@inproceedings{gautrais-etal-2017-topic,
title = "Topic Signatures in Political Campaign Speeches",
author = "Gautrais, Cl\'ement and
Cellier, Peggy and
Quiniou, Ren\'e and
Termier, Alexandre",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1249/",
doi = "10.18653/v1/D17-1249",
pages = "2342--2347",
abstract = "Highlighting the recurrence of topics usage in candidates speeches is a key feature to identify the main ideas of each candidate during a political campaign. In this paper, we present a method combining standard topic modeling with signature mining for analyzing topic recurrence in speeches of Clinton and Trump during the 2016 American presidential campaign. The results show that the method extracts automatically the main ideas of each candidate and, in addition, provides information about the evolution of these topics during the campaign."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gautrais-etal-2017-topic">
<titleInfo>
<title>Topic Signatures in Political Campaign Speeches</title>
</titleInfo>
<name type="personal">
<namePart type="given">Clément</namePart>
<namePart type="family">Gautrais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peggy</namePart>
<namePart type="family">Cellier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">René</namePart>
<namePart type="family">Quiniou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Termier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Highlighting the recurrence of topics usage in candidates speeches is a key feature to identify the main ideas of each candidate during a political campaign. In this paper, we present a method combining standard topic modeling with signature mining for analyzing topic recurrence in speeches of Clinton and Trump during the 2016 American presidential campaign. The results show that the method extracts automatically the main ideas of each candidate and, in addition, provides information about the evolution of these topics during the campaign.</abstract>
<identifier type="citekey">gautrais-etal-2017-topic</identifier>
<identifier type="doi">10.18653/v1/D17-1249</identifier>
<location>
<url>https://aclanthology.org/D17-1249/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2342</start>
<end>2347</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Topic Signatures in Political Campaign Speeches
%A Gautrais, Clément
%A Cellier, Peggy
%A Quiniou, René
%A Termier, Alexandre
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F gautrais-etal-2017-topic
%X Highlighting the recurrence of topics usage in candidates speeches is a key feature to identify the main ideas of each candidate during a political campaign. In this paper, we present a method combining standard topic modeling with signature mining for analyzing topic recurrence in speeches of Clinton and Trump during the 2016 American presidential campaign. The results show that the method extracts automatically the main ideas of each candidate and, in addition, provides information about the evolution of these topics during the campaign.
%R 10.18653/v1/D17-1249
%U https://aclanthology.org/D17-1249/
%U https://doi.org/10.18653/v1/D17-1249
%P 2342-2347
Markdown (Informal)
[Topic Signatures in Political Campaign Speeches](https://aclanthology.org/D17-1249/) (Gautrais et al., EMNLP 2017)
- Topic Signatures in Political Campaign Speeches (Gautrais et al., EMNLP 2017)
ACL
- Clément Gautrais, Peggy Cellier, René Quiniou, and Alexandre Termier. 2017. Topic Signatures in Political Campaign Speeches. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2342–2347, Copenhagen, Denmark. Association for Computational Linguistics.