CoNLL 2016

The 20th SIGNLL Conference on Computational Natural
Language Learning (CoNLL)

Proceedings of the Conference

August 11-12, 2016
Berlin, Germany



Best paper awards sponsored by Google Inc.

Google

(©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-945626-19-7

il



Introduction

The 2016 Conference on Computational Natural Language Learning is the twentieth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2016 will be held on August 11-12, 2016, and is co-located with the 54th annual meeting of the
Association for Computational Linguistics (ACL) in Berlin, Germany.

In order to accommodate papers with extended proofs and experimental material, CoONLL 2016 accepted
only long papers, allowing 9 pages of content plus unlimited pages of references and supplementary
material. We received 186 submissions in total, out of which 13 had to be rejected for formal reasons,
and 21 were withdrawn by the authors. Of the remaining 149 papers, 30 papers were chosen to appear
in the conference program, resulting in an overall acceptance rate of 20%. All accepted papers appear
here in the proceedings.

As in previous years, CoNLL 2016 features a shared task, this year on Shallow Discourse Parsing.
Papers accepted for the shared task are collected in a companion volume of CoNLL 2016.

To fit the paper presentations in a 2-day program, 21 long papers were selected for oral presentation,
and 9 papers were presented as posters. The papers selected for oral presentation are distributed in six
main sessions. Poster presenters were given the chance to present their poster in a short oral spotlight
presentation.

For the first time, CoNLL 2016 announced a special topic on statistical natural language learning
beyond linear models and convex optimization. The special topic was embraced by several authors and
is reflected by the invited talks given by Jiirgen Schmidhuber and Fernanda Ferreira.

We would like to thank all the authors who submitted their work to CoNLL 2016, as well as the program
committee for helping us select the best papers out of many high-quality submissions. We are also
grateful to our invited speakers, who graciously agreed to give talks at CoNLL.

Special thanks are due to the SIGNLL board members, Xavier Carreras and Julia Hockenmaier, for
their valuable advice and assistance in putting together this year’s program, and to Ben Verhoeven, for
maintaining the CoNLL 2016 web page. We are grateful to the ACL organization for helping us with
the program, proceedings and logistics. Finally, our gratitude goes to our sponsor, Google Inc., for
supporting the best paper award at CoNLL 2016.

We hope you enjoy the conference!

Yoav Goldberg and Stefan Riezler
CoNLL 2016 conference co-chairs
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Keynote Talk

Human Processing of Disfluent Speech:
Basic Findings, Theoretical Approaches, and Implications for Natural
Language Processing

Fernanda Ferreira

Abstract Disfluencies occur in human speech at the rate of about one per minute; therefore, any ade-
quate theory of human language comprehension must explain how listeners process utterances containing
them. Our theoretical approach is based on a 15-year program of research that has uncovered a number
of fundamental mechanisms enabling humans to process disfluencies efficiently, including mechanisms
that are backward looking (reanalysis of the input) and ones that are anticipatory or forward looking
(prediction). This presentation will review the theory, the evidence that supports it, and the outstanding
questions that are currently being investigated. I will also consider implications for refining NLP sys-
tems, which must be robust to speaker error and which should be capable of adapting to characteristics
of particular speakers and language communities.

Biography of Speaker Fernanda Ferreira is Professor of Psychology and Member of the Graduate
Group in Linguistics at the University of California, Davis. She obtained her Ph.D. in Cognitive Psy-
chology in 1988 from the University of Massachusetts, Ambherst, and prior to moving to UC Davis in
2015, she held faculty positions at Michigan State University and the University of Edinburgh. She has
published over 100 papers and her research has been funded by the NSF and the NIH in the US, and the
ESRC in the UK. She served as Editor in Chief of the Journal of Experimental Psychology: General, and
she is currently an Associate Editor of Cognitive Psychology and of Collabra, an Open Access journal
recently launched by University of California Press. She is a Fellow of the American Psychological So-
ciety and the Royal Society of Edinburgh, and she is currently an elected member of the Psychonomic
Society’s Governing Board.
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Keynote Talk
RNNaissance

Jiirgen Schmidhuber

Abstract Our deep learning artificial neural networks have won numerous contests in pattern recogni-
tion and machine learning. They are now widely used by the world’s most valuable public companies. In
particular, Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) are very useful not
only for speech recognition but also for Computational Language Learning. I will discuss state-of-the-art
results in numerous applications.

Biography of Speaker Since age 15 or so, the main goal of professor Jiirgen Schmidhuber has been
to build a self-improving Artificial Intelligence (AI) smarter than himself, then retire. He has pioneered
self-improving general problem solvers since 1987, and Deep Learning Neural Networks (NNs) since
1991. The recurrent NNs developed by his research groups at the Swiss Al Lab IDSIA (USI & SUPSI)
& TU Munich were the first to win official international contests. They have revolutionized handwriting
recognition, speech recognition, machine translation, image captioning, and are now available to over a
billion users through Google, Microsoft, IBM, Baidu, and many other companies. DeepMind is heavily
influenced by his lab’s former students (including 2 of DeepMind’s first 4 members and their first PhDs
in Al, one of them co-founder, one of them first employee). His team’s Deep Learners were the first to
win object detection and image segmentation contests, and achieved the world’s first superhuman visual
classification results, winning nine international competitions in machine learning & pattern recogni-
tion (more than any other team). They also were the first to learn control policies directly from high-
dimensional sensory input using reinforcement learning. His research group also established the field
of mathematically rigorous universal Al and optimal universal problem solvers. His formal theory of
creativity & curiosity & fun explains art, science, music, and humor. He also generalized algorithmic in-
formation theory and the many-worlds theory of physics, and introduced the concept of Low-Complexity
Art, the information age’s extreme form of minimal art. Since 2009 he has been member of the Euro-
pean Academy of Sciences and Arts. He has published 333 peer-reviewed papers, earned seven best
paper/best video awards, the 2013 Helmholtz Award of the International Neural Networks Society, and
the 2016 IEEE Neural Networks Pioneer Award. He is also president of NNAISENSE, which aims at
building the first practical general purpose Al
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Computational Natural Language Learning:
+20years +Data +Features +Multimodal +Bioplausible

David M. W. Powers
Artificial Intelligence and Cognitive Science Group
School of Computer Science, Engineering and Mathematics
Flinders University, Adelaide, South Australia
David.Powers@flinders.edu.au

Abstract

This speech celebrates the 20th anniver-
sary of the CoNLL conference and looks
back 20 years before CoNLL and 20 years
into the future in an attempt to paint a
longterm roadmap of Computational Nat-
ural Language Learning. The founders of
CoNLL agonized hard and long over what
to call our nascent field, and how to en-
sure that we kept all the interdisciplinary
diversity that we had in those early days,
including preserving the richness of views
in a field that encompassed many contro-
versies. We will explore this diversity with
a focus on new directions that are develop-
ing; we will reflect on the changing nature
of our technology including the decelera-
tion of Moore’s Law and the emergence of
Big Data; and we will consider the impact
of and on ubiquitous technologies ranging
from wearables to multimedia, from intel-
ligent phones to driverless cars.

1 Introduction

Machine Learning has moved out of the lab and
into the field, and the explosion of language-
related learning-research is a massive part of
this. Companies like Google, Facebook and Ama-
zon, as well as IBM, Apple and Microsoft, have
emerged as huge players in our playground, and
important sponsors!

One of the most important changes we’ve seen
over the last two decades is that we’ve fallen off
the Moore’s Law curve as far as single core pro-
cessors are concerned! - for CONLL’s first decade
SPECInt performance was a around 50%, for our

'nttp://preshing.com/20120208/a-look—
back-at-single-threaded-cpu-performance

1

second decade it was more like 20% and accord-
ing to NVidia it looks like being more like 5%
for the next decade. The emphasis must now be
on working smart and processing in parallel, but
at the same time we are introducing much higher
software and data overheads with managed code
and extensive markup.

20 years ago few households had a personal
computer or a mobile phone, while today few
western families wouldn’t possess a range of
equipment from phones to pads to MP-players to
cars and the list goes on with microwaves, wash-
ing machines and airconditioners, averaging over
20 processing units per household. All of these
can be expected to be part of the Internet of Things
in the very near future. Recent developments are
not focussing on doing more with our computers,
but using our computers more flexibly and univer-
sally, with “the cloud” and “hands free” operation
being major drivers of the technology race, with
language technology “in the cloud” helping to deal
with spoken or typed operations that would until
recently have been regarded as office functions,
with call centres being outsourced to computers,
with IBM’s Watson challenging the quizmasters at
their own game, in their own language, and mov-
ing onto a wide range of “Cognitive Computing”
applications. I will focus initially on this changing
context.

The Association for Computational Linguistics
reached 50 recently, starting with a strong focus
on Machine Translation that was originally part
of the name, and SIGNLL affiliated itself with
ACL in 1993 to reflect our driving interest in lan-
guage’: “Computational Linguistics is the sci-
entific study of language from a computational
perspective. .. providing computational models of
various kinds of linguistic phenomena.”

http://www.aclweb.org/portal/
what-is-cl

Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 1-9,
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Artificial Intelligence is at least 60 years old,
and SIGNLL adopted the “Natural Language”
teminology of Al to make the connection to a rich
history of Al research in NL that seldom, however,
made use of Machine Learning, and rarely con-
sidered the Linguistic and Psycholinguistic prob-
lems of how human language works and how chil-
dren learn language. But we didn’t want NLL
to be seen as just another application of Machine
Learning, particularly as we (and our sister SIG-
DAT) developed increasingly large and expensive
resources, including tagged corpora. Thus we
moved away from the name ‘“Machine Learning of
Natural Language” which was the title of the book
based on my own PhD thesis (Powers and Turk,
1989) while the AAAI event I organized added
“and Ontology” (Powers, 1991a).

It is worth citing the aims of SIGNLL as pre-
sented to ACL when we formalized our affiliation
as a SIG, and noting that all areas of language and
ontology, linguistics and psycholinguistics, are in-
tended to be in scope for SIGNLL and CoNLL:

SIGNLL aims to promote research in:

e automated acquisition of syntax,
morphology and phonology

e automated acquisition of semantic and
ontological structure

e automated acquisition of inter-linguistic
correspondences

e learning to recognize or produce spoken
and written forms

e modelling human language acquisition
theory and processes>

I reviewed over the last couple of days CoNLL’s
two full decades of proceedings, but its hard to
single out some for special attention when others
are equally worthy. So I will instead review from
the perspective of a set of “Afeatures”, of compu-
tation and language and learning, that are I feel
becoming increasingly important to CoNLL, and
will set the stage for the next two decades. In rela-
tion to the SIGNLL aims, my feature-driven wan-
dering will visit each of them broadly, but I see
huge opportunity for crossover between these five
categories and their internal subareas. So rather
than separating them arbitrarily, I will draw them

*http://ifarm.nl/signll/about/

together, emphasizing aspects that I think are im-
portant to the future of the field as a whole. I par-
ticularly want to encourage interdisciplinary col-
laboration and a Computational Cognitive Science
(CoCoSci) that not only seeks to engineer better
technologies, but also seeks to exploit and model
and inform our understanding of human language
and cognition.

From the beginning, SIGNLL and CoNLL pro-
moted and welcomed interdisciplinary researchers
and collaborations, but today most of us have
a primary background in computing, and we at-
tract mainly computing and engineering students.
While the founders of CoNLL all had very inter-
disciplinary background, it is a daunting prospect
to try to keep up with related fields when our own
has grown so massive. In conclusion, I will make
some suggestions as to how we can address this.

2 +Applications

One of the new buzzwords the last two decades
have brought is “Applications” or “Apps”. When
we set up SIGNLL we boringly referred to “soft-
ware and data”, and APIs were libraries, and tools
and applications weren’t distinguished; personal
computers didn’t have real user level multipro-
cessing capabilities, and it was only after found-
ing SIGNLL in 1993 that the path through Win-
dows 95/98/XP opened up the PC world, and Ap-
ple made its resurgence with the iMac and OSX,
while SUN with Java started to blur the distinction
between computer and network.

Software as a commodity is probably the
biggest single change to the scene since CoNLL
was started, and this is reflected in CoNLL through
our sponsorships and the major corporate labs in
this area. But the new challenge for us is mobil-
ity in a borderless world-wide cloud... Already the
World Wide Web, and Google, with the web as a
data resource, and information retrieval as a major
application and focus for research, are putting a
new complexion on our field. And now the mo-
bile age has arrived and Apps on phones offer
unprecedented ubiquitous interactivity, with new
demands on language technology ranging from
speech recognition to automated help desk, to
instant speakable machine translation, to educa-
tional games and location-aware monitoring and
advice.

The older focus on Machine Translation and
Speech Recognition, which brought Al into dis-



Friendly things Jack did
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Hi, Ill be coming over today at 4. See you soon!

check your insulin levels
Dontforget s e Today at 400pm

Go for a short walk or do some exercise
Dontforget s cue Today at 7.00pm

Figure 1: ECAs for teaching children in 2008 & 2010 and
assisting the elderly in 2010 & 2015 (AnnaCares.com)

repute in the 1960s and 1970s with overconfident
claims and predictions, has now resurged with suc-
cesses due largely to the Big Data resources avail-
able (particularly to search engine companies) as
well as the huge parallel computational resources
available (particularly to search engine compa-
nies) and the ability to drive our statistical ma-
chine learning or artificial network tools harder
and deeper (as exploited by the same companies).
Now the challenge is to get these technologies into
a mobile format that is interactive and dynamic,
location and activity aware, and not so dependent
on instant cheap access to the cloud.

We also have new and rich opportunity to col-
lect data from these ubiquitous, multisensor de-
vices and their increasingly intelligent Apps. We
can do eyetracking, we are already developing
applications that improve speech recognition and
machine translation by offering choices, and a
major research direction of mine is Unconscious
Computer Interface where these choices and cor-
rections are made below the level of conscious-
ness, like our everyday articulation choices in
speech and writing. This tracking and choice data
is an immensely rich resource, but is also associ-
ated with ethical and privacy considerations, so it
is best used for dynamic online training on device.

Traditionally, CoNLL’s focus has been on un-
derstanding language, although Machine Transla-
tion has transferred to same-language paraphrase
and summarization, and multilingual representa-
tion can be useful for monolingual generation.
Additionally, CoNLL’s focus has been on learn-
ing language, but from the beginning we have
also interacted with the Computer Assisted Lan-
guage Learning community, and there are inter-
esting synergies as the resources and techniques
developed for language learning are turned into
teaching Apps. We’ve developed systems for
teaching English (Powers et al., 2008; Ander-
son et al., 2008; Chiu et al., 2012; Anderson et
al., 2012), teaching social skills to children with
autism (Milne et al., 2010), as well as applica-
tions in aged care and health space* (Powers et
al., 2010). These recent systems incorporate bots
and games and simulated environments into talk-
ing/thinking/teaching heads and Embodied Con-
versational Agents (ECAs), while allowing us to
understand the effect of different features of the
system on human acceptability, understanding and

4http ://annacares.com



learning (Stevens et al., 2016). An interesting
‘uncanny valley’ aspect of this has been our re-
gression from human-indistinguishable disembod-
ied heads to cartoon-like embodied agents, while
at the same time controlling age, sex and ethnic-
ity components as determined by focus groups for
each application (Fig. 1).

Could we put more Mobile Apps into CoNLL?

3 +Parallelism

Parallel computers, distributed computers, the
internet and the cloud, are complemented by
naturally parallel paradigms, include the Func-
tional/Logic Programming paradigms, or the Map-
Reduce paradigm that seems to have taken on a life
of its own, and of course the Parallel Distributed
Processing of the Artificial Neural Network. The
brain is of course massively parallel, but at the
same time spoken language and conscious thought
are both intrinsically sequential.

When we founded SIGNLL and CoNLL, there
were several competing massive custom-designed
supercomputers out there, but the time and dol-
lar cost of the custom design meant that they were
seldom really that much ahead of the mainstream
servers. It was actually animation, games and
graphical hardware that drove parallelism to the
mainstream, with the incorporation of GPUs in
most modern PCs, and the development of the
GPGPU and Intel’s Phi, bringing enormous power
to our fingertips - as well as NVidia’s supercom-
puter (and deep learning network) in a box.’

Many of our low level operations can be per-
formed in parallel - as elementary keyword look-
ups are performed in search, with AND and OR
operations turning into streaming INTERSECT
and UNION operations. Semantic networks and
activation models are naturally parallel, as are Ar-
tificial Neural Networks. Yet the regular systolic
nature of current ANNSs is highly suited to GPU
architectures, and there is significant challenge as-
sociated with exploiting them for more ad hoc net-
work structures.

On the other hand high level modularity and
multimodality naturally give rise to components
that effectively run in parallel but need to co-
ordinate efficiently. For example our HeadX
(Luerssen et al., 2010) employs both shared mem-
ory and socket streams to coordinate speech and

Shttp://www.nvidia.com/object/
deep-learning-system.html

face synthesis while managing keyboard, mouse
and speech interactivity. Although our focus on
language might seems straightforward when we
consider text, the natural form of language is
speech, and the natural grounding of semantics in
our physical, social and cultural world. Processing
video for person, face, lip and eye tracking is an
increasing load as NLL moves out of the lab and
into a multimodal world, sensed through a phone
with limited power in terms of both processing and
battery capacity.

Furthermore, much of our limited power, along
with the subtle features embedded in our data, is
lost in repeated compression and decompression,
as well as dealing with massive amounts of mul-
tiple kinds markup that must be selectively pro-
cessed or skipped when embedded in a sequen-
tial stream. Conversely, access to and addition
of additional streams of annotation is more effi-
ciently achieved in a distributed parallel way,® and
we are not only producing synchronized parallel
streams for individual microphones and cameras,
but for subregions and macroblocks, and image
frames, and unidirectional and bidirectional pre-
diction frames that provide information about mo-
tion and allow utilizing information about atten-
tion.

Parallelism will be increasingly key to CoNLL.

4 4Data

The research of SIGNLL, like its sister SIGDAT,
is driven by data, often Big Data. My own interest
is more on unsupervised learning (Powers, 1984;
Powers, 1991b; Leibbrandt and Powers, 2012), but
even unsupervised systems need to be evaluated,
and formal evaluation was a missing element in
our early research. For supervised learning, an-
notated data is essential, and the Penn Treebank
(Marcus et al., 1993) was a great resource in those
early days and is still influential today.

In his presentation for the 10th anniversary of
CoNLL, Walter Daelemans (2006) notes that there
are huge costs in developing such corpora, that
there are issues with annotator agreement, and that
our trained systems might give high overall accu-
racies, or low error rates, but for key ambiguity
problems error rates of 20-30% are common - and
my own exploration of “problems” with my unsu-
pervised learning using BNC2 for evaluation actu-
ally showed that BNC tags were wrong as much as

®http://alveo.edu.au/



60% of the time for certain specialized cases (e.g.
for the PoS labeling of “work™ in “going to work”
the corpus tags have an accuracy of only 39.1%).

We need more of a focus on understanding our
data, ensuring it is clean and accurate, and that
the numbers that we use to characterize its accu-
racy are actually reflective of the hard cases rather
than just the easy cases (Entwisle and Powers,
1998). Zipf’s law tells us that the top 150 words
of English suffice to account for half the tokens
of running English text, and these and other func-
tional words, as well as words with unambiguous
or highly predictive affixes, quickly leads us to
what in normal accuracy terms would be regarded
as a creditable performance. This is a particular
case of the 80:20 rule - the first 80% of accuracy is
achieved very easily. Another sign of the problem
with our tagging and parsing is limiting consider-
ation to sentences of 40 words or less.

A further problem with corpora is that they wear
out quickly! That is datasets get overused, and
we treat them as an ML resource where we try
to tweak every last percentage point of accuracy,
using every trick in the book, but in the end with
0.05 significance testing one in twenty researchers
is likely to show an improvement over their base-
line system just by being different - adding noise
can do the trick! As Cohen (1994) suggests, Sta-
tistical Hypothesis Inference Testing is worthy of
its acronym.

We need further work on developing good cor-
pora, including multimodal corpora where this is
a richer basis for unsupervised learning, and for
automated validation and correction, that is not
just text corpora with syntactic or semantic anno-
tations, but corpora involving audio-visual speech
and longitudinal contextual data (Roy, 2009). One
driving force of this is having the same data avail-
able for CoNLL as babies have when they are
learning data, but another is the Memories4Life
GrandChallenge of capturing all the important
moments of our lives and exploiting the ubiqui-
tous computing and audiovisual resources of to-
day’s mobile devices, with practical applications
already being developed for alleviating dementia.

Data will continue to be pivotal to CoNLL.

5 ZFeatures

In the previous section, I mentioned the issue with
tags for supervised training and/or evaluation of
systems. Now I want to focus more on the devel-

opment and evaluation of the utility of unsuper-
vised features, and to connect back to our Apps as
I propose once again an approach that allows this
through the use of application-oriented evaluation
Powers(1991a; 2005) - don’t try to evaluate tags or
features or structures directly, but comparatively in
real world (or in early stages toy world) applica-
tions. Often when we talk about features we think
specifically of features in visual, auditory or other
signals. This is indeed what I am talking about —
linguistic features derive from these modalities.

One special case is unsupervised discovery of
tags, including both syntactic (PoS) and seman-
tic tags. Much of the “unsupervised” learning we
see at CoNLL already assumes a “linguistically”
motivated set of tags, and often a pre-tagged cor-
pus, for which there is no psychological, neuro-
logical or other empirical evidence other than pro-
fessors/linguists have managed to formalize some
kind of system and students/annotators have man-
aged to learn the system.

If we think of the tagging and parsing with the
tags as their “applications”, we then have a spe-
cial case of the proposal in the previous section to
compare systems based on evaluation of the ap-
plication, but in the end I'd still like to take it to a
real world application eventually - after all nobody
actually knows (yet) how we process language in
our heads, and understanding this is our fifth goal.
The same learning techniques applied to different
sets of tags gives us a comparison - but we must
be sure to use an evaluation technique that doesn’t
implicitly bias when we have different numbers of
classes (Powers, 2008). Furthermore when we do
compare techniques or parameterizations or tweak
biases and thresholds, we should be wondering
whether the difference are real and bioplausible,
and whether they are universal or an artefact of
specific data.

Tags are in fact a special kind of feature in that
they are descrete and there are few enough of them
to give them names (outside of Categorial Gram-
mar). Letters of the alphabet (graphemes) also
belong to this special subclass by definition, and
similarly by assumption the same applies to other
emic units (e.g. phonemes and morphemes, in-
cluding affixes and functional words). The situa-
tion is more difficult at the level of words and sen-
tences - I actually have my doubts as to whether
those are real units psychologically in pre-literate
language, as they are defined somewhat arbitrarily
by the placement of punctuation: why ‘out of” and



not ‘into’ - and what is the current status of ‘upto’?
Isit ‘today’ or ‘to-day’ or ‘to day’ or ‘the day’; is it
‘one of” or ‘one off’, ‘would have’ or ‘would of”?
Do these units even have well-defined boundaries
in speech? Can we tell which word a particular
speech code vector actually belongs to? And all
this is without descending to the etic level... There
is an intrinsically fuzzy aspect to language, and
it is hugely context dependent in a way that tran-
scends the traditional phonetic, morphemic, syn-
tactic and semantic levels implicit in CoNLL’s first
two aims. But it is in working towards the last two
aims, in a ubiquitous, mobile, multimodal context,
that we will effectively address the dynamics of
language, and finally resolve all the fuzziness and
ambiguity.
CoNLL will discover new vistas of features.

6 +Multimodal

CoNLL has been very successful in relation
to SIGNLL’s first three “automated acquisition”
aims! But what of the fourth “[hand]written and
spoken” aim? And have we really got “seman-
tics” and “ontology” under control as per the sec-
ond aim? Since I first used it in the early 1980s,
and incorporated it in my 1991 symposium title
and the SIGNLL aims, the word “ontology” has
come to mean something more like “taxonomy”
rather than its traditional and etymological idea of
“our understanding of the world”. In the 1980s
our focus was in trying to find an alternative to the
word “semantics”, which in practice was becom-
ing “look it up in the dictionary” or “follow a link
in a semantic net”.

Feldman et al. (1990) introduced the idea of
LO as the basic bootstrap language task based on
a simple toy world model, while Harnad (1987;
1990; 1991) used the term “symbol grounding”
and argued strongly that even simulated worlds
weren’t enough, and earlier still (Hayes, 1979) had
used the phrase “naive physics” to describe what
he thought was needed.

Between 1984 and 1991 my students had devel-
oped and were using the Magrathea robot world
extension to Prolog (Powers and Turk, 1989) but
between 1995 and 1997 we built a physical hu-
manoid baby that could crawl, feel touch to arms
and legs, had omnidirectional auditory percep-
tion and stereovision, and could orient towards a
touch or sound, and “feed” (charge and download)
via a USB bottle/umbilical, but it was a brittle

heavy system that was not suitable for a child to
“mother” as originally envisaged (Powers, 2001),
so that I eventually transitioned to the model of an
Intelligent Room with half a dozen microphones
and cameras.

Luc Steels (1995; 1997; 2003; 2015) adopted
a simpler approach, transitioning from simple
graphical animations, to turtle-like robots to a pair
of cameras that viewed a “real world scene” that
was constrained to be very simple (manipulation
of cutout shapes on a board), and produced some
very interesting interactions and learning.

There’s another advantage to multimodal data,
that is that you can use supervised techniques
in a directed but unsupervised way. The 1980s
idea of (holographic) autocoding of the input to
self-organize features, can become a more effi-
cient and bioplausible system where intramodal
feature discovery and intermodal feature discov-
ery are distinguished - for example visemes can
be self-organized as facial/lip patterns that corre-
late to certain groups of phonemes. The use of
multimodal autosupervision allows more bioplau-
sible features to be self-organized, as well as fa-
cilitating a cognitive approach to learning phonol-
ogy, morphology, syntax and semantics (Powers,
1997). An additional advantage is that techniques
like eye-tracking and gaze-tracking can augment
our user interfaces and help identify context or dis-
tinguish alternatives, boosting the accuracy of our
NLL systems.

Today, Google Glass and Microsoft’s Hololens
(with Kinect-like 3D), are examples of the integra-
tion of multiple cameras and microphones, and a
heads-up augmented-reality type display, into an
efficient platform that can keep track of the 3D
world in a way that will naturally complement
speech capabilities as well as augment the capa-
bilities of language learning with its richer data.

Multimodal will open a door to a new CoNLL.

7 +Bioplausibility

So we are now up to the final “modeling human
language acquisition” aim. In the end, language
is a product of human biology and ecology, but
Linguistics and Computational Linguistics have
largely been developing without any input from
Biology, Psychology or Neuroscience although
there are interesting crossovers, and CoNLL has
always strongly encouraged the modelling of hu-
man language acquisition theory and processes,



and we do get a trickle of papers with a Psy-
cholinguistic flavour. But I would encourage
the CoNLL community to look beyond Computa-
tional Linguistics and Artificial Intelligence to the
evidence being amassed in Computational Neuro-
science and Cognitive Psychology, and to seek to
connect to people studying language and learning
from these different perspectives.

There is no compelling reason we have to make
our systems bioplausible, and just because we
use a neural network doesn’t necessarily make
it bioplausible model. But there are advantages
in taking on board this aim. Indeed the intro-
duction of neural and computational plausibility
revolutionized the behavioural and cognitive sci-
ences, with terms like neurons and agents re-
placing vague concepts from earlier theories of
Psychology and Philosophy as they talked about
demons (Selfridge, 1959) and zombies (Dennett,
1995), with the zombie argument turning up in Al
in the well known guise of Mary’s Room (Jack-
son, 1986) and the Chinese Room (Searle, 1980).
Philosophers tend to shift the focus from Tur-
ing’s (1950) behavioural test of indistinguishabil-
ity of language performance (as a surrogate for be-
haviour and cognition in general), to mind, con-
sciousness, awareness and feelings, while Compu-
tational Neuropsychology seeks to model what we
find in the brain and show how that can explain and
reproduce human-like language and behaviour.

Part of SIGNLL and CoNLL’s charter includes
the understanding and modeling of the behaviour
of another, the theory of mind, as a component that
is absolutely necessary for conversation, for effec-
tive communication and learning, for understand-
ing the affective, emotional and physical states of
the person we are talking to, and for understanding
the human factors of the interfaces we are build-
ing.

So beyond just looking at the latest work across
CoCoSci, we could be looking at our language
learning systems as scientific models in their own
right, or looking at interdisciplinary theories as
a basis for our systems, and presenting them in
a way that makes them into behaviourally, bio-
logically and computationally plausible hypothe-
ses and theories that are testable by their predic-
tions about human behaviour (Popper, 1934; Pop-
per, 1963; Lakatos, 1970).

We thus encourage collaborations with other
parts of Cognitive Science who can help us im-
prove and extend our language learning models,

as well as help others keep their theories com-
putationally realistic. CoNLL system may well
give insights to other disciplines, and certainly
our methodologies can and should be utilized in
cognitive programs, more over our tools can help
with their data collection and behavioural analysis
(Stevens et al., 2016).

CoNLL is key to unlocking the human psyche.

8 +20 Years

SIGNLL and CoNLL were born info an environ-
ment where Cognitive Science had brought people
out of their silos and interdisciplinary research and
computational modeling were recognized as es-
sential to a proper understanding of language and
cognition. Indeed Cognitive Science was born out
of the controversies over language and learning:
what was innate, what was learned, and what was
biologically and computationally feasible.

This is a story for another time, and indeed one
of SIGNLL’s sponsored workshops, Cognitive As-
pects of Natural Language Learning (CACLL) is
continuing the debate as another stream during
CoNLL/ACL, and there are other relevant work-
shops on Morphology and Phonology, and Repre-
sentations and Evaluations, etc. Workshops have
driven advances in the application of unsupervised
and semisupervised learning, as well as covering
some of the more forward thinking application
areas like Companionable Dialog Systems. We
don’t regard them as in competition with CoNLL,
but we actively sponsor workshops as additional
streams that allow a focus that is not possible in
the main thread of CoNLL - our sponsored work-
shops are just as much a part of CoNLL as of ACL,
and often they capture elements that are emerging
in CoNLL and will be important in the future!

While our successes with taggers and parsers
and semantic models, and their applications in in-
formation retrieval and machine translation and in-
telligent assistants, will remain the bread and but-
ter for CoNLL, we actively encourage people to
be proactive and propose workshops and tutorials
that will broaden the background of CoNLL re-
searchers as Speech and Language become pivotal
in a mobile, wearable age of ubiquitious comput-
ing and communication. It is also impressive to
see how important the shared tasks have been in
setting directions, and becoming a focus for future
years - and we aim to improve the way in which
these are made available for future use, compari-



son and evaluation. Your suggestions about shared
tasks will also be most welcome.

In the next 20 years, I expect ubiquitous longitu-
dinal multimodal multiangle multidirectional data,
wearable processing, and cloud connectivity, will
multiply both the opportunities and the challenges
for CoNLL, and of course lead to further successes
and new technologies to wow the world one year,
and be taken for granted the next.

I hope we will make similar progress in under-
standing the human that wears the tech, in explor-
ing the similarities and differences between Artifi-
cial Intelligences and Human Intelligence.

CoNLL has an exciting future ahead.
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Abstract

The standard recurrent neural network
language model (RNNLM) generates sen-
tences one word at a time and does not
work from an explicit global sentence rep-
resentation. In this work, we introduce
and study an RNN-based variational au-
toencoder generative model that incorpo-
rates distributed latent representations of
entire sentences. This factorization al-
lows it to explicitly model holistic prop-
erties of sentences such as style, topic,
and high-level syntactic features. Samples
from the prior over these sentence repre-
sentations remarkably produce diverse and
well-formed sentences through simple de-
terministic decoding. By examining paths
through this latent space, we are able to
generate coherent novel sentences that in-
terpolate between known sentences. We
present techniques for solving the difficult
learning problem presented by this model,
demonstrate its effectiveness in imputing
missing words, explore many interesting
properties of the model’s latent sentence
space, and present negative results on the
use of the model in language modeling.

1

Recurrent neural network language models
(RNNLMs, Mikolov et al., 2011) represent the state
of the art in unsupervised generative modeling
for natural language sentences. In supervised
settings, RNNLM decoders conditioned on task-
specific features are the state of the art in tasks
like machine translation (Sutskever et al., 2014;
Bahdanau et al., 2015) and image captioning
(Vinyals et al., 2015; Mao et al., 2015; Donahue
et al., 2015). The RNNLM generates sentences
word-by-word based on an evolving distributed
state representation, which makes it a proba-
bilistic model with no significant independence

Introduction

“First two authors contributed equally. Work was
done when all authors were at Google, Inc.
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i went to the store to buy some groceries .
i store to buy some groceries .

i were to buy any groceries .

horses are to buy any groceries .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

Table 1: Sentences produced by greedily decoding
from points between two sentence encodings with
a conventional autoencoder. The intermediate sen-
tences are not plausible English.

assumptions, and makes it capable of modeling
complex distributions over sequences, including
those with long-term dependencies. However, by
breaking the model structure down into a series of
next-step predictions, the RNNLM does not expose
an interpretable representation of global features
like topic or of high-level syntactic properties.

We propose an extension of the RNNLM that is
designed to explicitly capture such global features
in a continuous latent variable. Naively, maxi-
mum likelihood learning in such a model presents
an intractable inference problem. Drawing inspi-
ration from recent successes in modeling images
(Gregor et al., 2015), handwriting, and natural
speech (Chung et al., 2015), our model circum-
vents these difficulties using the architecture of a
variational autoencoder and takes advantage of re-
cent advances in variational inference (Kingma and
Welling, 2015; Rezende et al., 2014) that introduce
a practical training technique for powerful neural
network generative models with latent variables.

Our contributions are as follows: We propose a
variational autoencoder architecture for text and
discuss some of the obstacles to training it as well
as our proposed solutions. We find that on a stan-
dard language modeling evaluation where a global
variable is not explicitly needed, this model yields
similar performance to existing RNNLMs. We also
evaluate our model using a larger corpus on the
task of imputing missing words. For this task,
we introduce a novel evaluation strategy using an

Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 10-21,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



adversarial classifier, sidestepping the issue of in-
tractable likelihood computations by drawing in-
spiration from work on non-parametric two-sample
tests and adversarial training. In this setting,
our model’s global latent variable allows it to do
well where simpler models fail. We finally intro-
duce several qualitative techniques for analyzing
the ability of our model to learn high level fea-
tures of sentences. We find that they can produce
diverse, coherent sentences through purely deter-
ministic decoding and that they can interpolate
smoothly between sentences.

2 Background

2.1 Unsupervised sentence encoding

A standard RNN language model predicts each
word of a sentence conditioned on the previous
word and an evolving hidden state. While effec-
tive, it does not learn a vector representation of
the full sentence. In order to incorporate a contin-
uous latent sentence representation, we first need a
method to map between sentences and distributed
representations that can be trained in an unsuper-
vised setting. While no strong generative model
is available for this problem, three non-generative
techniques have shown promise: sequence autoen-
coders, skip-thought, and paragraph vector.

Sequence autoencoders have seen some success
in pre-training sequence models for supervised
downstream tasks (Dai and Le, 2015) and in gen-
erating complete documents (Li et al., 2015a).
An autoencoder consists of an encoder function
©Yene and a probabilistic decoder model p(z|Z
©Yenc(x)), and maximizes the likelihood of an ex-
ample x conditioned on 2, the learned code for
z. In the case of a sequence autoencoder, both
encoder and decoder are RNNs and examples are
token sequences.

Standard autoencoders are not effective at ex-
tracting for global semantic features. In Table
1, we present the results of computing a path
or homotopy between the encodings for two sen-
tences and decoding each intermediate code. The
intermediate sentences are generally ungrammat-
ical and do not transition smoothly from one to
the other. This suggests that these models do
not generally learn a smooth, interpretable fea-
ture system for sentence encoding. In addition,
since these models do not incorporate a prior over
Z, they cannot be used to assign probabilities to
sentences or to sample novel sentences. Similarly,
Iyyer et al. (2014) provide a method for generating
sentences with arbitrary syntactic structure using
tree-structured autoencoders, but that model only
transforms existing sentences and cannot generate
entirely new ones.

Two other models have shown promise in learn-
ing sentence encodings, but cannot be used in
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a generative setting: Skip-thought models (Kiros
et al., 2015) are unsupervised learning models that
take the same model structure as a sequence au-
toencoder, but generate text conditioned on a
neighboring sentence from the target text, instead
of on the target sentence itself. Finally, para-
graph vector models (Le and Mikolov, 2014) are
non-recurrent sentence representation models. In a
paragraph vector model, the encoding of a sentence
is obtained by performing gradient-based inference
on a prospective encoding vector with the goal of
using it to predict the words in the sentence.

2.2 The variational autoencoder

The variational autoencoder (VAE, Kingma and
Welling, 2015; Rezende et al., 2014) is a genera-
tive model that is based on a regularized version
of the standard autoencoder. This model imposes
a prior distribution on the hidden codes Z" which
enforces a regular geometry over codes and makes
it possible to draw proper samples from the model
using ancestral sampling.

The VAE modifies the autoencoder architecture
by replacing the deterministic function @e,. with
a learned posterior recognition model, ¢(Z]x). This
model parametrizes an approximate posterior dis-
tribution over Z’ (usually a diagonal Gaussian) with
a neural network conditioned on z. Intuitively, the
VAE learns codes not as single points, but as soft
ellipsoidal regions in latent space, forcing the codes
to fill the space rather than memorizing the train-
ing data as isolated codes.

If the VAE were trained with a standard autoen-
coder’s reconstruction objective, it would learn to
encode its inputs deterministically by making the
variances in ¢(Z]x) vanishingly small (Raiko et al.,
2015). Instead, the VAE uses an objective which
encourages the model to keep its posterior distri-
butions close to a prior p(Z), generally a standard
Gaussian (p = 0, 0= T) Additionally, this objec-
tive is a valid lower bound on the true log likelihood
of the data, making the VAE a generative model.
This objective takes the following form:

L(0;z) = —KL(go(Z]x)||p(2))
+ Egy (212) [log po(2]2)]
<logp(z) .

(1)

This forces the model to be able to decode plausible
sentences from every point in the latent space that
has a reasonable probability under the prior.

In the experiments presented below using VAE
models, we use diagonal Gaussians for the prior
and posterior distributions p(%) and ¢(Z]z), using
the Gaussian reparameterization trick of Kingma
and Welling (2015). We train our models with
stochastic gradient descent, and at each gradient
step we estimate the reconstruction cost using a
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Figure 1: The core structure of our variational au-
toencoder language model. Words are represented
using a learned randomly-initialized dictionary of
embedding vectors. Z'is a vector-valued latent vari-
able with a Gaussian prior and an approximate
posterior parameterized by the encoder’s outputs
1 and o. <EOS> marks the end of each sequence.

single sample from ¢(Z]x), but compute the KL di-
vergence term of the cost function in closed form,
again following Kingma and Welling (2015).

3 A VAE for sentences

We adapt the variational autoencoder to text
by using single-layer LsSTM RNNs (Hochreiter and
Schmidhuber, 1997) for both the encoder and the
decoder, essentially forming a sequence autoen-
coder with the Gaussian prior acting as a regu-
larizer on the hidden code. The decoder serves as
a special RNN language model that is conditioned
on this hidden code, and in the degenerate setting
where the hidden code incorporates no useful in-
formation, this model is effectively equivalent to an
RNNLM. The model is depicted in Figure 1, and is
used in all of the experiments discussed below.

We explored several variations on this architec-
ture, including concatenating the sampled ' to the
decoder input at every time step, using a soft-
plus parametrization for the variance, and using
deep feedforward networks between the encoder
and latent variable and the decoder and latent vari-
able. We noticed little difference in the model’s
performance when using any of these variations.
However, when including feedforward networks be-
tween the encoder and decoder we found that it
is necessary to use highway network layers (Sri-
vastava et al., 2015) for the model to learn. We
use a 4 layer highway network to parametrize the
Gaussian posterior conditioned on the RNN state,
and another identical network to map the Gaus-
sian samples back to feed into the decoder RNN.
We discuss hyperparameter tuning in Appendix II.

We also experimented with more sophisticated
recognition models ¢(Z]z), including a multistep
sampling model styled after DRAW (Gregor et al.,
2015), and a posterior approximation using nor-
malizing flows (Rezende and Mohamed, 2015).
However, we were unable to reap significant gains
over our plain VAE.

While the strongest results with VAEs to date
have been on continuous domains like images, there
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has been some work on discrete sequences: a tech-
nique for doing this using RNN encoders and de-
coders, which shares the same high-level architec-
ture as our model, was proposed under the name
Variational Recurrent Autoencoder (VRAE) for the
modeling of music in Fabius and van Amersfoort
(2014). While there has been other work on includ-
ing continuous latent variables in RNN-style mod-
els for modeling speech, handwriting, and music
(Bayer and Osendorfer, 2015; Chung et al., 2015),
these models include separate latent variables per
timestep and are unsuitable for our goal of model-
ing global features.

In a recent paper with goals similar to ours,
Miao et al. (2016) introduce an effective VAE-
based document-level language model that models
texts as bags of words, rather than as sequences.
They mention briefly that they have to train the
encoder and decoder portions of the network in al-
ternation rather than simultaneously, possibly as a
way of addressing some of the issues that we dis-
cuss in Section 3.1.

3.1 Optimization challenges

Our model aims to learn global latent represen-
tations of sentence content. We can quantify the
degree to which our model learns global features
by looking at the variational lower bound objec-
tive (1). The bound breaks into two terms: the
data likelihood under the posterior (expressed as
cross entropy), and the KL divergence of the pos-
terior from the prior. A model that encodes useful
information in the latent variable Z will have a non-
zero KL divergence term and a relatively small cross
entropy term. Straightforward implementations of
our VAE fail to learn this behavior: except in van-
ishingly rare cases, most training runs with most
hyperparameters yield models that consistently set
q(Z]x) equal to the prior p(2), bringing the KL di-
vergence term of the cost function to zero.

When the model does this, it is essentially be-
having as an RNNLM. Because of this, it can ex-
press arbitrary distributions over the output sen-
tences (albeit with a potentially awkward left-to-
right factorization) and can thereby achieve like-
lihoods that are close to optimal. Previous work
on VAEs for image modeling (Kingma and Welling,
2015) used a much weaker independent pixel de-
coder model p(z|Z), forcing the model to use the
global latent variable to achieve good likelihoods.
In a related result, recent approaches to image gen-
eration that use LSTM decoders are able to do well
without VAE-style global latent variables (Theis
and Bethge, 2015).

This problematic tendency in learning is com-
pounded by the LSTM decoder’s sensitivity to sub-
tle variation in the hidden states, such as that in-
troduced by the posterior sampling process. This
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Figure 2: The weight of the KL divergence term
of variational lower bound according to a typical
sigmoid annealing schedule plotted alongside the
(unweighted) value of the KL divergence term for
our VAE on the Penn Treebank.

causes the model to initially learn to ignore 2" and
go after low hanging fruit, explaining the data with
the more easily optimized decoder. Once this has
happened, the decoder ignores the encoder and lit-
tle to no gradient signal passes between the two,
yielding an undesirable stable equilibrium with the
KL cost term at zero. We propose two techniques
to mitigate this issue.

KL cost annealing In this simple approach to
this problem, we add a variable weight to the KL
term in the cost function at training time. At the
start of training, we set that weight to zero, so
that the model learns to encode as much informa-
tion in Z'as it can. Then, as training progresses, we
gradually increase this weight, forcing the model to
smooth out its encodings and pack them into the
region of the embedding space that is assigned a
reasonably high probability by the Gaussian prior.
We increase this weight until it reaches 1, at which
point the weighted cost function is equivalent to
the true variational lower bound. In this setting,
we do not optimize the proper lower bound on the
training data likelihood during the early stages of
training, but we nonetheless see improvements on
the value of that bound at convergence. This can
be thought of as annealing from a vanilla autoen-
coder to a VAE. The rate of this increase is tuned
as a hyperparameter.

Figure 2 shows the behavior of the KL cost term
during the first 50k steps of training on Penn Tree-
bank (Marcus et al., 1993) language modeling with
KL cost annealing in place. This example reflects a
pattern that we observed often: KL spikes early in
training while the model can encode information in
Z cheaply, then drops substantially once it begins
paying the full KL divergence penalty, and finally
slowly rises again before converging as the model
learns to condense more information into Zz.

Word dropout and historyless decoding In
addition to weakening the penalty term on the en-
codings, we also experiment with weakening the

decoder. As in RNNLMs and sequence autoen-
coders, during learning our decoder predicts each
word conditioned on the ground-truth previous
word. A natural way to weaken the decoder is
to remove some or all of this conditioning infor-
mation during learning. We do this by randomly
replacing some fraction of the conditioned-on word
tokens with the generic unknown word token UNK.
This forces the model to rely on the latent variable
Z to make good predictions. This technique is a
variant of word dropout (Iyyer et al., 2015; Kumar
et al., 2016), applied not to a feature extractor but
to a decoder. We also experimented with standard
dropout (Srivastava et al., 2014) applied to the in-
put word embeddings in the decoder, but this did
not help the model learn to use the latent variable.

This technique is parameterized by a keep rate
k € [0,1]. We tune this parameter both for our
VAE and for our baseline RNNLM. Taken to the
extreme of k = 0, the decoder sees no input, and is
thus able to condition only on the number of words
produced so far, yielding a model that is extremely
limited in the kinds of distributions it can model
without using 2.

4 Results: Language modeling

In this section, we report on language modeling
experiments on the Penn Treebank in an effort to
discover whether the inclusion of a global latent
variable is helpful for this standard task. For this
reason, we restrict our VAE hyperparameter search
to those models which encode a non-trivial amount
in the latent variable, as measured by the KL di-
vergence term of the variational lower bound.

Results We used the standard train—test split
for the corpus, and report test set results in Ta-
ble 2. The results shown reflect the training and
test set performance of each model at the training
step at which the model performs best on the de-
velopment set. Our reported figures for the VAE
reflect the variational lower bound on the test like-
lihood, while for the RNNLMs, which can be eval-
uated exactly, we report the true test likelihood.
This discrepancy puts the VAE at a potential dis-
advantage.

In the standard setting, the VAE performs
slightly worse than the RNNLM baseline, though
it does succeed in using the latent space to a lim-
ited extent: it has a reconstruction cost (99) better
than that of the baseline RNNLM, but makes up for
this with a KL divergence cost of 2. Training a VAE
in the standard setting without both word dropout
and cost annealing reliably results in models with
equivalent performance to the baseline RNNLM, and
zero KL divergence.

To demonstrate the ability of the latent variable
to encode the full content of sentences in addition



Model Standard Inputless Decoder
Train NLL Train PPL  Test NLL Test PPL Train NLL Train pPL.  Test NLL Test PPL
RNNLM 100 - 95 100 — 116 135 — 600 135 — > 600
VAE 98 (2) 100 101 (2) 119 120 (15) 300 125 (15) 380
Table 2: Penn Treebank language modeling results, reported as negative log likelihoods (NLL) and as

perplexities (PPL). Lower is better for both metrics. For the VAE, the KL term of the likelihood is shown

in parentheses alongside the total likelihood.

to more abstract global features, we also provide
numbers for an inputless decoder that does not
condition on previous tokens, corresponding to a
word dropout keep rate of 0. If this decoder can-
not or does not take advantage of the encoder, then
it is essentially equivalent to a unigram language
model, with the hidden state providing information
about position but noting more. In this regime we
can see that the variational lower bound contains a
significantly larger KL term and shows a substantial
improvement over the weakened RNNLM. While
it is weaker than a standard decoder, the input-
less decoder has the interesting property that its
sentence generating process is fully differentiable.
Advances in generative models of this kind could
be promising as a means of generating text while
using adversarial training methods, which require
differentiable generators.

Even with the techniques described in the pre-
vious section, including the inputless decoder, we
were unable to train models for which the KL diver-
gence term of the cost function dominates the re-
construction term. This suggests that it is still sub-
stantially easier to learn to factor the data distribu-
tion using simple local statistics, as in the RNNLM,
such that an encoder will only learn to encode in-
formation in Z when that information cannot be
effectively described by these local statistics.

5 Results: Imputing missing words

We claim that the our VAE’s global sentence fea-
tures make it especially well suited to the task of
imputing missing words in otherwise known sen-
tences. In this section, we present a technique
for imputation and a novel evaluation strategy in-
spired by adversarial training. Qualitatively, we
find that the VAE yields more diverse and plausible
imputations for the same amount of computation
(see the examples given in Table 3), but precise
quantitative evaluation requires intractable likeli-
hood computations. We sidestep this by introduc-
ing a novel evaluation strategy.

While the standard RNNLM is a powerful genera-
tive model, the sequential nature of likelihood com-
putation and decoding makes it unsuitable for per-
forming inference over unknown words given some
known words (the task of imputation). Except in
the special case where the unknown words all ap-
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pear at the end of the decoding sequence, sampling
from the posterior over the missing variables is in-
tractable for all but the smallest vocabularies. For
a vocabulary of size V, it requires O(V') runs of full
RNN inference per step of Gibbs sampling or iter-
ated conditional modes. Worse, because of the di-
rectional nature of the graphical model given by an
RNNLM, many steps of sampling could be required
to propagate information between unknown vari-
ables and the known downstream variables. The
VAE, while it suffers from the same intractability
problems when sampling or computing MAP im-
putations, can more easily propagate information
between all variables, by virtue of having a global
latent variable and a tractable recognition model.

For this experiment and subsequent analysis, we
train our models on the Books Corpus introduced
in Kiros et al. (2015). This is a collection of text
from 12k e-books, mostly fiction. The dataset,
after pruning, contains approximately 80m sen-
tences. We find that this much larger amount of
data produces more subjectively interesting gener-
ative models than smaller standard language mod-
eling datasets. We use a fixed word dropout rate of
75% when training this model and all subsequent
models unless otherwise specified. Our models (the
VAE and RNNLM) are trained as language models,
decoding right-to-left to shorten the dependencies
during learning for the VAE. We use 512 hidden
units.

Inference method To generate imputations
from the two models, we use beam search with
beam size 15 for the RNNLM and approximate iter-
ated conditional modes (Besag, 1986) with 3 steps
of a beam size 5 search for the VAE. This allows
us to compare the same amount of computation
for both models. We find that breaking decod-
ing for the VAE into several sequential steps is nec-
essary to propagate information among the vari-
ables. Iterated conditional modes is a technique
for finding the maximum joint assignment of a set
of variables by alternately maximizing conditional
distributions, and is a generalization of “hard-Em”
algorithms like k-means (Kearns et al., 1998). For
approximate iterated conditional modes, we first
initialize the unknown words to the UNK token. We
then alternate assigning the latent variable to its
mode from the recognition model, and performing



but now , as they parked out front and owen stepped out of the car , he could see

True: that the transition was complete . RINNLM: it , ” ¢ said . VAE: through the driver ’s door .
you kill him and his _ _
True: men . RNNLM: . ” VAE: brother .

not surprising , the mothers dont exactly see eye to eye with me _ _

True: on this matter .

RNNLM: | i said .

~ VAE: , Tight now .

outside the cover , quiet _ _

True: fell . RNNLM: . ” VAE: time .
she punched the cell _
True: too . RNNLM: again . VAE: phone .

Table 3: Examples of using beam search to impute missing words within sentences. Since we decode from
right to left, note the stereotypical completions given by the RNNLM, compared to the VAE completions

that often use topic data and more varied vocabulary.

constrained beam search to assign the unknown
words. Both of our generative models are trained
to decode sentences from right-to-left, which short-
ens the dependencies involved in learning for the
VAE, and we impute the final 20% of each sen-
tence. This lets us demonstrate the advantages of
the global latent variable in the regime where the
RNNLM suffers the most from its inductive bias.

Adversarial evaluation Drawing inspiration
from adversarial training methods for generative
models as well as non-parametric two-sample tests
(Goodfellow et al., 2014; Li et al., 2015b; Denton
et al., 2015; Gretton et al., 2012), we evaluate the
imputed sentence completions by examining their
distinguishability from the true sentence endings.
While the non-differentiability of the discrete RNN
decoder prevents us from easily applying the ad-
versarial criterion at train time, we can define a
very flexible test time evaluation by training a dis-
criminant function to separate the generated and
true sentences, which defines an adversarial error.

We train two classifiers: a bag-of-unigrams lo-
gistic regression classifier and an LSTM logistic re-
gression classifier that reads the input sentence and
produces a binary prediction after seeing the final
EOs token. We train these classifiers using early
stopping on a 80/10/10 train/dev/test split of 320k
sentences, constructing a dataset of 50% complete
sentences from the corpus (positive examples) and
50% sentences with imputed completions (negative
examples). We define the adversarial error as the
gap between the ideal accuracy of the discrimina-
tor (50%, i.e. indistinguishable samples), and the
actual accuracy attained.

Results As a consequence of this experimental
setup, the RNNLM cannot choose anything outside
of the top 15 tokens given by the RNN’s initial un-
conditional distribution P(z1|Null) when produc-
ing the final token of the sentence, since it has not
yet generated anything to condition on, and has a
beam size of 15. Table 4 shows that this weakness
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Model Adv. Err. (%) NLL
Unigram LSTM RNNLM

RNNLM (15 bm.) 28.3 38.9 46.0

VAE (3x5 bm.) 22.4 35.6 46.1

Table 4: Results for adversarial evaluation of im-
putations. Unigram and LSTM numbers are the
adversarial error (see text) and RNNLM numbers
are the negative log-likelihood given to entire gen-
erated sentence by the RNNLM, a measure of sen-
tence typicality. Lower is better on both metrics.
The VAE is able to generate imputations that are
significantly more difficult to distinguish from the
true sentences.

makes the RNNLM produce far less diverse samples
than the VAE and suffer accordingly versus the ad-
versarial classifier. Additionally, we include the
score given to the entire sentence with the imputed
completion given a separate independently trained
language model. The likelihood results are com-
parable, though the RNNLMs favoring of generic
high-probability endings such as “he said,” gives
it a slightly lower negative log-likelihood. Mea-
suring the RNNLM likelihood of sentences them-
selves produced by an RNNLM is not a good mea-
sure of the power of the model, but demonstrates
that the RNNLM can produce what it sees as high-
quality imputations by favoring typical local statis-
tics, even though their repetitive nature produces
easy failure modes for the adversarial classifier.
Accordingly, under the adversarial evaluation our
model substantially outperforms the baseline since
it is able to efficiently propagate information bidi-
rectionally through the latent variable.

6 Analyzing variational models

We now turn to more qualitative analysis of the
model. Since our decoder model p(z|Z) is a sophis-
ticated RNNLM, simply sampling from the directed



100% word keep

75% word keep

“no , 7 he said .

why would i want you to look at me like this ¢

“no, 7 he said .

“love you , too . ”

“thank you , 7 he said .

she put her hand on his shoulder and followed him
to the door .

50% word keep

0% word keep

all this time , i could n’t stay in the room .

not , did n’t be , for the time he was out in

“ maybe two or two . 7

i 1 hear some of of of

she laughed again , once again , once again , and
thought about it for a moment in long silence .

1 was noticed that she was holding the in in of the
the in

Table 5: Samples from a model trained with varying amounts of word dropout. We sample a vector from
the Gaussian prior and apply greedy decoding to the result. Note that diverse samples can be achieved
using a purely deterministic decoding procedure. Once we use reach a purely inputless decoder in the
0% setting, however, the samples cease to be plausible English sentences.

he had been unable to conceal the fact that there was a logical explanation for his inability to
alter the fact that they were supposed to be on the other side of the house .

with a variety of pots strewn scattered across the vast expanse of the high ceiling , a vase of
colorful flowers adorned the tops of the rose petals littered the floor and littered the floor .

atop the circular dais perched atop the gleaming marble columns began to emerge from atop the

stone dais, perched atop the dais .

Table 6:

Greedily decoded sentences from a model with 75% word keep probability, sampling from

lower-likelihood areas of the latent space. Note the consistent topics and vocabulary usage.
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Figure 3: The values of the two terms of the cost
function as word dropout increases.

graphical model (first p(Z) then p(z|Z)) would not
tell us much about how much of the data is being
explained by each of the latent space and the de-
coder. Instead, for this part of the evaluation, we
sample from the Gaussian prior, but use a greedy
deterministic decoder for p(x|Z), the RNNLM con-
ditioned on z. This allows us to get a sense of how
much of the variance in the data distribution is be-
ing captured by the distributed vector Z as opposed
to the decoder. Interestingly, these results qualita-
tively demonstrate that large amounts of variation
in generated language can be achieved by follow-
ing this procedure. In Appendix I, we provide some
results on small text classification tasks.
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6.1 Analyzing the impact of word dropout

For this experiment, we train on the Books Cor-
pus and test on a held out 10k sentence test set
from that corpus. We find that train and test set
performance are very similar. In Figure 3, we ex-
amine the impact of word dropout on the varia-
tional lower bound, broken down into KL diver-
gence and cross entropy components. We drop out
words with the specified keep rate at training time,
but supply all words as inputs at test time except
in the 0% setting.

We do not re-tune the hyperparameters for each
run, which results in the model with no dropout
encoding very little information in 2 (i.e., the KL
component is small). We can see that as we lower
the keep rate for word dropout, the amount of in-
formation stored in the latent variable increases,
and the overall likelihood of the model degrades
somewhat. Results from the Section 4 indicate
that a model with no latent variable would degrade
in performance significantly more in the presence
of heavy word dropout.

We also qualitatively evaluate samples, to
demonstrate that the increased KL allows meaning-
ful sentences to be generated purely from contin-
uous sampling. Since our decoder model p(z|Z) is
a sophisticated RNNLM, simply sampling from the
directed graphical model (first p(Z) then p(x|2))



INPUT we looked out at the setting sun .
MEAN they were laughing at the same time .
SAMP. 1  dll see you in the early morning .
SAMP. 2 i looked up at the blue sky .

SAMP. 3 it was down on the dance floor .

i went to the kitchen .
i went to the kitchen .
1 went to my apartment .
i looked around the room .
i turned back to the table .

how are you doing ?
what are you doing ?
“are you sure ?

what are you doing ?
what are you doing ?

Table 7: Three sentences which were used as inputs to the VAE, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

would not tell us about how much of the data is
being explained by the learned vector vs. the lan-
guage model. Instead, for this part of the qual-
itative evaluation, we sample from the Gaussian
prior, but use a greedy deterministic decoder for z,
taking each token x; = argmax, p(z¢|zo,... t—1, 2)-
This allows us to get a sense of how much of the
variance in the data distribution is being captured
by the distributed vector z' as opposed to by local
language model dependencies.

These results, shown in Table 5, qualitatively
demonstrate that large amounts of variation in
generated language can be achieved by following
this procedure. At the low end, where very lit-
tle of the variance is explained by Z, we see that
greedy decoding applied to a Gaussian sample does
not produce diverse sentences. As we increase the
amount of word dropout and force 2z’ to encode
more information, we see the sentences become
more varied, but past a certain point they begin
to repeat words or show other signs of ungram-
maticality. Even in the case of a fully dropped-out
decoder, the model is able to capture higher-order
statistics not present in the unigram distribution.

Additionally, in Table 6 we examine the effect
of using lower-probability samples from the latent
Gaussian space for a model with a 75% word keep
rate. We find lower-probability samples by ap-
plying an approximately volume-preserving trans-
formation to the Gaussian samples that stretches
some eigenspaces by up to a factor of 4. This has
the effect of creating samples that are not too im-
probable under the prior, but still reach into the
tails of the distribution. We use a random linear
transformation, with matrix elements drawn from
a uniform distribution from [—e¢, ¢], with ¢ chosen
to give the desired properties (0.1 in our experi-
ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(Z]z) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
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not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes 27 and 75 is the set of points on the
line between them, inclusive, Z(t) = 27 %(1—t)+2Z5xt
for t € [0,1]. Similarly, the homotopy between two
sentences decoded (greedily) from codes Z; and Z»
is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like — how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.

While a standard non-variational RNNLM does
not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the VAE learns repre-
sentations that are smooth and “fill up” the space.

In Table 8 (and in Table 12 in Appendix III,
which shows additional homotopies) we can see
that the codes mostly contain syntactic informa-
tion, such as the number of words and the parts
of speech of tokens, and that all intermediate sen-
tences are grammatical. Some topic information
also remains consistent in neighborhoods along the
path. Additionally, sentences with similar syn-
tax and topic but flipped sentiment valence, e.g.
“the pain was unbearable” vs. “the thought made
me smile”, can have similar embeddings, a phe-
nomenon which has been observed with single-



13 2

i want to talk to you .
“ want to be with you . ”
“ do n’t want to be with you .
i do 't want to be with you .
she did n’t want to be with him .

2

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

there is no one else in the world .
there is no one else in sight .

they were the only ones who mattered .
they were the only ones left .

he had to be with me .

she had to be with him .

1 had to do this .

i wanted to kill him .

i started to cry .

i turned to him .

no .
he said .

“no , 7 he said .

“no, 7 1 said .

“4 know , 7 she said .
“thank you , 7 she said .

“ come with me , ” she said .
“talk to me , ” she said .

”

“ do n’t worry about it , ” she said .

Table 8: Paths between pairs of random points in
VAE space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

word embeddings (for example the vectors for
“bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can effec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.

We hope in future work to investigate factoriza-
tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language
understanding tasks like textual entailment, and to
go beyond adversarial evaluation to a fully adver-
sarial training objective.
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Method Accuracy F1
Feats 73.2 -
RAE-+DP 72.6 -
RAE+feats 74.2 -
RAE+DP+feats 76.8 83.6
ST 73.0 81.9
Bi-sT 71.2 81.2
Combine-ST 73.0 82.0
VAE 72.9 81.4
VAE+feats 75.0 82.4
VAE-+combine-ST 74.8 82.3
Feats+combine-ST 75.8 83.0
VAE-+combine-ST-+feats 76.9 83.8

Table 9: Results for the MSR Paraphrase Corpus.

Appendix I: Text classification

In order to further examine the the structure of the
representations discovered by the VAE, we conduct
classification experiments on paraphrase detection
and question type classification. We train a VAE
with a hidden state size of 1200 hidden units on
the Books Corpus, and use the posterior mean of
the model as the extracted sentence vector. We
train classifiers on these means using the same ex-
perimental protocol as Kiros et al. (2015).

Paraphrase detection For the task of para-
phrase detection, we use the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004). We com-
pute features from the sentence vectors of sentence
pairs in the same way as Kiros et al. (2015), con-
catenating the elementwise products and the abso-
lute value of the elementwise differences of the two
vectors. We train an ¢s-regularized logistic regres-
sion classifier and tune the regularization strength
using cross-validation.

We present results in Table 9 and compare to
several previous models for this task. Feats is the
lexicalized baseline from Socher et al. (2011). RAE
uses the recursive autoencoder from that work, and
DP adds their dynamic pooling step to calculate
pairwise features. ST uses features from the uni-
directional skip-thought model, bi-ST uses bidirec-
tional skip-thought, and combine-ST uses the con-
catenation of those features. We also experimented
with concatenating lexical features and the two
types of distributed features.

We found that our features performed slightly
worse than skip-thought features by themselves
and slightly better than recursive autoencoder fea-
tures, and were complementary and yielded strong
performance when simply concatenated with the
skip-thought features.

Question classification We also conduct ex-
periments on the TREC Question Classification
dataset of Li and Roth (2002). Following Kiros



Method Accuracy
ST 91.4
Bi-sT 89.4
Combine-ST 92.2
AE 84.2
VAE 87.0
CBOW 87.3
VAE, combine-ST 92.0
RNN 90.2
CNN 93.6

Table 10: Results for TREC Question Classifica-
tion.

Standard Inputless Decoder
RNNLM  VAE RNNLM VAE
Dyora 464 353 305 499
Disru 337 191 68 350
D, - 13 - 111
KR 0.66 0.62 - -

Table 11: Automatically selected hyperparameter
values used for the models used in the Penn Tree-
bank language modeling experiments. KR is the
keep rate for word dropout.

et al. (2015), we train an fy-regularized softmax
classifier with 10-fold cross-validation to set the
regularization. Note that using a linear classifier
like this one may disadvantage our representations
here, since the Gaussian distribution over hidden
codes in a VAE is likely to discourage linear sepa-
rability.

We present results in Table 10. Here, AE is
a plain sequence autoencoder. We compare with
results from a bag of word vectors (CBOw, Zhao
et al., 2015) and skip-thought (sT). We also com-
pare with an RNN classifier (Zhao et al., 2015) and
a CNN classifier (Kim, 2014) both of which, un-
like our model, are optimized end-to-end. We were
not able to make the VAE codes perform better
than CBOW in this case, but they did outperform
features from the sequence autoencoder. Skip-
thought performed quite well, possibly because the
skip-thought training objective of next sentence
prediction is well aligned to this task: it essen-
tially trains the model to generate sentences that
address implicit open questions from the narrative
of the book. Combining the two representations
did not give any additional performance gain over
the base skip-thought model.

Appendix II: Hyperparameter
tuning

We extensively tune the hyperparameters of each
model using an automatic Bayesian hyperparame-
ter tuning algorithm (based on Snoek et al., 2012)
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amazing , is n’t it ?
so , what is it ?

it hurts , isnt it ?

why would you do that ?
“you can do it .

“4 can do it .

i can’t do it .

“4 can do it .

“do n’t do it .

“4 can do it .

i could n’t do it .

i dont like it , he said .

1 waited for what had happened .
it was almost thirty years ago .
it was over thirty years ago .
that was siz years ago .

he had died two years ago .

ten , thirty years ago .

“4t ’s all right here .

“ everything is all Tight here .
“4t ’s all right here .

it ’s all Tight here .

we are all right here .

come here in five minutes .

this was the only way .

it was the only way .

it was her turn to blink .

it was hard to tell .

it was time to move on .

he had to do it again .

they all looked at each other .

they all turned to look back .

they both turned to face him .

they both turned and walked away .

im fine .

youre right .

“all right .

you ’re right .

okay , fine .

“okay , fine .

yes , right here .

no , not right now .

“no , not right now .

“talk to me right now .
please talk to me right now .

i ’ll talk to you right now .

“4 Ul talk to you right now .
“you need to talk to me now .
“ but you need to talk to me now .

Table 12: Selected homotopies between pairs of
random points in the latent VAE space.

over development set data. We run the model with
each set of hyperpameters for 10 hours, operating
12 experiments in parallel, and choose the best set
of hyperparameters after 200 runs. Results for our
language modeling experiments are reported in Ta-
ble 11 on the next page.

Appendix III: Additional homotopies

Table 12 shows additional homotopies from our
model. We observe that intermediate sentences
are almost always grammatical, and often contain



consistent topic, vocabulary and syntactic informa-
tion in local neighborhoods as they interpolate be-
tween the endpoint sentences. Because the model
is trained on fiction, including romance novels, the
topics are often rather dramatic.
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Abstract

The ability to capture time information is
essential to many natural language pro-
cessing and information retrieval applica-
tions. Therefore, a lexical resource asso-
ciating word senses to their temporal ori-
entation might be crucial for the computa-
tional tasks aiming at the interpretation of
language of time in texts. In this paper,
we propose a semi-supervised minimum
cuts strategy that makes use of WordNet
glosses and semantic relations to supple-
ment WordNet entries with temporal infor-
mation. Intrinsic and extrinsic evaluations
show that our approach outperforms prior
semi-supervised non-graph classifiers.

1 Introduction

Recognizing temporal information can signifi-
cantly improve the functionality of information re-
trieval (Campos et al., 2014) and natural language
processing (Mani et al., 2005) applications.

Most text applications have been relying on
rule-based time taggers such as HeidelTime (Strot-
gen and Gertz, 2015) or SUTime (Chang and Man-
ning, 2012) to identify and normalize time men-
tions in texts. Although interesting levels of per-
formance have been seen (UzZaman et al., 2013),
their coverage is limited to the finite number of
rules they implement. Let’s take the following
sentence: “Apple’s iPhone is currently one of the
most popular smartphone”. When labeled by SU-
Time! or HeidelTime?, the adverb currently is cor-
rectly tagged with the PRESENT_REF value. How-
ever, if we change the sentence to “Apple’s iPhone

'Mttp://nlp.stanford.edu:8080/sutime/
process

nttp://heideltime.ifi.uni-heidelberg.
de/heideltime/
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is one of the most popular smartphones at the
present day”, no temporal mention is found, al-
though one may expect that within this context
currently and present day share some equivalent
temporal dimension. Such systems would cer-
tainly benefit from the existence of a temporal re-
source enumerating a large set of possible time
variants (Kuzey et al., 2016).

In parallel, new trends have emerged in the con-
text of human temporal orientation (Schwartz et
al., 2015). The underlying idea is to understand
how past, present, and future emphasis in text
may affect people’s finances, health, and happi-
ness. For that purpose, temporal classifiers are
built to detect the overall temporal dimension of a
given sentence. For instance, the following Face-
book post “can’t wait to get a pint tonight” would
be tagged as FUTURE. Successful features include
timexes, specific temporal (past, present, future)
words from a commercial dictionary, but also n-
grams, thus indicating that temporality may be
embodied by multi-word terms, whose temporal
orientation is unknown.

As a consequence, discovering the temporal ori-
entation of words is a challenging issue that may
benefit many text applications. Whereas most
prior studies have focused on temporal expres-
sions and events, there has been a lack of work
looking at the temporal orientation of word senses.
In this paper, we focus on automatically time-
tagging word senses in WordNet (Miller, 1995)
as past, present, future, or atemporal based on
their glosses and relational semantic structures in
the line of Dias et al. (2014) and Hasanuzza-
man et al. (2014b). In particular, we propose
a semi-supervised graph-based strategy that relies
on the max-flow min-cut theorem (Papadimitriou
and Steiglitz, 1998; Blum and Chawla, 2001),
that finds successive minimum cuts in a connected
graph to time-tag each synset as one of the four
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dimensions. Compared to previous work based on
propagation strategies (Dias et al., 2014; Hasanuz-
zaman et al., 2014), the exploration of WordNet’s
graph structure with minimum cuts allows us to
independently model both temporal connotation
and semantic denotation. In order to evaluate
our proposal, both intrinsic (inter-annotator agree-
ment and temporal sense classification) and extrin-
sic (temporal sentence classification and tempo-
ral relation annotation) evaluations have been per-
formed. In both cases, the proposed methodology
outperformed state-of-the-art approaches.

2 Related Work

Dias et al. (2014) developed TempoWordNet
(TWnL), an extension of WordNet, where each
synset is augmented with its temporal connotation
(past, present, future, or atemporal). It mainly re-
lies on the quantitative analysis of the glosses as-
sociated to synsets, and on the use of the result-
ing vector space model representations for semi-
supervised synset classification. In particular,
temporal classifiers are learned over manually la-
beled synsets (seed list), and new learning synsets
are chosen based on their specific semantic rela-
tion (e.g. hyponymy) with synsets from the seed
list. Their class is given by the synset they have
been propagated from. This process is iterated un-
til cross-validation accuracy drops. The final clas-
sifier is used to time-tag all WordNet synsets.
While Hasanuzzaman et al. (2014) show that
TWnL can be useful to time-tag web queries, less
comprehensive results are shown in Filannino and
Nenadic (2014), where TWnL learning features
do not lead to any classification improvements.
Moreover, Dias et al. (2014) mention that exclu-
sive semantic propagation is error-prone as some
semantic relations do not preserve temporal con-
notation. As a consequence, Hasanuzzaman et al.
(2014b) defined two different propagation strate-
gies: probabilistic and hybrid, leading to TWnP
and TWnH, respectively. They follow the exact
same idea of Dias et al. (2014), but for probabilis-
tic propagation, new synsets are chosen from the
most confidently classified synsets over the whole
of WordNet at each iteration. In addition, for the
hybrid expansion, new learning instances are in-
cluded if they are highly representative of a given
class but at the same time demonstrate high av-
erage semantic similarity over the seed list. Al-
though some slight improvements were seen, no

23

conclusive position could be reached due to the
limited scope of the evaluation as well as discrep-
ancies between human judgment, and automatic
classification results.

One of the main weaknesses of the aforemen-
tioned approaches is that they mostly rely on the
ability of the methodology to provide new learning
instances by propagation within WordNet. How-
ever, in all cases, they do not take proper advan-
tage of the relational structure of WordNet. In-
deed, semantic coherence (for TWnL and TWnH)
is only calculated between new instances and
synsets from the seed list, but never between new
instances themselves.” However, one may ex-
pect that highly correlated new instances should
be treated commonly. One solution to deal with
this problem is to define the classification problem
as an optimization process, where both semantic
coherence and temporal orientation are treated as
combined objectives. For that purpose, we pro-
pose to adapt the standard s-t mincut algorithm
(Blum and Chawla, 2001) to our particular semi-
supervised multi-class learning problem.

3 Learning with s-t mincut

The s-t mincut algorithm is based on finding min-
imum cuts in a graph, and uses pairwise relation-
ships among examples in order to learn from both
labeled and unlabeled data. In particular, it out-
puts a classification corresponding to partitioning
a graph in a way that minimizes the number of
similar pairs of examples that are given different
labels.

3.1 Main Principles

Let us consider n items x1,...Xx, to divide into two
classes C; and C, based on two different types of
information. The first information type — the in-
dividual score denoted as ind;(x;) — measures the
non-negative estimate of each x; belonging to class
C; based on the features of x; alone. The second
information type — the association score denoted
as assoc(x;,x;) — represents the non-negative esti-
mate of how important is that x; and x; be in the
same class.

This situation can be represented as an undi-
rected graph G with vertices {vi,...,v,,s,t},
where s and ¢ are respectively the source and sink
vertices, which represent each class label and one
vertex v; corresponds to a given item x;. If s

3This may occur only through a side-effect process.



(resp. t) corresponds to class C; (resp. (), we
add n edges (s,v;), each with weight ind, (x;), and
n edges (v;,t), each with weight inds(x;). Fi-
nally, we add (}) edges (v;,v¢), each with weight
assoc(x;j, xy).

The learning process corresponds to finding the
minimum cut in G that minimizes some cost func-
tion, where (i) a cut (S,7) of G is a partition of
its nodes into sets S = {s}US and T = {r}U T’
where s ¢ §" and ¢t ¢ T’, and (ii) its cost cost(S,T)
is the sum of the weights of all edges crossing
from S to 7T, as defined in equation (1):

Z ind(x) + Z indy (x) + assoc(xj,x;) (1)

xeC xeCy

)}

x,’GC] 7xk€C2

3.2 Advantages and Disadvantages

Formulating the task of temporality detection on
word senses in terms of graphs allows us to model
item-specific and pair-wise information indepen-
dently. As a consequence, machine learning al-
gorithms representing temporal indicators can be
used to derive individual scores for a particular
sense in isolation. The edges weighted by the indi-
vidual scores of a vertex (sense) to the source/sink
can be interpreted as the probability of a sense be-
longing to a given temporal class without taking
into account similarity to other senses.

At the same time, we can use conceptual-
semantic relations from WordNet to derive the as-
sociation scores. The edges between two senses
weighted by the association scores can indicate
how similar two senses are. If two senses are
connected via a temporality-preserving relation,
they are likely to both belong to a temporal
class. For instance, hyponymy relation is usually
a temporality-preserving relation,* where two hy-
ponyms such as present, nowadays — the period
of time that is happening now and now — the mo-
mentary present are both temporal.

To detect the temporal orientation of word
senses, Dias et al. (2014) and Hasanuzzaman et
al. (2014b) adopted a single view instead of two
views on the data. The ability to combine two
views on the data is precisely one of the strengths
of the s-t mincut strategy.

Second, the s-t mincut algorithm is a semi-
supervised framework. This is essential as the ex-
isting labeled datasets for our problem are small.

4Although Dias et al. (2014) show that this is not always
the case.
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In addition, glosses are short, leading to sparse
high-dimensional vectors in standard feature rep-
resentations. Furthermore, WordNet connections
between different parts of the WordNet hierarchy
can be sparse, leading to relatively isolated senses
in a graph in a supervised framework. The min-
cut strategy allows us to import unlabeled data that
can serve as bridges to isolated components. More
importantly, the unlabeled data can be related to
the labeled data (by some WordNet relation) and
might help to pull unlabeled data to the right cuts.

It is also important to note that transductive
methods such as the s-t mincut algorithm partic-
ularly suit our case study as all learning exam-
ples are known. However, the addition of new
word senses would require the re-application of
the method to the entire graph. Indeed, the model
does not learn to predict unseen examples.

3.3

The formulation of our mincut strategy for tempo-
ral classification of synsets involves the following
steps.

Methodology

Step I. We define two vertices s (source) and
t (sink), which correspond to the femporal and
atemporal categories, respectively. Vertices s and
t are classification vertices, and all other vertices
(labeled, unlabeled, and test) are example vertices.

Step II. The labeled examples are connected to
the classification vertices they belong to via edges
with high constant non-negative weight. The un-
labeled examples are connected to the classifica-
tion vertices via edges weighted with non-negative
scores that indicate the degree of belonging to both
the temporal and atemporal categories. Weights
(i.e. individual scores) are calculated based on a
supervised classifier learned from labeled exam-
ples (cf. Section 3.4).

Step III. For all pairs of example vertices, for
which there exists a listed semantic relation in
WordNet, an edge is created. This one receives
a non-negative score that indicates the degree of
semantic relationship between both vertices and
corresponds to the association score (cf. Section
3.5).

Step IV. The max-flow theorem (Papadimitriou
and Steiglitz, 1998) is applied over the built graph
to find the minimum s-t cut.’

SMax-flow algorithms show polynomial asymptotic run-
ning times and near-linear running times in practice.



Step V. The temporal partition is then divided
into three temporal sub-partitions (past, present,
and future) following a hierarchical strategy. First,
we define two new vertices s and ¢, which cor-
respond to past and not_past categories, respec-
tively, and follow steps /1 through /V. This divides
the subgraph into two disjoint subsets, i.e. past
synsets, and synsets belonging either to present
or future. Finally, we repeat steps I/ through IV,
where vertices s and ¢ correspond to future and
present, respectively (cf. Section 3.6).

3.4 Individual Scores

The non-negative edge weights to s and ¢ denote
how an example vertex is related to a specific
class. For the unlabeled and test examples, a su-
pervised learning strategy is used to assign edge
weights. Each synset from a labeled dataset — we
use the dataset provided by Dias et al. (2014) —
which contains past, present, future and atempo-
ral senses is represented by its gloss encoded as
a vector of word unigrams weighted by their fre-
quency.’ Then, depending on the classification
task, a two-class SVM classifier is built from the
Weka platform.” In particular, the SVM member-
ship scores are transformed into probability esti-
mates based on Platt calibration (Niculescu-Mizil
and Caruana, 2005), which are directly mapped to
edge weights. In Table 1, we present the 10-fold
cross-validation results for all classifiers tested in
the context of this work.

In order to ensure that the mincut procedure
does not reverse the labels of the labeled exam-
ples, a high non-negative constant weight of 3 is
assigned to any edge between a labeled vertex and
its corresponding classification vertex, and a low
non-negative constant weight of 0.001 to the edge
to the other classification vertex. This is a classi-
cal implementation of +oo and 1/ + oo theoretical
weights.

3.5 Association Scores

While formulating the graph, we connect two ex-
ample vertices by an edge if they are linked by one
of the 10 WordNet relations presented in Table 2.
The main motivation towards using other relations
in addition to the most frequently encoded rela-
tions (e.g. hypernym/hyponym) among synsets in
WordNet is to achieve high graph connectivity.

6Other sentence representations could be tested but this is
out of the scope of this paper.
Thttp://www.cs.waikato.ac.nz/ml/weka/

25

Two class problem | Accuracy | F1 |

temporal vs. atemporal 92.3 94.2
past vs. not_past 90.4 90.2
present vs. not_present 85.3 85.2
future vs. not_future 90.1 89.9
present vs. future 87.3 86.4

Table 1: SVM results for individual scores.

[ Wordnet Relation | #same | #different [ Weight |

Direct-Hyponym 73268 7246 0.91
Similar-to 6587 1914 0.77
Direct-Hypernym 61914 9600 0.76
Attribute 350 109 0.76
Also-see 1037 337 0.75
Troponym 6917 2651 0.72
Derived-from 3630 1947 0.65
Domain 2380 2895 0.45
Domain-member 2380 2895 0.45
Antonym 1905 3614 0.35

Table 2: Association scores with Diff Wt Method.

Different weights can be assigned to differ-
ent relations to reflect the degree to which they
preserve temporality. Therefore, we adopt two
strategies to assign weights to different WordNet
relations. The first method (ScWr) assigns the
same constant weight of 1.0 to all WordNet re-
lations. The second method (DiffWr) considers
several degrees of preserving temporality. In or-
der to do this, we adopt a simple rule-based strat-
egy to produce a large noisy set of temporal and
atemporal synsets from WordNet. First, we take
the list of 30 hand-crafted temporal seed synsets
(equally distributed over past, present, and fu-
ture) proposed in Dias et al. (2014) along with
their direct hyponym synsets. This forms a tem-
poral list. Then, each WordNet synset that con-
tains a word sense from the temporal list in its
gloss is ‘roughly’ classified as temporal. Other-
wise, it is considered as atemporal. We then sim-
ply count how often two synsets connected by a
given relation have the same or different tempo-
ral dimension. Finally, the weight is calculated by
#same /(#same+#different) and corresponds to the
association score between two example vertices.
Results are reported in Table 2.

Note that the exact same strategy is used for the
two hierarchical steps, for which new association
scores are calculated.

3.6 Hierarchical Strategy

The order of the hierarchical process is driven by
classifier accuracy over the labeled dataset pro-



vided by Dias et al. (2014) (cf. Section 4). In or-
der to give the maximum chance of good partition-
ing at the second level of the hierarchy, we choose
the classification problem to handle based on the
SVM classifier that demonstrates highest accuracy
over the following problems: past vs. not_past,
present vs. not_present, and future vs. not_future.
In so doing, we can rely on the best possible in-
dividual score function. As can be seen in Table
1, this is the case for past vs. not_past, which
happens to be the first sub-partitioning problem.
The third level is straightforward, i.e. present vs.
future. We are aware that this simple strategy is
prone to bias. However, as manual evaluation of
the final resource is involved, producing more re-
sults was logistically hard to handle. Nonetheless,
testing all combinations remains work that needs
to be conducted in the future.

4 Datasets

Labeled Dataset. We used a list that consists
of 632 temporal synsets and an equal number of
atemporal synsets provided by Dias et al. (2014)
as labeled data for our experiments. Temporal
synsets are distributed as follows: 210 synsets
marked as past, 291 as present, and 131 as future.

Test Dataset. As the labeled dataset is small,
we created an annotation task using the Crowd-
Flower platform® in order to produce a testset.
For the annotation task, 398 synsets equally dis-
tributed over nouns, verbs, adjectives, and adverbs
along with their lemmas and glosses were ran-
domly selected from WordNet® as representative
of the whole WordNet. Note that this number is
a statistically significant representative sample of
all WordNet synsets calculated as defined in Israel
(1992).

The annotators were expected to answer two
questions for a given synset (lemmas and gloss
were also provided). While the first question is
related to the decision as to whether a synset is
temporal or atemporal, the motivation behind the
second question is to collect a more fine-grained
(past, present, future) gold-standard.'® The re-
liability of the annotators was evaluated on 60
control synsets from the labeled dataset, and 10

8http ://www.crowdflower.com/
9WordNet version 3.0 was used and all sysnsets were se-
lected outside the labeled dataset.
10Details of the annotation guidelines are out of the scope
of this paper.
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ambiguous synsets associated to more than one
temporal dimension. Similary to Tekiroglu et al.
(2014), raters who scored at least 70% accuracy
on average on both sets were considered to be reli-
able. Finally, each synset was annotated by at least
10 reliable raters.

To have a concrete idea about the agreement be-
tween annotators, we calculated the majority class
for each synset in our dataset. A synset belongs
to a majority class k if the most frequent annota-
tion for the synset was selected by at least k an-
notators. As a consequence, a large percentage
of synsets belonging to high majority classes are
symptomatic of good inter-annotator agreement.
Table 3 shows the observed agreement. Similarly
to Ozbal et al. (2011), we consider all annotations
with a majority class greater than 5 as reliable. In
this case, for the temporal vs. atemporal annota-
tion scheme, 84.83% of the synsets were annotated
identically by the majority of annotators, while for
past, present, and future, 72.36% of the annota-
tions fell into this case. As such, we can be con-
fident that the annotation process was successful
and the dataset is reliable.

5 Intrinsic and Extrinsic Evaluations

Different intrinsic and extrinsic evaluations have
been proposed in prior studies. We compare our
work to the same tasks as proposed by Dias et al.
(2014) and Hasanuzzaman et al. (2014b), and in-
troduce an extra experiment on temporal relation
annotation.

5.1 Inter-Annotator Agreement

In order to compare our approach to prior works,
we adopted a similar evaluation strategy as pro-
posed in Dias et al. (2014) and Hasanuzzaman et
al. (2014b). To assess human judgment regarding
the temporal parts, inter-rater agreement with mul-
tiple raters (i.e. 3 human annotators with the 4th
annotator being the classifier) was performed over
a set of 398 randomly selected synsets. The free-
marginal multirater kappa (Randolph, 2005) and
the fixed-marginal multirater kappa (Siegel and
Castellan, 1988) values are reported in Table 4 and
assess moderate agreement for previous versions
of TempoWordNet (TWnL, TWnP and TWnH),
while good agreement is obtained for the resources
constructed by mincuts with both ScWr (MC1)
and DiffWt (MC2) weighting schemes. Note that
slightly different results than the ones reported by



[ Majority Class [ 3 7 4] 5 17 6 [ 7 1 8 [ 9 [ 10 ]
Synset as temporal or atemporal 0.20 | 1.21 | 4.32 10.69 | 14.56 | 29.34 | 19.23 | 11.01
Temporal synset into past, present, or future | 1.23 | 3.01 | 10.45 | 20.22 | 16.56 | 12.34 | 14.23 | 9.01

Table 3: Percentage of synsets in each majority class.

Hasanuzzaman et al. (2014b) are seen as the num-
ber of annotated synsets is much bigger in our ex-
periment (398 instead of 50). These agreement
values provide a first and promising estimate of the
improvement over the previous versions of Tem-
poWordNet. We plan to confirm that in the future
by comparing the systems to a true reference in-
stead of observing the agreement between the sys-
tems and a multi-reference as we currently do.

[ Metric [ TWnL | TWnP | TWnH | MCI1 | MC2 |
l Fixed-marginal k [ 0.51 [ 0.46 [ 0.54 [ 0.71 [ 0.78 ]
l Free-marginal K [ 0.52 [ 0.55 [ 0.59 [ 0.85 [ 0.86 l

Table 4: Inter-annotator agreement.

5.2 Word Sense Classification

In order to compare our semi-supervised min-
cut approach to a reasonable baseline, we use a
rule-based approach to classify test data into past,
present, future, or atemporal categories. First,
time expressions in glosses are identified and re-
solved via SUTime tagger (Chang and Manning,
2012). Then, for each synset, its time tags (e.g.
FUTURE_REF) are considered as the temporal
class for that particular synset. In cases where
more than one temporal expression was observed
(which occurred in less than 1% of the cases), the
majority class is selected. If no time expression is
identified by the time tagger, the list composed of
30 hand-crafted temporal seeds proposed in Dias
et al. (2014) along with their direct hyponyms and
a given list of standard temporal adverbials, prepo-
sitions and adjectives are used to classify synsets
with one temporal dimension or atemporal. The
performance of this simple rule-based approach is
measured for the test data and presented in Table
5 as the baseline configuration. Note that to fig-
ure out the contribution of word sense disambigua-
tion, the classical Lesk algorithm (Lesk, 1986) was
used to choose the right sense for a given word in-
stead of the most frequent sense. We found that
this contribution is negligible (< 0.4% improve-
ment in accuracy).

Comparative results are also presented against
prior works: TWnL, TWnP, and TWnH. Table 5
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shows that our configurations (MC1, MC2) per-
form significantly better than previous approaches.
In particular, they achieve highest accuracies for
temporal vs. atemporal and past, present, future
classifications with improvements of 11.3% and
10.3%, respectively, over the second-best strat-
egy, namely TWnH. Note that this enhancement
is mainly due to higher precision overall.

Different training data sizes. In order to better
understand the importance of the size of labeled
data in the context of semi-supervised classifica-
tion strategies, we propose the following experi-
ments.

We randomly generate equally distributed sub-
sets of training data L; (from a set of 632 tem-
poral and 632 atemporal synsets) such that L) C
L, C Lj...C L,. For each labeled dataset, we run
the mincut strategy with DiffWt (i.e. MC2) and
compare it to the hybrid propagation proposed by
Hasanuzzaman et al. (2014b) (i.e. TWnH). Ac-
curacies of both approaches over the test data are
presented in Table 6.

The s-t mincut approach performs consistently
better than the propagation strategy. In particular,
we show that with 400 labeled examples better re-
sults can be obtained than relying on 1264 training
items within a propagation paradigm.

Considering the above findings, we selected the
MC?2 configuration obtained with maximum la-
beled data for the extrinsic experiments, which
includes 110,002 atemporal synsets, 1733 past
synsets, 4193 present synsets, and 1730 future
synsets.

5.3 Temporal Sentence Classification

Temporal sentence classification has traditionally
been used as the baseline extrinsic evaluation and
consists of labeling a given sentence as past,
present or future. In order to produce compara-
tive results with prior works, we test our methodol-
ogy on the balanced dataset produced in Dias et al.
(2014), which consists of 1038 sentences equally
distributed as past, present and future.

Moreover, we propose to extend these experi-
ments with a corpus of 300 temporal posts from



[ Method [ Baseline [ TWnL [ TWnP [ TWnH MC1 MC2
Accuracy 48.8 65.6 62.0 68.4 74.4 79.7
temporal (p, 1, 1) (52.0, 56.3, 54.0) (63.5, 82.1,71.6) (55.8,84.2,67.1) (67.4,81.9,73.9) (84.5,79.8, 82.0) (89.1,79.3, 83.9)
atemporal (p, 1, f1) (58.2,54.2,56.1) (68.3,79.2,73.3) (58.9,75.6, 66.2) (69.3, 82.6, 75.3) (81.3, 86.6, 83.8) (87.4,90.8, 89.1)
Accuracy 45.6 62.0 59.6 65.7 72.7 76.0
past (p, 1, f1) (49.3,46.7, 47.9) (61.2,73.0, 66.5) (59.3,79.1, 67.7) (63.1,75.0, 68.0) (71.1,79.5,75.0) (81.2,78.5,79.8)

present (p, 1, f1)
Sfuture (p, 1, 1)

(55.3,48.2,51.5)
(48.5, 49.0, 48.7)

(63.0,75.2, 68.5)
(62.1,71.9, 66.6)

(58.0,78.266.0)
(57.0, 83.1, 67.6)

(77.4,69.2,73.0)
(60.0, 75.6, 66.8)

(73.0,71.5,72.2)
(79.4, 69.5, 74.0)

(85.1,74.7,79.0)
(86.1, 70.0, 77.2)

Table 5: Accuracy for temporal vs. atemporal and past, present, future classifications using different
methods measured over test data. Results are broken down by precision (p), recall (r), and f1-measure

(f1) scores.

Twitter. This corpus contains 100 tweets for each
temporal class, which have been time-tagged us-
ing the CrowdFlower platformfootnote Annotation
details are out of the scope of this paper. For both
experiments, each sentence/tweet is represented as
a semantic vector space model in the exact same
way as proposed in Dias et al. (2014). Thus, a
given learning example is a feature vector, where
each attribute is either a unigram or a synonym of
any temporal word contained in the sentence/tweet
and its value is the tf.idf. Note that word sense
disambiguation is performed using the Lesk algo-
rithm (Lesk, 1986).

[ Amount of labeled data | TWnH | MC2 |

100 598 | 643
200 626 | 675
400 655 | 713.7
600 674 | 776
800 679 | 7192
1000 680 | 79.0
1264 (all) 684 | 197

Table 6: Accuracy results with different sizes of
labeled data for temporal vs. atemporal classifica-
tion.

Comparative classification results are reported
in Table 7 and show small improvements in the
mincut strategy, when compared to propagation
strategies. In particular, for tweet classification,
TWnP shows similar results mainly due to its
large coverage of temporal senses (counterbal-
anced by low precision as confirmed by Table 5).
Indeed, TWnP contains 53,001 temporal synsets
while MC2 only has 7656 temporal synsets. Note
that the semantic enhancement is limited only to
the synonymy relation, which drastically restricts
the benefit of the semantic vector space model
and due to the limited number of analyzed sen-
tences/tweets, huge improvements were not ex-
pected.
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5.4 Temporal Relation Annotation

Finally, we focus on the problem of classify-
ing temporal relations as proposed in TempEval-
3, assuming that the identification of events and
timexes is already performed.

In order to produce comparative results with the
best-performing system at TempEval-3, namely
UTTime (Laokulrat et al., 2013) for the above
task, we follow the guidelines and use the same
datasets provided by the organizers (UzZaman et
al., 2013).

In particular, we restrict our experiment to a
subset of relations, namely BEFORE (past), AF-
TER (future), and INCLUDES (present), with all
other relations mapped to the NA—RELATION
for the following two subtasks: event to docu-
ment creation time and event to same sentence
event. This choice is motivated by the complexity
of mapping the 14 relations of TempEval-3 into
three temporal classes (past, present, future). As
such, we test a simpler configuration of the origi-
nal problem, but we do expect to draw conclusive
remarks as minimum bias is introduced.

Note that the underlying idea of this evaluation
is to measure the intuition expressed by (Kuzey
et al., 2016) that temporal information extraction
systems may benefit from the existence of tempo-
ral resources. If this is confirmed, deeper research
should be conducted to adequately use such a pro-
posed temporal resource for the whole task.

To solve this classification problem, we adopt
a simple supervised learning strategy based on
state-of-the-art characteristics, plus features from
a time-augmented version of WordNet. In partic-
ular, each pair of entities to be classified as BE-
FORE, AFTER, INCLUDES or NA-RELATION
is encoded with the following features:

- String features: the tokens and lemmas of each
entity pair;
- Grammatical features: the part-of-speech tags



[ Method [ TWnL [ TWnP [ TWnH [ MC2 ]
Sentence classification (p,r,f1) | (69.7,66.1,66.7) | (68.2,70.5,69.3) | (69.8,67.6,68.6) | (73.3,70.1 71.4)
Tweet classification (p,r,f1) (51.4,47.1,49.1) | (50.4,52.8,51.5) | (51.8,48.2,49.8) | (52.8,50.6,51.6)

Table 7: Results for temporal sentence and tweet classification performed on 10-fold cross validation

with SVM with Weka default parameters.

of the entity pair (only for event-event pairs), and
a binary feature indicating whether the entity pair
has the same PoS tag;

- Entity attributes: the entity pair attributes as
provided in the dataset. These include class, tense,
aspect, and polarity for events, while the attributes
of time expressions are its type, value, and dct
(indicating whether a time expression is the doc-
ument creation time or not);

- Dependency relation: the type of dependency
and the dependency order between entities;

- Textual context: the textual order of the entity
pair;

- Temporal lexicon: the relative frequency of
each temporal category (past, present, future) ap-
pearing in the context of an entity pair; the context
is considered as (i) the text appearing between en-
tities, (ii) the text of all tokens in a time expres-
sion, and (iii) 5 tokens around time expressions or
events. The features are encoded as the frequency
with which a word from a temporal category ap-
peared in the text divided by the total number of
tokens in the text.

Approaches | Precision \ Recall \ F1 ‘

UTTime 57.5 58.7 58.1
TRMC2 66.9 68.7 | 67.7
TRTWnH 61.2 62.5 | 61.8

Table 8: Temporal relation classification results.

Based on this feature representation, the two
best classifiers for event to document creation time
and event to same sentence event subtasks are se-
lected via a grid search over parameter settings.
The grid is evaluated with a 5-fold cross vali-
dation on the training data and SVM classifiers
are chosen with default parameters of the Weka
platform. This produces two systems, namely
TRMC2 and TRTWnH depending on the tempo-
ral lexicon used: MC2 or TWnH. Note that we
also measure the performance of UTTime for the
settings stated above.

Table 8 presents comparative evaluations. Re-
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sults show that TRMC2 outperforms all other
approaches and achieves highest performance in
terms of precision, recall, and F1-measure. How-
ever, more important still is the fact that a sim-
ple learning strategy with some temporal lexicon
(MC2 or TWnH) leads to improved results, when
compared to some solution that does not take ad-
vantage of such a resource (UTTime, here).

[ Features [ F1 | Features [ F1 ]

[ mfcbaseline [ 3355 allfeatures | 67.7 |
string alone 45.06 w/o string 65.70
grammatical alone | 46.96 | w/o grammatical | 64.85
entity alone 52.23 w/o entity 62.08
dependency alone | 48.65 | w/o dependency | 65.06
textual alone 46.82 w/o textual 64.96
temporal alone 51.62 w/o temporal 62.76

Table 9: Feature ablation analysis. The most fre-
quent class baseline (mfc).

In order to measure the real impact of the tem-
poral lexicon features, we present feature ablation
analyses in Table 9. Results clearly show the im-
portance of the features based on the temporal lex-
icon, being the second best-performing feature set.
As a consequence, we may conclude that improve-
ments in temporal analysis may be obtained by the
correct use of some temporal lexical resource.

6 Conclusions

In this paper, we proposed a semi-supervised min-
cut strategy to address the relatively unexplored
problem of associating word senses with their un-
derlying temporal dimensions. We produce a re-
liable temporal lexical resource by automatically
time-tagging WordNet synsets into past, present,
future or atemporal categories. The underlying
idea is that instead of using a single view on the
data (as done in prior work), multiple views re-
sult in better temporal classification accuracy. In
particular, both intrinsic and extrinsic experimen-
tal results confirm the soundness of the proposed
approach and support our initial hypotheses. Note
that the all resources created within this work are
publicly available.
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Abstract

In this work, we propose a semi-
supervised method for short text clus-
tering, where we represent texts as dis-
tributed vectors with neural networks, and
use a small amount of labeled data to
specify our intention for clustering. We
design a novel objective to combine the
representation learning process and the k-
means clustering process together, and op-
timize the objective with both labeled data
and unlabeled data iteratively until conver-
gence through three steps: (1) assign each
short text to its nearest centroid based on
its representation from the current neural
networks; (2) re-estimate the cluster cen-
troids based on cluster assignments from
step (1); (3) update neural networks ac-
cording to the objective by keeping cen-
troids and cluster assignments fixed. Ex-
perimental results on four datasets show
that our method works significantly better
than several other text clustering methods.

1 Introduction

Text clustering is a fundamental problem in text
mining and information retrieval. Its task is to
group similar texts together such that texts within
a cluster are more similar to texts in other clus-
ters. Usually, a text is represented as a bag-of-
words or term frequency-inverse document fre-
quency (TF-IDF) vector, and then the k-means al-
gorithm (MacQueen, 1967) is performed to parti-
tion a set of texts into homogeneous groups.
However, when dealing with short texts, the
characteristics of short text and clustering task
raise several issues for the conventional unsuper-
vised clustering algorithms. First, the number of
unige words in each short text is small, as a re-
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(a) What'’s the color of apples?
(b) When will this apple be ripe?
(c) Do you like apples?

(d) What’s the color of oranges?
(e) When will this orange be ripe?
(f) Do you like oranges?

Table 1: Examples for short text clustering.

sult, the lexcical sparsity issue usually leads to
poor clustering quality (Dhillon and Guan, 2003).
Second, for a specific short text clustering task,
we have prior knowledge or particular intentions
before clustering, while fully unsupervised ap-
proaches may learn some classes the other way
around. Take the sentences in Table 1 for exam-
ple, those sentences can be clustered into different
partitions based on different intentions: apple {a,
b, c} and orange {d, e, f} with a fruit type inten-
tion, or what-question {a, d}, when-question {b,
e}, and yes/no-question cluster {c, f} with a ques-
tion type intension.

To address the lexical sparity issue, one direc-
tion is to enrich text representations by extracting
features and relations from Wikipedia (Banerjee et
al., 2007) or an ontology (Fodeh et al., 2011). But
this approach requires the annotated knowledge,
which is also language dependent. So the other
direction, which directly encode texts into dis-
tributed vectors with neural networks (Hinton and
Salakhutdinov, 2006; Xu et al., 2015), becomes
more interesting. To tackle the second problem,
semi-supervised approaches (e.g. (Bilenko et al.,
2004; Davidson and Basu, 2007; Bair, 2013)) have
gained significant popularity in the past decades.
Our question is can we have a unified model to in-
tegrate neural networks into the semi-supervised
framework?

In this paper, we propose a unified framework
for the short text clustering task. We employ a

Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 31-39,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



deep neural network model to represent short sen-
tences, and integrate it into a semi-supervised al-
gorithm. Concretely, we extend the objective in
the classical unsupervised k-means algorithm by
adding a penalty term from labeled data. Thus, the
new objective covers three key groups of parame-
ters: centroids of clusters, the cluster assignment
for each text, and the parameters within deep neu-
ral networks. In the training procedure, we start
from random initialization of centroids and neu-
ral networks, and then optimize the objective iter-
atively through three steps until converge:

(1) assign each short text to its nearest centroid
based on its representation from the current
neural networks;

(2) re-estimate cluster centroids based on cluster
assignments from step (1);

(3) update neural networks according to the ob-
jective by keeping centroids and cluster as-
signments fixed.

Experimental results on four different datasets
show that our method achieves significant im-
provements over several other text clustering
methods.

In following parts, we first describe our neu-
ral network models for text representation (Sec-
tion 2). Then we introduce our semi-supervised
clustering method and the learning algorithm
(Section 3). Finally, we evaluate our method on
four different datasets (Section 4).

2 Representation Learning for Short
Texts

We represent each word with a dense vector w, so
that a short text s is first represented as a matrix
S = [w1, ..., w4 ], which is a concatenation of all
vectors of w in s, |s| is the length of s. Then we
design two different types of neural networks to
ingest the word vector sequence S: the convolu-
tional neural networks (CNN) and the long short-
term memory (LSTM). More formally, we define
the presentation function as x = f(s), where x
represents the vector of the text s. We test two
encoding functions (CNN and LSTM) in our ex-
periments.

Inspired from Kim (2014), our CNN model
views the sequence of word vectors as a matrix,
and applies two sequential operations: convolution
and max-pooling. Then, a fully connected layer is
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ﬁ fully connected layer

ﬁ max-pooling operation
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Figure 2: LSTM for text representation learning.

employed to convert the final representation vector
into a fixed size. Figure 1 gives the diagram of the
CNN model. In the convolution operation, we de-
fine a list of filters {w, }, where the shape of each
filter is d x h, d is the dimension of word vectors
and h is the window size. Each filter is applied to a
patch (a window size h of vectors) of .S, and gen-
erates a feature. We apply this filter to all possible
patches in .S, and produce a series of features. The
number of features depends on the shape of the
filter w, and the length of the input short text. To
deal with variable feature size, we perform a max-
pooling operation over all the features to select the
maximum value. Therefore, after the two opera-
tions, each filter generates only one feature. We
define several filters by varying the window size
and the initial values. Thus, a vector of features is
captured after the max-pooling operation, and the
feature dimension is equal to the number of filters.

Figure 2 gives the diagram of our LSTM model.
We implement the standard LSTM block de-
scribed in Graves (2012). Each word vector is
fed into the LSTM model sequentially, and the



mean of the hidden states over the entire sentence
is taken as the final representation vector.

3 Semi-supervised Clustering for Short
Texts

3.1 Revisiting K-means Clustering

Given a set of texts {si,s2,...,Sn}, we repre-
sent them as a set of data points {z1, z2, ..., N },
where x; can be a bag-of-words or TF-IDF vector
in traditional approaches, or a dense vector in Sec-
tion 2. The task of text clustering is to partition
the data set into some number K of clusters, such
that the sum of the squared distance of each data
point to its closest cluster centroid is minimized.
For each data point z,,, we define a set of binary
variables r,,; € {0,1}, where k € {1, ..., K'} de-
scribing which of the K clusters x,, is assigned to.
So that if x,, is assigned to cluster k, then r,,;, = 1,
and r,; = 0 for j # k. Let’s define y;, as the cen-
troid of the k-th cluster. We can then formulate the
objective function as

N K
Junsup = Z Zrnszxn - ,U'k||2

n=1k=1

(1)

Our goal is the find the values of {r,;} and {u}
S0 as to minimize Jynsup-

The k-means algorithm optimizes Jynsup
through the gradient descent approach, and results
in an iterative procedure (Bishop, 2006). Each it-
eration involves two steps: E-step and M-step. In
the E-step, the algorithm minimizes Jyysup With
respect to {r,x } by keeping {1} fixed. Jynsup i3
a linear function for {r,,x }, so we can optimize for
each data point separately by simply assigning the
n-th data point to the closest cluster centroid. In
the M-step, the algorithm minimizes Jy,sup With
respect to {/u;} by keeping {7, } fixed. Jynsup is
a quadratic function of {yy}, and it can be mini-
mized by setting its derivative with respect to { i }
to zero.

aJunsup

N
— =2 Tk (Tn — =0 2
O ; k( 1K) (2)

Then, we can easily solve {p} as

Eivzl TnkTn
N
anl T'nk

In other words, u is equal to the mean of all the
data points assigned to cluster k.

B = 3)
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3.2 Semi-supervised K-means with Neural
Networks

The classical k-means algorithm only uses unla-
beled data, and solves the clustering problem un-
der the unsupervised learning framework. As al-
ready mentioned, the clustering results may not be
consistent to our intention. In order to acquire use-
ful clustering results, some supervised information
should be introduced into the learning procedure.
To this end, we employ a small amount of labeled
data to guide the clustering process.

Following Section 2, we represent each text s as
a dense vector z via neural networks f(s). Instead
of training the text representation model sepa-
rately, we integrate the training process into the k-
means algorithm, so that both the labeled data and
the unlabeled data can be used for representation
learning and text clustering. Let us denote the la-
beled data set as {(s1,v1), (S2,92), ..., (SL,yL)}s
and the unlabeled data setas {Sz+1, S1+2, .., SN }»
where y; is the given label for s;. We then define
the objective function as:

N K
Jsemi = Z Zrnka(sn) - MkH2

n=1k=1
L
+ (=) {lIf(sn) = pga P+
n=1
Do+ F(sn) = pga P = 1 (50) = 517+

J#9n

“4)
The objective function contains two terms. The
first term is adapted from the unsupervised k-
means algorithm in Eq. (1), and the second term is
defined to encourage labeled data being clustered
in correlation with the given labels. « € [0,1]
is used to tune the importance of unlabeled data.
The second term contains two parts. The first part
penalizes large distance between each labeled in-
stance and its correct cluster centroid, where g, =
G (yn) is the cluster ID mapped from the given la-
bel y,, and the mapping function G(-) is imple-
mented with the Hungarian algorithm (Munkres,
1957). The second part is denoted as a hinge loss
with a margin [, where [x]1 = max(z,0). This
part incurs some loss if the distance to the correct
centroid is not shorter (by the margin /) than dis-

tances to any of incorrect cluster centroids.
There are three groups of parameters in Jgepm;:
the cluster assignment of each text {r, }, the clus-



. Initialize {py } and f(+).

N B~ W N =

. Repeat step 2 to 4 until convergence.

. assign_cluster: Assign each text to its nearest cluster centroid.
. estimate _centroid: Estimate the cluster centroids based on the cluster assignments from step 2.
. update_parameter: Update parameters in neural networks.

Table 2: Pseudocode for semi-supervised clustering

ter centroids {y }, and the parameters within the
neural network model f(-). Our goal is to find
the values of {7}, {4} and parameters in f(-),
S0 as to minimize Jgem;. Inspired from the k-
means algorithm, we design an algorithm to suc-
cessively minimize Jgep; With respect to {r,x},
{11}, and parameters in f(-). Table 2 gives the
corresponding pseudocode. First, we initialize
the cluster centroids {p} with the k-means++
strategy (Arthur and Vassilvitskii, 2007), and ran-
domly initialize all the parameters in the neural
network model. Then, the algorithm iteratively
goes through three steps (assign_cluster, esti-
mate _centroid, and update_parameter) until Jgem;
converges.

The assign_cluster step minimizes Jgenm; with
respect to {r,x} by keeping f(-) and {py,} fixed.
Its goal is to assign a cluster ID for each data point.
We can see that the second term in Eq. (4) has no
relation with {r,,;}. Thus, we only need to min-
imize the first term by assigning each text to its
nearest cluster centroid, which is identical to the
E-step in the k-means algorithm. In this step, we
also calculate the mappings between the given la-
bels {y;} and the cluster IDs (with the Hungarian
algorithm) based on cluster assignments of all la-
beled data.

The estimate_centroid step minimizes Jgem;
with respect to {u} by keeping {r,x} and f(-)
fixed, which corresponds to the M-step in the k-
means algorithm. It aims to estimate the cluster
centroids {yy} based on the cluster assignments
{rnx} from the assign_cluster step. The second
term in Eq. (4) makes each labeled instance in-
volved in the estimating process of cluster cen-
troids. By solving 0Jsem: /O = 0, we get

1 arnkf(sn) + Zﬁ:l wnkf(sn)
ZnNzl Qarpg + Zﬁ:l Wnk

> ne

pr = )
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Wnk = (1 —Oé)

JF#gn J#gn
nk = 0(k, gn)
=0(k,j) -0
f{}q (1 —o(k, ))‘%
= 0(L+ 1f(sn) — g I” = 11 £ (50) — m51* >
(6)

where 6(x1,x2)=1 if x; is equal to x9, otherwise
d(z1,22)=0, and 6(x)=1 if z is true, otherwise
0(x)=0. The first term in the numerator of Eq. (5)
is the contributions from all data points, and ar,,
is the weight of s,, for ug. The second term is ac-
quired from labeled data, and w,,, is the weight of
a labeled instance s,, for ug.

The update_parameter step minimizes Jgem;
with respect to f(-) by keeping {r,;} and {px}
fixed, which has no counterpart in the k-means al-
gorithm. The main goal is to update parameters
for the text representation model. We take Jsem;
as the loss function, and train neural networks with
the Adam algorithm (Kingma and Ba, 2014).

4 Experiment

4.1 Experimental Setting

We evaluate our method on four short text
datasets. (1) question_type is the TREC question
dataset (Li and Roth, 2002), where all the ques-
tions are classified into 6 categories: abbrevia-
tion, description, entity, human, location and nu-
meric. (2) ag_news dataset contains short texts
extracted from the AG’s news corpus, where all
the texts are classified into 4 categories: World,
Sports, Business, and Sci/Tech (Zhang and Le-
Cun, 2015). (3) dbpedia is the DBpedia on-
tology dataset, which is constructed by picking
14 non-overlapping classes from DBpedia 2014
(Lehmann et al., 2014). (4) yahoo_answer is the
10 topics classification dataset extracted from Ya-
hoo! Answers Comprehensive Questions and An-
swers version 1.0 dataset by Zhang and LeCun

0)



dataset class#  total# labeled#
question_type 6 5953 595
ag_news 4 4,000 400
dbpedia 14 14,000 1,400
yahoo_answer 10 10,000 1,000

Table 3: Statistics for the short text datasets

(2015). We use all the 5,952 questions for the
question_type dataset. But the other three datasets
contain too many instances (e.g. 1,400,000 in-
stances in yahoo_answer). Running clustering ex-
periments on such a large dataset is quite inef-
ficient. Following the same solution in (Xu et
al., 2015), we randomly choose 1,000 samples
for each classes individually for the other three
datasets. Within each dataset, we randomly sam-
ple 10% of the instances as labeled data, and eval-
uate the performance on the remaining 90% in-
stances !. Table 3 summarizes the statistics of
these datasets.

In all experiments, we set the size of word vec-
tor dimension as d=300 2, and pre-train the word
vectors with the word2vec toolkit (Mikolov et al.,
2013) on the English Gigaword (LDC2011TO07).
The number of clusters is set to be the same num-
ber of labels in the dataset. The clustering per-
formance is evaluated with two metrics: Adjusted
Mutual Information (AMI) (Vinh et al., 2009) and
accuracy (ACC) (Amig¢ et al., 2009). In order to
show the statistical significance, the performance
of each experiment is the average of 10 trials.

4.2 Model Properties

There are several hyper-parameters in our model,
e.g., the output dimension of the text representa-
tion models, and the « in Eq. (4). The choice of
these hyper-parameters may affect the final perfor-
mance. In this subsection, we present some exper-
iments to demonstrate the properties of our model,
and find a good configuration that we use to eval-
uate our final model. All the experiments in this

"We didn’t split dataset into train/dev/test portions which
is commonly used for classification tasks, because it is not
the convention for clustering task. First, the goal of clustering
is to group given instances into clusters, instead of applying
the trained model to new instances. Second, the evaluation
process requires the clustering result of the whole set to map
the clustering labels to the annotated labels.

*We tuned different dimensions for word vectors. When
the size is small (50 or 100), performance drops significantly.
When the size is larger (300, 500 or 1000), the curve flattens
out. To make our model more efficient, we fixed it as 300.
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Figure 3: Influence of the short text representation
model, where the x-axis is the output dimension of
the text representation models.
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Figure 4: Influence of unlabeled data, where the
x-axis is a in Eq. (4).

subsection were performed on the question_type
dataset.

First, we evaluated the effectiveness of the out-
put dimension in text representation models. We
switched the dimension size among {50, 100, 300,
500, 1000}, and fixed the other options as: «
0.5, the filter types in the CNN model includ-
ing {unigram, bigram, trigram} and 500 filters for
each type. Figure 3 presents the AMIs from both
CNN and LSTM models. We found that 100 is the
best output dimension for both CNN and LSTM
models. Therefore, we set the output dimension
as 100 in the following experiments.

Second, we studied the effect of o in Eq. (4),
which tunes the importance of unlabeled data. We
varied @ among {0.00001, 0.0001, 0.001, 0.01,
0.1}, and remain the other options as the last ex-
periment. Figure 4 shows the AMIs from both
CNN and LSTM models. We found that the clus-
tering performance is not good when using a very
small a. By increasing the value of o, we ac-
quired progressive improvements, and reached to
the peak point at a=0.01. After that, the perfor-
mance dropped. Therefore, we choose a=0.01 in
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Figure 6: Influence of the pre-training strategy.

the following experiments. This results also indi-
cate that the unlabeled data are useful for the text
representation learning process.

Third, we tested the influence of the size of la-
beled data. We tuned the ratio of labeled instances
from the whole dataset among [1%, 10%], and
kept the other configurations as the previous ex-
periment. The AMIs are shown in Figure 5. We
can see that the more labeled data we use, the bet-
ter performance we get. Therefore, the labeled
data are quite useful for the clustering process.

Fourth, we checked the effect of the pre-training
strategy for our models. We added a softmax layer
on top of our CNN and LSTM models, where the
size of the output layer is equal to the number of
labels in the dataset. We then trained the model
through the classification task using all labeled
data. After this process, we removed the top layer,
and used the remaining parameters to initialize our
CNN and LSTM models. The performance for our
models with and without pre-training strategy are
given in Figure 6. We can see that the pre-training
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strategy is quite effective for our models. There-
fore, we use the pre-training strategy in the follow-
ing experiments.

4.3 Comparing with other Models

In this subsection, we compared our method with
some representative systems. We implemented a
series of clustering systems. All of these systems
are based on the k-means algorithm, but they rep-
resent short texts differently:

bow represents each text as a bag-of-words vec-
tor.

tf-idf represents each text as a TF-IDF vector.

average-vec represents each text with the average
of all word vectors within the text.

metric-learn-bow employs the metric learning
method proposed by Weinberger et al.
(2005), and learns to project a bag-of-words
vector into a 300-dimensional vector based
on labeled data.

metric-learn-idf uses the same metric learning
method, and learns to map a TF-IDF vector
into a 300-dimensional vector based on la-
beled data.

metric-learn-ave-vec also uses the metric learn-
ing method, and learns to project an averaged
word vector into a 100-dimensional vector
based on labeled data.

We designed two classifiers (cnn-classifier and
Istm-classifier) by adding a softmax layer on top
of our CNN and LSTM models. We trained these
two classifiers with labeled data, and utilized them
to predict labels for unlabeled data. We also built
two text representation models (“‘cnn-represent.”
and “Istm-represent.”’) by setting parameters of
our CNN and LSTM models with the correspond-
ing parameters in cnn-classifier and Istm-classifier.
Then, we used them to represent short texts into
vectors, and applied the k-means algorithm for
clustering.

Table 4 summarizes the results of all systems
on each dataset, where “semi-cnn” is our semi-
supervised clustering algorithm with the CNN
model, and “semi-lstm” is our semi-supervised
clustering algorithm with the LSTM model. We



question_type ag_news dbpedia yahoo_answer

AMI ACC | AMI ACC | AMI ACC | AMI ACC

bow 0.028 0.257 | 0.029 0.311 | 0.578 0.546 | 0.019 0.140

Unsup.  tf-idf 0.031 0.259 | 0.168 0.449 | 0.558 0.527 | 0.023 0.145
average-vec 0.135 0.356 | 0.457 0.737 | 0.610 0.619 | 0.077 0.222
metric-learn-bow 0.104 0.380 | 0.459 0.776 | 0.808 0.854 | 0.125 0.329
metric-learn-idf 0.114 0.379 | 0.443 0.765 | 0.821 0.876 | 0.150 0.368
metric-learn-ave-vec | 0.304 0.553 | 0.606 0.851 | 0.829 0.879 | 0.221 0.400

Sup. cnn-classifier 0.511 0.771 | 0.554 0.771 | 0.879 0.938 | 0.285 0.501
cnn-represent. 0.442 0.618 | 0.604 0.833 | 0.864 0.899 | 0.210 0.334
Istm-classifier 0.482 0.741 | 0.524 0.763 | 0.862 0.928 | 0.283 0.512
Istm-represent. 0421 0.618 | 0.535 0.771 | 0.667 0.706 | 0.152 0.272

Semisup. semi-cnn 0.529 0.739 | 0.662 0.876 | 0.894 0.945 | 0.338 0.554
semi-lstm 0.492 0.712 | 0.599 0.830 | 0.788 0.802 | 0.187 0.337

Table 4: Performance of all systems on each dataset.

Figure 7: t-SNE visualizations of clustering results.
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grouped all the systems into three categories: un-
supervised (Unsup.), supervised (Sup.), and semi-
supervised (Semisup.) . We found that the su-
pervised systems worked much better than the un-
supervised counterparts, which implies that the
small amount of labeled data is necessary for bet-
ter performance. We also noticed that within the
supervised systems, the systems using deep learn-
ing (CNN or LSTM) models worked better than
the systems using metric learning method, which
shows the power of deep learning models for short
text modeling. Our “semi-cnn” system got the best
performance on almost all the datasets.

Figure 7 visualizes clustering results on the
question_type dataset from four representative sys-
tems. In Figure 7(a), clusters severely overlap with
each other. When using the CNN sentence repre-
sentation model, we can clearly identify all clus-
ters in Figure 7(b), but the boundaries between
clusters are still obscure. The clustering results
from our semi-supervised clustering algorithm are
given in Figure 7(c) and Figure 7(d). We can see
that the boundaries between clusters become much
clearer. Therefore, our algorithm is very effective
for short text clustering.

5 Related Work

Existing semi-supervised clustering methods
fall into two categories: constraint-based and
representation-based. In constraint-based meth-
ods (Davidson and Basu, 2007), some labeled
information is used to constrain the clustering
process. In representation-based methods (Bair,
2013), a representation model is first trained to
satisfy the labeled information, and all data points
are clustered based on representations from the
representation model. Bilenko et al. (2004) pro-
posed to integrate there two methods into a unified
framework, which shares the same idea of our
proposed method. However, they only employed
the metric learning model for representation
learning, which is a linear projection. Whereas,
our method utilized deep learning models to
learn representations in a more flexible non-linear
space. Xu et al. (2015) also employed deep learn-
ing models for short text clustering. However,
their method separated the representation learning

3All clustering systems are based on the same number of
instances (total# in Table 3). For the semi-supervised and su-
pervised systems, the labels for 1% of the instances are given
(labeled# in Table 3). And the evaluation was conducted only
on the unlabeled portion.
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process from the clustering process, so it belongs
to the representation-based method. Whereas,
our method combined the representation learning
process and the clustering process together, and
utilized both labeled data and unlabeled data for
representation learning and clustering.

6 Conclusion

In this paper, we proposed a semi-supervised clus-
tering algorithm for short texts. We utilized deep
learning models to learn representations for short
texts, and employed a small amount of labeled
data to specify our intention for clustering. We
integrated the representation learning process and
the clustering process into a unified framework, so
that both of the two processes get some benefits
from labeled data and unlabeled data. Experimen-
tal results on four datasets show that our method is
more effective than other competitors.
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Abstract

Knowledge bases are useful resources for
many natural language processing tasks,
however, they are far from complete. In
this paper, we define a novel entity rep-
resentation as a mixture of its neighbor-
hood in the knowledge base and apply
this technique on TransE—a well-known
embedding model for knowledge base
completion. Experimental results show
that the neighborhood information signif-
icantly helps to improve the results of the
TransE, leading to better performance than
obtained by other state-of-the-art embed-
ding models on three benchmark datasets
for triple classification, entity prediction
and relation prediction tasks.

Keywords: Knowledge base completion,
embedding model, mixture model, link
prediction, triple classification, entity pre-
diction, relation prediction.

1 Introduction

Knowledge bases (KBs), such as WordNet (Miller,
1995), YAGO (Suchanek et al., 2007), Freebase
(Bollacker et al., 2008) and DBpedia (Lehmann
et al., 2015), represent relationships between enti-
ties as triples (head entity, relation, tail entity).
Even very large knowledge bases are still far from
complete (Socher et al., 2013; West et al., 2014).
Knowledge base completion or link prediction sys-
tems (Nickel et al., 2015) predict which triples not
in a knowledge base are likely to be true (Taskar
et al., 2004; Bordes et al., 2011).

Embedding models for KB completion associate
entities and/or relations with dense feature vectors
or matrices. Such models obtain state-of-the-art
performance (Bordes et al., 2012; Bordes et al.,
2013; Socher et al., 2013; Wang et al., 2014; Guu
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etal., 2015; Nguyen et al., 2016) and generalize to
large KBs (Krompa et al., 2015).

Most embedding models for KB completion
learn only from triples and by doing so, ignore lots
of information implicitly provided by the structure
of the knowledge graph. Recently, several authors
have addressed this issue by incorporating rela-
tion path information into model learning (Garcfia-
Duran et al., 2015; Lin et al., 2015a; Guu et al.,
2015; Toutanova et al., 2016) and have shown that
the relation paths between entities in KBs provide
useful information and improve knowledge base
completion. For instance, a three-relation path

(head, born_in_hospital /r1, e1)
= (e, hospital located_in_city/ra, e2)
= (eg, city_in_country/r3, tail)

is likely to indicate that the fact
(head, nationality, tail) could be true, so
the relation path here p = {r1,r2,r3} is useful for
predicting the relationship “nationality” between
the head and tail entities.

Besides the relation paths, there could be other
useful information implicitly presented in the
knowledge base that could be exploited for better
KB completion. For instance, the whole neigh-
borhood of entities could provide lots of useful in-
formation for predicting the relationship between
two entities. Consider for example a KB fragment
given in Figure 1. If we know that Ben Affleck has
won an Oscar award and Ben Affleck lives in Los
Angeles, then this can help us to predict that Ben
Affleck is an actor or a film maker, rather than a
lecturer or a doctor. If we additionally know that
Ben Affleck’s gender is male then there is a higher
chance for him to be a film maker. This intuition
can be formalized by representing an entity vector
as a relation-specific mixture of its neighborhood
as follows:
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child of

Ben Affleck

“.occupation?

* occupation?

_~‘occupation?

Los Angeles

Figure 1: An example fragment of a KB.

Ben_Affleck = w1 (Violet_Anne, child_of)
+ wy.o(male, gender 1)
+ wy 3(Los_Angeles, lives_in ! )
(

+ wy.4(Oscar_award, won 1),

where w,; are the mixing weights that indicate
how important each neighboring relation is for
predicting the relation r. For example, for pre-
dicting the occupation relationship, the knowl-
edge about the child_of relationship might not be
that informative and thus the corresponding mix-
ing coefficient can be close to zero, whereas it
could be relevant for predicting some other re-
lationship, such as parent or spouse, in which
case the relation-specific mixing coefficient for the
child_of relationship could be high.

The primary contribution of this paper is intro-
ducing and formalizing the neighborhood mixture
model. We demonstrate its usefulness by apply-
ing it to the well-known TransE model (Bordes et
al., 2013). However, it could be applied to other
embedding models as well, such as Bilinear mod-
els (Bordes et al., 2012; Yang et al., 2015) and
STransE (Nguyen et al., 2016). While relation
path models exploit extra information using longer
paths existing in the KB, the neighborhood mix-
ture model effectively incorporates information
about many paths simultaneously. Our extensive
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experiments on three benchmark datasets show
that it achieves superior performance over com-
petitive baselines in three KB completion tasks:
triple classification, entity prediction and relation
prediction.

2 Neighborhood mixture modeling

In this section, we start by explaining how to
formally construct the neighbor-based entity rep-
resentations in section 2.1, and then describe
the Neighborhood Mixture Model applied to the
TransE model (Bordes et al., 2013) in section 2.2.
Section 2.3 explains how we train our model.

2.1 Neighbor-based entity representation

Let £ denote the set of entities and R the set of
relation types. Denote by R~! the set of inverse
relations 7~ . Denote by G the knowledge graph
consisting of a set of correct tiples (h,r,t), such
that h,t € £ and r € R. Let K denote the sym-
metric closure of G, i.e. if a triple (h,r,t) € G,
then both (h,7,t) and (t,r~%, h) € K.
Define:

Ner ={e|(',re) € K}

as a set of neighboring entities connected to entity
e with relation r. Then

Ne={(,r)r e RUR™ ¢ € N}

is the set of all entity and relation pairs that are
neighbors for entity e.

Each entity e is associated with a k-dimensional
vector v, € R* and relation-dependent vectors
Uer € R r € RUR™L. Now we can define the
neighborhood-based entity representation 9 ;. for
an entity e € £ for predicting the relation r € R
as follows:

'Be,'r = QeVe + g br,r’ue’,r’a
(e/,r")EN,

ey

ae and b,.,, are the mixture weights that are con-
strained to sum to 1 for each neighborhood:

2
3)

Qe X 0 + exp a,

br,r’ X exp ﬁr,r’

where > 0 is a hyper-parameter that controls
the contribution of the entity vector v. to the
neighbor-based mixture, o, and (3, , are the learn-
able exponential mixture parameters.



In real-world factual KBs, e.g. Freebase (Bol-
lacker et al., 2008), some entities, such as “male”,
can have thousands or millions neighboring enti-
ties sharing the same relation “gender.” For such
entities, computing the neighbor-based vectors can
be computationally very expensive. To overcome
this problem, we introduce in our implementa-
tion a filtering threshold 7 and consider in the
neighbor-based entity representation construction
only those relation-specific neighboring entity sets
for which [NV, ;| < 7.

2.2 TransE-NMM: applying neighborhood
mixtures to TransE

Embedding models define for each triple
(h,r,t) € G, a score function f(h,r,t) that
measures its implausibility. The goal is to choose
f such that the score f(h,r,t) of a plausible triple
(h,r,t) is smaller than the score f(h',r’,t’) of an
implausible triple (h',7/,t").

TransE (Bordes et al., 2013) is a simple em-
bedding model for knowledge base completion,
which, despite of its simplicity, obtains very com-
petitive results (Garcia-Durén et al., 2016; Nickel
et al., 2016). In TransE, both entities ¢ and rela-
tions r are represented with k-dimensional vectors
v, € RFand v, € R*, respectively. These vectors
are chosen such that for each triple (h,r,t) € G:

Vp + U = Uy

4)

The score function of the TransE model is the
norm of this translation:

)

f(h, 7, t) Transe = [[vn + vr — 'vt||51/2

We define the score function of our new model
TransE-NMM in terms of the neighbor-based en-
tity vectors as follows:

f(h’a r, t) = ||’19h,7“ + v, — 791&,7“—1 ||Z1/23 (6)

using either the /1 or the {>-norm, and ¥}, and
¥, -1 are defined following the Equation 1. The
relation-specific entity vectors u., used to con-
struct the neighbor-based entity vectors 9., are
defined based on the TransE translation operator:

(7)

in which v,-1 = —wv,. For each correct triple
(h,r,t), the sets of neighboring entities N}, , and
N -1 exclude the entities ¢ and h, respectively.

Uer = Ve + Uy
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If we set the filtering threshold 7 0 then
O = vy and 9 -1 = v, for all triples. In this
case, TransE-NMM reduces to the plain TransE
model. In all our experiments presented in section
4, the baseline TransE results are obtained with the
TransE-NMM with 7 = 0.

2.3 Parameter optimization

The TransE-NMM model parameters include the
vectors v., v, for entities and relation types, the
entity-specific weights a = {a.le € £} and
relation-specific weights 8 = {f, /|r,7" € R U
R~1}. To learn these parameters, we minimize the
Lo-regularized margin-based objective function:

L= > [+ flhrt)— f0,rt)
(h,rt)EG
(h/7r?t/)egéh77.7t>
A 2 2
+ 5 (i3 + 1813), (®)

where [z]; = max(0,x), 7 is the margin hyper-
parameter, \ is the Lo regularization parameter
and

gEh,r,t) = {(hlvrv t) | n € 57 (h,a T>t) ¢ g}
U{(h,rt') [t €& (h,r,t) & G}

is the set of incorrect triples generated by corrupt-
ing the correct triple (h,r,t) € G. We applied
the “Bernoulli” trick to choose whether to gener-
ate the head or tail entity when sampling an incor-
rect triple (Wang et al., 2014; Lin et al., 2015b; He
etal., 2015; Ji et al., 2015; Ji et al., 2016).

We use Stochastic Gradient Descent (SGD)
with RMSProp adaptive learning rate to minimize
L, and impose the following hard constraints dur-
ing training: ||ve|l2 < 1 and ||v,|]2 < 1. We em-
ploy alternating optimization to minimize £. We
first initialize the entity and relation-specific mix-
ing parameters o and 3 to zero and only learn the
randomly initialized entity and relation vectors v,
and v,. Then we fix the learned vectors and only
optimize the mixing parameters. In the final step,
we fix again the mixing parameters and fine-tune
the vectors. In all experiments presented in sec-
tion 4, we train for 200 epochs during each three
optimization step.

3 Related work

Table 1 summarizes related embedding models for
link prediction and KB completion. The models



Model ‘ Score function f(h,r,t) Opt.
STransE IWo 105 + v — Weaville, s W1, Weo € REF 0, € R SGD
SE ||W7‘,1vh - W'r‘,2vt||€1/2 N Wr,ls W7’,2 € Rka SGD
Unstructured |vn —ville, ), SGD
TransE [vn +vr —velle, s 00 € R¥ SGD
TransH | = rpry Jon +or — (I~ ’I"p’l";)thgl/Z SGD

Tp, Uy € Rf . I Identity matrix size k X k

T

TransD I+ 7phy, Jop + or = (T+ Tpt;’r)vt”({l” AdaDelta

Tp, v, € R™; by, t, € R¥ ;I Identity matrix size n x k
TransR IWyvp + v, — er,g||gl/2 ‘W, € Rk gy € R? SGD
TranSparse W (08 vn + v, — We(OD)vile, , ; Wr, Wi € R™F; 08, 0L € R ; v, € R" | SGD
SME (Wi1v, + Wigv, +b1) T (Wa 10 + Wo v, + bo) SGD

b1, bs € R™; Wy 1, Wi o, Woq, Wy o € RVXF
DISTMULT v} W, v, ; W, is a diagonal matrix € RF** AdaGrad
NTN v, tanh(v, Myv; + We1v), + Wyove + b,) L.BFGS

vy, b € R M, € RO W o W, € RP<E
Bilinear-cOMP | v} W, W,,..W,. vy ; W, |\ W,,, ..., W, € RF*F AdaGrad
TransE-COMP | ||vp + vy + Vpy + oo + Vr,, — Vet 5 Vry, Urgs ooy Uy, € R AdaGrad

Table 1: The score functions f(h,r,t) and the optimization methods (Opt.) of several prominent embed-
ding models for KB completion. In all of these models, the entities & and ¢ are represented by vectors vy,

and v; € R* respectively.

differ in their score function f(h,r,t) and the al-
gorithm used to optimize their margin-based ob-
jective function, e.g., SGD, AdaGrad (Duchi et al.,
2011), AdaDelta (Zeiler, 2012) or L-BFGS (Liu
and Nocedal, 1989).

The Unstructured model (Bordes et al., 2012)
assumes that the head and tail entity vectors are
similar. As the Unstructured model does not take
the relationship into account, it cannot distinguish
different relation types. The Structured Embed-
ding (SE) model (Bordes et al., 2011) extends the
Unstructured model by assuming that the head and
tail entities are similar only in a relation-dependent
subspace, where each relation is represented by
two different matrices. Futhermore, the SME
model (Bordes et al., 2012) uses four different ma-
trices to project entity and relation vectors into a
subspace. The TransH model (Wang et al., 2014)
associates each relation with a relation-specific
hyperplane and uses a projection vector to project
entity vectors onto that hyperplane. TransD (Ji et
al., 2015) and TransR/CTransR (Lin et al., 2015b)
extend the TransH model by using two projection
vectors and a matrix to project entity vectors into
a relation-specific space, respectively. STransE
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(Nguyen et al., 2016) and TranSparse (Ji et al.,
2016) are extensions of the TransR model, where
head and tail entities are associated with their own
projection matrices.

The DISTMULT model (Yang et al., 2015) is
based on the Bilinear model (Nickel et al., 2011;
Bordes et al., 2012; Jenatton et al., 2012) where
each relation is represented by a diagonal rather
than a full matrix. The neural tensor network
(NTN) model (Socher et al., 2013) uses a bilinear
tensor operator to represent each relation. Simi-
lar quadratic forms are used to model entities and
relations in KG2E (He et al., 2015) and TATEC
(Garcia-Duran et al., 2016).

Recently, Neelakantan et al. (2015), Gardner
and Mitchell (2015), Luo et al. (2015), Lin et al.
(2015a), Garcia-Duran et al. (2015), Guu et al.
(2015) and Toutanova et al. (2016) showed that re-
lation paths between entities in KBs provide richer
information and improve the relationship predic-
tion. In fact, our new TransE-NMM model can
be also viewed as a three-relation path model as it
takes into account the neighborhood entity and re-
lation information of both head and tail entities in
each triple.



Luo et al. (2015) constructed relation paths be-
tween entities and viewing entities and relations
in the path as pseudo-words applied Word2 Vec al-
gorithms (Mikolov et al., 2013) to produce pre-
trained vectors for these pseudo-words. Luo et al.
(2015) showed that using these pre-trained vectors
for initialization helps to improve the performance
of the TransE, SME and SE models. RTransE
(Garcia-Duran et al., 2015), PTransE (Lin et al.,
2015a) and TransE-coMP (Guu et al., 2015) are
extensions of the TransE model. These mod-
els similarly represent a relation path by a vec-
tor which is the sum of the vectors of all rela-
tions in the path, whereas in the Bilinear-COMP
model (Guu et al., 2015), each relation is a ma-
trix and so it represents the relation path by ma-
trix multiplication. Our neighborhood mixture
model can be adapted to both relation path mod-
els Bilinear-cOMP and TransE-COMP, by replac-
ing head and tail entity vectors by the neighbor-
based vector representations, thus combining ad-
vantages of both path and neighborhood informa-
tion. Nickel et al. (2015) reviews other approaches
for learning from KBs and multi-relational data.

4 Experiments

To investigate the usefulness of the neighbor mix-
tures, we compare the performance of the TransE-
NMM against the results of the baseline TransE
and other state-of-the-art embedding models on
the triple classification, entity prediction and re-
lation prediction tasks.

4.1 Datasets

Dataset: | WN11 FB13 NELL186
#R 11 13 186

#E 38,696 75,043 14,463
#Train 112,581 316,232 31,134
#Valid 2,609 5,908 5,000
#Test 10,544 23,733 5,000

Table 2: Statistics of the experimental datasets
used in this study (and previous works). #E is
the number of entities, #R is the number of rela-
tion types, and #Train, #Valid and #Test are the
numbers of correct triples in the training, valida-
tion and test sets, respectively. Each validation and
test set also contains the same number of incorrect
triples as the number of correct triples.

We conduct experiments using three publicly
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available datasets WN11, FB13 and NELL186.
For all of them, the validation and test sets con-
taining both correct and incorrect triples have al-
ready been constructed. Statistical information
about these datasets is given in Table 2.

The two benchmark datasets'!, WNI11 and
FB13, were produced by Socher et al. (2013)
for triple classification. WNI11 is derived from
the large lexical KB WordNet (Miller, 1995) in-
volving 11 relation types. FB13 is derived from
the large real-world fact KB FreeBase (Bollacker
et al., 2008) covering 13 relation types. The
NELL186 dataset> was introduced by Guo et al.
(2015) for both triple classification and entity pre-
diction tasks, containing 186 most frequent rela-
tions in the KB of the CMU Never Ending Lan-
guage Learning project (Carlson et al., 2010).

4.2 Evaluation tasks

We evaluate our model on three commonly used
benchmark tasks: triple classification, entity pre-
diction and relation prediction. This subsection
describes those tasks in detail.

Triple classification: The triple classification
task was first introduced by Socher et al. (2013),
and since then it has been used to evaluate vari-
ous embedding models. The aim of the task is to
predict whether a triple (h, 7, t) is correct or not.

For classification, we set a relation-specific
threshold 6, for each relation type r. If the im-
plausibility score of an unseen test triple (h,r,t)
is smaller than 6,. then the triple will be classified
as correct, otherwise incorrect. Following Socher
et al. (2013), the relation-specific thresholds are
determined by maximizing the micro-averaged ac-
curacy, which is a per-triple average, on the vali-
dation set. We also report the macro-averaged ac-
curacy, which is a per-relation average.

Entity prediction: The entity prediction task
(Bordes et al., 2013) predicts the head or the tail
entity given the relation type and the other en-
tity, i.e. predicting h given (?,r,t) or predicting
t given (h,r,7) where 7 denotes the missing el-
ement. The results are evaluated using a ranking
induced by the function f(h,r,t) on test triples.
Note that the incorrect triples in the validation and
test sets are not used for evaluating the entity pre-
diction task nor the relation prediction task.

" hitp://cs.stanford.edu/people/dangi/data/nips 13- dataset.tar.bz2

Zhttp://aclweb.org/anthology/attachments/P/P15/
P15-1009.Datasets.zip



Each correct test triple (h,r,t) is corrupted by
replacing either its head or tail entity by each of
the possible entities in turn, and then we rank these
candidates in ascending order of their implausi-
bility score. This is called as the “Raw” setting
protocol. For the “Filtered” setting protocol de-
scribed in Bordes et al. (2013), we also filter out
before ranking any corrupted triples that appear in
the KB. Ranking a corrupted triple appearing in
the KB (i.e. a correct triple) higher than the origi-
nal test triple is also correct, but is penalized by the
“Raw” score, thus the “Filtered” setting provides
a clearer view on the ranking performance.

In addition to the mean rank and the Hits@10
(i.e., the proportion of test triples for which the
target entity was ranked in the top 10 predictions),
which were originally used in the entity predic-
tion task (Bordes et al., 2013), we also report the
mean reciprocal rank (MRR), which is commonly
used in information retrieval. In both “Raw” and
“Filtered” settings, mean rank is always greater
or equal to 1 and lower mean rank indicates bet-
ter entity prediction performance. The MRR and
Hits@10 scores always range from 0.0 to 1.0, and
higher score reflects better prediction result.

Relation prediction: The relation prediction
task (Lin et al., 2015a) predicts the relation type
given the head and tail entities, i.e. predicting r
given (h,7,t) where 7 denotes the missing ele-
ment. We corrupt each correct test triple (h,r,t)
by replacing its relation r by each possible rela-
tion type in turn, and then rank these candidates in
ascending order of their implausibility score. Just
as in the entity prediction task, we use two setting
protocols, “Raw” and “Filtered”, and evaluate on
mean rank, MRR and Hits@10.

4.3 Hyper-parameter tuning

For all evaluation tasks, results for TransE are ob-
tained with TransE-NMM with the filtering thresh-
old 7 = 0, while we set 7 = 10 for TransE-NMM.

For triple classification, we first performed
a grid search to choose the optimal hyper-
parameters for TransE by monitoring the micro-
averaged triple classification accuracy after each
training epoch on the validation set. For all
datasets, we chose either the #1 or £5 norm in the
score function f and the initial RMSProp learning
rate n € {0.001,0.01}. Following the previous
work (Wang et al., 2014; Lin et al., 2015b; Ji et al.,
2015; He et al., 2015; Ji et al., 2016), we selected
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the margin hyper-parameter v € {1,2,4} and the
number of vector dimensions k& € {20, 50,100}
on WN11 and FB13. On NELL186, we set v = 1
and k£ = 50 (Guo et al., 2015; Luo et al., 2015).
The highest accuracy on the validation set was ob-
tained when using 1 = 0.01 for all three datasets,
and when using /> norm for NELL186, v = 4,
k 20 and ¢; norm for WN11, and v = 1,
k = 100 and ¢5 norm for FB13.

We set the hyper-parameters 7, 7, k, and the
{1 or the ¢9-norm in our TransE-NMM model to
the same optimal hyper-parameters searched for
TransE. We then used a grid search to select the
hyper-parameter § € {0,1,5,10} and Lo regu-
larizer A € {0.005,0.01,0.05} for TransE-NMM.
By monitoring the micro-averaged accuracy after
each training epoch, we obtained the highest ac-
curacy on validation set when using 6 = 1 and
A = 0.05 for both WN11 and FB13, and 6 = 0
and A = 0.01 for NELL186.

For both entity prediction and relation predic-
tion tasks, we set the hyper-parameters 7, -,
k, and the ¢; or the fy-norm for both TransE
and TransE-NMM to be the same as the opti-
mal parameters found for the triple classifica-
tion task. We then monitored on TransE the fil-
tered MRR on validation set after each training
epoch. We chose the model with highest valida-
tion MRR, which was then used to evaluate the
test set. For TransE-NMM, we searched the hyper-
parameter 6 € {0,1,5,10} and Lo regularizer
A € {0.005,0.01,0.05}. By monitoring the fil-
tered MRR after each training epoch, we selected
the best model with the highest filtered MRR on
the validation set. Specifically, for the entity pre-
diction task, we selected 6 = 10 and A = 0.005 for
WNI11, § = 5and A = 0.01 for FB13,and § = 5
and A = 0.005 for NELL186. For the relation pre-
diction task, we selected 6 = 10 and A = 0.005
for WN11, § = 10 and A = 0.05 for FB13, and
0 = 1and A = 0.05 for NELL186.

5 Results

5.1 Quantitative results

Table 3 presents the results of TransE and TransE-
NMM on triple classification, entity prediction
and relation prediction tasks on all experimental
datasets. The results show that TransE-NMM gen-
erally performs better than TransE in all three eval-
uation tasks.

Specifically, TransE-NMM obtains higher triple



Data Method Tf'iple class. Entity prediction Relation prediction
Mic. Mac. | MR MRR H@I10 | MR MRR H@I10
R TransE 85.21 8253|4324 0.102 19.21 | 2.37 0.679 99.93
WNI1 TransE-NMM | 86.82 84.37 | 3687 0.094 1798 | 2.14 0.687 99.92
F TransE 4304 0.122 21.86 | 2.37 0.679 99.93
TransE-NMM 3668 0.109 20.12 | 2.14 0.687 99.92
R TransE 87.57 86.66 | 9037 0.204 3539 | 1.01 0.996 99.99
FB13 TransE-NMM | 88.58 87.99 | 8289 0.258 35.53 | 1.01 0.996 100.0
F TransE 5600 0.213 36.28 | 1.01 0.996 99.99
TransE-NMM 5018 0.267 36.36 | 1.01 0.996 100.0
R TransE 92.13 88.96 | 309 0.192 36.55 | 843 0.580 77.18
NELL186 TransE-NMM | 94.57 90.95 | 238  0.221 37.55 | 6.15 0.677 82.16
F TransE 279 0268 47.13 | 832 0.602 77.26
TransE-NMM 214 0.292 47.82 | 6.08 0.690 82.20

Table 3: Experimental results of TransE (i.e. TransE-NMM with 7 = 0) and TransE-NMM with 7 = 10.
Micro-averaged (labeled as Mic.) and Macro-averaged (labeled as Mac.) accuracy results are for the
triple classification task. MR, MRR and H@ 10 abbreviate the mean rank, the mean reciprocal rank and
Hits@10 (in %), respectively. “R” and “F” denote the “Raw” and “Filtered” settings used in the entity

prediction and relation prediction tasks, respectively.

Method W11 F13
TransR (Lin et al., 2015b) 859 825
CTransR (Lin et al., 2015b) 85.7 -

TransD (Ji et al., 2015) 86.4 89.1
TranSparse-S (Ji et al., 2016) 86.4 88.2
TranSparse-US (Ji et al., 2016) 86.8 875
NTN (Socher et al., 2013) 70.6 872
TransH (Wang et al., 2014) 78.8 83.3
SLogAn (Liang and Forbus, 2015) | 75.3  85.3
KG2E (He et al., 2015) 854 853
Bilinear-cOMP (Guu et al., 2015) 77.6 86.1
TransE-coMP (Guu et al., 2015) 80.3 87.6
TransE 852 87.6
TransE-NMM 86.8 88.6

Table 4: Micro-averaged accuracy results (in %)
for triple classification on WN11 (labeled as W11)
and FB13 (labeled as F13) test sets. Scores in bold
and underline are the best and second best scores,
respectively.

classification results than TransE in all three ex-
perimental datasets, for example, with 2.44% ab-
solute improvement in the micro-averaged accu-
racy on the NELL186 dataset (i.e. 31% reduc-
tion in error). In terms of entity prediction,
TransE-NMM obtains better mean rank, MRR and
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Method T?iple class. | Entity pred.
Mic. Mac. | MR H@10
TransE-LLE 90.08 84.50 | 535 20.02
SME-LLE 93.64 89.39 | 253 37.14
SE-LLE 93.95 88.54 | 447 31.55
TransE-SkipG | 85.33 80.06 | 385 30.52
SME-SkipG 92.86 89.65 | 293 39.70
SE-SkipG 93.07 8798 | 412 31.12
TransE 92.13 88.96 | 309 36.55
TransE-NMM | 94.57 90.95 | 238 37.55

Table 5: Results on on the NELL186 test set. Re-
sults for the entity prediction task are in the “Raw”
setting. “-SkipG” abbreviates “-Skip-gram”.

Hits@10 scores than TransE on both FB13 and
NELL186 datasets. Specifically, on NELL186
TransE-NMM gains a significant improvement of
279 — 214 = 65 in the filtered mean rank (which
is about 23% relative improvement), while on
the FB13 dataset, TransE-NMM improves with
0.267—0.213 = 0.054 in the filtered MRR (which
is about 25% relative improvement). On the
WNI11 dataset, TransE-NMM only achieves bet-
ter mean rank for entity prediction. The relation
prediction results of TransE-NMM and TransE are
relatively similar on both WN11 and FB13 be-



cause the number of relation types is small in these
two datasets. On NELL186, however, TransE-
NMM does significantly better than TransE.

In Table 4, we compare the micro-averaged
triple classification accuracy of our TransE-NMM
model with the previously reported results on the
WN11 and FB13 datasets. The first five rows re-
port the performance of models that use TransE
to initialize the entity and relation vectors. The
last eight rows present the accuracy of models with
randomly initialized parameters.

Table 4 shows that our TransE-NMM model ob-
tains the highest accuracy on WN11 and achieves
the second highest result on FB13. Note that
there are higher results reported for NTN (Socher
et al., 2013), Bilinear-cOMP (Guu et al., 2015)
and TransE-COMP when entity vectors are initial-
ized by averaging the pre-trained word vectors
(Mikolov et al., 2013; Pennington et al., 2014). It
is not surprising as many entity names in Word-
Net and FreeBase are lexically meaningful. It is
possible for all other embedding models to utilize
the pre-trained word vectors as well. However, as
pointed out by Wang et al. (2014) and Guu et al.
(2015), averaging the pre-trained word vectors for
initializing entity vectors is an open problem and
it is not always useful since entity names in many
domain-specific KBs are not lexically meaningful.

Table 5 compares the accuracy for triple classifi-
cation, the raw mean rank and raw Hits @10 scores
for entity prediction on the NELL 186 dataset. The
first three rows present the best results reported
in Guo et al. (2015), while the next three rows
present the best results reported in Luo et al.
(2015). TransE-NMM obtains the highest triple
classification accuracy, the best raw mean rank and
the second highest raw Hits@ 10 on the entity pre-
diction task in this comparison.

5.2 Qualitative results

Table 6 presents some examples to illustrate the
useful information modeled by the neighbors. We
took the relation-specific mixture weights from the
learned TransE-NMM model optimized on the en-
tity prediction task, and then extracted three neigh-
bor relations with the largest mixture weights
given a relation.

Table 6 shows that those relations are semanti-
cally coherent. For example, if we kno