
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 603–611,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Deterministic shift-reduce parsing for unification-based grammars by
using default unification

Takashi Ninomiya
Information Technology Center

University of Tokyo, Japan
ninomi@r.dl.itc.u-tokyo.ac.jp

Takuya Matsuzaki
Department of Computer Science

University of Tokyo, Japan
matuzaki@is.s.u-tokyo.ac.jp

Nobuyuki Shimizu

Information Technology Center
University of Tokyo, Japan

shimizu@r.dl.itc.u-tokyo.ac.jp

Hiroshi Nakagawa
Information Technology Center

University of Tokyo, Japan
nakagawa@dl.itc.u-tokyo.ac.jp

Abstract

Many parsing techniques including pa-
rameter estimation assume the use of a
packed parse forest for efficient and ac-
curate parsing. However, they have sev-
eral inherent problems deriving from the
restriction of locality in the packed parse
forest. Deterministic parsing is one of
solutions that can achieve simple and fast
parsing without the mechanisms of the
packed parse forest by accurately choos-
ing search paths. We propose (i) deter-
ministic shift-reduce parsing for unifica-
tion-based grammars, and (ii) best-first
shift-reduce parsing with beam threshold-
ing for unification-based grammars. De-
terministic parsing cannot simply be ap-
plied to unification-based grammar pars-
ing, which often fails because of its hard
constraints. Therefore, it is developed by
using default unification, which almost
always succeeds in unification by over-
writing inconsistent constraints in gram-
mars.

1 Introduction

Over the last few decades, probabilistic unifica-
tion-based grammar parsing has been investi-
gated intensively. Previous studies (Abney,
1997; Johnson et al., 1999; Kaplan et al., 2004;
Malouf and van Noord, 2004; Miyao and Tsujii,
2005; Riezler et al., 2000) defined a probabilistic
model of unification-based grammars, including

head-driven phrase structure grammar (HPSG),
lexical functional grammar (LFG) and combina-
tory categorial grammar (CCG), as a maximum
entropy model (Berger et al., 1996). Geman and
Johnson (Geman and Johnson, 2002) and Miyao
and Tsujii (Miyao and Tsujii, 2002) proposed a
feature forest, which is a dynamic programming
algorithm for estimating the probabilities of all
possible parse candidates. A feature forest can
estimate the model parameters without unpack-
ing the parse forest, i.e., the chart and its edges.

Feature forests have been used successfully
for probabilistic HPSG and CCG (Clark and Cur-
ran, 2004b; Miyao and Tsujii, 2005), and its
parsing is empirically known to be fast and accu-
rate, especially with supertagging (Clark and
Curran, 2004a; Ninomiya et al., 2007; Ninomiya
et al., 2006). Both estimation and parsing with
the packed parse forest, however, have several
inherent problems deriving from the restriction
of locality. First, feature functions can be de-
fined only for local structures, which limit the
parser’s performance. This is because parsers
segment parse trees into constituents and factor
equivalent constituents into a single constituent
(edge) in a chart to avoid the same calculation.
This also means that the semantic structures must
be segmented. This is a crucial problem when
we think of designing semantic structures other
than predicate argument structures, e.g., syn-
chronous grammars for machine translation. The
size of the constituents will be exponential if the
semantic structures are not segmented. Lastly,
we need delayed evaluation for evaluating fea-
ture functions. The application of feature func-
tions must be delayed until all the values in the

603

segmented constituents are instantiated. This is
because values in parse trees can propagate any-
where throughout the parse tree by unification.
For example, values may propagate from the root
node to terminal nodes, and the final form of the
terminal nodes is unknown until the parser fi-
nishes constructing the whole parse tree. Conse-
quently, the design of grammars, semantic struc-
tures, and feature functions becomes complex.
To solve the problem of locality, several ap-
proaches, such as reranking (Charniak and John-
son, 2005), shift-reduce parsing (Yamada and
Matsumoto, 2003), search optimization learning
(Daumé and Marcu, 2005) and sampling me-
thods (Malouf and van Noord, 2004; Nakagawa,
2007), were studied.

In this paper, we investigate shift-reduce pars-
ing approach for unification-based grammars
without the mechanisms of the packed parse for-
est. Shift-reduce parsing for CFG and dependen-
cy parsing have recently been studied (Nivre and
Scholz, 2004; Ratnaparkhi, 1997; Sagae and La-
vie, 2005, 2006; Yamada and Matsumoto, 2003),
through approaches based essentially on deter-
ministic parsing. These techniques, however,
cannot simply be applied to unification-based
grammar parsing because it can fail as a result of
its hard constraints in the grammar. Therefore,
in this study, we propose deterministic parsing
for unification-based grammars by using default
unification, which almost always succeeds in
unification by overwriting inconsistent con-
straints in the grammars. We further pursue
best-first shift-reduce parsing for unification-
based grammars.

Sections 2 and 3 explain unification-based
grammars and default unification, respectively.
Shift-reduce parsing for unification-based gram-
mars is presented in Section 4. Section 5 dis-
cusses our experiments, and Section 6 concludes
the paper.

2 Unification-based grammars

A unification-based grammar is defined as a pair
consisting of a set of lexical entries and a set of
phrase-structure rules. The lexical entries ex-
press word-specific characteristics, while the
phrase-structure rules describe constructions of
constituents in parse trees. Both the phrase-
structure rules and the lexical entries are
represented by feature structures (Carpenter,
1992), and constraints in the grammar are forced
by unification. Among the phrase-structure rules,
a binary rule is a partial function: ℱ × ℱ → ℱ ,

where ℱ is the set of all possible feature struc-
tures. The binary rule takes two partial parse
trees as daughters and returns a larger partial
parse tree that consists of the daughters and their
mother. A unary rule is a partial function: ℱ → ℱ, which corresponds to a unary branch.

In the experiments, we used an HPSG (Pollard
and Sag, 1994), which is one of the sophisticated
unification-based grammars in linguistics. Gen-
erally, an HPSG has a small number of phrase-
structure rules and a large number of lexical en-
tries. Figure 1 shows an example of HPSG pars-
ing of the sentence, “Spring has come.” The up-
per part of the figure shows a partial parse tree
for “has come,” which is obtained by unifying
each of the lexical entries for “has” and “come”
with a daughter feature structure of the head-
complement rule. Larger partial parse trees are
obtained by repeatedly applying phrase-structure
rules to lexical/phrasal partial parse trees. Final-
ly, the parse result is output as a parse tree that
dominates the sentence.

3 Default unification

Default unification was originally investigated in
a series of studies of lexical semantics, in order
to deal with default inheritance in a lexicon. It is
also desirable, however, for robust processing,
because (i) it almost always succeeds and (ii) a
feature structure is relaxed such that the amount
of information is maximized (Ninomiya et al.,
2002). In our experiments, we tested a simpli-
fied version of Copestake’s default unification.
Before explaining it, we first explain Carpenter’s

Figure 1: Example of HPSG parsing.

HEAD noun
SUBJ <>
COMPS <>

HEAD verb
HEAD noun

SUBJ < SUBJ <> >
COMPS <>

COMPS <>

HEAD verb
SUBJ < >
COMPS < >

HEAD verb
SUBJ < >
COMPS <>

head-comp

Spring has come

1

1 12
2

HEAD verb
SUBJ <>
COMPS <>

HEAD noun
SUBJ <>
COMPS <>

HEAD verb
SUBJ < >
COMPS <>

HEAD verb
SUBJ < >
COMPS < >

HEAD verb
SUBJ < >
COMPS <>

subject-head

head-comp

Spring has come

1

1 11 2
2

604

two definitions of default unification (Carpenter,
1993).

(Credulous Default Unification) 𝐹 ⊔ಬ 𝐺 = ൜𝐹 ⊔ 𝐺′ฬ𝐺 ′ ⊑ 𝐺 is maximal suchthat 𝐹 ⊔ 𝐺 ′is defined ൠ

(Skeptical Default Unification) 𝐹 ⊔ಬ ௦ 𝐺 = ⨅(𝐹 ⊔ಬ 𝐺)
 𝐹 is called a strict feature structure, whose in-
formation must not be lost, and 𝐺 is called a de-
fault feature structure, whose information can be
lost but as little as possible so that 𝐹 and 𝐺 can
be unified.

Credulous default unification is greedy, in that
it tries to maximize the amount of information
from the default feature structure, but it results in
a set of feature structures. Skeptical default un-
ification simply generalizes the set of feature
structures resulting from credulous default unifi-
cation. Skeptical default unification thus leads to
a unique result so that the default information
that can be found in every result of credulous
default unification remains. The following is an
example of skeptical default unification:

 [F: 𝐚] ⊔ಬ ୱ F: 1 𝐛G: 1H: 𝐜 = ⨅ ቐF: 𝐚G: 𝐛H: 𝐜൩ , F: 1 𝐚G: 1H: 𝐜 ቑ = F: 𝐚G: ⊥H: 𝐜൩.

Copestake mentioned that the problem with

Carpenter’s default unification is its time com-
plexity (Copestake, 1993). Carpenter’s default
unification takes exponential time to find the op-
timal answer, because it requires checking the
unifiability of the power set of constraints in a
default feature structure. Copestake thus pro-
posed another definition of default unification, as
follows. Let 𝑃𝑉(𝐺) be a function that returns a
set of path values in 𝐺, and let 𝑃𝐸(𝐺) be a func-
tion that returns a set of path equations, i.e., in-
formation about structure sharing in 𝐺.

(Copestake’s default unification) 𝐹 ⊔ಬ 𝐺 = 𝐻 ⊔ ⨆ ൝𝐹อ𝐹 ∈ 𝑃𝑉(𝐺)and there is no 𝐹′ ∈ 𝑃𝑉(𝐺)such that 𝐻 ⊔ 𝐹′is defined and𝐻 ⊔ 𝐹 ⊔ 𝐹′is not defined ൡ,

where 𝐻 = 𝐹 ⊔ ⨆ 𝑃𝐸(𝐺).

Copestake’s default unification works effi-
ciently because all path equations in the default
feature structure are unified with the strict fea-
ture structures, and because the unifiability of
path values is checked one by one for each node
in the result of unifying the path equations. The

implementation is almost the same as that of
normal unification, but each node of a feature
structure has a set of values marked as “strict” or
“default.” When types are involved, however, it
is not easy to find unifiable path values in the
default feature structure. Therefore, we imple-
mented a more simply typed version of Corpes-
take’s default unification.

Figure 2 shows the algorithm by which we
implemented the simply typed version. First,
each node is marked as “strict” if it belongs to a
strict feature structure and as “default” otherwise.
The marked strict and default feature structures

procedure forced_unification(p, q)
 queue := {〈p, q〉};
 while(queue is not empty)
 〈p, q〉 := shift(queue);
 p := deref(p); q := deref(q);
 if p ≠ q
 θ(p) ≔ θ(p) ∪ θ(q);
 θ(q) ≔ ptr(p);
 forall f ∈ feat(p)⋃ feat(q)
 if f ∈ feat(p) ∧ f ∈ feat(q)
 queue := queue ∪ 〈δ(f, p), δ(f, q)〉;
 if f ∉ feat(p) ∧ f ∈ feat(q)
 δ(f, p) ≔ δ(f, q);
procedure mark(p, m)
 p := deref(p);
 if p has not been visited
 θ(p) := {〈θ(p), m〉};
 forall f ∈ feat(p)
 mark(δ(f, p), m);
procedure collapse_defaults(p)
 p := deref(p);
 if p has not been visited
 ts := ⊥; td := ⊥;
 forall 〈t, 𝑠𝑡𝑟𝑖𝑐𝑡〉 ∈ θ(p)
 ts := ts ⊔ t;
 forall 〈t, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡〉 ∈ θ(p)
 td := td ⊔ t;
 if ts is not defined
 return false;
 if ts ⊔ td is defined
 θ(p) := ts ⊔ td;
 else
 θ(p) := ts;
 forall f ∈ feat(p)
 collapse_defaults(δ(f, p));
procedure default_unification(p, q)
 mark(p, 𝑠𝑡𝑟𝑖𝑐𝑡);
 mark(q, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡);
 forced_unification(p, q);
 collapse_defaults(p);
 θ(p) is (i) a single type, (ii) a pointer, or (iii) a set of pairs of
types and markers in the feature structure node p.
A marker indicates that the types in a feature structure node
originally belong to the strict feature structures or the default
feature structures.
A pointer indicates that the node has been unified with other
nodes and it points the unified node. A function deref tra-
verses pointer nodes until it reaches to non-pointer node. δ(f, p) returns a feature structure node which is reached by
following a feature f from p.

Figure 2: Algorithm for the simply typed ver-
sion of Corpestake’s default unification.

605

are unified, whereas the types in the feature
structure nodes are not unified but merged as a
set of types. Then, all types marked as “strict”
are unified into one type for each node. If this
fails, the default unification also returns unifica-
tion failure as its result. Finally, each node is
assigned a single type, which is the result of type
unification for all types marked as both “default”
and “strict” if it succeeds or all types marked
only as “strict” otherwise.

4 Shift-reduce parsing for unification-
based grammars

Non-deterministic shift-reduce parsing for unifi-
cation-based grammars has been studied by Bris-
coe and Carroll (Briscoe and Carroll, 1993).
Their algorithm works non-deterministically with
the mechanism of the packed parse forest, and
hence it has the problem of locality in the packed
parse forest. This section explains our shift-
reduce parsing algorithms, which are based on
deterministic shift-reduce CFG parsing (Sagae
and Lavie, 2005) and best-first shift-reduce CFG
parsing (Sagae and Lavie, 2006). Sagae’s parser
selects the most probable shift/reduce actions and
non-terminal symbols without assuming explicit
CFG rules. Therefore, his parser can proceed
deterministically without failure. However, in

the case of unification-based grammars, a deter-
ministic parser can fail as a result of its hard con-
straints in the grammar. We propose two new
shift-reduce parsing approaches for unification-
based grammars: deterministic shift-reduce pars-
ing and shift-reduce parsing by backtracking and
beam search. The major difference between our
algorithm and Sagae’s algorithm is that we use
default unification. First, we explain the deter-
ministic shift-reduce parsing algorithm, and then
we explain the shift-reduce parsing with back-
tracking and beam search.

4.1 Deterministic shift-reduce parsing for
unification-based grammars

The deterministic shift-reduce parsing algorithm
for unification-based grammars mainly compris-
es two data structures: a stack S, and a queue W.
Items in S are partial parse trees, including a lex-
ical entry and a parse tree that dominates the
whole input sentence. Items in W are words and
POSs in the input sentence. The algorithm de-
fines two types of parser actions, shift and reduce,
as follows.

• Shift: A shift action removes the first item
(a word and a POS) from W. Then, one
lexical entry is selected from among the
candidate lexical entries for the item. Fi-
nally, the selected lexical entry is put on
the top of the stack.

Common features: Sw(i), Sp(i), Shw(i), Shp(i), Snw(i), Snp(i),
Ssy(i), Shsy(i), Snsy(i), wi-1, wi,wi+1, pi-2, pi-1, pi, pi+1,
pi+2, pi+3
Binary reduce features: d, c, spl, syl, hwl, hpl, hll, spr, syr,
hwr, hpr, hlr
Unary reduce features: sy, hw, hp, hl

Sw(i) … head word of i-th item from the top of the stack
Sp(i) … head POS of i-th item from the top of the stack
Shw(i) … head word of the head daughter of i-th item from the
top of the stack
Shp(i) … head POS of the head daughter of i-th item from the
top of the stack
Snw(i) … head word of the non-head daughter of i-th item
from the top of the stack
Snp(i) … head POS of the non-head daughter of i-th item from
the top of the stack
Ssy(i) … symbol of phrase category of the i-th item from the
top of the stack
Shsy(i) … symbol of phrase category of the head daughter of
the i-th item from the top of the stack
Snsy(i) … symbol of phrase category of the non-head daughter
of the i-th item from the top of the stack
d … distance between head words of daughters
c … whether a comma exists between daughters and/or inside
daughter phrases
sp … the number of words dominated by the phrase
sy … symbol of phrase category
hw … head word
hp … head POS
hl … head lexical entry

Figure 3: Feature templates.

Shift Features
 [Sw(0)] [Sw(1)] [Sw(2)] [Sw(3)] [Sp(0)] [Sp(1)] [Sp(2)]
[Sp(3)] [Shw(0)] [Shw(1)] [Shp(0)] [Shp(1)] [Snw(0)]
[Snw(1)] [Snp(0)] [Snp(1)] [Ssy(0)] [Ssy(1)] [Shsy(0)]
[Shsy(1)] [Snsy(0)] [Snsy(1)] [d] [wi-1] [wi] [wi+1] [pi-2]
[pi-1] [pi] [pi+1] [pi+2] [pi+3] [wi-1, wi] [wi, wi+1] [pi-1,
wi] [pi, wi] [pi+1, wi] [pi, pi+1, pi+2, pi+3] [pi-2, pi-1, pi]
[pi-1, pi, pi+1] [pi, pi+1, pi+2] [pi-2, pi-1] [pi-1, pi] [pi,
pi+1] [pi+1, pi+2]

Binary Reduce Features
[Sw(0)] [Sw(1)] [Sw(2)] [Sw(3)] [Sp(0)] [Sp(1)] [Sp(2)]
[Sp(3)] [Shw(0)] [Shw(1)] [Shp(0)] [Shp(1)] [Snw(0)]
[Snw(1)] [Snp(0)] [Snp(1)] [Ssy(0)] [Ssy(1)] [Shsy(0)]
[Shsy(1)] [Snsy(0)] [Snsy(1)] [d] [wi-1] [wi] [wi+1] [pi-2]
[pi-1] [pi] [pi+1] [pi+2] [pi+3] [d,c,hw,hp,hl] [d,c,hw,hp] [d,
c, hw, hl] [d, c, sy, hw] [c, sp, hw, hp, hl] [c, sp, hw, hp] [c,
sp, hw,hl] [c, sp, sy, hw] [d, c, hp, hl] [d, c, hp] [d, c, hl] [d,
c, sy] [c, sp, hp, hl] [c, sp, hp] [c, sp, hl] [c, sp, sy]

Unary Reduce Features
[Sw(0)] [Sw(1)] [Sw(2)] [Sw(3)] [Sp(0)] [Sp(1)] [Sp(2)]
[Sp(3)] [Shw(0)] [Shw(1)] [Shp(0)] [Shp(1)] [Snw(0)]
[Snw(1)] [Snp(0)] [Snp(1)] [Ssy(0)] [Ssy(1)] [Shsy(0)]
[Shsy(1)] [Snsy(0)] [Snsy(1)] [d] [wi-1] [wi] [wi+1] [pi-2]
[pi-1] [pi] [pi+1] [pi+2] [pi+3] [hw, hp, hl] [hw, hp] [hw, hl]
[sy, hw] [hp, hl] [hp] [hl] [sy]

Figure 4: Combinations of feature templates.

606

• Binary Reduce: A binary reduce action
removes two items from the top of the
stack. Then, partial parse trees are derived
by applying binary rules to the first re-
moved item and the second removed item
as a right daughter and left daughter, re-
spectively. Among the candidate partial
parse trees, one is selected and put on the
top of the stack.

• Unary Reduce: A unary reduce action re-
moves one item from the top of the stack.
Then, partial parse trees are derived by
applying unary rules to the removed item.
Among the candidate partial parse trees,
one is selected and put on the top of the
stack.

Parsing fails if there is no candidate for selec-
tion (i.e., a dead end). Parsing is considered suc-
cessfully finished when W is empty and S has
only one item which satisfies the sentential con-
dition: the category is verb and the subcategori-
zation frame is empty. Parsing is considered a
non-sentential success when W is empty and S
has only one item but it does not satisfy the sen-
tential condition.

In our experiments, we used a maximum en-
tropy classifier to choose the parser’s action.
Figure 3 lists the feature templates for the clas-
sifier, and Figure 4 lists the combinations of fea-
ture templates. Many of these features were tak-
en from those listed in (Ninomiya et al., 2007),
(Miyao and Tsujii, 2005) and (Sagae and Lavie,
2005), including global features defined over the
information in the stack, which cannot be used in
parsing with the packed parse forest. The fea-
tures for selecting shift actions are the same as
the features used in the supertagger (Ninomiya et
al., 2007). Our shift-reduce parsers can be re-
garded as an extension of the supertagger.

The deterministic parsing can fail because of
its grammar’s hard constraints. So, we use de-
fault unification, which almost always succeeds
in unification. We assume that a head daughter
(or, an important daughter) is determined for
each binary rule in the unification-based gram-
mar. Default unification is used in the binary
rule application in the same way as used in Ni-
nomiya’s offline robust parsing (Ninomiya et al.,
2002), in which a binary rule unified with the
head daughter is the strict feature structure and
the non-head daughter is the default feature
structure, i.e., (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻, where R is a bi-
nary rule, H is a head daughter and NH is a non-

head daughter. In the experiments, we used the
simply typed version of Copestake’s default un-
ification in the binary rule application1. Note
that default unification was always used instead
of normal unification in both training and evalua-
tion in the case of the parsers using default unifi-
cation. Although Copestake’s default unification
almost always succeeds, the binary rule applica-
tion can fail if the binary rule cannot be unified
with the head daughter, or inconsistency is
caused by path equations in the default feature
structures. If the rule application fails for all the
binary rules, backtracking or beam search can be
used for its recovery as explained in Section 4.2.
In the experiments, we had no failure in the bi-
nary rule application with default unification.

4.2 Shift-reduce parsing by backtracking
and beam-search

Another approach for recovering from the pars-
ing failure is backtracking. When parsing fails
or ends with non-sentential success, the parser’s
state goes back to some old state (backtracking),
and it chooses the second best action and tries
parsing again. The old state is selected so as to
minimize the difference in the probabilities for
selecting the best candidate and the second best
candidate. We define a maximum number of
backtracking steps while parsing a sentence.
Backtracking repeats until parsing finishes with
sentential success or reaches the maximum num-
ber of backtracking steps. If parsing fails to find
a parse tree, the best continuous partial parse
trees are output for evaluation.

From the viewpoint of search algorithms, pars-
ing with backtracking is a sort of depth-first
search algorithms. Another possibility is to use
the best-first search algorithm. The best-first
parser has a state priority queue, and each state
consists of a tree stack and a word queue, which
are the same stack and queue explained in the
shift-reduce parsing algorithm. Parsing proceeds
by applying shift-reduce actions to the best state
in the state queue. First, the best state is re-

1 We also implemented Ninomiya’s default unification,
which can weaken path equation constraints. In the prelim-
inary experiments, we tested binary rule application given
as (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻 with Copestake’s default unification, (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻 with Ninomiya’s default unification, and (𝐻 ⊔ 𝑁𝐻) ⊔ಬ 𝑅 with Ninomiya’s default unification. How-
ever, there was no significant difference of F-score among
these three methods. So, in the main experiments, we only
tested (𝑅 ⊔ 𝐻) ⊔ಬ 𝑁𝐻 with Copestake’s default unification
because this method is simple and stable.

607

moved from the state queue, and then shift-
reduce actions are applied to the state. The new-
ly generated states as results of the shift-reduce
actions are put on the queue. This process re-
peats until it generates a state satisfying the sen-
tential condition. We define the probability of a
parsing state as the product of the probabilities of
selecting actions that have been taken to reach
the state. We regard the state probability as the
objective function in the best-first search algo-
rithm, i.e., the state with the highest probabilities
is always chosen in the algorithm. However, the
best-first algorithm with this objective function
searches like the breadth-first search, and hence,
parsing is very slow or cannot be processed in a
reasonable time. So, we introduce beam thre-
sholding to the best-first algorithm. The search
space is pruned by only adding a new state to the
state queue if its probability is greater than 1/b of
the probability of the best state in the states that
has had the same number of shift-reduce actions.
In what follows, we call this algorithm beam
search parsing.

In the experiments, we tested both backtrack-
ing and beam search with/without default unifi-

cation. Note that, the beam search parsing for
unification-based grammars is very slow com-
pared to the shift-reduce CFG parsing with beam
search. This is because we have to copy parse
trees, which consist of a large feature structures,
in every step of searching to keep many states on
the state queue. In the case of backtracking, co-
pying is not necessary.

5 Experiments

We evaluated the speed and accuracy of parsing
with Enju 2.3β, an HPSG for English (Miyao and
Tsujii, 2005). The lexicon for the grammar was
extracted from Sections 02-21 of the Penn Tree-
bank (39,832 sentences). The grammar consisted
of 2,302 lexical entries for 11,187 words. Two
probabilistic classifiers for selecting shift-reduce
actions were trained using the same portion of
the treebank. One is trained using normal unifi-
cation, and the other is trained using default un-
ification.

We measured the accuracy of the predicate ar-
gument relation output of the parser. A predi-
cate-argument relation is defined as a tuple 〈𝜎, 𝑤, 𝑎, 𝑤〉, where 𝜎 is the predicate type (e.g.,

 Section 23 (Gold POS)
 LP

(%)
LR
(%)

LF
(%)

Avg.
Time
(ms)

of
backtrack

Avg. #
of
states

of
dead
end

of non-
sentential
success

of
sentential
success

Previous
studies

(Miyao and Tsujii, 2005) 87.26 86.50 86.88 604 - - - - -
(Ninomiya et al., 2007) 89.78 89.28 89.53 234 - - - - -

Ours

det 76.45 82.00 79.13 122 0 - 867 35 1514
det+du 87.78 87.45 87.61 256 0 - 0 117 2299
back40 81.93 85.31 83.59 519 18986 - 386 23 2007
back10 + du 87.79 87.46 87.62 267 574 - 0 45 2371
beam(7.4) 86.17 87.77 86.96 510 - 226 369 30 2017
beam(20.1)+du 88.67 88.79 88.48 457 - 205 0 16 2400
beam(403.4) 89.98 89.92 89.95 10246 - 2822 71 14 2331

 Section 23 (Auto POS)
 LP

(%)
LR
(%)

LF
(%)

Avg.
Time
(ms)

of
backtrack

Avg. #
of
states

of
dead
end

of non
sentential
success

of
sentential
success

Previous
studies

(Miyao and Tsujii, 2005) 84.96 84.25 84.60 674 - - - - -
(Ninomiya et al., 2007) 87.28 87.05 87.17 260 - - - - -
(Matsuzaki et al., 2007) 86.93 86.47 86.70 30 - - - - -
(Sagae et al., 2007) 88.50 88.00 88.20 - - - - - -

Ours

det 74.13 80.02 76.96 127 0 - 909 31 1476
det+du 85.93 85.72 85.82 252 0 - 0 124 2292
back40 78.71 82.86 80.73 568 21068 - 438 27 1951
back10 + du 85.96 85.75 85.85 270 589 - 0 46 2370
beam(7.4) 83.84 85.82 84.82 544 - 234 421 33 1962
beam(20.1)+du 86.59 86.36 86.48 550 - 222 0 21 2395
beam(403.4) 87.70 87.86 87.78 16822 - 4553 89 16 2311

Table 1: Experimental results for Section 23.

608

adjective, intransitive verb), 𝑤 is the head word
of the predicate, 𝑎 is the argument label (MOD-
ARG, ARG1, …, ARG4), and 𝑤 is the head
word of the argument. The labeled precision
(LP) / labeled recall (LR) is the ratio of tuples
correctly identified by the parser, and the labeled
F-score (LF) is the harmonic mean of the LP and
LR. This evaluation scheme was the same one
used in previous evaluations of lexicalized
grammars (Clark and Curran, 2004b; Hocken-
maier, 2003; Miyao and Tsujii, 2005). The expe-
riments were conducted on an Intel Xeon 5160
server with 3.0-GHz CPUs. Section 22 of the
Penn Treebank was used as the development set,
and the performance was evaluated using sen-
tences of ≤ 100 words in Section 23. The LP,
LR, and LF were evaluated for Section 23.

Table 1 lists the results of parsing for Section
23. In the table, “Avg. time” is the average pars-
ing time for the tested sentences. “# of backtrack”
is the total number of backtracking steps that oc-
curred during parsing. “Avg. # of states” is the
average number of states for the tested sentences.
“# of dead end” is the number of sentences for
which parsing failed. “# of non-sentential suc-
cess” is the number of sentences for which pars-
ing succeeded but did not generate a parse tree
satisfying the sentential condition. “det” means
the deterministic shift-reduce parsing proposed
in this paper. “back𝑛” means shift-reduce pars-
ing with backtracking at most 𝑛 times for each
sentence. “du” indicates that default unification
was used. “beam𝑏” means best-first shift-reduce
parsing with beam threshold 𝑏. The upper half
of the table gives the results obtained using gold
POSs, while the lower half gives the results ob-
tained using an automatic POS tagger. The max-
imum number of backtracking steps and the

beam threshold were determined by observing
the performance for the development set (Section
22) such that the LF was maximized with a pars-
ing time of less than 500 ms/sentence (except
“beam(403.4)”). The performance of
“beam(403.4)” was evaluated to see the limit of
the performance of the beam-search parsing.

Deterministic parsing without default unifica-
tion achieved accuracy with an LF of around
79.1% (Section 23, gold POS). With backtrack-
ing, the LF increased to 83.6%. Figure 5 shows
the relation between LF and parsing time for the
development set (Section 22, gold POS). As
seen in the figure, the LF increased as the parsing
time increased. The increase in LF for determi-
nistic parsing without default unification, how-
ever, seems to have saturated around 83.3%.
Table 1 also shows that deterministic parsing
with default unification achieved higher accuracy,
with an LF of around 87.6% (Section 23, gold
POS), without backtracking. Default unification
is effective: it ran faster and achieved higher ac-
curacy than deterministic parsing with normal
unification. The beam-search parsing without
default unification achieved high accuracy, with
an LF of around 87.0%, but is still worse than
deterministic parsing with default unification.
However, with default unification, it achieved
the best performance, with an LF of around
88.5%, in the settings of parsing time less than
500ms/sentence for Section 22.

For comparison with previous studies using
the packed parse forest, the performances of
Miyao’s parser, Ninomiya’s parser, Matsuzaki’s
parser and Sagae’s parser are also listed in Table
1. Miyao’s parser is based on a probabilistic
model estimated only by a feature forest. Nino-
miya’s parser is a mixture of the feature forest

Figure 5: The relation between LF and the average parsing time (Section 22, Gold POS).

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

88.00%

89.00%

90.00%

0 1 2 3 4 5 6 7 8

LF

Avg. parsing time (s/sentence)

back

back+du

beam

beam+du

609

and an HPSG supertagger. Matsuzaki’s parser
uses an HPSG supertagger and CFG filtering.
Sagae’s parser is a hybrid parser with a shallow
dependency parser. Though parsing without the
packed parse forest is disadvantageous to the
parsing with the packed parse forest in terms of
search space complexity, our model achieved
higher accuracy than Miyao’s parser.

“beam(403.4)” in Table 1 and “beam” in Fig-
ure 5 show possibilities of beam-search parsing.
“beam(403.4)” was very slow, but the accuracy
was higher than any other parsers except Sagae’s
parser.

Table 2 shows the behaviors of default unifi-
cation for “det+du.” The table shows the 20
most frequent path values that were overwritten
by default unification in Section 22. In most of
the cases, the overwritten path values were in the
selection features, i.e., subcategorization frames
(COMPS:, SUBJ:, SPR:, CONJ:) and modifiee
specification (MOD:). The column of ‘Default
type’ indicates the default types which were
overwritten by the strict types in the column of
‘Strict type,’ and the last column is the frequency
of overwriting. ‘cons’ means a non-empty list,
and ‘nil’ means an empty list. In most of the
cases, modifiee and subcategorization frames
were changed from empty to non-empty and vice
versa. From the table, overwriting of head in-
formation was also observed, e.g., ‘noun’ was
changed to ‘verb.’

6 Conclusion and Future Work

We have presented shift-reduce parsing approach
for unification-based grammars, based on deter-
ministic shift-reduce parsing. First, we presented
deterministic parsing for unification-based
grammars. Deterministic parsing was difficult in
the framework of unification-based grammar
parsing, which often fails because of its hard
constraints. We introduced default unification to
avoid the parsing failure. Our experimental re-
sults have demonstrated the effectiveness of de-
terministic parsing with default unification. The
experiments revealed that deterministic parsing
with default unification achieved high accuracy,
with a labeled F-score (LF) of 87.6% for Section
23 of the Penn Treebank with gold POSs.
Second, we also presented the best-first parsing
with beam search for unification-based gram-
mars. The best-first parsing with beam search
achieved the best accuracy, with an LF of 87.0%,
in the settings without default unification. De-
fault unification further increased LF from
87.0% to 88.5%. By widening the beam width,
the best-first parsing achieved an LF of 90.0%.

References
Abney, Steven P. 1997. Stochastic Attribute-Value

Grammars. Computational Linguistics, 23(4), 597-
618.

Path Strict
type

Default
type

Freq

SYNSEM:LOCAL:CAT:HEAD:MOD: cons nil 434
SYNSEM:LOCAL:CAT:HEAD:MOD:hd:CAT:HEAD:MOD: cons nil 237
SYNSEM:LOCAL:CAT:VAL:SUBJ: nil cons 231
SYNSEM:LOCAL:CAT:HEAD:MOD:hd:CAT:VAL:SUBJ: nil cons 125
SYNSEM:LOCAL:CAT:HEAD: verb noun 110
SYNSEM:LOCAL:CAT:VAL:SPR:hd:LOCAL:CAT:VAL:SPEC:hd:LOCAL:CAT:
HEAD:MOD:

cons nil 101

SYNSEM:LOCAL:CAT:HEAD:MOD:hd:CAT:VAL:SPR:hd:LOCAL:CAT:VAL:SPEC:
hd:LOCAL:CAT:HEAD:MOD:

cons nil 96

SYNSEM:LOCAL:CAT:HEAD:MOD: nil cons 92
SYNSEM:LOCAL:CAT:HEAD:MOD:hd:CAT:HEAD: verb noun 91
SYNSEM:LOCAL:CAT:VAL:SUBJ: cons nil 79
SYNSEM:LOCAL:CAT:HEAD: noun verbal 77
SYNSEM:LOCAL:CAT:HEAD:MOD:hd:CAT:HEAD: noun verbal 77
SYNSEM:LOCAL:CAT:HEAD: nominal verb 75
SYNSEM:LOCAL:CAT:VAL:CONJ:hd:LOCAL:CAT:HEAD:MOD: cons nil 74
SYNSEM:LOCAL:CAT:VAL:CONJ:tl:hd:LOCAL:CAT:HEAD:MOD: cons nil 69
SYNSEM:LOCAL:CAT:VAL:CONJ:tl:hd:LOCAL:CAT:VAL:SUBJ: nil cons 64
SYNSEM:LOCAL:CAT:VAL:CONJ:hd:LOCAL:CAT:VAL:SUBJ: nil cons 64
SYNSEM:LOCAL:CAT:VAL:COMPS:hd:LOCAL:CAT:HEAD: nominal verb 63
SYNSEM:LOCAL:CAT:HEAD:MOD:hd:CAT:VAL:SUBJ: cons nil 63
… … … …
Total 10,598

Table 2: Path values overwritten by default unification in Section 22.

610

Berger, Adam, Stephen Della Pietra, and Vincent Del-
la Pietra. 1996. A Maximum Entropy Approach to
Natural Language Processing. Computational Lin-
guistics, 22(1), 39-71.

Briscoe, Ted and John Carroll. 1993. Generalized
probabilistic LR-Parsing of natural language (cor-
pora) with unification-based grammars. Computa-
tional Linguistics, 19(1), 25-59.

Carpenter, Bob. 1992. The Logic of Typed Feature
Structures: Cambridge University Press.

Carpenter, Bob. 1993. Skeptical and Credulous De-
fault Unification with Applications to Templates
and Inheritance. In Inheritance, Defaults, and the
Lexicon. Cambridge: Cambridge University Press.

Charniak, Eugene and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In proc. of ACL'05, pp. 173-180.

Clark, Stephen and James R. Curran. 2004a. The im-
portance of supertagging for wide-coverage CCG
parsing. In proc. of COLING-04, pp. 282-288.

Clark, Stephen and James R. Curran. 2004b. Parsing
the WSJ using CCG and log-linear models. In proc.
of ACL'04, pp. 104-111.

Copestake, Ann. 1993. Defaults in Lexical Represen-
tation. In Inheritance, Defaults, and the Lexicon.
Cambridge: Cambridge University Press.

Daumé, Hal III and Daniel Marcu. 2005. Learning as
Search Optimization: Approximate Large Margin
Methods for Structured Prediction. In proc. of
ICML 2005.

Geman, Stuart and Mark Johnson. 2002. Dynamic
programming for parsing and estimation of sto-
chastic unification-based grammars. In proc. of
ACL'02, pp. 279-286.

Hockenmaier, Julia. 2003. Parsing with Generative
Models of Predicate-Argument Structure. In proc.
of ACL'03, pp. 359-366.

Johnson, Mark, Stuart Geman, Stephen Canon, Zhiyi
Chi, and Stefan Riezler. 1999. Estimators for Sto-
chastic ``Unification-Based'' Grammars. In proc. of
ACL '99, pp. 535-541.

Kaplan, R. M., S. Riezler, T. H. King, J. T. Maxwell
III, and A. Vasserman. 2004. Speed and accuracy
in shallow and deep stochastic parsing. In proc. of
HLT/NAACL'04.

Malouf, Robert and Gertjan van Noord. 2004. Wide
Coverage Parsing with Stochastic Attribute Value
Grammars. In proc. of IJCNLP-04 Workshop
``Beyond Shallow Analyses''.

Matsuzaki, Takuya, Yusuke Miyao, and Jun'ichi Tsu-
jii. 2007. Efficient HPSG Parsing with Supertag-
ging and CFG-filtering. In proc. of IJCAI 2007, pp.
1671-1676.

Miyao, Yusuke and Jun'ichi Tsujii. 2002. Maximum
Entropy Estimation for Feature Forests. In proc. of
HLT 2002, pp. 292-297.

Miyao, Yusuke and Jun'ichi Tsujii. 2005. Probabilistic
disambiguation models for wide-coverage HPSG
parsing. In proc. of ACL'05, pp. 83-90.

Nakagawa, Tetsuji. 2007. Multilingual dependency
parsing using global features. In proc. of the
CoNLL Shared Task Session of EMNLP-CoNLL
2007, pp. 915-932.

Ninomiya, Takashi, Takuya Matsuzaki, Yusuke
Miyao, and Jun'ichi Tsujii. 2007. A log-linear
model with an n-gram reference distribution for ac-
curate HPSG parsing. In proc. of IWPT 2007, pp.
60-68.

Ninomiya, Takashi, Takuya Matsuzaki, Yoshimasa
Tsuruoka, Yusuke Miyao, and Jun'ichi Tsujii. 2006.
Extremely Lexicalized Models for Accurate and
Fast HPSG Parsing. In proc. of EMNLP 2006, pp.
155-163.

Ninomiya, Takashi, Yusuke Miyao, and Jun'ichi Tsu-
jii. 2002. Lenient Default Unification for Robust
Processing within Unification Based Grammar
Formalisms. In proc. of COLING 2002, pp. 744-
750.

Nivre, Joakim and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In proc. of
COLING 2004, pp. 64-70.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar: University of Chicago
Press.

Ratnaparkhi, Adwait. 1997. A linear observed time
statistical parser based on maximum entropy mod-
els. In proc. of EMNLP'97.

Riezler, Stefan, Detlef Prescher, Jonas Kuhn, and
Mark Johnson. 2000. Lexicalized Stochastic Mod-
eling of Constraint-Based Grammars using Log-
Linear Measures and EM Training. In proc. of
ACL'00, pp. 480-487.

Sagae, Kenji and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In proc. of
IWPT 2005.

Sagae, Kenji and Alon Lavie. 2006. A best-first prob-
abilistic shift-reduce parser. In proc. of COL-
ING/ACL on Main conference poster sessions, pp.
691-698.

Sagae, Kenji, Yusuke Miyao, and Jun'ichi Tsujii.
2007. HPSG parsing with shallow dependency
constraints. In proc. of ACL 2007, pp. 624-631.

Yamada, Hiroyasu and Yuji Matsumoto. 2003. Statis-
tical Dependency Analysis with Support Vector
Machines. In proc. of IWPT-2003.

611

