of EM training, unlike the supervised 
tagging model development approach of Cucerzan 
and Yarowsky. Another significant difference is 

that their method determines nearest neighbors not 
only on the basis of suffix-related words but also 
on the basis of nearby words context. Since our 
motivation, on the other hand, is to move to a new 
domain, we didn’t consider detection of similarity 
on the basis of word contexts. In contrast, we have 
shown that the approach of identifying words on 
the basis of suffixation patterns and using them as 
exemplars can be applied effectively even when 
the domain of application is substantially different 
from the text (the WSJ corpus) providing the ex-
emplars. 

7 Conclusions 

As NLP technology continues to be applied in new 
domains, it becomes more important to consider 
the issue of portability to new domains. To cope 
with domain-specific vocabulary and also different 
use of vocabulary in a new domain, we exploited 
suffix information of words. While use of suffix 
information per se has been employed in many ex-
isting POS taggers, its use is often limited to an 
online manner, where each word is examined inde-
pendently from the existence of its morphologi-
cally related words. As shown in (Cucerzan and 
Yarowsky, 2000), such information can provide 
considerable information to build a lexicon that 
associates possible tags with words. However, we 
use this information only to provide the initial val-
ues. We apply EM algorithm to adjust these initial 
probabilities to the new domain.  

The results in Section 5 show that we achieve 
good performance in the evaluation domain, which 
is comparable with two recently developed taggers 
for this domain. We also show in section 5 exam-
ples of how EM unlearns some WSJ bias and ad-
justs to the new domain. While we introduce a 
damping factor to slow down changes in iterations 
of EM training, we believe there is scope for fur-
ther improvement to minimize drift. Furthermore, 
there is scope to improve our kNN method as dis-
cussed at the end of Section 5. In the future, we 
also expect to consider methods that may auto-
matically mine suffixes in a new domain and use 
these domain-specific suffixes. We used the kNN 
method to associate words in the new domain with 
possible POS tags.  

Despite the often-stated notion that English is 
not morphologically rich, we find that suffix-based 
methods can still help make significant inroads. 
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Our method offers the chance to develop good tag-
gers for specialized domains. For example, the 
GENIA corpus and PennBioIE corpus are speciali-
zations within molecular biology, but taggers de-
veloped on one corpus degrades in performance on 
the other. Using our method, we could use differ-
ent Text-EM for these specializations even if we 
retain Medline as Text-Lex. In the same way, we 
could develop a tagger for the medical domain, 
which has a distinct vocabulary from biology.  
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Abstract 

We describe our experiments using the 
DeSR parser in the multilingual and do-
main adaptation tracks of the CoNLL 2007 
shared task. DeSR implements an incre-
mental deterministic Shift/Reduce parsing 
algorithm, using specific rules to handle 
non-projective dependencies. For the multi-
lingual track we adopted a second order 
averaged perceptron and performed feature 
selection to tune a feature model for each 
language. For the domain adaptation track 
we applied a tree revision method which 
learns how to correct the mistakes made by 
the base parser on the adaptation domain. 

1 Introduction 

Classifier-based dependency parsers (Yamada and 
Matsumoto, 2003; Nivre and Scholz, 2004) learn 
from an annotated corpus how to select an 
appropriate sequence of Shift/Reduce actions to 
construct the dependency tree for a sentence. 
Learning is based on techniques such as SVM 
(Vapnik 1998) or Memory Based Learning 
(Daelemans 2003), which provide high accuracy 
but are often computationally expensive. For the 
multilingual track in the CoNLL 2007 Shared 
Task, we employed a Shift/Reduce parser which 
uses a perceptron algorithm with second-order 
feature maps, in order to verify whether a simpler 
and faster algorithm can still achieve comparable 
accuracy. 

For the domain adaptation track we wished to 
explore the use of tree revisions in order to 
incorporate language knowledge from a new 
domain. 

2 Multilingual Track 

The overall parsing algorithm is a deterministic 
classifier-based statistical parser, which extends 
the approach by Yamada and Matsumoto (2003), 
by using different reduction rules that ensure 
deterministic incremental processing of the input 
sentence and by adding specific rules for handling 
non-projective dependencies. The parser also 
performs dependency labeling within a single 
processing step. 

The parser is modular and can use several 
learning algorithms. The submitted runs used a 
second order Average Perceptron, derived from the 
multiclass perceptron of Crammer and Singer 
(2003). 

No additional resources were used. No pre-
processing or post-processing was used, except 
stemming for English, by means of the Snowball 
stemmer (Porter 2001). 

3 Deterministic Classifier-based Parsing 

DeSR (Attardi, 2006) is an incremental determinis-
tic classifier-based parser. The parser constructs 
dependency trees employing a deterministic bot-
tom-up algorithm which performs Shift/Reduce 
actions while analyzing input sentences in left-to-
right order. 

Using a notation similar to (Nivre and Scholz, 
2003), the state of the parser is represented by a 
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quadruple 〈S, I, T, A〉, where S is the stack of past 
tokens, I is the list of (remaining) input tokens, T is 
a stack of temporary tokens and A is the arc rela-
tion for the dependency graph. 

Given an input string W, the parser is initialized 
to 〈(), W, (), ()〉, and terminates when it reaches a 
configuration 〈S, (), (), A〉. 

The three basic parsing rule schemas are as fol-
lows: 

〈S, n|I, T, A〉 
Shift 〈n|S, I, T, A〉 

〈s|S, n|I, T, A〉 
Rightd 〈S, n|I, T, A∪{( s, d, n)} 〉 

〈s|S, n|I, T, A〉 
Leftd 〈S, s|I, T, A∪{(n, d, s)} 〉 

The schemas for the Left and Right rules are in-
stantiated for each dependency type d ∈ D, for a 
total of 2|D| + 1 rules. These rules perform both 
attachment and labeling. 

At each step the parser uses classifiers trained 
on a treebank corpus in order to predict which ac-
tion to perform and which dependency label to as-
sign given the current configuration. 

4 Non-Projective Relations 

For handling non-projective relations, Nivre and 
Nilsson (2005) suggested applying a pre-
processing step to a dependency parser, which con-
sists in lifting non-projective arcs to their head re-
peatedly, until the tree becomes pseudo-projective. 
A post-processing step is then required to restore 
the arcs to the proper heads. 

In DeSR non-projective dependencies are han-
dled in a single step by means of the following ad-
ditional parsing rules, slightly different from those 
in (Attardi, 2006): 

 
〈s1|s2|S, n|I, T, A〉 

Right2d 〈 S, s1|n|I, T, A∪{(s2, d, n)} 〉 
〈s1|s2|S, n|I, T, A〉 

Left2d 〈s2|S, s1|I, T, A∪{(n, d, s2)} 〉 
〈s1|s2|s3|S, n|I, T, A〉 

Right3d 〈 S, s1|s2|n|I, T, A∪{( s3, d, n)} 〉 
〈s1|s2|s3|S, n|I, T, A〉 Left3d 〈s2|s3|S, s1|I, T, A∪{(n, d, s3)} 〉 

 

〈s1|s2|S, n|I, T, A〉 
Extract 〈n|s1|S, I, s2|T, A〉 

〈S, I, s1|T, A〉 
Insert 〈s1|S, I, T, A〉 

Left2, Right2 are similar to Left and Right, except 
that they create links crossing one intermediate 
node, while Left3 and Right3 cross two intermedi-
ate nodes. Notice that the RightX actions put back 
on the input the intervening tokens, allowing the 
parser to complete the linking of tokens whose 
processing had been delayed. Extract/Insert gener-
alize the previous rules by moving one token to the 
stack T and reinserting the top of T into S. 

5 Perceptron Learning and 2nd-Order 
Feature Maps 

The software architecture of the DeSR parser is 
modular. Several learning algorithms are available, 
including SVM, Maximum Entropy, Memory-
Based Learning, Logistic Regression and a few 
variants of the perceptron algorithm. 

We obtained the best accuracy with a multiclass 
averaged perceptron classifier based on the 
ultraconservative formulation of Crammer and 
Singer (2003) with uniform negative updates. The 
classifier function is: { }xxF k

k
⋅= αmaxarg)(  

where each parsing action k is associated with a 
weight vector αk. To regularize the model the final 
weight vectors are computed as the average of all 
weight vectors posited during training. The number 
of learning iterations over the training data, which 
is the only adjustable parameter of the algorithm, 
was determined by cross-validation.  

In order to overcome the limitations of a linear 
perceptron, we introduce a feature map Φ: IRd → 
IRd(d+1)/2 that maps a feature vector x into a higher 
dimensional feature space consisting of all un-
ordered feature pairs: 

Φ(x) = 〈xixj | i = 1, …, d, j = i, …, d〉 
In other words we expand the original 
representation in the input space with a feature 
map that generates all second-order feature 
combinations from each observation. We call this 
the 2nd-order model, where the inner products are 
computed as αk ⋅ Φ(x), with αk a vector of dimen-
sion d(d+1)/2. Applying a linear perceptron to this 
feature space corresponds to simulating a polyno-
mial kernel of degree two.  

A polynomial kernel of degree two for SVM 
was also used by Yamada and Matsumoto (2003). 
However, training SVMs on large data sets like 
those arising from a big training corpus was too 
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computationally expensive, forcing them to resort 
to partitioning the training data (by POS) and to 
learn several models. 

Our implementation of the perceptron algorithm 
uses sparse data structures (hash maps) so that it 
can handle efficiently even large feature spaces in 
a single model. For example the feature space for 
the 2nd-order model for English contains over 21 
million. Parsing unseen data can be performed at 
tens of sentences per second. More details on such 
aspects of the DeSR parser can be found in (Ci-
aramita and Attardi 2007). 

6 Tuning 

The base parser was tuned on several parameters to 
optimize its accuracy as follows. 

6.1 Feature Selection 

Given the different characteristics of languages and 
corpus annotations, it is worth while to select a 
different set of features for each language. For ex-
ample, certain corpora do not contain lemmas or 
morphological information so lexical information 
will be useful. Vice versa, when lemmas are pre-
sent, lexical information might be avoided, reduc-
ing the size of the feature set. 

We performed a series of feature selection ex-
periments on each language, starting from a fairly 
comprehensive set of 43 features and trying all 
variants obtained by dropping a single feature. The 
best of these alternatives feature models was cho-
sen and the process iterated until no further gains 
were achieved. The score for the alternatives was 
computed on a development set of approximately 
5000 tokens, extracted from a split of the original 
training corpus. 

Despite the process is not guaranteed to produce 
a global optimum, we noticed LAS improvements 
of up to 4 percentage points on some languages. 

The set of features to be used by DeSR is con-
trolled by a number of parameters supplied through 
a parameter file. Each parameter describes a fea-
ture and from which tokens to extract it. Tokens 
are referred through positive numbers for input 
tokens and negative numbers for tokens on the 
stack. For example 

PosFeatures -2 -1 0 1 2 3 
means to use the POS tag of the first two tokens on 
the stack and of the first four tokens on the input. 

The parameter PosPrev refers to the POS of the 
preceding token in the original sentence, 
PosLeftChild refers to the POS of the left chil-
dren of a token, PastActions tells how many 
previous actions to include as features. 

The selection process was started from the fol-
lowing base feature model: 

LexFeatures -1 0 1 
LemmaFeatures -2 -1 0 1 2 3 
LemmaPrev  -1 0 
LemmaSucc  -1 0 
LemmaLeftChild -1 0 
LemmaRightChild -1 
MorphoFeatures -1 0 1 2 
PosFeatures -2 -1 0 1 2 3 
PosNext  -1 0 
PosPrev  -1 0 
PosLeftChild -1 0 
PosRightChild -1 0 
CPosFeatures -1 0 1 
DepFeatures -1 0 
DepLeftChild -1 0 
DepRightChild -1 
PastActions 1 

The selection process produced different variants 
for each language, sometimes suggesting dropping 
certain intermediate features, like the lemma of the 
third next input token in the case of Catalan: 

LemmaFeatures -2 -1 0 1 3 
LemmaPrev  0 
LemmaSucc  -1 
LemmaLeftChild 0 
LemmaRightChild -1 
PosFeatures -2 -1 0 1 2 3 
PosPrev  0 
PosSucc  -1 
PosLeftChild -1 0 
PosRightChild -1 0 
CPosFeatures -1 0 1 
MorphoFeatures 0 1 
DepLeftChild -1 0 
DepRightChild -1 

For Italian, instead, we ran a series of tests in par-
allel using a set of manually prepared feature mod-
els. The best of these models achieved a LAS of 
80.95%. The final run used this model with the 
addition of the morphological agreement feature 
discussed below. 
 

English was the only language for which no feature 
selection was done and for which lexical features 
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were used. English is also the language where the 
official score is significantly lower than what we 
had been getting on our development set (90.01% 
UAS). 

6.2 Prepositional Attachment 

Certain languages, such as Catalan, use detailed 
dependency labeling, that for instance distinguish 
between adverbials of location and time. We ex-
ploited this information by introducing a feature 
that captures the entity type of a child of the top 
word on the stack or in the input. During training a 
list of nouns occurring in the corpus as dependent 
on prepositions with label CCL (meaning ‘com-
plement of location’ for Catalan) was created and 
similarly for CCT (complement of time). The en-
tity type TIME is extracted as a feature depending 
on whether the noun occurs in the time list more 
than α times than in the location list, and similarly 
for the feature LOCATION. α was set to 1.5 in our 
experiments. 

6.3 Morphological Agreement 

Certain languages require gender and number 
agreement between head and dependent. The fea-
ture MorphoAgreement is computed for such lan-
guages and provided noticeable accuracy 
improvements. 

For example, for Italian, the improvement was 
from: 
  LAS: 80.95%,  UAS: 85.03% 

to: 

  LAS: 81.34%,  UAS: 85.54% 
For Catalan, adding this feature we obtained an 
unofficial score of: 
  LAS: 87.64%,  UAS: 92.20% 
with respect to the official run: 
  LAS: 86.86%,  UAS: 91.41% 

7 Accuracy 

Table 1 reports the accuracy scores in the multilin-
gual track. They are all considerably above the 
average and within 2% from the best for Catalan, 
3% for Chinese, Greek, Italian and Turkish. 

8 Performance 

The experiments were performed on a 2.4 Ghz 
AMD Opteron machine with 32 GB RAM. Train-
ing the parser using the 2nd-order perceptron on the 
English corpus required less than 3 GB of memory 
and about one hour for each iteration over the 
whole dataset. Parsing the English test set required 
39.97 sec. For comparison, we tested the MST 
parser version 0.4.3 (Mstparser, 2007), configured 
for second-order, on the same data: training took 
73.9 minutes to perform 10 iterations and parsing 
took 97.5 sec. MST parser achieved: 

LAS: 89.01%, UAS: 90.17% 

9 Error Analysis on Catalan 

The parser achieved its best score on Catalan, so 
we performed an analysis on its output for this lan-
guage. 

Among the 42 dependency relations that the 
parser had to assign to a sentence, the largest num-
ber of errors occurred assigning CC (124), SP (33), 
CD (27), SUJ (26), CONJUNCT (22), SN (23). 

The submitted run for Catalan did not use the 
entity feature discussed earlier and indeed 67 er-
rors were due to assigning CCT or CCL instead of 
CC (generic complement of circumstance). How-
ever over half of these appear as underspecified 
annotation errors in the corpus rather than parser 
errors. 

By adding the ChildEntityType feature, 
which distinguishes better between CCT and CCL, 
the UAS improved, while the LAS dropped 
slightly, due to the effect of underspecified annota-
tions in the corpus: 

   LAS: 87.22%,    UAS: 91.71% 

Table 1. Multilingual track official scores. 

LAS UAS 
Task 

1st DeSR Avg 1st DeSR Avg 

Arabic  76.52  72.66 68.34  86.09  82.53 78.84  

Basque  76.92  69.48 68.06  82.80  76.86 75.15  

Catalan  88.70  86.86 79.85  93.40  91.41 87.98  

Chinese  84.69  81.50 76.59  88.94  86.73 81.98  

Czech  80.19  77.37 70.12  86.28  83.40 77.56  

English  89.61  85.85 80.95  90.63  86.99 82.67  

Greek  76.31  73.92 70.22  84.08  80.75 77.78  

Hungarian  80.27  76.81 71.49  83.55  81.81 76.34  

Italian  84.40  81.34 78.06  87.91  85.54 82.45  

Turkish  79.81  76.87 73.19  86.22  83.56 80.33  
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A peculiar aspect of the original Catalan corpus 
was the use of a large number (195) of dependency 
labels. These labels were reduced to 42 in the ver-
sion used for CoNNL 2007, in order to make it 
comparable to other corpora. However, performing 
some preliminary experiments using the original 
Catalan collection with all 195 dependency labels, 
the DeSR parser achieved a significantly better 
score: 

LAS: 88.80%, UAS: 91.43% 

while with the modified one, the score dropped to: 
LAS: 84.55%, UAS: 89.38% 

This suggests that accuracy might improve for 
other languages as well if the training corpus was 
labeled with more precise dependencies. 

10 Adaptation Track 

The adaptation track originally covered two do-
mains, the CHILDES and the Chemistry domain.  

The CHILDES (Brown, 1973; MacWhinney, 
2000) consists of transcriptions of dialogues with 
children, typically short sentences of the kind: 

Would you like more grape juice ? 
That 's a nice box of books . 

Phrases are short, half of them are questions. The 
only difficulty that appeared from looking at the 
unlabeled collection supplied for training in the 
domain was the presence of truncated terms like 
goin (for going), d (for did), etc. However none 
of these unusually spelled words appeared in the 
test set, so a normal English parser performed rea-
sonably well on this task. Because of certain in-
consistencies in the annotation guidelines, the 
organizers decided to make this task optional and 
hence we submitted just the parse produced by the 
parser trained for English. 

For the second adaptation task we were given a 
large collection of unlabeled data in the chemistry 
domain (Kulick et al, 2004) as well as a test set of 
5000 tokens (200 sentences) to parse (eng-
lish_pchemtbtb_test.conll). 

There were three sets of unlabeled documents: 
we chose the smallest (unlab1) consisting of over 
300,000 tokens (11663 sentences). unlab1 was 
tokenized, POS and lemmas were added using our 
version of TreeTagger (Schmid, 1994), and lem-
mas replaced with stems, which had turned out to 
be more effective than lemmas. We call this set 
pchemtb_unlab1.conll. 

We trained the DeSR parser on English using 
english_ptb_train.conll, the WSJ PTB col-
lection provided for CoNLL 2007. This consists of 
WSJ sections 02-11, half of the usual set 02-23, for 
a total of 460,000 tokens with dependencies gener-
ated with the converter by Johansson and Nugues 
(2007). 

We added stems and produced a parser called 
DeSRwsj. By parsing eng-
lish_pchem_test.conll with DeSRwsj we 
obtained pchemtb_test_base.desr, our base-
line for the task. 

By visual inspection using DgAnnotator 
(DgAnnotator, 2006), the parses looked generally 
correct. Most of the errors seemed due to improper 
handling of conjunctions and disjunctions. The 
collection in fact contains several phrases like: 

Specific antibodies raised against 
P450IIB1 , P450 IA1 or IA2 , 
P450IIE1 , and P450IIIA2 inhibited 
the activation in liver microsomes 
from rats pretreated with PB , BNF , 
INH and DEX respectively 

The parser did not seem to have much of a problem 
with terminology, possibly because the supplied 
gold POS were adequate. 

For the adaptation we proceeded as follows. We 
parsed pchemtb_unlab1.conll using DeSRwsj 
obtaining pchemtb_unlab1.desr. 

We then extracted a set of 12,500 sentences 
from ptb_train.conll and 7,500 sentences 
from pchemtb_unlab1.desr, creating a corpus 
of 20,000 sentences called combined.conll. In 
both cases the selection criteria was to choose sen-
tences shorter than 30 tokens. 

We then trained a low accuracy parser (called 
DesrCombined) on combined.conll, by using 
a 1st-order averaged perceptron. DesrCombined 
was used to parse english_ptb_train.conll, 
the original training corpus for English. By com-
paring this parse with the original, one can detect 
where such parser makes mistakes. The rationale 
for using an inaccurate parser is to obtain parses 
with many errors so that they form a suitably large 
training set for the next step: parser revision. 

We then used a parsing revision technique (At-
tardi and Ciaramita, 2007) to learn how to correct 
these errors, producing a parse reviser called 
DesrReviser. The revision technique consists of 
comparing the parse trees produced by the parser 
with the gold standard parse trees, from the 
annotated corpus. Where a difference is noted, a 
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revision rule is determined to correct the mistake. 
Such rules consist in movements of a single link to 
a different head. Learning how to revise a parse 
tree consists in training a classifier on a set of 
training examples consisting of pairs 〈(wi, d, wj), 
ti〉, i.e. the link to be modified and the 
transformation rule to apply. Attardi and Ciaramita 
(2007) showed that 80% of the corrections can be 
typically dealt with just 20 tree revision rules. For 
the adaptation track we limited the training to 
errors recurring at least 20 times and to 30 rules. 
DesrReviser was then applied to 
pchemtb_test_base.desr producing 
pchemtb_test_rev.desr, our final submission. 

Many conjunction errors were corrected, in par-
ticular by moving the head of the sentence from a 
coordinate verb to the conjunction ‘and’ linking 
two coordinate phrases. 

The revision step produced an improvement of 
0.42% LAS over the score achieved by using just 
the base DeSRwsj parser. 

Table 2 reports the official accuracy scores on 
the closed adaptation track. DeSR achieved a close 
second best UAS on the ptchemtb test set and 
third best on CHILDES. The results are quite en-
couraging, particularly considering that the revi-
sion step does not yet correct the dependency 
labels and that our base English parser had a lower 
rank in the multilingual track. 
 

LAS UAS 
Task 

1st DeSR Avg 1st DeSR Avg 

CHILDES     61.37 58.67 57.89 

Pchemtb  81.06 80.40 73.03 83.42  83.08 76.42 

Table 2. Closed adaptation track scores. 

Notice that the adaptation process could be iter-
ated. Since the combination 
DeSRwsj+DesrReviser is a more accurate parser 
than DeSRwsj, we could use it again to parse 
pchemtb_unlab1.conll and so on. 

11 Conclusions 

For performing multilingual parsing in the CoNLL 
2007 shared task we employed DeSR, a classifier-
based Shift/Reduce parser. We used a second order 
averaged perceptron as classifier and achieved ac-
curacy scores quite above the average in all lan-
guages. For proper comparison with other 

approaches, one should take into account that the 
parser is incremental and deterministic; hence it is 
typically faster than other non linear algorithms. 

For the adaptation track we used a novel ap-
proach, based on the technique of tree revision, 
applied to a parser trained on a corpus combining 
sentences from both the training and the adaptation 
domain. The technique achieved quite promising 
results and it also offers the interesting possibility 
of being iterated, allowing the parser to incorporate 
language knowledge from additional domains. 

Since the technique is applicable to any parser, 
we plan to test it also with more accurate English 
parsers. 
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Abstract

This   paper   reports   a   hybridization   experi­
ment, where a baseline ML dependency pars­
er,   LingPars,   was   allowed   access   to   Con­
straint Grammar analyses provided by a rule­
based parser (EngGram) for the same data. 
Descriptive compatibility issues and their in­
fluence  on  performance  are  discussed.  The 
hybrid system performed considerably better 
than  its  ML baseline, and proved more ro­
bust than the latter in the domain adaptation 
task, where it was the best­scoring system in 
the open class for the chemical test data, and 
the best overall system for the CHILDES test 
data.

1 Introduction

LingPars, a language­independent treebank­learner 
developed   in   the  context  of   the  CoNLL­X 2006 
shared task (http://nextens.uvt.nl/~conll/), was  in­
spired  by   the  Constraint  Grammar   (CG)  parsing 
approach (Karlsson et al. 1995) in the sense that it 
prioritized the identification of syntactic function 
over syntactic form, basing the dependency poten­
tial of a word on "edge" labels like subject, object 
etc. rather than the other way around. The system 
also   used   other   features   typical   of   CG  systems, 
such as BARRIER conditions, tag chains of vari­
able length, implicit clause boundaries and tag sets 
(Bick 2006). For the 2007 task only one such fea­
ture was newly introduced ­ a directedness marker 
for a few major functions, splitting subject, adver­
bial  and adnominal   labels   into pairs of   left­  and 

right­attaching labels (e.g. SBJ­L, SBJ­R, NMOD­
L, NMOD­R). Even this small addition, however, 
increased  the  memory space  requirements  of   the 
model to such a degree that only runs with 50­75% 
of the training data were possible on the available 
hardware.

The main purpose of the LingPars architecture 
changes for CoNLL2007 (Nivre et al. 2007), how­
ever, was to test two core hypotheses:

● Can   an   independent,   rule­based   parser   be 
made  to  conform to different,  data­imposed 
descriptive   conventions  without   too  great   a 
loss in accuracy?

● Does a rules­based dependency parser have a 
better chance than a machine­learned one to 
identify   long­distance   relations   and   global 
sentence   structure,   thus   providing   valuable 
arbiter information to the latter?

Obviously,   both  points   rule  out   a   test   involving 
many languages with the same parser (CoNLL task 
1). The domain adaptation task (task 2), however, 
satisfied   the   single­language   condition   and   also 
adressed the descriptive adaptation problem (sec­
ond hypothesis), involving three English treebanks 
­ Wall Street Journal data from the Penn treebank 
(PTB,  Marcus   et   al.   1993)   for   training,   and   the 
Pchem (Kulick et al. 2004) and CHILDES (Brown 
1973   and   MacWhinney   2000)   treebanks   with 
biomedical and spoken language data, respectively.

2 Developing and adapting EngGram

A   parser   with   hand­written   rules   pays   a   high 
"labour price" to arrive at deep, linguistically pre­
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dictable and versatile analyses. For CG systems as 
employed by the author, the cost, from lexicon to 
dependency, is usually several man years, and re­
sults are not language­independent. One way of in­
creasing   development   efficiency   is   to   combine 
modules   for   different   levels   of   analysis   while 
reusing or adapting the less­language independent 
ones. Thus, the development of a new English de­
pendency parser,  EngGram, under way for  some 
time,  was   accelerated   for   the  present   project   by 
seeding   the   syntactic   disambiguation   grammar 
with  Danish  rules from the well­established Dan­
Gram   parser   (http://beta.visl.sdu.dk/ 
constraint_grammar.html).   By   maintaining   an 
identical set of syntactic function tags, it was even 
possible   to   use   the   Danish   dependency   module 
(Bick 2005) with only minor adaptations (mainly 
concerning noun chains and proper nouns).

In order to integrate the output of a CG parser 
into an ML parser for the shared task data, several 
levels of compatibility issues have to be addressed. 
On  the   input  side,   (1)  PTB tokenization and  (2) 
word classes (PoS)    have  to be fed  into  the CG 
parser bypassing its own modules of morphologi­
cal   analysis   and   disambiguation.   On   the   output 
side, (3) CG function categories and (4) attachment 
conventions   have   to   be   adapted   to   match   PTB 
ones.

For example, the manual rules were tuned to a 
tokenization system  that handles expressions such 
as   "a=few",   "at=least"   and   "such=as"   as   units. 
Though   amounting   to   only   1%   of   running   text, 
they   constitute   syntactically   crucial   words,   and 
misanalysis   leads   to  numerous   secondary   errors. 
Even worse is the case of the genitive­s (also with 
a frequency of 1%), tokenised in the PTB conven­
tion, but regarded a morpheme in EngGram. Since 
EngGram does not have a word class for the isolat­
ed 's', and since ordinary rules disfavour postnomi­
nal singel­word attachment, the 's' had to be fused 
in   PTB­to­CG   input,   creating   fewer   tokens   and 
thus problems in re­aligning the analysed output. 
Also relevant for a full structure parser is the parse 
window.   Here,   in   order   to   match   PTB   window 
size, EngGram had to be forced not to regard ; ( ) 
and : as delimiters, with an arguable loss in annota­

tion accuracy due to rules with global NOT con­
texts designed for smaller windows.

Finally,   PTB   convention   fuses   certain   word 
classes, like subordinating conjunctions and prepo­
sitions     (IN),   and   the   infititive   marker   and   the 
preposition "to" (TO). Though these cases can be 
treated by letting CG disambiguation override the 
CoNLL   input's   pos   tag,   input   pos   can   then   no 
longer be said to be "known", with some deteriora­
tion in recall  as a consequence. Open class cate­
gories matched well even at a word­by­word level, 
closed class tokens were found to sometimes differ 
for individual words, an error source  left   largely 
unchecked.

Treebank error rate is another factor to be con­
sidered ­ in cases where the PoS accuracy of the 
human­revised   treebanks   is   lower   than   that  of   a 
CG system, the latter should be allowed to always  
assign its own tags, rather than follow the suppos­
edly fixed input pos. In the domain adaptation task, 
the CHILDES data were a case in point. A separate 
CG   run   indicated   6.6%   differences   in   PoS,   and 
manual  inspection of part of   the cases suggested 
that  while   some  cases  were   irrelevant   variations 
(e.g.  adjective vs. participle), most were real error 
on   the  part  of   the   treebank,   and   the  parser  was 
therefore set to ignore test data annotation and to 
treat it as pure text.

Errors appeared to be rarer in the training data, 
but inconsistencies between pos and function label 
(e.g.   IN­preposition   and   SBJ­subject   for   "that") 
prove   that   errors   aren't   unknown   here   either   ­ 
which   is  why a  hybrid   system with   independent 
analysis has the potential benefit of compensating 
for "mis­learned" patterns in the ML system.

Output conversion from CG to PTB/CoNLL for­
mat had to address, besides realignment of tokens 
(e.g. genitive­s), the disparity in edge (function) la­
bels. However, since the PTB set was more coarse 
grained,   it   was   possible   to   simply   lump   several 
EngGram labels into one PTB label, for instance:

SC, OC, SUB, INFM ­­> VMOD
ADVL, SA, OA, PIV, PRED ­> ADV

Some idiosyncrasies had to be observed here, for 
instance the treatment of SC (subject complement) 
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as VMOD for words, but ADV for clauses, or the 
descriptive  decision   to   tag  direct  objects   in  ACI 
constructions   with   OA­clausal   complements   as 
subjects. Some cases of label variation, however, 
could not be solved in a systematic way. Thus, ad­
verbs within verb chains,  always ADVL in Eng­
Gram, could not systematically be mapped, since 
PTB uses both VMOD and ADV in this position. 
A certain percentage of mismatches in spite of a 
correct  analysis  must   therefore be  taken  into ac­
count as part of the "price" for letting the CG sys­
tem advise the machine learner.

Dependencies were generally used in the same 
way in both systems, but multi word expressions 
were  problematic,   since  PTB   ­   without  marking 
them as MWE ­ appears to attach all elements to a 
common head even where internal structure (e.g. a 
PP) is present. No reliable way was found to pre­
dict   this  behaviour   from CG dependency output. 
Finally, PTB often uses the adverbial modifier tag 
(AMOD) for what would logically be the  head of 
an expression:

about (head) 1,200 (AMOD)
so (head) totally (AMOD)
herbicide (head) resistant (AMOD)

EngGram in these examples regards the first ele­
ment as AMOD modifier, and the second as head. 
Since the inversion was so common, it was accept­
ed   as   either   intentional   or   systematically   erro­
neous, and the CG output inverted accordingly. It 
is an open question,  for future research, whether 
the CG and ML systems could have been harmo­
nized better, had the training data been an original 
dependency treebank rather than a constituent tree­
bank, ­ or at least linguistically revised at the de­
pendency level. Making the constituent­dependen­
cy   conversion   principles   (Johansson   &   Nugues 
2007, forthcoming) public  before  rather than after 
the shared  task might  also have contributed  to  a 
better CG annotation transfer.

3 System architecture

As described in (Bick 2006), the LingPars system 
uses   the   fine­grained   part   of   speech   (PoS)   tags 
(POSTAG) and ­   for  words  above a  certain   fre­

quency   threshold   ­   the   LEMMA   or,   if   absent, 
FORM tag. In a first round, LingPars calculates a 
preference list  of  functions and dependencies for 
each word, examining all possible mother­daughter 
pairs and n­grams in the sentence (or paragraph). 
Next, dependencies are adjusted for function, basi­
cally summing up the frequency­, distance­ and di­
rection­calibrated function­>PoS attachment prob­
abilities for all contextually allowed functions for a 
given word. Finally, dependency probabilities are 
weighted   using   linked   probabilities   for   possible 
mother­, daughter­ and sister­tags in a second pass.

The result are 2 arrays, one for possible daugh­
ter­>mother   pairs,   one   for   word:function   pairs. 
LingPars then attempts to "effectuate" the depen­
dency (daughter­>mother) array, starting with the ­ 
in normalized terms ­ highest value. If the daughter 
candidate is as yet unattached, and the dependency 
does not produce circularities or crossing branches, 
the corresponding part of the (ordered) word:func­
tion array is calibrated for the suggested dependen­
cy, and the top­ranking function chosen.

One of the major problems in the original sys­
tem was uniqueness clashes, and as a special case, 
root  attachment ambiguity,  resulting from a con­
flict between the current best attachment candidate 
in the pipe and an earlier chosen attachment to the 
same head. Originally, the parser tried to resolve 
these conflicts by assigning penalties to the attach­
ments in question and recalculating "second best" 
attachments for the tokens in question. While solv­
ing some cases, this method often timed out with­
out finding a globally compatible solution.

In the new version of LingPars,  with open re­
sources, the attachment and function label rankings 
were calibrated using the analysis suggested by the 
EngGram CG system for the same data, assigning 
extra   weights   to   readings   supported   by   the   rule 
based analysis, using addition of a weight constant 
for function, and multiplication with a weight con­
stant for attachments, thus integrating CG informa­
tion on par with statistical information1. This was 
1Experiments suggested that there is a limit beyond which an 
increase of these weighting constants, for both function and 
dependency, will actually lead to a decrease in performance, 
because the positive effect of long­distance attachments from 
the CG system will be cancelled out by the negative effect of 
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not,   however,   thought   sufficient   to   resolve   the 
global syntactic problem of root attachment where 
(wrong) statistical preferences could be so strong 
that even 20 rounds of penalties could not weaken 
them sufficient to be ruled out. Therefore, root and 
root attachments supported by the CG trees were 
fixed  in   the first  pass,  without  reruns.  The same 
method was used for another source of global er­
rors ­ coordination. Here, the probabilistic system 
had difficulties learning patterns, because a specif­
ic function label (SBJ or OBJ etc) would be associ­
ated with a  non­specific  word class   (CC),  and a 
non­specific function (COORD) with a host of dif­
ferent   word   classes.   Again,   adding   a   first­pass 
override  based on CG­provided coordination links 
solved many of these cases.

Though limited to 2 types of global dependency 
(root and coordination), the help provided by the 
rule based analysis,  also had indirect  benefits by 
providing a better point of departure for other at­
tachments,  among other   things  because LingPars 
exaggerated both good and bad analyses: Good at­
tachments   would   help   weight   other   attachments 
through   correct   n­gram­,   mother­,   daughter­   and 
sibling   contexts,   but   isolated   bad   attachments 
would lead to even worse attachments by trigger­
ing, for instance, incorrect BARRIER or crossing 
branch   constraints.   These   adverse   effects   were 
moderated by getting a larger percentage of global 
dependencies right in the first place, and also by a 
new addition to the crossing and BARRIER sub­
routine invalidating it in the case of CG­supported 
attachments.

4 Evaluation

The hybrid LingPars was the best­scoring system 
in   the   open   section   of   both   domain   adaptation 
tasks2 (Nivre et al. 2007), outperforming its proba­
bilistic core system on all scores, with an improve­
ment   of   6.57   LAS   percentage   points   for   the 

disturbing the application of machine­learned local dependen­
cies.
2 During the test phase, the data set for one of the originally 2 
test domains, CHILDES, was withdrawn from the official 
ranking, though its scores were still computed and admissible 
for evaluation.

pchemtb   corpus   (table   1),   and   3.42   for   the 
CHILDES attachment score (table 2).  In the for­
mer,  the effect was slightly more marked for at­
tachment than for label accuracy. 

However, whereas results also surpassed  those 
of the top closed class system in the CHILDES do­
main (by 1.12 percentage points), they fell short of 
this  mark for the pchemtb corpus ­ by 1.26 per­
centage points for label accuracy and 1.80 for at­
tachment. 

Top score
pchemtb

average
pchemtb

System
pchemtb

System
train

Closed
  LAS
  UAS
  LS

81.06
83.42
88.28

73.03
76.42
81.74

71.81
74.71
80.78

(75.01)3

(76.71)
(84.12)

Open
  LAS
  UAS
  LS

78.48
81.62
87.02

65.11
70.24
77.14

78.48
81.62
87.02

(79.04)
(80.82)
(88.07)

Table 1: Performance, Pchemtb data

UAS Top score average System

CHILDES closed 61.37 57.89 58.07

CHILDES open 62.49 56.12 62.49

Table 2: Performance, CHILDES data

When compared with runs on (unknown) data from 
the training domain, cross­domain performance of 
the closed system was 2 percentage points lower 
for   attachment  and  3.5   lower   for   label   accuracy 
(LA scores of 71.81 and 58.07 for the pchemtb and 
CHILDES corpus, respectively).

Interestingly, hybrid results for the pchemtb data 
were only marginally  lower than for the  training 
domain   (in fact,  higher  for attachment), suggest­
ing a higher domain robustness for the hybrid than 
for  the probabilistic approach.

3This is the accuracy for the test data used during develop­
ment. For the PTB gold test data from track 1, LAS was high­
er (76.21).
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Abstract

We present an adaptation of constraint satis-
faction inference (Canisius et al., 2006b) for
predicting dependency trees. Three differ-
ent classifiers are trained to predict weighted
soft-constraints on parts of the complex out-
put. From these constraints, a standard
weighted constraint satisfaction problem can
be formed, the solution to which is a valid
dependency tree.

1 Introduction

Like the CoNLL-2006 shared task, the 2007 shared
task focuses on dependency parsing and aims at
comparing state-of-the-art machine learning algo-
rithms applied to this task (Nivre et al., 2007). For
our official submission, we used the dependency
parser described by Canisius et al. (2006a). In this
paper, we present a novel approach to dependency
parsing based on constraint satisfaction. The method
is an adaptation of earlier work using constraint sat-
isfaction techniques for predicting sequential out-
puts (Canisius et al., 2006b). We evaluated our ap-
proach on all ten data sets of the 2007 shared task1.

In the remainder of this paper, we will present the
new constraint satisfaction method for dependency
parsing in Section 2. The method is evaluated in
Section 3, in which we will also present a brief error

1Hajič et al. (2004), Aduriz et al. (2003), Martı́ et al. (2007),
Chen et al. (2003), Böhmová et al. (2003), Marcus et al.
(1993), Johansson and Nugues (2007), Prokopidis et al. (2005),
Csendes et al. (2005), Montemagni et al. (2003), Oflazer et al.
(2003)

analysis. Finally, Section 4 presents our main con-
clusions.

2 Constraint Satisfaction Inference for
Dependency Trees

The parsing algorithm we used is an adaptation for
dependency trees of the constraint satisfaction in-
ference method for sequential output structures pro-
posed by Canisius et al. (2006b). The technique
uses standard classifiers to predict a weighted con-
straint satisfaction problem, the solution to which is
the complete dependency tree. Constraints that are
predicted each cover a small part of the complete
tree, and overlap between them ensures that global
output structure is taken into account, even though
the classifiers only make local predictions in isola-
tion of each other.

A weighted constraint satisfaction problem (W-
CSP) is a tuple(X,D,C,W ). Here, X =
{x1, x2, . . . , xn} is a finite set of variables.D(x)
is a function that maps each variable to its domain,
andC is a set of constraints on the values assigned
to the variables. For a traditional (non-weighted)
constraint satisfaction problem, a valid solution is
an assignment of values to the variables that (1) are
a member of the corresponding variable’s domain,
and (2) satisfyall constraints in the setC. Weighted
constraint satisfaction, however, relaxes this require-
ment to satisfy all constraints. Instead, constraints
are assigned weights that may be interpreted as re-
flecting the importance of satisfying that constraint.
The optimal solution to a W-CSP is the solution that
assigns those values that maximise the sum of the
weights of satisfied constraints.
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Figure 1: Dependency tree for the sentenceNo it
wasn’t Black Monday

To adapt this framework to predicting a depen-
dency tree for a sentence, we construct a constraint
satisfaction problem by first introducing one vari-
able xi for each token of the sentence. This vari-
able’s value corresponds to the dependency relation
that token is the modifier of, i.e. it should specify a
relation type and a head token. The constraints of the
CSP are predicted by a classifier, where the weight
for a constraint corresponds to the classifier’s confi-
dence estimate for the prediction.

For the current study, we trained three classifiers
to predict three different types of constraints.

1. Cdep(head, modifier, relation), i.e. the re-
sulting dependency tree should have a
dependency arc fromhead to modifier la-
belled with type relation. For the example
tree in Figure 1, among others the constraint
Cdep(head=was, modifier=No, relation=VMOD)
should be predicted.

2. Cdir(modifier, direction), the relative posi-
tion (i.e. to its left or to its right) of
the head of modifier. The tree in Fig-
ure 1 will give rise to constraints such as
Cdir(modifier=Black, direction=RIGHT).

3. Cmod(head, relation), in the dependency
tree, head should be modified by a relation
of type relation. The constraints gener-
ated for the wordwas in Figure 1 would
be Cmod(head=was, relations=SBJ), and
Cmod(head=was, relations=VMOD).

Predicting constraints of typeCdep is essentially
what is done by Canisius et al. (2006a); a classi-
fier is trained to predict a relation label, or a sym-
bol signalling the absence of a relation, for each

pair of tokens in a sentence2. The training data
for this classifier consists of positive examples of
constraints to generate, e.g.was, No, VMOD, and
negative examples, of constraintsnot to generate,
e.g.was, Black, NONE, but alsoNo, was, NONE. In
the aforementioned paper, it is shown that downsam-
pling the negative class in the classifier’s training
data improves the recall for predicted constraints.
The fact that improved recall comes at the cost of a
reduced precision is compensated for by our choice
for the weighted constraint satisfaction framework:
an overpredicted constraint may still be left unsatis-
fied if other, conflicting constraints outweigh its own
weight.

In addition to giving rise to a set of constraints,
this classifier differs from the other two in the sense
that it is also used to predict the domains of the vari-
ables, i.e. any dependency relation not predicted by
this classifier will not be considered for inclusion in
the output tree.

Whereas theCdep classifier classifies instances
for each pair of words, the classifiers forCdir and
Cmod only classify individual tokens. The features
for these classifiers have been kept simple and the
same for both classifiers: a 5-slot wide window of
both tokens and part-of-speech tags, centred on the
token currently being classified. The two classifiers
differ in the classes they predict. ForCdir, there are
only three possible classes:LEFT, RIGHT, NONE.
Instances classified asLEFT, or RIGHT give rise to
constraints, whereasNONE implies that noCdir con-
straint is added for that token.

For Cmod there is a rather large class space; a
class label reflects all modifying relations for the to-
ken, e.g.SBJ+VMOD. From this label, as many con-
straints are generated as there are different relation
types in the label.

With the above, a weighted constraint satisfaction
problem can be formulated that, when solved, de-
scribes a dependency tree. As we formulated our
problem as a constraint satisfaction problem, any
off-the-shelf W-CSP solver could be used to obtain
the best dependency parse. However, in general such
solvers have a time complexity exponential in the

2For reasons of efficiency and to avoid having too many neg-
ative instances in the training data, we follow the approachof
Canisius et al. (2006a) of limiting the maximum distance be-
tween a potential head and modifier.
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Language LAS ’06 UAS ’06
Arabic 60.36 +1.2 78.61 +1.7
Basque 64.23 +1.1 72.24 +2.1
Catalan 77.33 +1.9 84.73 +3.1
Chinese 71.73 +1.3 77.29 +2.5
Czech 57.58 +1.4 75.61 +3.5
English 79.47 +2.2 81.05 +2.8
Greek 62.32 +2.0 76.42 +4.0
Hungarian 66.86 +2.6 72.52 +4.7
Italian 77.04 +1.5 81.24 +2.2
Turkish 67.80 -0.3 75.58 +0.4

Table 1: Performance of the system applied to the
test data for each language. The ’06 columns show
the gain/loss with respect to the parser of Canisius et
al. (2006a).

number of variables, and thus in the length of the
sentence. As a more efficient alternative we chose to
use the CKY algorithm for dependency parsing (Eis-
ner, 2000) for computing the best solution, which
has only cubic time complexity, but comes with the
disadvantage of only considering projective trees as
candidate solutions.

3 Results and discussion

We tested our system on all ten languages of the
shared task. The three constraint classifiers have
been implemented with memory-based learning. No
language-specific parameter optimisation or feature
engineering has been performed, but rather the exact
same system has been applied to all languages. La-
belled and unlabelled attachment scores are listed in
Table 1. In addition, we show the increase/decrease
in performance when compared with the parser of
Canisius et al. (2006a); for all languages but Turk-
ish, there is a consistent increase, mostly somewhere
between 1.0 and 2.0 percent in labelled attachment
score.

The parser by Canisius et al. (2006a) can be
considered a rudimentary implementation of con-
straint satisfaction inference that only usesCdep con-
straints. The parser described in this paper elabo-
rates this by adding (1) theCmod andCdir softcon-
straints, and (2) projectivity and acyclicityhardcon-
straints, enforced implicitly by the CKY algorithm.

To evaluate the effect of each of these constraints,

Language ’06 Cdep C
mod/
dep C

dir/
dep all

Arabic 59.13 +0.3 +0.9 +0.9 +1.2
Basque 63.17 +0.3 +0.4 +0.9 +1.1
Catalan 75.44 +0.8 +1.2 +1.4 +1.9
Chinese 70.45 +0.4 +1.2 +0.4 +1.3
Czech 56.14 +0.5 +0.5 +1.1 +1.4
English 77.27 +0.4 +1.4 +1.2 +2.2
Greek 60.35 +0.4 +0.6 +1.6 +2.0
Hungarian 64.31 +1.9 +1.3 +2.8 +2.6
Italian 75.57 +0.2 +1.0 +1.1 +1.5
Turkish 68.09 -0.2 -0.3 -0.3 -0.3

Table 2: Performance of the parser by Canisius et al.
(2006a) and the performance gain of the constraint
satisfaction inference parser with various constraint
configurations.

Table 2 shows the labelled attachment scores for
several parser configurations; starting with the 2006
parser, i.e. a parser with onlyCdep constraints, then
the CKY-drivenCdep parser, i.e. with acyclicity and
projectivity constraints, then withCmod, andCdir

separately, and finally, the full parser based on all
constraints. It can be seen that supplementing the
Cdep-only parser with hard constraints for acyclicity
and projectivity already gives a small performance
improvement. For some languages, such as Ital-
ian (+0.2), this improvement is rather small, how-
ever for Hungarian 1.9 is gained only by using CKY.
The remaining columns show that adding more con-
straints improves performance, and that for all lan-
guages but Turkish and Hungarian, using all con-
straints works best.

While in comparison with the system of Canisius
et al. (2006a) the addition of extra constraints has
clearly shown its use, we expect theCdep classifier
still to be the performance bottleneck of the sys-
tem. This is mainly due to the fact that this classifier
is also responsible for defining the domains of the
CSP variables, i.e. which dependency relations will
be considered for inclusion in the output. For this
reason, we performed an error analysis of the out-
put of theCdep classifier and the effect it has on the
performance of the complete system.

In our error analysis, we distinguish three types of
errors: 1)label errors, a correct dependency arc was
added to the tree, but its label is incorrect, 2)recall
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Cdep prec. rec.
Language prec. rec. %OOD %OOD
Arabic 54.90 73.66 78.83 77.95
Basque 55.82 74.10 85.05 83.66
Catalan 65.19 87.25 80.29 80.00
Chinese 65.10 76.49 83.79 82.94
Czech 53.64 74.35 81.16 80.27
English 59.37 90.08 67.51 66.63
Greek 53.24 76.29 79.96 79.08
Hungarian 44.71 78.64 69.08 67.45
Italian 71.70 82.57 87.97 87.32
Turkish 64.92 72.79 89.11 88.51

Table 3: Columns two and three: precision and re-
call on dependency predictions by theCdep classi-
fier. Columns four and five: percentage of depen-
dency arc precision and recall errors caused by out-
of-domain errors.

errors, the true dependency tree contains an arc that
is missing from the predicted tree, and 3)precision
errors, the predicted tree contains a dependency arc
that is not part of the true dependency parse.

Label errors are always a direct consequence of
erroneousCdep predictions. If the correct arc was
predicted, but with an incorrect label, then by defi-
nition, the correct arc with the correct label cannot
have been predicted at the same time. In case of the
other two types of errors, the correct constraints may
well have been predicted, but afterwards outweighed
by other, conflicting constraints. Nevertheless, pre-
cision and recall errors may also be caused by the
fact that theCdep classifier simply did not predict a
dependency arc where it should have. We will refer
to those errors as out-of-domain errors, since the do-
main of at least one of the CSP variables does not
contain the correct value. An out-of-domain error
is a direct consequence of a recall error made by
the Cdep classifier. To illustrate these interactions,
Table 3 shows for all languages the precision and
recall of theCdep classifier, and the percentage of
dependency precision and recall errors that are out-
of-domain errors.

The table reveals several interesting facts. For En-
glish, which is the language for which our system at-
tains its highest score, the percentage of dependency
precision and recall errors caused byCdep recall er-

rors is the lowest of all languages. This can directly
be related to the 90% recall of the EnglishCdep clas-
sifier. Apparently, the weak precision (59%), caused
by down-sampling the training data, is compensated
for in the subsequent constraint satisfaction process.

For Italian, the percentage of out-of-domain-
related errors is much higher than for English. At
the same time, the precision and recall of theCdep

classifier are much more in balance, i.e. a higher
precision, but a lower recall. We tried breaking this
balance in favour of a higher recall by applying an
even stronger down-sampling of negative instances,
and indeed the parser benefits from this. Labelled
attachment increases from 77.04% to 78.41%. The
precision and recall of this newCdep classifier are
58.65% and 87.15%, respectively.

The lowestCdep precision has been observed for
Hungarian (44.71), which unfortunately is not mir-
rored by a high recall score. Remarkably however,
after English, Hungarian has the lowest percentage
of dependency errors due toCdep recall errors (69.08
and 67.45). It is therefore hypothesised that not
the low recall, but the low precision is the main
cause for errors made on Hungarian. With this in
mind, we briefly experimented with weaker down-
sampling ratios in order to boost precision, but so
far we did not manage to attain better results.

4 Concluding remarks

We have presented a novel dependency parsing
method based on a standard constraint satisfaction
framework. First results on a set of ten different lan-
guages have been promising, but so far no extensive
optimisation has been performed, which inevitably
reflects upon the scores attained by the system. Fu-
ture work will focus on tuning the many parameters
our system has, as well as on experimenting with dif-
ferent types of constraints to supplement or replace
one or more of the three types used in this study.
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(Abeillé, 2003), chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. InProc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT), pages 149–160.

1128



Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1129–1133,
Prague, June 2007. c©2007 Association for Computational Linguistics

A Two-stage Parser for Multilingual Dependency Parsing

Wenliang Chen, Yujie Zhang, Hitoshi Isahara
Computational Linguistics Group

National Institute of Information and Communications Technology
3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto, Japan, 619-0289

{chenwl, yujie, isahara}@nict.go.jp

Abstract

We present a two-stage multilingual de-

pendency parsing system submitted to the

Multilingual Track of CoNLL-2007. The

parser first identifies dependencies using a

deterministic parsing method and then labels

those dependencies as a sequence labeling

problem. We describe the features used in

each stage. For four languages with differ-

ent values of ROOT, we design some spe-

cial features for the ROOT labeler. Then we

present evaluation results and error analyses

focusing on Chinese.

1 Introduction

The CoNLL-2007 shared tasks include two tracks:

the Multilingual Track and Domain Adaptation

Track(Nivre et al., 2007). We took part the Multi-

lingual Track of all ten languages provided by the

CoNLL-2007 shared task organizers(Hajič et al.,

2004; Aduriz et al., 2003; Martı́ et al., 2007; Chen

et al., 2003; Böhmová et al., 2003; Marcus et al.,

1993; Johansson and Nugues, 2007; Prokopidis et

al., 2005; Csendes et al., 2005; Montemagni et al.,

2003; Oflazer et al., 2003) .

In this paper, we describe a two-stage parsing

system consisting of an unlabeled parser and a se-

quence labeler, which was submitted to the Multi-

lingual Track. At the first stage, we use the pars-

ing model proposed by (Nivre, 2003) to assign the

arcs between the words. Then we obtain a depen-

dency parsing tree based on the arcs. At the sec-

ond stage, we use a SVM-based approach(Kudo and

Matsumoto, 2001) to tag the dependency label for

each arc. The labeling is treated as a sequence la-

beling problem. We design some special features

for tagging the labels of ROOT for Arabic, Basque,

Czech, and Greek, which have different labels for

ROOT. The experimental results show that our ap-

proach can provide higher scores than average.

2 Two-Stage Parsing

2.1 The Unlabeled Parser

The unlabeled parser predicts unlabeled directed de-

pendencies. This parser is primarily based on the

parsing models described by (Nivre, 2003). The al-

gorithm makes a dependency parsing tree in one left-

to-right pass over the input, and uses a stack to store

the processed tokens. The behaviors of the parser

are defined by four elementary actions (where TOP

is the token on top of the stack and NEXT is the next

token in the original input string):

• Left-Arc(LA): Add an arc from NEXT to TOP;

pop the stack.

• Right-Arc(RA): Add an arc from TOP to

NEXT; push NEXT onto the stack.

• Reduce(RE): Pop the stack.

• Shift(SH): Push NEXT onto the stack.

Although (Nivre et al., 2006) used the pseudo-

projective approach to process non-projective de-

pendencies, here we only derive projective depen-

dency tree. We use MaltParser(Nivre et al., 2006)
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V0.41 to implement the unlabeled parser, and use

the SVM model as the classifier. More specifically,

the MaltParser use LIBSVM(Chang and Lin, 2001)

with a quadratic kernel and the built-in one-versus-

all strategy for multi-class classification.

2.1.1 Features for Parsing
The MaltParser is a history-based parsing model,

which relies on features of the derivation history

to predict the next parser action. We represent the

features extracted from the fields of the data repre-

sentation, including FORM, LEMMA, CPOSTAG,

POSTAG, and FEATS. We use the features for all

languages that are listed as follows:

• The FORM features: the FORM of TOP and

NEXT, the FORM of the token immediately

before NEXT in original input string, and the

FORM of the head of TOP.

• The LEMMA features: the LEMMA of TOP

and NEXT, the LEMMA of the token immedi-

ately before NEXT in original input string, and

the LEMMA of the head of TOP.

• The CPOS features: the CPOSTAG of TOP and

NEXT, and the CPOSTAG of next left token of

the head of TOP.

• The POS features: the POSTAG of TOP and

NEXT, the POSTAG of next three tokens af-

ter NEXT, the POSTAG of the token immedi-

ately before NEXT in original input string, the

POSTAG of the token immediately below TOP,

and the POSTAG of the token immediately af-

ter rightmost dependent of TOP.

• The FEATS features: the FEATS of TOP and

NEXT.

But note that the fields LEMMA and FEATS are not

available for all languages.

2.2 The Sequence Labeler
2.2.1 The Sequence Problem

We denote by x = x1, ..., xn a sentence with n
words and by y a corresponding dependency tree. A

dependency tree is represented from ROOT to leaves

1The tool is available at
http://w3.msi.vxu.se/˜nivre/research/MaltParser.html

with a set of ordered pairs (i, j) ∈ y in which xj is a

dependent and xi is the head. We have produced the

dependency tree y at the first stage. In this stage, we

assign a label l(i,j) to each pair.

As described in (McDonald et al., 2006), we treat

the labeling of dependencies as a sequence labeling

problem. Suppose that we consider a head xi with

dependents xj1, ..., xjM . We then consider the la-

bels of (i, j1), ..., (i, jM) as a sequence. We use the

model to find the solution:

lmax = arg max
l

s(l, i, y, x) (1)

And we consider a first-order Markov chain of la-

bels.

We used the package YamCha (V0.33)2 to imple-

ment the SVM model for labeling. YamCha is a

powerful tool for sequence labeling(Kudo and Mat-

sumoto, 2001).

2.2.2 Features for Labeling
After the first stage, we know the unlabeled de-

pendency parsing tree for the input sentence. This

information forms the basis for part of the features

of the second stage. For the sequence labeler, we

define the individual features, the pair features, the

verb features, the neighbor features, and the position

features. All the features are listed as follows:

• The individual features: the FORM, the

LEMMA, the CPOSTAG, the POSTAG, and

the FEATS of the parent and child node.

• The pair features: the direction of depen-

dency, the combination of lemmata of the

parent and child node, the combination of

parent’s LEMMA and child’s CPOSTAG, the

combination of parent’s CPOSTAG and child’s

LEMMA, and the combination of FEATS of

parent and child.

• The verb features: whether the parent or child

is the first or last verb in the sentence.

• The neighbor features: the combination of

CPOSTAG and LEMMA of the left and right

neighbors of the parent and child, number of

children, CPOSTAG sequence of children.

2YamCha is available at
http://chasen.org/˜taku/software/yamcha/
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• The position features: whether the child is the

first or last word in the sentence and whether

the child is the first word of left or right of par-

ent.

2.2.3 Features for the Root Labeler

Because there are four languages have different

labels for root, we define the features for the root

labeler. The features are listed as follows:

• The individual features: the FORM, the

LEMMA, the CPOSTAG, the POSTAG, and

the FEATS of the parent and child node.

• The verb features: whether the child is the first

or last verb in the sentence.

• The neighbor features: the combination of

CPOSTAG and LEMMA of the left and right

neighbors of the parent and child, number of

children, CPOSTAG sequence of children.

• The position features: whether the child is the

first or last word in the sentence and whether

the child is the first word of left or right of par-

ent.

3 Evaluation Results

We evaluated our system in the Multilingual Track

for all languages. For the unlabeled parser, we chose

the parameters for the MaltParser based on perfor-

mance from a held-out section of the training data.

We also chose the parameters for Yamcha based on

performance from training data.

Our official results are shown at Table 1. Perfor-

mance is measured by labeled accuracy and unla-

beled accuracy. These results showed that our two-

stage system can achieve good performance. For all

languages, our system provided better results than

average performance of all the systems(Nivre et al.,

2007). Compared with top 3 scores, our system

provided slightly worse performance. The reasons

may be that we just used projective parsing algo-

rithms while all languages except Chinese have non-

projective structure. Another reason was that we did

not tune good parameters for the system due to lack

of time.

Data Set LA UA

Arabic 74.65 83.49

Basque 72.39 78.63

Catalan 86.66 90.87

Chinese 81.24 85.91

Czech 73.69 80.14

English 83.81 84.91

Greek 74.42 81.16

Hungarian 75.34 79.25

Italian 82.04 85.91

Turkish 76.31 81.92

average 78.06 83.22

Table 1: The results of proposed approach. LA-

BELED ATTACHMENT SCORE(LA) and UNLA-

BELED ATTACHMENT SCORE(UA)

4 General Error Analysis

4.1 Chinese

For Chinese, the system achieved 81.24% on labeled

accuracy and 85.91% on unlabeled accuracy. We

also ran the MaltParser to provide the labels. Be-

sides the same features, we added the DEPREL fea-

tures: the dependency type of TOP, the dependency

type of the token leftmost of TOP, the dependency

type of the token rightmost of TOP, and the de-

pendency type of the token leftmost of NEXT. The

labeled accuracy of MaltParser was 80.84%, 0.4%

lower than our system.

Some conjunctions, prepositions, and DE3 at-

tached to their head words with much lower ac-

curacy: 74% for DE, 76% for conjunctions, and

71% for prepositions. In the test data, these words

formed 19.7%. For Chinese parsing, coordination

and preposition phrase attachment were hard prob-

lems. (Chen et al., 2006) defined the special features

for coordinations for chunking. In the future, we

plan to define some special features for these words.

Now we focused words where most of the errors

occur as Table 2 shows. For “ /DE”, there was

32.4% error rate of 383 occurrences. And most of

them were assigned incorrect labels between “prop-

erty” and “predication”: 45 times for “property” in-

stead of “predication” and 20 times for “predica-

tion” instead of “property”. For examples, “ /DE”

3including “ / / / ”.
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num any head dep both

/ DE 383 124 35 116 27

/ C 117 38 36 37 35

/ P 67 20 6 19 5

/ N 31 10 8 4 2

/ V 72 8 8 8 8

Table 2: The words where most of errors occur in

Chinese data.

in “ / / / (popular TV channel)” was

to be tagged as “property” instead of “predication”,

while “ /DE” in “ / / (volunteer of

museum)” was to be tagged as “predication” instead

of “property”. It was very hard to tell the labels be-

tween the words around “ ”. Humans can make

the distinction between property and predication for

“ ”, because we have background knowledge of

the words. So if we can incorporate the additional

knowledge for the system, the system may assign

the correct label.

For “ /C”, it was hard to assign the head, 36

wrong head of all 38 errors. It often appeared at

coordination expressions. For example, the head

of “ ” at “ / / / / / / / / /(Besides

extreme cool and too amazing)” was “ ”, and

the head of “ ” at “ / / / / / /

/ / (Give the visitors solid and methodical

knowledge)” was “ ”.

5 Conclusion

In this paper, we presented our two-stage depen-

dency parsing system submitted to the Multilingual

Track of CoNLL-2007 shared task. We used Nivre’s

method to produce the dependency arcs and the se-

quence labeler to produce the dependency labels.

The experimental results showed that our system can

provide good performance for all languages.
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2007. CESS-ECE: A multilingual and multilevel
annotated corpus. Available for download from:
http://www.lsi.upc.edu/∼mbertran/cess-ece/.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL-X), pages 216–220, New
York City, June. Association for Computational Lin-
guistics.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli,
M. Massetani, R. Raffaelli, R. Basili, M. T. Pazienza,
D. Saracino, F. Zanzotto, N. Nana, F. Pianesi, and
R. Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (Abeillé, 2003), chap-
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Abstract

We describe an incremental parser that
was trained to minimize cost over sen-
tences rather than over individual parsing ac-
tions. This is an attempt to use the advan-
tages of the two top-scoring systems in the
CoNLL-X shared task.

In the evaluation, we present the perfor-
mance of the parser in the Multilingual task,
as well as an evaluation of the contribution
of bidirectional parsing and beam search to
the parsing performance.

1 Introduction

The two best-performing systems in the CoNLL-X
shared task (Buchholz and Marsi, 2006) can be clas-
sified along two lines depending on the method they
used to train the parsing models. Although the
parsers are quite different, their creators could re-
port near-tie scores. The approach of the top sys-
tem (McDonald et al., 2006) was to fit the model
to minimize cost over sentences, while the second-
best system (Nivre et al., 2006) trained the model to
maximize performance over individual decisions in
an incremental algorithm. This difference is a nat-
ural consequence of their respective parsing strate-
gies: CKY-style maximization of link score and in-
cremental parsing.
In this paper, we describe an attempt to unify the

two approaches: an incremental parsing strategy that
is trained to maximize performance over sentences
rather than over individual parsing actions.

2 Parsing Method

2.1 Nivre’s Parser

We used Nivre’s algorithm (Nivre et al., 2006),
which is a variant of the shift–reduce parser. Like
the regular shift–reduce, it uses a stack S and a list

of input words W , and builds the parse tree incre-
mentally using a set of parsing actions (see Table 1).
It can be shown that Nivre’s parser creates projec-
tive and acyclic graphs and that every projective de-
pendency graph can be produced by a sequence of
parser actions. In addition, the worst-case number of
actions is linear with respect to the number of words
in the sentence.

2.2 Handling Nonprojective Parse Trees

While the parsing algorithm produces projective
trees only, nonprojective arcs can be handled using
a preprocessing step before training the model and a
postprocessing step after parsing the sentences.
The projectivization algorithm (Nivre and Nils-

son, 2005) iteratively moves each nonprojective arc
upward in the tree until the whole tree is projective.
To be able to recover the nonprojective arcs after
parsing, the projectivization operation replaces the
labels of the arcs it modifies with traces indicating
which links should be moved and where attach to at-
tach them (the “Head+Path” encoding). The model
is trained with these new labels that makes it pos-
sible to carry out the reverse operation and produce
nonprojective structures.

2.3 Bidirectional Parsing

Shift-reduce is by construction a directional parser,
typically applied from left to right. To make bet-
ter use of the training set, we applied the algorithm
in both directions as Johansson and Nugues (2006)
and Sagae and Lavie (2006) for all languages except
Catalan and Hungarian. This, we believe, also has
the advantage of making the parser less sensitive to
whether the language is head-initial or head-final.
We trained the model on projectivized graphs

from left to right and right to left and used a vot-
ing strategy based on link scores. Each link was as-
signed a score (simply by using the score of the la
or ra actions for each link). To resolve the conflicts
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Table 1: Nivre’s parser transitions where W is the initial word list; I , the current input word list; A, the
graph of dependencies; and S, the stack. (n′, n) denotes a dependency relations between n′ and n, where n′

is the head and n the dependent.

Actions Parser actions Conditions

Initialize 〈nil, W, ∅〉
Terminate 〈S, nil, A〉
Left-arc 〈n|S, n′|I,A〉 → 〈S, n′|I, A ∪ {(n′, n)}〉 ¬∃n′′(n′′, n) ∈ A
Right-arc 〈n|S, n′|I,A〉 → 〈n′|n|S, I,A ∪ {(n, n′)}〉 ¬∃n′′(n′′, n′) ∈ A
Reduce 〈n|S, I,A〉 → 〈S, I, A〉 ∃n′(n′, n) ∈ A
Shift 〈S, n|I, A〉 → 〈n|S, I,A〉

between the two parses in a manner that makes the
tree projective, single-head, rooted, and cycle-free,
we applied the Eisner algorithm (Eisner, 1996).

2.4 Beam Search

As in our previous parser (Johansson and Nugues,
2006), we used a beam-search extension to Nivre’s
original algorithm (which is greedy in its original
formulation). Each parsing action was assigned a
score, and the beam search allows us to find a bet-
ter overall score of the sequence of actions. In
this work, we used a beam width of 8 for Catalan,
Chinese, Czech, and English and 16 for the other
languages.

3 Learning Method

3.1 Overview

We model the parsing problem for a sentence x as
finding the parse ŷ = arg maxy F (x, y) that max-
imizes a discriminant function F . In this work, we
consider linear discriminants of the following form:

F (x, y) = w ·Ψ(x, y)

where Ψ(x, y) is a numeric feature representation
of the pair (x, y) and w a vector of feature weights.
Learning F in this case comes down to assigning
good weights in the vector w.
Machine learning research for similar prob-

lems have generally used margin-based formula-
tions. These include global batch methods such
as SVMstruct (Tsochantaridis et al., 2005) as well
as online methods such as the Online Passive-
Aggressive Algorithm (OPA) (Crammer et al.,
2006). Although the batch methods are formulated
very elegantly, they do not seem to scale well to
the large training sets prevalent in NLP contexts –

we briefly considered using SVMstruct but train-
ing was too time-consuming. The online methods
on the other hand, although less theoretically ap-
pealing, can handle realistically sized data sets and
have successfully been applied in dependency pars-
ing (McDonald et al., 2006). Because of this, we
used the OPA algorithm throughout this work.

3.2 Implementation

In the online learning framework, the weight vector
is constructed incrementally. At each step, it com-
putes an update to the weight vector based on the
current example. The resulting weight vector is fre-
quently overfit to the last examples. One way to
reduce overfitting is to use the average of all suc-
cessive weight vectors as the result of the training
(Freund and Schapire, 1999).
Algorithm 1 shows the algorithm. It uses an

“aggressiveness” parameter C to reduce overfitting,
analogous to the C parameter in SVMs. The algo-
rithm also needs a cost function ρ, which describes
how much a parse tree deviates from the gold stan-
dard. In this work, we defined ρ as the sum of link
costs, where the link cost was 0 for a correct depen-
dency link with a correct label, 0.5 for a correct link
with an incorrect label, and 1 for an incorrect link.
The number of iterations was 5 for all languages.
For a sentence x and a parse tree y, we defined

the feature representation by finding the sequence
〈〈S1, I1〉 , a1〉 , 〈〈S2, I2〉 , a2〉 . . . of states and their
corresponding actions, and creating a feature vector
for each state/action pair. The discriminant function
was thus written

Ψ(x, y) ·w =
∑

i

ψ(〈Si, Ii〉 , ai) ·w

where ψ is a feature function that assigns a feature
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Algorithm 1 The Online PA Algorithm

input Training set T = {(xt, yt)}Tt=1

Number of iterations N

Regularization parameter C
Cost function ρ

Initialize w to zeros
repeat N times
for (xt, yt) in T
let ỹt = arg maxy F (xt, y) +

√

ρ(yt, y)

let τt = min

(

C,
F (xt,ỹt)−F (xt,yt)+

√
ρ(yt,ỹt)

‖Ψ(x,yt)−Ψ(x,ỹt)‖2

)

w ← w + τt(Ψ(x, yt)−Ψ(x, ỹt))
return waverage

vector to a state 〈Si, Ii〉 and the action ai taken in
that state. Table 2 shows the feature sets used in
ψ for all languages. In principle, a kernel could
also be used, but that would degrade performance
severely. Instead, we formed a new vector by com-
bining features pairwisely – this is equivalent to us-
ing a quadratic kernel.

Since the history-based feature set used in the
parsing algorithm makes it impossible to use inde-
pendence to factorize the scoring function, an ex-
act search to find the best-scoring action sequence
(arg maxy in Algorithm 1) is not possible. How-
ever, the beam search allows us to find a reasonable
approximation.

4 Results

Table 3 shows the results of our system in the Mul-
tilingual task.

4.1 Compared to SVM-based Local Classifiers

We compared the performance of the parser with
a parser based on local SVM classifiers (Johansson
and Nugues, 2006). Table 4 shows the performance
of both parsers on the Basque test set. We see that
what is gained by using a global method such as
OPA is lost by sacrificing the excellent classifica-
tion performance of the SVM. Possibly, better per-
formance could be achieved by using a large-margin
batch method such as SVMstruct.

Table 2: Feature sets.

ar ca cs el en eu hu it tr zh

Fine POS top • • • • • • • • • •

Fine POS top-1 • • • • • • •

Fine POS list • • • • • • • • • •

Fine POS list-1 • • • • • • • • • •

Fine POS list+1 • • • • • • • • • •

Fine POS list+2 • • • • • • • • • •

Fine POS list+3 • • • • • •

POS top • • • • • • • • • •

POS top-1 •

POS list • • • • • • • • • •

POS list-1 • • • • • •

POS list+1 • • • • • • • • • •

POS list+2 • • • • • • • •

POS list+3 • • • • • • • •

Features top • • • • • • • •

Features list • • • • • • • •

Features list-1 • • • • •

Features list+1 • • • • • • •

Features list+2 • • • • •

Word top • • • • • • • • •

Word top-1 • •

Word list • • • • • • • • • •

Word list-1 • • • • • •

Word list+1 • • • •

Lemma top • • • • • •

Lemma list • • • • •

Lemma list-1 • •

Relation top • •

Relation top left • • • • •

Relation top right • • • • •

Relation list right •

Word top left •

Word top right •

Word list left •

POS top left • •

POS top right • • •

POS list left • • • • • • • •

Features top right •

Features first left • •

Table 3: Summary of results.

Languages Unlabeled Labeled

Arabic 80.91 71.76
Basque 80.41 75.08
Catalan 88.34 83.33
Chinese 81.30 76.30
Czech 77.39 70.98
English 81.43 80.29
Greek 79.58 72.77
Hungarian 75.53 71.31
Italian 81.55 77.55
Turkish 84.80 78.46
Average result 81.12 75.78

Table 4: Accuracy by learning method.

Learning Method Accuracy

OPA 75.08
SVM 75.53
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4.2 BeamWidth

To investigate the influence of the beam width on the
performance, we measured the accuracy of a left-to-
right parser on a development set for Basque (15%
of the training data) as a function of the width. Ta-
ble 5 shows the result. We see clearly that widening
the beam considerably improves the figures, espe-
cially in the lower ranges.

Table 5: Accuracy by beam width.

Width Accuracy

2 72.01
4 74.18
6 75.05
8 75.30
12 75.49

4.3 Direction

We also investigated the contribution of the bidirec-
tional parsing. Table 6 shows the result of this exper-
iment on the Basque development set (the same 15%
as in 4.2). The beam width was 2 in this experiment.

Table 6: Accuracy by parsing direction.

Direction Accuracy

Left to right 72.01
Right to left 71.02
Bidirectional 74.48

Time did not allow a full-scale experiment, but
for all languages except Catalan and Hungarian, the
bidirectional parsing method outperformed the uni-
directional methods when trained on a 20,000-word
subset. However, the gain of using bidirectional
parsing may be more obvious when the treebank is
small. For all languages except Czech, left-to-right
outperformed right-to-left parsing.

5 Discussion

The paper describes an incremental parser that we
trained to minimize the cost over sentences, rather
than over parsing actions as is usually done. It
was trained using the Online Passive-Aggressive
method, a cost-sensitive online margin-based learn-
ing method, and shows reasonable performance and
received above-average scores for most languages.

The performance of the parser (relative the other
teams) was best for Basque and Turkish, which were
two of the smallest treebanks. Since we found that
the optimal number of iterations was 5 for Basque
(the smallest treebank), we used this number for all
languages since we did not have time to investigate
this parameter for the other languages. This may
have had a detrimental effect for some languages.
We think that some of the figures might be squeezed
slightly higher by optimizing learning parameters
and feature sets.
This work shows that it was possible to combine

approaches used by Nivre’s and McDonald’s parsers
in a single system. While the parser is outperformed
by a system based on local classifiers, we still hope
that the parsing and training combination described
here opens new ways in parser design and eventually
leads to the improvement of parsing performance.
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Abstract

Deterministic parsing has emerged as an ef-
fective alternative for complex parsing algo-
rithms which search the entire search space
to get the best probable parse tree. In this pa-
per, we present an online large margin based
training framework for deterministic pars-
ing using Nivre’s Shift-Reduce parsing al-
gorithm. Online training facilitates the use
of high dimensional features without cre-
ating memory bottlenecks unlike the popu-
lar SVMs. We participated in the CoNLL
Shared Task-2007 and evaluated our system
for ten languages. We got an average multi-
lingual labeled attachment score of 74.54 %
(with 65.50% being the average and 80.32%
the highest) and an average multilingual un-
labeled attachment score of 80.30% (with
71.13% being the average and 86.55% the
highest).

1 Introduction

CoNLL-X had a shared task on multilingual depen-
dency parsing (Buchholz et al., 2006) by providing
treebanks for 13 languages in the same dependency
format. A look at the performance sheet in the con-
test shows that two systems with quite different ap-
proaches (one using deterministic parsing with SVM
and the other using MIRA with nondeterministic and
dynamic programming based MST approach ) per-
formed with good results (McDonald et al., 2006;
Nivre et al., 2006).

More recently, deterministic parsing has gener-
ated a lot of interest because of their simplicity

(Nivre, 2003). One of the main advantages of de-
terministic parsing lies in the ability to use the sub-
tree information in the features to decide the next
step. Parsing algorithms which search the entire
space (Eisner, 1996; McDonald, 2006) are restricted
in the features they use to score a relation. They rely
only on the context information and not the history
information to score a relation. Using history infor-
mation makes the search intractable. Whereas, since
deterministic parsers are at worstO(n2) (Yamada
and Matsumoto, 2003) (Nivre (2003) is onlyO(2n)
in the worst case), they can use the crucial history
information to make parsing decisions. So, in our
work Nivre’s parsing algorithm has been used to ar-
rive at the dependency parse tree.

Popular learning algorithms for deterministic
parsing like Support Vector Machines (SVM) run
into memory issues for large data since they are
batch learning algorithms. Though more informa-
tion is available in deterministic parsing in terms of
subtree information, high dimensional features can’t
be used due to the large training times for SVMs.
This is where online methods come into the picture.

Unlike batch algorithms, online algorithms con-
sider only one training instance at a time when
optimizing parameters. This restriction to single-
instance optimization might be seen as a weakness,
since the algorithm uses less information about the
objective function and constraints than batch algo-
rithms. However, McDonald (2006) argues that this
potential weakness is balanced by the simplicity of
online learning, which allows for more streamlined
training methods. This work focuses purely on on-
line learning for deterministic parsing.
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In the remaining part of the paper, we introduce
Nivre’s parsing algorithm, propose a framework for
online learning for deterministic parsing and present
the results for all the languages with various feature
models.

2 Parsing Algorithm

We used Nivre’s top-down/bottom-up linear time
parsing algorithm proposed in Nivre (2003). A
parser configuration is represented by triples
(S, I,E) whereS is the stack (represented as a list),
I is the list of (remaining) tokens andE is the set of
edges for the dependency graphD. S is a list of par-
tially processed tokens, whose subtrees are incom-
plete i.e tokens whose parent or children have not
yet been established.top is the top of the stackS,
next is the next token in the listI.

Nivre’s algorithm consists of four elementary ac-
tions Shift, Left, Right and Reduce to build
the dependency tree from the initial configuration
(nil,W, ∅), whereW is the input sentence.Shift

pushesnext onto the stackS. Reduce pops the
stack. Right adds an arc fromtop to next and
pushesnext onto the stackS. Left adds an arc
from next to top and pops the stack. The parser ter-
minates when it reaches a configuration(S,nil,E)
( for any listS and set of edgesE).

The labels for each relation are determined after
a new arc is formed (byleft and right actions).
The parser always constructs a dependency graph
that is acyclic and projective. For non-projective
parsing, we followed the pseudo projective pars-
ing approach proposed by Nivre and Nilson (2005).
In this approach, the training data is projectivized
by a minimal transformation, lifting non-projective
arcs one step at a time, and extending the arc label
of the lifted arcs using the encoding scheme called
HEAD+PATH. The non-projective arcs can be re-
covered by applying an inverse transformation to the
output of the parser, using a left-to-right, top-down,
breadth-first search, guided by the extended arc la-
bels. This method has been used for all the lan-
guages.

3 Online Learning

McDonald (2005) applied online learning by scoring
edges in a connected graph and finding the Maxi-

mum Spanning Tree (MST) of the graph. McDonald
et al. (2005) usedEdge Based Factorization , where
the score of a dependency tree is factored as the sum
of scores of all edges in the tree. Let,x = x1 · · · xn

represents a generic input sentence , andy represents
a generic dependency tree for sentencex. (i, j) ∈ y
denotes the presence of a dependency relation iny
from wordxi (parent) to wordxj (child).

In Nivre’s parsing algorithm the dependency
graph can be viewed as a graph resulting from a
set of parsing decisions (in this caseShift, Reduce
, Left & Right) made, starting with the initial con-
figuration(nil,W, ∅) . We define this sequence of
parsing decisions asd = d1 · · · dm. So,d is the se-
quence of parsing decisions made by the parser to
obtain a dependency treey, from an input sentence
x. Lets also definec = c1 · · · cm to be the config-
uration sequence starting from initial configuration
(nil,W, ∅) to the final configuration(S,nil,E).

We define the score of a parsing decision for a par-
ticular configuration to be the dot product between a
high dimensional feature vector (based on both the
decision and the configuration) and a weight vector.
So,

s(di, ci) = w . f(di, ci)

whereci is the configuration at theith instance
anddi is any one of the four actions{Shift, Reduce,
Left, Right} .

The Margin Infused Relaxed Algorithm (MIRA)
proposed by Crammer et al. (2003) attempts to keep
the norm of the change to the parameter vector as
small as possible, subject to correctly classifying the
instance under consideration with a margin at least
as large as the loss of the incorrect classifications.
McDonald et al. (2005) defines the loss of a depen-
dency tree inferred by finding the Maximum Span-
ning Tree(MST), as the number of words that have
incorrect parent (i.e the no. of edges that have gone
wrong). This satisfies the global constraint that the
correct set of edges will have the highest weight.
However, in Nivre’s algorithm, as there is no one to
one correspondence between parsing decisions and
the graph edges, the number of errors in the edges
can’t be used as a loss function as it won’t reflect the
exact loss in the parsing decisions. In this method
of calculating the loss function based on edges, we
first get the series of decisions through inference on
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the training data, then concat their feature vectors
and finally run the normal updates with the edge
based loss (since the resulting decisions will produce
a parse tree). This method gave very poor results.

So we do a factored MIRA for Nivre’s algorithm
by factoring the output by decisions to obtain the
following constraints:

min‖w(i+1) − w(i)‖

s.ts(di, ci)− s(d
′

i, ci) ≥ 1

∀ci ∈ dt(c) and

(di, d
′

i) ∈ (Shift, Left,Right,Reduce)

wheredi represents the correct decision andd
′

i

represents all the other decisions for the same con-
figurationci. This states that the weight of the cor-
rect decision for a particular configuration and the
weight of all other decisions must be separated by a
margin of 1. For every sentence in the training data,
starting with the initial configuration(nil,W, ∅),
weights are adjusted to satisfy the above constraints
before proceeding to the next correct configuration.
This process is repeated till we reach the final con-
figuration(S,nil,E).

4 Features

The two central elements in any configuration are
the token on the top of the stack (t) and the next input
token (n),the tokens which may be connected by a
dependency relation in the current configuration. We
categorize our features intobasic, context, history

and in − between feature sets. Thebasic feature
set contains information about these two tokenst

andn. This includes unigram, bigram combinations
of the word forms (FORM), root word (LEMMA),
features (FEATS) and the part-of-speech tags (both
CPOS and POS) of these words. The coarse POS tag
(CPOS) is useful and helps solve data sparseness to
some extent.

The existence or non-existence of a relation be-
tween two words is heavily dependent on the words
surroundingt andn which is the contextual infor-
mation. Thecontext feature set has the information
about the surrounding wordst−1, t+1, n−1, n+1,
n + 2, n + 3. Unigram and trigram combinations
(with t andn) of the lexical items, POS tags, CPOS

tags of these words are part of this context feature
set. We also included the second topmost element in
the stack (st− 1) word too.

The third feature set, which is thehistory feature
set contains the info about the subtree at a partic-
ular parser state. One of the advantages of using
deterministic parsing algorithm over nondeterminis-
tic algorithm is that history can be used as features.
History features have information about theParent
(par), Left Sibling (ls) andRight Sibling (rs) of t.
Unigram and trigram combinations (witht andn) of
POS, CPOS, DEPREL tags of these words are in-
cluded in theHistory Features.

The features in thein − between feature set
take the form of POS and CPOS trigrams: the
POS/CPOS oft, that of the word in between and
that ofn.

All the features in these feature sets are conjoined
with distance betweent & n and the parsing deci-
sion. We experimented with a combination of these
feature sets in our training. We define feature mod-
elsφ1, φ2 andφ3 for our experiments.φ1 is a com-
bination onbasic andcontext feature sets.φ2 is a
mixture of basic, context and in − between fea-
ture sets whereasφ3 containsbasic, context and
history feature sets. The feature modelsφ1−3 are
the same for all the languages.

5 Results and Discussion

The system with online learning and Nivre’s pars-
ing algorithm was trained on the data released by
CoNLL Shared Task Organizers for all the ten lan-
guages (Hajič et al., 2004; Aduriz et al., 2003; Martı́
et al., 2007; Chen et al., 2003; Böhmová et al., 2003;
Marcus et al., 1993; Johansson and Nugues, 2007;
Prokopidis et al., 2005; Csendes et al., 2005; Mon-
temagni et al., 2003; Oflazer et al., 2003). We evalu-
ated our system using the standard evaluation script
provided by the organizers (Nivre et al., 2007).
The evaluation metrics are Unlabeled Attachment
Score(UAS) and Labeled Attachment Score(LAS).

The results of our system with various feature
models are listed in Table 11. The history infor-
mation in φ3 contributed to a marginal improve-
ment in accuracy of Hungarian, Italian and Turkish.
Whereas, Arabic, Catalan, Czech, English, Greek

1Results aren’t available for the models with a ’-’ mark.
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Language φ1 φ2 φ3

LAS UAS LAS UAS LAS UAS

Arabic 71.55 81.56 72.05 81.93 71.66 81.30
Basque 66.35 73.71 65.64 72.86 64.56 71.69
Catalan 84.45 89.65 84.47 89.81 - -
Chinese 74.06 79.09 73.76 78.84 72.93 77.52
Czech 70.49 77.05 70.68 77.20 - -
English 81.19 82.41 81.55 82.81 - -
Greek 71.52 78.77 71.69 78.89 71.46 78.48
Hungarian 70.42 75.01 70.94 75.39 71.05 75.54
Italian 78.30 82.54 78.67 82.91 79.18 83.38
Turkish 76.42 82.74 76.48 82.85 77.29 83.58

Table 1: Results of Online learning with Nivre’s parsing algorithm for feature modelsφ1, φ2, φ3

got their highest accuracies with feature modelφ2

containingbasic, context andin−between feature
sets. The rest of the languages, Basque and Chinese
achieved highest accuracies withφ1. But, a careful
look at the results table shows that there isn’t any
significant difference in the accuracies of the sys-
tem across different feature models. This is true for
all the languages. The feature modelsφ2 and φ3

did not show any significant difference in accuracies
even though they contain more information. Feature
model φ1 with basic and context feature sets has
achieved good accuracies.

5.1 K-Best Deterministic Parsing

The deterministic parsing algorithm does not han-
dle ambiguity. By choosing a single parser action at
each opportunity, the input string is parsed determin-
istically and a single dependency tree is built during
the parsing process from beginning to end (no other
trees are even considered). A simple extension to
this idea is to eliminate determinism by allowing the
parser to choose several actions at each opportunity,
creating different action sequences that lead to dif-
ferent parse trees. Since a score is assigned to every
parser action, the score of a parse tree can be com-
puted simply as the average of the scores of all ac-
tions that resulted in that parse tree (the derivation
of the tree). We performed a beam search by carry-
ing out a K-best search through the set of possible
sequences of actions as proposed by Johansson and
Nugues (2006). However, this did not increase the
accuracy. Moreover, with larger values of K, there
was a decrease in the parsing accuracy. The best-

first search proposed by Sagae and Lavie (2006) was
also tried out but there was similar drop in accuracy.

6 Conclusion

The evaluation shows that the labeled pseudo projec-
tive deterministic parsing with online learning gives
competitive parsing accuracy for most of the lan-
guages involved in the shared task. The level of ac-
curacy varies considerably between the languages.
Analyzing the results and the effects of various fea-
tures with online learning will be an important re-
search goal in the future.
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Sweden
Svetoslav.Marinov@his.se

Abstract

Three versions of the Covington algorithm
for non-projective dependency parsing have
been tested on the ten different languages
for the Multilingual track of the CoNLL-
X Shared Task. The results were achieved
by using only information about heads and
daughters as features to guide the parser
which obeys strict incrementality.

1 Introduction

In this paper we focus on two things. First, we in-
vestigate the impact of using different flavours of
Covington’s algorithm (Covington, 2001) for non-
projective dependency parsing on the ten differ-
ent languages provided for CoNLL-X Shared Task
(Nivre et al., 2007). Second, we test the perfor-
mance of a pure grammar-based feature model in
strictly incremental fashion. The grammar model re-
lies only on the knowledge of heads and daughters
of two given words, as well as the words themselves,
in order to decide whether they can be linked with a
certain dependency relation. In addition, none of the
three parsing algorithms guarantees that the output
dependency graph will be projective.

2 Covington’s algorithm(s)

In his (2001) paper, Covington presents a “funda-
mental” algorithm for dependency parsing, which
he claims has been known since the 1960s but has,
up to his paper-publication, not been presented
systematically in the literature. We take three
of its flavours, which enforce uniqueness (a.k.a.

single-headedness) but do not observe projectivity.
The algorithms work one word at a time and
attempt to build a connected dependency graph with
only a single left-to-right pass through the input.
The three flavours are: Exhaustive Search, Head
First with Uniqueness (ESHU), Exhaustive Search
Dependents First with Uniqueness (ESDU) and
List-based search with Uniqueness (LSU).

ESHU ESDU
for i = 1 to n for i = 1 to n

for j = i-1 downto 0 for j = i-1 downto 0
if HEAD? (j,i) if HEAD? (i,j)

LINK (j,i) LINK (i,j)
if HEAD? (i,j) if HEAD? (j,i)

LINK (i,j) LINK (j,i)

The yes/no functionHEAD?(w1,w2), checks
whether a wordw1 can be a head of a wordw2 ac-
cording to a grammarG. It also respects the single-
head and no-cycle conditions. TheLINK (w1,w2)
procedure links wordw1 as the head of wordw2
with a dependency relation as proposed byG. When
traversingHeadlist and Wordlist we start with the
last word added. (Nivre, 2007) describes an op-
timized version of Covington’s algorithm imple-
mented in MaltParser (Nivre, 2006) with a running
time c(n

2

2
−

n

2
) for ann-word sentence, wherec is

some constant time in which theLINK operation
can be performed. However, due to time constraints,
we will not bring this version of the algorithm into
focus, but see some preliminary remarks on it with
respect to our parsing model in 6.
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LSU1

Headlist := []
Wordlist := []
while (!end-of-sentence)

W := next input word;
foreach D in Headlist

if HEAD? (W,D)
LINK (W,D);
deleteD from Headlist;

end
foreach H in Wordlist

if HEAD? (H,W)
LINK (H,W);
terminate thisforeach loop;

end
if no head forW was found then

Headlist := W + Headlist;
end
Wordlist := W + Wordlist;

end

3 Classifier as an Instant Grammar

The HEAD? function in the algorithms presented
in 2, requires an “instant grammar” (Covington,
2001) of some kind, which can tell the parser
whether the two words under scrutiny can be linked
and with what dependency relation. To satisfy
this requirement, we use TiMBL - a Memory-based
learner (Daelemans et al., 2004) - as a classifier to
predict the relation (if any) holding between the two
words.

Building heavily on the ideas of History-based
parsing (Black et al., 1993; Nivre, 2006), training
the parser means essentially running the parsing al-
gorithms in a learning mode on the data in order
to gather training instances for the memory-based
learner. In a learning mode, theHEAD? function
has access to a fully parsed dependency graph. In
the parsing mode, theHEAD? function in the algo-
rithms issues a call to the classifier using features
from the parsing history (i.e. a partially built depen-
dency graphPG).

Given wordsi andj to be linked, and aPG, the
call to the classifier is a feature vectorΦ(i,j,PG) =
(φ1,. . . ,φm) (cf. (Nivre, 2006; Nivre, 2007)). The

1Covington addsW to the Wordlist as soon as it has been
seen, however we have chosen to wait until after all tests have
been completed.

classifier then attempts to map this feature vector to
any of predefined classes. These are all the depen-
dency relations, as defined by the treebank and the
class “NO” in the cases where no link between the
two words is possible.

4 The Grammar model

The features used in our history-based model are re-
stricted only to the partially built graphPG. We call
this model a pure grammar-based model since the
only information the parsing algorithms have at their
disposal is extracted from the graph, such as the head
and daughters of the current word. Preceding words
not included in thePG as well as words following
the current word are not available to the algorithm.
In this respect such a model is very restrictive and
suffers from the pitfalls of the incremental process-
ing (Nivre, 2004).

The motivation for the chosen model, was to ap-
proximate a Data Oriented Parsing (DOP) model
(e.g. (Bod et al., 2003)) for Dependency Gram-
mar. Under DOP, analyses of new sentences are pro-
duced by combining previously seen tree fragments.
However, the tree fragments under the original DOP
model are static, i.e. we have a corpus of all possi-
ble subtrees derived from a treebank. Under our ap-
proach, these tree fragments are built dynamically,
as we try to parse the sentence. Because of the cho-
sen DOP approximation, we have not included in-
formation about the preceding and following words
of the two words to be linked in our feature model.

To exemplify our approach, (1) shows a partially
build graph and all the words encountered so far and
Fig. 1 shows two examples of the tree-building op-
erations for linking wordsf andd, andf anda.

(1) a b c d e f . . .

Given two wordsi and j to be linked with a
dependency relation, such that wordj precedes
word i, the following features describe the models
on which the algorithms have been trained and
tested:

Word form: i, j, ds(i), ds(j), h(j/i), h(h(j/i))
Lemma (if available): i, j, ds(i), ds(j), h(j/i),
h(h(j/i))
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HEAD?

a

d

b                  c

f

e

HEAD? HEAD?

a

d

f

e

Figure 1: Application of theHEAD? function on an
input from thePG in (1)

Part-of-Speech:i, j, ds(i), ds(j), h(j/i), h(h(j/i))
Dependency type: i, j, ds(i), ds(j), h(j/i),
h(h(j/i))
Features (if available):i, j, ds(i), ds(j), h(j/i),
h(h(j/i))

ds(i) means any two daughters (if available)
of word i, h(i/j) refers to the head of wordi or
word j, depending on the direction of applying the
HEAD? function (see Fig 1) andh(h(i/j)) stands
for the head of the head of wordi or wordj.

The basic model, which was used for the largest
training data sets of Czech and Chinese, includes
only the first four features in every category. A
larger model used for the datasets of Catalan and
Hungarian adds theh(j/i) feature from every cate-
gory. The enhanced model used for Arabic, Basque,
English, Greek, Italian and Turkish uses the full set
of features. This tripartite division of models was
motivated only by time- and resource-constraints.
The simplest model is for Chinese and uses only 5
features while the enhanced model for Arabic for ex-
ample uses a total of 39 features.

5 Results and Setup

Table 1 summarizes the results of testing the three
algorithms on the ten different languages.

The parser was written in C#. Training and
testing were performed on a MacOSX 10.4.9 with
2GHz Intel Core2Duo processor and 1GB mem-
ory, and a Dell Dimension with 2.80GHz Pentium
4 processor and 1GB memory running Mepis Linux.
TiMBL was run in client-server mode with default
settings (IB1 learning algorithm, extrapolation from
the most similar example, i.e.k = 1, initiated
with the command “Timbl -S<portnumber> -f

ESHU ESDU LSU
Arabic LA: 53.72 LA: 54.00 LA: 53.86

UA: 63.58 UA: 63.76 UA: 63.78
Basque LA: 49.52 LA: 50.20 LA: 51.24

UA: 56.83 UA: 57.81 UA: 58.53
Catalan LA: 69.56 LA: 69.80 LA: 69.42

UA: 74.32 UA: 74.46 UA: 74.22
Chinese LA: 47.57 LA: 50.61 LA: 49.82

UA: 53.46 UA: 56.75 UA: 56.02
Czech LA: 44.41 LA: 53.66 LA: 53.47

UA: 49.20 UA: 60.01 UA: 59.55
English LA: 51.05 LA: 51.35 LA: 52.11

UA: 53.41 UA: 53.65 UA: 54.33
Greek LA: 54.68 LA: 54.62 LA: 55.02

UA: 61.55 UA: 61.45 UA: 61.80
Hungarian LA: 44.34 LA: 45.11 LA: 44.57

UA: 50.12 UA: 50.78 UA: 50.46
Italian LA: 61.60 LA: 60.95 LA: 61.52

UA: 67.01 UA: 66.25 UA: 66.39
Turkish LA: 55.57 LA: 57.01 LA: 56.59

UA: 62.13 UA: 63.77 UA: 63.17

Table 1: Test results for the 10 languages. LA is
the Labelled Attachment Score and UA is the Unla-
belled Attachment Score

<training file>”). Additionally, we attempted to
use Support Vector Machines (SVM) as an alter-
native classifier. However, due to the long training
time, results from using SVM were not included but
training an SVM classifier for some of the languages
has started.

6 Discussion

Before we attempt a discussion on the results pre-
sented in Table 1, we give a short summary of the ba-
sic word order typology of these languages accord-
ing to (Greenberg, 1963). Table 2 shows whether
the languages are SVO (subject-verb-object) or SOV
(subject-object-verb), or VSO (verb-subject-object);
contain Pr (prepositions) or Po (postpositions); NG
(noun precedes genitive) or GN (genitive precedes
noun); AN (adjective precedes noun) or NA (noun
precedes adjective).

2Greenberg had givevarying for the word-order typology of
English. However, we trusted our own intuition as well as the
hint of one of the reviewers.
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Arabic VSO Pr NG NA
Basque SOV Po GN NA
Catalan SVO Pr NG NA
Chinese SVO Po GN AN
Czech SVO Pr NG AN
English2 SVO Pr GN AN
Greek SVO Pr NG AN
Hungarian SOV Po GN AN
Italian SVO Pr NG NA
Turkish SOV Po ? AN

Table 2: Basic word order typology of the ten lan-
guages following Greenberg’s Universals

Looking at the data in Table 1, several obser-
vations can be made. One is the different perfor-
mance of languages from the same language fam-
ily, i.e. Italian, Greek and Catalan. However, the
head-first (ESHU) algorithm presented better than
the dependents-first (ESDU) one in all of these lan-
guages. The SOV languages like Hungarian, Basque
and Turkish had preference for the dependent’s first
algorithms (ESDU and LSU). The ESDU algorithm
also fared better with the SVO languages, except for
Italian.

However, the Greenberg’s basic word order ty-
pology cannot shed enough light into the perfor-
mance of the three parsing algorithms. One ques-
tion that pops up immediately is whether a differ-
ent feature-model using the same parsing algorithms
would achieve similar results. Can the different
performance be attributed to the treebank annota-
tion? Would another classifier fare better than the
Memory-based one? These questions remain for fu-
ture research though.

Finally, for the Basque data we attempted to
test the optimized version of the Covington algo-
rithm (Nivre, 2007) against the three other ver-
sions discussed here. Additionally, since our fea-
ture vectors differed from those described in (Nivre,
2007), head-dependent-features vs.j-i-features, we
changed them so that all the four algorithms send a
similar feature vector,j-i-features, to the classifier.
The preliminary result was that Nivre’s version was
the fastest, with fewer calls to theLINK procedure
and with the smallest training data-set. However, all
the four algorithms showed about 20% decrease in

LA/UA scores.

Our first intuition about the results from the tests
done on all the 10 languages was that the classifi-
cation task suffered from a highly skewed class dis-
tribution since the training instances that correspond
to a dependency relation are largely outnumbered by
the “NO” class (Canisius et al., 2006). The recall
was low and we expected the classifier to be able to
predict more of the required links. However, the re-
sults we got from additional optimizations we per-
formed on Hungarian, following recommendation
from the anonymous reviewers, may lead to a differ-
ent conclusion. The chosen grammar model, relying
only on connecting dynamically built partial depen-
dency graphs, is insufficient to take us over a certain
threshold.

7 Conclusion

In this paper we showed the performance of three
flavours of Covington’s algorithm for non-projective
dependency parsing on the ten languages provided
for the CoNLL-X Shared Task (Nivre et al., 2007).
The experiment showed that given the grammar
model we have adopted it does matter which version
of the algorithm one uses. The chosen model,
however, showed a poor performance and suffered
from two major flaws - the use of only partially
built graphs and the pure incremental processing.
It remains to be seen how these parsing algorithms
will perform in a parser, with a much richer feature
model and whether it is worth using different
flavours when parsing different languages or the
differences among them are insignificant.
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Abstract

This paper presents an online algorithm for
dependency parsing problems. We propose
an adaptation of the passive and aggressive
online learning algorithm to the dependency
parsing domain. We evaluate the proposed
algorithms on the 2007 CONLL Shared
Task, and report errors analysis. Experimen-
tal results show that the system score is bet-
ter than the average score among the partici-
pating systems.

1 Introduction

Research on dependency parsing is mainly based
on machine learning methods, which can be called
history-based (Yamada and Matsumoto, 2003; Nivre
et al., 2006) and discriminative learning methods
(McDonald et al., 2005a; Corston-Oliver et al.,
2006). The learning methods using in discrimina-
tive parsing are Perceptron (Collins, 2002) and on-
line large-margin learning (MIRA) (Crammer and
Singer, 2003).

The difference of MIRA-based parsing in com-
parison with history-based methods is that the
MIRA-based parser were trained to maximize the
accuracy of the overall tree. The MIRA based
parsing is close to maximum-margin parsing as in
Taskar et al. (2004) and Tsochantaridis et al. (2005)
for parsing. However, unlike maximum-margin
parsing, it is not limited to parsing sentences of 15
words or less due to computation time. The perfor-
mance of MIRA based parsing achieves the state-of-
the-art performance in English data (McDonald et
al., 2005a; McDonald et al., 2006).

In this paper, we propose a new adaptation of on-
line larger-margin learning to the problem of depen-
dency parsing. Unlike the MIRA parser, our method
does not need an optimization procedure in each
learning update, but users only an update equation.
This might lead to faster training time and easier im-
plementation.

The contributions of this paper are two-fold: First,
we present a training algorithm called PA learning
for dependency parsing, which is as easy to im-
plement as Perceptron, yet competitive with large
margin methods. This algorithm has implications
for anyone interested in implementing discrimina-
tive training methods for any application. Second,
we evaluate the proposed algorithm on the multilin-
gual data task as well as the domain adaptation task
(Nivre et al., 2007).

The remaining parts of the paper are organized as
follows: Section 2 proposes our dependency pars-
ing with Passive-Aggressive learning. Section 3
discusses some experimental results and Section 4
gives conclusions and plans for future work.

2 Dependency Parsing with
Passive-Aggressive Learning

This section presents the modification of Passive-
Aggressive Learning (PA) (Crammer et al., 2006)
for dependency parsing. We modify the PA algo-
rithm to deal with structured prediction, in which
our problem is to learn a discriminant function that
maps an input sentence x to a dependency tree y.
Figure 1 shows an example of dependency parsing
which depicts the relation of each word to another
word within a sentence. There are some algorithms
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Figure 1: This is an example of dependency tree

to determine these relations of each word to another
words, for instance, the modified CKY algorithm
(Eisner, 1996) is used to define these relations for
a given sentence.

2.1 Parsing Algorithm
Dependency-tree parsing as the search for the maxi-
mum spanning tree (MST) in a graph was proposed
by McDonald et al. (2005b). In this subsection,
we briefly describe the parsing algorithms based on
the first-order MST parsing. Due to the limitation
of participation time, we only applied the first-order
decoding parsing algorithm in CONLL-2007. How-
ever, our algorithm can be used for the second order
parsing.

Let the generic sentence be denoted by x ; the
ith word of x is denoted by wi. The generic de-
pendency tree is denoted by y. If y is a dependency
tree for sentence x, we write (i, j) ∈ y to indicate
that there is a directed edge from word xwi to word
xwj in the tree, that is, xwi is the parent of xwj .
T = {(xt, yt)}n

t=1 denotes the training data. We fol-
low the edge based factorization method of Eisner
(Eisner, 1996) and define the score of a dependency
tree as the sum of the score of all edges in the tree,

s(x, y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · Φ(i, j) (1)

where Φ(i, j) is a high-dimensional binary fea-
ture representation of the edge from xwi to xwj .
For example in Figure 1, we can present an example
Φ(i, j) as follows;

Φ(i, j) =

{
1 if xwi =′ hit′ andxwj =′ ball′

0 otherwise

The basic question must be answered for models
of this form: how to find the dependency tree y with

the highest score for sentence x? The two algorithms
we employed in our dependency parsing model are
the Eisner parsing (Eisner, 1996) and Chu-Liu’s al-
gorithm (Chu and Liu, 1965). The algorithms are
commonly used in other online-learning dependency
parsing, such as in (McDonald et al., 2005a).

In the next subsection we will address the problem
of how to estimate the weight wi associated with a
feature Φi in the training data using an online PA
learning algorithm.

2.2 Online PA Learning
This section presents a modification of PA algo-
rithm for structured prediction, and its use in de-
pendency parsing. The Perceptron style for natural
language processing problems as initially proposed
by (Collins, 2002) can provide state of the art re-
sults on various domains including text chunking,
syntactic parsing, etc. The main drawback of the
Perceptron style algorithm is that it does not have a
mechanism for attaining the maximize margin of the
training data. It may be difficult to obtain high accu-
racy in dealing with hard learning data. The struc-
tured support vector machine (Tsochantaridis et al.,
2005) and the maximize margin model (Taskar et al.,
2004) can gain a maximize margin value for given
training data by solving an optimization problem (i.e
quadratic programming). It is obvious that using
such an optimization algorithm requires much com-
putational time. For dependency parsing domain,
McDonald et al (2005a) modified the MIRA learn-
ing algorithm (McDonald et al., 2005a) for struc-
tured domains in which the optimization problem
can be solved by using Hidreth’s algorithm (Censor
and Zenios, 1997), which is faster than the quadratic
programming technique. In contrast to the previous
method, this paper presents an online algorithm for
dependency parsing in which we can attain the max-
imize margin of the training data without using opti-
mization techniques. It is thus much faster and eas-
ier to implement. The details of PA algorithm for
dependency parsing are presented below.

Assume that we are given a set of sentences xi

and their dependency trees yi where i = 1, ..., n. Let
the feature mapping between a sentence x and a tree
y be: Φ(x, y) = Φ1(x, y), Φ2(x, y), ...,Φd(x, y)
where each feature mapping Φj maps (x, y) to a real
value. We assume that each feature Φ(x, y) is asso-
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ciated with a weight value. The goal of PA learning
for dependency parsing is to obtain a parameter w
that minimizes the hinge-loss function and the mar-
gin of learning data.

Input:S = {(xi; yi), i = 1, 2, ..., n} in which1

xi is the sentence and yi is a dependency tree
Aggressive parameter C2

Output: the PA learning model3

Initialize: w1 = (0, 0, ..., 0)4

for t=1, 2... do5

Receive an sentence xt6

Predict y∗t = arg maxy∈Y (wt · Φ(xt, yt))7

Suffer loss: lt =8

wt ·Φ(xt, y
∗
t )−wt ·Φ(xt, yt) +

√
ρ(yt, y∗t )

Set:9

PA: τt = lt
||Φ(xt,y∗t )−Φ(xt,yt)||2

PA-I: τt = min{C, lt
||Φ(xt,y∗t )−Φ(xt,yt)||2 }

PA-II: τt = lt
||Φ(xt,y∗t )−Φ(xt,yt)||2+ 1

2C

Update:
wt+1 = wt + τt(Φ(xt, yt)− Φ(xt, y

∗
t ))

end10

Algorithm 1: The Passive-Aggressive algo-
rithm for dependency parsing.

Algorithm 1 shows the PA learning algorithm for
dependency parsing in which its three variants are
different only in the update formulas. In Algorithm
1, we employ two kinds of argmax algorithms: The
first is the decoding algorithm for projective lan-
guage data and the second one is for non-projective
language data. Algorithm 1 shows (line 8) p(y, yt)
is a real-valued loss for the tree yt relative to the
correct tree y. We define the loss of a dependency
tree as the number of words which have an incorrect
parent. Thus, the largest loss a dependency tree can
have is the length of the sentence. The similar loss
function is designed for the dependency tree with la-
beled. Algorithm 1 returns an averaged weight vec-
tor: an auxiliary weight vector v is maintained that
accumulates the values of w after each iteration, and
the returned weight vector is the average of all the
weight vectors throughout training. Averaging has
been shown to help reduce overfitting (McDonald et
al., 2005a; Collins, 2002). It is easy to see that the

main difference between the PA algorithms and the
Perceptron algorithm (PC) (Collins, 2002) as well as
the MIRA algorithm (McDonald et al., 2005a) is in
line 9. As we can see in the PC algorithm, we do
not need the value τt and in the MIRA algorithm we
need an optimization algorithm to compute τt. We
also have three updated formulations for obtaining
τt in Line 9. In the scope of this paper, we only
focus on using the second update formulation (PA-I
method) for training dependency parsing data.

2.3 Feature Set
We denote p-word: word of parent node in depen-
dency tree. c-word: word of child node. p-pos: POS
of parent node. c-pos: POS of child node. p-pos+1:
POS to the right of parent in sentence. p-pos-1: POS
to the left of parent. c-pos+1: POS to the right of
child. c-pos-1: POS to the left of child. b-pos: POS
of a word in between parent and child nodes. The

p-word,p-pos
p-word
p-pos
c-word, c-pos
c-word
c-pos

Table 1: Feature Set 1: Basic Unit-gram features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

Table 2: Feature Set 2: Basic bi-gram features
p-pos, b-pos, c-pos
p-pos, p-pos+1, c-pos-1, c-pos
p-pos-1, p-pos, c-pos-1, c-pos
p-pos, p-pos+1, c-pos, c-pos+1
p-pos-1, p-pos, c-pos, c-pos+1

Table 3: Feature Set 3: In Between POS Features
and Surrounding Word POS Features

features used in our system are described below.

• Tables 1 and 2 show our basic features. These

1151



features are added for entire words as well as
for the 5-gram prefix if the word is longer than
5 characters.

• In addition to these features shown in Table 1,
the morphological information for each pair of
words p-word and c-word are represented. In
addition, we also add the conjunction morpho-
logical information of p-word and c-word. We
do not use the LEMMA and CPOSTAG infor-
mation in our set features. The morphological
information are obtained from FEAT informa-
tion.

• Table 3 shows our Feature set 3 which take the
form of a POS trigram: the POS of the par-
ent, of the child, and of a word in between,
for all words linearly between the parent and
the child. This feature was particularly helpful
for nouns identifying their parent (McDonald
et al., 2005a).

• Table 3 also depicts these features taken the
form of a POS 4-gram: The POS of the par-
ent, child, word before/after parent and word
before/after child. The system also used back-
off features with various trigrams where one of
the local context POS tags was removed.

• All features are also conjoined with the direc-
tion of attachment, as well as the distance be-
tween the two words being attached.

3 Experimental Results and Discussion

We test our parsing models on the CONLL-2007
(Hajič et al., 2004; Aduriz et al., 2003; Martı́ et
al., 2007; Chen et al., 2003; Böhmová et al., 2003;
Marcus et al., 1993; Johansson and Nugues, 2007;
Prokopidis et al., 2005; Csendes et al., 2005; Mon-
temagni et al., 2003; Oflazer et al., 2003) data set on
various languages including Arabic, Basque, Cata-
lan, Chinese, English, Italian, Hungarian, and Turk-
ish. Each word is attached by POS tags for each sen-
tence in both the training and the testing data. Table
4 shows the number of training and testing sentences
for these languages. The table shows that the sen-
tence length in Arabic data is largest and its size of
training data is smallest. These factors might be af-

fected to the accuracy of our proposed algorithm as
we will discuss later.

The training and testing were conducted on a pen-
tium IV at 4.3 GHz. The detailed information about
the data are shown in the CONLL-2007 shared task.
We applied non-projective and projective parsing
along with PA learning for the data in CONLL-2007.

Table 5 reports experimental results by using the
first order decoding method in which an MST pars-
ing algorithm (McDonald et al., 2005b) is applied
for non-projective parsing and the Eisner’s method
is used for projective language data. In fact, in our
method we applied non-projective parsing for the
Italian data, the Turkish data, and the Greek data.
This was because we did not have enough time to
train all training data using both projective and non-
projective parsing. This is the problem of discrimi-
native learning methods when performing on a large
set of training data. In addition, to save time in train-
ing we set the number of best trees k to 1 and the
parameter C is set to 0.05.

Table 5 shows the comparison of the proposed
method with the average, and three top systems on
the CONLL-2007. As a result, our method yields
results above the average score on the CONLL-2007
shared task (Nivre et al., 2007).

Table 5 also indicates that the Basque results ob-
tained a lower score than other data. We obtained
69.11 UA score and 58.16 LA score, respectively.
These are far from the results of the Top3 scores
(81.13 and 75.49). We checked the outputs of the
Basque data to understand the main reason for the
errors. We see that the errors in our methods are
usually mismatched with the gold data at the labels
”ncmod” and ”ncsubj”. The main reason might be
that the application of projective parsing for this data
in both training and testing is not suitable. This was
because the number of sentences with at least 1 non
projective relation in the data is large (26.1).

The Arabic score is lower than the scores of other
data because of some difficulties in our method as
follows. Morphological and sentence length prob-
lems are the main factors which affect the accuracy
of parsing Arabic data. In addition, the training size
in the Arabic is also a problem for obtaining a good
result. Furthermore, since our tasks was focused on
improving the accuracy of English data, it might be
unsuitable for other languages. This is an imbalance
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Languages Training size Tokens size tokens-per-sent % of NPR % of-sentence AL-1-NPR
Arabic 2,900 112,000 38.3 0.4 10.1
Basque 3,200 51,000 15.8 2.9 26.2
Catalan 15,000 431,000 28.8 0.1 2.9
Chinese 57,000 337,000 5.9 0.0 0.0
Czech 25,400 432,000 17.0 1.9 23.2
English 18,600 447,000 24.0 0.3 6.7
Greek 2,700 65,000 24.2 1.1 20.3
Hungarian 6,000 132,000 21.8 2.9 26.4
Italian 3,100 71,000 22.9 0.5 7.4
Turkish 5,600 65,000 11.6 0.5 33.3

Table 4: The data used in the multilingual track (Nivre et al., 2007). NPR means non-projective-relations.
AL-1-NPR means at-least-least 1 non-projective relation.

problem in our method. Table 5 also shows the com-
parison of our system to the average score and the
Top3 scores. It depicts that our system is accurate
in English data, while it has low accuracy in Basque
and Arabic data.

We also evaluate our models in the domain adap-
tation tasks. This task is to adapt our model trained
on PennBank data to the test data in the Biomedical
domain. The pchemtb-closed shared task (Marcus
et al., 1993; Johansson and Nugues, 2007; Kulick
et al., 2004) is used to illustrate our models. We do
not use any additional unlabeled data in the Biomed-
ical domain. Only the training data in the PennBank
is used to train our model. Afterward, we selected
carefully a suitable parameter using the development
test set. We set the parameter C to 0.01 and se-
lect the non projective parsing for testing to obtain
the highest result in the development data after per-
forming several experiments. After that, the trained
model was used to test the data in Biomedical do-
main. The score (UA=82.04; LA=79.50) shows that
our method yields results above the average score
(UA=76.42; LA=73.03). In addition, it is officially
coming in 4th place out of 12 teams and within 1.5%
of the top systems.

The good result of performing our model in an-
other domain suggested that the PA learning seems
sensitive to noise. We hope that this problem is
solved in future work.

4 Conclusions

This paper presents an online algorithm for depen-
dency parsing problem which have tested on various
language data in CONLL-2007 shared task. The per-
formance in English data is close to the Top3 score.

We also perform our algorithm on the domain adap-
tation task, in which we only focus on the training of
the source data and select a suitable parameter using
the development set. The result is very good as it
is close to the Top3 score of participating systems.
Future work will also be focused on extending our
method to a version of using semi-supervised learn-
ing that can efficiently be learnt by using labeled and
unlabeled data. We hope that the application of the
PA algorithm to other NLP problems such as seman-
tic parsing will be explored in future work.
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ter 11, pages 189–210.

J. Nivre, J. Hall, J. Nilsson, G. Eryiğit, and S. Marinov.
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(Abeillé, 2003), chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. In Proc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT), pages 149–160.

B. Taskar, D. Klein, M. Collins, D. Koller, and C.D. Man-
ning. 2004. Max-margin parsing. In proceedings of
EMNLP.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
2005. Support vector machine learning for interde-
pendent and structured output spaces. In proceedings
ICML 2004.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
8th International Workshop on Parsing Technologies
(IWPT), pages 195–206.

1155



Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1156–1160,
Prague, June 2007. c©2007 Association for Computational Linguistics

Global Learning of Labelled Dependency Trees

Michael Schiehlen Kristina Spranger
Institute for Computational Linguistics

University of Stuttgart
D-70174 Stuttgart

Michael.Schiehlen@ims.uni-stuttgart.de
Kristina.Spranger@ims.uni-stuttgart.de

Abstract

In the paper we describe a dependency
parser that uses exact search and global
learning (Crammer et al., 2006) to produce
labelled dependency trees. Our system inte-
grates the task of learning tree structure and
learning labels in one step, using the same
set of features for both tasks. During la-
bel prediction, the system automatically se-
lects for each feature an appropriate level
of smoothing. We report on several exper-
iments that we conducted with our system.
In the shared task evaluation, it scored better
than average.

1 Introduction

Dependency parsing is a topic that has engendered
increasing interest in recent years. One promis-
ing approach is based on exact search and struc-
tural learning (McDonald et al., 2005; McDonald
and Pereira, 2006). In this work we also pursue
this approach. Our system makes no provisions for
non-projective edges. In contrast to previous work,
we aim to learn labelled dependency trees at one
fell swoop. This is done by maintaining several
copies of feature vectors that capture the features’
impact on predicting different dependency relations
(deprels). In order to preserve the strength of Mc-
Donald et al. (2005)’s approach in terms of unla-
belled attachment score, we add feature vectors for
generalizations over deprels. We also employ vari-
ous reversible transformations to reach treebank for-
mats that better match our feature representation and

that reduce the complexity of the learning task. The
paper first presents the methodology used, goes on to
describing experiments and results and finally con-
cludes.

2 Methodology

2.1 Parsing Algorithm

In our approach, we adopt Eisner (1996)’s bottom-
up chart-parsing algorithm in McDonald et al.
(2005)’s formulation, which finds the best pro-
jective dependency tree for an input string ��������	��
�
�
��
�����

. We assume that every possible head–
dependent pair � ��� is described by a feature vec-
tor ����� with associated weights ����� . Eisner’s algo-
rithm achieves optimal tree packing by storing par-
tial structures in two matrices and . First the
diagonals of the matrices are initiated with 0; then
all other cells are filled according to eqs. (1) and (2)
and their symmetric variants.��� � � �����! "�����

� � � #%$'&(*) ��+ (*, � � (.-/(�0 � � - ��� � (1)

� � � #%$'&(*) � ,�( +1� � (.-/( � (2)

root � #2$'&(*) � + ( + �
� (3-/( � - �54 (  6�74 (

This algorithm only accommodates features for sin-
gle links in the dependency graph. We also investi-
gated an extension, McDonald and Pereira (2006)’s
second-order model, where more of the parsing his-
tory is taken into account, viz. the last dependent 8
assigned to a head � . In the extended model, is up-
dated as defined in eq. (3); optimal packing requires
a third matrix .
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� � � #%$'&(*) ��+ (*, �
� � 0 � � if 8 � �
� (.-/( � else �

� ��� (  "� ��� ( (3)

� � � #%$'&(*) ��+ (*, � � (!-/(�0 � �
2.2 Feature Representation

In deriving features, we used all information given
in the treebanks, i.e. words (w), fine-grained POS
tags (fp), combinations of lemmas and coarse-
grained POS tags (lcp), and whether two tokens
agree1 (agr = yes, no, don’t know). We essentially
employ the same set of features as McDonald et
al. (2005): ������ � � w � , fp � , lcp � , w� , fp� , lcp� ,
w � w� , w � lcp� , lcp � w� , lcp � lcp � , fp � lcp� , fp � fp� ,
fp � fp� agr ��� , fp ��� � fp � fp��� � fp� , fp �	� � fp � fp� fp� 0 � ,
fp � fp � 0 � fp�
� � fp� , fp � fp � 0 � fp� fp� 0 ��� , and token
features for root words � 4�
 ��� w 
 � fp 
 � lcp 
 � . In
the first order model, we recorded the tag of each
token � between � and

�
( � ��� � � ������ � fp � fp� fp � � );

in the second order model, we only conditioned on
the previous dependent 8 ( � ��� � � ������ � fp � fp� fp ( ,
lcp � fp� fp ( , w � fp� fp ( � ). All features but unary token
features were optionally extended with direction
of dependency ( ��� �

or ��� �
) and binned token

distance ( � ��� � � ��� , 2, 3, 4, � � , � �
! ).
2.3 Structural Learning

For determining feature weights � , we used on-
line passive–aggressive learning (OPAL) (Crammer
et al., 2006). OPAL iterates repeatedly over all train-
ing instances � , adapting weights after each parse. It
tries to change weights as little as possible (passive-
ness), while ensuring that (1) the correct tree " gets
at least as much weight as the best parse tree #" and
(2) the difference in weight between " and #" rises
with the average number of errors in #" (aggressive-
ness). This optimization problem has a closed–form
solution:

�%$'& 0 �)( � �%$'& ( -+* &-, � , � � "/.�� � , � � #"0.1.
where* & � �  � , � � #"/.�� �  6� , � � "0. - 2 � � LAS , " � #"3.4 � , � � "3.�� � , � � #"0. 465

1Agreement was computed from morphological features,
viz. gender, number and person, and case. In languages with
subject–verb agreement, we added a nominative case feature to
finite verbs. In Basque, agreement is case-specific (absolutive,
dative, ergative, other case).

model # of min. per
order features iteration LAS

1 327,743 13.6 78.62
1 601.125 19.5 78.87
1 1,168,609 38.7 79.03
1 12,948,376 120.0

(513,611) (13.3) 79.53

2 758,433 17.8 78.12
2 1,534,484 25.1 78.40
2 3,257,012 50.0

(181,303) (9.8) 78.92
2 26,088,102 373.0

(582,907) (23.5) 79.26

Table 1: Performance on devset of Italian treebank.
In parentheses: reduction to non-null features after
first iteration.

Having a closed–form solution, OPAL is easier to
implement and more efficient than the MIRA algo-
rithm used by McDonald et al. (2005), although it
achieves a performance comparable to MIRA’s on
many problems (Crammer et al., 2006).

2.4 Learning Labels for Dependency Relations

So far, the presented system, which follows closely
the approach of McDonald et al. (2005), only pre-
dicts unlabelled dependency trees. To derive a la-
beling, we departed from their approach: We split
each feature along the deprel label dimension, so
that each deprel 7 is associated with its own feature
vector (cf. eq. (4), where 8 is the tensor product and9�:

the orthogonal encoding).; ���-< =?> $A@ ( �CB ���D8 9 : , 7E. (4)

In parsing, we only consider the best deprel label.

� � � � #%$'&@�FHGJI ���-< =?> $A@ ( ; ���6< =?> $K@ ( (5)

On its own, this simple approach led to a severe
degradation of performance, so we took a step back
by re-introducing features for unlabelled trees. For
each set of deprels L , we designed a taxonomy M
with a single maximal element (complete abstrac-
tion over deprel labels) and one minimal element for
each deprel label. We also included an intermediate
layer in M that collects classes of deprels, such as
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Language # tokens DevTest # of min. per
Train DevTest Test Split Features Cycle

Catalan 425,915 4,929 5,016 89–1 3,055,518 575.0
Basque 48,019 2,507 5,390 19–1 1,837,155 37.4
Turkish 61,951 3,231 4,513 19–1 1,412,000 26.1
English 441,333 5,240 5,003 86–1 3,609,671 727.2
Greek 62,137 3,282 4,804 19–1 2,723,891 58.0
Hungarian 123,266 8,533 7,344 15–1 2,583,593 148.2
Czech 427,338 4,958 4,724 88–1 1,971,599 591.6
Chinese 333,148 4,027 5,161 82–1 1,672,360 1,015.2
Italian 67,593 3,606 5,096 19–1 1,534,485 52.0
Arabic 107,804 3,865 5,124 27–1 1,763,063 110.0

Table 2: Figures for Experiments on Treebanks.

complement, adjunct, marker, punctuation, or coor-
dination deprels, and in this way provides for better
smoothing. The taxonomy translates to an encoding9 & , where � &� , 7E. � � iff node � in M is an ancestor
of 7 (Tsochantaridis et al., 2004). Substituting

9 &
for
9�:

leads to a massive amount of features, so we
pruned the taxonomy on a feature–to–feature basis
by merging all nodes on a level that only encompass
deprels that never occur with this feature in the train-
ing data.

2.5 Treebank Transformations

Having no explicit feature representation for the in-
formation in the morphological features slot (cf. sec-
tion 2.2), we partially redistributed that information
to other slots: Verb form, case2 to fp, semantic clas-
sification to an empty lemma slot (Turkish affixes,
e.g. “Able”, “Ly”). The balance between fp and
w was not always optimal; we used a fine-grained3

classification in punctuation tags, distinguished be-
tween prepositions (e.g. in) and preposition–article
combinations (e.g. nel) in Italian4 on the basis of
number/gender features, and collected definite and
indefinite articles under one common fp tag.

When distinctions in deprels are recoverable from
context, we removed them: The dichotomy between
conjunctive and disjunctive coordination in Italian

2Case was transferred to fp only if important for determina-
tion of deprel (CA, HU, IT).

3Classes of punctuation are e.g. opening and closing brack-
ets, commas and punctuation signalling the end of a sentence.

4Prep and PrepArt behave differently syntactically (e.g. an
article can only follow a genuine preposition).

depends in most cases exclusively on the coordinat-
ing conjunction. The Greek and Czech treebanks
have a generic distinction between ordinary deprels
and deprels in a coordination, apposition, and paren-
thesis construction. In Greek, we got rid of the
parenthesis markers on deprels by switching head
and dependent, giving the former head (the paren-
thesis) a unique new deprel. For Czech, we reduced
the number of deprels from 46 to 34 by swapping
the deprels of conjuncts, appositions, etc. and their
heads (coordination or comma). Sometimes, multi-
ple conjuncts take different deprels. We only pro-
vided for the clash between “ExD” (ellipsis) and
other deprels, in which case we added “ExD”, see
below.

1 Minimálně 3 AuxZ
2 dva 3 Atr
3 stupně 0 ExD
4 rozlišení 5 Atr_M � -Apos
5 - 3 Apos � Atr
6 standard 7 ExD_M � -Coord
7 a 5 Coord_M � -Apos:ExD
8 jemně 7 ExD_M � -Coord
9 . 0 AuxK

In Basque, agreement is usually between arguments
and auxiliary verbs, so we re-attached5 relevant ar-
guments from main verb to auxiliary verb.

The training set for Arabic contains some very
long sentences (up to 396 tokens). Since context-
free parsing sentences of this length is tedious,
we split up all sentences at final punctuation signs

5Unfortunately, we did not take into account projectivity, so
this step resulted in a steep increase of non-projective edges
(9.4% of all edges) and a corresponding degradation of our eval-
uation results in Basque.
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Language LAS UAS LAcc
Dev Test AV Dev Test AV Dev Test AV

Basque 68.85 66.75 68.06 74.59 73.25 75.15 78.82 76.64 76.06
Greek 73.49 72.29 70.22 82.08 80.47 77.78 84.19 83.16 81.26
Turkish 70.30 72.48 73.19 77.97 79.33 80.33 81.67 82.18 82.29
Italian 78.23 80.46 78.06 82.50 84.54 82.45 86.30 87.44 85.75
Arabic 69.26 70.08 68.34 79.61 81.07 78.84 82.25 82.32 81.79
Hungarian 74.29 73.90 71.49 78.69 78.61 76.34 87.82 87.60 85.89
Chinese 84.06 80.04 76.59 88.25 85.45 81.98 87.04 83.28 80.16
Catalan 85.17 85.75 79.85 90.04 90.79 87.98 91.13 91.29 86.32
Czech 73.26 73.86 70.12 81.63 81.73 77.56 81.36 82.03 79.66
English 86.93 86.21 80.95 88.45 88.91 82.67 91.97 90.89 87.69

Basque (rev.) 72.32 70.48 68.06 77.78 76.72 75.15 80.57 78.85 76.06
Turkish (rev.) 74.50 76.31 73.19 81.12 82.76 80.33 84.90 85.46 82.29

Table 3: Results on DevTest and Test Sets compared with the Average Performance in CoNLL’07. LAS =
Labelled Attachment Score, UAS = Unlabelled Attachment Score, LAcc = Label Accuracy, AV = Average
score.

(AuxK). With this trick, we pushed down maximal
sentence length to 196.

Unfortunately, we overlooked the fact that in
Turkish, the ROOT deprel not only designates root
nodes but also attaches some punctuation marks.
This often leads to non-projective structures, which
our parser cannot handle, so our parser scored be-
low average in Turkish. In after–deadline experi-
ments, we took this feature of the Turkish treebank
into account and achieved above–average results by
re-linking all ROOT-ed punctuation signs to the im-
mediately preceding token.

3 Experiments and Results

All experiments were conducted on the treebanks
provided in the shared task (Hajič et al., 2004;
Aduriz et al., 2003; Martí et al., 2007; Chen et
al., 2003; Böhmová et al., 2003; Marcus et al.,
1993; Johansson and Nugues, 2007; Prokopidis et
al., 2005; Csendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003). For our contribution,
we used the second-order algorithm; only afterwards
did we also apply the first-order model to the data,
with quite good results (cf. Table 1). For testing
our approach, we split the treebanks provided into
an actual training and a development set (details are
in Table 2). From each training set, we extracted
at least a million features (not counting the split for

deprel labels). The last column in Table 2 shows the
average time needed in a training iteration.

For nearly all languages, our approach achieved a
performance better than average (see Table 3). Only
in Turkish and Basque did we score below average.
On closer inspection, we saw that this performance
was due to our projectivity assumption and to insuf-
ficient exploration of these treebanks. In its bottom
part, Table 3 gives results of improved versions of
our approach.

4 Conclusion

We presented an approach to dependency parsing
that is based on exact search and global learning.
Special emphasis is laid on an integrated derivation
of labelled and unlabelled dependency trees. We
also employed various transformation techniques to
reach treebank formats that are better suited to our
approach. The approach scores better than average
in (nearly) all languages. Nevertheless, it is still a
long way from cutting–edge performance. One di-
rection we would like to explore in the future is the
integration of dynamic features on deprel labels.
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Abstract

We present Pro3Gres, a deep-syntactic, fast
dependency parser that combines a hand-
written competence grammar with proba-
bilistic performance disambiguation and that
has been used in the biomedical domain. We
discuss its performance in the domain adap-
tation open submission. We achieve aver-
age results, which is partly due to difficulties
in mapping to the dependency representation
used for the shared task.

1 Introduction

The Pro3Gres parser is a dependency parser that
combines a hand-written grammar with probabilis-
tic disambiguation. It is described in detail in
(Schneider, 2007). It uses tagger and chunker
pre-processors – parsing proper happens only be-
tween heads of chunks – and a post-processor graph
converter to capture long-distance dependencies.
Pro3Gres is embedded in a flexible XML pipeline.
It has been applied to many tasks, such as parsing
biomedical literature (Rinaldi et al., 2006; Rinaldi
et al., 2007) and the whole British National Cor-
pus, and has been evaluated in several ways. We
have achieved average results in the CoNLL do-
main adaptation track open submission (Marcus et
al., 1993; Johansson and Nugues, 2007; Kulick et
al., 2004; MacWhinney, 2000; Brown, 1973). The
performance of the parser is seriously affected by
mapping problems to the particular dependency rep-
resentation used in the shared task.

The paper is structured as follows. We give a brief
overview of the parser and its design policy in sec-

tion 2, we describe the domain adaptations that we
have used in section 3, comment on the results ob-
tained in section 4 and conclude in section 5.

2 Pro3Gres and its Design Policy

There has been growing interest in exploring the
space between Treebank-trained probabilistic gram-
mars (e.g. (Collins, 1999; Nivre, 2006)) and formal
grammar-based parsers integrating statistics (e.g.
(Miyao et al., 2005; Riezler et al., 2002)). We
have developed a parsing system that explores this
space, in the vein of systems like (Kaplan et al.,
2004), using a linguistic competence grammar and
a probabilistic performance disambiguation allow-
ing us to explore interactions between lexicon and
grammar (Sinclair, 1996). The parser has been ex-
plicitly designed to be deep-syntactic like a formal
grammar-based parser, by using a dependency rep-
resentation that is close to LFG f-structure, but at
the same time mostly context-free and integrating
shallow approaches and aggressive pruning in or-
der to keep search-spaces small, without permitting
compromise on performance or linguistic adequacy.
(Abney, 1995) establishes the chunks and dependen-
cies model as a well-motivated linguistic theory. The
non-local linguistic constraints that a hand-written
grammar allows us to formulate, e.g. expressing
X-bar principles or barring very marked construc-
tions, further reduce parsing time by at least an order
of magnitude. Since the grammar is on Penn tags
(except for few closed classed words, e.g. allow-
ing including to function as preposition) the effort
for writing it manually is manageable. It has been
developed from scratch in about a person month,
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Figure 1: Pro3Gres parser flowchart

using traditional grammar engineering development
cycles. It contains about 1000 rules, the number is
largely so high due to tag combinatorics: for ex-
ample, the various subject attachment rules combin-
ing a subject ( NN, NNS, NNP, NNPS) and a verb
( VBZ, VBP, VBG, VBN, VBD) are all very simi-
lar.

The parser is fast enough for large-scale appli-
cation to unrestricted texts, and it delivers depen-
dency relations which are a suitable base for a
range of applications. We have used it to parse the
entire 100 million words British National Corpus
(http://www.natcorp.ox.ac.uk) and similar amounts
of biomedical texts. Its parsing speed is about
500,000 words per hour. The flowchart of the parser
can be seen in figure 1.

Pro3Gres (PRObabilistic PROlog-implemented
RObust Grammatical Role Extraction System) uses
a dependency representation that is close to LFG
f-structure, in order to give it an established lin-
guistic background. It uses post-processing graph
structure conversions and mild context-sensitivity to
capture long-distance dependencies. We have ar-
gued in (Schneider, 2005) that LFG f-structures can
be parsed for in a completely context-free fashion,
except for embedded WH-questions, where a de-
vice such as functional uncertainty (Kaplan and Za-
enen, 1989) or the equivalent Tree-Adjoining Gram-
mar Adjoining operation (Joshi and Vijay-Shanker,
1989) is used. In Dependency Grammar, this device
is also known as lifting (Kahane et al., 1998; Nivre
and Nilsson, 2005).

We use a hand-written competence grammar,
combined with performance-driven disambiguation
obtained from the Penn Treebank (Marcus et
al., 1993). The Maximum-Likelihood Estimation
(MLE) probability of generating a dependency re-
lation R given lexical heads (a and b) at distance (in

chunks) δ is calculated as follows.

p(R, δ|a, b) ∼= p(R|a, b) · p(δ|R) =
#(R, a, b)∑n

i=1 #(Ri, a, b)
· #(R, δ)

#R

The counts are backed off (Collins, 1999; Merlo
and Esteve Ferrer, 2006). The backoff levels include
semantic classes from WordNet (Fellbaum, 1998):
we back off to the lexicographer file ID of the most
frequent word sense. An example output of the
parser is shown in figure 2.

3 Domain Adaptation

Based on our experience with parsing texts form the
biomedical domain, we have used the following two
adaptations to the domain of chemistry.

(Hindle and Rooth, 1993) exploit the fact that in
sentence-initial NP PP sequences the PP unambigu-
ously attaches to the noun. We have observed that in
sentence-initial NP PP PP sequences, also the sec-
ond PP frequently attaches to the noun, the noun
itself often being a relational noun. We have thus
used such sequences to learn relational nouns from
the unlabelled domain texts. Relational nouns are
allowed to attach several argument PPs in the gram-
mar, all other nouns are not.

Multi-word terms, adjective-preposition construc-
tions and frequent PP-arguments have strong collo-
cational force. We have thus used the collocation
extraction tool XTRACT (Smadja, 2003) to discover
collocations from large domain corpora. The prob-
ability of generating a dependency relation is aug-
mented for collocations above a certain threshold.
Since the tagging quality of the Chemistry testset
is high, the impact of multi-word term recognition
was lower than the biomedical domain when using a
standard tagger, as we have shown in (Rinaldi et al.,
2007).

For the CHILDES domain, we have not used any
adaptation. The hand-written grammar fares quite
well on most types of questions, which are very fre-
quent in this domain. In the spirit of the shared
task, we have not attempted to correct tagging errors,
which were frequent in the CHILDES domain. We
have restricted the use of external resources to the
hand-written, domain-independent grammar, and to
WordNet. Due to serious problems in mapping our
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Figure 2: Example of original parser output

LFG f-structure based dependencies to the CoNLL
representation, much less time than expected was
available for the domain adaptation.

4 Our Results

We have achieved average results: Labeled attach-
ment score: 3151 / 5001 * 100 = 63.01, unlabeled at-
tachment score: 3327 / 5001 * 100 = 66.53, label ac-
curacy score: 3832 / 5001 * 100 = 76.62. These re-
sults are about 10 % below what we typically obtain
when using our own dependency representation or
GREVAL (Carroll et al., 2003), a deep-syntactic an-
notation scheme that is close to ours. Detailed eval-
uations are reported in (Schneider, 2007). Our map-
ping was quite poor, especially when conjunctions
are involved. Also punctuation is attached poorly.
5.7 % of all dependencies remained unmapped (un-
known in the figure). We give an overview of the the
relation-dependent results in figures 1 and 2.

Mapping problems include the following exam-
ples. First, headedness is handled very differently:
while we assume auxiliaries, prepositions and co-
ordinations to be dependents, the CoNNL repre-
sentation assumes the opposite, which leads to in-
correct mapping under complex interactions. Sec-
ond, the semantics of parentheticals (PRN) partly
remains unclear. In Quinidine elimination was
capacity limited with apparent Michaelis constant
(appKM) of 2.6 microM (about 1.2 mg/L) the gold
standard annotates the second parenthesis as paren-
thetical, but the first as nominal modification, al-
though both may be said to have appositional char-
acter. Third, we seem to have misinterpreted the
roles of ADV and AMOD, as they are often mutu-
ally exchanged. Fourth, the logical subject (LGS)
is sometimes marked on the by-PP (... are strongly
inhibited by-LGS carbon monoxide) and sometimes
on the participle (... are increased-LGS by pre-

deprel gold correct system recall (%) prec. (%)
ADV 366 212 302 57.92 70.20
AMOD 87 8 87 9.20 9.20
CC 11 0 0 0.00 NaN
COORD 402 233 342 57.96 68.13
DEP 9 0 0 0.00 NaN
EXP 2 0 0 0.00 NaN
GAP 14 0 0 0.00 NaN
IOBJ 3 0 0 0.00 NaN
LGS 37 0 0 0.00 NaN
NMOD 1813 1576 1763 86.93 89.39
OBJ 185 146 208 78.92 70.19
P 587 524 525 89.27 99.81
PMOD 681 533 648 78.27 82.25
PRN 34 13 68 38.24 19.12
ROOT 195 138 190 70.77 72.63
SBJ 279 217 296 77.78 73.31
VC 129 116 136 89.92 85.29
VMOD 167 116 149 69.46 77.85
unknown 0 0 287 NaN 0.00

Table 1: Prec.&recall of DEPREL

treatment) in the gold standard. Relations between
heads of chunks, which are central for predicate-
argument structures which Pro3Gres aims to re-
cover, such as SBJ, NMOD, ROOT, perform better
than those for which Pro3Gres was not originally
designed, particularly ADV, AMOD, PRN, P. Perfor-
mance on COORD was particularly disappointing.
Generally, mapping problems between different rep-
resentations would be smaller if one used a depen-
dency representation that maximally abstracts away
from form to function, for example (Carroll et al.,
2003).

We have obtained results slightly above average
on the CHILDES domain, although we did not adapt
the parser to this domain in any way (unlabeled at-
tachment score: 3013 / 4999 * 100 = 60.27 %).
The hand-written grammar, which includes rules for
most types of questions, fares relatively well on this
domain since questions are rare in the Penn Tree-
bank (see (Hermjakob, 2001)). Pro3Gres has been
employed for question parsing at a TREC confer-
ence (Burger and Bayer, 2005).
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deprel gold correct system recall (%) prec. (%)
ADV 366 161 302 43.99 53.31
AMOD 87 5 87 5.75 5.75
CC 11 0 0 0.00 NaN
COORD 402 170 342 42.29 49.71
DEP 9 0 0 0.00 NaN
EXP 2 0 0 0.00 NaN
GAP 14 0 0 0.00 NaN
IOBJ 3 0 0 0.00 NaN
LGS 37 0 0 0.00 NaN
NMOD 1813 1392 1763 76.78 78.96
OBJ 185 140 208 75.68 67.31
P 587 221 525 37.65 42.10
PMOD 681 521 648 76.51 80.40
PRN 34 12 68 35.29 17.65
ROOT 195 138 190 70.77 72.63
SBJ 279 190 296 68.10 64.19
VC 129 116 136 89.92 85.29
VMOD 167 85 149 50.90 57.05
unknown 0 0 287 NaN 0.00

Table 2: Prec.&recall of DEPREL+ATTACHMENT

5 Conclusion

We have described the Pro3Gres parser. We have
achieved average results in the shared task with rel-
atively little adaptation. Mapping to different repre-
sentations is an often underestimated task. Our per-
formance on the CHILDES task, where we did not
adapt the parser, indicates that hand-written, care-
fully engineered competence grammars may be rel-
atively domain-independent while performance dis-
ambiguation is more domain-dependent. We will
adapt the parser to further domains and include more
unsupervised learning methods.
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Abstract

Following (Blitzer et al., 2006), we present
an application of structural correspondence
learning to non-projective dependency pars-
ing (McDonald et al., 2005). To induce the
correspondences among dependency edges
from different domains, we looked at ev-
ery two tokens in a sentence and examined
whether or not there is a preposition, a de-
terminer or a helping verb between them.
Three binary linear classifiers were trained
to predict the existence of a preposition,
etc, on unlabeled data and we used singu-
lar value decomposition to induce new fea-
tures. During the training, the parser was
trained with these additional features in ad-
dition to these described in (McDonald et
al., 2005). We discriminatively trained our
parser in an on-line fashion using a vari-
ant of the voted perceptron (Collins, 2002;
Collins and Roark, 2004; Crammer and
Singer, 2003).

1 Introduction

We have recently seen growing popularity of depen-
dency parsing. It is no longer rare to see dependency
relations used as features, in tasks such as machine
translation (Ding and Palmer, 2005) and relation ex-
traction (Bunescu and Mooney, 2005). However,
there is one factor that prevents the use of depen-
dency parsing: sparseness of annotated corpora out-
side Wall Street Journal. In many situations we need
to parse sentences from a target domain with no la-
beled data, which is a different distribution from a

source domain where plentiful labeled training data
is available.

In this paper, we investigate the effectiveness of
structural correspondence learning (SCL) (Blitzer
et al., 2006) in the domain adaptation task given by
the CoNLL 2007. They hypothesize that a model
trained in the source domain using this common fea-
ture representation will generalize better to the tar-
get domain, and focus on using unlabeled data from
both the source and target domains to learn a com-
mon feature representation that is meaningful across
both domains.

The paper is structured as follows: in section
2, we review the decoding and learning aspects of
(McDonald et al., 2005), in section 3, structural cor-
respondence learning applied to dependency pars-
ing, and in section 4, we describe the experiments
and the features needed for the CoNLL 2006 shared
task.

2 Non-Projective Dependency Parsing

2.1 Dependency Structure

Let us definex to be a generic sequence of input to-
kens together with their POS tags and other morpho-
logical features, andy to be a generic dependency
structure, that is, a set of edges forx.

A labeled edge is a tuple〈DEPREL, i → j〉where
i is the start point of the edge,j is the end point, and
DEPREL is the label of the edge. The token ati is
the head of the token atj.

Table 1 shows our formulation of a structured pre-
diction problem. Givenx, the input tokens and their
features (column 2 and 3, Table 1), the task is to pre-
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Index Token POS Labeled Edge
1 John NN 〈SUBJ, 2 → 1〉
2 saw VBD 〈PRED, 0 → 2〉
3 a DT 〈DET, 4 → 3〉
4 dog NN 〈OBJ, 2 → 4〉
5 yesterday RB 〈ADJU, 2 → 5〉
6 which WDT 〈MODWH, 7 → 6〉
7 was VBD 〈MODPRED, 4 → 7〉
8 a DT 〈DET, 10 → 8〉
9 Yorkshire NN 〈MODN, 10 → 9〉
10 Terrier NN 〈OBJ, 7 → 10〉
11 . . 〈., 10 → 11〉

Table 1: Example Edges

dict y, the set of labeled edges (column 4, Table 1).
In this paper we use the common method of fac-

toring the score of the dependency structure as the
sum of the scores of all the labeled edges. A de-
pendency structure is characterized by its labeled
edges, and for each labeled edge, we have features
and corresponding weights. The score of a depen-
dency structure is the sum of these weights.

For example, let us say we would like to find the
score of the labeled edge〈OBJ, 2 → 4〉. This is the
edge going to the 4th token ”dog” in Table 1. The
features for this edge could be:

• There is an edge starting at saw, with the POS tag VBD,
and the distance between the head and the child is 2. (
head = wordj , headPOS = posj , dist(i, j) = |i− j| )

• There is an edge ending at dog, with the POS tag NN,
and the distance between the head and the child is 2. (
child = wordi, childPOS = posi, dist(i, j) = |i− j| )

In the upcoming section, we explain a decoding
algorithm for the dependency structures, and later
we give a method for learning the weight vector used
in the decoding.

2.2 Maximum Spanning Tree Algorithm

As in (McDonald et al., 2005), we use Chu-Liu-
Edmonds (CLE) algorithm (Chu and Liu, 1965; Ed-
monds, 1967) for decoding. CLE finds the Maxi-
mum Spanning Tree in a directed graph. The follow-
ing is a summary given in (McDonald et al., 2005).

Informally, the algorithm has each vertex in the
graph greedily select the incoming edge with high-
est weight.

Note that the edge is coming from the parent to
the child. That is, given a child nodewordj , we are
finding the parent, or the headwordi such that the
edge(i, j) has the highest weight among alli, i 6= j.

If a tree results, then this must be the maximum
spanning tree. If not, there must be a cycle. The
procedure identifies a cycle and contracts it into a
single vertex and recalculates edge weights going
into and out of the cycle. It can be shown that a
maximum spanning tree on the contracted graph is
equivalent to a maximum spanning tree in the orig-
inal graph (Leonidas, 2003). Hence the algorithm
can recursively call itself on the new graph.

2.3 Online Learning

Again following (McDonald et al., 2005), we have
used the single best MIRA (Crammer and Singer,
2003), which is a “margin aware” variant of percep-
tron (Collins, 2002; Collins and Roark, 2004) for
structured prediction. In short, the update is exe-
cuted when the decoder fails to predict the correct
parse, and we compare the correct parseyt and the
incorrect parsey′ suggested by the decoding algo-
rithm. The weights of the features iny′ will be low-
ered, and the weights of the features inyt will be
increased accordingly.

3 Domain Adaptation

Following (Blitzer et al., 2006), we present an appli-
cation of structural correspondence learning (SCL)
to non-projective dependency parsing (McDonald
et al., 2005). SCL is a method for adapting a clas-
sifier learned in a source domain to a target domain.
We assume that both domains have unlabeled data,
but only the source domain has labeled training data.

SCL works as follows: 1. Define a set of pivot
features on the unlabeled data from both domains. 2.
Use these pivot features to learn a mapping from the
original feature spaces of both domains to a shared,
low-dimensional real-valued feature space. A high
inner product in this new space indicates a high de-
gree of correspondence. 3. Use both the transformed
and original features from the source domain. 4.
Again using both the transformed and original fea-
tures, test the samples from the target domain. If we
learned a good mapping, then the effectiveness of
the classifier in the source domain should transfer to
the target domain.

To induce the correspondences among depen-
dency edges in the source domain and the target
domain, we looked at every two tokens in a sen-
tence and examined whether or not there is a prepo-
sition, a determiner or a helping verb between them.
Although no edge is present in unlabeled data, the
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presence of a preposition indicates that this edge be-
tween the tokens, if existed, will not be a noun mod-
ifier (in English corpus, this label is NMOD). Thus,
this induced feature should correlate with the label
of an edge candidate. We postulate that the label of
an edge candidate, if known, may allow the super-
vised learner to choose the correct edge among the
edge candidates in the target domain.

In the first step, we chose the presence of a prepo-
sition, a determiner or a helping verb between tokens
as pivot features. Then three binary linear classifiers
were trained to predict the existence of a preposi-
tion (prep), determiner (det) and helping verb (hv)
on unlabeled data and obtained a weight vector for
each classifier.

classifierprep(e) = sign(wprepφ(e))

classifierdet(e) = sign(wdetφ(e))

classifierhv(e) = sign(whvφ(e))

The input to the above classifiers is an edgee in-
stead of a whole sentencex. φ is a mapping from
an edge to a feature vector. Since POS tags were
not available in unlabeled data, for pivot predictors,
we took the subset of the features given by an edge.
The features for pivot predictors are listed in Table 2.
The reminder of the features are the same as ones
used in (McDonald et al., 2005).

Using each weight vector as a column, we created
a weight matrix. W = [wprep|wdet|whv ]. And run a
singular value decomposition to induce a lower di-
mensional feature space.W = UΣV . We then took
the transpose of the resulting unitary matrix,U⊤

which maps the original data to the space spanned
by the principal components, and applied it to the
feature vector of every potential edge. The origi-

nal feature vector is
(

fsubset

freminder

)

. We argument the

feature vector with the additional feature induced by

U⊤. The augmented feature vectors

(

fsubset

freminder

U⊤fsubset

)

were used throughout the training and testing of the
dependency parser.

4 Experiments

Our experiments were conducted on CoNLL-2007
shared task domain adaptation track (Nivre et al.,
2007) using treebanks (Marcus et al., 1993; Johans-
son and Nugues, 2007; Kulick et al., 2004).

Given an edge〈DEPREL, i, j〉
head−1 = wordi−1

head = wordi

head+1 = wordi+1

child−1 = wordj−1

child = wordj

child+1 = wordj+1

Table 2: Binary Features for Pivot Predictors

4.1 Dependency Relation

The CLE algorithm works on a directed graph with
unlabeled edges. Since the CoNLL shared task
requires the labeling of edges, as a preprocessing
stage, we created a directed complete graph. Then
we labeled each edge with the highest scoring de-
pendency relation. This complete graph was given
to the CLE algorithm and the edge labels were never
altered in the course of finding the maximum span-
ning tree.

4.2 Features

The features we used for pivot predictors to classify
each edge〈DEPREL, i, j〉 are shown in Table 2. The
index i is the position of the parent andj is that of
the child.

wordj = the word token at the positionj.
posj = the coarse part-of-speech atj.

No other features were used beyond the combina-
tions of the word token in Table 2.

The hardware used was an Intel CPU at 3.0 Ghz
with 32 GB of memory, and the software was writ-
ten in C++. While more iterations should help, due
to the time constraints, we were unable to complete
more training. The parser required a few days to
train.

5 Results

Unfortunately, we have discovered a bug in our
codes after submitting our results for the blind tests,
and the reported results in (Nivre et al., 2007) were
not representative of our approach. The current re-
sults (closed class) are shown in Table 3.

For the explanations of Labeled Attachment
Score, Unlabeled Attachment Score and Label Ac-
curacy, the readers are suggested to refer to the
shared task introductory paper (Nivre et al., 2007).
WSJ represents the application of the parser without
SCL to the source domain test set, and WSJ-SCL
the parser with SCL to the same test set. Similarily
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Domain LAS UAS Label Accuracy
WSJ 83.01%→ 83.43% 86.43%→ 86.81% 88.77%→ 88.99%
WSJ-SCL 83.43%→ 83.59% 86.87%→ 86.93% 88.75%→ 89.01%
Chem 74.75%→ 75.18% 80.74%→ 81.24% 82.34%→ 82.70%
Chem-SCL 75.04%→ 74.91% 81.02%→ 80.82% 82.18%→ 82.18%

Table 3: Labeled Attachment Score, Unlabeled Attachment Score and Label Accuracy

Chem and Chem-SCL represents the application of
the parser without SCL and with SCL to the source
domain test set respectively. We did batch learn-
ing by running the online algorithm 4 times. An
arrow → indicates how the results after 2nd itera-
tion changed at the end of 4th iteration. Contrary
to our expectations, we seem to see SCL overfitting
to the source domain WSJ in this experiment. Due
to the lack of POS tags in unlabeled data, our fea-
ture set for pivot predictors uses tokens extensively
unlike that for the dependency parser. Since tokens
are not as abstract as POS tags, we suspect induced
features may have caused overfitting.

6 Conclusion

We presented an application of structural correspon-
dence learning to non-projective dependency pars-
ing. Effectiveness of SCL for domain adaptation is
mixed in this experiment perhaps due to the mis-
match between feature sets. Future work includes
use of more sophisticated features such as POS and
other morphological features, possibly a joint do-
main adaptation of POS tagging and dependency
parsing for unlabeled data as well as re-examination
of pivot features.
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Abstract

We describe our submission to the domain
adaptation track of the CoNLL07 shared
task in the open class for systems using ex-
ternal resources. Our main finding was that
it was very difficult to map from the annota-
tion scheme used to prepare training and de-
velopment data to one that could be used to
effectively train and adapt the RASP system
unlexicalized parse ranking model. Never-
theless, we were able to demonstrate a sig-
nificant improvement in performance utiliz-
ing bootstrapping over the PBIOTB data.

1 Introduction

The CoNLL07 domain adaptation task was created
to explore how a parser trained in one domain might
be adapted to a new one. The training data were
drawn from the PTB (Marcus et al., 1993) rean-
notated with dependency relations (Johansson and
Nugues, 2007, hereafter DRs). The test data were
taken from a corpus of biomedical articles (Kulick
et al., 2004) and the CHILDES database (Brown,
1973; MacWhinney, 2000) also reannotated with
DRs (see Nivre et al., 2007) for further details of
the task, annotation format, and evaluation scheme.
The development data consisted of a small amount
of annotated and unannotated biomedical and con-
versational data.

The RASP system (Briscoe et al., 2006) utilizes
a manually-developed grammar and outputs gram-
matical bilexical dependency relations (see Briscoe,
2006 for a detailed description, hereafter GRs). Wat-

son et al. (2007) describe a semi-supervised, boot-
strapping approach to training the parser which uti-
lizes unlabelled partially-bracketed input with re-
spect to the system derivations. For the domain
adaptation task we retrained RASP by mapping our
GR scheme to the DR scheme and annotation for-
mat, and used this mapping to select a derivation
to train the unlexicalized parse ranking model from
the annotated PTB training data. We also performed
similar partially-supervised bootstrapping over the
200 annotated biomedical sentences in the develop-
ment data. We then tried unsupervised bootstrap-
ping from the unannotated development data based
on these initial models.

As the parser requires input to consist of a se-
quence of one of 150 CLAWS PoS tags, we also uti-
lize a first-order HMM PoS tagger which has been
trained on manually-annotated data from the LOB,
BNC and Susanne Corpora (see Briscoe, 2006 for
further details). Accordingly, we submitted our re-
sults in the open class.

2 Training and Adaptation

The RASP parser is a generalized LR parser which
builds a non-deterministic generalized LALR(1)
parse table from the grammar (Tomita, 1987). A
context-free ‘backbone’ is automatically derived
from a unification grammar. The residue of fea-
tures not incorporated into the backbone are unified
on each reduce action and if unification fails the as-
sociated derivation paths also fail. The parser cre-
ates a packed parse forest represented as a graph-
structured stack.

Inui et al. (1997) describe the probability model
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utilized in the system where a transition is repre-
sented by the probability of moving from one stack
state, σi−1, (an instance of the graph structured
stack) to another, σi. They estimate this probability
using the stack-top state si−1, next input symbol li
and next action ai. This probability is conditioned
on the type of state si−1. Ss and Sr are mutually
exclusive sets of states which represent those states
reached after shift or reduce actions, respectively.
The probability of an action is estimated as:

P (li, ai, σi|σi−1) ≈
{

P (li, ai|si−1) si−1 ∈ Ss

P (ai|si−1, li) si−1 ∈ Sr

}

Therefore, normalization is performed over all
lookaheads for a state or over each lookahead for the
state depending on whether the state is a member of
Ss or Sr, respectively. In addition, Laplace estima-
tion can be used to ensure that all actions in the table
are assigned a non-zero probability.

These probabilities are estimated from counts
of actions which yield derivations compatible with
training data. We use a confidence-based self-
training approach to select derivations compatible
with the annotation of the training and development
data to train the model. In Watson et al. (2007), we
utilized unlabelled partially-bracketed training data
as the starting point for this semi-supervised train-
ing process. Here we start from the DR-annotated
training data, map it to GRs, and then find the one
or more derivations in our grammar which yield GR
output consistent with the GRs recovered from the
DR scheme. Following Watson et al. (2007), we
utilize the subset of sentences in the training data
for which there is a single derivation consistent with
this mapping to build an initial trained parse ranking
model. Then we use this model to rank the deriva-
tions consistent with the mapping in the portion of
the training data which remains ambiguous given
the mapping. We then train a new model based on
counts from these consistent derivations which are
weighted in some manner by our confidence in them,
given both the degree of remaining ambiguity and
also the ranking and/or derivation probabilities pro-
vided by the initial model.

Thus, the first and hardest step was to map the
DR scheme to our GR scheme. Issues concerning

this mapping are discussed in section 4. Given this
mapping, we determined the subset of sentences in
the (PTB) training data for which there was a sin-
gle derivation in the grammar compatible with the
set of mapped GRs. These derivations were used
to create the initial trained model (B) from the uni-
form model (A). To evaluate the performance of
these and subsequent models, we tested them using
our own GR-based evaluation scheme over 560 sen-
tences from our reannotated version of DepBank, a
subset of section 23 of the WSJ PTB (see Briscoe
& Carroll, 2006). Table 1 gives the unlabelled pre-
cision, recall and microaveraged F1 score of these
models over this data. Model B was used to rerank
derivations compatible with the mapped GRs recov-
ered for the PTB training data. Model C was built
from the weighted counts of actions in the initial set
of unambiguous data and from the highest-ranked
derivations over the training data (i.e. we do not in-
clude duplicate counts from the unambiguous data).
Counts were weighted with scores ranging [0 − 1]
corresponding to the overall probability of the rel-
evant derivation. The evaluation shows a steady
increase in performance for these successive mod-
els. We also explored other variants of this boot-
strapping approach involving use of weighted counts
from the top n ranked parses derived from the initial
model (see Watson et al., 2007, for details), but none
performed better than simply selecting the highest-
ranked derivation.

To adapt the trained parser, we used the same
technique for the 200 in-domain biomedical sen-
tences (PBIOTB), using Model C to find the highest-
ranked parse compatible with the annotation, and
derived Model D from the combined counts from
this and the previous training data. We then used
Model D to rank the parses for the unannotated
in-domain data (PBIOTB unsupervised), and de-
rived Model E from the combined counts from the
highest-ranked parses for all of the training and de-
velopment data. We then iterated this process two
more times over the unannotated datasets (each with
an increasing number of examples though increas-
ingly less relevant to the test data). The performance
over our out-of-domain PTB-derived test data re-
mains approximately the same for all these models.
Therefore, we chose to use Model G for the blind
test as it incorporates most information from the in-
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Mdl. Data Init. Prec. Rec. F1

A Uniform - 71.06 69.00 70.01
PTB

B Unambig. A 75.94 73.16 74.53
C Ambig. B 77.88 75.11 76.47

PBIOTB
D Supervised C 77.86 75.09 76.45
E Unsup. 1 D 77.98 75.25 76.59
F Unsup. 2 E 77.85 75.19 76.50
G Unsup. 3 F 77.76 75.09 76.41

CHILDES
H Unsup. 1 C 78.34 75.59 76.94

Table 1: Performance of Successive Bootstrapping
Models

Score Avg. Std
PCHEMTB - labelled 55.47 65.11 09.64
PCHEMTB - unlab.ed 62.79 70.24 08.14
CHILDES - unlab.ed 45.61 56.12 09.17

Table 2: Official Scores

domain data. For the CHILDES data we performed
one iteration of unsupervised adaptation in the same
manner starting from Model C.

3 Evaluation

For the blind test submission we used Models G and
H to parse the PCHEMTB and CHILDES data, re-
spectively. We then mapped our GR output from
the highest-ranked parses to the DR scheme and an-
notation format required by the CoNLL evaluation
script. Our reported results are given in Table 2.

We used the annotated versions of the blind test
data supplied after the official evaluation to assess
the degree of adaptation of the parser to the in-
domain data. We mapped from the DR scheme and
annotation format to our GR format and used our
evaluation script to calculate the precision, recall
and microaveraged F1 score for the unadapted mod-
els and their adapted counterparts on the blind test
data, given in Table 3. The results for CHILDES
show no evidence of adaptation to the domain. How-
ever, those for PCHEMTB show a statistically sig-
nificant (Wilcoxin Signed Ranks) improvement over
the initial model. The generally higher scores in

Model Test Data Prec. Rec. F1

C PCHEMTB 71.58 73.69 72.62
G PCHEMTB 72.32 74.56 73.42
C CHILDES 82.64 65.18 72.88
H CHILDES 81.71 64.58 72.14

Table 3: Performance of (Un)Adapted Models

Table 3, as compared to Table 2, reflect the differ-
ences between the task annotation scheme and our
GR representation as well as those of the evaluation
schemes, which we discuss in the next section.

4 Discussion

The biggest issue for us participating in the shared
task was the difficulty of reconciling the DR an-
notation scheme with our GR scheme, given the
often implicit and sometimes radical underlying
differences in linguistic assumptions between the
schemes.

Firstly, the PoS tagsets are different and ours con-
tains three times the number of tags. Given that the
grammar uses these tags as preterminal categories,
this puts us at a disadvantage in mapping the anno-
tated training and development data to optimal input
to train the (semi-)supervised models.

Secondly, there are 17 main types of GR rela-
tion and a total of 46 distinctions when GR sub-
types are taken into account – for instance the GR
ncsubj has two subtypes depending on whether the
surface subject is the underlying object of a passive
clause. The DR scheme has far fewer distinctions
creating similar difficulties when creating optimal
(semi-)supervised training data.

Thirdly, the topology of the dependency graphs
is often significantly different because of reversed
head-dependent bilexical relations and their knock-
on effects – for instance, the DR AUX relation treats
the (leftmost) auxiliary as head and modifiers of the
verb group attach to the leftmost auxiliary, while the
GR scheme treats the main verb as (semantic) head
and modifiers of the verb group attach to it.

Fourthly, the treatment of punctuation is very dif-
ferent. The DR scheme includes punctuation mark-
ers in DRs which attach to the root of the subgraph
over which they have scope. By contrast, the GR
scheme does not output punctuation marks directly
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but follows Nunberg’s (1990) linguistic analysis of
punctuation as delimiting and typing text units or
adjuncts (at constituent boundaries). Thus the GR
scheme includes text (adjunct) relations and treats
punctuation marks as indicators of such relations –
for instance, for the example The subject GRs – nc-
subj, xsubj and csubj – all have subtypes., RASP
outputs the GR (ta dash GRs and) indicating that
the dash-delimited parenthetical is a text adjunct of
GRs with head and, while the DR scheme gives
(DEP GRs and), and two (P and –) relations cor-
responding to each dash mark.

Although we attempted to derive an optimal and
error-free mapping between the schemes, this was
hampered by the lack of information concerning the
DR scheme, lack of time, and the very different ap-
proaches to punctuation. This undoubtedly limited
our ability to train effectively from the PTB data and
to adapt the trained parser using the in-domain data.
For instance, the mean average unlabelled F1 score
between the GRs mapped from the annotated PTB
training data and closest matching set of GRs output
by RASP for this data is 84.56 with a standard de-
viation of 12.41. This means that the closest match-
ing derivation which is used for training the initial
model is on average only around 85% similar even
by the unlabelled measure. Thus, the mapping pro-
cedure required to relate the annotated data to RASP
derivations is introducing considerable noise into the
training process.

Mapping difficulties also depressed our official
scores very significantly. In training and adapting
we found that bootstrapping based on unlabelled de-
pendencies worked better in all cases than utilizing
the labelled mapping we derived. For the official
submission, we removed all ta, quote and passive
GRs and mapped all punctuation marks to the P re-
lation with head 0. Furthermore, we do not generate
a root relation, though we assumed any word that
was not a dependent in other GRs to have the depen-
dent ROOT. In our own evaluations based on map-
ping the annotated training and development data to
our GR scheme, we remove all P relations and map
ROOT relations to the type root which we added
to our GR hierarchy. We determined the semantic
head of each parse during training so as to compare
against the root GR and better utilize this additional
information. In the results given in Table 1 over our

DepBank test set, the effect of removing the P de-
pendencies is to depress the F1 scores by over 20%.
For the CHILDES and PCHEMTB blind test data,
our F1 scores improve by over 7% and just under 9%
respectively when we factor out the effect of P rela-
tions. These figures give an indication of the scale
of the problem caused by these representional differ-
ences.

5 Conclusions

The main conclusion that we draw from this experi-
ence is that it is very difficult to effectively relate lin-
guistic annotations even when these are inspired by
a similar (dependency-based) theoretical tradition.
The scores we achieved were undoubtedly further
depressed by the need to use a partially-supervised
boostrapping approach to training because the DR
scheme is less informative than the GR one, and by
our decision to use an entirely unlexicalized parse
ranking model for these experiments. Despite these
difficulties, performance on the PCHEMTB dataset
using the adapted model improved significantly over
that of the unadapted model, suggesting that boot-
strapping using confidence-based self-training is a
viable technique.

Acknowledgements

This research has been partially supported by the
EPSRC via the RASP project (grants GR/N36462
and GR/N36493) and the ACLEX project (grant
GR/T19919). The first author is funded by the
Overseas Research Students Awards Scheme and the
Poynton Scholarship appointed by the Cambridge
Australia Trust in collaboration with the Cambridge
Commonwealth Trust.

References

E. Briscoe (2006) An introduction to tag sequence
grammars and the RASP system parser, Univer-
sity of Cambridge, Computer Laboratory Techni-
cal Report, UCAM-CL-TR-662.

E. Briscoe and J. Carroll (2006) ‘Evaluating the Ac-
curacy of an Unlexicalized
Statistical Parser on the PARC DepBank’, Pro-
ceedings of the ACL-Coling’06, Sydney, Aus-
tralia.

1173



Briscoe, E.J., J. Carroll and R. Watson (2006) ‘The
Second Release of the RASP System’, Proceed-
ings of the ACL-Coling’06, Sydney, Australia.

R. Brown (1973) A First Language: The Early
Stages, Harvard University Press.

Inui, K., V. Sornlertlamvanich, H. Tanaka and
T. Tokunaga (1997) ‘A new formalization of prob-
abilistic GLR parsing’, Proceedings of the 5th
International Workshop on Parsing Technologies,
MIT, Cambridge, Massachusetts, pp. 123–134.

R. Johansson and P. Nugues (2007) Extended
Constituent-to-Dependency Conversion for En-
glish, NODALIDA16.

S. Kulick, A. Bies, M. Liberman, M. Mandel, R.
McDonald, M. Palmer, A. Schein and L. Ungar
(2004) ‘Integrated Annotation for Biomedical In-
formation Extraction’, Proceedings of the HLT-
NAACL2004, Boston, MA..

B. MacWhinney (2000) The CHILDES Project:
Tools for Analyzing Talk, Lawrence Erlbaum.

M. Marcus, B. Santorini and M. Marcinkiewicz
(1993) ‘Building a Large Annotated Corpus of
English: the Penn Treebank’, Computational Lin-
guistics, vol.19.2, 313–330.
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Abstract 

In this paper, we present a three-step mul-
tilingual dependency parser based on a 
deterministic shift-reduce parsing algo-
rithm. Different from last year, we sepa-
rate the root-parsing strategy as sequential 
labeling task and try to link the neighbor 
word dependences via a near neighbor 
parsing. The outputs of the root and 
neighbor parsers were encoded as features 
for the shift-reduce parser. In addition, the 
learners we used for the two parsers and 
the shift-reduce parser are quite different 
(conditional random fields and the modi-
fied finite-Newton method support vector 
machines). We found that our method 
could benefit from the two-preprocessing 
stages. To speed up training, in this year, 
we employ the MFN-SVM (modified fi-
nite-Newton method support vector ma-
chines) which can be learned in linear 
time. The experimental results show that 
our method achieved the middle rank over 
the 23 teams. We expect that our method 
could be further improved via well-tuned 
parameter validations for different lan-
guages. 

1 Introduction 

The target of dependency parsing is to 
automatically recognize the head-modifier 
relationships between words in natural language 
sentences. Usually, a dependency parser can 
construct a similar grammar tree with the 
dependency graph. In this year, CoNLL-2007 
shared task (Nivre et al., 2007) focuses on 

multilingual dependency parsing based on ten 
different languages (Hajic et al., 2004; Aduriz et 
al., 2003; Martí et al., 2007; Chen et al., 2003; 
Böhmova et al., 2003; Marcus et al., 1993; 
Johansson and Nugues, 2007; Prokopidis et al., 
2005; Czendes et al., 2005; Montemagni et al., 
2003; Oflazer et al., 2003) and domain adaptation 
for English (Marcus et al., 1993; Johansson and 
Nugues, 2007; Kulick et al., 2004; MacWhinney, 
2000; Brown, 1973) without taking the language-
specific knowledge into consideration. The 
ultimate goal of them is to design ideal 
multilingual and domain portable dependency 
parsing systems. 

To accomplish the multilingual and domain ad-
aptation tasks, we present a three-pass parsing 
model based on a shift-reducing algorithm (Ya-
mada and Matsumoto, 2003; Chang et al., 2006), 
namely, neighbor parsing, root relation parsing, 
and shift-reduce parsing. Our method favors exam-
ining the “un-parsed” tokens, which incrementally 
shrink. At the beginning, the parsing direction is 
mainly determined by the amount of un-parsed 
tokens in the sentence with either forward or 
backward parse. In this step, the projective parsing 
method can be used to evaluate most of the non-
projective Treebank datasets. Once the direction is 
determined, the pseudo-projectivize transformation 
algorithm (Nivre and Nilsson, 2005) converts most 
non-projective training data into projective and 
decodes the parsed text into non-projective. Here-
after, both neighbor-parser and root-parser were 
trained to discovery additional features for the 
downstream shift-reduce parse model. We found 
that the two additional features could improve the 
performance. Subsequently, the modified shift-
reduce parsing algorithm starts to parse the final 
dependencies with two-pass processing, i.e., pre-
dict parse action and label the relations.  
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In the remainder of this paper, Section 2 de-
scribes the proposed parsing model, and Section 3 
lists the experimental settings and results. Section 
4 presents the discussion and analysis of our parser. 
In Section 5, we draw the future direction and con-
clusion. 

2 System Description 

Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word 
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum 
spanning tree (MST) (McDonald et al., 2005), 
shift-reduce-based deterministic parsing (Yamada 
and Matsumoto, 2003; Chang et al., 2006; Nivre, 
2003). Among them, the shift-reduce methods 
were shown to be the most efficient method, which 
only costs at most 2n~3n actions to parse a sen-
tence (Chang et al., 2006; Nivre, 2003). Chang et 
al. (2006) further added the “wait-right” action to 
the words that had children and could not be re-
duced in current state. This could avoid the so-
called “too early reduce” problems.  

The overall parsing model can be found in Fig-
ure 1. Figure 2 illustrates the detail system spec of 
our parsing model. 

 

 
Figure 1: System architecture 

 

2.1 Neighbor Parser 

As shown in Figure 1, the first step is to identify 
the neighbor head-modifier relations between two 
consecutive words. Cheng et al. (2006) also re-
ported that the use of neighboring dependency at-
tachment tagger enhance the unlabeled attachment 
scores from 84.38 to 84.6 for 13 languages. Usu-
ally, it is the case that the select features are fixed 
and could not be tuned to capture the second order 
features (McDonald et al., 2006). At each location, 
there the focus and next words are always com-
pared. It may fail to link the next and next+1 word 
pair since the next word might be reduced due to 
an earlier wrong decision.   

 
Ⅰ. Parsing Algorithm:

  

1. Neighbor Parser 
2. Root Parser 
3. Shift-Reduce Algorithm (Yamada 
and Matsumoto, 2003) 

Ⅱ. Parser Characteris-
tics: 

 

1. Deterministic 
2. two-pass (Labeling separated) 
3. Pseudo-Projective en(de)-coding 
(Nivre and Nilsson, 2005) 

Ⅲ. Learner: MFN-SVM 
(1) One-versus-All 
(2) Linear Kernel 

Ⅳ. Feature Set: 

  

1. Lexical (Unigram/Bigram) 
2. Fine-grained POS (and BiPOS) 
3. Lemma/FEAT used 

Ⅴ. Post-Processing: Non-Used 

Ⅵ. Additional/External 
Resources: Non-Used 

Figure 2: System spec  
 
However, starting parsing based on the result of 

neighbor parsing is not a good idea since it could 
produce error propagation problems. Rather, we 
include the result of our neighbor parsing as fea-
tures to increase the original feature set. In the pre-
liminary study, we found that the derived features 
are very useful for most languages. 

As conventional sequential tagging problems, 
such part-of-speech tagging and phrase chunking, 
we employ the conditional random fields (CRF) as 
learners (Kudo et al., 2004). The basic idea of the 
neighbor parsing can be shown in Figure 3.  

The first and second colums in Figure 3 repre-
sents the basic word and fine-grained POS froms, 
while the third column indicates if this word has 
the LH (left-head) or RH (right-head) with associ-
ated relations or O (no neighbor head in either left 
or right neighbor word). The used features are:  
Word, fine-grained POS, bigram, and bi-POS with 
context window = 2(left) and 4(right) 
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Figure 3: Sequential tagging model for neighbor 

parse 
 

Unfortunately, for some languages, like Chi-
nese and Czech, training with CRF is because of 
the large number of features and the head relations. 
To make it practical, we focus on just three types: 
left head, right head, and out-of-neighbor. This 
effectively reduces most of the feature space for 
the CRF. The training time for the neighbor parser 
with only three categories is less than 5 minutes 
while it takes three days with taking all the relation 
tag into account. 

2.2 Root Parser 

After the neighbor parse, the tagged labels are 
good features for the root parse. In the second 
stage, the root parser identifies the root words in 
the sentence. Nevertheless, for some languages, 
such as Arabic and Czech, the roots might be sev-
eral types as against to Chinese and English in 
which the number of labels of roots is merely one. 
Similar to the neighbor parser, we also take the 
root label into account. As noted, for Chinese and 
English, the goal of the root parser can be reduced 
to determine whether the current word is root or 
not.  

 

 
Figure 4: Sequential tagging model for neighbor 

parse 
 

Similar to the neighbor parse, the root parsing 
task can also be treated as a sequential tagging 
problem. Figure 4 shows the basic concept of the 
root parser. The third column is mainly derived 
from the neighbor parser, while the fourth column 
represents whether the current word is a root with 
relation or not. 

2.3 Parsing Algorithm 

After adding the neighbor and root parser output as 
features, in the final stage, the modified Yamada’s 
shift-reduce parsing algorithm (Yamada and Ma-
tsumoto, 2003) is then run. This method is deter-
ministic and can deal with projective data only. 
There are three basic operation (action) types: Shift 
(S), Left (L), and Right (R). The operation is 
mainly determined via the classifier according to 
the selected features (see 2.4). Each time, the op-
eration is applied to two unparsed words, namely, 
focus and next. If there exists an arc between the 
two words (either left or right), then the head of 
focus or next word is found; otherwise (i.e., shift), 
next two words are considered at next stage. This 
method could be economically performed via 
maintaining two pointers, focus, and next without 
an explicit stack. The parse operation is iteratively 
run until no more relation can be found in the sen-
tence.  

In 2006, Chang et al. (2006) further reported 
that the use of “step-back” in comparison to the 
original “stay”. Furthermore, they also add the 
“wait-left” operations to prevent the “too early re-
duce” problems. In this way, the parse actions can 
be reduced to be bound in 3n where n is the num-
ber of words in a sentence. 

Now we compare the adopted parsing algorithm 
in this year to the one we employed last year (Wu 
et al., 2006a). The common characteristics are: 

 
1. the same number of parse operations (4) 
2. shift-reduce 
3. linearly scaled 
4. deterministic and projective 
 

On the contrary, their parse actions are quite dif-
ferent. Therefore these two methods have different 
run time. This gives the two methods rise to differ-
ent iterative times. The main reason is that the 
step-back might trace back to previous words, 
which can be viewed as pop the top words on the 
stack back to the unparsed strings, while the 
Nivre’s method does not trace-back any two words 
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in the stack. In other words, if a word is pushed 
into the stack, it will no longer be compared with 
the other deeper words inside the stack. Hence 
some of the non-root words in the stack remain to 
be parsed. A simple solution is to adopt an exhaus-
tive post-processing step for the unparsed words in 
the stack (details in (Wu et al., 2006a, 2006b)). 

A good advantage of the step-back is that it can 
trace back to the unparsed words in the stack. But 
theoretically, the required parse actions still more 
than the Nivre’s algorithm (2n vs. 3n). 

By adopting the projectivized en/de-coding over 
the modified Yamada’s algorithm, we can treat the 
words that do not have a parent as roots. Thus, for 
some languages (e.g. Czech and Arabic), the mul-
tiple root problem can be easily solved. In this year 
we separate the parse action and the relation label 
into two stages as opposed to having one pass last 
year. In this way, we can simply adopt a sequential 
tagger to auto-assign the relation labels after the 
whole sentence is parsed. 

2.4 Features and Learners 

Unlike last year, we did separate the action predic-
tion and the label recognition into two stages 
where the one of the learners could provide more 
information to another. The used features of the 
two learners are quite similar and listed as follows: 
 
Basic feature type (for previous 2 and next 3 words): 
Word, POS (fine-grained), Lemma, FEAT, NParse, 
RParse 
 
Enhanced feature type: 
Bigram, BiPOS for focus and next words 
previous two parse actions 
 
For label recognition: 
Label tag to its head, label tags for previous two 
words 

 
In this paper, we replicate and modify the modi-

fied finite Newton support vector machines (MFN-
SVM) (Keerthi and DeCoste, 2005) as the learner.  

The MFN-SVM is a very efficient SVM opti-
mization method which linearly scales with the 
number of training examples. Usually, the trained 
models from MFN-SVM are quite large that could 
not be processed in practice. We therefore defined 
the positive lower bound (10-10) and the negative 
upper bound (-10-10) to eliminate values that tend 
to be zero.  

However, the SVM is a binary classifier which 
only recognizes true or false. For multiclass prob-
lem, we use the so-called one-versus-all (OVA) 
method with linear kernel to combine the results of 
each individual classifier. The final class in testing 
phase is mainly determined by selecting the maxi-
mum similarity. 

For all languages, our parser uses the same set-
tings and features. For all the languages (except for 
Basque and Turkish), we use backward parsing 
direction to keep the un-parsed token rate low. 

3 Experimental Result 

3.1 Dataset and Evaluation Metrics 

The testing data is provided by the (Nivre et al., 
2007) which consists of 10 language treebanks. 
More detailed descriptions of the dataset can be 
found at the web site1. The experimental results are 
mainly evaluated by the unlabeled and labeled at-
tachment scores. CoNLL also provided a perl 
script to automatic compute these rates. 

3.2 Results 

Table 1 presents the overall parsing performance 
of the 10 languages. As shown in Table 1, we list 
two parsing results at column B and column C 
(new and old). It is worth to note that the result B 
is produced by training the neighbor parser with 
full labels instead of the three categories, 
left/right/out-of-neighbor. A is the official pro-
vided parse results. Some of the parsing results in 
A did not include the enhanced feature type and 
neighbor/root parses due to the time limitation. For 
the domain adaptation task, we directly use the 
trained English model to classify the PChemtb and 
CHILDES corpora without further adjustment. 

In addition, we also apply the Maltparser 0.4, 
which is implemented with the Nivre’s algorithm 
(Nivre et al., 2006) to be compared. The Maltpaser 
also includes the SVM and memory-based learner 
(MBL). Nevertheless, the training time complexity 
of the SVM in Maltparser is not linear time as 
MFN-SVM. Therefore we use the default MBL 
and feature model 3 (M3) in this experiment. To 
make a fair comparison, the input training data was 
also projectivized through the same pseudo-
projective encoding/decoding methods.  

                                                           
1 http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite 
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To perform the significant test, we evaluate the 
statistical difference among the three results. If the 
answer is “Yes”, it means the two systems are sig-
nificant difference under at least 95% confidence 
score (p < 0.05). 

The final column of the Table 1 lists the non-
root words unparsed rate of the modified Ya-
mada’s method and the Nivre’s parsing model 
which we employed last year. Among 10 lan-
guages, we can find that the modified Yamada’s 
method outperform our old method in five lan-
guages, while fail to win in three languages. We 
did not report the comparative study between the 
forward parsing and backward parsing directions 
here since only the two languages (Basque and 
Turkish) were better in performing forward direc-
tion. 

4 Discussion 

Now we turn to discuss the improvement of the use 
of the neighbor parse and root parse. All of the ex-
periments were conducted by additional runs 
where we removed the neighbor and root parse 
outputs from the feature set. In this experiment, we 
report four representative languages that tend to 
achieve the best and worst improvements. Table 2 
lists the comparative study of the four languages. 

As listed in Table 2, both English and Chinese 
got substantial benefit from the use of the two 
parsers. As observed by (Isozaki et al., 2004), in-
corporating both top-down (root find) and bottom-
up (base-NP) can yield better improvement over 

the Yamada’s parsing algorithm. Thus, instead of 
pre-determining the root and base-phrase structures, 
the tagging results of the neighbor and root parsers 
were included as new features to add wider infor-
mation for the shift-reduce parser. It is also inter-
esting to link neighbors and determine the root 
before parsing. We plan to compare it with out 
method in the future.  

 
Table 2: The effective of the used Neighbor/Root 

Parser in the selected four languages 
 With N/R Parser Without 
Chinese 79.29 75.51 
English 84.27 79.49 
Basque 72.26 72.32 
Turkish 75.65 76.60 

 
On the other hand, we also found that 2 out of 

the 10 languages had been negatively affected by 
the neighbor and root parsers. In Basque they made 
a marginally negative improvement, and in the 
Turkish the two parsers did decrease the original 
parsing models. We further observed that the main 
cause is that the weak performance of the neighbor 
parser. In Turkish, the recall/precision rates of the 
neighbor dependence are 92.61/93.12 with include 
neighbor parse outputs, while it achieved 
93.71/93.51 with purely run the modified Ya-
mada’s method. We can expect that the result 
could achieve higher LAS score when the neighbor 
parser is improved. As mentioned in section 2.1, 
2.2, the selected features for the two parsers are 
unified for the 10 languages. It is not surprising 

Table 1: A general statistical table of labeled attachment score, test and un-parsed rate (percentage) 
Statistic test  Un-Parsed Rate Language A 

(Official) 
B 

(Corrected)
C 

(Malt-Parser 0.4) A vs B A vs C B vs C Old New 
Arabic 66.16 70.71 56.67 Yes No Yes 1.08% 0.69%
Basque 70.71 72.26 57.79 Yes Yes Yes 3.04% 3.72%
Catalan 81.44 81.44 76.36 Yes No No 0.45% 0.27%
Chinese 74.69 79.29 68.15 Yes Yes Yes 0.00% 0.00%
Czech 66.72 70.24 56.96 Yes No Yes 4.17% 3.87%
English 79.49 84.27 75.53 Yes Yes Yes 1.66% 0.84%
Greek 70.63 77.64 58.81 No Yes Yes 2.26% 2.12%
Hungarian 69.08 71.98 59.41 Yes Yes Yes 3.88% 5.38%
Italian 78.79 78.38 74.08 Yes No Yes 0.63% 0.63%
Turkish 72.52 75.65 64.41 Yes Yes Yes 4.93% 5.54%
pchemtb_closed 55.31** 73.35 - - - - - -
*CHILDES_closed 52.89 58.29 - - - - - -
* The CHILDES data does not contain the relation tag, instead, the unlabeled attachment score is listed 
** The original submission of the pchemtb_closed task can not pass through the evaluator and hence is not the official score. After correcting 
the format problems, the actual LAS score should be 55.31. 
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that for certain data the fixed feature set might per-
form even worse than the original shift-reduce 
parser. A better way is to validate the features with 
variant settings for different languages. We left the 
feature engine task as future work. 

5 Conclusion and Future Remarks 

Multilingual dependency parsing investigates on 
proposing a general framework of dependence 
parsing algorithms. This paper presents and ana-
lyzes the impact of two preprocessing components, 
namely, neighbor parsing and root-parsing. Those 
two parsers provide very useful additional features 
for downstream shift-reduce parser. The experi-
mental results also demonstrated that the use of the 
two components did improve results for the se-
lected languages. In the error-analysis, we also ob-
served that for some languages, parameter tuning 
and feature selection is very important for system 
performance.  

In the future, we plan to report the actual per-
formance with replacing the MFN-SVM by the 
polynomial kernel SVM. In our pilot study, the use 
of approximate-polynomial kernel (Wu et al., 2007) 
outperforms the linear kernel SVM in Chinese and 
Arabic. Also, we are investigating how to convert 
the shift-reduce parser into approximate N-best 
parser efficiently. In this way, the parse reranking 
algorithm can be adopted to further improve the 
performance.  
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