@inproceedings{padmakumar-etal-2017-integrated,
title = "Integrated Learning of Dialog Strategies and Semantic Parsing",
author = "Padmakumar, Aishwarya and
Thomason, Jesse and
Mooney, Raymond J.",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1052/",
pages = "547--557",
abstract = "Natural language understanding and dialog management are two integral components of interactive dialog systems. Previous research has used machine learning techniques to individually optimize these components, with different forms of direct and indirect supervision. We present an approach to integrate the learning of both a dialog strategy using reinforcement learning, and a semantic parser for robust natural language understanding, using only natural dialog interaction for supervision. Experimental results on a simulated task of robot instruction demonstrate that joint learning of both components improves dialog performance over learning either of these components alone."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="padmakumar-etal-2017-integrated">
<titleInfo>
<title>Integrated Learning of Dialog Strategies and Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aishwarya</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jesse</namePart>
<namePart type="family">Thomason</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raymond</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Mooney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language understanding and dialog management are two integral components of interactive dialog systems. Previous research has used machine learning techniques to individually optimize these components, with different forms of direct and indirect supervision. We present an approach to integrate the learning of both a dialog strategy using reinforcement learning, and a semantic parser for robust natural language understanding, using only natural dialog interaction for supervision. Experimental results on a simulated task of robot instruction demonstrate that joint learning of both components improves dialog performance over learning either of these components alone.</abstract>
<identifier type="citekey">padmakumar-etal-2017-integrated</identifier>
<location>
<url>https://aclanthology.org/E17-1052/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>547</start>
<end>557</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrated Learning of Dialog Strategies and Semantic Parsing
%A Padmakumar, Aishwarya
%A Thomason, Jesse
%A Mooney, Raymond J.
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F padmakumar-etal-2017-integrated
%X Natural language understanding and dialog management are two integral components of interactive dialog systems. Previous research has used machine learning techniques to individually optimize these components, with different forms of direct and indirect supervision. We present an approach to integrate the learning of both a dialog strategy using reinforcement learning, and a semantic parser for robust natural language understanding, using only natural dialog interaction for supervision. Experimental results on a simulated task of robot instruction demonstrate that joint learning of both components improves dialog performance over learning either of these components alone.
%U https://aclanthology.org/E17-1052/
%P 547-557
Markdown (Informal)
[Integrated Learning of Dialog Strategies and Semantic Parsing](https://aclanthology.org/E17-1052/) (Padmakumar et al., EACL 2017)
- Integrated Learning of Dialog Strategies and Semantic Parsing (Padmakumar et al., EACL 2017)
ACL
- Aishwarya Padmakumar, Jesse Thomason, and Raymond J. Mooney. 2017. Integrated Learning of Dialog Strategies and Semantic Parsing. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 547–557, Valencia, Spain. Association for Computational Linguistics.