@inproceedings{bulat-etal-2017-modelling,
title = "Modelling metaphor with attribute-based semantics",
author = "Bulat, Luana and
Clark, Stephen and
Shutova, Ekaterina",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2084/",
pages = "523--528",
abstract = "One of the key problems in computational metaphor modelling is finding the optimal level of abstraction of semantic representations, such that these are able to capture and generalise metaphorical mechanisms. In this paper we present the first metaphor identification method that uses representations constructed from property norms. Such norms have been previously shown to provide a cognitively plausible representation of concepts in terms of semantic properties. Our results demonstrate that such property-based semantic representations provide a suitable model of cross-domain knowledge projection in metaphors, outperforming standard distributional models on a metaphor identification task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bulat-etal-2017-modelling">
<titleInfo>
<title>Modelling metaphor with attribute-based semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luana</namePart>
<namePart type="family">Bulat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the key problems in computational metaphor modelling is finding the optimal level of abstraction of semantic representations, such that these are able to capture and generalise metaphorical mechanisms. In this paper we present the first metaphor identification method that uses representations constructed from property norms. Such norms have been previously shown to provide a cognitively plausible representation of concepts in terms of semantic properties. Our results demonstrate that such property-based semantic representations provide a suitable model of cross-domain knowledge projection in metaphors, outperforming standard distributional models on a metaphor identification task.</abstract>
<identifier type="citekey">bulat-etal-2017-modelling</identifier>
<location>
<url>https://aclanthology.org/E17-2084/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>523</start>
<end>528</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modelling metaphor with attribute-based semantics
%A Bulat, Luana
%A Clark, Stephen
%A Shutova, Ekaterina
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F bulat-etal-2017-modelling
%X One of the key problems in computational metaphor modelling is finding the optimal level of abstraction of semantic representations, such that these are able to capture and generalise metaphorical mechanisms. In this paper we present the first metaphor identification method that uses representations constructed from property norms. Such norms have been previously shown to provide a cognitively plausible representation of concepts in terms of semantic properties. Our results demonstrate that such property-based semantic representations provide a suitable model of cross-domain knowledge projection in metaphors, outperforming standard distributional models on a metaphor identification task.
%U https://aclanthology.org/E17-2084/
%P 523-528
Markdown (Informal)
[Modelling metaphor with attribute-based semantics](https://aclanthology.org/E17-2084/) (Bulat et al., EACL 2017)
- Modelling metaphor with attribute-based semantics (Bulat et al., EACL 2017)
ACL
- Luana Bulat, Stephen Clark, and Ekaterina Shutova. 2017. Modelling metaphor with attribute-based semantics. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 523–528, Valencia, Spain. Association for Computational Linguistics.