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Abstract

The relational facts in sentences are often
complicated. Different relational triplet-
s may have overlaps in a sentence. We
divided the sentences into three types ac-
cording to triplet overlap degree, including
Normal, EntityPairOverlap and SingleEn-
tiyOverlap. Existing methods mainly fo-
cus on Normal class and fail to extract re-
lational triplets precisely. In this paper,
we propose an end-to-end model based on
sequence-to-sequence learning with copy
mechanism, which can jointly extract rela-
tional facts from sentences of any of these
classes. We adopt two different strategies
in decoding process: employing only one
united decoder or applying multiple sepa-
rated decoders. We test our models in two
public datasets and our model outperform
the baseline method significantly.

1 Introduction

Recently, to build large structural knowledge bases
(KB), great efforts have been made on extract-
ing relational facts from natural language texts.
A relational fact is often represented as a triplet
which consists of two entities (an entity pair)
and a semantic relation between them, such as
< Chicago, country, UnitedStates >.

So far, most previous methods mainly focused
on the task of relation extraction or classification
which identifies the semantic relations between t-
wo pre-assigned entities. Although great progress-
es have been made (Hendrickx et al., 2010; Zeng
et al., 2014; Xu et al., 2015a,b), they all assume
that the entities are identified beforehand and ne-
glect the extraction of entities. To extract both of
entities and relations, early works(Zelenko et al.,
2003; Chan and Roth, 2011) adopted a pipeline
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Figure 1: Examples of Normal, EntityPairOver-
lap (EPO) and SingleEntityOverlap (SEO) class-
es. The overlapped entities are marked in yel-
low. S1 belongs to Normal class because none
of its triplets have overlapped entities; S2 belongs
to EntityPairOverlap class since the entity pair
< Sudan,Khartoum > of it’s two triplets are
overlapped; And S3 belongs to SingleEntityOver-
lap class because the entity Aarhus of it’s two
triplets are overlapped and these two triplets have
no overlapped entity pair.

manner, where they first conduct entity recogni-
tion and then predict relations between extract-
ed entities. However, the pipeline framework ig-
nores the relevance of entity identification and re-
lation prediction (Li and Ji, 2014). Recent work-
s attempted to extract entities and relations joint-
ly. Yu and Lam (2010); Li and Ji (2014); Miwa
and Sasaki (2014) designed several elaborate fea-
tures to construct the bridge between these two
subtasks. Similar to other natural language pro-
cessing (NLP) tasks, they need complicated fea-
ture engineering and heavily rely on pre-existing
NLP tools for feature extraction.
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Recently, with the success of deep learning on
many NLP tasks, it is also applied on relation-
al facts extraction. Zeng et al. (2014); Xu et al.
(2015a,b) employed CNN or RNN on relation
classification. Miwa and Bansal (2016); Gupta
et al. (2016); Zhang et al. (2017) treated relation
extraction task as an end-to-end (end2end) table-
filling problem. Zheng et al. (2017) proposed a
novel tagging schema and employed a Recurrent
Neural Networks (RNN) based sequence labeling
model to jointly extract entities and relations.

Nevertheless, the relational facts in sentences
are often complicated. Different relational triplet-
s may have overlaps in a sentence. Such phe-
nomenon makes aforementioned methods, what-
ever deep learning based models and traditional
feature engineering based joint models, always fail
to extract relational triplets precisely. Generally,
according to our observation, we divide the sen-
tences into three types according to triplet over-
lap degree, including Normal, EntityPairOverlap
(EPO) and SingleEntityOverlap (SEO). As shown
in Figure 1, a sentence belongs to Normal class if
none of its triplets have overlapped entities. A sen-
tence belongs to EntityPairOverlap class if some
of its triplets have overlapped entity pair. And a
sentence belongs to SingleEntityOverlap class if
some of its triplets have an overlapped entity and
these triplets don’t have overlapped entity pair. In
our knowledge, most previous methods focused
on Normal type and seldom consider other type-
s. Even the joint models based on neural network
(Zheng et al., 2017), it only assigns a single tag to
a word, which means one word can only partici-
pate in at most one triplet. As a result, the triplet
overlap issue is not actually addressed.

To address the aforementioned challenge, we
aim to design a model that could extract triplets,
including entities and relations, from sentences of
Normal, EntityPairOverlap and SingleEntityOver-
lap classes. To handle the problem of triplet over-
lap, one entity must be allowed to freely partici-
pate in multiple triplets. Different from previous
neural methods, we propose an end2end model
based on sequence-to-sequence (Seq2Seq) learn-
ing with copy mechanism, which can jointly ex-
tract relational facts from sentences of any of these
classes. Specially, the main component of this
model includes two parts: encoder and decoder.
The encoder converts a natural language sentence
(the source sentence) into a fixed length semantic

vector. Then, the decoder reads in this vector and
generates triplets directly. To generate a triplet,
firstly, the decoder generates the relation. Second-
ly, by adopting the copy mechanism, the decoder
copies the first entity (head entity) from the source
sentence. Lastly, the decoder copies the second
entity (tail entity) from the source sentence. In
this way, multiple triplets can be extracted (In de-
tail, we adopt two different strategies in decod-
ing process: employing only one unified decoder
(OneDecoder) to generate all triplets or applying
multiple separated decoders (MultiDecoder) and
each of them generating one triplet). In our mod-
el, one entity is allowed to be copied several times
when it needs to participate in different triplets.
Therefore, our model could handle the triplet over-
lap issue and deal with both of EntityPairOverlap
and SingleEntityOverlap sentence types. More-
over, since extracting entities and relations in a
single end2end neural network, our model could
extract entities and relations jointly.

The main contributions of our work are as fol-
lows:

• We propose an end2end neural model based
on sequence-to-sequence learning with copy
mechanism to extract relational facts from
sentences, where the entities and relations
could be jointly extracted.

• Our model could consider the relational
triplet overlap problem through copy mecha-
nism. In our knowledge, the relational triplet
overlap problem has never been addressed
before.

• We conduct experiments on two public
datasets. Experimental results show that we
outperforms the state-of-the-arts with 39.8%
and 31.1% improvements respectively.

2 Related Work

By giving a sentence with annotated entities, Hen-
drickx et al. (2010); Zeng et al. (2014); Xu et al.
(2015a,b) treat identifying relations in sentences
as a multi-class classification problem. Zeng et al.
(2014) among the first to introduce CNN into re-
lation classification. Xu et al. (2015a) and Xu
et al. (2015b) learned relation representations from
shortest dependency paths through a CNN or RN-
N. Despite their success, these models ignore the
extraction of the entities from sentences and could
not truly extract relational facts.
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Figure 2: The overall structure of OneDecoder model. A bi-directional RNN is used to encode the
source sentence and then a decoder is used to generate triples directly. The relation is predicted and the
entity is copied from source sentence.

By giving a sentence without any annotated en-
tities, researchers proposed several methods to ex-
tract both entities and relations. Pipeline based
methods, like Zelenko et al. (2003) and Chan and
Roth (2011), neglected the relevance of entity ex-
traction and relation prediction. To resolve this
problem, several joint models have been proposed.
Early works (Yu and Lam, 2010; Li and Ji, 2014;
Miwa and Sasaki, 2014) need complicated pro-
cess of feature engineering and heavily depends on
NLP tools for feature extraction. Recent models,
like Miwa and Bansal (2016); Gupta et al. (2016);
Zhang et al. (2017); Zheng et al. (2017), jointly ex-
tract the entities and relations based on neural net-
works. These models are based on tagging frame-
work, which assigns a relational tag to a word or
a word pair. Despite their success, none of these
models can fully handle the triplet overlap prob-
lem mentioned in the first section. The reason is
in their hypothesis, that is, a word (or a word pair)
can only be assigned with just one relational tag.

This work is based on sequence-to-sequence
learning with copy mechanism, which have been

adopted for some NLP tasks. Dong and Lapata
(2016) presented a method based on an attention-
enhanced and encoder-decoder model, which en-
codes input utterances and generates their logical
forms. Gu et al. (2016); He et al. (2017) applied
copy mechanism to sentence generation. They
copy a segment from the source sequence to the
target sequence.

3 Our Model

In this section, we introduce a differentiable neu-
ral model based on Seq2Seq learning with copy
mechanism, which is able to extract multiple rela-
tional facts in an end2end fashion.

Our neural model encodes a variable-length
sentence into a fixed-length vector representation
first and then decodes this vector into the corre-
sponding relational facts (triplets). When decod-
ing, we can either decode all triplets with one u-
nified decoder or decode every triplet with a sep-
arated decoder. We denote them as OneDecoder
model and MultiDecoder model separately.
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3.1 OneDecoder Model

The overall structure of OneDecoder model is
shown in Figure 2.

3.1.1 Encoder
To encode a sentence s = [w1, .., wn], where wt

represent the t-th word and n is the source sen-
tence length, we first turn it into a matrix X =
[x1, · · · , xn], where xt is the embedding of t-th
word.

The canonical RNN encoder reads this matrix
X sequentially and generates output oEt and hid-
den state hE

t in time step t(1 ≤ t ≤ n) by

oEt ,h
E
t = f(xt,hE

t−1) (1)

where f(· ) represents the encoder function.
Following (Gu et al., 2016), our encoder uses

a bi-directional RNN (Chung et al., 2014) to en-
code the input sentence. The forward and back-

ward RNN obtain output sequence {
−→
oE1 , · · · ,

−→
oEn }

and {
←−
oEn , · · · ,

←−
oE1 }, respectively. We then concate-

nate
−→
oEt and

←−−−−
oEn−t+1 to represent the t-th word. We

use OE = [oE1 , ..., oEn ], where oEt = [
−→
oEt ;
←−−−−
oEn−t+1],

to represent the concatenate result. Similarly, the
concatenation of forward and backward RNN hid-
den states are used as the representation of sen-

tence, that is s = [
−→
hE
n ;
←−
hE
n ]

3.1.2 Decoder
The decoder is used to generate triplets direct-
ly. Firstly, the decoder generates a relation for
the triplet. Secondly, the decoder copies an enti-
ty from the source sentence as the first entity of
the triplet. Lastly, the decoder copies the second
entity from the source sentence. Repeat this pro-
cess, the decoder could generate multiple triplets.
Once all valid triplets are generated, the decoder
will generate NA triplets, which means “stopping”
and is similar to the “eos” symbol in neural sen-
tence generation. Note that, a NA triplet is com-
posed of an NA-relation and an NA-entity pair.

As shown in Figure 3 (a), in time step t (1 ≤
t), we calculate the decoder output oDt and hidden
state hD

t as follows:

oDt ,h
D
t = g(ut,hD

t−1) (2)

where g(· ) is the decoder function and hD
t−1 is the

hidden state of time step t − 1. We initialize hD
0

with the representation of source sentence s. ut is

the decoder input in time step t and we calculate it
as:

ut = [vt; ct]·Wu (3)

where ct is the attention vector and vt is the em-
bedding of copied entity or predicted relation in
time step t− 1. Wu is a weight matrix.

Attention Vector. The attention vector ct is cal-
culated as follows:

ct =
n∑

i=1

αi × oEi (4)

α = softmax(β) (5)

βi = selu([hD
t−1; oEi ]·wc) (6)

where oEi is the output of encoder in time step i,
α = [α1, ..., αn] and β = [β1, ..., βn] are vectors,
wc is a weight vector. selu(· ) is activation func-
tion (Klambauer et al., 2017).

After we get decoder output oDt in time step t
(1 ≤ t), if t%3 = 1 (that is t = 1, 4, 7, ...), we
use oDt to predict a relation, which means we are
decoding a new triplet. Otherwise, if t%3 = 2
(that is t = 2, 5, 8, ...), we use oDt to copy the first
entity from the source sentence, and if t%3 = 0
(that is t = 3, 6, 9, ...), we copy the second entity.

Predict Relation. Suppose there are m valid
relations in total. We use a fully connected layer
to calculate the confidence vector qr = [qr1, ..., q

r
m]

of all valid relations:

qr = selu(oDt ·Wr + br) (7)

where Wr is the weight matrix and br is the bias.
When predict the relation, it is possible to predic-
t the NA-relation when the model try to generate
NA-triplet. To take this into consideration, we cal-
culate the confidence value of NA-relation as:

qNA = selu(oDt ·WNA + bNA) (8)

where WNA is the weight matrix and bNA is the
bias. We then concatenate qr and qNA to form
the confidence vector of all relations (including
the NA-relation) and apply softmax to obtain the
probability distribution pr = [pr1, ..., p

r
m+1] as:

pr = softmax([qr;qNA]) (9)

We select the relation with the highest probability
as the predict relation and use it’s embedding as
the next time step input vt+1.
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Figure 3: The inputs and outputs of the decoder(s) of OneDecoder model and MultiDecoder model.
(a) is the decoder of OneDecoder model. As we can see, only one decoder (the green rectangle with
shadows) is used and this encoder is initialized with the sentence representation s. (b) is the decoders
of MultiDecoder model. There are two decoders (the green rectangle and blue rectangle with shadows).
The first decoder is initialized with s; Other decoder(s) are initialized with s and previous decoder’s state.

Copy the First Entity. To copy the first en-
tity, we calculate the confidence vector qe =
[qe1, ..., q

e
n] of all words in source sentence as:

qei = selu([oDt ; oEi ]·we) (10)

where we is the weight vector. Similar with the
relation prediction, we concatenate qe and qNA

to form the confidence vector and apply soft-
max to obtain the probability distribution pe =
[pe1, ..., p

e
n+1]:

pe = softmax([qe;qNA]) (11)

Similarly, We select the word with the highest
probability as the predict the word and use it’s em-
bedding as the next time step input vt+1.

Copy the Second Entity. Copy the second en-
tity is almost the same as copy the first entity. The
only difference is when copying the second enti-
ty, we cannot copy the first entity again. This is
because in a valid triplet, two entities must be dif-
ferent. Suppose the first copied entity is the k-th
word in the source sentence, we introduce a mask
vector M with n (n is the length of source sen-
tence) elements, where:

Mi =

{
1, i 6= k

0, i = k
(12)

then we calculate the probability distribution pe

as:

pe = softmax([M ⊗ qe;qNA]) (13)

where ⊗ is element-wise multiplication. Just like
copy the first entity, We select the word with the
highest probability as the predict word and use it’s
embedding as the next time step input vt+1.

3.2 MultiDecoder Model
MultiDecoder model is an extension of the pro-
posed OneDecoder model. The main difference is
when decoding triplets, MultiDecoder model de-
code triplets with several separated decoders. Fig-
ure 3 (b) shows the inputs and outputs of decoders
of MultiDecoder model. There are two decoders
(the green and blue rectangle with shadows). De-
coders work in a sequential order: the first decoder
generate the first triplet and then the second de-
coder generate the second triplet.

Similar with Eq 2, we calculate the hidden state
hDi
t and output oDi

t of i-th (1 ≤ i) decoder in time
step t as follows:

oDi
t ,hDi

t =

{
gDi(ut,hDi

t−1), t%3 = 2, 0

gDi(ut, ĥ
Di

t−1), t%3 = 1
(14)

gDi(· ) is the decoder function of decoder i. ut is
the decoder input in time step t and we calculated
it as Eq 3. hDi

t−1 is the hidden state of i-th decoder

in time step t − 1. ĥDi

t−1 is the initial hidden state
of i-th decoder, which is calculated as follows:

ĥDi

t−1 =

{
s, i = 1
1
2(s + hDi−1

t−1 ), i > 1
(15)
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Class
NYT WebNLG

Train Test Train Test
Normal 37013 3266 1596 246

EPO 9782 978 227 26
SEO 14735 1297 3406 457
ALL 56195 5000 5019 703

Table 1: The number of sentences of Normal, En-
tityPairOverlap (EPO) and SingleEntityOverlap
(SEO) classes. It’s worthy noting that a sentence
can belongs to both EPO class and SEO class.

3.3 Training
Both OneDecoder and MultiDecoder models are
trained with the negative log-likelihood loss func-
tion. Given a batch of data with B sentences
S = {s1, ..., sB} with the target results Y =
{y1, ..., yB}, where yi = [y1i , ..., y

T
i ] is the target

result of si, the loss function is defined as follows:

L =
1

B × T

B∑
i=1

T∑
t=1

−log(p(yti |y<t
i , si, θ)) (16)

T is the maximum time step of decoder. p(x|y) is
the conditional probability of x given y. θ denotes
parameters of the entire model.

4 Experiments

4.1 Dataset
To evaluate the performance of our methods, we
conduct experiments on two widely used datasets.

The first is New York Times (NYT) dataset,
which is produced by distant supervision method
(Riedel et al., 2010). This dataset consists of
1.18M sentences sampled from 294k 1987-2007
New York Times news articles. There are 24 valid
relations in total. In this paper, we treat this dataset
as supervised data as the same as Zheng et al.
(2017). We filter the sentences with more than
100 words and the sentences containing no posi-
tive triplets, and 66195 sentences are left. We ran-
domly select 5000 sentences from it as the test set,
5000 sentences as the validation set and the rest
56195 sentences are used as train set.

The second is WebNLG dataset (Gardent et al.,
2017). It is originally created for Natural Lan-
guage Generation (NLG) task. This dataset con-
tains 246 valid relations. In this dataset, a instance
including a group of triplets and several standard
sentences (written by human). Every standard sen-
tence contains all triplets of this instance. We on-

ly use the first standard sentence in our experi-
ments and we filter out the instances if all enti-
ties of triplets are not found in this standard sen-
tence. The origin WebNLG dataset contains train
set and development set. In our experiments, we
treat the origin development set as test set and ran-
domly split the origin train set into validation set
and train set. After filtering and splitting, the train
set contains 5019 instances, the test set contains
703 instances and the validation set contains 500
instances.

The number of sentences of every class in NYT
and WebNLG dataset are shown in Table 1. It’s
worthy noting that a sentence can belongs to both
EntityPairOverlap class and SingleEntityOverlap
class.

4.2 Settings

In our experiments, for both dataset, we use LSTM
(Hochreiter and Schmidhuber, 1997) as the model
cell; The cell unit number is set to 1000; The em-
bedding dimension is set to 100; The batch size is
100 and the learning rate is 0.001; The maximum
time steps T is 15, which means we predict at most
5 triplets for each sentence (therefore, there are 5
decoders in MultiDecoder model). These hyper-
parameters are tuned on the validation set. We use
Adam (Kingma and Ba, 2015) to optimize param-
eters and we stop the training when we find the
best result in the validation set.

4.3 Baseline and Evaluation Metrics

We compare our models with NovelTagging mod-
el (Zheng et al., 2017), which conduct the best per-
formance on relational facts extraction. We direct-
ly run the code released by Zheng et al. (2017) to
acquire the results.

Following Zheng et al. (2017), we use the stan-
dard micro Precision, Recall and F1 score to eval-
uate the results. Triplets are regarded as correc-
t when it’s relation and entities are both correc-
t. When copying the entity, we only copy the last
word of it. A triplet is regarded as NA-triplet when
and only when it’s relation is NA-relation and it
has an NA-entity pair. The predicted NA-triplets
will be excluded.

4.4 Results

Table 2 shows the Precision, Recall and F1 value
of NovelTagging model (Zheng et al., 2017) and
our OneDecoder and MultiDecoder models.
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Model
NYT WebNLG

Precision Recall F1 Precision Recall F1
NovelTagging 0.624 0.317 0.420 0.525 0.193 0.283
OneDecoder 0.594 0.531 0.560 0.322 0.289 0.305

MultiDecoder 0.610 0.566 0.587 0.377 0.364 0.371

Table 2: Results of different models in NYT dataset and WebNLG dataset.
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1
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SingleEntityOverlap Class
NovelTagging
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Figure 4: Results of NovelTagging, OneDecoder, and MultiDecoder model in Normal, EntityPairOverlap
and SingleEntityOverlap classes in NYT dataset.

As we can see, in NYT dataset, our MultiDe-
coder model achieves the best F1 score, which
is 0.587. There is 39.8% improvement compared
with the NovelTagging model, which is 0.420. Be-
sides, our OneDecoder model also outperforms
the NovelTagging model. In the WebNLG dataset,
MultiDecoder model achieves the highest F1 score
(0.371). MultiDecoder and OneDecoder models
outperform the NovelTagging model with 31.1%
and 7.8% improvements, respectively. These ob-
servations verify the effectiveness of our models.

We can also observe that, in both NYT
and WebNLG dataset, the NovelTagging model
achieves the highest precision value and lowest re-
call value. By contrast, our models are much more
balanced. We think that the reason is in the struc-
ture of the proposed models. The NovelTagging
method finds triplets through tagging the word-
s. However, they assume that only one tag could
be assigned to just one word. As a result, one
word can participate at most one triplet. There-
fore, the NovelTagging model can only recall a
small number of triplets, which harms the recal-
l performance. Different from the NovelTagging
model, our models apply copy mechanism to find
entities for a triplet, and a word can be copied

many times when this word needs to participate
in multiple different triplets. Not surprisingly, our
models recall more triplets and achieve higher re-
call value. Further experiments verified this.

4.5 Detailed Results on Different Sentence
Types

To verify the ability of our models in handling the
overlapping problem, we conduct further experi-
ments on NYT dataset.

Figure 4 shows the results of NovelTagging,
OneDecoder and MultiDecoder model in Normal,
EntityPairOverlap and SingleEntityOverlap class-
es. As we can see, our proposed models perform
much better than NovelTagging model in Entity-
PairOverlap class and SingleEntityOverlap class-
es. Specifically, our models achieve much high-
er performance on all metrics. Another observa-
tion is that NovelTagging model achieves the best
performance in Normal class. This is because the
NovelTagging model is designed more suitable for
Normal class. However, our proposed models are
more suitable for the triplet overlap issues. Fur-
thermore, it is still difficult for our models to judge
how many triplets are needed for the input sen-
tence. As a result, there is a loss in our models
for Normal class. Nevertheless, the overall perfor-
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Figure 5: Relation Extraction from sentences that contains different number of triplets. We divide the
sentences of NYT test set into 5 subclasses. Each class contains sentences that have 1,2,3,4 or >= 5
triplets.

Model NYT WebNLG
OneDecoder 0.858 0.745

MultiDecoder 0.862 0.821

Table 3: F1 values of entity generation.

mance of the proposed models still outperforms
NoverTagging. Moreover, we notice that the w-
hole extracted performance of EntityPairOverlap
and SingleEntityOverlap class is lower than that
in Normal class. It proves that extracting relation-
al facts from EntityPairOverlap and SingleEntity-
Overlap classes are much more challenging than
from Normal class.

We also compare the model’s ability of extract-
ing relations from sentences that contains differ-
ent number of triplets. We divide the sentences in
NYT test set into 5 subclasses. Each class con-
tains sentences that has 1,2,3,4 or >= 5 triplets.
The results are shown in Figure 5. When extract-
ing relation from sentences that contains 1 triplet-
s, NovelTagging model achieve the best perfor-
mance. However, when the number of triplets in-
creases, the performance of NovelTagging mod-
el decreases significantly. We can also observe
the huge decrease of recall value of NovelTagging
model. These experimental results demonstrate
the ability of our model in handling multiple re-
lation extraction.

4.6 OneDecoder vs. MultiDecoder

As shown in the previous experiments (Table 2,
Figure 4 and Figure 5), our MultiDecoder model
performs better then OneDecoder model and Nov-

Model NYT WebNLG
OneDecoder 0.874 0.759

MultiDecoder 0.870 0.751

Table 4: F1 values of relation generation.

elTagging model. To find out why MultiDecoder
model performs better than OneDecoder model,
we analyzed their ability of entity generation and
relation generation. The experiment results are
shown in Table 3 and Table 4. We can observe
that on both NYT and WebNLG datasets, these t-
wo models have comparable abilities on relation
generation. However, MultiDecoder performs bet-
ter than OneDecoder model when generating en-
tities. We think that it is because MultiDecoder
model utilizes different decoder to generate dif-
ferent triplets so that the entity generation results
could be more diverse.

Conclusions and Future Work

In this paper, we proposed an end2end neural
model based on Seq2Seq learning framework with
copy mechanism for relational facts extraction.
Our model can jointly extract relation and entity
from sentences, especially when triplets in the sen-
tences are overlapped. Moreover, we analyze the
different overlap types and adopt two strategies for
this issue, including one unified decoder and mul-
tiple separated decoders. We conduct experiments
on two public datasets to evaluate the effectiveness
of our models. The experiment results show that
our models outperform the baseline method signif-
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icantly and our models can extract relational facts
from all three classes.

This challenging task is far from being solved.
Our future work will concentrate on how to im-
prove the performance further. Another future
work is test our model in other NLP tasks like
event extraction.
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